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Abstract

Independent samples from an unknown probability distribution p on a domain of size k
are distributed across n players, with each player holding one sample. Each player can com-
municate ` bits to a central referee in a simultaneous message passing model of communica-
tion to help the referee infer a property of the unknown p. What is the least number of players
for inference required in the communication-starved setting of ` < log k? We begin by explor-
ing a general simulate-and-infer strategy for such inference problems where the center sim-
ulates the desired number of samples from the unknown distribution and applies standard
inference algorithms for the collocated setting. Our first result shows that for ` < log k perfect
simulation of even a single sample is not possible. Nonetheless, we present next a Las Vegas
algorithm that simulates a single sample from the unknown distribution using no more than
O(k/2`) samples in expectation. As an immediate corollary, it follows that simulate-and-infer
attains the optimal sample complexity of Θ(k2/2`ε2) for learning the unknown distribution
to an accuracy of ε in total variation distance.

For the prototypical testing problem of identity testing, simulate-and-infer works with
O(k3/2/2`ε2) samples, a requirement that seems to be inherent for all communication pro-
tocols not using any additional resources. Interestingly, we can break this barrier using pub-
lic coins. Specifically, we exhibit a public-coin communication protocol that accomplishes
identity testing using O(k/

√
2`ε2) samples. Furthermore, we show that this is optimal up to

constant factors. Our theoretically sample-optimal protocol is easy to implement in practice.
Our proof of lower bound entails showing a contraction in χ2 distance of product distribu-
tions due to communication constraints and may be of interest beyond the current setting.
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1 Introduction

A set of sensor nodes are deployed in an active volcano to measure seismic activity. They are
connected to a central server over a low bandwidth communication link, but owing to their very
limited battery, they can only send a fixed number of short packets. The server seeks to deter-
mine if the distribution of the quantized measurements have changed significantly from the one
on record. How many sensors must be deployed?

This situation is typical in many emerging sensor network applications as well as other dis-
tributed learning scenarios where the data is distributed across multiple clients with limited
communication capability. The question above is an instance of the distributed inference prob-
lem where independent samples from an unknown distribution are given to physically sepa-
rated players who can only send a limited amount of communication to a central referee. The
referee uses the communication to infer some properties of the generating distribution of the
samples. A variant of this problem where each player gets different (correlated) coordinates
of the independent samples has been studied extensively in the information theory literature
(cf. [AC86, Han87, HA98]). The problem described above has itself received significant attention
lately in various communities (see, for instance, [BPC+11, BBFM12, Sha14, DGL+17, HÖW18a]),
with the objective of performing parameter or density estimation while minimizing the num-
ber of players (or, equivalently, the amount of data). Of particular interest to us are the results
in [DGL+17, HÖW18a], which consider distribution learning problems. Specifically, it is shown
that roughly trivial schemes quantizing and compressing each sample separately turn out to be
optimal for simultaneous message passing (SMP) communication protocols. One of our goals in
this research is to formalize this heuristic and explore its limitations.

To formalize the question, we introduce a natural notion of distributed simulation: n players
observing an independent sample each from an unknown k-ary distribution p can send `-bits
each to a referee. A distributed simulation protocol consists of an SMP and a randomized deci-
sion map that enables the referee to generate a sample from p using the communication from
the players. Clearly, when1 ` ≥ log k such a sample can be obtained by getting the sample of any
one player. But what can be done in the communication-starved regime of ` < log k?

This problem of distributed simulation is connected innately to the aforementioned dis-
tributed inference problems where the generating distribution p is unknown and the referee
uses the communication from the players to accomplish a specific inference task P .

Question 1.1. What is the minimum number of players n required by an SMP that successfully
accomplishes the inference P , as a function of k, `, and the relevant parameters of P?

The formulation above encompasses both density and parameter estimation, as well as dis-
tribution testing (see e.g. [Rub12, Can15] and [Gol17] for a survey of property and distribution
testing).

Equipped with a distributed simulation, we can accomplish any distributed inference task by
simulating as many samples as warranted by the sample complexity of the inference problem.
Our objective is to understand when such a simulate-and-infer strategy is optimal. We study the
distributed simulation problem and apply it to distribution learning and distribution testing.
Our results are the most striking for distribution testing, which, to the best of our knowledge,
has not been studied in the distributed setting prior to our work.

1We assume throughout that log k is an integer.
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Starting with the distributed simulation problem, we first establish that perfect simulation is
impossible using any finite number of players in the communication-starved regime. This es-
tablishes an interesting dichotomy where communication from a single party suffices for perfect
simulation when ` ≥ log k and no finite number of parties can accomplish it when ` < log k. If we
allow a small probability of declaring failure, namely Las Vegas schemes, distributed simulation
is possible with finitely many players. Indeed, we present such a Las Vegas distributed simula-
tion scheme that requires optimal (up to constant factors) number of players to simulate k-ary
distributions using ` bits of communication per player. Moving to the connection between dis-
tributed simulation and distributed inference, we exhibit an instance when simulate-and-infer
is optimal. Perhaps more interestingly, we even exhibit a case where a simple simulate-and-infer
scheme is far from optimal if we allow the communication protocol to use public randomness.
As a byproduct, we characterize the least number of players required for distributed uniformity
testing in the SMP model. We provide a concrete description of our results in the next section,
followed by an overview of our proof techniques in the subsequent section. To put our results in
context, we provide an overview of the literature on distribution learning as well.

1.1 Main results

Our first theorem shows that perfect distributed simulation with a finite number of players is
impossible:

Theorem 1.2. For every k ≥ 1 and ` < log k, there exists no SMP with ` bits of communication per
player for distributed simulation over [k] with finite number of players. Furthermore, the result
continues to hold even when public-coin and interactive communication protocols are allowed.

In light of this impossibility result, one can ask if distributed estimation is still possible by re-
laxing the requirement of finiteness in the worst-case for the number of players. We demonstrate
that this is indeed the case and describe a protocol with finite expected number of players.2

Theorem 1.3. For every k, ` ≥ 1, there exists a private-coin protocol with ` bits of communica-
tion per player for distributed simulation over [k] and expected number of players O

(
k/2` ∨ 1

)
.

Moreover, this expected number is optimal, up to constant factors, even when public-coin and
interactive communication protocols are allowed.

We use this distributed simulation result to derive protocols for any distributed inference task:

Theorem 1.4 (Informal). For any inference taskP over k-ary distributions with sample complexity
s in the non-distributed model, there exists a private-coin protocol for P , with ` bits of communi-
cation per player, and n = O(s · k/2`) players.

Instantiating this general statement for the prototypical distribution testing problem of unifor-
mity testing leads to:

Corollary 1.5. For every k, ` ≥ 1, there exists a private-coin protocol for testing uniformity over
[k], with ` bits of communication per player and n = O

(
k3/2

(2`∧k)ε2

)
players.

2Or, roughly equivalently, when one is allowed to abort with a special symbol with small constant probability.
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The optimality of the simulate-and-infer strategy that generates O(
√
k) samples from the

unknown p at the referee using private-coin protocols is open. Note that for a general inference
problem even for k-ary observations the effective support-size can be much smaller. Thus, we
can define the size of a problem as the least number of bits to which each samples can be com-
pressed without increase in the number of compressed sample required to solve the problem
(see Section 5.2 for a formal definition). An intriguing question ensues:

Question 1.6 (The Flying Pony Question (Informal)). Does the compressed simulate-and-infer
scheme, which simulates independent samples compressed to the size of the problem using private-
coin protocols and sends them to the referee who then infers from them, require the least number
of players?

For the problems considered in [DGL+17, HÖW18a], the answer to the question above is in
the affirmative. However, we exhibit an example in Section 5.2 for which the answer is negative.
Roughly, the problem we consider is that of testing if the distribution is uniform on [k] or instead
satisfies the following: for every i ∈ [k], pi is either 0 or 2/k. We show that the size of this problem
remains log k, whereby the simple simulate-and-infer scheme of the question above for ` = 1 will
require O(k3/2) players. On the other hand, one can obtain a simple scheme to solve this task
using 1-bit communication from only O(k) players. Interestingly, even this new scheme is of
simulate-and-infer form, although it compresses below the size of the problem.

While the answer to the question above remains open for uniformity testing using private-
coin protocols, it is natural to examine its scope and consider public-coin protocols for uni-
formity testing. As it turns out, here, too, the answer to the question is negative – public-coin
protocols lead to an improvement in the required number of parties over the simple simulate-

and-infer protocol described earlier by a factor of
√
k/2`. Specifically, we provide a public-coin

protocol for uniformity testing that requires roughly O(k/2`/2) players and show that no public-
coin protocol can work with fewer players.

Theorem 1.7. For every k, ` ≥ 1, consider the problem of testing if the distribution is uniform or
ε-far from uniform in total variation distance. There exists a public-coin protocol for uniformity

testing with ` bits of communication per player and n = O
(

k
(2`/2∧

√
k)ε2

)
players. Moreover, this

number is optimal up to constant factors.

In fact, we provide two different protocols achieving this optimal guarantee. The first is remark-
ably simple to describe and requires Ω(` · k) bits of shared randomness; the second is more
randomness-efficient, requiring onlyO(2` · log k) bits of shared randomness,3 but it is also more
involved.

Before concluding this section, we emphasize that all our results for uniformity testing im-
mediately imply the analogue for the more general question of identity testing, via a standard
reduction argument. We detail this further in Section 6.

1.2 Proof techniques

We now provide a high-level description of the proofs of our main results.

3For our regime of interest, `� log k, and so, 2` · log k � ` · k.
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Perfect and α-simulation. Our general impossibility result for perfect simulation with a finite
number of players is based on simple heuristics. Observe that for any distribution p with pi = 0
for some i, the referee must not output i for any sequence of received messages from the play-
ers. However, since ` < log k, by the pigeonhole principle one can find a sequence of messages
M = (M1, ...,Mn) where each message Mi has a positive probability of appearing from two dif-
ferent elements in [k]. Note that there exist distributions for which M can occur with a positive
probability, and not being able to abort with the symbol ⊥, upon receiving this sequence the
referee must output some element, say i∗. Then, for any distribution with pi∗ = 0, this sequence
M must not be sent. But by construction each message in M can be triggered by at least two el-
ements in [k]. Thus, we can find a distribution with pi∗ = 0 for which the sequence of messages
M will be sent with positive probability, which is a contradiction.

Next, we consider α-simulation protocols, namely simulation protocols that are allowed to
abort with probability less than α. The proof of the positive result establishing the existence of
α-simulation proceeds by dividing the alphabet into k/(2` − 1) sets of size 2` − 1 and assigning
each such set to two different players (each using their ` bits to indicate whether their sample
fell in this subset, and if so on which element). If only one pair of players finds the sample
in its assigned subset, the referee can declare this as the output, and it will have the desired
probability. But it is possible that several pairs of players observe their assigned symbol and send
conflicting messages. In this case, the referee cannot decide which of the elements to choose and
must declare abort. However, we show that this happens with a probability that depends only
on the `2 norm of the unknown distribution p; if we could assume this norm to be bounded
away from 1, then our protocol would require O(k) players. Unfortunately, this need not be the
case. To circumvent this difficulty, we artificially duplicate every element of the domain and
“split” each element i ∈ [k] into two equiprobable elements i1, i2 ∈ [2k]. This has the effect
of decreasing the `2 norm of p by a factor

√
2, allowing us to instead apply our protocol to the

resulting distribution p′ on [2k], for which the aforementioned probability of aborting can be
bounded by a constant.

Distributed uniformity testing. To test whether an unknown distribution p is uniform using at
most `bits to describe each sample, a natural idea is to randomly partition the alphabet intoL :=
2` parts, and send to the referee independent samples from the L-ary distribution q induced by
p on this partition. For a random balanced partition (i.e., where every part has cardinality k/L),
clearly the uniform distribution uk is mapped to the uniform distribution uL. Thus, one can
hope to reduce the problem of testing uniformity of p (over [k]) to that of testing uniformity of
q (over [L]). The latter task would be easy to perform, as every player can simulate one sample
from q and communicate it fully to the referee with logL = ` bits of communication. Hence, the
key issue is to argue that this random “flattening” of p would somehow preserve the distance to
uniformity; namely, that if p is ε-far from uk, then (with a constant probability over the choice of
the random partition) q will remain ε′-far from uL, for some ε′ depending on ε, L, and k. If true,
then it is easy to see that this would imply a very simple protocol with O(

√
L/ε′2) players, where

all agree on a random partition and send the induced samples to the referee, who then runs a
centralized uniformity test. Therefore, in order to apply the aforementioned natural recipe, it
suffices to derive a “random flattening” structural result for ε′ �

√
(L/k)ε.

An issue with this approach, unfortunately, is that the total variation distance (that is, the `1
distance) does not behave as desired under these random flattenings, and the validity of our de-
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sired result remains unclear. Fortunately, an analogous statement with respect to the `2 distance
turns out to be much more manageable and suffices for our purposes. In more detail, we show
that a random flattening of p does preserve, with constant probability, the `2 distance to unifor-
mity; in our case, by Cauchy–Schwarz the original `2 distance will be at least γ � ε/

√
k, which

implies using known `2 testing results that one can test uniformity of the “randomly flattened” q
with O(1/(

√
Lγ2)) = O(k/(2`/2ε2)) samples. This yields the desired guarantees on the protocol.

However, the proposed algorithm suffers one drawback: The amount of public randomness re-
quired for the players to agree on a random balanced partition is Ω(k logL) = Ω(k · `), which in
cases with large alphabet size k can be prohibitive.

This leads us to our second protocol, whose main advantage is that it requires much fewer
bits of randomness (specifically, Oε(2` log k)); however, this comes at the price of some loss in
simplicity. In fact, our second algorithm too pursues a natural, perhaps more greedy, approach:
Pick uniformly at random a subset S ⊆ [k] of size s := 2` − 1 and communicate to the referee
either an element in S that equals the observed sample or indicate that the sample does not
lie in S. If p is indeed uniform, then the probability p(S) of set S satisfies p(S) = s/k and the
conditional distribution pS given that the sample lies in S is uniform. On the other hand, it is
not difficult to show that if p is ε-far from uniform in total variation distance, then the expected
contribution of elements in S to the `1 distance of p to uniform is order ε. By an averaging
argument, this implies that with probability at least ε either (i) p(S) differs from s/k by a (1±Ω(ε))
factor, or (ii) pS is itself Ω(ε)-far from uniform.

For a given S, detecting if (i) holds requires roughly k/(sε2) samples (and hence as many
players), while under (ii) one would need (k/s) ·

√
s/ε2 = k/(

√
sε2) players (the cost of rejection

sampling, times that of uniformity testing on support size s) to test uniformity. When public
randomness is available, the players can choose jointly the same random set S, so this protocol
is valid. But there is a caveat. Since each choice of S is only “good” with probability ε, to achieve
a constant probability of success one needs to repeat the procedure outlined above for Ω(1/ε)
different choices of S. This, along with the overhead cost of a union bound over all repetitions,
leads to a bound of O(k/(2`/2ε3) · log(1/ε)) on the number of players – far from the optimal an-
swer of n = O(k/(2`/2ε2)). To avoid the extra 1/ε, we rely instead on Levin’s work investment
strategy (see e.g. [Gol14, Appendix A.2]), which by a more careful accounting enables us to avoid
paying the cost of the naive averaging argument. Instead, by considering logarithmically many
different possible “scales” εj of distance between pS and uniform, each with its own probability
αj of occurring for a random choice of S and by keeping track of the various costs that ensue,
we can get rid of this extra 1/ε factor. This only leaves us with an extra log(1/ε) factor to han-
dle, which arises due to the union bound. To omit this extra factor, we refine our argument by
allocating different failure probabilities to every different test conducted, depending on the re-
spective scale used. By choosing these probabilities so that their sum is bounded by a constant
(for instance, by setting δi ∝ 1/j2), we can still ensure overall correctness with a high, constant
probability, while the extra cost log(1/δj) for the j-th scale considered is subsumed in the ac-
counting using Levin’s strategy. This finally yields the desired bound of n = O(k/(2`/2ε2)) for the
number of players.

