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Abstract

The topic of this paper is a game on graphs called Edge Hop. The

game's goal is to move a marked token from a speci�c starting node to

a speci�c target node. Further, there are other tokens on some nodes

which can be moved by the player under suitable conditions. In addition,

the graph has special properties. For instance: Every node can only

hold a �xed amount of tokens and the marked token is only allowed to

travel once across each edge. We show that the decision question whether

the marked token can reach the goal node is NP-complete. For this we

construct several gadgets to show a reduction via Directed Hamiltonian

cycles. These gadgets can further be used as a framework for complexity

analysis of combinatorial puzzles and similar questions. As an example

we will show the NP-hardness of Game about Squares and of 2048.

Keywords: complexity, combinatorial puzzles, NP, complexity of games,

2048, Game about Squares

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 80 (2018)



1 Introduction

Games are frequently examined in complexity theory. In this context, many
types of games are considered. For instance combinatorial puzzles like Rush
Hour [10, 9] or Numberlink [1], two-player games like Checkers [18] or Phutball
[8] and video games like Pokémon [2] or Lemmings [20]. Even �zero-player�
games like Conway's Game of Life [17] are researched.1

Game Complexity Literature
Rush Hour PSPACE-complete respectively FPT [10, 9]
Numberlink NP-complete [1]
Checkers EXPTIME-complete [18]
Phutball PSPACE-hard [8]
Pokémon NP-complete [2]
Lemmings PSPACE-complete [20]
Conway's Game of Life Turing-complete [17]

Table 1: Di�erent games and the complexity of their related decision questions.

All these di�erent results relating to the complexity of games or rather their
related decision questions (see table 1) provide indication that the particular
proofs are executed in di�erent ways. With the idea to unify proofs for some of
these problems, Hearn and Demaine developed a framework for hardness proofs
� the so-called Nondeterministic Constraint Logic (NCL) [12]. Our goal is to
develop another framework which can be used for NP-hardness proofs. Our
framework will correspond to motion planning problems in a more �natural�
way than the NCL.

1.1 Motivation

In some cases complexity analysis is relatively easy (especially if one reduces
between �similar� problems) but in many cases it is time-consuming and com-
plex (for example Cook's proof that SAT is NP-complete [6]). The complexity
analysis of similar problems is often executed in a similar way which leads to the
question if it is possible to simplify these processes by outsourcing the �time-
consuming� parts to a distinct and universal proof. This distinct proof should
provide �interfaces� (gadgets) which can be used to analyze the complexity of
di�erent problems. The construction of these gadgets should ideally be less time-
consuming than �manually� analyzing the complexity. In addition, it should be
possible to use the same gadgets for a plethora of problems. Hearn and De-
main developed the Nondeterministic Constraint Logic as a framework to show
PSPACE-hardness2. Even though there a variations of the NCL to show NP-
hardness of problems, we will develop a di�erent framework. Our framework
will be an (abstract) one-player game called Edge Hop, in which it is the goal
to �nd a path on graphs with special properties. This problem will allow us
to provide gadgets which relate to motion planning problems. Thus we o�er a

1A comprehensive list of NP-complete puzzles was put together by Graham Kendall, An-
drew Parkes and Kristian Spoerer [14]. Édouard Bonnet dedicated likewise a chapter in his
doctoral thesis to the complexity of games [3]. In addition, Erik Demaine maintains a website
dedicated to combinatorial games. [7]

2At least in its original version from 2005 [13].
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framework to show the NP-hardness of motion planning problems in a �natural�
way.

2 Theory

In the course of this chapter we establish the rules of Edge Hop and the proper-
ties of the corresponding graph. In addition, we show that the question whether
the dedicated token can reach the target node is NP-complete, by a reduction
via Directed Hamiltonian Cycles.

2.1 Edge Hop

Edge Hop is a combinatorial puzzle (for one person). The game is played on an
undirected graph G = (V,E). The goal of Edge Hop is to move a speci�c token
to a designated node. It is only allowed to move between adjacent nodes. In
other words: The goal is to �nd a path between two speci�c nodes.

De�nition 2.1 (Active token). The active token is a uniquely marked token
which the player moves from node to node. The player is only allowed to move
the active token from a node u to a node v if uv ∈ E. Such a move is called
active move. To indicate an active move from u to v we write u

a−→ v. In
addition, we call the node where the active token is located at the beginning of
the game the starting node.

De�nition 2.2 (Passive token). Passive tokens are another kind of token placed
on the graph. The player is only allowed to move a passive token from a node
u to a node v if uv ∈ E and the active token is currently located on v. We call
such a move passive move and we write v

p←− u for a passive move from u to v.

De�nition 2.3 (Target node). The target node is a dedicated node z ∈ V . The
player wins the game i� the active move u

a−→ z (for any u ∈ V ) is performed.

De�nition 2.4 (Maximum capacity). The maximum capacity kv ∈ N of a
node v ∈ V is the maximal number of tokens (both passive tokens and the
active token) which can be on v at the same time. For a node v with k tokens
on it the player is only allowed to execute u

a−→ v or v
p←− u if k < kv.

