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Abstract

This paper studies expansion properties of the (generalized) Johnson Graph. For natural numbers
t < ` < k, the nodes of the graph are sets of size ` in a universe of size k. Two sets are connected if
their intersection is of size t. The Johnson graph arises often in combinatorics and theoretical computer
science: it represents a “slice” of the noisy hypercube, and it is the graph that underlies direct product
tests as well as a candidate hard unique game.

We prove that any small set of vertices in the graph either has near perfect edge expansion or is
not pseudorandom. Here “not pseudorandom” means that the set becomes denser when conditioning
on containing a small set of elements. In other words, we show that slices of the noisy hypercube –
while not small set expanders like the noisy hypercube – only have non-expanding small sets of a certain
simple structure.

This paper is related to a recent line of work establishing the 2-to-2 Theorem in PCP. The result
was motivated, in part, by [7] which hypothesized and made partial progress on similar result for the
Grassmann graph. In turn, our result for the Johnson graphs served as a crucial step towards the full
result for the Grassmann graphs completed subsequently in [20].

1 Introduction

Expanding graphs are ubiquitous in mathematics, theoretical computer science, information theory and
other areas of study (See, e.g., [17]). They are well-connected graphs that are robust to deletion of edges,
and random walks on them mix rapidly. In an expander, for every set S of at most half of the nodes, many
of S’s neighbors are outside S. Formally, we define edge expansion as follows:

Definition 1.1 (Edge expansion). Let G = (U,E) be a d-regular graph, and let S ⊆ U be a set of vertices.
The expansion of S is defined as

Φ(S) =

∣∣E(S, S)
∣∣

d |S|
,

where E(S, S) is the set of edges from S outside it.

In recent years there has been considerable interest in small set expanders, which are graphs where only
sets containing a small fraction of the nodes are required to expand. The interest in small set expansion was
motivated by its connection to the Unique Games Conjecture [23, 26] and small set expanders were used in
SDP integrality gaps [23], lower bounds on metric embeddings [23] and algorithms [1].
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An important example of a small set expander (that is not an expander) is the noisy Boolean hypercube.
Its nodes are the vectors in {0, 1}k, or alternatively sets in a universe of size k. Two sets are connected,
roughly, if their intersection is of size t, typically close to the size of the sets1. In the noisy hypercube small
sets have near perfect expansion, and this property is key to many of the aforementioned results [23]. The
reader is referred to [25] for information about the hypercube, noise and the rich theory underlying them.

1.1 Our Contribution

In this work we focus on slices of the hypercube, also known as Johnson graphs. For parameters t < ` < k
we define the Johnson graph J(k, `, t) to be the graph whose nodes are sets of size ` in a universe of size k.
There is an edge between two sets if their intersection is of size t. Typically ` is much smaller than k and
t is close to `. Johnson graphs are the subject of considerable interest recently (See, e.g., [10, 12, 13]). In
combinatorics they are key to the study of sharp thresholds of graph properties [14]. In theoretical computer
science they underlie direct product tests [15, 5, 19, 9], and a recent candidate hard unique game [22].

Johnson graphs are not small set expanders as we demonstrate next. Consider the family Sx of all sets
containing a certain element x in the size-k universe (“zoom in”). This is a very small family (The fraction of
Sx is roughly `/k, which is small for large k and much smaller `), yet many of the edges with one endpoint
in Sx have their other endpoint in Sx as well (roughly t/` fraction, which is large for t close to `). In this
paper we show that essentially only families like Sx are small and non-expanding in Johnson graphs. Other
families have near-perfect expansion, that is, almost all of their neighbors are outside them. We think of a
set being “like” an Sx if it becomes substantially denser when conditioning on containment of one, or a few,
elements x. We define a “pseudo-random” set as one that is unlike any Sx:

Definition 1.2 (Pseudo-randomness on the Generalized Johnson Graph). Let J(k, `, t) be a Johnson Graph,
and let r ∈ N, ε > 0 where r 6 `. We say that a set of vertices S is (r, ε) pseudo-random if for every
R ⊆ [k] of size at most r, ∣∣∣∣ Pr

A⊇R
[A ∈ S]− Pr

A
[A ∈ S]

∣∣∣∣ 6 ε.

Our main theorem is that small sets of nodes in the Johnson graph that are pseudorandom have near
perfect expansion.

Theorem 1.3 (Main Theorem). For every 0 < α < 1 and 0 < η < 1 there exist r ∈ N, ε, δ > 0, such that
for large enough k > ` the following holds. If S is a set of vertices of J(k, `, α`) of density at most δ such
that Φ(S) 6 1− η, then S is not (r, ε) pseudo-random.

Theorem 2.16 in the body of the paper gives a concrete dependence of the parameters on α and η. Theo-
rem 2.17 gives an improved dependence of ε at the expense of a worse dependence of the other parameters.

Theorem 1.3 is established via spectral analysis on the adjacency matrix of the Johnson graph. We show
a relation between pseudo-randomness of a set and its correlation with eigenspaces whose eigenvalue is
non-negligible (formally stated in Theorem 2.15). Namely, if a function is pseudo-random, then its weight
on the low-level eigenspaces is small.

We remark that the conclusion of Theorem 1.3 is in fact slightly stronger. Namely, we may conclude that
there is non-negligible fraction of zoom-ins that increases the density by at least ε. This stronger conclusion

1One typically considers the uniform distribution over the nodes, so mostly nodes are sets of size roughly ` = k/2. One
considers the following probability distribution over neighbors y ∈ {0, 1}k of a vector x ∈ {0, 1}k: for each 1 6 i 6 k re-sample
xi with probability δ to get yi, and set yi = xi with probability 1 − δ. Hence, edges mostly correspond to intersection of size
roughly t = (1− δ)`.
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follows from the current one: we find a zoom-in set that increases the density by more than ε iteratively. As
long as the fraction of vertices we have covered with our zoom-in sets is o(δ), we may randomized the set
S on the zoom-in sets so far. After this randomization, the density of each zoom-in set we have found so
far is δ + o(δ) and the expansion of S is bounded away from 1, and in particular we may find an additional
zoom-in set.

1.2 Related Work

This paper is related to a recent line of work establishing the 2-to-2 Theorem in PCP [20, 6, 7, 21]. The
heart of this line of work is a theorem similar to Theorem 1.3 for the Grassman graph rather than the Johnson
graph, which was subsequently established in [21]. The nodes of the Grassman graphs are `-dimensional
linear subspaces rather than size-` sets. Edges correspond to largely intersecting linear subspaces. The
structure of the small non-expanding sets in the Grassman graph is more complicated than that of the John-
son graph, and our Theorem 1.3 was a crucial step towards the analogous theorem about the Grassman
graph [21]. Our result was motivated, in part, by [7] which hypothesized and made partial progress on the
expansion of Grassmann graphs. The current work builds on their technique and further develops it.