For the lower bound, we take recourse to Le Cam’s two-point method. Specifically, we use the
construction proposed by Paninski [Pan08] for proving the lower bound for sample complexity
in the collocated setting. Roughly, we consider the problem of distinguishing the uniform dis-
tribution from a randomly selected element of the family of distributions consisting each of a
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perturbation of uniform distribution where the probabilities conditioned on pairs of consecu-
tive elements are changed from unbiased coins to coins of bias ε. However, Paninski’s original
treatment does not suffice now as we need to handle the total variation distance between the
distribution induced on the message sequenceM under the uniform distribution and a uniform
mixture of the pairwise perturbed distributions. This is further bounded above by the average
distance between the message distribution under uniform input and under the pairwise per-
turbed input. In fact, treating public randomness as a common observation in both settings, it
suffices to obtain a worst-case bound for deterministic inference protocols. Capitalizing on the
fact that both distributions of messages are in this case product distributions, we can show that

this average distance for deterministic protocols is bounded above by
√
n(2`ε2)/k, which leads

to a lower bound of n = Ω(k/(2`ε2)).
The bound obtained above is tight for ` = 1, but is sub-optimal in general . To refine this

bound further, instead of considering the average distance between the distributions, we need
to carefully analyze the distance of uniform from the average. However, this quantity is not
amenable to standard bounds for total variation distance in terms of Kullback–Leibler diver-
gence and Hellinger distance devised to handle product distributions, as the average “no-distribution”
is not itself a product distribution anymore. Instead, we take recourse to a technique used
in [Pan08], building on [Pol03], that uses a χ2-distance bound and proceeds by expanding the
product likelihood ratios in multilinear form. Obtaining the final bound requires a sub-Gaussian
bound for a log-moment generating function, which is completed by using a standard trans-
portation method technique.

1.3 Related prior work

For clarity, we divide our discussion of the relevant literature into three parts: The first dis-
cussing the literature in the collocated setting, and the next two the prior work concerned with
distributed inference and simulation.

Inference in the collocated setting. The goodness-of-fit problem is a classic hypothesis test-
ing problem with a long line of work in statistics, but the finite-alphabet variants of interest to us
were first considered by Batu et al. [BFR+00] and Goldreich, Goldwasser, and Ron [GGR98] un-
der distribution testing, which in turn evolved as a a branch of property testing [RS96, GGR98],
a field of theoretical computer science focusing on “ultra-fast” (sublinear-time) algorithms for
decision problems. Distribution testing has received much attention in the past decade, with
considerable progress made and tight answers obtained for many distribution properties (see
e.g. surveys [Rub12, Can15, BW18] and references within for an overview). Most pertinent to our
work is uniformity testing [GR00, Pan08, DGPP17], the prototypical distribution testing problem
with applications to many other property testing problems [BKR04, DKN15, Gol16, CDGR17].

Another inference question in the finite-alphabet setting that has received a lot of attention
in recent years is that of functional estimation, where the goal is to estimate a function of the un-
derlying distribution. Recent advances in this area have pinpointed the optimal rates for func-
tionals such as entropy, support size, and many others (see for instance [Pan04, RRSS09, VV11,
JVYW15, WY16, AOST17, JVHW17, ADOS17] for some of the most recent work).

The extreme case of functional estimation is the fundamental question of distribution learn-
ing, namely the classic density estimation problem in statistic where the goal is estimate the
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entire distribution. With more than a century of history (see the books [Tsy09, DL01]), distribu-
tion learning has recently seen a surge of interest in the computer science community as well,
with a focus on discrete domains (see e.g. [Dia16] for a survey of these recent developments).

Inference in the distributed setting. As previously mentioned, distributed hypothesis testing
and estimation problems were first studied in information theory, albeit in a different setting
than what we consider [AC86, Han87, HA98]. The focus in that line of work has been to char-
acterize the trade-off between asymptotic error exponent and communication rate per sample.
Recent extensions have considered interactive communication [XK13], more complicated com-
munication models [WT16], and even no communication [Wat17]. The communication com-
plexity of independence testing for fixed error has been considered recently in [ST18].

Closer to our work is distributed parameter estimation and functional estimation that has
gained significant attention in recent years (see e.g. [DJW13, GMN14, BGM+16, Wat18]). In these
works, much like our setting, independent samples are distributed across players, which devi-
ates from the information theory setting described above where each player observes a fixed
dimension of each independent sample. However, the communication model in these results
differs from ours, and the communication-starved regime we consider has not been studied in
these works.

Our communication model is the same as that considered in [HÖW18a], which establishes,
under some mild assumptions, a general lower bound for estimation of model parameters under
squared `2 loss. Although the problems considered in our work differ from those in [HÖW18a]
and the results are largely incomparable, we build on a result of theirs to establish one of our
lower bounds.4

The problem of distributed density estimation, too, has gathered recent interest in various
statistical settings [BPC+11, BBFM12, ZDJW13, Sha14, DGL+17, HÖW18a, XR17, ASZ18]. Our
work is closest to two of these: The aforementioned [HÖW18a, HMÖW18] and [DGL+17]. The
latter considers both `1 (total variation) and `2 losses, although in a different setting than ours.
Specifically, they study an interactive model where the players do not have any individual com-
munication constraint, but instead the goal is to bound the total number of bits communicated
over the course of the protocol. This difference in the model leads to incomparable results and
techniques (for instance, the lower bound for learning k-ary distributions in our model is higher
than the upper bound in theirs).

Our current work further deviates from this prior literature, since we consider distribution
testing as well and examine the role of public-coin for SMPs. Additionally, a central theme here
is the connection to distribution simulation and its limitation in enabling distributed testing.
In contrast, the prior work on distribution estimation, in essence, establishes the optimality of
simple protocols that rely on distributed simulation for inference. (We note that although recent
work of [BCG17] considers both communication complexity and distribution testing, their goal
and results are very different – indeed, they explain how to leverage on negative results in the
standard SMP model of communication complexity to obtain sample complexity lower bounds
in collocated distribution testing.)

4In fact, the same communication model was proposed in a different work, presented at the 2018 ITA work-
shop [HMÖW18]. In this talk, the authors described a protocol for learning discrete distributions under `1 error,
with a number of players that they showed to be optimal up to constant factors.
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Distributed simulation. Problems related to joint simulation of probability distributions have
been the object of focus in the information theory and computer science literature. Starting
with the works of Gács and Körner [GK73] and Wyner [Wyn75] where the problem of generating
shared randomness from correlated randomness and vice-versa, respectively, were considered,
several important variants have been studied such as correlated sampling [Bro97, KT02, Hol07,
BGH+16] and non-interactive simulation [KA12, GKS16, DMN18]. Yet, our problem of exact sim-
ulation of a single (unknown) distribution with communication constraints from multiple par-
ties has not been studied previously to the best of our knowledge.

1.4 Organization

We begin by setting notation and recalling some useful definitions and results in Section 2, be-
fore formally introducing our distributed model in Section 3. Section 4 introduces the question
of distributed simulation and contains our protocols and impossibility results for this problem
(specifically, Theorem 1.2 and Theorem 1.3 are proven in Section 4.1 and in Section 4.2). In Sec-
tion 5, we consider the relation between distributed simulation and (private-coin) distribution
inference. Namely, we explain in Section 5.1 how a distributed simulation protocol immediately
implies protocols for every inference task (Theorem 1.4) and instantiate this result for two con-
crete examples of distribution learning and uniformity testing. Section 5.2 is concerned with
Question 1.6: “Is inference via distributed simulation optimal in general?” After rigorously for-
malizing this question, we answer it in the negative in Theorem 5.10.

The subsequent section, Section 6, focuses on the problem of uniformity testing and con-
tains the proofs of the upper and lower bounds of Theorem 1.7 (as previously mentioned, we
provide there two proofs of the upper bound using different protocols, with a simple, albeit
randomness-heavy, protocol, and a more involved, randomness-savvy one).

Although we rely throughout on the formal description of our model given in Section 3, the
other sections are self-contained and can be read independently.

2 Preliminaries

We write log (resp. ln) for the binary (resp. natural) logarithm, and [k] for the set of integers
{1, 2, . . . , k}. Given a fixed (and known) discrete domain X of size k, we denote by ∆(X ) the set
of probability distributions over X , i.e.,

∆(X ) = { p : X → [0, 1] : ‖p‖1 = 1 } .

A property of distributions over X is a subset P ⊆ ∆(X ). Given p ∈ ∆(X ) and a property P , the
distance from p to the property is defined as

dTV(p,P) := inf
q∈P

dTV(p,q) (1)

where dTV(p,q) = supS⊆X (p(S)− q(S)) for p,q ∈ ∆(X ), is the total variation distance between
p and q. For a given parameter ε ∈ (0, 1], we say that p is ε-close to P if dTV(p,P) ≤ ε; otherwise,
we say that p is ε-far from P . For a discrete set X , we write uX for the uniform distribution on
X , and will sometimes omit the subscript when the domain is clear from context. We indicate
by x ∼ p that x is a sample drawn from the distribution p.
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In addition to total variation distance, we shall rely in some of our proofs on the χ2 and
Kullback–Leibler (KL) divergences between discrete distributions p,q ∈ ∆(X ), defined respec-

tively as χ2(p,q) :=
∑
x∈X

(px−qx)2

qx(1−qx) and D(p‖q) :=
∑
x∈X px ln px

qx
.

We use the standard asymptotic notation O(·), Ω(·), and Θ(·); and will sometimes write an .
bn to indicate that there exists an absolute constant c > 0 such that an ≤ c ·bn for all n. Finally, we
will denote by a ∧ b and a ∨ b the minimum and maximum of two number a and b, respectively.

3 Communication, Simulation, and Inference Protocols

We set the stage by describing the communication protocols we study for both the distributed
simulation and the distributed inference problems. Throughout the paper, we restrict to simul-
taneous communication models with private and public randomness.

Formally, n players observe samples X1, . . . , Xn with player i given access to Xi. The sam-
ples are assumed to be generated independently from an unknown distribution p. In addi-
tion, player i has access to uniform randomness Ui such that (U1, . . . , Un) is jointly indepen-
dent of (X1, . . . , Xn). An `-bit simultaneous message-passing (SMP) communication protocol π
for the players consists of {0, 1}`-valued mappings π1, . . . , πn where player i sends the message
Mi = πi(Xi, Ui). The message M = (M1, . . . ,Mn) sent by the players is received by a common
referee. Based on the assumptions on the availability of the randomness (U1, . . . , Un) to the ref-
eree and the players, three natural classes of protocols arise:

1. Private-coin protocols: U1, . . . , Un are mutually independent and unavailable to the referee.

2. Pairwise-coin protocols: U1, . . . , Un are mutually independent and available to the referee.

3. Public-coin protocols: All player and the referee have access to U1, . . . , Un.
In this paper, we focus only on private- and public-coin communication protocols; an inter-
esting question is distinguishing pairwise-coin protocols from the other two. For the ease of
presentation, we represent the private randomness communication fi(xi, Ui) using a channel
Wi : X → {0, 1}` where player i upon observing xi declares y with probability Wi(y|xi). Also, for
public-coin protocols, we can assume without loss of generality that U1 = U2 = · · · = Un = U .

Distributed simulation protocols. An `-bit simulation S = (π, δ) of k-ary distributions using n
players consists of an `-bit SMP π and a decision map δ comprising mappings δx : (M,U) 7→ [0, 1]
such that for each message m and randomness u,∑

x

δx(m,u) ≤ 1.

Upon observing the message M = (M1, . . . ,Mn) and (depending on the type of protocol) ran-
domness U = (U1, . . . , Un), the referee declares the random sample X̂ = x with probability
δx(M,U) or declares an abort symbol ⊥ if no x is selected. For concreteness, we assume that
the random variable X̂ takes values in X ∪ {⊥} with {X̂ =⊥} corresponding to the abort event.
When π is a private, pairwise, or public-coin protocol, respectively, the simulation S is called
private, pairwise, or public-coin simulation.

A simulation S is an α-simulation if for every p

Pr
p

[
X̂ = x | X̂ 6=⊥

]
= px, ∀x ∈ X ,
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and the abort probability satisfies
Pr
p

[
X̂ =⊥

]
≤ α.

When the probability of abort is zero, S is termed a perfect simulation.

Distributed inference protocols. We give a general definition of distributed inference proto-
cols that is applicable beyond the use-cases considered in this work. An inference problem P
can be described by a tuple (C,X , E , L) where C denotes a family of distributions on the alphabet
X , E a class of allowed estimates for elements of C (or their functions), and L : C × E → Rq+ is a
loss function that evaluates the accuracy of our estimate e ∈ E when p ∈ C was the ground truth.

An `-bit distributed inference protocol I = (π, e) for the inference problem (C,X , E , L) con-
sists of an `-bit SMP π and an estimator e available to the referee who, upon observing the mes-
sage M = π(Xn, U) and the randomness U , estimates the unknown p as e(M,U) ∈ E . As before,
we say that a private, pairwise, or public-coin inference protocol, respectively, uses a private,
pairwise, or public-coin communication protocol π.

For ~γ ∈ Rq+, an inference protocol (π, e) is a ~γ-inference protocol if

Ep[Li(p, e(M,U))] ≤ γi, ∀1 ≤ i ≤ q.
We instantiate the abstract definition above in two illustrative examples that we will pursue in
this paper.

Example 3.1 (Distribution learning). Consider the problem Lk(ε, δ) of estimating a k-ary dis-
tribution p by observing independent samples from it, namely the finite alphabet distribution
learning problem. This problem is obtained from the general formulation above by setting X to
be [k], C and E both to be the (k − 1)-dimensional probability simplex Ck, and L(p, p̂) as follows:

L(p, p̂) = 1{dTV(p,p̂)>ε}.

For this case, we term the δ-inference protocol an `-bit (k, ε, δ)-learning protocol for n player.

Example 3.2 (Uniformity testing). In the uniformity testing problem Tk(ε, δ), our goal is to deter-
mine whether p is the uniform distribution uk over [k] or if it satisfies dTV(p,uk) > ε. This can be
obtained as a special case of our general formulation by setting X = [k], C to be set containing
uk and all p satisfying dTV(p,uk) > ε, E = {0, 1}, and loss function L to be

L(p, b) = b · 1{p=uk} + (1− b) · 1{p6=uk}, b ∈ {0, 1}.
For this case, we term the δ-inference protocol an `-bit (k, ε, δ)-uniformity testing protocol for n
players. Further, for simplicity we will refer to (k, ε, 1/3)-uniformity testing protocols simply as
(k, ε)-uniformity testing protocols.

Note that distributed variants of several other inference problems such as that of estimating
functionals of distributions and parametric estimation problems can be included as instantia-
tions of the distributed inference problem described above.

We close by noting that while we have restricted to the SMP model of communication, the
formulation can be easily extended to include interactive communication protocols where the
communication from each player can be heard by all the other players (and the referee), and
in its turn, a player communicates using its local observation and the communication received
from all the other players in the past. A formal description of such a protocol can be given in the
form of a multiplayer protocol tree à la [KN97]. However, such considerations are beyond the
scope of this paper.
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A note on the parameters. It is immediate to see that for ` ≥ log k the distributed and cen-
tralized settings are equivalent, as the players can simply send their input sample to the referee
(thus, both upper and lower bounds from the centralized setting carry over).

4 Distributed Simulation

In this section, we consider the distributed simulation problem described in the previous sec-
tion. We start by considering the more ambitious problem of perfect simulation and show that
when ` < log k, perfect simulation using n players is impossible using any n. Next, we consider
α-simulation for a constant α ∈ (0, 1) and exhibit an `-bit α-simulation of k-ary distributions
using O(k/2`) players. In fact, by drawing on a reduction from distributed distribution learning,
we will show in Section 5.1 that this is the least number of players required (up to a constant
factor) for α-simulation for any α ∈ (0, 1).

