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Abstract

Independent samples from an unknown probability distribution p on a domain of size
k are distributed across n players, with each player holding one sample. Each player can
communicate ` bits to a central referee in a simultaneous message passing (SMP) model of
communication to help the referee infer a property of the unknown p. When ` ≥ log k bits, the
problem reduces to the well-studied collocated case where all the samples are available in one
place. In this work, we focus on the communication-starved setting of ` < log k, in which the
landscape may change drastically. We propose a general formulation for inference problems
in this distributed setting, and instantiate it to two prototypical inference questions: Learning
and uniformity testing.

One natural way to solve any distributed inference problem would be for the referee to
simulate the distribution p, i.e., generate enough samples from p using the players’ messages,
and then perform inference in a centralized fashion. This leads us to the following fundamental
problem of distribution simulation, interesting in its own right: Can the referee simulate
samples from p upon observing the messages from the players? Our first result shows that if
` < log k perfect simulation of distribution is impossible for any finite number of players. This
is perhaps surprising since log k bits from a single party would have sufficed. However, we
provide next a Las Vegas protocol for distributed simulation that can generate a sample from
the unknown distribution p using an expected O(k/2`) players, which we prove is optimal.
It follows that any inference task can be solved in the distributed setting using a “simulate-
and-infer” protocol with at most an O

(
k/2`

)
multiplicative blow-up in the sample complexity

compared to the collocated setting.
We then consider two core inference problems in the distributed setting: Learning and

uniformity testing of k-ary distributions. The first is known to require Θ(k/ε2) samples in
the collocated setting, implying that the aforementioned simulate-and-infer protocol will
work with O(k2/2`ε2)-player protocol in the distributed setting. Furthermore, this number
of players can be seen to be optimal using recent results, which in turn establishes that the
“simulate-and-infer” approach is optimal for distribution learning.

The second inference problem of uniformity testing requires Θ(
√
k/ε2) samples in the

collocated setting [Pan08]. This leads to an O(k3/2/2`ε2)-player protocol in the distributed
setting using the simulate-and-infer scheme above. We show this is suboptimal if public
randomness is allowed. Specifically, we provide a distributed uniformity testing protocol that
requires only O(

√
k2/2`/ε2) players and prove that it is optimal up to constant factors.
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1 Introduction

A set of sensor nodes are deployed in an active volcano to measure seismic activity. They are
connected to a central server over a low bandwidth communication link, but owing to their very
limited battery, they can only send a fixed number of short packets. The server seeks to determine
if the distribution of the quantized measurements have changed significantly from the one on
record. How many sensors must be deployed?

This situation is typical in many emerging sensor network applications as well as other dis-
tributed learning scenarios where the data is distributed across multiple clients with limited
communication capability. The question above is an instance of the distributed inference problem
where independent samples from an unknown distribution are given to physically separated
players who can only send a limited amount of communication to a central referee. The ref-
eree uses the communication to infer some properties of the generating distribution of the
samples. A variant of this problem where each player gets different (correlated) coordinates
of the independent samples has been studied extensively in the information theory literature
(cf. [AC86, Han87, HA98]). The problem described above has itself received significant attention
lately in various communities (see, for instance, [BPC+11, BBFM12, Sha14, DGL+17, HÖW18]),
with the objective of performing parameter or density estimation while minimizing the num-
ber of players (or, equivalently, the amount of data). Of particular interest to us are the results
in [DGL+17, HÖW18], which consider distribution learning problems. Specifically, it is shown
that roughly trivial schemes quantizing and compressing each sample separately turn out to be
optimal for simultaneous message passing (SMP) communication protocols. Our of our goals in
this research is to formalize and validate this heuristic and initiate its systematic study.

To formalize the question, we introduce a natural notion of distributed simulation: n players
observing an independent sample each from an unknown k-ary distribution p can each send `-
bits to a referee. A distributed simulation protocol consists of an SMP and a randomized decision
map that enables the referee to generate a sample from p using the communication from the
players. Clearly, when1 ` ≥ log k such a sample can be obtained by getting the sample of any one
player. But what can be done in the communication-starved regime when ` < log k?

This problem of distributed simulation is connected innately to the aforementioned dis-
tributed inference problems. Specifically, each player observing samples from a k-ary p can send
` bits to the referee using an SMP. They seek to help the referee accomplish a specific inference
task P .

Question 1.1. What is the minimum number of players n required by an SMP that successfully
accomplishes the inference P , as a function of k, `, and the relevant parameters of P?

We point out that the above formulation encompasses both density and parameter estimation,
as well as distribution testing (see e.g. [Rub12, Can15] and [Gol17] for a survey of property and
distribution testing).

Equipped with a distributed simulation, we can accomplish any distributed inference task by
simulating as many samples as warranted by the sample complexity of the inference problem.
Our objective is to understand when such a simulate-and-infer strategy is optimal. We study
the distributed simulation problem and apply it to the problems of distribution learning and

1We assume throughout that log k is an integer.
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distribution testing. Our results are the most striking for distribution testing, which, to the best of
our knowledge, has not been studied in the distributed setting prior to our work.

Starting with the distributed simulation problem, we first establish that perfect simulation
is impossible using any finite number of players in the communication-starved regime. This
establishes an interesting dichotomy where communication from a single party suffices for
perfect simulation when ` ≥ log k and no finite number of parties can accomplish it when ` <
log k. If we allow a small probability of declaring failure, namely Las Vegas schemes, distributed
simulation is possible with finitely many players. Indeed, we present such a Las Vegas distributed
simulation scheme that requires optimal (up to constant factors) number of players to simulate
k-ary distributions using ` bits of communication per player. Moving to the connection between
distributed simulation and distributed inference, we exhibit an instance when simulate-and-infer
is optimal. Perhaps more interestingly, we even exhibit a case where a simple simulate-and-infer
scheme is far from optimal if we allow the communication protocol to use public randomness.
As a byproduct, we characterize the least number of players required for distributed uniformity
testing in the SMP model. To put these results in context, we provide an overview of the literature
on distribution learning in both the collocated and distributed settings in the next section,
followed by a more concrete description of our results in the subsequent section.

1.1 Related prior work

For clarity, we divide our discussion of the relevant literature into three parts: The first discussing
the literature in the collocated setting, and the next two the prior work concerned with distributed
inference and simulation.

Inference in the collocated setting. First introduced by Batu et al. [BFR+00] and Goldreich,
Goldwasser, and Ron [GGR98], distribution testing is a branch of property testing [RS96, GGR98],
a field of theoretical computer science focusing on “ultra-fast” (sublinear-time) algorithms for
decision problems. Closely related to the hypothesis testing questions from Statistics, it is con-
cerned with questions of the following type: For a given property P of distributions over a
discrete support X and a given proximity parameter ε ∈ (0, 1], how many independent samples
from an unknown and arbitrary distribution p over X are required, as a function of |X | and
ε, to distinguish with high probability between the cases that p satisfies the property, or is at
total variation distance at least ε from every distribution that does? Distribution testing has
received much attention in the past decade, with considerable progress made and tight answers
obtained for many distribution properties (see e.g. surveys [Rub12, Can15, BW17] and references
within for an overview). Most pertinent to our work is uniformity testing [GR00, Pan08, DGPP17],
the prototypical distribution testing problem with applications to many other property testing
problems [BKR04, DKN15, Gol16, CDGR17].

Another well-studied is that of functional estimation: Given a functional Φ of distributions
and a parameter ε, how many samples are necessary to estimate Φ(p) to accuracy ε, as a function
of |X | and ε? This line of work is related closely to the classic problem of parameter estimation in
statistics, and recent advances have pinpointed the optimal rates for functionals such as entropy,
support size, and many others (see for instance [Pan04, RRSS09, VV11, JVYW15, WY16, AOST17,
JVHW17, ADOS17] for some of the most recent work).

The extreme case of functional estimation is the fundamental question of density estimation
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(or distribution learning), asking to estimate the entire underlying distribution from samples.
With more than a century of history (see the books [Tsy09, DL01]), distribution learning has
recently seen a surge of interest in the computer science community as well, with a focus on
discrete domains (see e.g. [Dia16] for a survey of these recent developments).

Inference in the distributed setting. As previously mentioned, distributed hypothesis testing
and estimation problems were first studied in information theory, albeit in a different setting than
what we consider [AC86, Han87, HA98]. The focus in that line of work has been to characterize
the trade-off between asymptotic error exponent and communication rate per sample. Recent ex-
tensions have considered interactive communication [XK13], more complicated communication
models [WT16], and even no communication [Wat17].

Closer to our work is the distributed parameter estimation and functional estimation that
has gained significant attention in recent years (see e.g. [DJW13, GMN14, BGM+16, Wat18]). In
these works, much like our setting, independent samples are distributed across players, which
deviates from the information theory setting described above where each player observes a fixed
dimension of each independent sample. However, the communication model in these results
differs from ours, and the communication-starved regime we consider has not been studied in
these works.

Our communication model is the same as that considered in [HÖW18], which establishes,
under some mild assumptions, a general lower bound for estimation of model parameters under
squared `2 loss. Although the problems considered in our work differ from those in [HÖW18] and
the results are largely incomparable, we build on a result of theirs to establish one of our lower
bounds.2

The problem of distributed density estimation, too, has gathered recent interest in various
statistical settings [BPC+11, BBFM12, ZDJW13, Sha14, DGL+17, HÖW18, XR17, ASZ18]. Our work
is closest to two of these: The aforementioned [HÖW18, HMÖW18] and [DGL+17]. The latter con-
siders both `1 (total variation) and `2 losses, although in a different setting than ours. Specifically,
they study an interactive model where the players do not have any individual communication
constraint, but instead the goal is to bound the total number of bits communicated over the
course of the protocol. This difference in the model leads to incomparable results and tech-
niques(for instance, the lower bound for learning k-ary distributions in our model is higher than
the upper bound in theirs).

Our current work further deviates from this prior literature, since we consider distribution
testing as well and examine the role of public-coin for SMPs. Additionally, a central theme here
is the connection to distribution simulation and its limitation in enabling distributed testing.
In contrast, the prior work on distribution estimation, in essence, establishes the optimality of
simple protocols that rely on distributed simulation for inference. (We note that although recent
work of [BCG17] considers both communication complexity and distribution testing, their goal
and results are very different – indeed, they explain how to leverage on negative results in the
standard SMP model of communication complexity to obtain sample complexity lower bounds
in collocated distribution testing.)

2In fact, the same communication model was proposed in a different work, presented at the 2018 ITA work-
shop [HMÖW18]. In this talk, the authors described a protocol for learning discrete distributions under `1 error, with a
number of players that they showed to be optimal up to constant factors.
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Distributed simulation. Problems related to joint simulation of probability distributions have
been the object of focus in the information theory and computer science literature. Starting with
the works of Gács and Körner [GK73] and Wyner [Wyn75], these include among others correlated
sampling [Bro97, KT02, Hol07, BGH+16], where two players with shared randomness, and given
the explicit description of two distributions p,q need to output, without communicating, samples
x and y respectively distributed according to p and q such that the probability that x = y is
maximized; and non-interactive simulation [KA12, GKS16, DMN18], where two players, provided
separately with samples from the marginals of a known distribution p, need to output samples
U, V such that the joint distribution of (U, V ) is as close as possible to a target (known) distribution
q. Yet, the problem of exact simulation of a single distribution with communication constraints
from multiple parties has not been studied previously to the best of our knowledge.

1.2 Our results

Our first theorem shows that perfect distributed simulation with a finite number of players is to
be ruled out:

Theorem 1.2. For every k ≥ 1 and ` < log k, there exists no SMP with ` bits of communication per
player for distributed simulation over [k] with finite number of players. Furthermore, the result
continues to hold even when public-coin and interactive communication protocols are allowed.

In light of this impossibility result, one can ask if distributed estimation is still possible by
relaxing the requirement of finiteness in the worst-case for the number of players. We demonstrate
that this is indeed the case and describe a protocol with finite expected number of players.3

Theorem 1.3. For every k, ` ≥ 1, there exists a private-coin protocol with ` bits of communication
per player for distributed simulation over [k] and expected number of playersO

(
k/2` ∨ 1

)
. Moreover,

this expected number is optimal, up to constant factors, even when public-coin and interactive
communication protocols are allowed.

We use this distributed simulation result to derive protocols for any distributed inference task:

Theorem 1.4 (Informal). For any inference task P over k-ary distributions with sample com-
plexity s in the non-distributed model, there exists a private-coin protocol for P , with ` bits of
communication per player, and n = O(s · k/2`) players.

Instantiating this general statement for the prototypical distribution testing problem of uniformity
testing leads to:

Corollary 1.5. For every k, ` ≥ 1, there exists a private-coin protocol for testing uniformity over [k],
with ` bits of communication per player and n = O

(
k3/2

(2`∧k)ε2

)
players.

