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Abstract

We propose an algebraic approach to proving circuit lower bounds for ACC0 by defining
and studying the notion of torus polynomials. We show how currently known polynomial-based
approximation results for AC0 and ACC0 can be reformulated in this framework, implying
that ACC0 can be approximated by low-degree torus polynomials. Furthermore, as a step
towards proving ACC0 lower bounds for the majority function via our approach, we show that
MAJORITY cannot be approximated by low-degree symmetric torus polynomials. We also pose
several open problems related to our framework.

1 Introduction

A major goal of complexity theory is to prove Boolean circuit lower bounds. Over the years,
three general approaches have been developed to achieve this.

The first approach is based on random restrictions. It applies to circuit classes in which
functions simplify when most inputs are fixed to random values. Classic examples are the proofs
by H̊astad that AC0 cannot compute or approximate PARITY [H̊as87]; and the shrinkage of De
Morgan formulas under random restrictions [H̊as98]. However, random restrictions don’t seem
to be useful against more powerful circuit classes, such as AC0[⊕], which allows for PARITY
gates in the circuit.

The second approach is based on approximation by low-degree polynomials. Razborov
[Raz87] and Smolensky [Smo87] used this approach to prove lower bounds for AC0[⊕] = AC0[2],
and more generally for AC0[p] for any prime p. This technique is based on showing that any
function in the circuit class can be approximated by a low-degree polynomial over the finite
field Fp. Then, functions that do not admit such an approximation are provably outside the
circuit class. A classic example here is that the MAJORITY function cannot be approximated
by a low-degree polynomial over Fp, and thus cannot be computed by AC0[p]. However, this
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method also breaks down when considering more powerful circuit classes such as AC0[6], and
more generally ACC0.

The third method involves designing nontrivial satisfiability algorithms and then using them
to prove circuit lower bounds for high complexity classes. Williams [Wil14] used this approach
to prove that NEXP 6⊆ ACC0, and very recently, Williams and Murray [MW18] have extended
this to show that NQP 6⊆ ACC0.

The goal of the current paper is to focus on the second approach, namely the use of algebraic
techniques. In particular, we aim to extend these algebraic techniques to prove lower bounds
against ACC0. We show that an extension of finite field polynomials, which we call torus
polynomials, is a concrete candidate to achieve this. This raises a host of questions on the
approximation of Boolean functions by torus polynomials. We are able to answer a few of these
questions, while most are left open. This work aims to bring forward concrete combinatorial
and algebraic problems that may shed new light on the computational power of ACC0.

1.1 Torus polynomials

Let T = R/Z denote the torus. A torus polynomial is simply a real polynomial evaluated modulo
1. Namely, a degree d torus polynomial P : {0, 1}n → T is

P (x) =
∑

S⊆[n],|S|≤d

PS
∏
i∈S

xi (mod 1),

where PS ∈ R. These are an extension of the class of nonclassical polynomials which arose in
number theory and in higher order Fourier analysis [TZ12].

As we will shortly see, torus polynomials give a uniform way to analyze polynomials over
different finite fields. We would be like to study their ability to approximate Boolean functions
and their applications in circuit complexity. We remark that the results of this paper can be
similarly phrased in terms of nonclassical polynomials instead of torus polynomials. This is
because for the purpose of approximation of Boolean functions – which is the topic of this
paper – torus polynomials and nonclassical polynomials are equivalent (see Section 1.3 for more
details). However, torus polynomials are simpler to describe (they are just real polynomials
evaluated modulo 1) and more elegant (they are field independent), and hence we believe are a
better choice for an algebraic model.

For z ∈ T, let ι(z) denote the unique representative of z in [−1/2, 1/2) (e.g., ι(0.4) = 0.4)
and ι(0.7) = −0.3). Then we can define its norm, denoted by |z (mod 1)|, to be

|z (mod 1)| = |ι(z)|.

