Electronic Colloquium on Computational Complexity, Report No. 77 (2018)

Small-Set Expansion in Shortcode Graph and the 2-to-2
Conjecture

Boaz Barak * Pravesh K. Kothari * David Steurer ¥

April 23,2018

Abstract

Dinur, Khot, Kindler, Minzer and Safra [DKK*16] recently showed that the (imperfect
completeness variant of) Khot's 2 to 2 games conjecture follows from a combinatorial hypothesis
about the soundness of a certain “Grassmanian agreement tester”. In this work, we show that
hypothesis of Dinur et al follows from a conjecture we call the “Inverse Shortcode Hypothesis”
characterizing the non-expanding sets of the degree-two shortcode graph. We also show the
latter conjecture is equivalent to a characterization of the non-expanding sets in the Grassman
graph, as hypothesized by a follow-up paper of Dinur et al. [DKK*18].

Following our work, Khot, Minzer and Safra [KMS18] proved the “Inverse Shortcode
Hypothesis”. Combining their proof with our result and the reduction of [DKK"16], completes
the proof of the 2 to 2 conjecture with imperfect completeness. Moreover, we believe that the
shortcode graph provides a useful view of both the hypothesis and the reduction, and might be
useful in extending it further.

*Harvard University, b@boazbarak.org. Supported by NSF awards CCF 1565264 and CNS 1618026, and the Simons
Foundation. Part of the work done while the author visited Weizmann Institute during Spring 2017.

Princeton University and IAS kothari@cs.princeton. edu. Work done while the author visited Weizmann Institute
in March 2017.

$ETH Zurich dsteurer@cs.cornell.edu. Work done while the author was a member of the Institute for Advanced
Study, Princeton.

ISSN 1433-8092



1 Introduction

In [Kho02], Subhash Khot put forward a family of conjectures known as the “d-to-d games
conjectures”. A binary constraint P(x1, xo) where x;s take values in alphabet L is said to be d-to-d if
for every value to x1, there are exactly d values for x, that satisfy P and vice-versa. For any d, the
“d-to-d games conjecture” roughly says that for every ¢ > 0, there is some finite alphabet * such
that it is NP-hard to distinguish, given a constraint satisfaction problem with d-to-d constraints,
whether it is possible to satisfy at least 1 — ¢ fraction of the constraints, or if every assignment
satisfies at most ¢ fraction of the constraints. ! The case of d = 1 corresponds to the more famous
Unique Games Conjecture, but until recently there was no constant d for which the corresponding
d-to-d conjecture was known to be true.

Dinur, Khot, Kindler, Minzer, and Safra [DKK*16], building on ideas of Khot, Minzer and Safra
[KMS17], recently initiated an approach towards proving the 2-to-2 conjecture, based on a certain
combinatorial hypothesis positing the soundness of the “Grassmann agreement test”.

In this work we show that their hypothesis follows from a certain natural hypothesis character-
izing the structure of non-expanding sets in the degree two shortcode graph [BGH"15]. Following
our work, Khot, Minzer and Safra [KMS18] proved the latter hypothesis thus completing the
proof of the 2-to-2 games conjecture. This has several implications to hardness of approximation
including improving on the NP-hardness of approximation for Vertex Cover along with a host of
other improved NP-hardness results. Perhaps more importantly, this also gives a strong evidence
for the truth of the Unique Games Conjecture itself. We defer to [DKK*16, DKK*18, KMS18] for a
detailed discussion on the importance of the 2-to-2 games conjecture, as well as the reduction of
this conjecture to showing the soundness of the Grassmann agreement tester.

1.1 Owur Results

Our main result reduces the task of proving the “Grassmann agreement hypothesis” of Dinur et al
[DKK*16, Hypothesis 3.6] to characterizing the structure of non-expanding sets in the associated
Grassmann graph.

* We show that the Grassmann agreement hypothesis [DKK"16, Hypothesis 3.6] follows from
the Grasmann Expansion Hypothesis [DKK"18, Hypothesis 1.7].

* We describe the related Shortcode test and the associated agreement and expansion hypothesis
and relate them to the Grassmann versions above.

The above, combined with the work of [DKK*16, KMS18], suffices to prove the 2-to-2 conjecture.
However we note that it is possible to directly obtain a proof of the 2-to-2 conjecture (see the
recent exposition at [BCS18]) using the “Inverse Shortcode Hypothesis” without going through the
Grassmann graph at all. We think the shortcode view provides a natural way to understand the
reduction and suggests potential extensions, see Section 1.6.

1For d > 1, the conjectures are often stated in their perfect completeness variant, where we replace 1 — ¢ with 1 in the
first case. In this work (as well as all the line of works following [KMS17]), we refer to the imperfect completeness version
as stated above.