To prove Theorem 1.3, one has to analyze expectations of the form

E [f(x1, . . . , xr)f(y1, . . . , yr)f(z1, . . . , zr)f(w1, . . . , wr)], (1)

for a certain function of interest f emerging from the spectral decomposition on the Johnson Graph, where
the expectation is taken uniformly over x, y, z, w ∈ [k]r that satisfy a predetermined set of equalities of the
form a = b for a, b ∈ {xi, yi, zi, wi | i = 1, . . . , r}. We call such expectations four-wise correlations, since
it is an expectation of the product of four values of f on correlated inputs.

For the analog in the Grassmann Graph, one has to study the four-wise correlations

E [f(x1, . . . , xr)f(y1, . . . , yr)f(z1, . . . , zr)f(w1, . . . , wr)], (2)

where now the expectation is uniform over xi, yi, zi, wi ∈ Fk2 , that satisfy a predetermined set of linear
equations in xi, yi, wi, zi. In particular, this set of equations could contain equalities as before, say x1 = y2.

In [7], the authors could analyze the expectations of the form (2) for r = 1, 2. For r = 2, they use
brute force analysis to enumerate over all possible linear equation systems that determine the constraints
among the variables, and upper bound each such configuration separately. The analysis uses a combination
of fourier analysis on f and the Cauchy-Schwarz inequality, along with the (additional) notion of zoom-outs.
As r increases, the number of configurations grows quickly and a case by case analysis becomes infeasible.
It was very unclear if a more systematic approach is possible that is able to deal with larger r.

In this paper, we present a systematic approach for the Johnson Graph (wherein fourier analysis on f
and the notion of zoom-outs is not needed).

It turns out that (as far as this analysis is concerned), the Johnson analysis is a special but crucial case of
the Grassmann analysis. Indeed, in the Grassmann analysis, if the only linear dependencies are equalities,
then the analysis, as far as its high level structure/strategy is concerned, reduces to the Johnson analysis.
This turned out to be an insightful step in completing the Grassmann analysis in [21].

We also show how to analyze higher than four-wise correlations in the Johnson Graph. This leads to
improved quantitative results in Theorem 1.3 and in the main technical result used to achieve it, Theorem
2.15 and its improved form Theorem 2.17.
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2 Preliminaries

In this section we present the necessary background on the Johnson Graph. We shall use properties of it that
are analogous to properties from [7] about the Grassmann Graph. We often omit proofs if they are nearly
identical.

Definition 2.1. Let t < ` < k be integers. The Generalized Johnson Graph J(k, `, t) is defined as follows:
the vertex set is

([k]
`

)
, the set of all subsets of [k] of size `. Two vertices A,B ⊆ [k] are connected by an edge

if and only if |A ∩B| = t.

Abusing notation, we denote the normalized adjacency operator of the generalized Johnson Graph by
J(k, `, t). We think of it as operating on real valued functions F :

([k]
`

)
→ R.

2.1 Fourier Analysis on the generalized Johnson Graph

Any graph, and in particular J(k, `, t) induces a spectral decomposition of real-valued functions on it. In
this section we introduce some properties of this decomposition. It has a similar structure to the spectral
decomposition on the Grassmann Graph [7].

We endow the space of real-valued functions on J(k, `, t) with the inner product

〈F,G〉 = E
A∈([k]` )

[F [A]G[A]]

for any F,G :
([k]
`

)
→ R.

2.2 Level Functions

Definition 2.2. Let t < ` < k be integers. For any i = 0, ..., ` we define the space spanned by the first i
levels J6i as follows. F ∈ J6i if and only if there exists f :

(
[k]
i

)
→ R such that

F [A] =
∑

I⊆A,|I|=i

f(I).

One can easily verify that each J6i is a linear subspace, and that J6` contains all real-valued functions
on J(k, `, t). Furthermore, we have that J6i ⊆ J6i+1.

Definition 2.3. We define the space of level i functions by J=i = J6i ∩ J⊥6i−1. In words, it is the space of
all functions from J6i perpendicular to J6i−1.

It follows by the definition that the space of real-valued functions on J(k, `, t) can be written as J=0 ⊕
J=1 ⊕ ...⊕ J=`.

Definition 2.4. Let t < ` < k be integers. For i = 0, ..., t define

λi(k, `, t) =

(
t
i

)(
`
i

) .
For i > t, define

λi(k, `, t) = 0.
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Definition 2.5. Let j < i < k be integers and f :
(
[k]
i

)
→ R. For J ⊆ [k], |J | = j we denote

µJ(f) = E
I⊇J

[f(I)].

Lemma 2.6. Suppose k > `8`, ` > 2, and let F ∈ J6i. Then F ∈ J=i iff for every R ⊆ [k], |R| < i we
have that µR(f) = 0.

Proof. The proof is similar to the proof of [7, Lemma 2.19].

Theorem 2.7. Let t < ` < k be integers. For any i = 0, ..., `, and F ∈ J=i given by

F [A] =
∑

I⊆A, |I|=i

f(I)

we have

‖J(k, `, t)F − λi(k, `, t)F‖∞ 6
24`

k
‖f‖∞.

In words, F is a near eigenvector of J(k, `, t) of eigenvalue λi(k, `, t).

Proof. Let F be such function and fix a vertex A in J(k, `, t). Then

J(k, `, t)F [A] = E
B:|B∩A|=t

[F [B]] = E
B:|B∩A|=t

 ∑
I⊆B, |I|=i

f(I)

 = E
B:|B∩A|=t

 min(t,i)∑
r=max(0,t+i−`)

∑
I⊆B,|A∩I|=r

f(I)

.
We consider different values of i separately, starting with i 6 t. In this case, we separate the summand for
r = i to get

J(k, `, t)F [A] = E
B:|B∩A|=t

 ∑
I⊆A∩B

f(I)

+ E
B:|B∩A|=t

 i−1∑
r=max(0,t+i−`)

∑
I⊆B,|A∩I|=r

f(I)

. (3)

The first sum in (3) equals

E
B:|B∩A|=t

[(
t

i

)
E

I⊆A∩B, |I|=i
[f(I)]

]
=

(
t

i

)
E
I⊆A

[f(I)] =

(
t
i

)(
`
i

)F [A].

The second sum in (3) is

E
B:|B∩A|=t

 i−1∑
r=max(0,t+i−`)

(
t

r

)(
`− t
i− r

)
E

I⊆B,|A∩I|=r
[f(I)]

 =
i−1∑

r=max(0,t+i−`)

(
t

r

)(
`− t
i− r

)
E

I:|I∩A|=r
[f(I)].

We show that the last expectation is negligible. Fix r 6 i− 1, then

E
I:|I∩A|=r

[f(I)] = E
R⊆A, |R|=r

[
E

I:I∩A=R, |I|=i
[f(I)]

]
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For a fixedR, denote byD1 the uniform distribution over I where I∩A = R, and byD2 uniform distribution
over I where I ⊇ R. Note that these distributions are i`

k close. Hence∣∣∣∣∣ E
I:I∩A=R, |I|=i

[f(I)]− µR(f)

∣∣∣∣∣ 6 i`

k
‖f‖∞,

and since µR(f) = 0 (Lemma 2.6) we conclude that the second sum in (3) is upper bounded by

i−1∑
r=max(0,t+i−`)

(
t

r

)(
`− t
i− r

) ∣∣∣∣∣ E
I:|I∩A|=r

[f(I)]

∣∣∣∣∣ 6 i2t2`
i`

k
‖f‖∞ 6

24`

k
‖f‖∞.