For F : {0, 1}n → T, define

‖F (mod 1)‖∞ := max
x∈{0,1}n

|F (x) (mod 1)|.

We embed Boolean functions as functions mapping into the torus by requiring their output to
be in {0, 1/2} ⊂ T. The following is the main definition of approximation that we consider.

Definition 1.1 (Toroidal approximation degree of Boolean functions). Let f : {0, 1}n → {0, 1}
be a Boolean function. For ε > 0, the toroidal ε-approximation degree of f is the minimal d ≥ 0,
for which there exists a torus polynomial P : {0, 1}n → T of degree d, that satisfies∥∥∥∥P − f

2
(mod 1)

∥∥∥∥
∞
≤ ε.

We denote this by degε(f) = d.
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We illustrate in Section 2, in increasing generality, the power of approximation by torus
polynomials. The most general result (Corollary 2.10) shows that if f can be computed by an
ACC0 circuit then

degε(f) ≤ polylog(n/ε).

Thus, torus polynomials give a uniform algebraic framework to study the circuit class ACC0

with the goal of proving lower bounds against it for some explicit function, ideally in the class
P. Concretely, we pose the following open problem.

Problem 1.2. Find an explicit function f : {0, 1}n → {0, 1} in P whose toroidal ε-
approximation degree is ω(polylog(n/ε)). By Corollary 2.10, it cannot be computed by ACC0

circuits.

Williams [Wil14] proved that NEXP 6⊆ ACC0 via designing nontrivial satisfiability algo-
rithms for ACC0, and Williams and Murray [MW18] improved the approach to show that
NQP 6⊆ ACC0. Thus, an intermediate goal towards resolving Problem 1.2 is to prove toroidal
approximation lower bounds for functions f ∈ NEXP or f ∈ NQP.

A long-standing open problem in circuit complexity is to show that MAJORITY cannot be
computed in ACC0. Thus the following question is natural.

Problem 1.3. What is the toroidal ε-approximation degree of MAJORITY?

How can one go about answering this question? We now turn to the setting of approximation
by real polynomials – which prima facie looks similar to our setting – for inspiration, highlighting
the main differences between the two notions.

1.2 Comparison with real polynomials

Given a function f : {0, 1}n → {0, 1}, the real ε-approximation degree of f , denoted by d̃egε(f),
is the minimal d such that there is a real polynomial P of degree d such that ‖f − P‖∞ ≤ ε

(this is the usual `∞-norm). It is clear that degε(f) ≤ d̃egε(f).
A beautiful result of Nisan and Szegedy [NS92] shows that the real ε-approximation degree

of MAJORITY is Ω(
√
n) for ε < 1/2. Their proof proceeds in two stages: (i) showing that if a

symmetric real polynomial ε-approximates MAJORITY then it must have degree Ω(
√
n); and

(ii) that any polynomial that ε-approximates MAJORITY can be symmetrized and made into
a symmetric polynomial with the same degree and approximation guarantee.
Attempting to follow the same strategy in our setting, we show in Corollary 3.3 that if one re-
stricts to symmetric torus polynomials (namely, symmetric real polynomials evaluated modulo
one), then the toroidal (1/20n)-approximation degree of MAJORITY is Ω(

√
n/ log n). Un-

fortunately, the aforementioned idea of symmetrization cannot be used in the setting of torus
polynomials in a straightforward manner and so it’s unclear how powerful non-symmetric torus
polynomials are compared to their symmetric counterparts. We conjecture that they are not
any better at approximating MAJORITY than symmetric polynomials:

Conjecture 1.4. The toroidal (1/20n)-approximation degree of MAJORITY is Ω(
√
n/ log n).

We remark that a positive answer to the above conjecture will give an algebraic proof that
MAJORITY is not in ACC0.

