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Abstract

Non-interactive proofs of proximity allow a sublinear-time verifier to check that
a given input is close to the language, given access to a short proof. Two natural
variants of such proof systems are MA-proofs of Proximity (MAP), in which the proof
is a function of the input only, and AM-proofs of Proximity (AMP), in which the proof
additionally may depend on the verifier’s (entire) random string. The complexity of
both MAPs and AMPs is the total number of bits that the verifier observes – namely,
the sum of the proof length and query complexity.

Our main result is an exponential separation between the power of MAPs and
AMPs. Specifically, we exhibit an explicit and natural property Π that admits an AMP
with complexity O(log n), whereas any MAP for Π has complexity Ω̃(n1/4), where n
denotes the length of the input in bits. Our MAP lower bound also yields an alter-
nate proof, which is more general and arguably much simpler, for a recent result of
Fischer et al. (ITCS, 2014).

Lastly, we also consider the notion of oblivious proofs of proximity, in which the
verifier’s queries cannot depend on the proof. In this setting we show that AMPs can
only be quadratically stronger than MAPs. As an application of this result, we show
an exponential separation between the power of public and private coin for oblivious
interactive proofs of proximity.

1 Introduction

The field of property testing [RS96, GGR98] deals with sublinear algorithms for deciding
whether a given object has a predetermined property or is far from any object having this
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property. Such algorithms, called testers, obtain local views of the object by performing
queries; that is, the object is seen as a function and the tester receives oracle access to this
function. The goal of the tester is to ascertain a global property of the function based only
on its local view.

In the last couple of decades, the area of property testing has attracted much attention
(see surveys [Ron08, Ron09, Can15] and recent textbook [Gol17]). However, while much
success was found in designing testers for a myriad of natural properties, which only make a
small number of queries, many other natural properties were shown to require a very large
number of queries to test (often linear in the length of the input).

Proofs of proximity, first considered by Ergün, Kumar and Rubinfeld [EKR04], are both
intrinsically interesting as a natural notion of proof systems for sublinear algorithms, as well
as provide means to significantly reduce the number of queries that the tester needs to make
in order to verify, rather than decide. These probabilistic proof systems can be viewed as
augmenting testers with a help from a powerful, yet untrusted prover. In a recent line of
works [RVW13, GR16, FGL14, GGR15, KR15, GG16b, RRR16, GR17, BRV17, CG17] various
types of interactive [RVW13] and non-interactive proofs of proximity [GR15b] were studied,
including arguments of proximity [KR15], zero-knowledge proofs of proximity [BRV17], and
proofs of proximity for distribution testing [CG17].

In this work we study the relation between two types of proofs of proximity that are
minimally interactive; namely, MA and AM proofs of proximity, which can be viewed as the
property testing analogue of the class MA (i.e., “randomized NP”) and AM, respectively, and
are described in more detail next.

Informally speaking, an MA proof of proximity (MAP) protocol consists of a tester (or
rather a verifier) that receives oracle access to an input function f but also receives explicit
access to a short purported proof w. Based on the proof string and a few oracle queries to
f , the verifier should decide whether f has some property Π (i.e., whether f ∈ Π). More
specifically, after reading the proof w, the verifier tosses random coins, makes queries to the
oracle f , and decides whether to accept or reject. We require the following completeness and
soundness conditions: if f ∈ Π, then there exists a proof w that the verifier accepts with
high probability, and if f is “far” (in Hamming distance) from any function in Π, then the
verifier rejects with high probability. Following the literature, the complexity of an MAP is
the total number of bits that the verifier observes - namely, the sum of its proof length and
query complexity.1

The reason that the foregoing model is referred to as a “Merlin-Arthur” protocol is that
we think of the prover as being Merlin (the all powerful magician) and the verifier as Arthur
(a mere mortal). Then in the MAP model Merlin “speaks” first (i.e., sends the proof) and
Arthur “speaks” second (i.e., tosses his random coins).

It is natural to ask what happens if we switch the order - letting Arthur toss his coins first
and Merlin send his proof after seeing Arthur’s coin tosses. This type of protocol is typically

1Alternatively, one could view the running time of the verifier (which serves as an upper bound on the
query and communication complexities) as the main resource to be minimized. However, for simplicity (and
following the property testing literature), we focus on combinatorial resources, while noting that in all of
our upper bounds the verifier is also computationally efficient.
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referred to as an “Arthur-Merlin” protocol. More precisely, an AM proof of proximity (AMP)
is defined similarly to an MAP, except that now the proof oracle is a function of the verifier’s
entire random string. Analogously to MAPs, the complexity of an AMP is the sum of its
proof length and query complexity. We emphasize that the prover’s message can depend
on all of the verifier’s coin tosses. Namely, the verifier cannot toss an additional coins after
receiving its message from the prover.2

While the difference between these two proof systems may appear minor, MA-type and
AM-type proofs naturally admit very different types of strategies. In particular, note that
AM proofs provide the additional power of allowing the prover and verifier to jointly restrict
their attention to a random subset of the input function’s domain. On the other hand, the
AM model also significantly hampers the power of the verifier to detect malicious prover
strategies, since the prover knows the entire randomness of the verifier, and in particular the
prover knows which queries the verifier will make.