The optimality of the simulate-and-infer strategy that generates O(
√
k) samples from the

unknown p at the referee using private-coin protocols is open. Note that for a general inference
problem even for k-ary observations the effective support-size can be much smaller. Thus,
we can define the size of a problem as the least number of bits to which each samples can be
compressed without increase in the number of compressed sample required to solve the problem
(see Section 5.2 for a formal definition). An intriguing question ensues:

3Or, roughly equivalently, when one is allowed to abort with a special symbol with small constant probability.
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Question 1.6 (The Flying Pony Question (Informal)). Does the compressed simulate-and-infer
scheme, which simulates independent samples compressed to the size of the problem using private-
coin protocols and sends them to the referee who then infers from them, require the least number of
players?

Note that for the problems considered in [DGL+17, HÖW18] the answer to the question above
is in the affirmative. However, we exhibit an example in Section 5.2 for which the answer is
negative. Roughly, the problem we consider is that of testing if the distribution is uniform on [k]
or instead satisfies the following: for every i ∈ [k], pi is either 0 or 2/k. We show that the size of
this problem remains log k, whereby the simple simulate-and-infer scheme of the question above
for ` = 1 will require O(k3/2) players. On the other hand, one can obtain a simple scheme to solve
this task using 1-bit communication from only O(k) players. Interestingly, even this new scheme
is of simulate-and-infer form, although it compresses below the size of the problem.

While the answer to the question above remains open for uniformity testing using private-coin
protocols, it is natural to examine its scope and consider public-coin protocols for uniformity
testing. As it turns out, here, too, the answer to the question is negative – public-coin protocols
lead to an improvement in the required number of parties over the simple simulate-and-infer

protocol described earlier by a factor of
√
k/2`. Specifically, we provide a public-coin protocol for

uniformity testing that requires roughly O(k/2`/2) players and show that no public-coin protocol
can work with fewer players.

Theorem 1.7. For every k, ` ≥ 1, consider the problem of testing if the distribution is uniform or
ε-far from uniform in total variation distance. There exists a public-coin protocol for uniformity

testing with ` bits of communication per player and n = O
(

k
(2`/2∧

√
k)ε2

)
players. Moreover, this

number is optimal up to constant factors.

1.3 Our techniques

We now provide a high-level description of the proofs of our main results.

Perfect and α-simulation. Our general impossibility result for perfect simulation with a finite
number of players is based on simple heuristics. Observe that for any distribution p with pi = 0
for some i, the referee must not output i for any sequence of messages. However, since ` < log k,
by the pigeonhole principle one can find a sequence of messages M = (M1, ...,Mn) where each
message Mi has a positive probability of appearing from two different elements in [k]. Note
that there exist distributions for which M can occur with a positive probability, and not being
able to abort with the symbol ⊥, upon receiving this sequence the referee must output some
element, say i∗. Then, for any distribution with pi∗ = 0, this sequence M must not be sent. But by
construction each message in M can be triggered by at least two elements in [k]. Thus, we can
find a distribution with pi∗ = 0 for which the sequence of messages M will be sent with positive
probability, which is a contradiction.

Next, we consider α-simulation protocols, namely simulation protocols that are allowed to
abort with probability less than α. The proof of the positive result establishing the existence of
α-simulation proceeds by dividing the alphabet into k/(2` − 1) sets of size 2` − 1 and assigning
each such set to two different players (each using their ` bits to indicate whether their sample
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fell in this subset, and if so on which element). If only one pair of players finds the sample in its
assigned subset, the referee can declare this as the output, and it will have the desired probability.
But it is possible that several pairs of players observe their assigned symbol and send conflicting
messages. In this case, the referee cannot decide which of the elements to choose and must
declare abort. However, we show that this happens with a probability that depends only on the `2
norm of the unknown distribution p; if we could assume this norm to be bounded away from
1, then our protocol would require O(k) players. Unfortunately, this need not be the case. To
circumvent this difficulty, we artificially duplicate every element of the domain and “split” each
element i ∈ [k] into two equiprobable elements i1, i2 ∈ [2k]. This has the effect of decreasing the
`2 norm of p by a factor

√
2, allowing us to instead apply our protocol to the resulting distribution

p′ on [2k], for which the aforementioned probability of aborting can be bounded by a constant.

Distributed uniformity testing. A natural idea to test whether an unknown distribution p is
uniform, given that one can send only ` to the referee, is to pick uniformly at random a subset
S ⊆ [k] of size s := 2` − 1, and communicate to the referee either an element in S that equals the
observed sample or indicate that the sample does not lie in S. If p is indeed uniform, then the
probability p(S) of set S satisfies p(S) = s/k and the conditional distribution pS given that the
sample lies in S is uniform. On the other hand, it is not difficult to show that if p is ε-far from
uniform in total variation distance, then the expected contribution of elements in S to the `1
distance of p to uniform is order ε. By an averaging argument, this implies that with probability
at least ε either (i) p(S) differs from s/k by a (1 ± Ω(ε)) factor, or (ii) pS is itself Ω(ε)-far from
uniform.

For a given S, detecting if (i) holds requires roughly k/(sε2) samples (and hence as many
players), while under (ii) one would need (k/s) ·

√
s/ε2 = k/(

√
sε2) players (the cost of rejection

sampling, times that of uniformity testing on support size s) to test uniformity. When public
randomness is available, the players can choose jointly the same random set S, so this protocol is
valid. But there is a caveat. Since each choice of S is only “good” with probability ε, to achieve
a constant probability of success one needs to repeat the procedure outlined above for Ω(1/ε)
different choices of S. This, along with the overhead cost of a union bound over all repetitions,
leads to a bound ofO(k/(2`/2ε3) · log(1/ε)) on the number of players – far from the optimal answer
of n = O(k/(2`/2ε2)). To avoid the extra 1/ε, we rely instead on Levin’s work investment strategy
(see e.g. [Gol14, Appendix A.2]), which by a more careful accounting enables us to avoid paying
the cost of the naive averaging argument. Instead, by considering logarithmically many different
possible “scales” εj of distance between pS and uniform, each with its own probability αj of
occurring for a random choice of S and by keeping track of the various costs that ensue, we can
get rid of this extra 1/ε factor. This only leaves us with an extra log(1/ε) factor to handle, which
arises due to the union bound. To omit this extra factor, we refine our argument by allocating
different failure probabilities to every different test conducted, depending on the respective scale
used. By choosing these probabilities so that their sum is bounded by a constant (for instance, by
setting δi ∝ 1/j2), we can still ensure overall correctness with a high, constant probability, while
the extra cost log(1/δj) for the j-th scale considered is subsumed in the accounting using Levin’s
strategy. This finally yields the desired bound of n = O(k/(2`/2ε2)) for the number of players.

For the lower bound, we take recourse to Le Cam’s two-point method. Specifically, we use the
construction proposed by Paninski [Pan08] for proving the lower bound for sample complexity
in the collocated setting. Roughly, we consider the problem of distinguishing the uniform dis-
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tribution from a randomly selected element of the family of distributions consisting each of a
perturbation of uniform distribution where the probabilities conditioned on pairs of consecu-
tive elements are changed from unbiased coins to coins of bias ε. However, Paninski’s original
treatment does not suffice now as we need to handle the total variation distance between the
distribution induced on the message sequence M under the uniform distribution and a uniform
mixture of the pairwise perturbed distributions. This is further bounded above by the average
distance between the message distribution under uniform input and under the pairwise per-
turbed input. In fact, treating public randomness as a common observation in both settings, it
suffices to obtain a worst-case bound for deterministic inference protocols. Capitalizing on the
fact that both distributions of messages are in this case product distributions, we can show that

this average distance for deterministic protocols is bounded above by
√
n(2`ε2)/k, which leads to

a lower bound of n = Ω(k/(2`ε2)).
The bound obtained above is tight for ` = 1, but is sub-optimal in general . To refine this bound

further, instead of considering the average distance between the distributions, we need to carefully
analyze the distance of uniform from the average. However, this quantity is not amenable to
standard bounds for total variation distance in terms of Kullback–Leibler divergence and Hellinger
distance devised to handle product distributions, as the average “no-distribution” is not itself a
product distribution anymore. Instead, we take recourse to a technique used in [Pan08], building
on [Pol03], that uses a χ2-distance bound and proceeds by expanding the product likelihood
ratios in multilinear form. Obtaining the final bound requires a sub-Gaussian bound for a log-
moment generating function, which is completed by using a standard transportation method
technique.

1.4 Organization

We begin by setting notation and recalling some useful definitions and results in Section 2, be-
fore formally introducing our distributed model in Section 3. Section 4 introduces the question
of distributed simulation, and contains our protocols and impossibility results for this prob-
lem (specifically, Theorem 1.2 and Theorem 1.3 are proven in Section 4.1 and in Section 4.2),
respectively.

Specifically, we consider in Section 5 the relation between distributed simulation and (private-
coin) distribution inference. Namely, we explain in Section 5.1 how a distributed simulation
protocol immediately implies protocols for every inference task (Theorem 1.4), and instantiate
it to the two concrete examples of distribution learning and uniformity testing. Section 5.2 is
concerned with Question 1.6: “Is inference via distributed simulation optimal in general?” After
rigorously formalizing this question, we answer it in the negative in Theorem 5.10.

The next section, Section 6, focuses on the problem of uniformity testing, and contains the
proofs of the upper and lower bounds of Theorem 1.7. Finally, we conclude in Section 7 with
some open questions and research directions left unanswered by, and related to, this work.

Although we rely throughout on the formal description of our model given in Section 3, the
other sections are self-contained and can be read independently.
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2 Preliminaries

We write log (resp. ln) for the binary (resp. natural) logarithm, and [k] for the set of integers
{1, 2, . . . , k}. Given a fixed (and known) discrete domain X of size k, we denote by ∆(X ) the set of
probability distributions over X , i.e.,

∆(X ) = { p : X → [0, 1] : ‖p‖1 = 1 } .

A property of distributions over X is a subset P ⊆ ∆(X ). Given p ∈ ∆(X ) and a property P , the
distance from p to the property is defined as

dTV(p,P) := inf
q∈P

dTV(p,q) (1)

where dTV(p,q) = supS⊆X (p(S)− q(S)) for p,q ∈ ∆(X ), is the total variation distance between
p and q. For a given parameter ε ∈ (0, 1], we say that p is ε-close to P if dTV(p,P) ≤ ε; otherwise,
we say that p is ε-far from P . For a discrete set X , we write uX for the uniform distribution on X ,
and will sometimes omit the subscript when the domain is clear from context. We indicate by
x ∼ p that x is a sample drawn from the distribution p.

In addition to total variation distance, we shall rely in some of our proofs on the χ2 and
Kullback–Leibler (KL) divergences between discrete distributions p,q ∈ ∆(X ), defined respec-

tively as χ2(p,q) :=
∑
x∈X

(px−qx)2

q2
x

and D(p‖q) :=
∑
x∈X px ln px

qx
.

We use the standard asymptotic notationO(·), Ω(·), and Θ(·); and will sometimes write an . bn
to indicate that there exists an absolute constant c > 0 such that an ≤ c · bn for all n. Finally, we
will denote by a ∧ b and a ∨ b the minimum and maximum of two number a and b, respectively.

3 Communication, Simulation, and Inference Protocols

We set the stage by describing the communication protocols we study for both the distributed
simulation problem and the distributed inference problem. Throughout the paper, we restrict to
simultaneous communication models with private and public randomness.

Formally, n players observe samples X1, . . . , Xn with player i given access to Xi. The samples
are assumed to be generated independently from an unknown distribution p. In addition, player i
has access to uniform randomnessUi such that (U1, . . . , Un) is jointly independent of (X1, . . . , Xn).
An `-bit simultaneous message-passing (SMP) communication protocol π for the players consists
of {0, 1}`-valued mappings π1, . . . , πn where player i sends the message Mi = πi(Xi, Ui). The
message M = (M1, . . . ,Mn) sent by the players is received by a common referee. Based on the
assumptions on the availability of the randomness (U1, . . . , Un) to the referee and the players,
three natural classes of protocols arise:

1. Private-coin protocols: U1, . . . , Un are mutually independent and unavailable to the referee.

2. Pairwise-coin protocols: U1, . . . , Un are mutually independent and available to the referee.

3. Public-coin protocols: All player and the referee have access to U1, . . . , Un.
In this paper, we focus only on private- and public-coin communication protocols; an inter-
esting question is distinguishing pairwise-coin protocols from the other two. For the ease of
presentation, we represent the private randomness communication fi(xi, Ui) using a channel
Wi : X → {0, 1}` where player i upon observing xi declares y with probability Wi(y|xi). Also, for
public-coin protocols, we can assume without loss of generality that U1 = U2 = · · · = Un = U .

9



Distributed simulation protocols. An `-bit simulation S = (π, δ) of k-ary distributions using n
players consists of an `-bit SMP π and a decision map δ comprising mappings δx : (M,U) 7→ [0, 1]
such that for each message m and randomness u,∑

x

δx(m,u) ≤ 1.