Let ∆w : {0, 1}n → {0, 1} denote the delta function which takes the value 1 on inputs of
Hamming weight w and is 0 elsewhere. En route to proving the aforementioned lower bound
for MAJORITY we also prove lower bounds for the delta functions in Lemma 3.1, showing that
one needs symmetric torus polynomials of degree Ω(

√
n/ log n) in order to be able to (1/20n)-

approximate the delta functions.
Somewhat surprisingly, for relatively large values of ε, the delta functions can be nontrivially
approximated by low-degree symmetric torus polynomials. In particular, we show in Lemma 4.1
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that for every delta function there is a symmetric torus polynomial of degree polylog(n/ε)/ε
that ε-approximates it, and thus

degε(∆w) ≤ polylog(n/ε)

ε
.

This kind of dependence of the symmetric toroidal approximation degree on ε is quite interesting,
and is unlike the case of real approximation — the symmetric real approximation degree of the
delta functions is Ω(

√
n) for both small and large values of ε. In fact, for constant ε, this also

shows a super-polynomial separation between real and toroidal approximation degree.
This also highlights other major differences between the real and the toroidal setting. Nisan

and Szegedy [NS92] show that for every Boolean function the real approximation degree is
polynomially related to the degree of exact representation by real polynomials. However, in the
case of torus polynomials, this is not true: the delta functions require the degree to be Ω(n)1

for exact representation whereas their toroidal 1/3-approximation degree is O(polylog(n)).
An interesting property of real approximation is its amenability to amplification, namely

the fact that, for any Boolean function f and ε < 1/3, given a polynomial p of degree d that
1/3-approximates f , it can be transformed into a polynomial p′ of degree d′ = O(d log(1/ε))

that ε-approximates f . In other words, d̃egε(f) ≤ O(d̃eg1/3(f) log(1/ε)). It is not clear whether
such a transformation is possible in the case of toroidal approximation. In the case of real
approximation, the transformation is symmetry preserving, but, given the results for the delta
functions discussed in the previous paragraphs, we should not expect this in the toroidal case.
This motivates the following problem.

Problem 1.5. How does degε(f) compare to deg1/3(f)?

1.3 Comparison with nonclassical polynomials

In this subsection, we show that for the purpose of approximation of Boolean functions, nonclas-
sical polynomials and torus polynomials are equivalent. We first need to give the definition of
nonclassical polynomials; here we provide what is known as the global definition of nonclassical
polynomials over {0, 1}n. For simplicity, we restrict our attention to nonclassical polynomials
defined over Fn2 , but note that the results generalize to nonclassical polynomials defined over Fnp
for any constant prime p.

Definition 1.6. A function Q : {0, 1}n → T is a nonclassical polynomial (over F2) of degree at
most d if and only if it can be written as

Q(x) = α+
∑

∅⊂S⊆[n];k≥0:0<|S|+k≤d

cS,k
2k+1

∏
i∈S

xi (mod 1)

where cS,k ∈ {0, 1} and α ∈ T.

The following simple claim shows that torus polynomials can be approximated by nonclassical
polynomials.

Claim 1.7. Let P : {0, 1}n → T be a torus polynomial of degree at most d and let ε ∈ (0, 1).
Then there exists a nonclassical polynomial Q of degree at most O(d log n+ log(1/ε)) such that
‖P −Q (mod 1)‖∞ ≤ ε.

Proof. Suppose P (x) = α+
∑
∅⊂S⊆[n],|S|≤d PS

∏
i∈S xi (mod 1). We can assume without loss of

generality that PS ∈ [0, 1) for all S. We approximate each PS separately using dyadic rationals.

1To see this, note that the delta function ∆n(x) has a unique representation as a torus polynomial given by
∆n(x) = x1···xn

2
.
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Let PS = 0.cS,0cS,1cS,2 . . ., where cS,i ∈ {0, 1}, be its binary expansion. Let t ≥ 1 be a parameter
that we will fix later, and note that∣∣∣∣∣∣PS −

∑
0≤k≤t

cS,k
2k+1

∣∣∣∣∣∣ ≤ 2−t.