De�nition 2.5 (Used edges). At any time3 t ≥ 0 in the course of the game
we de�ne Xt ⊆ E as the set of all edges uv which the player used for an active
move u

a−→ v prior to time t. We de�ne inductively:

X0 := ∅

Xt :=

{
Xt−1 ∪ {uv}, if the move at time t is u

a−→ v

Xt−1, otherwise

X :=
⋃
t≥0

Xt

We call the set of all used edges X.
3Here time corresponds to the number of executed active and passive moves combined.
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De�nition 2.6 (Valid sequence of moves). A �nite sequence of moves is a
sequence of any active and passive moves (respecting de�nitions 2.1, 2.2 and
2.4). A sequence of moves Z = (Z1, Z2, ..., Zm) is valid if the following two
properties hold:

(1) For 1 ≤ i ≤ m: Zi is an active move ⇒ Zi doesn't use an edge in Xi−1.

(2) The last move in the sequence is u
a−→ z for u ∈ V .

We also call single moves in a valid sequence of moves valid moves.

De�nition 2.7 (Edge Hop graph). An Edge Hop graph (or Edge Hop instance)
is a 5-tuple EH = (G, kG, a, z, PG). Here, G = (V,E) is a simple (connected)
graph, kG : V → N, kG(v) = kv a total function which assigns every node its
maximum capacity, a ∈ V the starting node, z ∈ V the target node and PG a
multiset over V which contains for every passive token the node which holds the
token. If it is apparent which graph is meant we write k(v) instead of kG(v) and
P instead of PG. In addition we de�ne V (EH) := V (G) and E(EH) := E(G)

a

2

b

2

c

1

d

2

z

1

Figure 1: An example graph.

Fig. 1 displays an example graph EH. The set of nodes V is {a, b, c, d, z}
with z being the target node. The set of edges E is {ab, ad, bc, bd, cz}. The
green dot on node a indicates the active token and the red dots on b and c
indicate passive tokens. The numbers below the nodes indicate the correspond-
ing maximal capacities. A valid sequence of moves for this particular graph is
a

p←− b, a
a−→ d, d

p←− b, d
a−→ b, b

p←− c, b
a−→ c, c

a−→ z.

2.2 Complexity

In this section we will show that the decision question whether it is possible to
move the active token to the target node is NP-complete.

I EdgeHop
Instance: An Edge Hop instance EH = (G, kG, a, z, PG).
Question: Is there a valid sequence of moves from a to z?

The NP-membership is shown straightforward with a guess-and-check algo-
rithm: Guess a sequence of moves and check if it is valid. The important detail
is, that a valid sequence of moves cannot be arbitrarily long. The number of ac-
tive moves is bounded by the number of edges (since every edge can only be used
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once) and the number of passive moves (per node) is bounded by the number of
passive tokens. This means a valid sequence of moves has at most |E|+|V |·|P |
moves. Thus, it is possible to check the sequence of moves in polynomial time.4

To show that EdgeHop is NP-hard, we will show a polynomial-time reduc-
tion via Directed Hamiltonian Cycles (DHC). Since DHC is NP-hard itself (cf.
[21]) it will follow that EdgeHop is NP-hard. First we will design gadgets to
construct a graph (suited for Edge Hop) from a given directed graph (digraph)
G. For this, we will design four basic gadgets: An one-way gadget (�g. 3), a fork
gadget (�g. 4a), a defork gadget (�g. 4b) and an unlock gadget (�g. 5). Fig. 2
shows the symbols we'll use for these gadgets. In our construction there will
only be a valid sequence of moves, i� G has a Hamiltonian cycle.

Ix y

(a) One-way

Ix
y1

y2

(b) Fork

I
x1

x2

y

(c) Defork

x y

u1 u2

(d) Unlock

Figure 2: The symbols which we will use to indicate the basic gadgets.

Below we will assume that the active token cannot leave the currently an-
alyzed gadget. This doesn't pose a problem because the gadgets will later be
connected in such a way, that there are no ways to leave and enter the gadgets
in unintended ways.

a

2

b

1

c

1

x

kx

y

ky

Figure 3: The one-way gadget as a partial Edge Hop graph. The active token
cannot traverse the gadget in both directions. The capacities kx and ky can be
chosen arbitrarily.

Lemma 2.1 (One-way gadget). Without leaving the one-way gadget, there is a
valid sequence of moves from x to y and no valid sequence of moves from y to
x.

Proof. A valid sequence of moves from x to y is x
a−→ a, a

p←− b, a
a−→ b, b

a−→ c, c
a−→

y. Therefore the lemma's �rst part is true.
Now we have to show that there is no valid sequence of moves from y to x.

First we consider the gadget in its initial state. Since we only consider sequences
of moves inside the gadget, we know that the active token has to pass nodes c,
b and a. Due to the fact that there is a passive token on node b and kb = 1 it

4See [11] for a more detailed analysis.
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follows that c
a−→ b is not a valid move. Likewise, c

p←− b, c
a−→ b is not a valid

sequence of moves because kc = 1. Therefore the active token cannot move
from c to b in the gadget's initial state. This means also that the active token
cannot move from y to x. Now we consider the case that the passive token is
not located on b anymore. Since kc = 1, it is not possible that the passive token
passed node c. This means it had to move across node a. This on the other
hand means that the active token had to visit node a at a previous point in
time t and therefore xa ∈ Xt (and subsequent sets of used edges). In this case
c

a−→ b, b
a−→ a is a valid sequence of moves. However xa is an used edge and

hence the active token cannot reach node x. So there is also no valid sequence of
moves from y to x in this case and therefore the gadget works as intended.

x

y1

y2

I

I

I

a

1

b

1

c

1

(a) The active token can leave this gadget
via one of two possible nodes.

x1

x2

y

I

I

I

a

1

b

1

c

1

(b) The active token has to leave the gadget
via a speci�c node, regardless of which node
it used to enter the gadget.