4.1 Impossibility of perfect simulation when ` < log k

We begin with a proof of impossibility which shows that any simulation that works for all points
in the interior of the (k − 1)-dimensional probability simplex must fail for a distribution on the
boundary. Our main result of this section is the following:

Theorem 4.1. For any n ≥ 1, there exists no `-bit perfect simulation of k-ary distributions using n
players unless ` ≥ log k.

Proof. Let S = (π, δ) be an `-bit perfect simulation for k-ary distributions using n players. Sup-
pose that ` < log k. We show a contradiction for any such public-coin simulation S. Fix a realiza-
tion U = u of the public randomness. By the pigeonhole principle we can find a message vector
m = (m1, . . . ,mn) and distinct elements xi, x′i ∈ [k] for each i ∈ [n] such that

πi(xi, u) = πi(x′i, u) = mi.

Note that the probability of declaring ⊥ for a public-coin simulation must be 0 for every k-ary
distribution. Therefore, since the messagem occurs with a positive probability under a distribu-
tion p with pxi > 0 for all i, the referee must declare an output x ∈ [k] with positive probability
when it receives m, i.e., there exists x ∈ [k] such that δx(m,u) > 0. Also, since xi and x′i are dis-
tinct for each i, we can assume without loss of generality that xi 6= x for each i. Now, consider
a distribution p such that px = 0 and pxi > 0 for each i. For this case, the referee must never
declare px, i.e., Pr

[
X̂ = x

]
= 0. In particular, Pr

[
X̂ = x

∣∣∣ U = u
]

must be 0, which can only
happen if Pr[M = m | U = u ] = 0. But since pxi > 0 for each i,

Pr[M = m | U = u ] ≥
n∏
i=1

pxi > 0 ,

which is a contradiction.

Note that the proof above shows, as stated before, that any perfect simulation that works for
every p in the interior of the (k − 1)-dimensional probability simplex, must fail at one point on
the boundary of the simplex. In fact, a much stronger impossibility result holds. We show next
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that for k = 3 and ` = 1, we cannot find a perfect simulation that works in the neighborhood of
any point in the interior of the simplex.

Theorem 4.2. For any n ≥ 1, there does not exist any `-bit perfect simulation of 3-ary distributions
unless ` ≥ 2, even under the promise that the input distribution comes from an open set in the
interior of the probability simples.

Before we prove the theorem, we show that there is no loss of generality in restricting to de-
terministic protocols, namely protocols where each player uses a deterministic function of its
observation to communicate. The high-level argument is relatively simple: By replacing player j
by two players j1, j2, each with a suitable deterministic strategy, the two 1-bit messages received
by the referee will allow him to simulate player j’s original randomized mapping.

Lemma 4.3. For X = {0, 1, 2}, suppose there exists a 1-bit perfect simulation S′ = (π′, δ′) with
n players. Then, there is a 1-bit perfect simulation S = (π, δ) with 2n players such that, for each
j ∈ [2n], the communication π is deterministic, i.e., for each realization u of public randomness

πj(xj , u) = πj(x), x ∈ X .

Proof. Consider the mapping f : {0, 1, 2} × {0, 1}∗ → {0, 1}. We will show that we can find map-
pings g1 : {0, 1, 2} → {0, 1}, g2 : {0, 1, 2} → {0, 1}, and h : {0, 1} × {0, 1} × {0, 1}∗ → {0, 1} such
that for every u

Pr[ f(X,u) = 1 ] = Pr[h(g1(X1), g2(X2), u) = 1 ] , (2)

where random variables X1, X2, X are independent and identically distributed and take values
in {0, 1, 2}. We can then use this construction to get our claimed simulation S using 2n players
as follows: Replace the communication π′j(x, u) from player j with communication π2j−1(x2j−1)
and π2j(x2j), respectively, from two players 2j−1 and 2j, where π2j−1 and π2j correspond to map-
pings g1 and g2 above for f = π′j . The referee can then emulate the original protocol using the
corresponding mapping h and using h(π2j−1(x2j−1), π2j(x2j), u) in place of communication from
player j in the original protocol. Then, since the probability distribution of the communication
does not change, we retain the performance of S′, but using only deterministic communication
now.

Therefore, it suffices to establish (2). For convenience, denoteαu := 1{f(0,u)=1}, βu := 1{f(1,u)=1},
and γu := 1{f(2,u)=1}. Assume without loss of generality that αu ≤ βu + γu; then, (βu + γu−αu) ∈
{0, 1}. Let gi(x) = 1{x=i} for i ∈ {1, 2}. Consider the mapping h given by

h(0, 0, u) = αu, h(1, 0, u) = βu, h(0, 1, u) = γu, h(1, 1, u) = (βu + γu − αu) .

Then, for every u,

Pr[h(g1(X1), g2(X2), u) = 1 ]
= αu(1− p1)(1− p2) + βu(1− p1)p2 + γup1(1− p2) + (βu + γu − αu)p1p2

= αu(1− p1 − p2) + βup2 + γup1 = Pr[ f(X,u) = 1 ] ,

which completes the proof.

We now prove Theorem 4.2, but in view of our previous observation, we only need to consider
deterministic communication.
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Proof of Theorem 4.2. Suppose by contradiction that there exists such a 1-bit perfect simulation
protocol S = (π, δ) for n players on X = {0, 1, 2} such that π(x, u) = π(x). Assume that this
protocol is correct for all distributions p in the neighborhood of some p∗ in the interior of the
simplex. Consider a partition the players into three sets S0, S1, and S2, with

Si := { j ∈ [n] : πj(i) = 1 } , i ∈ X .

Note that for deterministic communication the message M is independent of public random-
ness U . Then, by the definition of perfect simulation, it must be the case that

px = EU
∑

m∈{0,1}n

δx(m,U) Pr[M = m | U ] = EU
∑
m

δx(m,U) Pr[M = m ]

=
∑
m

EU [δx(m,U)] Pr[M = m ] (3)

for every x ∈ X , which with our notation of S0,S1,S2 can be re-expressed as

px =
∑

m∈{0,1}n

EU [δx(m,U)]
2∏
i=0

∏
j∈Si

(mjpi + (1−mj)(1− pi))

=
∑

m∈{0,1}n

EU [δx(m,U)]
2∏
i=0

∏
j∈Si

(1−mj + (2mj − 1)pi) ,

for every x ∈ X . But since the right-side above is a polynomial in (p0,p1,p2), it can only be zero
in an open set in the interior if it is identically zero. In particular, the constant term must be zero:

0 =
∑

m∈{0,1}n

EU [δx(m,U)]
2∏
i=0

∏
j∈Si

(1−mj) =
∑

m∈{0,1}n

EU [δx(m,U)]
n∏
j=1

(1−mj) .

Noting that every summand is non-negative, this implies that for all x ∈ X and m ∈ {0, 1}n,
EU [δx(m,U)]

∏n
j=1(1−mj) = 0. In particular, for the all-zero message 0n, we getEU [δx(0n, U)] = 0

for all x ∈ X , so that again by non-negativity we must have δx(0n, u) = 0 for all x ∈ X and
randomness u. But the message 0n will happen with probability

Pr[M = 0n ] =
2∏
i=0

∏
j∈Si

(1− pi) = (1− p0)|S0|(1− p1)|S1|(1− p2)|S2| > 0,

where the inequality holds since p lies in the interior of the simplex. Therefore, for the output X̂
of the referee we have

Pr
[
X̂ 6= ⊥

]
=
∑
m

∑
x∈X

EU [δx(m,U)] · Pr[M = m ] =
∑
m6=0n

Pr[M = m ]
∑
x∈X

EU [δx(m,U)]

≤
∑
m6=0n

Pr[M = 0n ] = 1− Pr[M = 0n ] < 1 ,

contradicting the fact that π is a perfect simulation protocol.
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Remark 4.4. It is unclear how to extend the proof of Theorem 4.2 arbitrary k, `. In particular, the
proof of Lemma 4.3 does not extend to the general case. A plausible proof-strategy is a black-
box application of the k = 3, ` = 1 result to obtain the general result using a direct-sum-type
argument.

We close this section by noting that perfect simulation is impossible even when the commu-
nication from each player is allowed to depend on that from the previous ones. Specifically, we
show that availability of such an interactivity can at most bring an exponential improvement in
the number of players.

Lemma 4.5. For every n ≥ 1, if there exists an interactive public-coin `-bit perfect simulation of
k-ary distributions with n players, then there exists a public-coin `-bit perfect simulation of k-ary
distributions with 2`n+1 players that uses only SMP.

Proof. Consider an interactive communication protocolπ for distributed simulation withnplay-
ers and ` bits of communication per player. We can view the overall protocol as a (2`)-ary tree of
depth nwhere player j is assigned all the nodes at depth j. An execution of the protocol is a path
from the root to the leaf of the tree. Suppose the protocol starting at the root has reached a node
at depth j, then the next node at depth j+ 1 is determined by the communication from player j.
Thus, this protocol can be simulated non-interactively using at most ((2`)n− 1)/(2`− 1) < 2`n+1

players, where players (2j−1 + 1) to 2j send all messages correspond to nodes at depth j in the
tree. Then, the referee receiving all the messages can output the leaf by following the path from
root to the leaf.

Corollary 4.6. Theorems 4.1 and 4.2 extend to interactive protocols as well.

4.2 An α-simulation protocol using rejection sampling

In this section, we establish Theorem 1.3 and provide α-simulation protocols for k-ary distribu-
tions using n = O(k/2`) players. We first present the protocol for the case ` = 1, before extending
it to general `. The proof of lower bound for the number of players required for α-simulation of
k-ary distributions is based on the connection between distributed simulation and distributed
distribution learning and will be provided in the next section where this connection is discussed
in detail.

For ease of presentation, we allow a slightly different class of protocols where we have an
infinitely long sequence of players, each with access to one independent sample from the un-
known p. The referee’s protocol entails checking each player’s message and deciding either to
declare an output X̂ = x and stop, or see the next player’s output. We assume that with proba-
bility one the referee uses finitely many players and declares an output. The cost of maximum
number of players of the previous setting is now replaced with the expected number of players
used to declare an output. By an application of Markov’s inequality, this can be easily related to
our original setting of private-coin α-simulation.

Theorem 4.7. There exists a 1-bit private-coin protocol that outputs a sample x ∼ p using mes-
sages of at most 20k players in expectation.

Proof. To help the reader build heuristics for the proof, we describe the protocol and analyze its
performance in steps. We begin by describing the basic idea and building blocks; we then build
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upon it to obtain a full-fledged protocol, but with potentially unbounded expected number of
players used. Finally, we describe a simple modification which yields our desired bound for
expected number of player’s accessed.

The scheme, base version. Consider a protocol with 2k players where the 1-bit communica-
tion from players (2i−1) and (2i) just indicates if their observation is i or not, namely π2i−1(x) =
π2i(x) = 1{x=i}.
On receiving these 2k bits, the refereeR acts as follows:

• if exactly one of the bits M1,M3, . . . ,M2k−1 is equal to one, say the bit M2i−1, and the cor-
responding bit M2i is zero, then the referee outputs X̂ = i;

• otherwise, it outputs⊥.

In the above, the probability ρp that some i ∈ [k] is declared as the output (and not⊥) is

ρp :=
k∑
i=1

pi
∏
j 6=i

(1− pj)

 · (1− pi) =
k∏
j=1

(1− pj) ·
k∑
i=1

pi =
k∏
j=1

(1− pj),

so that

ρp = exp
k∑
j=1

ln(1− pj) = exp
(
−
∞∑
t=1

‖p‖tt
t

)
≥ exp

(
−
(

1 +
∞∑
t=2

‖p‖t2
t

))
= 1− ‖p‖2

e1−‖p‖2

which is bounded away from 0 as long as p is far from being a point mass.
Further, for any fixed i ∈ [k], the probability thatR outputs i is

pi ·
k∏
j=1

(1− pj) = piρp ∝ pi .

The scheme, medium version. The (almost) full protocol proceeds as follows. Divide the count-
ably infinitely many players into successive, disjoint batches of 2k players each, and apply the
base scheme to each of these runs. Execute the base scheme to each of the batch, one at a time
and moving to the next batch only when the current batch declares a ⊥; else declare the output
of the batch as X̂.

It is straightforward to verify that the distribution of the output X̂ is exactly p, and moreover
that on expectation 1/ρp runs are considered before a sample is output. Therefore, the expected
number of players accessed (i.e., bits considered by the referee) satisfies

2k
ρp
≤ 2k · e

1−‖p‖2

1− ‖p‖2
. (4)

The scheme, final version. The protocol described above can have the expected number of
players blowing to infinity when p has `2 norm close to one. To circumvent this difficulty, we
modify the protocol as follows: Consider the distribution q on [2k] defined by

q2i = q2i−1 = pi
2 , i ∈ [k] .

16



Clearly, ‖q‖2 = ‖p‖2/
√

2 ≤ 1/
√

2, and therefore by (4) the expected number of players required
to simulate q using our previous protocol is at most

4k · e
1− 1√

2

1− 1√
2
≤ 20k.

But we can simulate a sample from p using a sample from q simply by mapping (2i − 1) and 2i
to i. The only thing remaining now is to simulate samples from q using samples from p. This,
too, is easy. Every 2 players in a batch that declare 1 on observing symbols (2i− 1) and (2i) from
q declare 1 when they see i from p. The referee then simply flips each of this 1 to 0, thereby
simulating the communication corresponding to samples from q. In summary, we modified
the original protocol for p by replacing each player with two identical copies and modifying the
referee to flip 1 received from these players to 0 independently with probability 1/2; the output
is declared in a batch only when there is exactly one 1 in the modified messages, in which case
the output is the element assigned to the player that sent 1. Thus, we have a simulation for k-ary
distributions that uses at most 20k players, completing the proof of the theorem.

Moving now to the more general setting, we have the following result.

Theorem 4.8. For any ` ≥ 2, there exists a `-bit private-coin protocol that outputs a sample x ∼ p
using messages of at most 20

⌈
k

2`−1

⌉
players in expectation.

Proof. For simplicity, assume that 2` − 1 divides k. We can then extend the previous protocol
by considering a partition of domain into m = k/(2` − 1) parts and assigning one part of size
2` − 1 each to a player. Each player then sends the all-zero sequence of length ` when it does
not see an element from its assigned set, or indicates the precise element from its assigned set
that it observed. For each batch, the referee, too, proceeds as before and declares an output if
exactly one player in the batch sends a 1 – the declared output is the element indicated by the
player that sent a 1; else it moves to the next batch. To bound the number of players, consider
the analysis of the base protocol. The probability that an output is declared for a batch (a ⊥ is
not declared in the base protocol) is given by

ρp :=
m∑
i=1

∑
`∈Si

p`
∏
j 6=i

(1− p(Sj))

 · (1− p(Si))

=
m∏
j=1

(1− p(Sj)) ·
m∑
i=1

∑
`∈Si

p`

=
m∏
j=1

(1− p(Sj)) ,

where {S1, . . . , Sm} denotes the partition used. Then, writing p(S) for the distribution on [m]
given by p(S)(j) = p(Sj), by proceeding as in the ` = 1 case we obtain

ρp ≥
1− ‖p(S)‖2
e1−‖p(S)‖2

.
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Once again, this quantity may be unbounded and we circumvent this difficulty by replacing
each player with two players that behave identically and flipping their communicated 1’s to 0’s
randomly at the referee; the output is declared in a batch only when there is exactly one 1 in the
modified messages, in which case the output is the element indicated by the player that sent 1.
The analysis can be completed exactly in the manner of the ` = 1 case proof by noticing that
the protocol is tantamount to simulating q with ‖q(S)‖2 ≤ 1/

√
2 and accesses messages from at

most 20m players in expectation.