Define the nonclassical polynomial

Q(x) = α+
∑

∅⊂S⊆[n];k≥0:0<|S|+k≤t+d

c′S,k
2k+1

∏
i∈S

xi (mod 1),

where c′S,k = cS,k for |S| ≤ d, k ≤ t, and is 0 otherwise. Then deg(Q) ≤ t+ d, and |P (x)−Q(x)

(mod 1)| ≤
(
n
≤d
)
2−t for all x ∈ {0, 1}n. Setting t = O(d log n+log(1/ε)) completes the proof.

Recall that our goal, motivated by proving ACC0 lower bounds, is to find a Boolean function
which cannot be 1/poly(n)-approximated by a torus polynomial of degree polylog(n). Given
Claim 1.7, this is equivalent to the problem of finding a Boolean function which cannot be
1/poly(n)-approximated by a nonclassical polynomial of degree polylog(n). As we mentioned
before, owing to the elegance and ease of description of torus polynomials relative to nonclassical
polynomials, torus polynomials make for a better choice in our setting.

1.4 Comparison with other notions of approximation

There are two other notions of approximation that have been studied in the literature. The first
deals with the exact computation of a Boolean function by a polynomial on a nontrivial fraction
of the domain. For example, the work of Bhrushundi et al. [BHS17] studies this in the case of
nonclassical polynomials and shows that any polynomial that computes MAJORITY correctly
even on two-thirds of the points must have degree Ω(

√
n). While many of these bounds for

nonclassical polynomials should also hold for torus polynomials, we remark that they are not
relevant to our setting since our notion of approximation (i.e., point-wise) is incomparable to
the above notion.

The second notion is that of correlation with polynomials, which was studied, for example,
by Bhowmick and Lovett [BL15]. Without getting into definitions, we note that this notion of
approximation is weaker than that of point-wise approximation, and thus for the purpose of
proving lower bounds for ACC0 it makes sense to only work with the latter. This also means
that, since the results in the work of Bhowmick and Lovett are all upper bounds (i.e., showing
how certain Boolean functions can be approximated by low-degree nonclassical polynomials in
the correlation sense), they don’t have any implications for our setting (there are some lower
bound results in their work but they only work for polynomials of degree << log(n), and so are
not really useful for us).

1.5 Natural proofs

The natural proofs barrier of Razborov and Rudich [RR97] isn’t really a problem for our ap-
proach since we are only trying to prove lower bounds against ACC0, and pseudorandom gen-
erators are not believed to be contained in this class. It is also not clear whether the property
in question, i.e. (in)approximability by torus polynomials, is natural, and, in particular, it will
be interesting to investigate whether one can efficiently distinguish between Boolean functions
which can be approximated by low-degree torus polynomials, and random Boolean functions:

Problem 1.8. Given the truth table of a function f : {0, 1}n → {0, 1} and ε > 0, decide in
polynomial time (in 2n and 1/ε) whether degε(f) ≤ polylog(n/ε).

5



Paper organization. In Section 2, we describe how torus polynomials can approximate
functions computed in bounded circuit classes, culminating in ACC0. In Section 3, we prove
lower bounds against symmetric torus polynomials approximating the MAJORITY function and
the delta functions. In Section 4, we show that symmetric torus polynomials have surprising
power in approximating the delta functions when the error ε is not too small.

2 Approximation of circuit classes

In this section, we review known results about the approximability of circuit classes by polyno-
mials and cast them in the language of torus polynomials. The main message here is that torus
polynomials provide a uniform model to formulate all these results.

2.1 Polynomials over finite fields

Let Fp be a prime finite field. Consider a function f : {0, 1}n → {0, 1} which is computed by
a low-degree polynomial over a finite field Fp. We show that it can be approximated by a low-
degree torus polynomial. We would require the following theorem on modulus-amplifying poly-
nomials of Beigel and Tarui [BT91], following previous results of Toda [Tod91] and Yao [Yao85].