1.2 Grassmann Graph and DKKMS Consistency Test

To state our results formally, we need to define the Grassman and shortcode graphs, which we now
do. The Grassmann graph G(¢, n) with parameters ¢, n has vertices given by all {-dimensional
subspaces (denoted by V;) of F; . Two subspaces V,V’ of F) have an edge between them if
dim(VNV)=¢-1

Let LIN(IF;) be the set of all linear functions IF, — IF . For every f € LIN(F}), let F¢ be the map
that assign to every V € V;, F¢(V) = fv the restriction of the linear function f to the subspace V.
Let LIN(¢,n) = { Ff | f € LIN(IF;) } be the set of all such maps.

The Grassmann Consistency test is a two-query test for LIN(¢, n) described below:

Test 1: Grassmann Consistency Test

Given: a map F from V, — LIN(Fg ) that maps any V € V, to F(V) a linear function on V.
Operation:

1. Pick an edge (V, V’) of G({, n) uniformly at random.
2. Receive F(V),F(V’) € LIN(¢, n).
3. Accept if F(V)vav: = F(V')ynyr otherwise reject.

It is easy to see the following completeness of the Grassmann graph test.

Fact 1.1 (Completeness). Suppose F € LIN(¢, n). Then, F passes the Grassman Consistency test with
probability 1.

The DKKMS hypothesis conjectures a precise version of soundness of the Grassmann Consistency
Test.

Hypothesis 1.2 (DKKMS Soundness Hypothesis). For every 6 > 0, there exists ¢ > 0, and an integer
r > 0 such that following holds for sufficiently large n > €.

LetF:V, — LIN(]F;) such that Py vry.ge,m)[F(V)vav: = F(V')yavr] > 6. Then, there exist subspaces
Q, W C F} of dimensions r and n — r respectively and a f € LIN(IF}) such that

P [F(V)=fv]>e.
v B elEV) = frl > e

1.3 Shortcode Graph and Consistency Test

We now define the closely related Degree 2 Shortcode graph and a immediate analog of the Grassmann
consistency test on this graph. For parameters ¢, n as before, the vertices of the degree 2 shortcode
graph S¢ , are elements of Maty ,, that is, all matrices on IF, with dimensions ¢ X n. Two vertices
M; and M, have an edge between them if My — M is a rank 1 matrix over the field IF,. The 2 query
codeword test on this graph is entirely analogous to the one above for the Grassmann graph:

Test 2: Degree 2 Shortcode Consistency Test

Given: a map F from Mat; ,, — ]Fg.
Operation:

1. Pick M; ~ Mat; , and a rank 1 matrix ab " for vectors a € ]Fg, b € F) all uniformly at




random from their respective domains. Let My = My +ab’.
2. Receive F(M1), F(M>) € FFL.
3. Accept if F(My) € {F(My), F(M;) +a}.

Just as the Grassmann consistency test, the above shortcode consistency test is "2-to-2" constraint
and the following completeness is easy to establish.

Fact 1.3 (Completeness). Let f : IF} — IF, be any affine linear function. Let F = F¢ : Mat, , — ]Fg be
the map that evaluates f on each row the input matrix. Then, F passes the shortcode consistency test with
probability 1.

The analogous soundness hypothesis can now be stated as:

Hypothesis 1.4 (Degree 2 Shortcode Soundness Hypothesis). For every 6 > 0, there exists ¢ > 0, and
an integer v > 0 such that following holds for sufficiently large n > .
Let F : Mat, , — ]Fg such that Py o, 2 a~FL, b~ [F(M +abT™) € {F(M),F(M)+a}] > 6. Then, there

exists linear constraints (q;, t;) and (r;,s;) fori <randaz € Fj, u € ]Fg such that

P [F(M)=Mz+u|Mg;=t;,r/M=s;Vi<r]>e.
M~Maty ,,

1.4 Soundness vs Small-Set Expansion in Grasmann/Shortcode Graphs

Recall that for a regular graph G, the expansion of a set S of vertices is the probability, that a random
walk beginning at a uniformly random vertex in S steps out of S. That is, @c(S) = Py~s,o'~0[0’ € S].

The DKKMS Soundness Hypothesis implies a natural characterization small non-expanding
sets in the G(¢, n) noted below as Hypothesis 1.6. Similarly, the degree 2 shortcode soundness
hypothesis implies a natural characterization of non-expanding sets in S¢,. We include a brief
overview of the argument here and refer the reader to the more extensive commentary in Section
1.3 of [DKK*16] for further details.