Next, we prove for i > t. In this case we have

J(k, `, t)F [A] = E
B:|B∩A|=t

 t∑
r=max(0,t+i−`)

∑
I⊆B,|A∩I|=r

f(I)

.
The argument is identical to the analysis of the error term in the previous case, and is hence omitted.

Remark 2.8. With a more careful analysis, one can prove that J=i is actually an eigenspace of J(k, `, t)
with eigenvalue nearly λi.

2.3 Decomposition

Recall that we have seen that the space of all real-valued functions on
([k]
`

)
can be decomposed as J=0 ⊕

J=1⊕....⊕J=`. For any function F :
([k]
`

)
→ R, we denote this decomposition by F = F=0+F=1+...+F=`

where F=i ∈ J=i. We also define f=i :
(
[k]
i

)
→ R to be a function that satisfies

F=i[A] =
∑

I⊆A, |I|=i

f=i(I).

It is easy to verify that F=0 ≡ µ(F ). For large i, the functions F=i are harder to compute and we
approximate them instead.

Definition 2.9. Let F :
([k]
`

)
→ R be a function, and let i ∈ {0, 1, ..., `}. We define the weight of F on level

i to be
W=i[F ]

def
= 〈F=i, F=i〉.

2.4 Approximate Decomposition

As is the case in the Grassmann Graph, computing the exact decomposition is not easy, so we work with an
approximate decomposition instead. Given a function F :

([k]
`

)
→ R, define f≈0 ≡ µ(F ). Inductively once

f≈j have been defined for all j < i, we define f≈i :
(
[k]
i

)
→ R by

f≈i(I)
def
= µI(F )−

∑
J⊂I

f≈|J |(J)

for all I ∈
(
[k]
i

)
.

Define
F≈i[A]

def
=

∑
I⊆A, |I|=i

f≈i(I).
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Basic Facts

The following theorem is an analog of a theorem from the Grassmann Graph. The proof is an adaptation of
the proof therein and is hence omitted.

Theorem 2.10. [Analog of [7, Theorem 2.25]] Let k, ` be integers such that k > 2200`
3
, and let F :

([k]
`

)
→

R be a function. Then for all i = 0, ..., `,

‖F=i − F≈i‖22 6
2100`

3

k
‖F‖∞.

The following fact will also be used. Its an analog of a fact from the Grassmann Graph, and the proofs
are similar.

Fact 2.11. [Analog of [7, Lemma A.2]] Let ` 6 k be integers, and let F :
([k]
`

)
→ R be a function. Then for

all i = 1, ..., `, 0 6 j < i and J ⊆ [k] of size j,∣∣∣∣∣ E
I⊇J, |I|=i

[f≈i(I)]

∣∣∣∣∣ 6 210i
2

k
‖F‖∞.

Fact 2.12. [Analog of [7, Claim A.1]] Let ` 6 k be integers, and let F :
([k]
`

)
→ R be a function. Then for

all i = 0, ..., `, ‖f≈i‖∞ 6 2i
2‖F‖∞.

Note that f≈i depends of course on the underlying function F . Often times the function F will be clear
from the context, however sometimes we will be dealing with more than one function simultaneously. In
this case we shall denote the function f≈i by f≈i,F .

2.5 Restrictions

Given a function F :
([k]
`

)
→ R and X ⊆ [k] of size at most ` − 1, we define the restricted function

F |X :
([k]\X
`−|X|

)
→ R by

F |X [A] = F [X ∪A].

The following lemma expresses level i + 1 components of a function F as a function of the level i
components of F and its restrictions.

Lemma 2.13. Let F :
([k]
`

)
→ R be function, 0 6 i 6 `− 1 and x ∈ [k]. Then for any I ⊆ [k] \ {x} of size

i,
f≈i+1,F (I ∪ {x}) = f≈i,F |{x}(I)− f≈i,F (I).

Proof. The proof is by induction on i. For i = 0 the claim is obvious, since we have I = ∅ and both sides
are easily seen to be equal to µ{x}(F )− µ(F ).

Let i > 0, assume the claim for every j < i and prove for i. Fix I , then by definition

f≈i+1,F (I ∪ {x}) = µI∪{x}(F )−
∑
J⊆I

f≈|J |,F (J)−
∑
J(I

f≈|J |+1,F (J ∪ {x}). (4)

Consider the second sum. Since we sum only over J strictly contained in I , we may apply the induction
hypothesis to get that

f≈|J |+1,F (J ∪ {x}) = f≈|J |,F |{x}(J)− f≈|J |,F (J).

7



Plug it into (4) to get

f≈i+1,F (I ∪ {x}) = µI∪{x}(F )−
∑
J⊆I

f≈|J |,F (J)−
∑
J(I

(f≈|J |,F |{x}(J)− f≈|J |,F (J))

= µI(F |{x})−
∑
J(I

f≈|J |,F |{x}(J)− f≈i,F (I)

= f≈i,F |{x}(I)− f≈i,F (I),

in the last equality we used the definition of f≈i,F |{x} .

Corollary 2.14. Let F :
([k]
`

)
→ R be function, 0 6 i 6 ` − 1 and X ⊆ [k], |X| < i. Then for any

I ⊆ [k] \X of size j = i− |X|,

f≈i,F (I ∪X) =
∑
Y⊆X

(−1)|Y |f≈j,F |X\Y (I).

Proof. By induction on |X|. For |X| = 0 this is obvious. Assuming the statement for X’s of size at most j,
let us prove for the statement for |X| = j + 1. Write X = {x} ∪X ′ for |X ′| = j. Then by Lemma 2.13

f≈i,F (I ∪X) = f≈i−1,F |{x}(I ∪X
′)− f≈i−1,F (I ∪X ′). (5)

Applying the induction hypothesis on each term, we get that

f≈i−1,F |{x}(I ∪X
′) =

∑
Y⊆X′

(−1)|Y |f≈j,F |{x}∪X′\Y (I) =
∑

Y⊆X, Y 63x
(−1)|Y |f≈j,F |X\Y (I)

and
f≈i−1,F (I ∪X ′) =

∑
Y⊆X′

(−1)|Y |f≈j,F |X′\Y (I) =
∑

Y⊆X, Y 3x
(−1)|Y |+1f≈j,F |X\Y (I).

Plugging the two into (5) completes the proof.

2.6 Main Results

In this section, we state our main results. Below, we are given a (r, ε) pseudo-random set, whose density is
δ. We suggest to think of r as a constant, and on ε as cδ for a large, constant c.