Lemma 2.1 ( [BT91]). For every k ≥ 1 there exists a univariate polynomial Ak : Z → Z of
degree 2k − 1 such that the following holds. For every m ≥ 2,

• If x ∈ Z satisfies x ≡ 0 (mod m) then Ak(x) ≡ 0 (mod mk).

• If x ∈ Z satisfies x ≡ 1 (mod m) then Ak(x) ≡ 1 (mod mk).

Lemma 2.2. Let f : {0, 1}n → {0, 1}. Assume that f can be computed by a polynomial over
Fp of degree d. Then for every ε > 0,

degε(f) ≤ O(d log(1/ε)).

Proof. Let F (x) be an integer polynomial of degree d such that

F (x) ≡ f(x) (mod p) ∀x ∈ {0, 1}n.

Let k ≥ 1 be large enough so that 1/pk ≤ ε. Let 0 ≤ q ≤ pk − 1 be such that∣∣∣∣ qpk − 1

2
(mod 1)

∣∣∣∣ ≤ ε.
Define

G(x) =
qAk(F (x))

pk
(mod 1).

We claim that ∣∣∣∣G(x)− f(x)

2
(mod 1)

∣∣∣∣ ≤ ε (1)

for all x. To see this, fix x, and recall that F (x) ≡ f(x) (mod p), which means that Ak(F (x)) ≡
f(x) (mod pk), and hence G(x) ≡ q

pk
f(x) (mod 1). (1) now follows from our choice of q.

Noting that the degree of G is (2k − 1)d ≤ O(d log(1/ε)) completes the proof.

We will later need the following simple variant of Lemma 2.2. Its proof is identical.

Lemma 2.3. Let f : {0, 1}n → {0, 1}. Assume that f can be computed by a polynomial over
Fp of degree d. Then for every α ∈ [0, 1] and every ε > 0, there exists a torus polynomial
P : {0, 1}n → T of degree O(d log(1/ε)) such that

|P − αf (mod 1)| ≤ ε.
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2.2 Circuit class AC0[p]

Let f : {0, 1}n → {0, 1} be a function in AC0[p]. We show that it can be approximated by
low-degree torus polynomials. The starting point is the classic result of Razborov [Raz87] and
Smolensky [Smo87] which shows that AC0[p] circuits can be approximated by random low-degree
polynomials over Fp.

Theorem 2.4 ( [Raz87, Smo87]). Let f : {0, 1}n → {0, 1} be computed by an AC0[p] circuit.
Then for every ε > 0, there exists a distribution ν supported on polynomials F : Fnp → {0, 1} of
degree d = polylog(n/ε) such that

Pr
P∼ν

[P (x) = f(x)] ≥ 1− ε ∀x ∈ {0, 1}n.

Lemma 2.5. Let f : {0, 1}n → {0, 1}. Assume that there exists a distribution ν supported on
polynomials F : Fnp → {0, 1} of degree d such that

Pr
P∼ν

[P (x) = f(x)] ≥ 1− ε ∀x ∈ {0, 1}n.

Then
deg3ε(f) ≤ O(d log(n/ε)).

Proof. By standard Chernoff bounds, if we sample F1, . . . , Fm ∼ ν independently for m =
O(n/ε2) then with high probability,

|{i ∈ [m] : Fi(x) 6= f(x)}| ≤ 2εm ∀x ∈ {0, 1}n.

Fix such a sample. Recall that Fi : Fnp → {0, 1} are computed by degree d polynomials over
Fp. Next, apply Lemma 2.3 with α = 1/2m and error ε/m. This gives us torus polynomials
Pi : {0, 1}n → T of degree O(d log(m/ε)) such that∣∣∣∣Pi(x)− 1

2m
Fi(x) (mod 1)

∣∣∣∣ ≤ ε

m
∀x ∈ {0, 1}n.

Finally, take
P (x) = P1(x) + . . .+ Pm(x) (mod 1).