5 Distributed Simulation for Distributed Inference

In this section, we focus on the connection between distributed simulation and (private-coin)
distributed inference. We first describe the implications of the results from Section 4 for any dis-
tributed inference task; before considering the natural question this general connection prompts:
“Are the resulting protocols optimal?”

5.1 Private-coin distributed inference via distributed simulation

Having a distributed simulation protocol at our disposal, a natural protocol for distributed infer-
ence entails using distributed simulation to generate independent samples from the underlying
distribution, as many as warranted by the sample complexity of the underlying problem, before
running a sample inference algorithm (for the centralized setting) at the referee. The resulting
protocol will require a number of players roughly equal to the sample complexity of the infer-
ence problem when the samples are centralized times

(
k/2`), the number of players required to

simulate each independent sample at the referee. We refer to such protocols that first simulate
samples from the underlying distribution and then use a standard sample-optimal inference
algorithm at the referee as simulate-and-infer protocols. Formally, we have the following result.

Theorem 5.1. Let P be an inference problem for distributions over a domain of size k that is solv-
able using ψ(P, k) samples with error probability at most 1/3. Then, the simulate-and-infer pro-
tocol for P requires at most O

(
ψ(P, k) · k2`

)
players, with each player sending at most ` bits to the

referee and the overall error probability at most 2/5.

Proof. The reduction is quite straightforward, and works in the following steps
1. Partition the players into blocks of size 54k/2`.
2. Run the distributed simulation protocol (Theorem 4.8) on each block.

3. Run the centralized algorithm over the simulated samples.
From Theorem 4.8, we have a Las Vegas protocol for distributed simulation using 27k/2` play-
ers in expectation. Thus, by Markov’s inequality, each block in the above protocol simulates a
sample with probability at least 1/2. If the number of samples simulated is larger than ψ(P, k),
then the algorithm has error at most 1/3. Denoting the number of blocks by B, the number of
samples produced has expectation at least B/2, and variance at most B/4. By Chebychev’s in-
equality, the probability that the number of samples simulated being less than B/2−

√
B/4
√

15
is at most 1/15. IfB > 4ψ(P, k) + 8, thenB/2−

√
B
√

15/4 > ψ(P, k). Since 1/3 + 1/15 = 2/5, the
result follows from a union bound.
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As immediate corollaries of the result, we obtain distributed inference protocols for distri-
bution learning and uniformity testing. Specifically, using the well-known result that Θ

(
k/ε2)

samples are sufficient to learn a distribution over [k] to within a total variation distance ε with
probability 2/3, we obtain:

Corollary 5.2. Let ` ∈ {1, . . . , log k}. Then, there exists an `-bit private-coin (k, ε, 3/5)-learning
protocol for O

(
k2

2`ε2

)
players.

From the existence of uniformity testing algorithms usingO(
√
k/ε2) samples [Pan08, VV17, DGPP17],

we obtain:

Corollary 5.3. Let ` ∈ {1, . . . , log k}. Then, there exists an `-bit private-coin (k, ε, 3/5)-uniformity
testing protocol for O

(
k3/2

2`ε2

)
players.

Interestingly, a byproduct of this “simulate-and-infer” connection (and, more precisely, of Corol-
lary 5.2) is that the α-simulation protocol from Theorem 4.8 has optimal number of players, up
to constants.

Corollary 5.4. Let ` ∈ {1, . . . , log k}, and α ∈ (0, 1). Then, any `-bit public-coin (possibly adap-
tive) α-simulation protocol for k-ary distributions must have n = Ω(k/2`) players.

Proof. Let π be any `-bit α-simulation protocol with n players; by Theorem 5.1, and analogously
to Corollary 5.2 we have that π implies an `-bit (k, ε, 1/3)-learning protocol for n′ = O

(
n · k/ε2)

players.5 (Moreover, the resulting protocol is adaptive, private-, pairwise-, or public-coin, re-
spectively, whenever π is.) However, as shown in Appendix B (Theorem B.1), any `-bit public-
coin (possibly adaptive) (k, ε, 1/3)-learning protocol must have Ω

(
k2/(2`ε2)

)
players. It follows

that n must satisfy n & k/2`, as claimed.

Remark 5.5. We note that the learning upper bound of Corollary 5.2 appears to be established
in [HMÖW18] as well (with however, to the best of our knowledge, completely different tech-
niques). The authors of [HÖW18a] also describe a distributed protocol for distribution learning,
but their criterion is the `2 distance instead of total variation.6 Finally, our learning lower bound
(Appendix B), invoked in the proof of Corollary 5.4 above, is established by adapting a similar
lower bound from [HÖW18a] which again applies to learning in the `2 metric.

5.2 Is distributed simulation essential for distributed inference?

In the previous subsection, we saw that it is easy to derive distributed learning and testing pro-
tocols from distributed sampling. However, the optimality of simulate-and-infer for uniformity
testing using private-coin protocols is unclear. In fact, a natural question arises: Is the simulate-
and-infer approach always optimal? Note that such an optimality would have appealing im-
plementation consequences, where one need not worry about the target inference application
when designing the communication protocol – the communication protocol will simply enable

5Improving the probability of success from 3/5 to 1/3 can be achieved by standard arguments, with at most a
constant factor blowup in the number of players.

6We note that, based on a preliminary version of our manuscript on arXiv, the `2 learning upper bound
of [HÖW18a] was updated to use a “simulate-and-infer” protocol as well.
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distributed simulation and the referee can implement the specific inference algorithm needed.
A similar result, known as Shannon’s source-channel separation theorem, has for instance al-
lowed for development of compression algorithms separately from the error-correcting codes
for noisy channels. Unfortunately, optimality of simulate-and-infer can be refuted by the fol-
lowing simple example:

Observation 5.6. In the distributed setting model (n players, and ` = 1 bit of communication
per player to the referee), testing whether a distribution over [k], promised to be monotone, is
uniform vs. ε-far from uniform can be done with n = O(1/ε2) (moreover, this is optimal).

Sketch. Optimality is trivial, since that many samples are required in the non-distributed setting.
To see why this is enough, recall that a monotone distribution p ∈ ∆([k]) is ε-far from uniform
if, and only if, p({1, . . . , k/2}) > p({k/2 + 1, . . . , k}) + 2ε. Therefore, we only need n = O(1/ε2)
players, where each player sends 1 if their sample was in {1, . . . , k/2} and 0 otherwise.

However, this counter-example is perhaps not satisfactory since the inference problem itself
was compressible since the dimension of the parameter space was increased artificially.7 In fact,
it is natural to consider an extension of simulate-and-infer where we first compress the obser-
vation to capture the effective dimension of the underlying parameter space. To formally define
such compressed simulate-and-infer schemes, we must first define a counterpart of sufficient
statistic that will be relevant here.

LetP denote an inference problem (for instance, the distribution learning and the uniformity
testing problem of the previous section) and n(P) denote the minimum number of independent
samples required to solve it, namely its sample complexity. Note that the description of the prob-
lem P includes the observation alphabet X , the loss function used to evaluate the performance,
and the required performance. For a (fixed, deterministic) mapping f on X , denote by Pf the
problem where we replace each observed sample X with f(X).

Definition 5.7 (The size of a problem). A problem P is said to be compressible to ` bits if there
exists a mapping f : X → {0, 1}` such that n(Pf ) = n(P). For such a function f with ` ≤ log |X |,
we call f(X) a compressed statistic.

The size |P| of a problem P is then defined as the least ` such that P is compressible to `. If a
mapping f attains |P|, we call f a maximally compressed statistic for P .

Example 5.8. For the uniformity testing problem T u(k, ε) considered in the previous section, we
must have

|T u(k, ε)| ≥ log k − log 1
1− ε.

The proof follows by noting that for each mapping f with range cardinality k(1− ε), we can find
a distribution Q on [k] that is ε-far from uniform, yet f(X) is uniform under Q.

A compressed simulate-and-infer scheme then proceeds by replacing the original observa-
tion Xj by its maximally compressed sufficient statistic f(Xj) at player j and then applying
simulate-and-infer for f(X). Note that this new scheme, too, has the appealing feature that
we can use our distributed simulation protocol as a black-box communication step to enable
distributed inference. But are such compressed simulate-and-infer schemes optimal? Formally,

7That is, the inference task was only “superficially” parameterized by k, but was actually a task on {0, 1} and entails
only estimating the bias of a coin in disguise.
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Question 5.9 (The Flying Pony Question). To solve P in the distributed setting, must the number
of parties n satisfy n = Ω

(
2|P|−` · n(P)

)
?

This essentially asks whether the most economical communication scheme to solve P is in-
deed to simulate n(P) samples from a maximally compressed statistic. Observe that we noted
the optimality of such a scheme for distribution learning, even when public-coin protocols are
allowed. Further, to the best of our knowledge, previous results on this topic, in essence, es-
tablish lower bounds to show the optimality of such simple schemes (cf. [BGM+16, DGL+17,
HÖW18a].

In spite of this evidence, we are able to refute this conjecture.8 Specifically, we exhibit an
inference task P over k-ary distributions which admits a 1-bit private-coin protocol with n =
o(2|P|n(P)) players.

Theorem 5.10. There is an inference taskP over k-ary distributions with 2|P| ·n(P) = Ω(k3/2), yet
for which there exists a 1-bit private-coin protocol with n = O(k) players.

Proof. We start by describing the inference task in question. For every even k ≥ 2, P consists in
distinguishing between the following two cases: either p = uk, the uniform distribution over [k];
or p is any of the 2k/2 possible uniform distributions over a subset of size k/2 defined as follows.
For a parameter θ ∈ {−1, 1}k/2, pθ is the distribution such that, for every i ∈ [k/2],

pθ(2i− 1) = 1 + θi
k

, pθ(2i) = 1− θi
k

and in particular dTV(pθ,uk) = 1/2 for every θ ∈ {−1, 1}k/2.
By an easy birthday-paradox type argument, we have that n(P) = Ω(

√
k) (and this is tight),

so to prove the first part of the statement it is enough to show that |P| = Ω(k). To see why this
is the case, set L := |P|, and consider any maximally compressed statistic f : [k]→ {0, 1}L for P .
This f immediately implies a (private-coin) L-bit (k, 1/2)-uniformity testing protocol: namely,
a protocol where each player first applies f to their sample, then sends the resulting L bits to
the referee. Further, by definition of a maximally compressed statistic, we have n(Pf ) = n(P) =
Θ(
√
k); as in the aforementioned L-bit protocol the referee only needs n(Pf ) samples from the

distribution on 2L, this therefore gives anO(
√
k · 2L−L) = O(

√
k) upper bound on the number of

players required.
However, peeking ahead, Theorem 1.7 shows that any L-bit protocol for P (even allowing for

public coins) must have Ω(k/2L/2) players.9 Combining this lower bound with the O(
√
k) upper

bound we have just established yields

k

2L/2
.
√
k , (5)

i.e., k . 2L. This, along with the lower bound on n(P), implies that 2|P| · n(P) = Ω(k ·
√
k) =

Ω(k3/2), as claimed.

To obtain a contradiction, it remains to prove the second part of the statement, i.e., to de-
scribe a 1-bit private-coin protocol with n = O(k) players. Consider the protocol where every of

8Thus implying that, even if wishes were horses, there would be no flying ponies.
9Indeed, this is because the inference task P described here is a specific case of the lower bound construction

underlying the proof of Theorem 1.7, obtained by taking ε = 1/2.
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the n players simply sends 1 if their sample is equal to 1, and 0 otherwise. If p = uk, then each
bit is independently 1 with probability 1/k. However, if p is one of the distributions uniform
over k/2 elements, then p1 ∈ {0, 2/k}, and therefore either each player’s bit is independently 1
with probability 0, or each player’s bit is independently 1 with probability 2/k. In either case, the
problem then amounts to distinguish a coin with bias 1/k to one with bias either 0 or 2/k; for
which n = O(k) players suffice, concluding the proof.

While we have refuted the optimality compressed simulate-and-infer, the strategy used in the
counter-example above still entails simulating samples from a fixed distribution at the referee.
This statistic, while compressed form of the original problem, is not a compressed sufficient
statistic as it mandates a higher number of samples in the centralized setting. We call such in-
ference protocols that entail simulate-and-infer for some compressed statistic of the problem10

generalized simulate-and-infer ; the optimality of generalized simulate-and-infer is unclear, in
general. For our foregoing example of uniformity testing, it is not even clear whether there is a
private-coin protocol that requires fewer players than the vanilla simulate-and-infer scheme. In-
terestingly, we can provide a public-coin protocol that outperforms simulate-and-infer for uni-
formity testing and show that it is optimal. This is the content of the next section.

6 Public-Coin Uniformity Testing

In this section, we consider public-coin protocols for (k, ε)-uniformity testing and establish the
following upper and lower bounds for the required number of players.

Theorem 6.1. For 1 ≤ ` ≤ log k, there exists an `-bit public-coin (k, ε)-uniformity testing protocol
for n = O

(
k

2`/2ε2

)
players.

Note that this is much fewer than theO(k3/2/(2`ε2)) players required using private-coin pro-
tocols in Corollary 5.3. In fact, this is optimal, being the least number of players (up to constant
factors) needed for any public-coin protocol:

Theorem 6.2. For 1 ≤ ` ≤ log k, any `-bit public-coin (k, ε)-uniformity testing protocol must have
n = Ω

(
k

2`/2ε2

)
players.

We establish Theorem 6.1 and Theorem 6.2 in Sections 6.1 and 6.2, respectively. Before delv-
ing into the proofs, we note that the results for uniformity testing imply similar upper and lower
bounds for the more general question of identity testing, where the goal is to test whether the
unknown distribution p is equal to (versus ε-far from) a reference distribution q known to all the
players.

Corollary 6.3. For 1 ≤ ` ≤ log k, and for any fixed q ∈ ∆([k]), there exists an `-bit public-coin
(k, ε,q)-identity testing protocol for n = O

(
k

2`/2ε2

)
players. Further, any `-bit public-coin (k, ε,q)-

identity testing protocol must have Ω
(

k
2`/2ε2

)
players (in the worst case over q).

We describe this reduction (similar to that in the non-distributed setting) in Appendix A, fur-
ther detailing how it actually leads to the stronger notion of “instance-optimal” identity testing
in the sense of Valiant and Valiant [VV17].

10This need not be a compressed sufficient statistic.
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6.1 Upper bound: public-coin protocols

This section is dedicated to the proof of Theorem 6.1. We actually provide and analyze two differ-
ent protocols achieving the stated upper bound: the first, in Section 6.1.1, is remarkably simple,
and, moreover, is “smooth” – that is, no player’s output depends too much on any particular
symbol from [k]. However, this first protocol has the inconvenience of requiring a significant
amount of public randomness, Θ(k · `) = Ω(k) bits.

To address this, we provide in Section 6.1.2 a different protocol requiring the optimal number
of players, too, but necessitating much less randomness, only Θε(2` log k) = Oε,`(log k) bits.11 On
the other hand, this second protocol is slightly more complex and highly “non-smooth” (specif-
ically, the output of each player entirely depends on only ` symbols).

6.1.1 A simple “smooth” protocol

The protocol will rely on a generalization of the following observation: if p is ε-far from uniform,
then for a subset S ⊆ [k] of size k

2 generated uniformly at random, we have p(S) = 1
2 ± Ω(ε/

√
k),

with constant probability. Of course, if p is uniform, then p(S) = 1
2 with probability one. Further,

note that this fact is qualitatively tight: for the specific case of p assigning probability (1 ± ε)/k
to each element, the bias obtained will be 1

2 ±Θ(ε/
√
k) with high probability.