Upon observing the message M = (M1, . . . ,Mn) and randomness U = (U1, . . . , Un), the referee
declares the random sample X̂ = x with probability δx(M,U) or declares an abort symbol⊥ if no
x is selected. For concreteness, we assume that the random variable X̂ takes values in X ∪ {⊥}
with {X̂ =⊥} corresponding to the abort event. When π is a private, pairwise, or public-coin
protocol, respectively, the simulation S is called private, pairwise, or public-coin simulation.

A simulation S is an α-simulation if for every p

Pr
p

(
X̂ = x | X̂ 6=⊥

)
= px, ∀x ∈ X ,

and the abort probability satisfies
Pr
p

(
X̂ =⊥

)
≤ α.

When the probability of abort is zero, S is termed a perfect simulation.

Distributed inference protocols. We give a general definition of distributed inference protocols
that is applicable beyond the use-cases considered in this work. An inference problem P can be
described by a tuple (C,X , E , L) where C denotes a family of distributions on the alphabet X , E
a class of allowed estimates for elements of C (or their functions), and L : C × E → Rq+ is a loss
function that evaluates the accuracy of our estimate e ∈ E when p ∈ C was the ground truth.

An `-bit distributed inference protocol I = (π, e) for the inference problem (C,X , E , L) consists
of an `-bit SMP π and an estimator e available to the referee who, upon observing the message
M = π(Xn, U) and the randomnessU , estimates the unknown p as e(M,U) ∈ E . As before, we say
that a private, pairwise, or public-coin inference protocol, respectively, uses a private, pairwise,
or public-coin communication protocol π.

For ~γ ∈ Rq+, an inference protocol (π, e) is a ~γ-inference protocol if

Ep[Li(p, e(M,U))] ≤ γi, ∀1 ≤ i ≤ q.

We instantiate the abstract definition above in two illustrative examples that we will pursue in
this paper.

Example 3.1 (Distribution learning). Consider the problem Lk(ε, δ) of estimating a k-ary distribu-
tion p by observing independent samples from it, namely the finite alphabet distribution learning
problem. This problem is obtained from the general formulation above by setting X to be [k], C
and E both to be the (k − 1)-dimensional probability simplex Ck, and L(p, p̂) as follows:

L(p, p̂) = 1{dTV(p,p̂)>ε}.

For this case, we term the δ-inference protocol an `-bit (k, ε, δ)-learning protocol for n player.
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Example 3.2 (Uniformity testing). In the uniformity testing problem Tk(ε, δ), our goal is to deter-
mine whether p is the uniform distribution uk over [k] or if it satisfies dTV(p,uk) > ε. This can be
obtained as a special case of our general formulation by setting X = [k], C to be set containing uk
and all p satisfying dTV(p,uk) > ε, E = {0, 1}, and loss function L to be

L(p, b) = b · 1{p=uk} + (1− b) · 1{p6=uk}, b ∈ {0, 1}.

For this case, we term the δ-inference protocol an `-bit (k, ε, δ)-uniformity testing protocol for n
players. Further, for simplicity we will refer to (k, ε, 1/3)-uniformity testing protocols simply as
(k, ε)-uniformity testing protocols.

Note that distributed variants of several other inference problems such as that of estimating
functionals of distributions and parametric estimation problems can be included as instantiations
of the distributed inference problem described above.

We close by noting that while we have restricted to the SMP model of communication, the
formulation can be easily extended to include interactive communication protocols where the
communication from each player can be heard by all the other players (and the referee), and in
its turn, a player communicates using its local observation and the communication received from
all the other players in the past. A formal description of such a protocol can be given in the form
of a multiplayer protocol tree à la [KN97]. However, such considerations are beyond the scope of
this paper.

A note on the parameters. It is immediate to see that for ` ≥ log k the distributed and central-
ized settings are equivalent, as the players can simply send their input sample to the referee (thus,
both upper and lower bounds from the centralized setting carry over).

4 Distributed Simulation

In this section, we consider the distributed simulation problem described in the previous section.
We start by considering the more ambitious problem of perfect simulation and show that when
` < log k, perfect simulation using n players is impossible using any n. Next, we consider α-
simulation for a constant α ∈ (0, 1) and exhibit an `-bit α-simulation of k-ary distributions using
O(k/2`) players. In fact, by drawing on a reduction from distributed distribution learning, we will
show in Section 5.1 that this is the least number of players required (up to a constant factor) for
α-simulation for any α ∈ (0, 1).

4.1 Impossibility of perfect simulation when ` < log k

We begin with a proof of impossibility which shows that any simulation that works for all points
in the interior of the (k − 1)-dimensional probability simplex must fail for a distribution on the
boundary. Our main result of this section is the following:

Theorem 4.1. For any n ≥ 1, there exists no `-bit perfect simulation of k-ary distributions using n
players unless ` ≥ log k.

Proof. LetS = (π, δ) be an `-bit perfect simulation for k-ary distributions usingnplayers. Suppose
that ` < log k. We show a contradiction for any such public-coin simulation S. Fix a realization

11



U = u of the public randomness. By the pigeonhole principle we can find a message vector
m = (m1, . . . ,mn) and distinct elements xi, x′i ∈ [k] for each i ∈ [n] such that

πi(xi, u) = πi(x′i, u) = mi.

Note that the probability of declaring ⊥ for a public-coin simulation must be 0 for every k-
ary distribution. Therefore, since the message m occurs with a positive probability under a
distribution p with pxi > 0 for all i, the referee must declare an output x ∈ [k] with positive
probability when it receives m, i.e., there exists x ∈ [k] such that δx(m,u) > 0. Also, since xi and
x′i are distinct for each i, we can assume without loss of generality that xi 6= x for each i. Now,
consider a distribution p such that px = 0 and pxi > 0 for each i. For this case, the referee must
never declare px, i.e., Pr

[
X̂ = x

]
= 0. In particular, Pr

[
X̂ = x

∣∣∣ U = u
]

must be 0, which can
only happen if Pr[M = m | U = u ] = 0. But since pxi > 0 for each i,

Pr[M = m | U = u ] ≥
n∏
i=1

pxi > 0 ,

which is a contradiction.

Note that the proof above shows, as stated before, that any perfect simulation that works for
every p in the interior of the (k − 1)-dimensional probability simplex, must fail at one point on
the boundary of the simplex. In fact, a much stronger impossibility result holds. We show next
that for k = 3 and ` = 1, we cannot find a perfect simulation that works in the neighborhood of
any point in the interior of the simplex.

Theorem 4.2. For any n ≥ 1, there does not exist any `-bit perfect simulation of 3-ary distributions
unless ` ≥ 2, even under the promise that the input distribution comes from an open set in the
interior of the probability simples.

Before we prove the theorem, we show that there is no loss of generality in restricting to de-
terministic protocols, namely protocols where each player uses a deterministic function of its
observation to communicate. The high-level argument is relatively simple: By replacing player j
by two players j1, j2, each with a suitable deterministic strategy, the two 1-bit messages received
by the referee will allow him to simulate player j’s original randomized mapping.

Lemma 4.3. For X = {0, 1, 2}, suppose there exists a 1-bit perfect simulation S′ = (π′, δ′) with
n players. Then, there is a 1-bit perfect simulation S = (π, δ) with 2n players such that, for each
j ∈ [2n], the communication π is deterministic, i.e., for each realization u of public randomness

πj(xj , u) = πj(x), x ∈ X .

Proof. Consider the mapping f : {0, 1, 2} × {0, 1}∗ → {0, 1}. We will show that we can find
mappings g1 : {0, 1, 2} → {0, 1}, g2 : {0, 1, 2} → {0, 1}, and h : {0, 1}×{0, 1}×{0, 1}∗ → {0, 1} such
that for every u

Pr[ f(X,u) = 1 ] = Pr[h(g1(X1), g2(X2), u) = 1 ] , (2)

where random variables X1, X2, X are independent and identically distributed and take values
in {0, 1, 2}. We can then use this construction to get our claimed simulation S using 2n players
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as follows: Replace the communication π′j(x, u) from player j with communication π2j−1(x2j−1)
and π2j(x2j), respectively, from two players 2j − 1 and 2j, where π2j−1 and π2j correspond to
mappings g1 and g2 above for f = π′j . The referee can then emulate the original protocol using the
corresponding mapping h and using h(π2j−1(x2j−1), π2j(x2j), u) in place of communication from
player j in the original protocol. Then, since the probability distribution of the communication
does not change, we retain the performance of S′, but using only deterministic communication
now.

Therefore, it suffices to establish (2). For convenience, denote αu := 1{f(0,u)=1}, βu :=
1{f(1,u)=1}, and γu := 1{f(2,u)=1}. Assume without loss of generality that αu ≤ βu + γu; then,
(βu + γu − αu) ∈ {0, 1}. Let gi(x) = 1{x=i} for i ∈ {1, 2}. Consider the mapping h given by

h(0, 0, u) = αu, h(1, 0, u) = βu, h(0, 1, u) = γu, h(1, 1, u) = (βu + γu − αu) .

Then, for every u,

Pr[h(g1(X1), g2(X2), u) = 1 ]
= αu(1− p1)(1− p2) + βu(1− p1)p2 + γup1(1− p2) + (βu + γu − αu)p1p2

= αu(1− p1 − p2) + βup2 + γup1 = Pr[ f(X,u) = 1 ] ,

which completes the proof.

We now prove Theorem 4.2, but in view of our previous observation, we only need to consider
deterministic communication.

Proof of Theorem 4.2. Suppose by contradiction that there exists such a 1-bit perfect simulation
protocol S = (π, δ) for n players on X = {0, 1, 2} such that π(x, u) = π(x). Assume that this
protocol is correct for all distributions p in the neighborhood of some p∗ in the interior of the
simplex. Consider a partition the players into three sets S0, S1, and S2, with

Si := { j ∈ [n] : πj(i) = 1 } , i ∈ X .

Note that for deterministic communication the message M is independent of public randomness
U . Then, by the definition of perfect simulation, it must be the case that

px = EU
∑

m∈{0,1}n

δx(m,U) Pr[M = m | U ] = EU
∑
m

δx(m,U) Pr[M = m ]

=
∑
m

EU [δx(m,U)] Pr[M = m ] (3)

for every x ∈ X , which with our notation of S0,S1,S2 can be re-expressed as

px =
∑

m∈{0,1}n

EU [δx(m,U)]
2∏
i=0

∏
j∈Si

(mjpi + (1−mj)(1− pi))

=
∑

m∈{0,1}n

EU [δx(m,U)]
2∏
i=0

∏
j∈Si

(1−mj + (2mj − 1)pi) ,
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for every x ∈ X . But since the right-side above is a polynomial in (p0,p1,p2), it can only be zero
in an open set in the interior if it is identically zero. In particular, the constant term must be zero:

0 =
∑

m∈{0,1}n

EU [δx(m,U)]
2∏
i=0

∏
j∈Si

(1−mj) =
∑

m∈{0,1}n

EU [δx(m,U)]
n∏
j=1

(1−mj) .

Noting that every summand is non-negative, this implies that for all x ∈ X and m ∈ {0, 1}n,
EU [δx(m,U)]

∏n
j=1(1−mj) = 0. In particular, for the all-zero message 0n, we get EU [δx(0n, U)] = 0

for all x ∈ X , so that again by non-negativity we must have δx(0n, u) = 0 for all x ∈ X and
randomness u. But the message 0n will happen with probability

Pr[M = 0n ] =
2∏
i=0

∏
j∈Si

(1− pi) = (1− p0)|S0|(1− p1)|S1|(1− p2)|S2| > 0,

where the inequality holds since p lies in the interior of the simplex. Therefore, for the output X̂
of the referee we have

Pr
[
X̂ 6= ⊥

]
=
∑
m

∑
x∈X

EU [δx(m,U)] · Pr[M = m ] =
∑
m6=0n

Pr[M = m ]
∑
x∈X

EU [δx(m,U)]

≤
∑
m 6=0n

Pr[M = 0n ] = 1− Pr[M = 0n ] < 1 ,

contradicting the fact that π is a perfect simulation protocol.

Remark 4.4. It is unclear how to extend the proof of Theorem 4.2 arbitrary k, `. In particular, the
proof of Lemma 4.3 does not extend to the general case. A plausible proof-strategy is a black-
box application of the k = 3, ` = 1 result to obtain the general result using a direct-sum-type
argument.

We close this section by noting that perfect simulation is impossible even when the commu-
nication from each player is allowed to depend on that from the previous ones. Specifically, we
show that availability of such an interactivity can at most bring an exponential improvement in
the number of players.

Lemma 4.5. For every n ≥ 1, if there exists an interactive public-coin `-bit perfect simulation of
k-ary distributions with n players, then there exists a public-coin `-bit perfect simulation of k-ary
distributions with 2`n+1 players that uses only SMP.