Theorem 2.15. Suppose k > 2200`
3
δ−4. If S is (r, ε) pseudo-random, then for every i = 0, ...r,

W=i[S] 6 exp(i)δε1/4 + exp(`3)
1

k1/16
.

We prove this theorem in Section 3.

Theorem 2.16. Let α ∈ (0, 1), and S be a subset of vertices in J(k, `, α`) of density δ. Suppose k >
2200`

3
δ−4, and let ε > 0, r ∈ N.

If S is (r, ε) pseudo-random, then

Φ(S) > 1− αr+1 − exp(r)ε1/4 − poly(2`
3
, 1/δ)

k1/16
.
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The proof is given in Section 4. We remark that this theorem easily implies Theorem 1.3 from the
introduction.

Finally, we prove the following quantitative improvement of Theorem 2.15 in Section 5.

Theorem 2.17. There exists c > 0, such that the following holds. Let r,m ∈ N, ε > δ > 0. Suppose
k > 22000m

2(m+1)`3δ−4. If S is (r, ε) pseudo-random of density δ, then for every i = 0, ...r,

W=i[S] 6 (c ·m)iδε1−
1

2m +
exp(`3)

k1/(8m2(m+1))
.

In words, the above theorem asserts that for constant r, a (r, ε) pseudo-random set S can have at most
δε1−o(1) of its weight on the first r levels. This statement should be compared to the r-level inequalities on
the Boolean hypercube, stating that if f : {−1, 1}n → {0, 1} has density δ, then its fourier weight on level
r is at most δ2 logr(1/δ).

3 Proof of Theorem 2.15

Notation. In this secton we sometimes use the notation x = y ± ε to say that |x− y| 6 ε.
Let S be a (r, ε) pseudo-random set of density δ. Let F : J(k, `, t) be the indicator function of S, and

let i ∈ {0, ..., r}. For i = 0 the claim is obvious, so consider i > 0. Write the function F according to its
decomposition F = F=0 + F=1 + . . .+ F=`, and denote η = W=i[F ]. Assume η > δ2 since otherwise we
are done.

Then we have EA
[
F=i[A]2

]
= η, and by orthogonality EA

[
(F − F=i)[A]2

]
= δ − η.

3.1 Information about the second moments

Claim 3.1. EA
[
F 2
≈i[A]

]
= η ± 3250`

3

√
k
.

Proof. By the triangle inequality

|‖F=i‖2 − ‖F≈i‖2| 6 ‖F=i − F≈i‖2 6
250`

3

√
k

and therefore

‖F≈i‖22 = ‖F=i‖22 ± 3
250`

3

√
k

= η ± 3
250`

3

√
k
.

Claim 3.2. EI
[
f≈i(I)2

]
= W=i[F ]

(`i)
± 4250`

3

√
k

= η

(`i)
± 4250`

3

√
k
.

Proof. Expand out EA
[
F 2
≈i[A]

]
. On the one hand it is equal η± 3250`

3

√
k

by the previous claim. On the other
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hand, it is equal

E
A

 ∑
I⊆A, |I|=i

f≈i(I)

2 = E
A

 ∑
I⊆A, |I|=i

f≈i(I)2

+ E
A

 ∑
I 6=I′⊆A, |I|=|I′|=i

f≈i(I)f≈i(I
′)



=

(
`

i

)
E
I

[
f≈i(I)2

]
+ E

A

 i−1∑
d=0

∑
I,I′⊆A

|I|=|I′|=i, |I∩I′|=d

f≈i(I)f≈i(I
′)


=

(
`

i

)
E
I

[
f≈i(I)2

]
+

i−1∑
d=0

(
`

d

)(
`− d
i− d

)(
`− i
i− d

)
E

I,I′, |I|=|I′|=i
|I∩I′|=d

[
f≈i(I)f≈i(I

′)
]
.

We shall show that the second sum is small. Fix d ∈ {0, ..., i− 1} and consider the last expectation. Then
it is equal

E
I, |I|=i

f≈i(I) E
I′, |I′|=i
|I∩I′|=d

[
f≈i(I

′)
].

Fix I in the outside expectation and consider the inner expectation is

E
D⊆I

 E
I′, |I′|=i
I∩I′=D

[
f≈i(I

′)
] = E

D⊆I

[
µD(f≈i)±

i2

k
‖f≈i‖∞

]
,

where we used the fact that the uniform distribution of I ′ over I ′ that contain D, and over I ′ such that
I ′∩I = D, is i2/k close. Applying Facts 2.11 and 2.12 we get that the overall expectation in absolute value

is at most 212i
2

k . Therefore for each d the corresponding expectation is at most

E
I, |I|=i

[
‖f≈i‖∞

212i
2

k

]
6

213i
2

k
,

we used Fact 2.12.
Plugging it into the first equation in the proof, we see that∣∣∣∣E

A

[
F 2
≈i[A]

]
−
(
`

i

)
E
I

[
f≈i(I)2

]∣∣∣∣ 6 i−1∑
d=0

(
`

d

)(
`− d
i− d

)(
`− i
i− d

)
213i

2

k
6

217`
2

k
,

and therefore

E
I

[
f≈i(I)2

]
=

1(
`
i

)E
A

[
F 2
≈i[A]

]
± 1(

`
i

) 217`
2

k
=

η(
`
i

) ± 4
250`

3

√
k
.

Corollary 3.3. Let A ⊆ [k], |A| 6 a. Then

E
|B|=i−a

[
f≈i−a,F |A(B)2

]
6

2ii−aε

`i−a
+ 4

250`
3

√
k
.

10



Proof. By Claim 3.2,

E
|B|=i−a

[
f≈i−a,F |A(B)2

]
6
W=i−a[F |A](

`−a
i−a
) ± 4

250`
3

√
k
.

Note that since F is (r, ε) pseudo-random, W=i−a[F |A] 6 µ(F |A) 6 µ(F ) + ε 6 2ε. Additionally,(
`− a
i− a

)
>

(
`− a
i− a

)i−a
=

(
`

i

)i−a
> `i−ai−(i−a).

Combining these two yields the result.

Corollary 3.4. Let A ⊆ [k], |A| = a. Then

E
B⊆[k]\A
|B|=i−a

[
f≈i,F (A ∪B)2

]
6

22i+1ii−aε

`i−a
+ 4

252`
3

√
k
.

Proof. By Corollary 2.14

f≈i,F (A ∪B)2 =

∑
Y⊆A

(−1)|Y |f≈i−a,F |A\Y (B)

2

6 2|A|
∑
Y⊆A

f≈i−a,F |A\Y (B)2,

the last inequality is by Cauchy-Schwarz. Therefore by linearity of expectation and Corollary 3.3

E
B⊆[k]\A
|B|=i−a

[
f≈i,F (A ∪B)2

]
6 2|A|

∑
Y⊆A

E
B⊆[k]\A
|B|=i−a

[
f≈i−a,F |A\Y (B)2

]

6 2|A|
∑
Y⊆A

2ii−aε

`i−a
+ 4

250`
3

√
k

6
22i+1ii−aε

`i−a
+ 4

252`
3

√
k
.