Figure 4: The Fork and defork gadgets as partial Edge Hop graphs.

Lemma 2.2 (Fork gadget). For every i, j ∈ {1, 2} with i 6= j there is a valid
sequence of moves from x to yi without leaving the gadget. In addition there are
no valid sequences of moves from yi to x or from yi to yj.

Proof. Because of lemma 2.1 there is no valid sequence of moves from y1 to b
and from y2 to c. This means that there is no valid sequence of moves from yi
to x and from yi to yj (for i, j ∈ {1, 2} with i 6= j).

The same lemma also proves that there are valid sequences of moves from
x to a, from b to y1 and from c to y2. Therefore it is su�cient to consider the
subgraph UV = ({a, b, c}, {ab, ac}) to prove the �rst part. The moves a

a−→ b

and a
a−→ c satisfy the postulated properties.

Lemma 2.3 (Defork gadget). For every i, j ∈ {1, 2} with i 6= j there is a valid
sequence of moves from xi to y without leaving the gadget. There are also no
valid sequences of moves from y to xi and from xi to xj without leaving the
gadget.

Proof. Analogously to lemma 2.2.

Lemma 2.4 (Unlock gadget). Without leaving the unlock gadget the following
is true for all v, w ∈ {u1, u2, x, y} with v 6= w: There is a valid sequence of
moves from v to w i� v = u1 and w = u2 and there is a valid sequence of moves
from v to w i� v = x and w = y and the active token has entered the gadget via
u1 at a previous point in time.
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u1 u2I I
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a

2

b

2

c

1

p

2

q

2

r

2

s

1

Figure 5: The unlock gadget as partial Edge Hop graph. The active token is
only able to move from x to y if it entered the gadget via u1 at a previous point
in time.

Proof. First of all we show that the claimed sequences of moves actually exist.
Lemma 2.1 indicates that there are valid sequences of moves from u1 to p, from
s to u2, from x to a and from c to y. Therefore it is su�cient to consider the
subgraph UE = ({a, b, c, p, q, r, s}, {ab, bc, br, pq, pr, qr, rs}). A valid sequence of
moves from p to s would be p

p←− r, p
a−→ r, r

a−→ s.
Every valid sequence of moves from a to c requires that the player moves

the passive token o� of node c (because kc = 1). It is not possible to move the
passive token inside the one-way gadget due to lemma 2.1.5 Therefore the move
b

p←− c is required. This move is only possible if there are no passive tokens on b

because kb = 2. Since ka = 2 the move a
p←− b can only be executed once. The

second passive token on node b cannot get moved to a or c. This means that
the move r

p←− b has to be executed at least once to move both passive tokens
o� of node b. There are two passive tokens on node r as well. To move them o�
of r, the player has to perform the moves p

p←− r and q
p←− r (since kp = kq = 2

and ks = 1). This means that the active token has to move to node p. It is not
possible to move (inside the gadget) from a to p and then to c because edge br
would be used more than once.6

The only way for the active token to reach node p is by entering the gadget
via u1. This means that there is no valid sequence of moves from a to c unless
the active token entered the gadget previously via u1. Let us assume that the
player executed the moves p

p←− r, p
a−→ q, q

p←− r, q
a−→ r, r

p←− b, r
a−→ s anytime

before the active token reached node a. Then the following is a valid sequence
of moves from a to c (and therefore from x to y): a

p←− b, a
a−→ b, b

p←− c, b
a−→ c.

Now we have to show that there are no other valid sequences of moves.
Lemma 2.1 proves that there are no valid sequences of moves from u1 to x or
from x to u1. Likewise there are no valid sequences of moves inside the gadget
originating from y or from u2. The only thing now to show is that there are no
valid sequences of moves from u1 to y or from x to u2.

5Actually it is possible to move the passive token to node a of the one-way gadget, but
after this move it wouldn't be possible for the active token to reenter the unlock gadget.

6It is also not possible for the active token to move from a to p, then outside of the gadget
to x and afterwards to c because edge ab would be used more than once.
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First we show that there is no valid sequence of moves from u1 to y. As
aforementioned it is su�cient to show that there is no valid sequence of moves
from p to c. As discussed before every such sequence of moves has to include
c

p←− b. This implies that the player has to execute both a
p←− b and r

p←− b.
Let us assume that the active token it located on node p at time t. We have to
consider two distinct cases: Either a

p←− b was executed at a previous point in
time or the move was not yet executed.

Case 1: a
p←− b was not yet executed. This means that the active token has

to move from p to a to execute a
p←− b. Then it needs to move from a to c. This

is not possible because every sequence of moves from p to a as well as every
sequence of moves from a to c uses edge ab.