Proof. Consider an interactive communication protocol π for distributed simulation with n
players and ` bits of communication per player. We can view the overall protocol as a (2`)-ary tree
of depth nwhere player j is assigned all the nodes at depth j. An execution of the protocol is a path
from the root to the leaf of the tree. Suppose the protocol starting at the root has reached a node
at depth j, then the next node at depth j + 1 is determined by the communication from player j.
Thus, this protocol can be simulated non-interactively using at most ((2`)n − 1)/(2` − 1) < 2`n+1

players, where players (2j−1 + 1) to 2j send all messages correspond to nodes at depth j in the
tree. Then, the referee receiving all the messages can output the leaf by following the path from
root to the leaf.

Corollary 4.6. Theorems 4.1 and 4.2 extend to interactive protocols as well.
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4.2 An α-simulation protocol using rejection sampling

In this section, we establish Theorem 1.3 and provide α-simulation protocols for k-ary distribu-
tions using n = O(k/2`) players. We first present the protocol for the case ` = 1, before extending
it to general `. The proof of lower bound for the number of players required for α-simulation of
k-ary distributions is based on the connection between distributed simulation and distributed
distribution learning and will be provided in the next section where this connection is discussed
in detail.

For ease of presentation, we allow a slightly different class of protocols where we have an in-
finitely long sequence of players, each with access to one independent sample from the unknown
p. The referee’s protocol entails checking each player’s message and deciding either to declare
an output X̂ = x and stop, or see the next player’s output. We assume that with probability one
the referee uses finitely many players and declares an output. The cost of maximum number
of players of the previous setting is now replaced with the expected number of players used to
declare an output. By an application of Markov’s inequality, this can be easily related to our
original setting of private-coin α-simulation.

Theorem 4.7. There exists a 1-bit private-coin protocol that outputs a sample x ∼ p using messages
of at most 20k players in expectation.

Proof. To help the reader build heuristics for the proof, we describe the protocol and analyze
its performance in steps. We begin by describing the basic idea and building blocks; we then
build upon it to obtain a full-fledged protocol, but with potentially unbounded expected number
of players used. Finally, we describe a simple modification which yields our desired bound for
expected number of player’s accessed.

The scheme, base version. Consider a protocol with 2k players where the 1-bit communication
from players (2i − 1) and (2i) just indicates if their observation is i or not, namely π2i−1(x) =
π2i(x) = 1{x=i}.
On receiving these 2k bits, the refereeR acts as follows:

• if exactly one of the bits M1,M3, . . . ,M2k−1 is equal to one, say the bit M2i−1, and the
corresponding bit M2i is zero, then the referee outputs X̂ = i;

• otherwise, it outputs⊥.

In the above, the probability ρp that some i ∈ [k] is declared as the output (and not⊥) is

ρp :=
k∑
i=1

pi
∏
j 6=i

(1− pj)

 · (1− pi) =
k∏
j=1

(1− pj) ·
k∑
i=1

pi =
k∏
j=1

(1− pj),

so that

ρp = exp
k∑
j=1

ln(1− pj) = exp
(
−
∞∑
t=1

‖p‖tt
t

)
≥ exp

(
−
(

1 +
∞∑
t=2

‖p‖t2
t

))
= 1− ‖p‖2

e1−‖p‖2

which is bounded away from 0 as long as p is far from being a point mass.
Further, for any fixed i ∈ [k], the probability thatR outputs i is

pi ·
k∏
j=1

(1− pj) = piρp ∝ pi .
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The scheme, medium version. The (almost) full protocol proceeds as follows. Divide the count-
ably infinitely many players into successive, disjoint batches of 2k players each, and apply the
base scheme to each of these runs. Execute the base scheme to each of the batch, one at a time
and moving to the next batch only when the current batch declares a⊥; else declare the output of
the batch as X̂.

It is straightforward to verify that the distribution of the output X̂ is exactly p, and moreover
that on expectation 1/ρp runs are considered before a sample is output. Therefore, the expected
number of players accessed (i.e., bits considered by the referee) satisfies

2k
ρp
≤ 2k · e

1−‖p‖2

1− ‖p‖2
. (4)

The scheme, final version. The protocol described above can have the expected number of
players blowing to infinity when p has `2 norm close to one. To circumvent this difficulty, we
modify the protocol as follows: Consider the distribution q on [2k] defined by

q2i = q2i−1 = pi
2 , i ∈ [k] .

Clearly, ‖q‖2 = ‖p‖2/
√

2 ≤ 1/
√

2, and therefore by (4) the expected number of players required to
simulate q using our previous protocol is at most

4k · e
1− 1√

2

1− 1√
2
≤ 20k.

But we can simulate a sample from p using a sample from q simply by mapping (2i− 1) and 2i to
i. The only thing remaining now is to simulate samples from q using samples from p. This, too, is
easy. Every 2 players in a batch that declare 1 on observing symbols (2i−1) and (2i) from q declare
1 when they see i from p. The referee then simply flips each of this 1 to 0, thereby simulating
the communication corresponding to samples from q. In summary, we modified the original
protocol for p by replacing each player with two identical copies and modifying the referee to flip
1 received from these players to 0 independently with probability 1/2; the output is declared in a
batch only when there is exactly one 1 in the modified messages, in which case the output is the
element assigned to the player that sent 1. Thus, we have a simulation for k-ary distributions that
uses at most 20k players, completing the proof of the theorem.

Moving now to the more general setting, we have the following result.

Theorem 4.8. For any ` ≥ 2, there exists a `-bit private-coin protocol that outputs a sample x ∼ p
using messages of at most 20

⌈
k

2`−1

⌉
players in expectation.

Proof. For simplicity, assume that 2` − 1 divides k. We can then extend the previous protocol by
considering a partition of domain into m = k/(2` − 1) parts and assigning one part of size 2` − 1
each to a player. Each player then sends the all-zero sequence of length ` when it does not see
an element from its assigned set, or indicates the precise element from its assigned set that it
observed. For each batch, the referee, too, proceeds as before and declares an output if exactly
one player in the batch sends a 1 – the declared output is the element indicated by the player that
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sent a 1; else it moves to the next batch. To bound the number of players, consider the analysis of
the base protocol. The probability that an output is declared for a batch (a⊥ is not declared in
the base protocol) is given by

ρp :=
m∑
i=1

∑
`∈Si

p`
∏
j 6=i

(1− p(Sj))

 · (1− p(Si))

=
m∏
j=1

(1− p(Sj)) ·
m∑
i=1

∑
`∈Si

p`

=
m∏
j=1

(1− p(Sj)) ,

where {S1, . . . , Sm} denotes the partition used. Then, writing p(S) for the distribution on [m] given
by p(S)(j) = p(Sj), by proceeding as in the ` = 1 case we obtain

ρp ≥
1− ‖p(S)‖2
e1−‖p(S)‖2

.

Once again, this quantity may be unbounded and we circumvent this difficulty by replacing
each player with two players that behave identically and flipping their communicated 1’s to 0’s
randomly at the referee; the output is declared in a batch only when there is exactly one 1 in the
modified messages, in which case the output is the element indicated by the player that sent 1.
The analysis can be completed exactly in the manner of the ` = 1 case proof by noticing that the
protocol is tantamount to simulating q with ‖q(S)‖2 ≤ 1/

√
2 and accesses messages from at most

20m players in expectation.

5 Distributed Simulation for Distributed Inference

In this section, we focus on the connection between distributed simulation and (private-coin)
distributed inference. We first describe the implications of the results from Section 4 for any
distributed inference task; before considering the natural question this general connection
prompts: “Are the resulting protocols optimal?”

5.1 Private-coin distributed inference via distributed simulation

Having a distributed simulation protocol at our disposal, a natural protocol for distributed infer-
ence entails using distributed simulation to generate independent samples from the underlying
distribution, as many as warranted by the sample complexity of the underlying problem, before
running a sample inference algorithm (for the centralized setting) at the referee. The resulting
protocol will require a number of players roughly equal to the sample complexity of the infer-
ence problem when the samples are centralized times

(
k/2`), the number of players required to

simulate each independent sample at the referee. We refer to such protocols that first simulate
samples from the underlying distribution and then use a standard sample-optimal inference
algorithm at the referee as simulate-and-infer protocols. Formally, we have the following result.
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Theorem 5.1. Let P be an inference problem for distributions over a domain of size k that is
solvable using ψ(P, k) samples with error probability at most 1/3. Then, the simulate-and-infer
protocol for P requires at most O

(
ψ(P, k) · k2`

)
players, with each player sending at most ` bits to

the referee and the overall error probability at most 2/5.

Proof. The reduction is quite straightforward, and works in the following steps
1. Partition the players into blocks of size 54k/2`.
2. Run the distributed simulation protocol (Theorem 4.8) on each block.

3. Run the centralized algorithm over the simulated samples.
From Theorem 4.8, we have a Las Vegas protocol for distributed simulation using 27k/2` players
in expectation. Thus, by Markov’s inequality, each block in the above protocol simulates a sample
with probability at least 1/2. If the number of samples simulated is larger than ψ(P, k), then the
algorithm has error at most 1/3. Denoting the number of blocks by B, the number of samples
produced has expectation at least B/2, and variance at most B/4. By Chebychev’s inequality, the
probability that the number of samples simulated being less than B/2 −

√
B/4
√

15 is at most
1/15. If B > 4ψ(P, k) + 8, then B/2 −

√
B
√

15/4 > ψ(P, k). Since 1/3 + 1/15 = 2/5, the result
follows from a union bound.

As immediate corollaries of the result, we obtain distributed inference protocols for distri-
bution learning and uniformity testing. Specifically, using the well-known result that Θ

(
k/ε2)

samples are sufficient to learn a distribution over [k] to within a total variation distance ε with
probability 2/3, we obtain:

Corollary 5.2. Let ` ∈ {1, . . . , log k}. Then, there exists an `-bit private-coin (k, ε, 3/5)-learning
protocol for O

(
k2

2`ε2

)
players.

From the existence of uniformity testing algorithms using O(
√
k/ε2) samples [Pan08, VV17,

DGPP17], we obtain:

Corollary 5.3. Let ` ∈ {1, . . . , log k}. Then, there exists an `-bit private-coin (k, ε, 3/5)-uniformity
testing protocol for O

(
k3/2

2`ε2

)
players.

Interestingly, a byproduct of this “simulate-and-infer” connection (and, more precisely,
of Corollary 5.2) is that the α-simulation protocol from Theorem 4.8 has optimal number of
players, up to constants.

Corollary 5.4. Let ` ∈ {1, . . . , log k}, and α ∈ (0, 1). Then, any `-bit public-coin (possibly adaptive)
α-simulation protocol for k-ary distributions must have n = Ω(k/2`) players.

Proof. Let π be any `-bit α-simulation protocol with n players; by Theorem 5.1, and analogously
to Corollary 5.2 we have that π implies an `-bit (k, ε, 1/3)-learning protocol for n′ = O

(
n · k/ε2)

players.4 (Moreover, the resulting protocol is adaptive, private-, pairwise-, or public-coin, respec-
tively, whenever π is.) However, as shown in Appendix B (Theorem B.1), any `-bit public-coin
(possibly adaptive) (k, ε, 1/3)-learning protocol must have Ω

(
k2/(2`ε2)

)
players. It follows that n

must satisfy n & k/2`, as claimed.
4Improving the probability of success from 3/5 to 1/3 can be achieved by standard arguments, with at most a

constant factor blowup in the number of players.
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Remark 5.5. We note that the learning upper bound of Corollary 5.2 appears to be established
in [HMÖW18] as well (with however, to the best of our knowledge, completely different tech-
niques). The authors of [HÖW18] also describe a distributed protocol for distribution learning,
but their criterion is the `2 distance instead of total variation. Finally, our learning lower bound
(Appendix B), invoked in the proof of Corollary 5.4 above, is established by adapting a similar
lower bound from [HÖW18] which again applies to learning in the `2 metric.

5.2 Is distributed simulation essential for distributed inference?

In the previous subsection, we saw that it is easy to derive distributed learning and testing
protocols from distributed sampling. However, the optimality of simulate-and-infer for unifor-
mity testing using private-coin protocols is unclear. In fact, a natural question arises: Is the
simulate-and-infer approach always optimal? Note that such an optimality would have appealing
implementation consequences, where one need not worry about the target inference application
when designing the communication protocol – the communication protocol will simply enable
distributed simulation and the referee can implement the specific inference algorithm needed. A
similar result, known as Shannon’s source-channel separation theorem, has for instance allowed
for development of compression algorithms separately from the error-correcting codes for noisy
channels. Unfortunately, optimality of simulate-and-infer can be refuted by the following simple
example:

Observation 5.6. In the distributed setting model (n players, and ` = 1 bit of communication
per player to the referee), testing whether a distribution over [k], promised to be monotone, is
uniform vs. ε-far from uniform can be done with n = O(1/ε2) (moreover, this is optimal).