3.2 A lower bound on the fourth moment

Claim 3.5. PrA
[
|F=i[A]| > η

4δ

]
> η

2 .

Proof. By Markov’s inequality

Pr
A

[
|F [A]− F=i[A]|2 > 1− η

2δ

]
6

δ − η
1− η

2δ

= δ
2δ − 2η

2δ − η
6 δ − η

2
.

Since the probability F [A] = 1 is δ, we conclude probability that |F [A]− F=i[A]|2 6 1 − η
2δ and

F [A] = 1 is at least η2 . For any such A we have

|1− F=i[A]|2 6 1− η

2δ
,

11



implying
F=i[A] >

η

4δ
.

Claim 3.6. PrA
[
F≈i[A] > η

8δ

]
> η

4 .

Proof. Let E1 =
{
A |F=i[A] > η

4δ

}
, and E2 =

{
A | |F=i[A]− F≈i[A]| 6 η

8δ

}
.

By Theorem 2.10 we have ‖F=i − F≈i‖22 6 2100`
3

k , and hence by Markov’s inequality

Pr
[
E2

]
= Pr

A

[
|F=i[A]− F≈i[A]| > η

8δ

]
6

2100`
3

k

(
8δ

η

)2

6
64 · 2100`3

kδ2
6
η

4
,

where we used η > δ2 and the condition on k.
Noting that whenever E1, E2 occur we have F≈i[A] > η

8δ , we conclude that

Pr
A

[
F≈i[A] >

η

8δ

]
> Pr [E1]− Pr

[
E2

]
>
η

4
,

we used Claim 3.5 in the last inequality.

The above claim immediately implies the following.

Claim 3.7. EA
[
F 4
≈i[A]

]
> η5

214δ4
.

3.3 An upper bound on the fourth moment

The following lemma is the main technical lemma of this section.

Lemma 3.8. Suppose k > 2100`
3
, ` > 2. If F is (i, ε) pseudo-random, then

E
A

[
F 4
≈i[A]

]
6 exp(i)εη +

227`
3

k1/4
.

Proof. By opening the brackets we have

E
A

[
F 4
≈i[A]

]
= E

A

 ∑
I1,I2,I3,I4⊆A

f≈i(I1)f≈i(I2)f≈i(I3)f≈i(I4)

.
Denote

D(A, d) = {(I1, I2, I3, I4) | I1, ..., I4 ⊆ A, |I1 ∪ I2 ∪ I3 ∪ I4| = d} ,

and note that |D(A, d)| depends only on i, d — denote it by βi,d. Then

E
A

[
F 4
≈i[A]

]
=

4i∑
d=i

βi,dE
A

[
E

(I1,I2,I3,I4)∈D(A,d)
[f≈i(I1)f≈i(I2)f≈i(I3)f≈i(I4)]

]
.

An intersection pattern ~σd of a tuple (I1, I2, I3, I4) (whose direct sum is d dimensional) is a vector
indicating the size of the intersection of any pair, triple and quadruple of sets from the tuple. Note that when
sampling the quadruple (I1, ..., I4), the probability of getting each quadruple depends only on its intersection

12



pattern. Therefore there is a distribution γ(~σd) over intersection patterns such that the previous expression
equals

E
A

[
F 4
≈i[A]

]
=

4i∑
d=i

∑
~σd

γ(~σd)βi,dE
A

 E
(I1,I2,I3,I4)∼γ(~σd)

I1,...,I4⊆A

[f≈i(I1)f≈i(I2)f≈i(I3)f≈i(I4)]

. (6)

Note that now the distribution over (I1, ..., I4) is uniform over all quadruples whose direct sum is of
dimension d and is intersection pattern is ~σd, and thus

E
A

[
F 4
≈i[A]

]
=

4i∑
d=i

∑
~σd

γ(~σ)βi,d E
(I1,I2,I3,I4)∼γ( ~σd)

[f≈i(I1)f≈i(I2)f≈i(I3)f≈i(I4)].

The following lemma is the key in the previous lemma.

Lemma 3.9. Suppose k > 2100`
3
. Let i, d be integers such that i 6 d 6 4i and let ~σd be any intersection

pattern. Then ∣∣∣∣∣ E
(I1,I2,I3,I4)∼γ(~σd)

[f≈i(I1)f≈i(I2)f≈i(I3)f≈i(I4)]

∣∣∣∣∣ 6 22i+2idεη

`d
+ 30

225`
3

k1/4

We defer the proof of Lemma 3.9 to the next section and show how to complete the proof of Lemma 3.8
based on it. Using Lemma 3.9 we see that

(6) 6
4i∑
d=i

∑
~σ

γ(~σ)βi,d

(
22i+2idεη

`d
+ 30

225`
3

k1/4

)
.

Note that

βi,d 6

(
`

d

)(
d

i

)4

6

(
`e

d

)d(d · e
i

)4i

6 `dd−d(4e2)4i,

and so by the previous inequality

(6) 6
4i∑
d=i

∑
~σ

γ(~σ)`dd−d(4e2)4i

(
22i+2idεη

`d
+ 30

225`
3

k1/4

)

6

(
exp(i)εη + 30

226`
3

k1/4

)
4i∑
d=i

(i/d)d

6 exp(i)εη +
227`

3

k1/4
.

13



3.4 Wrapping things up

Proof of Theorem 2.15. Combining Claim 3.7 and Lemma 3.8 we see that

η5

214δ4
6 E

A

[
F 4
≈i[A]

]
6 exp(i)εη +

227`
3

k1/4
.

Rearranging we see that

η 6 exp(i)δε1/4 + 16
27`

3

k1/16
δ2
√
η

6 exp(i) · δε1/4 + 16
27`

3

k1/16
,

the last inequality is by η > δ2.

3.5 Proof of Lemma 3.9

Proof. Let x1, ..., xd be chosen uniformly from [k], and let P1, ..., P4 be sets depending on x1, ..., xd corre-
sponding to the intersection pattern σd. Note that∣∣∣∣∣ E
x1,...,xd

[f≈i(P1)f≈i(P2)f≈i(P3)f≈i(P4)]− E
(I1,I2,I3,I4)∼γ( ~σd)

[f≈i(I1)f≈i(I2)f≈i(I3)f≈i(I4)]

∣∣∣∣∣ 6 d2

k
‖f≈i‖4∞,

since the distributions of the I’s and the P ’s are d2

k close to each other. Therefore, it suffices to show an
upper bound of the expectation involving the P ’s.

Proposition 3.10. If there is xj that appears in only one of the P ’s, then∣∣∣∣ E
x1,...,xd

[f≈i(P1)f≈i(P2)f≈i(P3)f≈i(P4)]

∣∣∣∣ 6 214i
2
d2

k
.