Case 2: a
p←− b was executed at a previous point in time. Let us assume that

ab /∈ Xt. This means that a
a−→ b was not yet executed. Additionally lemma 2.1

shows that it is not possible for the active token to move from a to x. These two
restrictions imply that the active token is located on node a. This contradicts
our assumption that the active token is on node p. Therefore it has to be true
that ab ∈ Xt. This means that the active move a

a−→ b was executed. Because
the active token is currently located on node p one of the active moves b

a−→ c
or b

a−→ r was executed beforehand. In the case of bc ∈ Xt there is no valid
sequence of moves from p to c because every such sequence of moves includes
b

a−→ c. In the case of br ∈ Xt there is also no valid sequence of moves from p to
c because every such sequence of moves includes r

a−→ b.7

In a �nal step we show that there are no valid sequences of moves from x to
u2. Here, too, is it su�cient to show that there are no valid sequences of moves
from a to s. It is easy to see that every valid sequence of moves from a to s
requires that at least one of the two passive tokens on r gets moved. Here we
consider the two distinct cases: Either p

p←− r or b
p←− r was executed.8

Case 1: p
p←− r was executed. Lemma 2.1 and the fact that there is no valid

sequence of moves from p to c imply that the active token has to have moved
from p to s to exit the gadget (to reach node a at a later time). This means that
the move r

a−→ s was executed. When the token reaches node a at a point in
time t, there are no more valid sequences of moves from a to s because rs ∈ Xt

and every such sequence includes r
a−→ s.

Case 2: b
p←− r was executed. This is only possible if both tokens get moved

o� of b. However, this is not possible because kc = 1 and ka = 2.

Now we have all basic gadgets which are required to construct an Edge Hop
graph out of a given digraph. Fig. 6 shows schematically how to construct an
Edge Hop graph. The rectangles labeled v1 to vn denote node gadgets which
we will assemble out of our basic gadgets. The essential idea is, that the active
token has to enter every node gadget exactly once to reach node z.

Until now, we used fork and defork gadgets with exactly two in-/outputs.
For the following gadgets we will use these two gadgets with an arbitrary number
of inputs and outputs. For this we just cascade our old gadgets.

As already mentioned, our task is to substitute every node of a digraph with
an (modi�ed) unlock gadget, called node gadget. We will connect the outputs of

7A sequence of moves from r to u2, then to x and then to b would also not be valid because
it would use ab more than once.

8The case q
p←− r is essentially the same as the case p

p←− r.
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v1 v2 · · · vn

(1) (2) (1) (2) (1) (2)
(3)

a

1

b

1

z

1

Figure 6: A schematic representation of an Edge Hop graph, constructed out
of a digraph G. As usual, a is the starting node and z is the target node. The
edges at (1) correspond to the respective node's inward edges and the edges at
(2) correspond to the respective node's outward edges. The edges at (3) are
connected to the nodes which have an outward edge to v1.

a node gadget with the inputs of another node gadget if there is an edge leading
from the �rst node to the other node. Fig. 7 shows a node gadget. We call the
nodes x1, ..., xk and y1, ..., yl of a node gadget unlocking nodes.

out in
u1 u2

I I
x1
· · ·

xk

y1
· · ·
yl

Figure 7: The node gadget. The active token is only able to move from in to
out if it entered the gadget via one of the nodes x1, ..., xk at a previous point
in time. The nodes x1, ..., xk correspond to the inward edges and the nodes
y1, ..., yl correspond to the outward edges of the respecting nodes of the original
graph.

Lemma 2.5 (Node gadget). Choose i, i′ ∈ {1, ..., k} and j, j′ ∈ {1, ..., l} (with
i 6= i′ and j 6= j′) arbitrarily. The following properties hold for the node gadget
(Fig. 7):

1. There is only a valid sequence of moves from in to out if the gadget was
entered at a previous point in time via node xi.

2. There is only a valid sequence of moves from xi to yj if the gadget was
not entered at a previous point in time via node xi′ .

3. There are no valid sequences of moves from yi to xj, from xi to xi′ or
from yj to yj′ .

4. There are no valid sequences of moves from xi to out or from in to yj.

Proof. Properties 1 and 4 follow from lemma 2.4, property 3 follows from lemma
2.2 and lemma 2.3. Property 2 is also a result of lemma 2.4 and the fact that
no edge in an Edge Hop graph can be used more than once.
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Now we have designed the node gadget and therefore we can devise an
Edge Hop graph out of any digraph G and since DHC is NP-hard it follows
that EdgeHop is NP-hard.9 Combined with the previous mentioned NP-
membership we have:

Theorem 2.6. EdgeHop is NP-complete.

3 Examples

3.1 Game about Squares

(a) Level 2 (b) Level 9

Figure 8: Two screenshots taken from the browser version of Game about
Squares. See �g. 19 in the appendix for an example solution for level 9.

Game about Squares is a sliding block puzzle developed by Andrey Shevchuk
in 2014 [19]. The game is played on an unbounded grid and the goal is to push
colored squares to speci�c spaces (which are indicated by circles of the same
color). Each square can only be pushed in a speci�c direction (indicated by
a white triangle on the square) which is assigned at the start of the game.
There are spaces on the grid (indicated by black triangles) which can change
the assigned direction of a square by pushing it on that space. In contrast to
e. g. Sokoban, squares can push other squares. In addition there is no �player
character� on the grid � the player moves squares by clicking on them (with the
mouse cursor). Every click moves the square one space in the assigned direction.

We will now show the NP-hardness of GaS via EdgeHop which presents
an alternative to Jens Maÿberg's reduction via Sat [15].