Suppose A1, A, ..., A, are “non-expanding” sets that cover a constant fraction of vertices
in G(¢, n). We construct a labeling strategy F by choosing r uniformly random linear functions
fi : F]} — F; and setting F(V) = f; if V ~ A; and F(V) is a random linear function otherwise.
Clearly, F doesn’t agree with a single linear function on significantly more than 1/r fraction of the
vertices in V. On the other hand, if A;s are sufficiently non-expanding, then, a random edge will
lie inside one of the A;s with a non-trivially large probability and thus F will satisfy the Grassmann
consistency test. In this, case, we will hope that there are subspaces Q, W of constant dimension
and co-dimension, respectively such that restricting to subspaces V € V,(Q, W) (where V,(Q, W)
is the subset V € V; such that V. C W) implies that F(V') = fy for some fixed global linear function

f. This can happen in the above example for F only if there are Q, W as above such that one of the
[AiNVe(Q, W)
[Ve(Q.W)
sets A; to be “structured” (in the sense of having a large density inside V,(Q, W) for some Q, W

of constant dimension and co-dimension, respectively.) This can be interpreted as saying that the
non-expansion of any set of vertices in G({, n) can be “explained” away by a more than typical
density in one of the canonical non-expanding sets (i.e., those that contain a subspace Q and are
contained inside a subspace W of constant dimension and co-dimension, respectively.)

To formally state the Grassmann Expansion Hypothesis, we define the special non-expanding

is Q(1) (i.e. independent of ¢, n). Thus, Hypothesis 1.2 forces that the non-expanding

sets (referred to as “zoom-in” and “zoom-outs” in [DKK*18]):



Definition 1.5 (Nice Sets in Grassmann Graph). A subset S C V; of vertices in G(¢, n) is said to be
r-nice if there are subspace Q, W of IF} of dimension and co-dimension r1, 7, respectively such that
ri+r=randS={VCcV,|QcCcV W}

Hypothesis 1.6 (Grassmann Expansion Hypothesis). For every n > 0, there exists 0, r depending only
on 1 such that if S C Vy satisfies @g¢ n)(S) < 1, then, there are subspaces Q, W over IF} of dimension and
co-dimension r1, 1 satisfying r1 + ro < r respectively, such that Py.gcvew[V € S] > 6.

Analogously, we can define nice sets in the degree 2 shortcode graph and state the expansion
hypothesis. We call Q, a right affine subspace of matrices in Mat, , if there are pairs (g;, t;) and
every M € Q satisfies Mq; = t;. We define a left affine subspace analogously.

Definition 1.7 (Nice Sets in Degree 2 Shortcode Graph). A subset S C S¢,,, is said to be r-nice if it is
an intersection of a left and right affine subspace in Mat, , with sum of the dimensions r.

Hypothesis 1.8 (Inverse Shortcode Hypothesis). For every n > 0, there exist 6, r depending only on n
such that for every subset S C Maty ,,, if ]PM~s,a~JF§,b~JFg [M +abT € S| > n, then, there exists an r-nice set
T C St such that |SNT | = 0|T|.

While Hypotheses 1.2 and 1.4 posit soundness of a specific “code-word consistency” test
associated with the Grassmann/Shortcode graphs, Hypotheses 1.6 and 1.8 ask for a purely graph
theoretic property: a characterization of non-expanding sets in G(¢, n) and S¢ ,. As such, it appears
easier to attack and [DKK"16] thus suggested understanding the structure of non-expanding sets
in G(¢, n) as a natural first step. As we show in this note, proving Hypothesis 1.8 is in fact enough
to show Hypothesis 1.2. In a follow up work [KMS18], this result was used in to complete the proof
of the DKKMS soundness hypothesis.

1.5 Owur Results

We are now ready to state our main results formally.
First, we show that the soundness of the shortcode consistency test follows from the expansion
hypothesis for the shortcode graph.

Theorem 1.9. The degree 2 Shortcode Expansion Hypothesis 1.8 implies the Degree 2 Shortcode Soundness
Hypothesis 1.4.

Second, we show that the soundness hypothesis for the shortcode consistency test implies the
soundness hypothesis for the Grassmann consistency test. This reduces the DKKMS soundness
hypothesis to establishing the expansion hypothesis for the Shortcode graph.

Theorem 1.10. The degree 2 Shortcode Soundness Hypothesis implies the Grassmann Soundness Hypothesis
1.2.

Finally, we relate the expansion hypothesis of the Grassmann graph to the expansion hypothesis
for the degree 2 shortcode graph.

Theorem 1.11. The Grassmann Expansion Hypothesis (Hypothesis 1.6) is equivalent to the Inverse Shortcode
Hypothesis (Hypothesis 1.8).