Proof. Assume without loss of generality j = 1 and that P1 contains x1. Then

E
x1,...,xd

[f≈i(P1)f≈i(P2)f≈i(P3)f≈i(P4)] = E
x2,...,xd

[
f≈i(P2)f≈i(P3)f≈i(P4)Ex1 [f≈i(P1) |x2, ..., xd]

]
.

(7)
Fix x2, ..., xd and denote J = {x2, ..., xd} ∩ P1. Since x1 ∈ P1, we have that |J | 6 |P1| − 1 = i − 1.
Additionally

|Ex1 [f≈i(P1) |x2, ..., xd]| 6
∣∣∣∣ E
I⊇J

[f≈i(I)]

∣∣∣∣+
d2

k
‖f≈i‖∞.

The latter expectation is upper bounded by 210i
2

k from Fact 2.11. Combining this with Fact 2.12 we conclude
that

|Ex1 [f≈i(P1) |x2, ..., xd]| 6
211i

2
d2

k
.

Using this, the triangle inequality and Fact 2.12 on (7) completes the proof.
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Thus we may assume that every xj appears at least in two sets. Next, denote by H4 = P1∩P2∩P3∩P4

the set of xj’s appearing in all sets, h4 = |H4|, H3 the set of xj’s appearing in three of the sets, h3 = |H3|,
H2 the set of xj’s appearing in precisely two sets, h2 = |H2|.

Claim 3.11.∣∣∣∣ E
H4,H3,H2

[f≈i(P1)f≈i(P2)f≈i(P3)f≈i(P4)]

∣∣∣∣ 6 E
H4,H3

[√
E
H2

[
f2≈i(P1)

]√
E
H2

[
f2≈i(P2)

]√
E
H2

[
f2≈i(P3)

]√
E
H2

[
f2≈i(P4)

]]

Proof. Let x ∈ H2, and suppose Pj1 , Pj2 contain it but not Pj3 , Pj4 . Then the left hand side is at most∣∣∣∣∣ E
H4,H3,H2\{x}

[
|f≈i(Pj3)| |f≈i(Pj4)|E

x
[|f≈i(Pj1)| |f≈i(Pj2)|]

]∣∣∣∣∣ .
Applying Cauchy-Schwarz inequality on the inner expectation, the above expression is upper-bounded by∣∣∣∣∣ E

H4,H3,H2\{x}

[
|f≈i(Pj3)| |f≈i(Pj4)|

√
E
x

[
f2≈i(Pj1)

]√
E
x

[
f2≈i(Pj2)

]]∣∣∣∣∣ .
Continuing in this manner - namely picking each time a new variable from H2, isolating the two terms that
depends on it and applying Cauchy-Schwarz on that expectation, yields the desired bound.

We next upper bound

E
H4,H3

[√
E
H2

[
f2≈i(P1)

]√
E
H2

[
f2≈i(P2)

]√
E
H2

[
f2≈i(P3)

]√
E
H2

[
f2≈i(P4)

]]
(8)

Using Cauchy-Schwarz inequality,

(8) 6

√
E

H4,H3

[
E
H2

[
f2≈i(P1)

]
E
H2

[
f2≈i(P2)

]]√
E

H4,H3

[
E
H2

[
f2≈i(P3)

]
E
H2

[
f2≈i(P4)

]]
6 max

H3∩P2,H4

√
E

H3\P2,H2

[
f2≈i(P1)

]
max

H3∩P3,H4

√
E

H3\P3,H2

[
f2≈i(P4)

]
√

E
H4,H3,H2

[
f2≈i(P2)

]√
E

H4,H3,H2

[
f2≈i(P3)

]
(9)

The product of the third and the fourth term is equal to

E
P3

[
f2≈i(P3)

]
6
η · ii

`i
+ 4

250`
3

√
k
.

Where the last inequality is by Claim 3.2 and the estimate
(
`
i

)
>
(
`
i

)i
.

Next, we estimate the maximums. For j = 1, 2, 3, 4 define H3,j = H3 ∩Pj . Apply Corollary 3.4 on the
first maximum with A = (H4, H3,1 ∩ P2) and B = (H2 ∩ P1, H3,1 \ P2), we get it is upper bounded by

max
A

√
E
B

[
f2≈i(A ∪B)

]
6

√
22i+1i|B|ε

`|B|
+ 4

252`3√
k

6
2i+1iλ1/2

√
ε

`λ1/2
+ 2

225`
3

k1/4
,
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where λ1 = |H2 ∩ P1|+ |H3,1 \ P2|
Similarly, the second maximum is upper bounded by

2i+1iλ2/2
√
ε

`
1
2
λ2

+ 2
225`

3

k1/4
,

where λ2 = |H2 ∩ P4|+ |H3,4 \ P3|
Combining everything, we see that

9 6
22i+2i

1
2
(2i+λ1+λ2)εη

`
1
2
(2i+λ1+λ2)

+ 29
225`

3

k1/4
. (10)

By counting occurrences of points in the P2, we get that i = h4 + |H2 ∩ P2| + |H3,2| and by counting
occurrences of points in P3, i = h4 + |H2 ∩ P3|+ |H3,3|. Also, note that H3,1 \ P2 = H3 \H3,2 since any
x ∈ H3 \ H3,2 is in 3 of the sets but not in P2, and hence it is in P1. Thus, |H3,1 \ P2| = |H3 \H3,2| =
h3 − |H3,2| and similarly |H3,4 \ P3| = |H3 \H3,3| = h3 − |H3,3|. Plugging everything into (11), we see
that the exponent of ` (and also i) is equal to

h4 + |H2 ∩ P2|+ |H3,2|+ h4 + |H2 ∩ P3|+ |H3,3|+ |H2 ∩ P1|+ |H2 ∩ P4|+ h3 − |H3,3|+ h3 − |H3,2|

which is 2(h4 + h3 + h2) = 2d. Thus,

9 6
22i+2idεη

`d
+ 29

225`
3

k1/4
. (11)

4 Pseudorandomness implies Expansion

Proof of Theorem 2.16. Let S be a set as in the Theorem, and let F be its indicator functions in J(k, `, α`).
Note that

δ(1− Φ(S)) = 〈F, J(k, `, α`)F 〉. (12)

Claim 4.1.

〈F, J(k, `, α`)F 〉 6
∑̀
i=0

λi(k, `, α`)W
=i[F ] +

2101`
3

k
.

Proof. Writing F = F=0 + ...+ F=` we have

〈F, J(k, `, α`)F 〉 = 〈F,
∑̀
i=0

J(k, `, α`)F=i〉 = 〈F,
∑̀
i=0

λi(k, `, α`)F=i〉

+ 〈F,
∑̀
i=0

J(k, `, α`)F=i − λi(k, `, α`)F=i〉.