We de�ne an instance of Game about Squares as 5-tuple G = (C, r, p, z, d)
with:

• C ⊂ N is a �nite set of colors (which correspond to the squares)

• r : C → {M,B,O,C} is a function which assigns each square an initial
direction

• p : C → Z2 is a function which assigns each square its initial position

• z : C → Z2 is a partial function which assigns some squares their corre-
sponding target positions

• d : {N,I,H,J} → P(Z2) is a function which assigns each direction-
changing triangle a set of positions

9Again: See [11] for a more detailed analysis.
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In addition, the following properties should apply:

• p is injective (i. e. squares have pairwise distinct positions)

• z is injective (i. e. squares have pairwise distinct target positions)

• ∀x, y ∈ {N,I,H,J}:x 6= y ⇒ d(x) ∩ d(y) = ∅ (i. e. no space holds two
di�erent black triangles)

• ∀c ∈ C, x ∈ {N,I,H,J}: p(c) ∈ d(x)⇒ r(c) = x (i. e. if the initial position
of a square is the position of a black triangle then the initial direction of
that square has to match the triangle)

I Game about Squares (GaS)
Instance: A Game about Squares instance G = (C, r, p, z, d).
Question: Is there a sequence of moves so that every target space is occupied
by the corresponding square?

Since every square in the game has a well-de�ned direction and since all
squares is are distinguishable from each other, we will write sequences of moves
as a sequences of colors. These sequences correspond to the order in which the
player clicks on the respective squares. Additionally we will write (cn) for a
(sub-)sequence which moves the c-colored square n times instead of writing all
c's explicitly. We also abbreviate colors by their �rst letter (e.g. b denotes a
blue square). Furthermore we specify spaces on the grid as tuples (x, y) ∈ Z
with (0, 0) being the space on the bottom left in the corresponding �gure.

(a) Empty space (b) Target space of a blue
square

H

(c) A space which
changes directions �
When a square moves to
this space it changes its
direction to O

I

(d) A red square with di-
rection B

I

(e) A blue square on a
space with black triangle

J

(f) An orange square on a
space with an orange cir-
cle

Figure 9: The di�erent symbols used in Game about Squares

All our gadgets will be surrounded by a border of inwards facing triangles
to indicate that the gadgets can only be entered or left via the designated input
and output spaces. Technically this border needs to have a width of k spaces of
inwards facing triangles (with k ≥ |C|) to ensure this property.10 Fig. 9 shows
the di�erent symbols we will use in the following �gures. W. l. o. g. , we will use

10Technically, the border also needs to contain k spaces of outwards facing triangles so that
no outside square can enter the gadget. Initially however there are no squares outside of a
gadget and since no square can leave a gadget in an undesired way, there also will be no square
outside of a gadget anytime in the course of the game.
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the two colors blue (b) and orange (o) for squares (and corresponding target
positions) inside our gadgets11 and we assume that there is a red (r) square
which the player has to push across all gadgets. This means the main question
will be whether the red square can reach its target position. The gadgets will be
designed in such a way that the �inner� squares can reach their target positions
without problems.

Lastly, when describing a sequence of moves, we assume that the red square
has the correct direction � usually facing into the corresponding gadget.

in outI

N N N

H H H

(a) One-way

in

outN J

JH

H H H

(b) Turn (right)

in

out

N N N

N J

JH

(c) Turn (left)

Figure 10: One-way and turn gadgets as Game about Squares subinstances

Fig. 10 shows how to construct a one-way gadget. It also shows how to
construct turn gadgets. In all three gadgets (r2) is a sequence which moves the
red square from the input (in) to the output (out). The triangle on the center
space (1, 1) makes sure that the red square cannot traverse the gadgets the other
way.

in

out1

out2

I

I

I

I

N N

J

J

J

HHH

N

H

(a) Fork

in1

in2

out

I

I

I

N

J

J

J

J

H

N

H

(b) Defork

Figure 11: Fork and defork gadgets as Game about Squares subinstances

Fig. 11a shows how to construct a fork gadget. The sequence (b2, r, o2, r2)

11In the total construction, we have to make sure that di�erent gadgets use di�erent colored
squares/circles.
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moves the red square from in to out1 and both inner squares to their target
positions. The sequence (o2, r2, b, r, b) moves the red square from in to out2 and
both inner squares to their target position. Similarily, �g. 11b shows how to
construct a defork gadget. The sequences (o, r, b, r) or (b, r, o, r) move the red
square from in1 or in2 to out and the inner squares to their target positions.

inout

u1 u2

I

I

N N N

N N J

H H H

H

J

I

(a) Initial state

inout

u1 u2

I

I

N N N

N N J

H H H

H

N

N

(b) State after the red square moved
from u1 to u2

Figure 12: An unlock gadget in di�erent states as Game about Squares subin-
stances

Fig. 12a shows how to construct the unlock gadget. We have to show that
there is a sequence of moves from u1 to u2 and we have to show that there is a
sequence which moves the red square from in to out and the inner squares to
their corresponding target positions when a square moved from u1 to u2 at a
previous point in time. In addition, we have to show that there is no sequence
of moves from u1 to out and there is no sequence of moves from in to u2. A
sequence of moves from u1 to u2 is (r3, b2, r3). Fig. 12b shows the unlock gadget
after this sequence of moves. Moving the red square now from in to out (and the
inner squares to their target positions) is achieved with (r4, b, o2). It is also easy
to see that there is no sequence of moves from in to out when no square moved
from u1 to u2: The orange square blocks the path. It is not possible to push
the orange square to the left because then it cannot reach its target position
anymore. It is also not possible to move it to the right because its direction is
C and no square can enter the gadget via its output. Lastly, it is not possible
to move the orange square up because there is no square on either (0, 0), (1, 0)
or (1, 1). This means, the only way to �unblock� the path is by pushing the
orange square down. This is only possible by a square on (1, 3) and this space
can only be reached from u1. Analogously there is no sequence which moves a
square (with direction B) from u1 to out and that there is no sequence which
moves a square (with direction C) from in to u2.