As a warm-up, we observe that the above claim immediately suggests a protocol for the case
` = 1: The n players, using their shared randomness, agree on a uniformly random subsetS ⊆ [k]
of size k/2, and send to the referee the bit indicating whether their sample fell into this set.
Indeed, if p is ε-far from uniform, with constant probability all corresponding bits will be (ε/

√
k)-

biased, and in this case the referee can detect it with n = O(k/ε2) players.12

The claim in question, although very natural, is already non trivial to establish due to the de-
pendencies between the different elements randomly assigned to the set S. We refer the reader
to [ACFT18, Corollary 15] for a proof involving anticoncentration of a suitable random variable,
Z :=

∑
i∈[k](pi − 1/k)Xi, with X1, . . . , Xk being (correlated) Bernoulli random variables sum-

ming to k/2. At a high-level, the argument goes by analyzing the second and fourth moments of
Z, and applying the Paley–Zygmund inequality.

For our purposes, we need to show a generalization of the aforementioned claim, consider-
ing balanced partitions into L := 2` pieces instead of 2. To do so, we first set up some notation.
Let L < k be an integer; for simplicity and with little loss of generality, assume that L divides
k. Further, with Y1, . . . , Yk independent and uniform random variables on [L], let random vari-
ablesX1, . . . , Xk have the same distribution as Y1, . . . , Yk conditioned on the event that for every
r ∈ [L],

∑k
i=1 1{Yi=r} = k

L . Note that eachXi, too, is uniform on [L], butXis are not independent.
For p ∈ ∆([k]), define random variables Z1, . . . , ZL as follows:

Zr :=
k∑
i=1

pi1{Xi=r} . (6)

Equivalently, (Z1, . . . , ZL) correspond to the probabilities (p(S1), . . . ,p(SL)) where S1, . . . , SL is
a uniformly random partition of [k] into L sets of equal size.

11Note that 2` log k ≤ k` for every 1 ≤ ` ≤ k.
12To handle the small constant probability, it suffices to repeat this independently constantly many times, on dis-

joint sets of O(k/ε2) players.
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Theorem 6.4. For the (random) distribution q = (Z1, . . . , ZL) over [L] induced by (Z1, . . . , ZL)
above, the following holds: (i) if p = u, then ‖q − uL‖2 = 0 with probability one; and (ii) if
`1(p,u) > ε, then

Pr
[
‖q − uL‖22 >

ε2

k

]
≥ c .

for some absolute constant c > 0.

The proof of this theorem is quite technical and is deferred to Appendix C. We now explain
how it yields a protocol with the desired guarantees (i.e., matching the bounds of Theorem 6.1).
By Theorem 6.4, setting L = 2` we get that with constant probability the induced distribution q
on [L] is either uniform (if p was), or at `2 distance at least ε′ from uniform, where ε′ :=

√
ε2/k.

However, testing uniformity vs. (γ/
√
L)-farness from uniformity in `2 distance, over [L], has

sample complexity O(
√
L/γ2) (see e.g. [CDVV14, Proposition 3.1] or [CDGR17, Theorem 2.10]),

and for our choice of γ :=
√
Lε′ ∈ (0, 1), we have

√
L

γ2 =
√
L

Lε′2
= k√

Lε2
= k

2`/2ε2 , (7)

giving the bound we sought. This is the idea underlying the following result:

Corollary 6.5. For 1 ≤ ` ≤ log k, there exists an `-bit public-coin (k, ε)-uniformity testing protocol
for n = O

(
k

2`/2ε2

)
players, which uses O(`k) bits of randomness.

Proof. The protocol proceeds as follows: Let m = Θ(1) be an integer such that (1 − c)m ≤ 1/6,
where c is the constant from Theorem 6.4; define δ := 1/(6m). Let N = Θ(k/(2`/2ε2)) be the
number of samples sufficient to test (ε/

√
k)-farness in `2 distance from the uniform distribution

over [L], with failure probability δ (as guaranteed by (7)). Finally, let n := mN = Θ(k/(2`/2ε2)).
Given n players, the protocol divides them into m disjoint batches of N players, and each group
acts independently as follows:

• Using their shared randomness, the players choose uniformly at random a partition Π of
[k] into subsets of size k/2`.

• Next, they send to the referee the ` bits indicating which part of the partition their observed
sample fell in.

The referee, receiving these N messages (which correspond to N independent samples of the
distribution q ∈ ∆

(
[2`]
)

induced by p on Π) runs the `2 uniformity test, with failure probability δ

and distance parameter ε/
√
k. After running these m tests, the referee rejects if any of the batch

is rejected, and accepts otherwise.
By a union bound, all these m tests will be correct with probability at least 1 − mδ = 5/6.

If p = uk, then all m batches generate samples from the uniform distribution on [L], and the
referee returns accept with probability at least 5/6. However, if p is ε-far from uniform then with
probability at least 1−(1−c)m ≥ 5/6 at least one of them groups will choose a partition such that
the corresponding induced distribution on [L] is at `2 distance at least ε/

√
k from uniform; by a

union bound, this implies the referee will return reject with probability at least 1− 2 · 1/6 = 2/3.
The bound on the total amount of randomness required comes from the fact that m = Θ(1)

independent partitions of [k] into L := 2` are chosen and each such partition can be specified
using O(log(Lk)) = O(k · `) bits.
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Note that the protocol underlying Corollary 6.5 is “smooth,” in the sense that each player’s
output is the indicator of a set of k/2` elements, which for constant values of ` is Ω(k).

6.1.2 A randomness-efficient optimal protocol

We now provide our second optimal public-coin protocol, which albeit less simple than that
of the previous section is much more randomness-efficient. We start with the case ` = 1 (ad-
dressed in Proposition 6.8 below), before generalizing to an arbitrary ` ≥ 1 – the generalization
is nontrivial and uses a more involved protocol. Before we present our actual scheme, to help
the reader build heuristics, we present a simple, albeit non-optimal, scheme.

Proposition 6.6 (Warmup). There exists a 1-bit public-coin (k, ε)-uniformity testing protocol for
n = O

(
k log(1/ε)/ε3), which uses O((log k)/ε) bits of randomness.

Proof. The starting point of the protocol is the straightforward observation that if p is ε-far from
uniform then at least an Ω(ε) fraction of the domain must have an Ω(ε)/k deviation from uni-
form. Indeed, consider a p ∈ ∆([k]) such that dTV

(
p,u[k]

)
≥ ε. By contradiction, suppose that

there are only k′ < ε
2 · k elements such that pi < (1− ε

2) · 1
k . Then,

dTV

(
p,u[k]

)
=

∑
i:pi<1/k

(1
k
− pi

)
≤ k′ · 1

k
+ (k − k′) · ε2k <

ε

2 + ε

2 = ε

contradicting the assumption that p was ε-far from uniform. Therefore,

|
{
i ∈ [k] : pi < (1− ε

2) · 1
k

}
| ≥ ε

2 · k. (8)

Next, we recall the well-known fact that a coin with bias 1/k can be distinguished from another
with bias (1 − ε/2)/k with probability13 1 − δ using ck log(1/δ)/ε2 independent coin tosses for
some constant c. Therefore, any i ∈ [k] with pi < (1 − ε/2)/k were known to the players, then
testing if its probability is 1/k or (1 − ε/2)/k will require ck log 1/δ)/ε2 players simply by using
1{Xj=i} as communication for player j.

We use this observation to build our protocol. Specifically, we divide the players into m dis-
joint batches of size n′ = ck log(1/δ)/ε2 players; we will specifym and δ later. We assign a random
element i to each batch, generated uniformly from [k] using public randomness. Then, the par-
ties in the batch apply the aforementioned test to distinguish if the probability of the selected i
is 1/k or (1 − ε/2)/k. We accept u if all the batches accepted 1/k as the probability of their re-
spectively assigned is; else we reject u. Note that since each batch’s selected i lies in the desired
set in (8) with probability at least ε/2, with probability greater than 9/10 at least one batch will
be assigned an i in the desired set if the number of batches satisfies

m ≥ 5
ε
.

When the underlying distribution is uniform, the protocol will make an error only if one of the
test for one of the batches fails, which can happen with probability less than mδ ≤ 1/10 if

δ ≤ 1/(10m).
13That is, denoting the two distributions by P and Q, we can find a subset A of sequences in {0, 1}n such that

Pn(A) ≥ 1− δ and Qn(A) ≤ δ.
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On the other hand, if the underlying distribution is ε-far from uniform, then the test will fail
only if either no i in the desired set was selected or if the protocol failed for an i in the desired
set; the former happens with probability less than 1/10 and the latter with probability less than
1/10m when we choose δ = 1/10m. Thus, the overall probability of error in this case is less
than 2/10, whereby we have an (k, ε)-uniformity testing protocol using mn′ = 5ck log(50/ε)/ε3

players. Moreover, the total number of random bits required is O(m log k), as claimed.

Improving on the warmup protocol using Levin’s work investment strategy. The main issue
with the proof of Proposition 6.6 is the use of a “reverse” Markov style argument to identify the
i to focus on. This approach is inherently wasteful, as can be seen by considering the two ex-
tremes cases of distribution p such that dTV(p,u) > ε: First, when a constant fraction of the
elements have probability (1 − Ω(ε))/k and the rest have probability more than 1/k, in which
case we only need m = O(1) batches to find such an element i and O

(
k/ε2) players per batch

to detect the bias. Second, when a fraction O(ε) of the elements have probability 0 and the rest
have probability more than 1/k, in which case we need m = O(1/ε) batches to find such an ele-
ment, but now only O(k/ε) players per batch to detect the bias. In both cases, the total number
of players should be O

(
k/ε2), in contrast to the O

(
k log 1/ε/ε3) of the scheme described above.

To circumvent this difficulty, we take recourse to a technique known as Levin’s work investment
strategy; see, for instance, [Gol14, Appendix A.2] for a review (cf. [Gol17, Section 8.2.4]). Heuris-
tically, this technique allows us to identify an appropriate “scale” and invests matching “work”
effort to it. Formally, we have following lemma:

Lemma 6.7 ([Gol14, Fact A.2]). Consider a random variable X taking values in X , a mapping
q : X → [0, 1], and ε ∈ (0, 1]. Suppose that E[q(X)] > ε, and let L := dlog(2/ε)e. Then, there exists
j∗ ∈ [L] such that Pr

[
q(X) > 2−j∗

]
> 2j∗ε/(L+ 5− j∗)2.

The next result follows upon modifying the warmup protocol by using this lemma to decide
on the size and the number of batches.

Proposition 6.8. There exists a 1-bit public-coin (k, ε)-uniformity testing protocol forn = O
(
k/ε2),

which uses Õ((log k)/ε) bits of randomness.

Proof. Consider a p that is ε-far from uniform and set L := dlog(2/ε)e. We apply Lemma 6.7 to
the function q : [k]→ [0, 1] given by

q(i) := k

(1
k
− pi

)
1{pi<1/k}.

Note that for a uniformly distributed X, we have

E[q(X)] =
k∑
i=1

1
k
q(i) = dTV(p,u) > ε.

Therefore, by Lemma 6.7, there exists j∗ ∈ [L] such that

Pr
i∼u

[
pi <

1
k
− 2−j∗

k

]
> 2j∗ ε

(L+ 5− j∗)2 . (9)
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We now proceed in a similar manner as the warmup protocol, with one batch invested for each
j ∈ [L]. Specifically, consider L batches of players with the j-th batch comprising nj := mj ·
O
(
22jk · log(1/δj)

)
players; both quantities δj and mj will be specified later. The jth batch as-

sumes that j ∈ [L] will satisfy (9) and further divides its assigned set of players into mj mini-
batches. Each mini-batch selects an i uniformly from [k] and applies the previously mentioned
test to distinguish if the probability of i is 1/k or (1 − 2−j)/k with probability (1 − δj). This, as
before, requires the assigned O

(
22jk log(1/δj)

)
players. Note that if

mj ≥ 5(L+ 5− j)2/(2jε),

whenever j satisfies (9), with probability more than 9/10 at least one of the mini-batches as-
signed to j will select an i for which pi < (1 − 2−j)/k. Our uniformity testing protocol is as
before:

Accept uniform if every mini-batch of every batch accepts 1/k as the probability of their re-
spectively assigned elements; else declare ε-far from uniform.

If the underlying distribution is indeed uniform, the protocol will reject it when at least one
of the mini-batches erroneously rejects 1/k, an event which occurs with probability at most

L∑
j=1

mjδj ≤
1
10

L∑
j=1

1
(L+ 5− j)2 <

1
10
∑
j≥5

1
j2 <

1
40 ,

when we select
δj ≤

1
10(L+ 5− j)2mj

.

Note that this choice of δj depending on j is important for omitting the extra log(1/ε) cost that
appeared in the warmup protocol.

If the underlying distribution is ε-far from uniform, an error occurs if, for every j, no mini-
batch of batch j selects an element i that satisfies (9) or if the mini-batch test fails. By construc-
tion, there exists a j that satisfies (9), and by our choice ofmj , all the mini-batches assigned to it
fails to select an i in the set of (9) with probability less than 1/10. On the other hand, the mini-
batch makes an error with probability less than δj < 1/40. Thus, the overall probability of error
in this case is less than 1/8. To conclude, the overall protocol makes an error with probability at
most 1/8 in both cases.
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Finally, we can bound the total number of players n required by the protocol as

n = c
L∑
j=1

mj · 22jk · log 1
δj

≤ ck

ε

L∑
j=1

(L+ 5− j)22j log 10(L+ 5− j)4

2jε

≤ O
(
k

ε

) L∑
j=1

(L+ 5− j)22j log 2j−L−5

L+ 5− j

≤ O
(
k

ε

)
2L

L∑
j′=5

(j′)22−j′ log(j′2j′)

≤ O
(
k

ε

)
2L

L∑
j′=5

(j′)22−j′ log j′ +O

(
k

ε

)
2L

L∑
j′=5

(j′)32−j′

≤ O
(
k

ε2

)
,

where the final bound uses
∑
j≥5 2−jjα log j = O(1) for every α. To conclude, note that the total

number of random bits required is O(log k) ·
∑L
j=1mj = O(log k · log2(1/ε)/ε).

Next, we move to the more general case when ` ≥ 1 bits of communication per player are
allowed and establish Theorem 6.1. While we build on the heuristics developed thus far, the form
of the protocol deviates. Instead of assigning one symbol to each mini-batch, we now assign a
subset of size s = 2` − 1 to each mini-batch; one `-bit sequence is reserved to indicate that none
of the symbol in the subset occured. The referee uses the symbols occuring in the subset to
distinguish uniform and ε-far from uniform, which can be done when conditional distributions
(i.e., given that the symbols lie in the subset) are separated in total variation distance. We use
Levin’s work investment strategy again to decide how many players must be assigned to each
subset. But now there is a new constraint: If a subset has small probability, then we need to
assign a large number of mini-batches to get symbols from it. However, we can circumvent this
difficulty by noting that if the subset has probability smaller than (1 − ε)s/k, we can anyway
distinguish the underlying distribution from uniform using O

(
k/(sε2)

)
players. Thus, we can

condition on the complementary event by adding extra O
(
k/(sα2)

)
players per batch and take

O(k/s) mini-batches to get at least one mini-batch assigned to a good subset. Note that under
the uniform distribution the conditional distribution given a subset of size s is uniform on [s].
Then, we can distinguish the conditional distributions using roughly14 O

(√
s/ε2) players. The

overall number of players is dominated by the players assigned for the conditional test and is
given by O

(
k/(2`/2ε2)

)
. We provide the formal proof next.

Theorem 6.9. Let ` ∈ {1, . . . , log k}. Then, there exists an `-bit public-coin (k, ε)-uniformity test-
ing protocol for n = O

(
k

2`/2ε2

)
players, which uses Oε(2` log k) bits of randomness.