The first term equals

〈
∑̀
i=0

F=i,
∑̀
i=0

λi(k, `, α`)F=i〉 =
∑̀
i=0

λi(k, `, α`)W
=i[F ]

16



by orthogonality. The second term can be upper bounded using Cauchy-Schwarz and the triangle inequality
by ∣∣∣∣∣〈F,∑̀

i=0

J(k, `, α`)F=i − λi(k, `, α`)F=i〉

∣∣∣∣∣ 6 ‖F‖2
(∑̀
i=0

‖J(k, `, α`)F=i − λi(k, `, α`)F=i‖2

)
.

Using Theorem 2.10 and ‖F‖2 6 1, the last expression is at most

∑̀
i=0

2
2100`

3

k
+ ‖J(k, `, α`)F≈i − λi(k, `, α`)F≈i‖2 6

∑̀
i=0

2
2100`

3

k
+

24`

k
‖f≈i‖∞.

the last inequality is by Theorem 2.7. Therefore using Fact 2.12 and simplification last expression is at most

(`+ 1)3
2100`

3

k
6

2101`
3

k
.

The following upper bound follows easily by the definition of λi.

Fact 4.2. λi(k, `, α`) 6 αi.

Therefore we conclude that

〈F, J(k, `, α`)F 〉 6
r∑
i=0

αiW=i[F ] +

α∑̀
i=r+1

αiW=i[F ] +
2101`

3

k
.

Let i 6 r. Observe that since S is (r, ε) pseudo-random it follows that S is (i, ε) pseudo-random. Therefore,
applying Theorem 2.15 we see that for i = 0, 1, ..., r,

W=i[F ] 6 exp(i)δε1/4 + 16
27`

3

k1/16
.

For the second sum, note that by Parseval the sum of all weights of F is at most δ. Hence, combining these
two facts we conclude

〈F, J(k, `, α`)F 〉 6
r∑
i=0

αiexp(i)δε1/4 + αr+1
α∑̀

i=r+1

W=i[F ] + 20
27`

3

k1/16

6 exp(r)δε1/4 + δαr+1 + 20
27`

3

k1/16
.

Plugging this into (12) and simplifying yields

Φ(S) > 1− αr+1 − exp(r)ε1/4 − 20
27`

3

k1/16δ
.

17



5 Proof of Theorem 2.17

Let S be a (r, ε) pseudo-random set, and F be its indicator function. The proof of Theorem 2.17 follows the
same outline as the proof of Theorem 2.15, except that we use higher moment.

Let 0 6 i 6 r.

Claim 5.1.

E
A

[
F 2m
≈i [A]

]
>

η2m+1

26m+2δ2m

Proof. Immediate from Claim 3.6.

The intersection pattern of P1, . . . , P2m is a vector σ indicating the sizes of all all intersections of any
collection of the sets.

Lemma 5.2. Let σd be an intersection pattern for 2m sets, and let P1, . . . , P2m be sets that match this
intersection pattern, that have formal elements x1, . . . , xd. Then∣∣∣∣∣∣ E

x1,...,xd

 2m∏
j=1

f≈i(Pj)

∣∣∣∣∣∣ 6 24mi+2m i
dε2m−1η

`d
+

exp(`3)

k1/(4m(2m+1))
. (13)

The rest of this section is devoted for the proof of this lemma.

Let σd be an intersection pattern. If among x1, . . . , xd there is a variable that appears only in one of the
P ’s then lemma holds trivially:

Proposition 5.3. If there is xj that appears in only one of the P ’s, then∣∣∣∣∣∣ E
x1,...,xd

 2m∏
j=1

f≈i(Pj)

∣∣∣∣∣∣ 6 2(11+m)i2d2

k
.

Proof. The same proof as in Proposition 3.10.

We thus assume from now on that each xj appears in at least 2 of the P ’s. For s = 2, 3 . . . , 2m,
let Hs be the set of xj’s that appear in exactly s of the P ’s. For convenience, let us also denote H>s =
Hs ∪Hs+1 ∪ . . . ∪H2m and H6s = H2 ∪H3 ∪ . . . ∪Hs.

For each one of the P -sets, define e1(P )
def
= |f≈i(P )| and for s > 2 define

es(P )
def
= E

H6s

[
f2≈i(P )

]
.

For each a = 2, 3, . . . , 2m, define an operator ρa on random variables defined by

ρa(Z) = E
Ha

[
Za/(a−1)

]
.

For j = 1, 2, . . . , 2m− 1, define Tj,j(P )
def
= ej(P ). Inductively for a > j, define

Tj,a(P )
def
= ρa(Tj,a−1(P )).
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Denote for each s,

Qs[H>s+1]
def
= E

H6s

 2m∏
j=1

|f≈i(Pj)|

.
Note that for s = 2m, this is the term we wish to bound.

Proposition 5.4. For every 2 6 s 6 2m,

Qs[H>s+1] 6

 2m∏
j=1

T1,s(Pj)

1/s

.

We shall use the following fact in the proof, which is a direct corollary of Holder’s inequality.

Fact 5.5. Let h1, . . . , hn :
(
k
m

)
→ R. Then

‖h1 . . . hn‖1 6 ‖h1‖n · · · ‖hn‖n.

Proof of Proposition 5.4. The proof is by induction on s. The base case s = 1 is trivial. Let s > 1, assume
we have proven for s, and prove for s+ 1. Note that

Qs+1[H>s+2] = E
Hs+1

[Qs[H>s+1]].

Applying the induction hypothesis, we get that

Qs+1[H>s+2] 6 E
Hs+1

 2m∏
j=1

(T1,s(Pj))
1/s

.
Write Hs+1 =

{
xj1 , . . . , xjq

}
. Iteratively, for each y ∈ Hs+1 we consider the s + 1 P ’s it appears in, and

then apply Fact 5.5 on them. Thus, for instance suppose we have that y is in P1, . . . , Ps+1, then we would
get

Qs+1[H>s+2] 6 E
Hs+1\{y}

s+1∏
j=1

(
E
y

[
T1,s(Pj)

(s+1)/s
])1/(s+1) 2m∏

j=s+2

T1,s(Pj)

.
Repeating this process for every y ∈ Hs+1, one gets

Qs+1[H>s+2] 6
2m∏
j=1

(
E

Hs+1∩Pj

[
T1,s(Pj)

(s+1)/s
])1/(s+1)

=

2m∏
j=1

T1,s+1(Pj)
1/(s+1).

Thus, we have that

LHS(13) 6

 2m∏
j=1

T1,2m(Pj)

1/2m

. (14)
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Proposition 5.6. For any P -set P and 1 6 j 6 2m− 1

Tj,2m(P ) 6 Tj+1,2m(P ) ·max
H>j

ej(P )
2m

j(j+1) .

Proof. The proof is by induction on j. The induction basis j = 2m−1 follows similar lines of the induction
step and is hence omitted. Assume the claim for j 6 2m− 1 and prove for j − 1.

Tj−1,2m(P ) = ρ2m ◦ . . . ◦ ρj (ej−1(P ))

= ρ2m ◦ . . . ◦ ρj+1

(
E
Hj

[
ej−1(P )j/(j−1)

])
Clearly,

E
Hj

[
ej−1(P )j/(j−1)

]
6 E

Hj

[ej−1(P )] max
H>j

ej−1(P )1/(j−1) = ej(P ) max
H>j

ej−1(P )1/(j−1).