Now we have seen how to construct the four essential gadgets. We don't need
any technical gadgets (apart from the turn gadgets in �g. 10): Since squares can-
not change their direction at will, we just need rows or columns of empty spaces
to simulate straight edges. For non-straight edges we take advantage of the
fact, that graphs can be drawn orthogonally. This means we only need straight
edges and 90◦ turns. Further we need no special construction for crossovers
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because, again, squares cannot change their direction. Additionally, we don't
need dedicated starting or target gadgets: Instead of a starting gadget, we just
put a red square on the input �eld of the �rst gadget in our total construction
(a node gadget's defork �sub gadget�) and instead of a target gadget, we just
put a red circle on the output �eld of the last gadget in our total construction
(a node gadget's unlock �sub gadget�). Therefore, we have shown that GaS is
NP-hard, which strengthens Jens Maÿberg's results.

The question that remains is the NP-membership. GaS doesn't feature an
implicit (or explicit) bound on the length of sequences of moves. On the one
hand, GaS is similar to games like Sokoban, which are PSPACE-complete
but on the other hand, GaS also features similarities to games like Push-∗-
X, which are NP-complete [12]. Roughly speaking, the di�erence between both
games is that Sokoban asks for a �complete� con�guration of the game, whereas
Push-∗-X only asks if a single block (or rather the player character) can reach
a speci�c position. Both problems have counterparts in GaS � either every
square has a corresponding target position or there is only one square which has
a corresponding target position.

3.2 2048+

(a) Ongoing game (b) Win (c) Loss

Figure 13: Three screenshots taken from the browser version of 2048. The �rst
screenshot shows an ongoing game, the second one a win because the player
reached a tile with value 2048 and the third one loss because no more moves are
possible.

2048 is a sliding block puzzle developed in 2014 by Gabriele Cirulli [5]. The
game is played on a 4 × 4 grid where some squares are occupied by numbered
tiles. The player subsequently chooses directions in {↑,→, ↓,←} which move all
tiles in the chosen direction. Tiles slide in the desired direction until they hit
an obstacle (the edge of the grid or another tile with a di�erent value) or until
they hit another tile of the same value. When two tiles of the same value w
meet, they merge and create a new tile with value 2w. Every move the player
makes generates a new tile of value either 2 or 4 on an empty square on the
grid. At the start the game creates two tiles with either value 2 or 4 on an
otherwise empty grid. The player's goal is to create a tile of value 2048. If
the grid is completely �lled and the player cannot move any tiles, the game is
over. Fig. 13 shows three example screenshots. To get from the �rst depicted
situation (�g. 13a) to the second one (�g. 13b), the player needs to execute the
following sequence of moves: ↓,←,←,←, ↓,→,→.
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To generalize the game we allow grids of size n×m. To make the construction
of the di�erent gadgets easier, we also assume that the value the player tries to
reach is dependent on the grid size. We de�ne the goal value for a grid of size
n×m (with n ≥ m) as 23n−1. We also assume that every newly created tile has
a unique positive integer value w < 23n−1. We call this version 2048+.

I 2048+

Instance: A n×m grid where some squares are occupied by tiles with positive
integer values w < 23n−1.
Question: Is it possible to create a tile with value 23n−1?

Below we will interpret the squares as coordinates (x, y) ∈ Z2 where the
square on the bottom left is assigned the coordinate (0, 0). Since all relevant
tile values are powers of two, we will only write the respective exponent on the
tile. Further we will use dark tinted squares (without any value) to indicate
tiles which will never merge with other tiles. These will be used as �barriers�.12

In addition, we will construct the gadgets in such a way that the inputs always
start with a tile of value 21 � later we will see why this doesn't pose a problem.

All our gadgets will be designed in such a way that every move only enforces
a single merge. This means we can specify the single tile which was generated by
this merge. We will call this tile the active tile and its position the active square.
With this we can interpret successive merges as a sequence of moves through
the corresponding gadget by listing the active squares. To write down sequences
of moves, we will give sequences of directions r ∈ {↑,→, ↓,←}. Additionally we
will write (rn) for a (sub-)sequence of n consecutive moves in direction r.

Due to the fact that moves in 2048 are global and shift whole or at least
partial rows or columns, it is possible that moves will destroy gadgets placed on
the same row or column. When placing the gadgets, we have to make sure that
this doesn't happen. For this we will use red triangles to indicate which partial
rows and columns will be �destroyed� by using the respective gadget. These
marks show where we are not allowed to place other gadgets which will be used
at a later point in time.

21 3

(a) One-way

21

3

(b) Turn (right)

21

3

(c) Turn (left)

Figure 14: One-way and turn gadgets as 2048 subinstances.