Sketch. Optimality is trivial, since that many samples are required in the non-distributed setting.
To see why this is enough, recall that a monotone distribution p ∈ ∆([k]) is ε-far from uniform
if, and only if, p({1, . . . , k/2}) > p({k/2 + 1, . . . , k}) + 2ε. Therefore, we only need n = O(1/ε2)
players, where each player sends 1 if their sample was in {1, . . . , k/2} and 0 otherwise.

However, this counter-example is perhaps not satisfactory since the inference problem itself
was compressible since the dimension of the parameter space was increased artificially.5 In fact, it
is natural to consider an extension of simulate-and-infer where we first compress the observation
to capture the effective dimension of the underlying parameter space. To formally define such
compressed simulate-and-infer schemes, we must first define a counterpart of sufficient statistic
that will be relevant here.

Let P denote an inference problem (for instance, the distribution learning and the uniformity
testing problem of the previous section) and n(P) denote the minimum number of independent
samples required to solve it, namely its sample complexity. Note that the description of the prob-
lem P includes the observation alphabet X , the loss function used to evaluate the performance,
and the required performance. For a (fixed, deterministic) mapping f on X , denote by Pf the
problem where we replace each observed sample X with f(X).

5That is, the inference task was only “superficially” parameterized by k, but was actually a task on {0, 1} and entails
only estimating the bias of a coin in disguise.
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Definition 5.7 (The size of a problem). A problem P is said to be compressible to ` bits if there
exists a mapping f : X → {0, 1}` such that n(Pf ) = n(P). For such a function f with ` ≤ log |X |,
we call f(X) a compressed statistic.

The size |P| of a problem P is then defined as the least ` such that P is compressible to `. If a
mapping f attains |P|, we call f a maximally compressed statistic for P .

Example 5.8. For the uniformity testing problem T u(k, ε) considered in the previous section, we
must have

|T u(k, ε)| ≥ log k − log 1
1− ε.

The proof follows by noting that for each mapping f with range cardinality k(1− ε), we can find a
distribution Q on [k] that is ε-far from uniform, yet f(X) is uniform under Q.

A compressed simulate-and-infer scheme then proceeds by replacing the original observation
Xj by its maximally compressed sufficient statistic f(Xj) at player j and then applying simulate-
and-infer for f(X). Note that this new scheme, too, has the appealing feature that we can use
our distributed simulation protocol as a black-box communication step to enable distributed
inference. But are such compressed simulate-and-infer schemes optimal? Formally,

Question 5.9 (The Flying Pony Question). To solve P in the distributed setting, must the number
of parties n satisfy n = Ω

(
2|P|−` · n(P)

)
?

This essentially asks whether the most economical communication scheme to solve P is
indeed to simulate n(P) samples from a maximally compressed statistic. Observe that we noted
the optimality of such a scheme for distribution learning, even when public-coin protocols are
allowed. Further, to the best of our knowledge, previous results on this topic, in essence, establish
lower bounds to show the optimality of such simple schemes (cf. [BGM+16, DGL+17, HÖW18].

In spite of this evidence, we are able to refute this conjecture.6 Specifically, we exhibit an
inference task P over k-ary distributions which admits a 1-bit private-coin protocol with n =
o(2|P|n(P)) players.

Theorem 5.10. There is an inference task P over k-ary distributions with 2|P| · n(P) = Ω(k3/2), yet
for which there exists a 1-bit private-coin protocol with n = O(k) players.

Proof. We start by describing the inference task in question. For every even k ≥ 2, P consists in
distinguishing between the following two cases: either p = uk, the uniform distribution over [k];
or p is any of the 2k/2 possible uniform distributions over a subset of size k/2 defined as follows.
For a parameter θ ∈ {−1, 1}k/2, pθ is the distribution such that, for every i ∈ [k/2],

pθ(2i− 1) = 1 + θi
k

, pθ(2i) = 1− θi
k

and in particular dTV(pθ,uk) = 1/2 for every θ ∈ {−1, 1}k/2.
By an easy birthday-paradox type argument, we have that n(P) = Ω(

√
k) (and this is tight), so

to prove the first part of the statement it is enough to show that |P| = Ω(k). To see why this is the
case, set L := |P|, and consider any maximally compressed statistic f : [k]→ {0, 1}L for P . This f
immediately implies a (private-coin)L-bit (k, 1/2)-uniformity testing protocol: namely, a protocol

6Thus implying that, even if wishes were horses, there would be no flying ponies.
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where each player first applies f to their sample, then sends the resulting L bits to the referee.
Further, by definition of a maximally compressed statistic, we have n(Pf ) = n(P) = Θ(

√
k); as in

the aforementioned L-bit protocol the referee only needs n(Pf ) samples from the distribution on
2L, this therefore gives anO(

√
k · 2L−L) = O(

√
k) upper bound on the number of players required.

However, peeking ahead, Theorem 1.7 shows that any L-bit protocol for P (even allowing for
public coins) must have Ω(k/2L/2) players.7 Combining this lower bound with the O(

√
k) upper

bound we have just established yields

k

2L/2
.
√
k , (5)

i.e., k . 2L. This, along with the lower bound onn(P), implies that 2|P|·n(P) = Ω(k·
√
k) = Ω(k3/2),

as claimed.

To obtain a contradiction, it remains to prove the second part of the statement, i.e., to describe
a 1-bit private-coin protocol with n = O(k) players. Consider the protocol where every of the
n players simply sends 1 if their sample is equal to 1, and 0 otherwise. If p = uk, then each bit
is independently 1 with probability 1/k. However, if p is one of the distributions uniform over
k/2 elements, then p1 ∈ {0, 2/k}, and therefore either each player’s bit is independently 1 with
probability 0, or each player’s bit is independently 1 with probability 2/k. In either case, the
problem then amounts to distinguish a coin with bias 1/k to one with bias either 0 or 2/k; for
which n = O(k) players suffice, concluding the proof.

While we have refuted the optimality compressed simulate-and-infer, the strategy used in the
counter-example above still entails simulating samples from a fixed distribution at the referee.
This statistic, while compressed form of the original problem, is not a compressed sufficient
statistic as it mandates a higher number of samples in the centralized setting. We call such
inference protocols that entail simulate-and-infer for some compressed statistic of the problem8

generalized simulate-and-infer ; the optimality of generalized simulate-and-infer is unclear, in
general. For our foregoing example of uniformity testing, it is not even clear whether there is
a private-coin protocol that requires fewer players than the vanilla simulate-and-infer scheme.
Interestingly, we can provide a public-coin protocol that outperforms simulate-and-infer for
uniformity testing and show that it is optimal. This is the content of the next section.

6 Public-Coin Uniformity Testing

In this section, we consider public-coin protocols for (k, ε)-uniformity testing and establish the
following upper and lower bounds for the required number of players.

Theorem 6.1. Let ` ∈ {1, . . . , log k}. Then, there exists an `-bit public-coin (k, ε)-uniformity testing
protocol for n = O

(
k

2`/2ε2

)
players.

Note that this is much fewer than the O(k3/2/(2`ε2)) players required using private-coin
protocols in Corollary 5.3. In fact, this is optimal, being the least number of players (up to
constant factors) needed for any public-coin protocol:

7Indeed, this is because the inference task P described here is a specific case of the lower bound construction
underlying the proof of Theorem 1.7, obtained by taking ε = 1/2.

8This need not be a compressed sufficient statistic.
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Theorem 6.2. Let ` ∈ {1, . . . , log k}. Any `-bit public-coin (k, ε)-uniformity testing protocol must
have n = Ω

(
k

2`/2ε2

)
players.

We establish Theorem 6.1 and Theorem 6.2 in Sections 6.1 and 6.2, respectively. Before delving
into the proofs, we note that the results for uniformity testing imply similar upper and lower
bounds for the more general question of identity testing, where the goal is to test whether the
unknown distribution p is equal to (vs. ε-far from) a reference distribution q known to all parties.
We describe this reduction (similar to that in the non-distributed setting) in Appendix A, further
detailing how it actually leads to “instance-optimal” identity testing in the sense of Valiant and
Valiant [VV17].

6.1 Upper bound: a public-coin protocol

This section is dedicated to the proof of Theorem 6.1. We start with the case ` = 1 (addressed in
Proposition 6.5 below), before generalizing to an arbitrary ` ≥ 1 – the generalization is nontrivial
and uses a more involved protocol. Before we present our actual scheme, to help the reader build
heuristics, we present a simple, albeit non-optimal, scheme.

Proposition 6.3 (Warmup). There exists a 1-bit public-coin (k, ε)-uniformity testing protocol for
n = O

(
k log(1/ε)/ε3).

Proof. The starting point of the protocol is the straightforward observation that if p is ε-far from
uniform then at least an Ω(ε) fraction of the domain must have an Ω(ε)/k deviation from uniform.
Indeed, consider a p ∈ ∆([k]) such that dTV

(
p,u[k]

)
≥ ε. By contradiction, suppose that there

are only k′ < ε
2 · k elements such that pi < (1− ε

2) · 1
k . Then,

dTV

(
p,u[k]

)
=

∑
i:pi<1/k

(1
k
− pi

)
≤ k′ · 1

k
+ (k − k′) · ε2k <

ε

2 + ε

2 = ε

contradicting the assumption that p was ε-far from uniform. Therefore,

|
{
i ∈ [k] : pi < (1− ε

2) · 1
k

}
| ≥ ε

2 · k. (6)

Next, we recall the well-known fact that a coin with bias 1/k can be distinguished from another
with bias (1−ε/2)/k with probability9 1− δ using ck log(1/δ)/ε2 independent coin tosses for some
constant c. Therefore, any i ∈ [k] with pi < (1− ε/2)/k were known to the players, then testing if
its probability is 1/k or (1− ε/2)/k will require ck log 1/δ)/ε2 players simply by using 1{Xj=i} as
communication for player j.

We use this observation to build our protocol. Specifically, we divide the players intom disjoint
batches of size n′ = ck log(1/δ)/ε2 players; we will specify m and δ later. We assign a random
element i to each batch, generated uniformly from [k] using public randomness. Then, the parties
in the batch apply the aforementioned test to distinguish if the probability of the selected i is 1/k
or (1− ε/2)/k. We accept u if all the batches accepted 1/k as the probability of their respectively
assigned is; else we reject u. Note that since each batch’s selected i lies in the desired set in (6)

9That is, denoting the two distributions by P and Q, we can find a subset A of sequences in {0, 1}n such that
Pn(A) ≥ 1− δ and Qn(A) ≤ δ.
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with probability at least ε/2, with probability greater than 9/10 at least one batch will be assigned
an i in the desired set if the number of batches satisfies

m ≥ 5
ε
.

When the underlying distribution is uniform, the protocol will make an error only if one of the
test for one of the batches fails, which can happen with probability less than mδ ≤ 1/10 if

δ ≤ 1/10m.

On the other hand, if the underlying distribution is ε-far from uniform, then the test will fail only
if either no i in the desired set was selected or if the protocol failed for an i in the desired set; the
former happens with probability less than 1/10 and the latter with probability less than 1/10m
when we choose δ = 1/10m. Thus, the overall probability of error in this case is less than 2/10,
whereby we have an (k, ε)-uniformity testing protocol using mn′ = 5ck log(50/ε)/ε3 players.

Improving on the warmup protocol using Levin’s work investment strategy. The main issue
with the proof of Proposition 6.3 is the use of a “reverse” Markov style argument to identify the i
to focus on. This approach is inherently wasteful, as can be seen by considering the two extremes
cases of distribution p such that dTV(p,u) > ε: First, when a constant fraction of the elements
have probability (1− Ω(ε))/k and the rest have probability more than 1/k, in which case we only
needm = O(1) batches to find such an element i andO

(
k/ε2) players per batch to detect the bias.

Second, when a fraction O(ε) of the elements have probability 0 and the rest have probability
more than 1/k, in which case we need m = O(1/ε) batches to find such an element, but now only
O(k/ε) players per batch to detect the bias. In both cases, the total number of players should
be O

(
k/ε2), in contrast to the O

(
k log 1/ε/ε3) of the scheme described above. To circumvent

this difficulty, we take recourse to a technique known as Levin’s work investment strategy; see,
for instance, [Gol14, Appendix A.2] for a review (cf. [Gol17, Section8.2.4]). Heuristically, this
technique allows us to identify an appropriate “scale” and invests matching “work” effort to it.
Formally, we have following lemma:

Lemma 6.4 ([Gol14, Fact A.2]). Consider a random variable X taking values in X , a mapping
q : X → [0, 1], and ε ∈ (0, 1]. Suppose that E[q(X)] > ε, and let L := dlog(2/ε)e. Then, there exists
j∗ ∈ [L] such that Pr

[
q(X) > 2−j∗

]
> 2j∗ε/(L+ 5− j∗)2.