Also, note that each operator ρa is monotone on non-negative random variables, and for a random variable
Z and a constant c > 0 we have that ρa(cZ) = ρa(c)ρa(Z). Thus, combining the above two we get that

Tj−1,2m(P ) 6 [ρ2m ◦ . . . ◦ ρj+1](ej(P )) · [ρ2m ◦ . . . ◦ ρj+1](max
H>j

ej−1(P )1/(j−1))

= Tj,2m(P ) max
H>j

ej−1(P )2m/j(j−1).

Repeated application of the above proposition yields that for any P -set,

T1,2m(P ) 6 T2m,2m(P )

2m−1∏
a=1

max
H>a+1

ea(P )
2m

a(a+1) =

2m∏
a=1

max
H>a+1

ea(P )2m·g(a).

where g(a) = 1
a(a+1) for a 6 2m − 1 and g(2m) = 1

2m . We used the fact that T2m,2m(P ) = e2m(P ).
Plugging this into (14) yields

LHS(13) 6
2m∏
j=1

2m∏
a=1

max
H>a+1

ea−1(Pj)
g(a).

Using Corollary 3.4, we see that that for a < 2m,

max
H>a+1

ea(P ) 6 22i+1 i
|P∩H6a|ε
`|P∩H6a|

+
exp(`3)√

k
.

For a = 2m, by Claim 3.2

max
H>a+1

ea(P ) 6
i|P∩H6a|η
`|P∩H6a|

+
exp(`3)√

k
.
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Therefore,

LHS(13) 6
2m∏
j=1

(
i|Pj∩H62m|η
`|Pj∩H62m|

+
exp(`3)√

k

)g(2m)

·
2m∏
j=1

2m−1∏
a=1

(
22i+1 i

|Pj∩H6a|ε
`|Pj∩H6a|

+
exp(`3)√

k

)g(a)

6
2m∏
j=1

(
i|Pj∩H62m|η
`|Pj∩H62m|

)g(2m)

·
2m∏
j=1

2m∏
a=1

(
22i+1 i

|Pj∩H6a|ε
`|Pj∩H6a|

)g(a)
+

exp(`3)

k1/(4m(2m+1))

6 24mi+2mηε2m−1
2m∏
j=1

2m∏
a=1

ig(a)·|Pj∩H6a|

`g(a)·|Pj∩H6a|
+

exp(`3)

k1/(4m(2m+1))
. (15)

where to compute the power of ε we used the fact that
2m−1∑
a=1

g(a) = 1− 1
2m (telescopic sum). Consider the

last product. It is equal to

2m∏
j=1

2m∏
a=1

a∏
r=1

ig(a)·|Pj∩Hr|

`g(a)·|Pj∩Hr|
=

2m∏
a=1

a∏
r=1

i
g(a)·

2m∑
j=1
|Pj∩Hr|

`
g(a)·

2m∑
j=1
|Pj∩Hr|

=
2m∏
a=1

a∏
r=1

ig(a)·r|Hr|

`g(a)·r|Hr|

=
2m∏
r=1

2m∏
a=r

ig(a)·r|Hr|

`g(a)·r|Hr|

=
2m∏
r=1

i
r|Hr|

2m∑
a=r

g(a)

`
r|Hr|

2m∑
a=r

g(a)

.

In the second equality, we used the fact that each element in Hr is counted r times by the Pj’s. In the third

equality we interchanged the order of multiplication. Note that
2m∑
a=r

g(a) = 1
r , hence the last product is equal

to

2m∏
r=1

i|Hr|

`|Hr|
=
i

2m∑
r=1
|Hr|

`

2m∑
r=1
|Hr|

=
id

`d
.

Plugging this into 15 yields

LHS(13) 6 24mi+2m i
dηε2m−1

`d
+

exp(`3)

k1/(4m(2m+1))
,

concluding the proof.

The following corollary is proven using a similar argument to the one in Lemma 3.8. Since the proof is
almost identical, we omit it.

Corollary 5.7. Suppose k > 2100`
3
, ` > 2. If F is (i, ε) pseudo-random, then

E
A

[
F 2m
≈i [A]

]
6 (10m)4miηε2m−1 +

exp(`3)

k1/(4m(2m+1))
.
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Proof of Theorem 2.17. Combining Claim 5.1 and Corollary 5.7, we get that

η2m+1

26m+2δ2m
6 (10m)4miηε2m−1 +

exp(`3)

k1/(4m(2m+1))
.

Rearranging (and using η > δ2) we get that

η2m 6 26m+2(10m)4miδ2mε2m−1 +
exp(`3)

k1/(4m(2m+1))
,

taking 2m-root yields

η 6 16(10m)2iδε1−
1

2m +
exp(`3)

k1/(8m2(2m+1))

finishing the proof.

6 Open Problems

Derandomizing the hypercube. Many results in the PCP literature [16], construction of integrality gaps
and non-embeddability results [23] rely on the small-set expansion property of the (noisy) hypercube. This
property states that for every noise rate ρ > 0, there exists ε > 0 such that a set of density δ in the noisy-
hypercube has expansion at least 1−O(δε). The quantitative aspect of these results is often determined by
the number of vertices in the noisy-hypercube, which is large. Improving these results can be achieved by
constructing a hypercube like graphs (e.g. that have a “small-set expansion” type property) with significantly
smaller number of vertices. This was done by Barak et al. [2] via the “Short Code”, that in many ways
behaves similarly to the noisy hypercube and thus may replace the noisy hypercube in the applications
above. Can our results be used to get improved results? This task is not trivial since the Johnson Graph
does not have a small-set expansion property. We do have however a characterization of sets for which
the small-set expansion property fails that is sometimes sufficient. For instance, the outer PCP of [20, 7]
deviates from classical PCP constructions by incorporating this characterization into the analysis.

Understanding slices of the hypercube. The Johnson Graph represents a slice of the Boolean hypercube,
which is a well-studied object from a combinatorial point of view [11, 10, 12, 13]. It is related to the study
of sharp threshold of Boolean functions and graph properties [14]. Can our result lead to new results about
slices of the Boolean hypercube the way that small set expansion of the hypercube and hypercontractivity
in general led to results about the hypercube? Subsequent to our work, Lifshitz and the second author have
made progress in this direction [24].

Direct product testing. For the Grassmann Graph, the characterization of small-sets that have near-perfect
expansion implies a “direct product testing” result, i.e., an encoding and a (2-to-2) test on words, such that
any word that passes the test with noticeable probability has global structure (inside some subgraph of
Grassmann Graph) [3]. Our results are related, in the same sense, to the problem of direct product testing
on the hypercube [18, 8, 4]. Can one obtain new results about direct product testing via our theorem? It is
interesting to note that the notion of “zoom-ins” appears in many of these works, and often as an intermediate
step (if there are more than 2 queries).
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