1.6 Discussion

Working with the shortcode consistency test (and consequently, the shortcode expansion hypothesis)
makes an approach to proving Hypothesis 1.2 somewhat more tractable. This is because unlike
the Grassmann graph, Degree 2 shortcode graph is a Cayley graph on ]Fg” (isomorphic to Maty ;)
under the group operation of IF,-addition with the set of all rank 1 matrices forming the set of
generators. Thus studying expansion of sets of vertices can be approached via powerful methods
from Fourier analysis. Indeed, this is the route taken by the recent breakthrough [KMS18] that
proves the shortcode expansion hypothesis and completes the proof of the 2-to-2 games conjecture
(with imperfect completeness).

Perhaps equally importantly, the shortcode consistency test suggests immediate extensions
(higher degree shortcode graphs) that provide a natural path to proving the Unique Games Conjecture.
We discuss this approach here.

First, the Grassmann/shortcode consistency tests as stated above are “2-to-2” tests. That is, for
any reply for the first query, there are two admissible replies for the other query. However, it is
simple to modify the tests and make them unique or “1-to-1” at the cost of making the completeness
1/2 instead of 1. For concreteness, we describe this simple modification below.

Test 3: Unique Degree 2 Shortcode Consistency Test

Given: a map F from Mat; ,, — ]Fg.
Operation:

1. Pick M ~ Mat, , and a rank 1 matrix ab " for vectors a € ]Fg, b € F} all uniformly at
random from their respective domains. Let My = My +ab’.

2. Receive F(M7), F(M,) € FF5.

3. Accept if F(M;) = F(My).

Test 4: Unique Degree 3 Shortcode Consistency Test

Given: a map F from Teng,, , — ]Fg.
Operation:

1. Pick T1 ~ Ten,m,» and a rank 1 tensor a ® b ® c for vectors a € F5, b € Fy' and ¢ € IF}
all uniformly at random from their respective domains. Let T, =T1 +a ® b ® c.

2. Receive F(T1),F(T,) € ]Fg.

3. Accept if F(T) = F(T1).

It is easy to check that the any strategy that passes the 2-to-2 test can be modified to obtain
a success probability of 1/2 in passing the “unique” test above (see proof of Lemma 2.2 below).
This is one of the several ways that the NP hardness of “2-to-2” games implies the NP hardness of
(1/2, e)-unique games - that is, distingushing between instances where at least 1/2 the constraints
are satisfiable from those where at most ¢ fraction of constraints are satisfiable.

A natural strategy, thus, to try to show NP hardness of (1 — ¢, ¢)-unique games is to use some
variant of the shortcode consistency test above that has completeness 1 — ¢ instead of 1/2. Indeed,
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the degree 2 shortcode consistency test suggests natural analogs with higher completeness - by
moving to higher degree shortcode graphs. For concreteness, consider the following test on degree
3 shortcode graphs, where it is easy to argue a completeness of 3/4.

Let Teng ;,,» be the set of all £ X m X n tensors over IF,. Recall that a rank 1 tensor is defined by 3
vectors a € ]Fg, b € F}) and c € F) and can be writtenasa ® b ® c.

To see why there’s a natural analog of the strategy in case of the degree 2 shortcode consistency
test that gives a completeness of 3/4, we show:

Lemma 1.12 (Completeness). Let y € IF}' and z € IF}. Let Fy : Teng u,n — ]Fg be the map that assigns
to any tensor T, the value F(T); = ;x T(i, j, k)yjzx. Then, F ¢ passes the test with probability 3/4.

Proof. Let T, T’ be such that T — T” is rank 1 tensor. Then, F passes the test only if F¢(T —T") = 0.
HIT-T =a®b®c,then Ff(T —T") =(b, y)-{c,z)a. Since b, c are independently chosen in the
test, the probability that F¢(T — T") = 0 is 3/4. ]

Thus, the degree 3 shortcode consistency test gives a natural analog of the degree 2 shortcode
consistency test with higher completeness. Indeed, degree r version gives a test with completeness
of 1 — 27" as expected. One can also frame expansion hypotheses similar to the ones for the degree
2 case that posit a characterization of the non-expanding sets in higher degree shortcode graphs.

While our current efforts to compose this test with the “outer-PCP” in order to get a reduction to
Unique Games problem (with higher completeness) have not succeeded, it seems a natural avenue
for launching an attack on the UGC.2

2 Small-Set-Expansion vs Soundness

In this section, we establish that the inverse shortcode hypothesis (Hypothesis 1.8) implies the
soundness of the degree 2 shortcode consistency test 1.4.

From 2-to-2 to Unique Tests. For the sake of exposition, it will be easier to work with Test 1.6,
the “unique” version of the degree 2 shortcode consistency test. Thus, we restate the soundness
hypothesis for Test 1.6 and show that it is enough to establish Hypothesis 1.4.