The next result follows upon modifying the warmup protocol by using this lemma to decide
on the size and the number of batches.

Proposition 6.5. There exists a 1-bit public-coin (k, ε)-uniformity testing protocol for n = O
(
k/ε2).

Proof. Consider a p that is ε-far from uniform and set L := dlog(2/ε)e. We apply Lemma 6.4 to
the function q : [k]→ [0, 1] given by

q(i) := k

(1
k
− pi

)
1{pi<1/k}.

Note that for a uniformly distributed X, we have

E[q(X)] =
k∑
i=1

1
k
q(i) = dTV(p,u) > ε.
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Therefore, by Lemma 6.4, there exists j∗ ∈ [L] such that

Pr
i∼u

[
pi <

1
k
− 2−j∗

k

]
> 2j∗ ε

(L+ 5− j∗)2 . (7)

We now proceed in a similar manner as the warmup protocol, with one batch invested for
each j ∈ [L]. Specifically, consider L batches of players with the j-th batch comprising nj :=
mj · O

(
22jk · log(1/δj)

)
players; both quantities δj and mj will be specified later. The jth batch

assumes that j ∈ [L] will satisfy (7) and further divides its assigned set of players into mj mini-
batches. Each mini-batch selects an i uniformly from [k] and applies the previously mentioned
test to distinguish if the probability of i is 1/k or (1 − 2−j)/k with probability (1 − δj). This, as
before, requires the assigned O(()22jk log(1/δj)) players. Note that if

mj ≥ 5(L+ 5− j)2/(2jε),

whenever j satisfies (7), with probability more than 9/10 at least one of the mini-batches assigned
to j will select an i for which pi < (1− 2−j)/k. Our uniformity testing protocol is as before:

Accept uniform if every mini-batch of every batch accepts 1/k as the probability of their
respectively assigned elements; else declare ε-far from uniform.

If the underlying distribution is indeed uniform, the protocol will reject it when at least one of
the mini-batches erroneously rejects 1/k, an event which occurs with probability at most

L∑
j=1

mjδj ≤
1
10

L∑
j=1

1
(L+ 5− j)2 <

1
10
∑
j≥5

1
j2 <

1
40 ,

when we select
δj ≤

1
10(L+ 5− j)2mj

.

Note that this choice of δj depending on j is important for omitting the extra log(1/ε) cost that
appeared in the warmup protocol.

If the underlying distribution is ε-far from uniform, an error occurs if, for every j, no mini-
batch of batch j selects an element i that satisfies (7) or if the mini-batch test fails. By construction,
there exists a j that satisfies (7), and by our choice of mj , all the mini-batches assigned to it fails
to select an i in the set of (7) with probability less than 1/10. On the other hand, the minibatch
makes an error with probability less than δj < 1/40. Thus, the overall probability of error in this
case is less than 1/8. To conclude, the overall protocol makes an error with probability at most
1/8 in both cases.
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Finally, we can bound the total number of players n required by the protocol as

n = c
L∑
j=1

mj · 22jk · log 1
δj

≤ ck

ε

L∑
j=1

(L+ 5− j)22j log 10(L+ 5− j)4

2jε

≤ O
(
k

ε

) L∑
j=1

(L+ 5− j)22j log 2j−L−5

L+ 5− j

≤ O
(
k

ε

)
2L

L∑
j′=5

(j′)22−j′ log(j′2j′)

≤ O
(
k

ε

)
2L

L∑
j′=5

(j′)22−j′ log j′ +O

(
k

ε

)
2L

L∑
j′=5

(j′)32−j′

≤ O
(
k

ε2

)
,

where the final bound uses
∑
j≥5 2−jjα log j = O(1) for every α.

Next, we move to the more general case when ` ≥ 1 bits of communication per player are
allowed and establish Theorem 6.1. While we build on the heuristics developed thus far, the form
of the protocol deviates. Instead of assigning one symbol to each mini-batch, we now assign
a subset of size s = 2` − 1 to each mini-batch; one `-bit sequence is reserved to indicate that
none of the symbol in the subset occured. The referee uses the symbols occuring in the subset to
distinguish uniform and ε-far from uniform, which can be done when conditional distributions
(i.e., given that the symbols lie in the subset) are separated in total variation distance. We use
Levin’s work investment strategy again to decide how many players must be assigned to each
subset. But now there is a new constraint: If a subset has small probability, then we need to
assign a large number of mini-batches to get symbols from it. However, we can circumvent this
difficulty by noting that if the subset has probability smaller than (1 − ε)s/k, we can anyway
distinguish the underlying distribution from uniform using O

(
k/(sε2)

)
players. Thus, we can

condition on the complementary event by adding extra O
(
k/(sα2)

)
players per batch and take

O(k/s) mini-batches to get at least one mini-batch assigned to a good subset. Note that under
the uniform distribution the conditional distribution given a subset of size s is uniform on [s].
Then, we can distinguish the conditional distributions using roughly10 O

(√
s/ε2) players. The

overall number of players is dominated by the players assigned for the conditional test and is
given by O

(
k/(2`/2ε2)

)
. We provide the formal proof next.

Proof of Theorem 6.2. Set L := dlog(2/ε)e and define q as in the proof of Proposition 6.5. For a
subset S ⊆ [k], denote by pS the conditional distribution

pSi =
pi1{i∈S}

p(S) ,

10The good subset need not have the conditional distributions separated by exactly ε, but this is where we use Levin’s
work investment strategy to get an effective separation of ε.
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where p(S) =
∑
i∈S pi. Observe that if p = u, then for every subset S ⊆ [k] we have pSi = 1/|S| for

every i ∈ S. On the other hand, when p is ε-far from uniform, we have the following result:

Claim 6.6. Suppose dTV(p,u) > ε. For any 1 ≤ s ≤ k and S ⊆ [k] of size s chosen uniformly at
random, we have

ES
∑
i∈S

1{pi≤ 1
k}

(1
k
− pi

)
> ε · s

k
.

Proof. On expanding the expectation, we obtain

ES
∑
i∈S

1{pi≤ 1
k}

(1
k
− pi

)

= 1(k
s

) ∑
S⊆[k]:|S|=s

∑
i∈S

1{pi≤ 1
k}

(1
k
− pi

)
= 1(k

s

) k∑
i=1

∑
S⊆[k]:|S|=s

S3i

1{pi≤ 1
k}

(1
k
− pi

)

= 1(k
s

) k∑
i=1

1{pi≤ 1
k}

(1
k
− pi

) ∑
S′⊆[k]\i
|S′|=s−1

1 = 1(k
s

) k∑
i=1

1{pi≤ 1
k}

(1
k
− pi

)
·
(
k − 1
s− 1

)

= s

k

k∑
i=1

1{pi≤ 1
k}

(1
k
− pi

)
= s

k
· dTV(p,u) > ε · s

k
.

For brevity, set s := 2` − 1. Using Claim 6.6 together with Lemma 6.4 we get that there exists
j∗ ∈ [L] such that

Pr
S

∑
i∈S

1{ kpi
s
≤ 1

s

} (1
s
− pi ·

k

s

)
> 2−j∗

 > 2j∗ · ε

(L+ 5− j∗)2 . (8)

Note that the event on the left-side of the inequality above essentially bounds the total variation
distance between uS and pS when p(S) ≈ s/k. Therefore, in case players have access to such
a subset S, they can accomplish uniformity testing by applying a standard uniform test for a
domain of size s. Thus, as in the ` = 1 protocol, we can use a public randomness to select a subset
S randomly and assign it to an appropriate number of players; this constitutes one mini-batch,
and we need one mini-batch per j ∈ [L]. However, this will only work if the selected S has
p(S) ≈ s/k. To circumvent this difficulty, we use a separate test for checking closeness of p(S) to
s/k. Specifically, we once again use the fact that a coin with bias s/k can be distinguished from
another with bias outside the interval [(1− α)s/k, (1 + α)s/k with probability of error less than δ
using O

(
k log(1/δ)/(sα2)

)
independent coin tosses.

Once we have verified that the set S has probability close to s/k, we can apply a standard
uniformity test. Indeed, we set α = 2−j∗/8, and once the test above has verified that p(S) ∈
[1 − 2−j∗/8, 1 + 2−j∗/8] · sk , the total variation distance of pS to uniformity can be bounded as
follows: Let vector p̃S be given by p̃Si = pik/s. Then, by the triangle inequality we get

dTV

(
pS ,uS

)
= 1

2‖p
S − uS‖1 ≥

1
2
(
‖p̃S − uS‖1 − ‖p̃

S − pS‖1
)
>

1
2
(
2−j∗ − ‖p̃S − pS‖1

)
.
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Futher,

‖p̃S − pS‖1 =
∑
i∈S

pi
∣∣∣∣ks − 1

p(S)

∣∣∣∣ ≤ 2−jk
4s · p(S) ≤ 2−j

3 ,

which gives

dTV(pS ,uS) ≥ 2−j

3 . (9)

Therefore, upon the first test verifying that p(S) is sufficiently close to s/k, we can proceed to
testing pS versus uS . To that end, we need sufficiently many samples from the pS , which we
generate using rejection sampling.

We have now collected all the components neeeded for our scheme. As in the ` = 1 case,
set parameters εj = 2−j/8, mj = (L + 5 − j)2/(2jε), and δj = 1/(10(L + 5 − j)2mj). Consider L
batches of players, with the jth batch comprising mj mini-batches of

nj = c1

(
k

sε2
j

log 1
δj

)
+ c2

(
k

s
log 1

δj

)
· c3

(√
s

ε2
j

log 1
δj

)

players each; the constants c1, c2, c3 will be set to get appropriate probability of errors. Each
mini-batch of the jth batch generates a random subset S of [k]. Each player in the mini-batch
communicates as follows: It sends the all-zero sequence of length ` to indicate if its observed
element is not in S and, otherwise, uses the remaining sequences of length ` to indicate which
of the s = 2` − 1 elements it has observed. The referee uses the communicaton from the first
(c1k log 1/δj/(sε2

j )) players of the mini-batch to check if the |p(S) − s/k| < εjs/k or not. If it
is not, the mini-batch fails. Else, the referee considers the communication from players that
did not send the all-zero sequence (i.e., those players that saw elements in S) and tests if the
conditional distribution pS is uniform on S or not. If it is not, the mini-batch fails; the referee
declares uniformity if none of the mini-batches declared failure.

The analysis of this protocol is completed in a similar manner to that of the ` = 1 protocol. If
the underlying distribution is uniform, the output is erroneous if at least one of the mini-batches
declared failure. This can happen in two ways: First, if the test based on communication from
the first set of c1k log(1/δj)/sε2

j players erroneously declared fail, an event that can happen with
probability δj/3 for an appropriately chosen constant c1. Second, if the first test passes, but the
uniformity test for pS based on the remaining remaining set of players fails, which can happen
either when there are less than c2

√
s/ε2

j log(1/δj) players that see samples from S, which given that
the first set has passed will fail with probability less than δj/3 for an appropriate c2, or when the
second test fails which for an appropriate c3 will happen with probability less than δj/3 by Eq. (9).
Thus, the overall probability of error is less than

∑L
j=1mjδj < 1/40.

If the underlying distribution is ε-far from uniform, the test will erroneously select the uniform
if the referee makes an error for the mini-batches corresponding to j∗ guaranteed by (8). But this
can only happen if either none of these mini-batches select an S satisfying the condition on the
left-side of (8), which happens with probability less than 1/10 or a mini-batch that selected an
appropriate S failed the second test, which can happen with probability δj/3 ≤ 1/10. Thus, the
overall probability of error is less than 2/10.

We complete the proof by evaluating the number of players used by the protocol. As in the
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proof for the ` = 1 case, we have that the total number of players n satisfies

n ≤
L∑
j=1

mjO

 k

sε2
j

log 1
δj

+ k√
sε2
j

(
log 1

δj

)2


≤
L∑
j=1

mjO

 k√
sε2
j

(
log 1

δj

)2


≤ O
(

k√
sε

)
2L

L∑
j=5

2−j(j)5(log j)2

≤ O
(

k

2
`
2 ε2

)
,

where we followed the same steps as the bound for ` = 1 case.

6.2 Lower bound for public-coin protocols

We now establish a lower bound on the number of players n required for any `-bit public-coin
(k, ε)-uniformity testing protocol. We begin with the simpler setting of ` = 1 and establish Theo-
rem 6.2 for this special case, before moving to the more general case. The same construction is
used for both the restricted and the general case, but the simpler proof we present for the special
case does not yield the more general result.

Proposition 6.7. Any 1-bit public-coin (k, ε)-uniformity testing protocol must have n = Ω
(
k/ε2)

players.

Proof. Without loss of generality, we assume that k is even. We consider the standard “Paninski
construction”:11 For every θ ∈ {−1, 1}k/2, let

pθ(2i− 1) = 1 + 2εθi
k

, pθ(2i− 1) = 1− 2εθi
k

, ∀ i ∈ [k/2].