We claim that P (x) is a torus polynomial which 3ε-approximates f(x). To see this, fix x ∈
{0, 1}n. We have ∣∣∣∣P (x)− F1(x) + . . .+ Fm(x)

2m
(mod 1)

∣∣∣∣ ≤ ε
and ∣∣∣∣F1(x) + . . .+ Fm(x)

2m
− f(x)

2
(mod 1)

∣∣∣∣ ≤ 2ε.

Thus

deg3ε(f) ≤ deg(P ) = max{deg(Pi) : i ∈ [m]} = O(d log(m/ε)) = O(d log(n/ε)).

Corollary 2.6. Let f : {0, 1}n → {0, 1} be a function in AC0[p]. Then for every ε > 0,

degε(f) ≤ polylog(n/ε).

Another question is whether we can have a mini-max type theorem for torus polynomials.
Lemma 2.5 gives such a theorem in a very limited regime. The following is an attempt to
generalize this.
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Problem 2.7. Let f : {0, 1}n → {0, 1}. Assume that for any distribution ν over {0, 1}n, there
exists a low-degree torus polynomial Pν : {0, 1}n → T such that

Ex∼ν
[∣∣∣∣Pν(x)− f(x)

2
(mod 1)

∣∣∣∣] ≤ ε.
Does that imply that the approximate degree of f is small? That is, does there exist a single
low-degree torus polynomial which approximates f on all inputs?

It might also be useful to assume the stronger assumption that for any distribution ν over
{0, 1}n and any α ∈ [0, 1] there exists a torus polynomial Pν,α : {0, 1}n → T of degree d such
that

Ex∼ν [|Pν,α(x)− αf(x) (mod 1)|] ≤ ε.
This is also related to the following problem.

Problem 2.8. Let f : {0, 1}n → {0, 1}. For any α ∈ [0, 1] and ε > 0 define d(α, ε) to be the
minimal degree of a torus polynomial P : {0, 1}n → T such that

‖P − αf (mod 1)‖∞ ≤ ε.

What is the behavior of d(α, ε) as a function of α and of ε? Specifically,

• Can we bound maxα d(α, ε) in terms of d(1/2, ε)?

• Can we bound maxα d(α, ε) in terms of maxα d(α, 0.1)?

2.3 Circuit class ACC0

Let f : {0, 1}n → {0, 1} be a function in ACC0. We show that it too can be approximated by
low-degree torus polynomials. Here, we rely on the following result of Green et al. [GKT92],
which extends previous results of [Yao85,BT91].

Theorem 2.9 ( [GKT92]). Let f : {0, 1}n → {0, 1} be computed by a ACC0 circuit. Then, for
every k ≥ 1, there exists an integer polynomial F (x) of degree d = polylog(nk) which satisfies
the following. Let Fi(x) be the bits of F (x). Then for some ` ≥ 1 it holds that

• F`(x) = f(x) for all x ∈ {0, 1}n.

• F`+i(x) = 0 and F`−i(x) = 0 for all i ∈ {1, . . . , k} and all x ∈ {0, 1}n.

Corollary 2.10. Let f : {0, 1}n → {0, 1} be computed by a ACC0 circuit. Then for every ε > 0,

degε(f) ≤ polylog(n/ε).

Proof. Let d = polylog(n/ε) as given in Theorem 2.9 for k = log(1/ε). Define the torus
polynomial

P (x) =
F (x)

2`+1
(mod 1).

Clearly deg(P ) = d. By the definition of F ,

F (x)

2`+1
(mod 1) =

∑̀
i=0

2i−`−1Fi(x) (mod 1) =
f(x)

2
+

`−k∑
i=0

2i−`−1Fi(x) (mod 1).