Hypothesis 2.1 (Soundness of Test 1.6). For every n > 0, there exists 6 > 0, and an integer r > 0 such
that following holds for sufficiently large n > .
Let F : Mat, , — ]Fg such that ]PM~Matg,n,u~IF§,b~]F;’ [F(M +abT) = F(M)] > n. Then, there exists linear

constraints (q;, t;) and (ri,s;) fori <randaz € Fy,u € ]Fg such that

P [F(M)=Mz+u|Mgi=t;,r/]M=s;Vi<r]>0.
M~Mat ,,

We first show that Hypothesis 2.1 implies Hypothesis 1.4.

Lemma 2.2. Hypothesis 2.1 implies Hypothesis 1.4.

2There are indeed very serious obstacles that must be overcome before carrying this out. Specifically, the reduction of
[DKK*16] uses a careful interplay between smoothness properties of the outer PCP and efficiency or “blow up” properties
of the test (i.e., the number of potential queries by the verifier as a function of the number of honest strategies). The
tensor based test has too much of a blowup to be able to be simply “plugged in” in the outer PCP used by [DKK*16].



Proof. Let F be the labeling strategy for Test 1.3. We will first obtain a good labeling strategy for
Test 1.6 by modifying F slightly.

Choose /i uniformly at random from IF}. For any M € Mat, ,, let G(M) = F(M) + Mh. We claim
that if F passes the Test 1.3 with probability 7, then G passes Test 1.6 with probability at least 17/2.

To see this, take any M, M’ such that M ~ M’ in S¢ ,. Thatis, M — M’ = abT for vectors a, b. We
will argue that G(M) = G(M’) with probability 1/2. This will imply that in expectation over the
choice of 1, G satisfies at least 1/2 the constraints satisfied by F in Test 1.3 completing the proof.

This is simple to see: since F passes the test, F(M) = F(M’) or F(M) — F(M’) = a. WLOG, say
the first happens. Observe that G passes the unique test on M, M’ if F(M) + Mh = F(M") + M’h
or F(M) — F(M') = (M — M’)h = (b, h)a. Since F(M) = F(M’), G thus passes if (b, h) = 0 which
happens with probability 1/2.

O

Expansion to Soundness. We will now show that Hypothesis 1.8 implies Hypothesis 2.1. This
completes the proof of Theorem 1.9. A similar argument can be used to directly establish that
Hypothesis 1.6 implies Hypothesis 1.2. We do not include it here explicitly. Instead, we relate
the expansion and soundness hypothesis for the degree 2 shortcode test to the analogs for the
Grassmann test as we believe this could shed light on showing expansion hypotheses for higher
degree shortcode tests discussed in the next section.

Lemma 2.3. Hypothesis 1.8 implies Hypothesis 2.1

Proof. Let F be the labeling function as in the assumption in Hypothesis 2.1. Then, we know that
]PM~Matg,n,a~]F§,b~1Fg [F(M) = F(M +abT)] > n. For any z € {0, 1}¢, let S, be the set of all matrices
M with F(M) = z. Then, by an averaging argument, there must be a z € {0,1}’ such that
]PM~SZ,a~]F§,b~]F’21 [M+abT €8,] > 7.

Apply Hypothesis 1.8 to S, to obtain r-nice subset Q of Mat;, such that |[Q N'S.| > 6|Q].
Let Mg = t be a affine constraint satisfied by every M € Q. Consider the affine linear strategy
H : Mat;, — ]Fg that maps any M to H(M) = Mg + t + z. Observe that for every M € Q, HM) =z
by this choice. As a result, when M ~ M’ are such that M, M’ € Q, P[H(M) = H(M’)] > 6. Thus,
H is the “decoded” strategy that satisfies the requirements of Hypothesis 2.1 as required. This
completes the proof.

O

3 Relating Grassmann Graphs to Degree 2 Shortcode Graphs

In this section, we show a formal relationship between the Grassmann and the degree Shortcode
tests. In particular, we will prove Theorems 1.10 and 1.11.

3.1 A homomorphism from G(¢, n) into S¢ ,

Key to the relationship between the two tests is an embedding of the degree 2 shortcode graph S¢ ,,
into Matg ,_¢. We describe this embedding first. As justified in the previous section, it is without
loss of generality to work with the “unique” versions of both the tests.

To describe the above embedding, we need the notion of projection of a subspace of IF; to a set of
coordinates.



Definition 3.1 (Projection of a Subspace). Given a subspace V C [F}, the projection of V to a set
of coordinates S C [n], written as Projs(V) is the subspace of ]F|25| defined by taking the vectors
obtained by keeping only the coordinates indexed by S for every vector v € V.