Fig. 14 shows how to construct a one-way gadget. It also shows how to
construct turn gadgets. We assume that a tile with value 21 is located on
square (−1, 1). In all three cases it is possible to make the square containing
the tile with value 23 the active square. The respective sequences of moves are
(→3), (→2, ↓) and (→2, ↑).

12We will show which values we need to assign to these tiles.
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1 2

3 4 5 6

3 4 5 6

(a) Fork

1 2 3 4

5 6

1 2 3 4

(b) Defork

Figure 15: Fork and defork gadgets as 2048 subinstances.

Fig. 15 shows how to construct fork and defork gadgets. For the fork gadget
we assume that a tile with value 21 is located on (−1, 2). Then there are se-
quences of moves to either make (4, 3) or (4, 1) the active square. Said sequences
are (→2, ↑,→3) and (→2, ↓,→3). In the �rst case, the active squares are (0, 2),
(1, 2), (1, 3), (2, 3), (3, 3) and (4, 3). This sequence of moves is possible because
each merge increments the power of the tile on the active square by one and the
power of the next tile in the sequence of moves has the same value. Thus, the
merges are possible. See 5.2 in the appendix for an example. The defork gadget
works in a similar way: There are sequences of moves which makes (4, 2) the
active square, if there is a tile with value 21 on either (−1, 1) or (−1, 3)

1 2 3 5 6

4

3

2 15 4

Figure 16: An unlock gadget as 2048 subinstance. The vertical distance between
the second and fourth row can be arbitrarily large. The important detail is that
a tile with value 24 (square (2, 2)) is located directly below the �upper� tile with
value 23 (square (2, 3)).

Fig. 16 shows how to construct the unlock gadget. We have to show that
there is a sequence of moves which makes square (4, 3) the active square (when
there is a tile wich value 21 on square (−1, 3)) and we have to show that there
is a sequence of moves which makes square (0, 1) the active square when there
is a tile with value 21 on square (5, 1) and square (4, 3) was the active square at
a previous point in time. In addition, we have to show that there is no sequence
of moves which makes �rst (0, 3) and then (0, 1) the active square and there is
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no sequence of moves which makes �rst (4, 1) and then (4, 3) the active square.
A sequence of moves for the �rst property is (→3, ↑,→2).
To make square (0, 1) the active square, we have to merge the tile with the

tile on (1, 1) with (←).13 This is only possible if the tile on square (1, 1) has an
incremented exponent � which means it had to be the active square beforehand.
The only tile (of non-unique value) which can be moved to a neighboring square
is the tile with value 23 on square (2, 0). This happens when the previously
mentioned sequence of moves is executed. We assume that a tile with value
21 is located on square (5, 1) and that square (4, 3) was already active. Then
the sequence (←5) make square (5, 1) the active square and thus the second
property holds.

The last two properties hold because there is no possibility to move a tile
with value 23 on square (1, 2) and there is no possibility to move a tile with
value 24 on square (3, 2).

6

3n-2

3n-2

(a) Target

1kk+1

(b) Reset

1 2

2

1

3

1

(c) Skip

Figure 17: Target and skip gadgets as 2048 subinstances.

Now we have seen how to construct the four essential gadgets. The technical
gadgets that remain are those to simulate edges, the starting and the target
gadget and crossovers. Again we assume that the corresponding Edge Hop
graph is orthogonal. The subinstances for turns are shown in �g. 14. The
starting gadget is a single tile with value 21. The target gadget is shown in
�g. 17a. In our reduction from DHC we put a target node next to the output
of a node gadget. The output of a node gadget corresponds to the output of an
unlock gadget. In our 2048+ unlock gadget (�g. 16), the output is a tile with
value 25. Upon traversing this gadget (which makes this �output tile� the active
tile), it has a value of 26. Therefore the tile on (1, 0) in our target gadget has a
value of 26. If we put the target gadget right beside the last unlock gadget in
a way that the mentioned tiles are neighbors, the sequence of moves (→, ↓) will
lead to a tile with value 23n−1. Though, the value on square (1, 0) can be an
arbitrary power of two less then 23n−2. It is possible to extend one-way gadgets
to reach arbitrarily high values and the reset gadget can reset values back to 21.
Fig. 17b shows a reset gadget. We assume that a tile with value 2k is located on
(1, 1). Then (↓,←) is a sequence of moves which makes (1, 1) the active square
with a tile of value 21 again. The reset gadget is needed to reset too high tile
values back to 21. In our construction, all gadgets start with an �input tile� of
value 21 but end with tiles of a higher value. If we put a reset gadget right after

13The tiles on (0, 0) and (0, 2) have unique values and we assume that we cannot enter the
gadget via its output (−1, 1).
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each gadget, we can keep the values of all input tiles at 21.
To simulate straight edges, we use the skip gadget (�g. 17c). As the name

suggests, the horizontal distance between squares (1, 2) and (3, 2) can be arbi-
trarily large. Since the tiles between these squares are irrelevant (for the skip
gadget itself), it doesn't matter whether the player executes (↑) or (↓) on these
columns. We assume that there is a tile with value 21 on square (−1, 2). Then
the sequence (→,←, ↓2,→) makes square (4, 1) the active one. Since we didn't
use any tiles in the middle column, it doesn't matter if there were ↑ or ↓ moves
beforehand. It is also easy to see that the distance between squares (1, 2) and
(3, 2) can be arbitrarily large because the ← move in our sequence moves all
tiles in the same row to the right of square (0, 2) one square to the left.