As Fi(x) ∈ {0, 1} for all i, we can bound∣∣∣∣P (x)− f(x)

2
(mod 1)

∣∣∣∣ ≤ 2−k ≤ ε ∀x ∈ {0, 1}n.
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3 Lower bound for symmetric torus polynomials

In this section we prove a lower bound on the degree of symmetric torus polynomials that
approximate MAJORITY. It will be instructive to think of symmetric torus polynomials as
symmetric real polynomials taken modulo one. We start by examining the question for delta
functions.

For x ∈ {0, 1}n let |x| =
∑
xi denote its Hamming weight. The delta function ∆w : {0, 1}n →

{0, 1} for 0 ≤ w ≤ n is defined as

∆w(x) =

{
1 |x| = w

0 otherwise
.

Lemma 3.1. Suppose that for every 0 ≤ w ≤ n there exists a symmetric torus polynomial

Qw : {0, 1}n → T of degree d that 1
20n -approximates ∆w(x). Then d = Ω

(√
n

logn

)
.

Proof. Let Sym(n) denote the set of symmetric Boolean functions in n variables and let
SymPolyd,k(n) denote the set of symmetric torus polynomials in n variables of degree d whose

coefficients are of the form q/2k for q ∈ {−(2k − 1), . . . , 0, . . . , 2k − 1}.
Let f be an arbitrary function in Sym(n). Abusing notation, we let f−1(1) denote the set

of the weights of the layers of the Hamming cube where f takes value 1. Now define the torus
polynomial Qf as

Qf (x) =
∑

i∈f−1(1)

Qi(x) (mod 1).

It follows that Qf is a symmetric torus polynomial of degree d that 1
20 -approximates f . Since

Qf is a symmetric torus polynomial, namely a symmetric real polynomial taken modulo one, it
may be written as

Qf (x) =

d∑
j=0

cj

(∑
xi

)j
(mod 1).

Let k ≥ 0 be an integer whose value we will fix later. For 0 ≤ j ≤ d, let qj ∈ {−(2k −
1), . . . , 0, . . . 2k − 1} be such that ∣∣∣ qj

2k
− cj

∣∣∣ ≤ 1

2k
,

and define Q′f to be the polynomial

Q′f (x) =

d∑
j=0

qj
2k
·
(∑

xi

)j
(mod 1).

Observe that for every x ∈ {0, 1}n,

∣∣Qf (x)−Q′f (x) (mod 1)
∣∣ ≤ d∑

j=0

∣∣∣ qj
2k
− cj

∣∣∣ · |x|j ≤ (d+ 1) · nd

2k
.

If k is such that (d+1)·nd

2k
≤ 1

20 then∥∥Qf −Q′f (mod 1)
∥∥
∞ ≤

1

20
,

and so ∥∥∥∥f2 −Q′f (mod 1)

∥∥∥∥
∞
≤
∥∥∥∥f2 −Qf (mod 1)

∥∥∥∥
∞

+
∥∥Qf −Q′f (mod 1)

∥∥
∞ ≤

1

10
.
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Note that we can choose k = O(d log n) while still satisfying the required condition on k.
So far we have shown that for every f ∈ Sym(n) there is a polynomial Qf ∈ SymPolyd,k(n)

that 1/10-approximates f where k = O(d log n). In the other direction, one can easily verify
that every polynomial in SymPolyd,k(n) can 1/10-approximate at most one function in Sym(n).
This implies that

|SymPolyd,k(n)| ≥ |Sym(n)|.

Plugging in |SymPolyd,k(n)| = 2(k+1)(d+1) and |Sym(n)| = 2n, and using k = O(d log n), yields

the bound d = Ω
(√

n
logn

)
.

For the remainder of this section, denote MAJORITY on n bits by Majn(x).

Lemma 3.2. If there is a symmetric torus polynomial of degree o
(√

n
logn

)
that 1

20n -

approximates Majn(x), then for every 0 ≤ w ≤ n there is a symmetric torus polynomial of

degree o
(√

n
logn

)
that 1

20n -approximates ∆w(x).