Let B8 C IF} be the set n-tuples of linearly independent elements of IF), i.e. each B € B forms a
basis for the vector space IF5. We will use By to denote the standard basis {e1, e2,...,¢e,}.

We will now describe a class of graph homomorphisms from G(¢, n) into S¢ ,—¢. Each element
of this class can be described by a basis B of F}.

For each basis B € 8B, let V¢(B) C V, be the set of all subspaces V' € V; such that the projection
of V to the first £ coordinates when written w.r.t. the basis B is full-dimensional. Our embedding
will map each element of Vy(B) into a distinct element of Mat, , such that the edge structure within
Vi(B) in G(¢, n) is preserved under this embedding.

Definition 3.2 (Homomorphism from G(¢, n) into S¢ ,, ). Let p = ¢p : V¢(B) — Mat,,—¢ be defined
as follows. Write every vector in the B-basis. For any V € V;(B) and for 1 < i < ¢, let v; be the
unique vector in V' such that Projj,(v;) = e; € ]Fg We call v1, 05, ..., v, to be the canonical basis for
V.

Define ¢(V) to be the ¢ x (n — ) matrix with the i*" row given by the projection of v; on the last
(n — €) coordinates for each 1 < i < £. When the basis B is clear from the context, we will omit the
subscript and write ¢.

It is easy to confirm that ¢ is a bijection from V;(B) into Mat¢ ,,. This is because canonical basis
for a subspace V is unique.

Next, we prove some important properties of the homomorphism ¢ that will be useful in the
proof of Theorem 1.10.

First, we show that the map ¢ is indeed a homomorphism as promised and thus, preserves
edge structure.

Lemma 3.3 (¢ is a homomorphism). For ¢ = ¢p defined above and any V, V' € Vy(B), V ~ V' in
G, n)iff (V) ~ (V') in Sen.

Proof. Let u € GF(2)!, v € GF(2)"~! be arbitrary non-zero vectors that define a rank 1 matrix uv™.
Consider the matrix M = My + uv'. Then, M € Mat;,—¢ and thus ¢=1(M) = W € V,(B). We
claim that dim(W N V) = £ — 1. Suppose b1, by, ..., b are the rows of My. Then, the rows of M are
given by b; + u;v. Thus, W is spanned by (e;, b; + u;v) where e; is the i th standard basis element on
the first £ coordinates and the notation (e;, b; + u;v) indicates the concatenation of the vectors in
the ordered pair to get a n dimensional vector. In particular, every element of W can be written
as )< Ailei, bi) + (Xi<e Ainti)v and any such vector is contained in V if (3};<, A;u;) implying that
dim(VNW)=dim(V)—-1=¢-1.

On the other hand, let V’ be a subspace in V;(B) such that V' ~ V and let My and My~ be the
matrices obtained via the map ¢. Then, My and My must differ in at least one row, say, WLOG, the
last row of My and My are (e¢, v) and (e¢, v’) respectively. Notice that since the vector with e, in
the first £ coordinates is unique in V, V’, neither of (e¢, v), (e¢, v’) belong to the intersection V. N V’.
Further, for every vector z € V, either z or z + (e¢, v) must be contained in the intersection V NV’
(as the extra linear equation that V' N V’ satisfies over and above V is satisfied by exactly one of z
and z + (e¢, v). Thus, by letting b} = b; + (£, v) + (£, ") to every one of the canonical basis elements
bi of V that are not in V N V', we get a set of elements that are all 1) contained in V” 2) Proji, b’ = e;
for every i. This then has to be the canonical basis of My (by uniqueness of the canonical basis)
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and further, the corresponding My~ can be written as 1s(w + w’) " where S is the set of i such that
biisnotinV NV’ O

Next, we want to argue that expansion of sets is preserved up to constant factors under the map
¢. Towards this, we first show that V;(B) contains a fraction of the vertices of G(¢, n) as we next
show.

Lemma 3.4 (Projections of Subspaces). Let V ~ V for £ < \/n/2. Then, P[dim Proji(V) = €] > 0.288
for large enough n and € = w(1).

Further, let V. € Vy(B) for some B. Then, at least 1/2 fraction of the neighbors of V in G({, n) are
contained in Vi (B).

Proof. We can sample a random subspace of £ dimension as follows: Choose ¢ uniformly random
and independent points from GF(2)". If they are linearly independent, let V be the subspace
spanned by them.

We can estimate the probability that the sampled points are linearly independent as: Hf;ol(l -
2—n+i) >1- 2—112{’2'

Next, we estimate the probability that the projection to first £ coordinates of the sampled
vectors is linearly independent. By a similar reasoning as above, this probability is at least
Hfz_ol(l — 27t+1) ~ 0.289 (the limit of this product for large ¢.)