To construct a crossover gadget we can combine two skip gadgets. Fig. 18
shows an example.

1

2

12

13

1 2

2

1

1

3

Figure 18: A crossover gadget as 2048 subinstance.

In all our gadgets we assumed that every dark tinted tile and every newly
created tile has a unique value which is not a power of two. It is possible to
assign the values in such a way because we have at most n ·m < n2 tiles and
n2 ≤ 23n−1 − 3n (for n ∈ N). Thus, 2048+ is NP-hard.

In addition, the �uniqueness� of values also gives a simple NP-membership:
Every move generates a new tile which can never be merged with another tile.
Since the grid has a size of n × m we cannot execute more than n · m moves
before the grid is �lled and therefore every sequence of moves which leads to a
tile with value 23n−1 has length at most n ·m.

A question that remains is the complexity of �proper� 2048. It is possible
to assign every dark tinted tile a unique power of two (greater than 2048) and
repose the question as: �Is it possible to create another tile with value 2048?�
Though in this case one has to make sure that the newly created tiles (of value
2 or 4) cannot compromise the construction. To see other generalizations and
analyses see the works of Christopher Chen [4] (a variant where no new tiles are
created) and Rahul Mehta [16] (a variant which interprets 2048 as two-player
game).
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4 Conclusion

We have seen that EdgeHop is NP-complete and we have seen how to show
NP-hardness of other problems by constructing a handful of di�erent gadgets,
namely:

• a gadget which features a �path�14 from x to y (but not the other way
round)

• a gadget which features a path from x to y1 or from x to y2

• a gadget which features a path from x1 to y or from x2 to y

• a gadget which features a path from u1 to u2 and a path from x to y if
the path from u1 to u2 was used at a previous point in time (In addition,
it has to be ensured that there is no path from u1 to y or from x to u2.)

• a gadget for the starting node

• a gadget for the target node

• a gadget to simulate the edges of the graph (either universal edge gadgets
or separate gadgets for straight lines and for 90◦ turns)

• a crossover gadget

The �rst three gadgets and the gadget to simulate edges are a natural �t for
motion-planning problems. Often, starting and target gadgets are also easily
implementable in motion planning problems. In addition, the unlock gadget can
be realized in many di�erent ways. An obvious example are locked doors and
corresponding keys which have to be collected. The only �problematic� gadget
is the crossover gadget, at least for two-dimensional motion planning problems.

4.1 Further Work

Even though we have shown the NP-hardness of EdgeHop there are some
questions which remain open. Our Edge Hop graph is not planar. Since it is
hard or impossible to design crossover gadgets for some problems, one question
is if there is a way to design a crossover gadget out of our de�ned gadgets, to
make the Edge Hop graph planar.

Another open question is how the complexity of EdgeHop changes if we
modify our rules:

• What changes if we allow that edges can be crossed arbitrarily often?

• Does it make a di�erence if we introduce multiple active tokens, potentially
with individual target nodes?

• Does the complexity change if we use other graphs instead of undirected
graphs? (Digraphs, multigraphs, . . . )

• Do the results di�er if we allow �pushing� passive moves instead of (or in
addition to) the de�ned �pulling� passive moves?

14Here, path can be an actual path (for example motion planning problems), or it can be
just a sequence of actions and decisions.

19



If the active token is allowed to cross edges arbitrarily often then it is maybe
possible to design �memory gadgets� with which it would be possible to reduce
from QBF. If we introduce multiple target nodes, then our game will become
more similar to Sokoban. This could also change the complexity.

One other direction for further research would be to show the NP-hardness
of other problems with the aid of EdgeHop. We have seen the NP-hardness
for Game about Squares and for a variation of 2048. Further, the NP-hardness
for speci�c variants of Latrunculi and Minecraft was shown in [11].

Lastly, to strengthen our results, it remains to be shown how EdgeHop
relates to di�erent variants of the NCL.

20



5 Appendix

5.1 Sequence of moves to solve level 9 (Game about
Squares)

(a) Initial situation (b) Move 1, pushing the orange
square

(c) Move 2, pushing the orange
square

(d) Move 3, pushing the blue
square

(e) Move 4, pushing the blue
square

(f) Move 1, pushing the orange
square

Figure 19: A sequence of moves to solve level 9 of Game about Squares. Using
our notation, this sequence of moves is (o2, b2, o)
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5.2 Sequence of moves to traverse the fork gadget (2048)

1 2

3 4 5 6

3 4 5 6

1

(a) Initial situation

2 2

3 4 5 6

3 4 5 6

(b) Move 1, →. The
active square is now
(0, 2)

3

3 4 5 6

3 4 5 6

(c) Move 2, →. The
active square is now
(1, 2).

3

4 5 6

4 4 5 6

(d) Move 3, ↓. The
active square is now
(1, 1). In addition,
the upper tile with
value 23 (square (1, 3))
moved one position
down.

3

4 5 6

5 5 6

(e) Move 4, →. The
active square is now
(2, 1).

3

4 5 6

6 6

(f) Move 5, →. The
active square is now
(3, 1).

3

4 5 6

7

(g) Move 6, →. The
active square is now
(4, 1).

Figure 20: A sequence of moves in a fork gadget which makes (4, 1) the active
square.
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