14The good subset need not have the conditional distributions separated by exactly ε, but this is where we use
Levin’s work investment strategy to get an effective separation of ε.
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Proof of Theorem 6.9. Set L := dlog(2/ε)e and define q as in the proof of Proposition 6.8. For a
subset S ⊆ [k], denote by pS the conditional distribution

pSi =
pi1{i∈S}

p(S) ,

where p(S) =
∑
i∈S pi. Observe that if p = u, then for every subset S ⊆ [k] we have pSi = 1/|S|

for every i ∈ S. On the other hand, when p is ε-far from uniform, we have the following result:

Claim 6.10. Suppose dTV(p,u) > ε. For any 1 ≤ s ≤ k and S ⊆ [k] of size s chosen uniformly at
random, we have

ES
∑
i∈S

1{pi≤ 1
k}

(1
k
− pi

)
> ε · s

k
.

Proof. On expanding the expectation, we obtain

ES
∑
i∈S

1{pi≤ 1
k}

(1
k
− pi

)

= 1(k
s

) ∑
S⊆[k]:|S|=s

∑
i∈S

1{pi≤ 1
k}

(1
k
− pi

)
= 1(k

s

) k∑
i=1

∑
S⊆[k]:|S|=s

S3i

1{pi≤ 1
k}

(1
k
− pi

)

= 1(k
s

) k∑
i=1

1{pi≤ 1
k}

(1
k
− pi

) ∑
S′⊆[k]\i
|S′|=s−1

1 = 1(k
s

) k∑
i=1

1{pi≤ 1
k}

(1
k
− pi

)
·
(
k − 1
s− 1

)

= s

k

k∑
i=1

1{pi≤ 1
k}

(1
k
− pi

)
= s

k
· dTV(p,u) > ε · s

k
.

For brevity, set s := 2`− 1. Using Claim 6.10 together with Lemma 6.7 we get that there exists
j∗ ∈ [L] such that

Pr
S

∑
i∈S

1{ kpi
s
≤ 1

s

} (1
s
− pi ·

k

s

)
> 2−j∗

 > 2j∗ · ε

(L+ 5− j∗)2 . (10)

Note that the event on the left-side of the inequality above essentially bounds the total variation
distance between uS and pS when p(S) ≈ s/k. Therefore, in case players have access to such
a subset S, they can accomplish uniformity testing by applying a standard uniform test for a
domain of size s. Thus, as in the ` = 1 protocol, we can use a public randomness to select a
subset S randomly and assign it to an appropriate number of players; this constitutes one mini-
batch, and we need one mini-batch per j ∈ [L]. However, this will only work if the selected S has
p(S) ≈ s/k. To circumvent this difficulty, we use a separate test for checking closeness of p(S) to
s/k. Specifically, we once again use the fact that a coin with bias s/k can be distinguished from
another with bias outside the interval [(1− α)s/k, (1 + α)s/k with probability of error less than δ
using O

(
k log(1/δ)/(sα2)

)
independent coin tosses.
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Once we have verified that the set S has probability close to s/k, we can apply a standard
uniformity test. Indeed, we set α = 2−j∗/8, and once the test above has verified that p(S) ∈
[1 − 2−j∗/8, 1 + 2−j∗/8] · sk , the total variation distance of pS to uniformity can be bounded as
follows: Let vector p̃S be given by p̃Si = pik/s. Then, by the triangle inequality we get

dTV

(
pS ,uS

)
= 1

2‖p
S − uS‖1 ≥

1
2
(
‖p̃S − uS‖1 − ‖p̃

S − pS‖1
)
>

1
2
(
2−j∗ − ‖p̃S − pS‖1

)
.

Further,

‖p̃S − pS‖1 =
∑
i∈S

pi
∣∣∣∣ks − 1

p(S)

∣∣∣∣ ≤ 2−jk
4s · p(S) ≤ 2−j

3 ,

which gives

dTV(pS ,uS) ≥ 2−j

3 . (11)

Therefore, upon the first test verifying that p(S) is sufficiently close to s/k, we can proceed to
testing pS versus uS . To that end, we need sufficiently many samples from the pS , which we
generate using rejection sampling.

We have now collected all the components needed for our scheme. As in the ` = 1 case, set
parameters εj = 2−j/8, mj = (L + 5 − j)2/(2jε), and δj = 1/(10(L + 5 − j)2mj). Consider L
batches of players, with the jth batch comprising mj mini-batches of

nj = c1

(
k

sε2
j

log 1
δj

)
+ c2

(
k

s
log 1

δj

)
· c3

(√
s

ε2
j

log 1
δj

)

players each; the constants c1, c2, c3 will be set to get appropriate probability of errors. Each
mini-batch of the jth batch generates a random subset S of [k]. Each player in the mini-batch
communicates as follows: It sends the all-zero sequence of length ` to indicate if its observed
element is not in S and, otherwise, uses the remaining sequences of length ` to indicate which
of the s = 2` − 1 elements it has observed. The referee uses the communication from the first
(c1k log 1/δj/(sε2

j )) players of the mini-batch to check if the |p(S) − s/k| < εjs/k or not. If it
is not, the mini-batch fails. Else, the referee considers the communication from players that
did not send the all-zero sequence (i.e., those players that saw elements in S) and tests if the
conditional distribution pS is uniform on S or not. If it is not, the mini-batch fails; the referee
declares uniformity if none of the mini-batches declared failure.

The analysis of this protocol is completed in a similar manner to that of the ` = 1 protocol.
If the underlying distribution is uniform, the output is erroneous if at least one of the mini-
batches declared failure. This can happen in two ways: First, if the test based on communication
from the first set of c1k log(1/δj)/sε2

j players erroneously declared fail, an event that can happen
with probability δj/3 for an appropriately chosen constant c1. Second, if the first test passes,
but the uniformity test for pS based on the remaining remaining set of players fails, which can
happen either when there are less than c2

√
s/ε2

j log(1/δj) players that see samples from S, which
given that the first set has passed will fail with probability less than δj/3 for an appropriate c2,
or when the second test fails which for an appropriate c3 will happen with probability less than
δj/3 by Eq. (11). Thus, the overall probability of error is less than

∑L
j=1mjδj < 1/40.

If the underlying distribution is ε-far from uniform, the test will erroneously select the uni-
form if the referee makes an error for the mini-batches corresponding to j∗ guaranteed by (10).
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But this can only happen if either none of these mini-batches select an S satisfying the condi-
tion on the left-side of (10), which happens with probability less than 1/10 or a mini-batch that
selected an appropriate S failed the second test, which can happen with probability δj/3 ≤ 1/10.
Thus, the overall probability of error is less than 2/10.

We complete the proof by evaluating the number of players used by the protocol. As in the
proof for the ` = 1 case, we have that the total number of players n satisfies

n ≤
L∑
j=1

mjO

 k

sε2
j

log 1
δj

+ k√
sε2
j

(
log 1

δj

)2


≤
L∑
j=1

mjO

 k√
sε2
j

(
log 1

δj

)2


≤ O
(

k√
sε

)
2L

L∑
j=5

2−j(j)5(log j)2

≤ O
(

k

2
`
2 ε2

)
,

where we followed the same steps as the bound for ` = 1 case. To conclude, note that since each
subset S of size s requires log

(k
s

)
= O(2` log k

2` ) bits to specify, the total number of random bits
required is O(2` log k

2` ) ·
∑L
j=1mj = O(2` log k

2` · log2(1/ε)/ε).

6.2 Lower bound for public-coin protocols

We now establish a lower bound on the number of players n required for any `-bit public-coin
(k, ε)-uniformity testing protocol. We begin with the simpler setting of ` = 1 and establish The-
orem 6.2 for this special case, before moving to the more general case. The same construction is
used for both the restricted and the general case, but the simpler proof we present for the special
case does not yield the more general result.

Proposition 6.11. Any 1-bit public-coin (k, ε)-uniformity testing protocol must have n = Ω
(
k/ε2)

players.

Proof. Without loss of generality, we assume that k is even. We consider the standard “Paninski
construction”:15 For every θ ∈ {−1, 1}k/2, let

pθ(2i− 1) = 1 + 2εθi
k

, pθ(2i− 1) = 1− 2εθi
k

, ∀ i ∈ [k/2].

Note that each distribution pθ is at a total variation distance ε from the uniform distribution u
on [k]. Thus, any (k, ε)-uniformity testing protocol should be able to distinguish between any
distribution pθ and u. We will establish an upper bound on the average total variation distance
between pθ and u, whereby there must be at least one pθ satisfying the bound. The desired lower
bound for the number of players will then follow from the standard Le Cam’s two-point method
argument.

15This construction was given in [Pan08] to prove the lower bound for the sample complexity of uniformity testing
in the standard centralized setting.

31



We derive the aforementioned upper bound on average total variation distance for private-
coin protocols first. Specifically, consider a private-coin protocol for uniformity testing where,
as before, the 1-bit communication of player j is described by the channelWj : [k]→ {0, 1} such
that Wj(1|x) ∈ [0, 1] is the probability that player j sends 1 to the referee upon observing x. For
any 1 ≤ j ≤ n, it is immediate to see that, if u is the underlying distribution, the probability that
player j sends 1 to the referee is

ρu
j := 2

k

k/2∑
i=1

(
Wj(1|2i− 1) +Wj(1|2i)

2

)
,

while under pθ it is

ρθj := 2
k

k/2∑
i=1

(
Wj(1|2i− 1) +Wj(1|2i) + 2εθi (Wj(1|2i− 1)−Wj(1|2i))

2

)

= ρu
j + ε

k

k/2∑
i=1

θi (Wj(1|2i− 1)−Wj(1|2i)) .

Moreover, since each player gets an independent sample from the same distribution p ∈ {u} ∪
{pθ}θ∈{−1,1}k/2 , the observation of the referee r ∈ {0, 1}n is generated from a product distribu-
tion. Specifically, the bits communicated by the players are independent with the jth bit dis-
tributed as Bern(pu

j ) or Bern(pθj), respectively, when the underlying distribution of the sample
are u or pθ. Denoting by Ru and Rθ the distributions of the transmitted bits under u and pθ,
repectively, we have

dTV

(
Ru,Rθ

)2
≤ 1

2D
(
Rθ‖Ru

)
= 1

2

n∑
j=1

D
(
Bern(pθj)‖Bern(pu

j )
)

≤ 1
2

n∑
j=1

χ2(Bern(pθj),Bern(pu
j ))

= 1
2

n∑
j=1

(ρu
j − ρθj)2

ρu
j (1− ρu

j ) ,

where the first inequality is Pinsker’s inequality, the second inequality uses ln x ≤ (x−1). Further,
abbreviating for convenience αi,j := Wj(1|2i− 1) and βi,j := Wj(1|2i) for i ∈ [k/2] and j ∈ [n], to
bound the right-side we note that

(ρu
j − ρθj)2

ρu
j (1− ρu

j ) = 4ε2

k2
1

ρu
j (1− ρu

j )

k/2∑
i=1

θi (αi,j − βi,j)

2

= 4ε2

k2
1

ρu
j (1− ρu

j )

k/2∑
i,i′=1

θiθ
′
i (αi,j − βi,j)

(
αi′,j − βi′,j

)
.
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On taking expectation over θ, we obtain

Eθ

[
(ρu
j − ρθj)2

ρu
j (1− ρu

j )

]
= 4ε2

k2
1

ρu
j (1− ρu

j )

k/2∑
i,i′=1

Eθ
[
θiθ
′
i

]
(αi,j − βi,j)

(
αi′,j − βi′,j

)

= 4ε2

k2
1

ρu
j (1− ρu

j )

k/2∑
i=1

(αi,j − βi,j)2

= 4ε2

k2

∑k/2
i=1 (αi,j − βi,j)2

2
k

∑k/2
i=1

αi,j+βi,j

2

(
1− 2

k

∑k/2
i=1

αi,j+βi,j

2

) .
To bound the expression on the right-side further, we consider the case when 2

k

∑k/2
i=1

αi,j+βi,j

2 ≤
1/2; the other case can be handled similarly by symmetry. We have

∑k/2
i=1 (αi,j − βi,j)2

2
k

∑k/2
i=1

αi,j+βi,j

2

(
1− 2

k

∑k/2
i=1

αi,j+βi,j

2

) ≤ 2
∑k/2
i=1 (αi,j − βi,j)2

2
k

∑k/2
i=1

αi,j+βi,j

2

≤ 2k
∑k/2
i=1 |αi,j − βi,j | (αi,j + βi,j)∑k/2

i=1 (αi,j + βi,j)
≤ 2k max

1≤i≤k/2
|αi,j − βi,j | ≤ 2k,

where the previous inequality holds since αi,j−βi,j ∈ [−1, 1] for all i, j. Combining the foregoing
bounds yields

Eθ
[
dTV

(
Ru,Rθ

)2
]
≤ 4ε2

k
· n.

In particular, there exists a fixed θ for which dTV

(
Ru,Rθ

)2
≤ 4ε2n/k. By the two-point method

argument, the uniformity testing protocol can only distinguish u and pθ if dTV

(
Ru,Rθ

)
= Ω(1),

which yields n = Ω
(
k/ε2) as claimed.

Finally, to extend the result to public-coin protocols, note that the observation of the ref-
eree now includes U in addition to the communication. Denote by Ru

U and Rθ
U the distribution

of the communicated bits under u and pθ, respectively. Then the total variational distance be-
tween the distributions of the observation of the adversary under the two distributions is given

by EU
[
dTV

(
Ru
U ,Rθ

U

)2
]

. Therefore, it suffices to find a uniform upper bound for the expected

value of the total variation with respect to θ for different fixed values of the public randomness
U . This uniform bound can be shown to be 4ε2n/k by repeating the proof above for every fixed
U = u.

Moving now to the case of a general `, we can follow the argument above to obtain anO(ε2n2`/k)
upper bound for the expected total variation distance. However, this only yields an Ω(k/(2`ε2))
lower bound for n, which is off by a factor of 2`/2 from the desired bound of Theorem 6.1. The
slackness in the bound stems from the gap between the average total variation distance and
the total variation distance between the average pθ and u. Indeed, since the uniformity testing
protocol can distinguish pθ and u for every θ, it can also distinguish Eθ[pθ] and u. Note that the
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KL-divergence-based bound for total variation distance used above is not amenable to handling
the distance between a mixture of product distribution and a fixed product distribution. Instead,
we take recourse to an argument of Pollard [Pol03] which established, in essence, the following
result.

Lemma 6.12. For any two product distributions Pn = P1 × · · · × Pn and Qn = Q1 × · · · ×Qn on
the alphabet X ,

χ2(Qn, Pn) =
n∏
i=1

(1 + χ2(Qi, Pi))− 1.

For our application, we need to extend this to the case when the product distribution Pn is
replaced by a mixture of product distributions. To that end, we use the following result which is
a slight but crucial extension of this result, also described in [Pol03] (a similar observation was
used in [Pan08]); we include a proof for completeness.

Lemma 6.13. Consider a random variable Z such that for each Z = z the distribution Qnz is
defined as Q1,z × · · · ×Qn,z. Further, let Pn = P1 × · · · × Pn be a fixed product distribution. Then,

χ2(EZ [QnZ ], Pn) = EZZ′
[
n∏
i=1

(1 +Hi(Z,Z ′))
]
− 1,

where Z ′ is an independent copy of Z and, with ∆z
i denoting (Qi,z(Xi)− Pi(Xi))/Pi(Xi),

Hi(z, z′) = E
[
∆z
i∆z′

i

]
,

where the expectation is over Xi distributed according to Pi.

Proof. Using the definition of χ2-distance, we have

χ2(EZ [QnZ ], Pn) = EPn

[(
EZ
[
QnZ(Xn)
Pn(Xn)

])2]
− 1

= EPn

(EZ
[
n∏
i=1

(1 + ∆Z
i )
])2

− 1,

where the outer expectation is for Xn using the distribution Pn. The product in the expression
above can be expanded as

n∏
i=1

(1 + ∆Z
i ) = 1 +

∑
i∈[n]

∆Z
i +

∑
i1>i2

∆Z
i1∆Z

i2 + . . . ,

whereby we get

χ2(EZ [QnZ ], Pn) = EPn


1 +

∑
i

EZ
[
∆Z
i

]
+
∑
i1>i2

EZ
[
∆Z
i1∆Z

i2

]
+ . . .