By a union bound, thus, a random subspace has a full dimensional projection on S with
probability at least 0.289 — 27"/2 for any ¢ < V1 /2.

For the remaining part, assume that B = By - the standard basis. Notice that a random neighbor
of V can be sampled as follows: choose a uniformly random basis for V, say vy, v2, ..., v¢. Replace
v¢ by a uniformly random vector vjoutside of V in IF;. Since V' € Vy(B), the projection of V to the
first £ coordinates is linearly independent. V’ would thus satisfy the same property whenever v is
such that the projection of v, to the first £ coordinates is not in the span of the projection to the first
¢ coordinates of v1, v, ..., ve-1. The chance of this happening is exactly 1/2. This completes the
proof. m]

As a consequence of above, we can now obtain that the preimages of non-expanding sets under
¢ are non-expanding in G(¢, n).

Lemma 3.5. Let T C Maty,, be a subset satisfying Ppi~r pmr-m[M’ € T] = 1. Then, ¢p~(T) satisfies:
Py_g1ry,vev[V’ € $7H(T)] > /2.

Proof. Let B the basis used to construct ¢. Then, ¢(T) € V(B). By Lemma 3.4, 1/2 the neighbors
of ¢(T) are contained in V(B). By assumption, 1 fraction of these neighbors are contained inside
T. This finishes the proof. m]

Via a similar application of Lemma 3.4, we can establish an appropriate converse.

Lemma3.6. Let S € V be a subset satisfying Py..s v'-v [V’ € S| > n. Then, for a uniformly random choice
of basis B for IF,, Eg |p(S N Ve(B)| = Q(|S]) and Pat air~p(snviey,m~m[M’ € ¢(S N Ve(B)] > Q(n).

Finally, we show that r-nice sets in G, n get mapped to r-nice sets in S(¢, n) and vice-versa.

Lemma 3.7. Let S € V; be an r-nice set in G(£,n). Then, ¢pp(S N V¢(B)) is an r-nice set in S .
Conversely, if T C Maty , is an r-nice set in S¢ , then ¢~ (T) = Q N V,(B) for some r-nice set Q in G(¢, n).



Proof. WLOG, assume that B = By. We will assume that S € V% is the set of all subspaces in V,
contained in a subspace W of co-dimension r. The general case is analogous. Equivalently, if
w1, Wy, ..., w, form a basis for W, then, for every V. € SN Vy(B) and ever v € V (v, w;) = 0 for
every i.

Consider the canonical basis v1, v, ..., v, for V - recall that this means that the projection of v;
to the first £ coordinates equal e;. Thus, for every i, we can write v; = (e;, v;) for some vectors v; of
n — ¢ dimensions.

Then, ¢(V) is the matrix My with rows v} by our construction. In particular, this means that the
My satisfies the constrain: My - w; = t; where ¢; is the vector with jth coordinate equal to (¢}, w;).
Thus, we have shown that for every V € S, ¢(V) satisfies a set of r affine linear equations.

Conversely, observe that if any M satisfies the affine linear equation My w; = t; as above, the set
of all (e;, u;) for i < £ where u; is the ith row of My, must span a subspace in S. This yields that
O(S N Ve(B)) is an r-nice set.

The converse follows from entirely similar ideas. Suppose T' C Mat, , is an r-nice set. WLOG,
we restrict to the case where T is the set of all matrices satisfying linear constraints Mq; = t; for
some choice of r linearly independent constraints (g;, t;). Letting 11, us, ..., u, be the rows of M,
this implies that every vector v in the span of (e;, u;) for i < ¢ satisfies the linear equation (g, v) =0
where g = (g;, t:(1), ti(2), . . ., ti(£)). This immediately yields that ¢ ~!(M) is contained in a subspace
W of co-dimension r. Conversely, it is easy to check that for every subspace V of dimension ¢
contained in W N V¢(B), ¢(V) satisfies the r affine linear constraints above.

This completes the proof.

3.2 Shortcode Test vs Grassmann Test

We now employ the homomorphism constructed in the previous subsection to relate the soundness
and expansion hypothesis in shortcode and Grassmann tests.

First, we show that the soundness hypothesis for degree 2 shortcode consistency test implies the
soundness hypothesis for the Grassmann consistency test and complete the proof of Theorem 1.10.

Lemma 3.8. The degree 2 shortcode soundness hypothesis (Hypothesis 2.1) implies the Grassmann soundness
hypothesis (Hypothesis 1.2).

Proof. Let F be the assumed labeling strategy in Hypothesis 1.2. We will construct a labeling strategy
for S¢,, from G so that we can apply the conclusion of 2.1. We will first choose an embedding of the
type we constructed before in order to construct G.