Note that each distribution pθ is at a total variation distance ε from the uniform distribution u
on [k]. Thus, any (k, ε)-uniformity testing protocol should be able to distinguish between any
distribution pθ and u. We will establish an upper bound on the average total variation distance
between pθ and u, whereby there must be at least one pθ satisfying the bound. The desired lower
bound for the number of players will then follow from the standard Le Cam’s two-point method
argument.

We derive the aforementioned upper bound on average total variation distance for private-
coin protocols first. Specifically, consider a private-coin protocol for uniformity testing where,
as before, the 1-bit communication of player j is described by the channel Wj : [k]→ {0, 1} such
that Wj(1|x) ∈ [0, 1] is the probability that player j sends 1 to the referee upon observing x. For
any 1 ≤ j ≤ n, it is immediate to see that, if u is the underlying distribution, the probability that
player j sends 1 to the referee is

ρu
j := 2

k

k/2∑
i=1

(
Wj(1|2i− 1) +Wj(1|2i)

2

)
,

11This construction was given in [Pan08] to prove the lower bound for the sample complexity of uniformity testing
in the standard centralized setting.
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while under pθ it is

ρθj := 2
k

k/2∑
i=1

(
Wj(1|2i− 1) +Wj(1|2i) + 2εθi (Wj(1|2i− 1)−Wj(1|2i))

2

)

= ρyes
j + ε

k

k/2∑
i=1

θi (Wj(1|2i− 1)−Wj(1|2i)) .

Moreover, since each player gets an independent sample from the same distribution p ∈ {u} ∪
{pθ}θ∈{−1,1}k/2 , the observation of the referee r ∈ {0, 1}n is generated from a product distribution.
Specifically, the bits communicated by the players are independent with the jth bit distributed as
Bern(pu

j ) or Bern(pθj), respectively, when the underlying distribution of the sample are u or pθ.
Denoting by Ru and Rθ the distributions of the transmitted bits under u and pθ, repectively, we
have

dTV

(
Ru,Rθ

)2
≤ 1

2D
(
Ru‖Rθ

)
= 1

2

n∑
i=1

D
(
Bern(pu

j )‖Bern(pθj)
)

= 1
2

n∑
i=1

χ2(Bern(pu
j ),Bern(pθj))

= 1
2

n∑
i=1

(ρu
j − ρθj)2

ρu
j (1− ρu

j ) ,

where the first inequality is Pinsker’s inequality, the second inequality uses ln x ≤ (x− 1). Further,
abbreviating for convenience αi,j := Wj(1|2i− 1) and βi,j := Wj(1|2i) for i ∈ [k/2] and j ∈ [n], to
bound the right-side we note that

(ρu
j − ρθj)2

ρu
j (1− ρu

j ) = 4ε2

k2
1

ρu
j (1− ρu

j )

k/2∑
i=1

θi (αi,j − βi,j)

2

= 4ε2

k2
1

ρu
j (1− ρu

j )

k/2∑
i,i′=1

θiθ
′
i (αi,j − βi,j)

(
αi′,j − βi′,j

)
.

On taking expectation over θ, we obtain

Eθ

[
(ρu
j − ρθj)2

ρu
j (1− ρu

j )

]
= 4ε2

k2
1

ρu
j (1− ρu

j )

k/2∑
i,i′=1

Eθ
[
θiθ
′
i

]
(αi,j − βi,j)

(
αi′,j − βi′,j

)

= 4ε2

k2
1

ρu
j (1− ρu

j )

k/2∑
i=1

(αi,j − βi,j)2

= 4ε2

k2

∑k/2
i=1 (αi,j − βi,j)2

2
k

∑k/2
i=1

αi,j+βi,j

2

(
1− 2

k

∑k/2
i=1

αi,j+βi,j

2

) .
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To bound the expression on the right-side further, we consider the case when 2
k

∑k/2
i=1

αi,j+βi,j

2 ≤
1/2; the other case can be handled similarly by symmetry. We have∑k/2

i=1 (αi,j − βi,j)2

2
k

∑k/2
i=1

αi,j+βi,j

2

(
1− 2

k

∑k/2
i=1

αi,j+βi,j

2

) ≤ 2
∑k/2
i=1 (αi,j − βi,j)2

2
k

∑k/2
i=1

αi,j+βi,j

2

≤ 2k
∑k/2
i=1 |αi,j − βi,j | (αi,j + βi,j)∑k/2

i=1 (αi,j + βi,j)
≤ 2k max

1≤i≤k/2
|αi,j − βi,j | ≤ 2k,

where the previous inequality holds since αi,j − βi,j ∈ [−1, 1] for all i, j. Combining the foregoing
bounds yields

Eθ
[
dTV

(
Ru,Rθ

)2
]
≤ 4ε2

k
· n.

In particular, there exists a fixed θ for which dTV

(
Ru,Rθ

)2
≤ 4ε2n/k. By the two-point method

argument, the uniformity testing protocol can only distinguish u and pθ if dTV

(
Ru,Rθ

)
= Ω(1),

which yields n = Ω
(
k/ε2) as claimed.

Finally, to extend the result to public-coin protocols, note that the observation of the referee
now includes U in addition to the communication. Denote by Ru

U and Rθ
U the distribution of the

communicated bits under u and pθ, respectively. Then the total variational distance between
the distributions of the observation of the adversary under the two distributions is given by

EU
[
dTV

(
Ru
U ,Rθ

U

)2
]

. Therefore, it suffices to find a uniform upper bound for the expected value

of the total variation with respect to θ for different fixed values of the public randomness U . This
uniform bound can be shown to be 4ε2n/k by repeating the proof above for every fixed U = u.

Moving now to the case of a general `, we can follow the argument above to obtain an
O(ε2n2`/k) upper bound for the expected total variation distance. However, this only yields
an Ω(k/(2`ε2)) lower bound for n, which is off by a factor of 2`/2 from the desired bound of The-
orem 6.1. The slackness in the bound stems from the gap between the average total variation
distance and the total variation distance between the average pθ and u. Indeed, since the unifor-
mity testing protocol can distinguish pθ and u for every θ, it can also distinguish Eθ[pθ] and u. Note
that the KL-divergence-based bound for total variation distance used above is not amenable to
handling the distance between a mixture of product distribution and a fixed product distribution.
Instead, we take recourse to an argument of Pollard [Pol03] which established, in essence, the
following result.

Lemma 6.8. For any two product distributions Pn = P1 × · · · × Pn and Qn = Q1 × · · · ×Qn on the
alphabet X ,

χ2(Qn, Pn) =
n∏
i=1

(1 + χ2(Qi, Pi))− 1.

For our application, we need to extend this to the case when the product distribution Pn is
replaced by a mixture of product distributions. To that end, we use the following result which is
a slight but crucial extension of this result, also described in [Pol03] (a similar observation was
used in [Pan08]); we include a proof for completeness.
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Lemma 6.9. Consider a random variable Z such that for each Z = z the distribution Qnz is defined
as Q1,z × · · · ×Qn,z. Further, let Pn = P1 × · · · × Pn be a fixed product distribution. Then,

χ2(EZ [QnZ ], Pn) = EZZ′
[
n∏
i=1

(1 +Hi(Z,Z ′))
]
− 1,

where Z ′ is an independent copy of Z and, with ∆z
i denoting (Qi,z(Xi)− Pi(Xi))/Pi(Xi),

Hi(z, z′) = E
[
∆z
i∆z′

i

]
,

where the expectation is over Xi distributed according to Pi.

Proof. Using the definition of χ2-distance, we have

χ2(EZ [QnZ ], Pn) = EPn

[(
EZ
[
QnZ(Xn)
Pn(Zn)

])2]
− 1

= EPn

(EZ
[
n∏
i=1

(1 + ∆Z
i )
])2

− 1,

where the outer expectation is for Xn using the distribution Pn. The product in the expression
above can be expanded as

n∏
i=1

(1 + ∆Z
i ) = 1 +

∑
i∈[n]

∆Z
i +

∑
i1>i2

∆Z
i1∆Z

i2 + . . . ,

whereby we get

χ2(EZ [QnZ ], Pn) = EPn


1 +

∑
i

EZ
[
∆Z
i

]
+
∑
i1>i2

EZ
[
∆Z
i1∆Z

i2

]
+ . . .

2
− 1

= EPn

∑
i

EZ
[
∆Z
i

]
+
∑
j

EZ′
[
∆Z′
j

]
+
∑
i,j

EZ,Z′
[
∆Z
i ∆Z′

j

]
. . .

.
Observe now that EPn [∆z

i ] = 0 for every z. Furthermore, Z is an independent copy of Z ′ and ∆Z
i

and δZj are independent for i 6= j. Therefore, the expectation on the right-side above equals

E

∑
i

Hi(Z,Z ′) +
∑
i1>i2

Hi1(Z,Z ′)Hi2(Z,Z ′) + . . .

 = E
[
n∏
i=1

(1 +Hi(Z,Z ′))
]
− 1,

which completes the proof.

We are now in a position to establish Theorem 6.2.

Proof of Theorem 6.2. As before, it suffices to derive a uniform upper bound for the total variation
distance between the message distributions for private-coin protocols. In fact, it suffices to
consider deterministic protocols since for a fixed public randomness U = u, the protocol is
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deterministic. We apply Lemma 6.9 to the distribution of the messages for a deterministic
protocol; we retain the channel Wj notation from the ` = 1 proof with the understanding that it
denotes a deterministic map. Note that the messages are independent under uniform and under
pθ (for a fixed public randomness U ). For our setting, θ plays the role of Z in Lemma 6.9. Note
that under uniform observations, player j sends the message mj ∈ {0, 1}` with probability

ρu
j,m = 2

k

k/2∑
i=1

(
Wj(m|2i− 1) +Wj(m|2i)

2

)
,

and under pθ with probability

ρθj,m = ρyes
j,m + ε

k

k/2∑
i=1

θi (Wj(m|2i− 1)−Wj(m|2i)) .

Therefore, the quantity ∆i,θ required in Lemma 6.9 is given by

∆j,θ = ε
∑k/2
i=1 θi(Wj(Mj |2i)−Wj(Mj |2i− 1))∑k/2
i=1(Wj(Mj |2i) +Wj(Mj |2i− 1))

,

where Mj is the random message sent under the uniform distribution. Consequently, we can
express Hj(θ, θ′), 1 ≤ j ≤ n, as

Hj(θ, θ′) = ε2

k

∑
m∈{0,1}`

∑
i1,i2∈[k/2]

θi1θ
′
i2

(Wj(m|2i1 − 1)−Wj(m|2i1)) (Wj(m|2i2 − 1)−Wj(m|2i2))∑k/2
i=1 (Wj(m|2i− 1)−Wj(m|2i))

= θTHjθ
′,

where θT denotes the transpose of the vector θ ∈ {−1,+1}k/2 and Hj is an [k/2] × [k/2] matrix
with the (i1, i2)th entry given by∑

m∈{0,1}`

(Wj(m|2i1 − 1)−Wj(m|2i1)) (Wj(m|2i2 − 1)−Wj(m|2i2))∑k/2
i=1 (Wj(m|2i− 1)−Wj(m|2i))

.

Note that the matrix Hj is symmetric (in fact, it has the outer product form AAT for an (k/2)× 2`
matrix A). Therefore, we obtain from Lemma 6.9 that

E
[
dTV

(
Eθ
[
Rθ
]
,Ru

)2
]
≤ 1

4E
[
χ2(Eθ

[
Rθ
]
,Ru)

]
= 1

4Eθθ
′

 n∏
j=1

(
1 + ε2

k
θTHjθ

′
)− 1

≤ 1
4Eθθ

′

[
e

nε2
k
θT H̄θ′

]
− 1,

where we have used 1 + x ≤ ex and

H̄ = 1
n

n∑
j=1

Hj .

Thus, we need to bound the moment generating function of the random variable θT H̄θ′. We will
establish a sub-Gaussian bound using a by-now-standard bound that follows from transportation
method. Specifically, we show the following:
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Claim 6.10. Consider random vectors θ, θ′ ∈ {−1, 1}k/2 with each θi and θ′i distributed uniformly
over {−1, 1}, independent of each other and independent for different is. Then, for any symmetric
matrix H

lnEθθ′
[
eλθ

THθ′
]
≤ λ2‖H‖2F , ∀λ > 0,

where ‖·‖F denotes the Frobenius norm.