2
− 1

= EPn

∑
i

EZ
[
∆Z
i

]
+
∑
j

EZ′
[
∆Z′
j

]
+
∑
i,j

EZ,Z′
[
∆Z
i ∆Z′

j

]
. . .

.
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Observe now that EPn [∆z
i ] = 0 for every z. Furthermore, Z is an independent copy of Z ′ and ∆Z

i

and δZj are independent for i 6= j. Therefore, the expectation on the right-side above equals

E

∑
i

Hi(Z,Z ′) +
∑
i1>i2

Hi1(Z,Z ′)Hi2(Z,Z ′) + . . .

 = E
[
n∏
i=1

(1 +Hi(Z,Z ′))
]
− 1,

which completes the proof.

We are now in a position to establish Theorem 6.2.

Proof of Theorem 6.2. As before, it suffices to derive a uniform upper bound for the total varia-
tion distance between the message distributions for private-coin protocols. In fact, it suffices
to consider deterministic protocols since for a fixed public randomness U = u, the protocol is
deterministic. We apply Lemma 6.13 to the distribution of the messages for a deterministic pro-
tocol; we retain the channel Wj notation from the ` = 1 proof with the understanding that it
denotes a deterministic map. Note that the messages are independent under uniform and un-
der pθ (for a fixed public randomness U ). For our setting, θ plays the role of Z in Lemma 6.13.
Note that under uniform observations, player j sends the message mj ∈ {0, 1}` with probability

ρu
j,m = 2

k

k/2∑
i=1

(
Wj(m|2i− 1) +Wj(m|2i)

2

)
,

and under pθ with probability

ρθj,m = ρu
j,m + ε

k

k/2∑
i=1

θi (Wj(m|2i− 1)−Wj(m|2i)) .

Therefore, the quantity ∆θ
i required in Lemma 6.13 is given by

∆θ
j = ε

∑k/2
i=1 θi(Wj(Mj |2i)−Wj(Mj |2i− 1))∑k/2
i=1(Wj(Mj |2i) +Wj(Mj |2i− 1))

,

where Mj is the random message sent under the uniform distribution. Consequently, we can
express Hj(θ, θ′) of Lemma 6.13, 1 ≤ j ≤ n, as

Hj(θ, θ′) = ε2

k
·

∑
m∈{0,1}`

∑
i1,i2∈[k/2]

θi1θ
′
i2

(Wj(m|2i1 − 1)−Wj(m|2i1)) (Wj(m|2i2 − 1)−Wj(m|2i2))∑k/2
i=1 (Wj(m|2i− 1) +Wj(m|2i))

= ε2

k
· θTHjθ

′,

where θT denotes the transpose of the vector θ ∈ {−1,+1}k/2 and Hj is an [k/2] × [k/2] matrix
with the (i1, i2)th entry given by

∑
m∈{0,1}`

(Wj(m|2i1 − 1)−Wj(m|2i1)) (Wj(m|2i2 − 1)−Wj(m|2i2))∑k/2
i=1 (Wj(m|2i− 1) +Wj(m|2i))

.
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Note that the matrixHj is symmetric (in fact, it has the outer product formAAT for an (k/2)× 2`
matrix A). Therefore, we obtain from Lemma 6.13 that

E
[
dTV

(
Eθ
[
Rθ
]
,Ru

)2
]
≤ 1

4E
[
χ2(Eθ

[
Rθ
]
,Ru)

]
= 1

4
(
Eθθ′

 n∏
j=1

(
1 + ε2

k
θTHjθ

′
)− 1

)
≤ 1

4
(
Eθθ′

[
e

nε2
k
θT H̄θ′

]
− 1

)
,

where we have used 1 + x ≤ ex and

H̄ = 1
n

n∑
j=1

Hj .

Thus, we need to bound the moment generating function of the random variable θT H̄θ′. We will
establish a sub-Gaussian bound using a by-now-standard bound that follows from transporta-
tion method. Specifically, we show the following:

Claim 6.14. Consider random vectors θ, θ′ ∈ {−1, 1}k/2 with each θi and θ′i distributed uniformly
over {−1, 1}, independent of each other and independent for different is. Then, for any symmetric
matrix H

lnEθθ′
[
eλθ

THθ′
]
≤ λ2‖H‖2F , ∀λ > 0,

where ‖·‖F denotes the Frobenius norm.

Before we prove the claim, we use it to complete our proof. Combining this claim with our
foregoing bound, we obtain

E
[
dTV

(
Eθ
[
Rθ
]
,Ru

)2
]
≤ 1

4

(
e

n2ε4
k2 ‖H̄‖

2
F − 1

)
≤ 1

4

(
e

n2ε4
k2

1
n

∑n

j=1‖Hj‖2
F − 1

)
,

where in the previous inequality we used the convexity of squared-norm. To complete the proof,
we show now that for every j ∈ [n], ‖Hj‖2F ≤ 2`. This is where we need to use the assumption
that the protocol is deterministic. Specifically, for every pair m,m′ ∈ {0, 1}`, let

Sm,m′ :=
{
i ∈ [k/2] : Wj(m|2i− 1) = Wj(m′|2i) = 1

}
∪
{
i ∈ [k/2] : Wj(m|2i) = Wj(m′|2i− 1) = 1

}
and

Sm := { i ∈ [k/2] : Wj(m|2i− 1) = 1 } ∪ { i ∈ [k/2] : Wj(m|2i) = 1 } =
⋃

m′∈{0,1}`

Sm,m′ .

It is then immediate to see that the Sm’s are disjoint and that

‖Hj‖2F ≤
∑
m,m′

∣∣Sm,m′∣∣2
|Sm| |Sm′ |

≤
∑
m,m′

∣∣Sm,m′ ∣∣
|Sm|

=
∑
m

∑
m′
∣∣Sm,m′ ∣∣
|Sm|

= 2` ,

whereby

E
[
dTV

(
Eθ
[
Rθ
]
,Ru

)2
]
≤ 1

4

(
e

n2ε42`

k2 − 1
)
.
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The proof of the theorem can now be completed as the proof for ` = 1 by first noting that the
same bound holds for the total variation distance even with public randomness, since we have
a uniform bound for each fixed realization of public randomness, and taking recourse to the
standard two-point argument.

It only remains to establish Claim 6.14. To that end, we use the following bound which can be
obtained by combining the transportation lemma with Marton’s transportation-cost inequality
(cf. [BLM13, Chapter 8]).

Lemma 6.15. Consider independent random variables X = (X1, . . . , Xn) and a function f such
that for every x, y

f(x)− f(y) ≤
n∑
i=1

ci(x)1{xi 6=yi} .

Then, setting v :=
∑n
i=1 E

[
c2
i (X)

]
, we have, for every λ > 0, lnE

[
eλf(X)

]
≤ λ2v

2 .

We apply this lemma to f(Z,Z ′) = ZTHZ ′, where H is a symmetric matrix and Z,Z ′ are
independent copies of {−1,+1}n-valued i.i.d. Rademacher vectors. In this case,

v = 2
n∑
i=1

E


Zi n∑

j=1
Hij

2
 = 2‖H‖2F ,

which completes the proof of the claim and thereby that of Theorem 6.2.
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A From uniformity to parameterized identity testing

In this appendix, we explain how the existence of any distributed protocol for uniformity testing
implies the existence of one for identity testing with roughly the same parameters, and further
even implies one for identity testing in the massively parameterized sense16 (“instance-optimal”
in the vocabulary of Valiant and Valiant, who introduced it [VV17]). These two results will be
seen as a straightforward consequence of [Gol16], which establishes the former reduction in the
standard non-distributed setting; and of [BCG17], which implies that massively parameterized
identity testing reduces to “worst-case” identity testing. Specifically, we show the following:

Proposition A.1. Suppose that there exists an `-bit protocol π for testing uniformity of k-ary dis-
tributions, with number of players n(k, `, ε) and failure probability 1/3. Then there exists an `-bit
protocol π′ for testing identity against a fixed k-ary distribution q (known to all players), with
number of players n(5k, `, 16

25ε) and failure probability 1/3.
Furthermore, this reduction preserves the setting of randomness (i.e., private-coin protocols

are mapped to private-coin protocols).

Proof. We rely on the result of Goldreich [Gol16], which describes a randomized mappingFq : ∆([k])→
∆([5k]) such that Fq(q) = u[5k] and dTV

(
Fq(p),u[5k]

)
> 16

25ε for any p ∈ ∆([k]) ε-far from q.17 In
more detail, this mapping proceeds in two stages: the first allows one to assume, at essentially
no cost, that the reference distribution q is “grained,” i.e., such that all probabilities q(i) are a
multiple of 1/m for some m = O(k). Then, the second mapping transforms a given m-grained
distribution to the uniform distribution on an alphabet of slightly larger cardinality. The result-
ing Fq is the composition of these two mappings.

Moreover, a crucial property of Fq is that, given the knowledge of q, a sample from Fq(p) can
be efficiently simulated from a sample from p; this implies the proposition.

Remark A.2. The result above crucially assumes that every player has explicit knowledge of the
reference distribution q to be tested against, as this knowledge is necessary for them to simulate
a sample from Fq(p) given their sample from the unknown p. If only the refereeR is assumed to
know q, then the above reduction does not go through, although one can still rely on any testing
scheme based on distributed simulation, as outlined in Section 5.1.

The previous reduction enables a distributed test for any identity testing problem using at
most, roughly, as many players as that required for distributed uniformity testing. However,
we can expect to use fewer players for specific distributions. Indeed, in the standard, non-
distributed setting, Valiant and Valiant in [VV17] introduced a refined analysis termed the instance-
optimal setting and showed that the sample complexity of testing identity to q is essentially cap-
tured by the 2/3-quasinorm of a sub-function of q obtained as follows: Assuming without loss
of generality q1 ≥ q2 ≥ . . .qk ≥ 0, let t ∈ [k] be the largest integer that

∑k
i=t+1 qi ≥ ε, and

let qε = (q2, . . . ,qt) (i.e., removing the largest element and the “tail” of q). The main result

16Massively parameterized setting, a terminology borrowed from property testing, refers here to the fact that the
sample complexity depends not only on a single parameter k but a k-ary distribution q.

17In [Gol16], Goldreich exhibits a randomized mapping that converts the problem from testing identity over do-
main of size k with proximity parameter ε to testing uniformity over a domain of size k′ := k/α2 with proximity
parameter ε′ := (1−α)2ε, for every fixed choice of α ∈ (0, 1). This mapping further preserves the success probability
of the tester. Since the resulting uniformity testing problem has sample complexity Θ

(√
k′/ε′

2), the blowup factor
1/(α(1− α)4) is minimized by α = 1/5.
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in [VV17] shows that the sample complexity of testing identity to q is upper and lower bounded
by max(‖qε/16‖2/3/ε2, 1/ε) and max(‖qε‖2/3/ε2, 1/ε), respectively.

However, it is not clear if the aforementioned reduction between identity and uniformity
of Goldreich preserves this parameterization of sample complexity for identity testing; in par-
ticular, the 2/3-quasinorm characterization does not seem to be amenable to the same type of
analysis as that underlying Proposition A.1. Interestingly, a different instance-optimal character-
ization due to Blais, Canonne, and Gur [BCG17] admits such a reduction, enabling us to obtain
the analogue of Proposition A.1 for this massively parameterized setting.

To state the result as parameterized by q (instead of k), we will need the following definition
of Φ(p, γ); see [BCG17, Section 6] for a discussion on basic properties of Φ(p, γ) and how it relates
to notions such as the sparsity of p and the functional ‖p−max

γ ‖ defined in [VV17]. For a ∈ `2(N)
and t ∈ (0,∞), let

κa(t) := inf
a′+a′′=a

(
‖a′‖1 + t‖a′′‖2

)
and, for p ∈ ∆(N) and any γ ∈ (0, 1), let

Φ(p, γ) := 2κ−1
p (1− γ)2 . (12)

It can be seen that, if p is supported on at most k elements, Φ(p, γ) ≤ 2k for all γ ∈ (0, 1). We are
now in a position to state our general reduction.

Proposition A.3. Suppose that there exists an `-bit protocol π for testing uniformity of k-ary dis-
tributions, with number of players n(k, `, ε) and failure probability 1/3. Then there exists an `-bit
protocol π′ for testing identity against a fixed distribution p (known to all players), with number
of players O

(
n(Φ(q, ε9), `, ε18))

)
and failure probability 2/5.

Further, this reduction preserves the setting of randomness (i.e., private-coin protocols are
mapped to private-coin protocols).

Proof. This strengthening of Proposition A.1 stems from the algorithm for identity testing given
in [BCG17], which at a high-level reduces testing identity to q to three tasks: (i) computing the
(ε/3)-effective support18 of q, Sq(ε), which can be done easily given explicit knowledge of q;
(ii) testing that the unknown distribution p puts mass at most ε/2 outside of Sq(ε) (which only
requires O(1/ε) players to be done with a high constant probability, say 1/30); and (iii) testing
identity of p and q conditioned on Sq(ε) with parameter ε/18, which can be done using rejection
sampling and Proposition A.1 withO

(
n(|Sq(ε)| , `, ε18)

)
players and success probability, say 2/3−

1/30, where the additional 1/30 error probability comes from rejection sampling. See Fig. 1 for
an illustration.

As shown in [BCG17, Section 7.2], we have |Sq(ε)| ≤ Φ(q, ε9), and thereby the claimed result,
since it follows that the approach above indeed yields an algorithm which is instance-optimal.
Technically, the claimed bound is obtained upon recalling that n(Φ(q, ε9), `, ε18)) = Ω(1/ε) us-
ing the trivial lower bound of Ω(1/ε) on uniformity testing, so that n(Φ(q, ε9), `, ε18)) + O(1/ε) =
O
(
n(Φ(q, ε9), `, ε18)

)
.

18Recall the ε-effective support of a distribution q is the minimal set of elements accounting for at least 1− ε prob-
ability mass of q.
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q(i),p(i)

i
k1 kεSq(ε)

ε

Figure 1: The reference distribution q (in blue; assumed non-increasing without loss of general-
ity) and the unknown distribution p (in red). By the reduction above, testing equality of p to q is
tantamount to (i) determining Sq(ε), which depends only on q; (ii) testing identity for the condi-
tional distributions of p and q given Sq(ε), and (iii) testing that p assigns at mostO(ε) probability
to the complement of Sq(ε).

B Distributed learning lower bound (for public-randomness adaptive
protocols)

Theorem B.1. For 1 ≤ ` ≤ log k, any `-bit public-coin (possibly adaptive) (k, ε, 1/3)-learning
protocol must have n = Ω

(
k2

2`ε2

)
players.

Proof. We will show that the `1 minimax rate is

inf
(W,δ)

inf
p̂

sup
p∈∆([k])

Ep‖p̂− p‖1 ≥ C ·

 k√
n(2` ∧ k)

∧ 1

 = C ·

√k

n
∨ k√

n2`
∧ 1


for some absolute constantC > 0, which implies the result. Note that since the collocated model
can simulate the distributed one, the term Ω(

√
k/n) in the lower bound, which dominates when

2` ≥ k, is an immediate consequence of the standard lower bound in the collocated case (and
holds without restriction on the range of n). Thus, it suffices to focus on the remaining case
2` < k.

In the argument below, we fix the realization shared randomness and restrict to deterministic
protocols. Our proof of lower bound uses standard argument to relate minimax risk to probabil-
ity of error in multiple hypothesis testing problem with uniform prior on the hypotheses. Since
for every public-coin protocol we must have a deterministic protocol with same probability of
error for the multiple hypothesis testing problem, there is no loss in restricting to deterministic
protocols.