Let B ~ B be chosen uniformly at random and let ¢» = ¢pp as in the previous subsection. For any
V € V¢(B), let F(V) = f, a linear function restricted to V. Let vy, vy, ..., v¢ be the canonical basis
for V, i.e., the projection of v; to the first £ coordinates (when written in basis B) equals e; for every i.
Set G(¢(V)) = z where z; = f(v;). Since ¢ is a onto, this defines a labeling strategy for all of Mat .

Next, we claim that if F passes the Grassmann consistency test with probability n then G passes
the degree 2 shortcode consistency test with probability (7).

Before going on to the proof of this claim, observe that this completes the proof of the lemma.
To see this, we first apply Hypothesis 2.1 to conclude that there’s an r-nice set Q in S¢,, and an
affine function defined by z € ]Fg_f, u e IFg such that the labeling strategy H(M) = Mz + u passes
the degree 2 shortcode consistency test with probability 6 for all M in Q. It it easy to construct
the an analogous linear strategy for the Grassmann consistency test: For any V € V;(B) with
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the canonical basis v1, vy, ..., v, defined above, set f(v;) = u; + (v;, z). Extend f linearly to the
span of all such vectors. Finally, extend f to all vectors by taking any linear extension. From
Lemma 3.4, 1/2 the neighbors of vertices in ¢~1(Q) are contained in V;(B). From Lemma ??,
¢1(Q) = F N Vi(B) for some r-nice set ¥ in G(¢, n). Finally, by an argument similar to the one in
Lemma 3.4, |F N V¢(B)| > Q(|F|) with high probability over the draw of B. Combining the above
three observations yileds that f passes the Grassmann consistency test when restricted to the nice
set ¥ with probability €(5).

We now complete the proof of the claim. This follows immediately if we show that for any
V ~ V'’ chosen from Vi(B), Py -y v vre,) [E(V) v = F(V)r] = 0.07(n — 27+¢),

Without loss of generality, we assume that B is the standard basis {e1, 2, ..., e, }. First, notice
that Span{V U V’} is of dimension ¢ + 1 for for all but 27"+ fraction of pairs V ~ V’. Thus, we can
assume that Py _y/|dimspan{vuvii=e+1[F(V)y = F(V/)v/] > = 27"

Let C = B!, the basis change matrix corresponding to B and let C; be the it" row of C and
let Cj¢) be the matrix formed by taking the first £ rows of C. Fix V ~ V’ for some V,V’ € V.
Assume now that Span{V U V'} is of dimension ¢ + 1. Let v1,vy,...,v¢—1 be a basis for VN V".
LetV={VnNnV'Uw;}and V' ={V N V’'Uw,} for some w;, w; that linearly independent of each
other and of any vector in V N V’. We estimate the probability that V, V' € V(B). Then, this is the
probability that v1, vy, ..., ve—1, w1, w2 are mapped by ClVinto ay, a,...,ap-1,a¢, 0041 respectively,
satisfying a,, a¢s1 ¢ Span{a; | i < € —1}. It is easy to check that the probability of this over the
random choice of B is at least 0.288 = 1/4 > 0.07. This proves the claim.

By taking n large enough (compared to ), this probability can be made larger than, say, 0.06n
(say). This finishes the proof.

O

Next, we show that the Grassmann Expansion Hypothesis (Hypothesis 1.6) is equivalent to the
Inverse Shortcode Hypothesis (Hypothesis 1.8) and complete the proof of Theorem 1.11.

Lemma 3.9. The Grassmann Expansion Hypothesis (Hypothesis 1.6) is equivalent to the Inverse Shortcode
Hypothesis (Hypothesis 1.8).

Proof. First, we show that Hypothesis 1.6 implies Hypothesis 1.8.

Let S € Mat; , be such that ]PM~s,aelF§,he]Fg [M+ab" € S] = 1. Then, by Lemma 3.5, cpgl(S) has
an expansion of (1) in G(¢, n).

Applying the Grassmann expansion hypothesis (Hypothesis 1.6), we know that there exists a
r-nice set ¥ in G({, n) such that |¥ N cpgl(S)I > O|F|. Further, since qbgl(S) C Vy(B), we must have:
[(F N Ve(B) N5 (S)| = 6|F N dp5'(S)|. To finish, observe that by Lemma 3.7, ¢(F N ¢3'(S)) is an
r-nice set, say Q in S¢ ;. This, show that |S N Q| > 6|Q| completing the proof.

The proof of the other direction, that is, Hypothesis 1.8 implies Hypothesis 1.6, is analogous
and relies on the use of Lemma 3.6. m]
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