Before we prove the claim, we use to complete our proof. Combining this claim with our
foregoing bound, we obtain

E
[
dTV

(
Eθ
[
Rθ
]
,Ru

)2
]
≤ 1

4e
n2ε4

k2 ‖H̄‖
2
F − 1 ≤ 1

4e
n2ε4

k2
1
n

∑n

j=1‖Hj‖2
F − 1,

where in the previous inequality we used the convexity of squared-norm. To complete the proof,
we now show that for every j ∈ [n], ‖Hj‖2F ≤ 2`. This is where we need to use the assumption that
the protocol is deterministic. Specifically, for every pair m,m′ ∈ {0, 1}`, let

Sm,m′ :=
{
i ∈ [k/2] : Wj(m|2i− 1) = Wj(m′|2i) = 1

}
∪
{
i ∈ [k/2] : Wj(m|2i) = Wj(m′|2i− 1) = 1

}
and

Sm := { i ∈ [k/2] : Wj(m|2i− 1) = 1 } ∪ { i ∈ [k/2] : Wj(m|2i) = 1 } =
⋃

m′∈{0,1}`

Sm,m′ .

It is then immediate to see that the Sm’s are disjoint and that

‖Hj‖2F ≤
∑
m,m′

∣∣Sm,m′∣∣2
|Sm| |Sm′ |

≤
∑
m,m′

∣∣Sm,m′ ∣∣
|Sm|

=
∑
m

∑
m′
∣∣Sm,m′ ∣∣
|Sm|

= 2` ,

whereby

E
[
dTV

(
Eθ
[
Rθ
]
,Ru

)2
]
≤ 1

4e
n2ε42`

k2 − 1.

The proof of the theorem can now be completed as the proof for ` = 1 by first noting that the
same bound holds for the total variation distance even with public randomness, since we have
a uniform bound for each fixed realization of public randomness, and taking recourse to the
standard two-point argument.

It only remains to establish Claim 6.10. To that end, we use the following bound which can be
obtained by combining the transportation lemma with Marton’s transportation-cost inequality
(cf. [BLM13, Chapter 8]).

Lemma 6.11. Consider independent random variables X = (X1, . . . , Xn) and a function f such
that for every x, y

f(x)− f(y) ≤
n∑
i=1

ci(x)1{xi 6=yi} .

Then, setting v :=
∑n
i=1 E

[
c2
i (X)

]
, we have, for every λ > 0, lnE

[
eλf(X)

]
≤ λ2v

2 .
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We apply this lemma to f(Z,Z ′) = ZTHZ ′, where H is a symmetric matrix and Z,Z ′ are
independent copies of {−1,+1}n-valued i.i.d. Rademacher vectors. In this case,

v = 2
n∑
i=1

E


Zi n∑

j=1
Hij

2
 = 2‖H‖2F ,

which completes the proof of the claim and thereby that of Theorem 6.2.

7 Future Directions and Open Questions

To conclude, we highlight a few open questions and directions we believe are worthy of future
investigation. (This list is not meant to be, by any means, exhaustive.)

Private-coin uniformity testing. Is the bound obtained in Corollary 1.5 optimal? Namely, is
there an Ω(k3/2/(2`ε2)) lower bound on the number of players required for any `-bit private-
coin (k, ε)-uniformity testing protocol?

Is private randomness useful? One interesting question is whether private-randomness pro-
tocols benefit at all from the players’ mappings Wj being randomized. For every valid
private-randomness protocol π for a given inference task P , does there exist a valid protocol
π′ with same number of players, but where the players’ mappings are deterministic?

Private vs. pairwise randomness. Is there a strict separation between the private- and pairwise-
randomness models? If so, can we characterize the class of inference tasks for which such a
separation exists?

Direct sum theorem against perfect simulation. Can some version of Theorem 4.1 be estab-
lished by a black-box application of Theorem 4.2 (where by “some version” we mean “for
infinitely many values of k and ` = k − 1”)? One possible concrete approach would be to
embed product distributions of the form p(1) × · · · × p(`), where each p(i) is over {0, 1} or
{0, 1, 2}, into [k] for some suitable value of k, and prove a direct-sum type theorem before
invoking Theorem 4.2.

Different noise channels. In our communication model, the communication between each
player and the referee, albeit limited, was noiseless. One could generalize the model to allow
for various types of noise, such as random or adversarial errors, deletions, or insertions.
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A From uniformity to parameterized identity testing

In this appendix, we explain how the existence of any distributed protocol for uniformity testing
implies one for identity testing with roughly same parameters, and further even implies one for
identity testing in the massively parameterized sense (“instance-optimal” in the vocabulary of
Valiant and Valiant, who introduced it [VV17]). These two results will be a rather straightforward
consequence of [Gol16], which establishes the former reduction in the standard non-distributed
setting; and of [BCG17], which implies that massively parameterized identity testing reduces to
“worst-case” identity testing. Specifically, we show the following:

Proposition A.1. Suppose there exists an `-bit protocol π for testing uniformity of k-ary distri-
butions, with number of players n(k, `, ε) and failure probability 1/3. Then there exists an `-bit
protocol π′ for testing identity against a fixed k-ary distribution q (known to all players), with
number of players n(5k, `, 16

25ε) and failure probability 1/3.
Further, this reduction preserves the setting of randomness (i.e., private-coin protocols are

mapped to private-coin protocols).

Proof. We rely on the result of Goldreich [Gol16], which describes a randomized mapping
Fq : ∆([k]) → ∆([5k]) such that Fq(q) = u[5k] and dTV

(
Fq(p),u[5k]

)
> 16

25ε for any p ∈ ∆([k])
ε-far from q.12 Moreover, given knowledge of q a sample from Fq(p) can be efficiently simulated
from a sample from p: this immediately implies the proposition.

Remark A.2. The above crucially assumes that every player has explicit knowledge of the reference
distribution q to be tested against, as this knowledge is necessary for them to simulate a sample
from Fq(p) given their sample from the unknown p. (If only the refereeR is assumed to know q,
then the above reduction does not go through, although one can still rely on any testing scheme
based on distributed simulation, as outlined in Section 5.1.)

To state the refined result as parameterized by p (instead of k), we will need the following
definition of K-functional between `1 and `2 (see [BCG17, Section 6] for a discussion of the
resulting quantity Φ(p, γ), its behavior, and how it relates to other notions such as the sparsity of
p and the functional ‖p−max

γ ‖ defined in [VV17]). For a ∈ `2(N) and t ∈ (0,∞), let

κa(t) := inf
a′+a′′=a

(
‖a′‖1 + t‖a′′‖2

)
and, for p ∈ ∆(N) and any γ ∈ (0, 1), let

Φ(p, γ) := 2κ−1
p (1− γ)2 . (10)

(It is not hard to show that, if p is supported on at most k elements, then Φ(p, γ) ≤ 2k for all γ.)

Proposition A.3. Suppose there exists an `-bit protocol π for testing uniformity of k-ary distri-
butions, with number of players n(k, `, ε) and failure probability 1/3. Then there exists an `-bit

12Goldreich actually shows in [Gol16] a randomized mapping from testing identity over domain of size k with
proximity parameter ε to testing uniformity over domain of size k′ := k/α2 with proximity parameter ε′ := (1− α)2ε,
for every fixed choice of a constant α ∈ (0, 1). This mapping further preserves the success probability of the tester.
(Note that for uniformity testing, which has sample complexity Θ

(√
k′/ε′

2), one would set α to minimize the blowup
factor 1/(α(1− α)4), which is achieved for α = 1/5.)
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protocol π′ for testing identity against a fixed distribution p (known to all players), with number of
players O

(
n(Φ(q, ε9), `, ε18))

)
and failure probability 2/5.

Further, this reduction preserves the setting of randomness (i.e., private-coin protocols are
mapped to private-coin protocols).

Proof. This strenghtening of Proposition A.1 stems from the algorithm for identity testing of Blais,
Canonne, and Gur [BCG17], which at a high-level reduces testing identity to q to three tasks:
(i) computing the (ε/3)-effective support13 of q, Sq(ε) (which can be done easily given explicit
knowledge of q; (ii) testing that the unknown distribution p puts mass at most 1.1ε/3 outside of
Sq(ε) (which only requiresO(1/ε) players to be done with high constant probability, say 1/30); and
(iii) testing identity of p and q conditioned on Sq(ε) with parameter ε/18 (which can be done, by
rejection sampling and Proposition A.1, with O

(
n(|Sq(ε)| , `, ε18)

)
players and success probability,

say 2/3− 1/30, the additional 1/30 error probability coming from the rejection sampling).
As shown in [BCG17, Section 7.2], |Sq(ε)| ≤ Φ(q, ε9), which yields the result (recalling that

n(Φ(q, ε9), `, ε18)) = Ω(1/ε) given the trivial lower bound of Ω(1/ε) on uniformity testing, so that
n(Φ(q, ε9), `, ε18)) +O(1/ε) = O

(
n(Φ(q, ε9), `, ε18)

)
).

B Distributed learning lower bound (for public-randomness adaptive
protocols)

Theorem B.1. Let ` ∈ {1, . . . , log k}. Any `-bit public-coin (possibly adaptive) (k, ε, 1/3)-learning
protocol must have n = Ω

(
k2

2`ε2

)
players.

Proof. We will show that the `1 minimax rate is

inf
(W,δ)

inf
p̂

sup
p∈∆([k])

Ep‖p̂− p‖1 ≥ C ·

 k√
n(2` ∧ k)

∧ 1

 = C ·

√k

n
∨ k√

n2`
∧ 1


for some absolute constant C > 0; which implies the result. Note that since the collocated model
can simulate the distributed one, the rate Ω(

√
k/n) case for the range of parameters 2` ≥ k is an

immediate consequence of the standard lower bound in the collocated case (and holds without
restriction on the range of n). Thus, it suffices to focus on the remaining case, 2` < k. In the below
argument, we fix any realization of the shared randomness U ; averaging the resulting bound over
U will yield the final statement.

• We first establish the rate Ω
(
k/
√
n2`

)
, assuming n ≥ k2/2`. (Recall that for n ≤ k2/2`, the

lower bound in the RHS above is 1.) We follow the proof of [HÖW18, Proposition 1], with
the necessary modifications to adapt it to `1 loss (instead of squared `2) and remove the
constraint that n ≥ k2/2`. (As in their proof, assume without loss of generality that k is
even.) The first change is that, letting U be uniformly distributed in the hypercube {−1, 1}t
(where t := k

2 ), we choose γ ∈ [0, 1] (suitably set later in the proof) and let pU ∈ ∆([k]) be
defined by its probability mass function

pU = 1
k

(1 + γU1, . . . , 1 + γUt, 1− γU1, . . . , , 1− γUt) .

13Recall the ε-effective support of a distribution q is the minimal set of elements accounting for at least 1 − ε
probability mass of q.
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Paraphrasing [HÖW18, Appendix B.6], any strategy Wj can be identified with a vector
w ∈ [0, 1]k. For every such w, we have

EU,U ′
(EpUa(X)− Ep′Ua(X))2

EUEpUa(X) = k
wTEU,U ′ [(pU − pU ′)(pU − pU ′)T ]w

wT1 ≤ k4γ2

k2 ·
wTw

wT1 ≤
4γ2

k
(11)

the last step since ‖w‖∞ ≤ 1. Now, it is not hard to show, via a standard “Assouad’s Lemma”-
type argument that the `1 minimax risk over the above class C ⊆ ∆([k]) of our 2t distributions
can be lower bounded as

inf
p̂

sup
p∈C

Ep‖p̂− p‖1 ≥ c · γ inf
Û

Pr
[

dist
(
Û , U

)
≥ t/5

]
(12)

where dist(·, ·) is the unnormalized Hamming distance and U is a uniform random vector in
{−1, 1}t and c > 0 is an absolute constant. (This is another part where we depart from the
argument of [HÖW18, Section 3.3], concerned with the squared `2 loss.) Invoking [HÖW18,
Eq. (9) and Lemma 3] along with (11), we can conclude that

inf
Û

Pr
[

dist
(
Û , U

)
≥ t/5

]
≥ 1−I (U ;Y n) + ln 2

t/8 ≥ 1−
2 · n2` · 4γ2

k + ln 2
t/8 = 1−168γ2n2` + k ln 2

k2 .

The RHS will be at least say 1/2, for large enough k, by setting γ2 := c′ · k2

n2` for a constant
c′ > 0 sufficiently small (but independent of k, n, `). For this choice of γ, (12) becomes

inf
p̂

sup
p∈C

Ep‖p̂− p‖1 ≥
c

2γ = C · k√
n2`

(where C := c·
√
c′

2 > 0), concluding the proof. (Note that the constraint n ≥ k/2` was used in
the setting of γ2, to ensure that γ ∈ [0, 1].)

• Finally, we are left with the case n ≤ k2/2`, where we must show that the rate is Ω(1).
We can prove it by reducing it to the previous case: namely, divide the domain [k] into
k′ :=

√
2`n < k disjoint intervals of equal size (assuming for simplicity, and with little loss of

generality, that k′ divides k). Apply now the previous construction to the induced domain
over k′ elements, setting the distribution pU to be uniform on each of the k′ intervals. This
leads to the setting of γ2 = k′2

n2` ∈ [0, 1], and a lower bound on the risk of Ω(γ) = Ω(1).
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