First, we establish the rate Ω
(
k/
√
n2`

)
, assuming n ≥ k2/2`. (Recall that for n ≤ k2/2`, the

lower bound in the RHS above is 1.) We follow the proof of Han, Özgür, and Weissman [HÖW18b,
Proposition 1], with the necessary modifications to adapt it to `1 loss (instead of squared `2) and
remove the constraint that n ≥ k2/2`. (As in their proof, assume without loss of generality that k
is even.)
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To handle the dependences between the 2` outputted by any given player, we consider the
Poissonized observation model, where we instead of n players sending a message Yj in {0, 1}` we
havenplayers sending each a message Ỹj inN`, where each bit of the message is a (conditionally)
independent Poisson random variable: Ỹ n = (Ỹ1, . . . , Ỹn) ∈ (N`)n, with

∀j ∈ [n], ∀m ∈ [2`], Ỹj,i | bj−1 ∼ Poisson
(
Pr
[
Yj = m

∣∣∣ X, bj−1
])

where, for j ∈ [n], bj = (b1, . . . , bj) ∈ {0, 1}j is the (“side information”) tuple of bits with bj :=
1{∑2`

m=1 Ỹj,m=1
}; and for each j ∈ [n] (Ỹj,1, . . . , Ỹj,2`) are independent conditioned on bj−1. In

other terms, we replace the [2`]-valued message of player j by 2` different Poisson random vari-
ables, each with the right expectation (and, for technical reasons, with side information about
the messages sent some other players). As established in Lemma 1 of [HÖW18b], for distribu-
tion estimation a lower bound on the Poissonized model implies the same lower bound (up to
constant factors) for our original setting.

In order to prove the lower bound, we define the family of hard instances (which will be
random small perturbation of the uniform distribution uk). Letting U be uniformly distributed
in the hypercube {−1, 1}t (where t := k

2 ), we choose γ ∈ [0, 1] (suitably set later in the proof) and
let pU ∈ ∆([k]) be defined by its probability mass function

pU = 1
k

(1 + γU1, . . . , 1 + γUt, 1− γU1, . . . , , 1− γUt) .

This defines a class C ⊆ ∆([k]) of 2t distributions. Since clearly the `1 minimax risk over all k-
ary distributions is no less than that over C, it suffices to lower bound the later. We will rely on
the following lemma to first bound the mutual information between the tuple of Poissonized
messages Ỹ n and the unknown parameter U to estimate:

Lemma B.2 ([HÖW18b, Lemma 3]). The following upper bound holds:

I
(
U ; Ỹ n

)
≤ 2

n∑
j=1

2`∑
m=1

EU,U ′
[

(PrpU [Yj = m | Xj , b
j−1]− PrpU′ [Yj = m | Xj , b

j−1])2

EU PrpU [Yj = m | Xj , bj−1]

]

where U ′ is an independent copy of U .

To handle the right-hand-side of the above bound, observe that any randomized strategy
W : [k]→ {0, 1} can be identified with a vector w ∈ [0, 1]k. For every such w, we have

EU,U ′
(EpUW (Y | X)− Ep′UW (Y | X))2

EUEpUW (Y | X) = k
wTEU,U ′ [(pU − pU ′)(pU − pU ′)T ]w

wT1

≤ k4γ2

k2 ·
wTw

wT1 ≤
4γ2

k
(13)

the last step since ‖w‖∞ ≤ 1. We will use this later on, after relating this mutual information

I
(
U ; Ỹ n

)
to the quantity we are trying to analyze, the `1 minimax risk over our class C – which

we do next. It is not hard to show, via a standard “Assouad’s Lemma”-type argument that this `1
minimax risk can be lower bounded as

inf
p̂

sup
p∈C

Ep‖p̂− p‖1 ≥ c · γ inf
Û

Pr
[

dist
(
Û , U

)
≥ t/5

]
(14)
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where dist(·, ·) is the unnormalized Hamming distance and U is a uniform random vector in
{−1, 1}t and c > 0 is an absolute constant. (This is another part where we depart from the argu-
ment of Han, Özgür, and Weissman, concerned with the squared `2 loss.) Invoking Lemma B.2,
along with (13) and the same distance-based Fano’s inequality as in [HÖW18b, Lemma 2], we
can conclude that

inf
Û

Pr
[

dist
(
Û , U

)
≥ t/5

]
≥ 1− I (U ;Y n) + ln 2

t/8 ≥ 1−
2 · n2` · 4γ2

k + ln 2
t/8 = 1− 168γ2n2` + k ln 2

k2 .

The RHS will be at least say 1/2, for large enough k, by setting γ2 := c′ · k2

n2` for a constant c′ > 0
sufficiently small (but independent of k, n, `). For this choice of γ, (14) becomes

inf
p̂

sup
p∈C

Ep‖p̂− p‖1 ≥
c

2γ = C · k√
n2`

(where C := c·
√
c′

2 > 0), concluding the proof. (Note that the constraint n ≥ k/2` was used in the
setting of γ2, to ensure that γ ∈ [0, 1].)

Finally, we are left with the case n ≤ k2/2`, where we must show that the rate is Ω(1). We can
prove it by reducing it to the previous case: namely, divide the domain [k] into k′ :=

√
2`n < k

disjoint intervals of equal size (assuming for simplicity, and with little loss of generality, that
k′ divides k). Apply now the previous construction to the induced domain over k′ elements,
setting the distribution pU to be uniform on each of the k′ intervals. This leads to the setting of
γ2 = k′2

n2` ∈ [0, 1], and a lower bound on the risk of Ω(γ) = Ω(1).

C Proof of Theorem 6.4

In this appendix, we prove Theorem 6.4, stating that taking a random balanced partition of the
domain inL ≥ 2 parts preserves the `2 distance between distributions with constant probability.
Note that, as mentioned in Section 6.1.1, the special case of L = 2 was proven in [ACFT18]. In
fact, the proof for general L is similar to the proof in [ACFT18], but requires some additional
work. We provide a self-contained proof here for easy reference.

We begin by recall the Paley–Zigmund inequality, a key tool we shall rely upon.

Theorem C.1 (Paley–Zygmund). Suppose U is a non-negative random variable with finite vari-
ance. Then, for every θ ∈ [0, 1],

Pr[U > θE[U ] ] ≥ (1− θ)2E[U ]2

E[U2] .

We will prove a more general version of Theorem 6.4, showing that the `2 distance to any
fixed distribution q ∈ ∆([k]) is preserved with a constant probability.19 Let random variables
X1, . . . , Xk be as in Theorem 6.4; in particular, each Xi is distributed uniformly on [L] and for
every r ∈ [L],

∑k
i=1 1{Xi=r} = k

L .

19For this application, one should read the theorem statement with δ := p− q.
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Theorem C.2. Suppose 2 ≤ L < k is an integer dividing k, and fix δ ∈ Rk such that
∑
i∈[k] δi = 0.

For random variables X1, ..., Xk above, let Z = (Z1, . . . , ZL) ∈ RL with

Zr :=
k∑
i=1

δi1{Xi=r}, r ∈ [L] .

Then, there exists a constant c > 0 such that

Pr
[
‖Z‖2 >

1
2 · ‖δ‖2

]
≥ c.

Proof of Theorem C.2. As in [ACFT18, Theorem 14], the gist of the proof is to consider a suitable
non-negative random variable (namely, ‖Z‖22) and bound its expectation and second moment
in order to apply the Paley–Zygmund inequality to argue about anticoncentration around the
mean. The difficulty, however, lies in the fact that bounding the moments of ‖Z‖2 involves han-
dling the products of correlated L-valued random variables Xi’s, which is technical even for the
case L = 2 considered in [ACFT18]. For ease of presentation, we have divided the proof into
smaller results.

Lemma C.3 (Each part has the right expectation). For every r ∈ [L],

E[Zr] = 0 .

Proof. By linearity of expectation,

E[Zr] =
k∑
i=1

δiE
[
1{Xi=r}

]
= 1
L

k∑
i=1

δi = 0.

Lemma C.4 (The `22 distance to uniform of the flattening has the right expectation). For every
r ∈ [L],

VarZr = E
[
Z2
r

]
= 1
L
‖δ‖22

(
1− 1

L
+ L− 1
L(k − 1)

)
≥ 1

2L‖δ‖
2
2 .

In particular, the expected squared `2 norm of Z is

E
[
‖Z‖22

]
= E

[
L∑
r=1

Z2
r

]
≥ 1

2‖δ‖
2
2 .

Proof. For a fixed r ∈ [L], using the definition ofZ, the fact that
∑k
i=1 1{Xi=r} = k

L , and Lemma C.3,
we get that

Var[Zr] = E
[
Z2
r

]
= E

( k∑
i=1

δi1{Xi=r}

)2 =
∑

1≤i,j≤k
δiδjE

[
1{Xi=r}1{Xj=r}

]

=
k∑
i=1

δ2
i E
[
1{Xi=r}

]
+ 2

∑
1≤i<j≤k

δiδjE
[
1{Xi=r}1{Xj=r}

]
.
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Since the Xi’s – while not independent – are identically distributed, it is enough by symmetry to
compute E

[
1{Xk=r}

]
and E

[
1{Xk−1=r}1{Xk=r}

]
. The former is 1/L; for the latter, note that

E
[
1{Xk−1=r}1{Xk=r}

]
= E

[
E
[
1{Xk−1=r}1{Xk=r}

∣∣∣ 1{Xk=r}
]]

= 1
L

Pr[Xk−1 = r | Xk = r ]

= 1
L

Pr
[
Xk−1 = r

∣∣∣∣∣
k−1∑
i=1

1{Xi=r} = k

L
− 1

]
= 1
L2 ·

k − L
k − 1 , (15)

where the final identity uses symmetry once again, along with the observation that

k−1∑
i=1

E

1{Xi=r}

∣∣∣∣∣∣
k−1∑
j=1

1{Xj=r} = k

L
− 1

 = k

L
− 1.

Putting it together, we get the result as follows:

Var[Zr] = 1
L

k∑
i=1

δ2
i + 1

L2 ·
k − L
k − 1 · 2

∑
1≤i<j≤k

δiδj = 1
L
‖δ‖22 −

1
L2

(
1− L− 1

k − 1

)
‖δ‖22

= 1
L
‖δ‖22

(
1− 1

L
+ L− 1
L(k − 1)

)
.

Lemma C.5 (The `22 distance to uniform of the flattening has the required second moment).
There exists an absolute constant C > 0 such that

E
[
‖Z‖42

]
≤ C‖δ‖42 .

Proof of Lemma C.5. Expanding the square, we have

E
[
‖Z‖42

]
= E

( L∑
r=1

Z2
r

)2 =
L∑
r=1

E
[
Z4
r

]
+ 2

∑
r<r′

E
[
Z2
rZ

2
r′

]
(16)

We will bound both terms separately. For the first term, we note that using [ACFT18, Equa-
tion(21)] with 1{Xi=r} in the role of Xi there, each term E

[
Z4
r

]
is bounded above by 19‖δ‖42/L

whereby

L∑
r=1

E
[
Z4
r

]
≤ 19‖δ‖42. (17)

However, we need additional work to handle the second term comprising roughlyL2 summands.
In particular, to complete the proof we show that each summand in the second term is less than
a constant factor times ‖δ‖42/L2.

Claim C.6. There exists an absolute constant C ′ > 0 such that∑
r<r′

E
[
Z2
rZ

2
r′

]
≤ C ′‖δ‖42 .
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Proof. Fix any r 6= r′. As before, we expand

E
[
Z2
rZ

2
r′

]
= E

( k∑
i=1

δi1{Xi=r}

)2( k∑
i=1

δi1{Xi=r′}

)2
=

∑
1≤a,b,c,d≤k

δaδbδcδdE
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
.

Using symmetry once again, note that the term E
[
X̃aX̃bX̃cX̃d

]
depends only on the number of

distinct elements in the multiset {a, b, c, d}, namely the cardinality |{a, b, c, d}|. The key obser-
vation here is that if {a, b} ∩ {c, d} 6= ∅, then 1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′} = 0. This will be
crucial as it implies that the expected value can only be non-zero if |{a, b, c, d}| ≥ 2, yielding a
1/L2 dependence for the leading term in place of 1/L.

E
[
Z2
rZ

2
r′

]
=

∑
|{a,b,c,d}|=2

δ2
aδ

2
bE
[
1{Xa=r}1{Xb=r′}

]
+

∑
|{a,b,c,d}|=3

δ2
aδbδcE

[
1{Xa=r}1{Xb=r′}1{Xc=r′}

]
+

∑
|{a,b,c,d}|=3

δaδbδ
2
cE
[
1{Xa=r}1{Xb=r}1{Xc=r′}

]
+

∑
|{a,b,c,d}|=4

δaδbδcδdE
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
. (18)

The first term, which we will show dominates, is bounded as∑
|{a,b,c,d}|=2

δ2
aδ

2
bE
[
1{Xa=r}1{Xb=r′}

]
= E

[
1{Xk−1=r}1{Xk=r′}

]
‖δ‖42 ≤

2
L2 ‖δ‖

4
2

where the inequality uses

E
[
1{Xk−1=r}1{Xk=r′}

]
= 1
L2 ·

k

k − 1 ≤
2
L2 ,

which in turn is obtained in the manner of (15).
For the second and the third terms, noting that

E
[
1{Xa=r}1{Xb=r′}1{Xc=r′}

]
=
∣∣∣δ2
aδbδc

∣∣∣ · 1
L3

k(k − L)
(k − 1)(k − 2) ,

and that ∑
|{a,b,c,d}|=3

δ2
aδbδc =

∑
1≤a,b,c≤k

δ2
aδbδc −

∑
a6=b

δ2
aδ

2
b − 2

∑
a6=b

δ3
aδb

with
∑

1≤a,b,c≤k δ
2
aδbδc =

(∑k
a=1 δ

2
a

) (∑k
a=1 δa

)2
= 0,

∑
a6=b δ

2
aδ

2
b ≤

∑
1≤a,b≤k δ

2
aδ

2
b = ‖δ‖42, and∑

a6=b δ
3
a |δb| ≤

∑
1≤a,b≤k δ

3
a |δb| ≤ ‖δ‖∞‖δ‖

3
3 ≤ ‖δ‖

4
2, we get

− 6
L3 ‖δ‖

4
2 ≤

∑
|{a,b,c,d}|=3

δ2
aδbδcE

[
1{Xa=r}1{Xb=r′}1{Xc=r′}

]
≤ 6
L3 ‖δ‖

4
2 .
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Finally, as E
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
= 1

L4
k2(k−L)2

(k−1)(k−2)(k−3)(k−4) ≤
10
L4 , similar manipula-

tions yield

− α

L4 ‖δ‖
4
2 ≤

∑
|{a,b,c,d}|=4

δaδbδcδdE
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
≤ α

L4 ‖δ‖
4
2

for some absolute constant α > 0. Gathering all this in (18), we get that there exists some abso-
lute constant C ′ > 0 such that∑

r<r′

E
[
Z2
rZ

2
r′

]
≤ C ′

∑
r<r′

1
L2 ‖δ‖

4
2 ≤

C ′

2 ‖δ‖
4
2 .

The lemma follows by combining the previous claim with (17).

We are now ready to establish Theorem 6.4. By Lemmas C.4 to C.5, we have E
[
‖Z‖22

]
≥ 1

2‖δ‖
2
2

and E
[
‖Z‖42

]
≤ C‖δ‖42, for some absolute constant C > 0. Therefore, by the Payley–Zygmund

inequality (Theorem C.1) applied to ‖Z‖22 for θ = 1/2,

Pr
[
‖Z‖22 >

1
4‖δ‖

2
2

]
≥ Pr

[
‖Z‖22 >

1
2E
[
‖Z‖22

] ]
≥ 1

4
E
[
‖Z‖22

]2
E
[
‖Z‖42

] ≥ 1
16C .

This concludes the proof.
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