Proof. Fix w. Let ∆≥w(x) denote the function that takes value 1 iff |x| ≥ w. Then we can write

∆≥w(x1, . . . , xn) = Maj2n+1(x1, . . . , xn, c1, . . . cn+1), (2)

where c ∈ {0, 1}n+1 is the string whose first n− w + 1 bits are set to 1 and the rest of the bits
are set to 0. Let Q(x1, . . . x2n+1) be the symmetric torus polynomial in 2n + 1 variables that

1
20(2n+1) -approximates Maj2n+1(x). Let Q≥w(x1, . . . , xn) be the torus polynomial defined as

Q≥w(x1, . . . xn) = Q(x1, . . . , xn, c1, . . . , cn+1),

where c ∈ {0, 1}n+1 is as defined above. It follows from (2) that Q≥w(x1, . . . , xn) 1
40n -

approximates ∆w(x1, . . . , xn). Furthermore,

deg(Q≥w) = o

(√
n

log n

)
.

Similarly, we can obtain a symmetric torus polynomial Q≥w+1(x1, . . . , xn) that 1
40n -

approximates ∆≥w+1(x1, . . . , xn) such that

deg(Q≥w+1) = o

(√
n

log n

)
.

Note that
∆w(x)

2
(mod 1) =

(
∆≥w(x)

2
− ∆≥w+1(x)

2

)
(mod 1).

Defining Qw(x) = Q≥w(x)−Q≥w+1(x) (mod 1), it follows that∥∥∥∥∆w(x)

2
−Qw(x) (mod 1)

∥∥∥∥
∞
≤ 1

20n
.

This completes the proof.

The main result of this section now follows from Lemma 3.1 and Lemma 3.2:

Corollary 3.3. Any symmetric torus polynomial of degree d that 1
20n -approximates Majn(x)

must satisfy d = Ω
(√

n
logn

)
.
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4 Upper bound for delta functions

In this section, we prove the somewhat surprising result that if the approximation parameter
ε > 0 is not too small (say a small constant), then the delta function ∆w can be nontrivially
approximated by symmetric low-degree torus polynomials.

Lemma 4.1. For any 0 ≤ w ≤ n and any ε > 0,

degε(∆w) ≤ polylog(n/ε)

ε
.

Proof. For any prime p ≥ 2, let fp : {0, 1}n → {0, 1} denote the function

fp(x) =

{
1 |x| ≡ w (mod p)

0 otherwise
.

It is computed by the Fp-polynomial of degree p− 1

fp(x) = 1−
(∑

xi − w
)p−1

(mod p).

Let P = {p1, . . . , pt} be the first t primes, for t to be chosen later. Applying Lemma 2.3
with α = 1/2t and error ε/2t, for each p ∈ P we obtain a torus polynomial Qp : {0, 1} → T of
degree O(log(n/ε)) such that ∥∥∥∥Qp − 1

2t
fp (mod 1)

∥∥∥∥
∞
≤ ε

2t
.

Define
Q(x) =

∑
p∈P

Qp(x) (mod 1).

We claim that Q is a symmetric torus polynomial that ε-approximates f .
Consider first x ∈ {0, 1}n with |x| = w. In this case, for each p ∈ P we have fp(x) = 1,

|Qp(x)− 1
2t (mod 1)| ≤ ε/2t and hence∣∣∣∣Q(x)− 1

2
(mod 1)

∣∣∣∣ ≤ ε/2.
Next, assume that |x| 6= w. Then fp(x) = 1 only if p divides |x| −w. As there are at most log n
such primes, we have that

|Q(x) (mod 1)| ≤ ε

2
+

log n

t
.

To conclude we choose t = O(log(n)/ε). The largest prime in P has size O(t log t) which means
that

degε(f) ≤ deg(Q) = max{deg(Qp) : p ∈ P} ≤ O(t log t) =
polylog(n/ε)

ε
.

To see why Q is symmetric, observe that Lemma 2.3 preserves symmetry.
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