At first glance, it may seem that AMPs are extremely limited, since the prover can predict
exactly what the verifier will check. However, it turns out that a straightforward adaptation
of the classical MA ⊆ AM inclusion [BM88] implies that any MAP can be emulated by an AMP
at a quadratic cost. (More precisely, an MAP with proof complexity p and query complexity
q can be emulated by an AMP with proof length p and query complexity O(p · q).3)

It is natural to ask the following the converse question

Can any AMP protocol be emulated by an MAP, or is there a gap between the power of
these two models?

Furthermore, if there is indeed a gap, to what extent can AMPs be more powerful than
MAPs?

1.1 Our results

Our main result shows that AMPs can actually be exponentially stronger than MAPs:

Theorem 1. There exists a property Π ⊆ {f : [n]→ [n]} such that:

• Π has an AMP of complexity O (log(n)/ε), with respect to proximity parameter ε > 0;
and

• Every MAP for Π, with respect to proximity parameter ε ≤ 1
10

, must have complexity

Ω(n
1
4 ).

2In contrast, the complexity class AM is sometimes defined as any constant-round public-coin interactive
proof-system. Indeed, if one does not care about polynomial factors, then by a result of Babai and Moran
[BM88], any public-coin constant-round interactive proof can be reduced to just 2 messages.

3 The idea is to first reduce the soundness error of the MAP to 2−O(p) (by repetition). Now suppose that
the verifier reveals its randomness to the prover before receiving the proof-string. For soundness, observe
that when f is far from the having the property, for any fixed proof-string the probability that the verifier
would accept is at most 2−Ω(p) and so by a union bound, with high probability there simply does not exist
a proof-string that will make the verifier accept.
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The property Π that we use to prove Theorem 1 is actually very simple and natural.
Specifically, Π is the set of all permutations over [n]; the goal of the verifier is to check
whether a given function f : [n] → [n] is close to being a permutation by querying the
function in a few locations and with a short interaction with the prover.

The AMP protocol for deciding whether a given function f : [n]→ [n] is a permutation is
extremely simple. The idea is that the random string specifies some random element y ∈ [n]
and the prover should specify an inverse x of y (under f). If f is a permutation such an
element must exist whereas if f is ε-far from being a permutation, then with probability ε
it holds that y simply does not have an inverse. We can repeat the base protocol O(1/ε)
times to get constant soundness error. This protocol can actually be traced back to a result
of Bellare and Yung [BY96] who used it resolve a gap in the [FLS99] construction of non-
interactive zero-knowledge proofs for NP based on trapdoor permutations.

Our MAP lower bound is the technically more challenging part of this work, and is actually
a special case of a more general MAP lower bound that we prove. We show that any property
that satisfies a relaxed notion of k-wise independence requires MAPs with complexity roughly√
k. This result generalizes a recent result of Fischer, Goldhirsh and Lachish [FGL14] which

can be interpreted as an MAP lower bound of
√
k for properties that are exactly k-wise

independent.4 Our proof is also (arguably) significantly simpler than that of [FGL14] and
in particular uses only elementary arguments, see further discussion in Section 1.2.

1.1.1 Oblivious Proofs of Proximity

Having established Theorem 1, we revisit the MA versus AM problem within the context
of oblivious proofs of proximity (a notion first considered in [RVW13] and further explored
in [GR15b]). These are proofs of proximity that have the special feature that the queries that
the verifier makes are independent of the proof. Viewed from a temporal perspective, in these
proof systems the verifier first makes its queries to the input function, and only after making
all of its queries does it receive the proof. One reason that makes this feature appealing is
because it allows the verifier to probe the object and obtain a certificate, which can then be
used later when interacting with a prover, even if the object is no longer accessible. Another
reason is that many of the interactive proof systems from the literature (e.g., the sumcheck
protocol of [LFKN92]) are oblivious.

Surprisingly, it turns out that the gap between the power of oblivious AMPs and MAPs
is dramatically smaller than the one exhibited in Theorem 1. Loosely speaking, we show
that oblivious AMPs can only be quadratically stronger than oblivious MAPs, and in fact,
standard testers (that do not use a proof).

Theorem 2. For any property Π, if there exists an oblivious AMP for Π with proof complex-
ity p and query complexity q, then there also exists a tester (i.e., MAP with proof complexity
0) for Π with query complexity O(p · q).

4More precisely, [FGL14] show that any linear code with large dual distance requires MAPs of complexity
that is roughly square root of the code’s blocklength.
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As an application, we use Theorem 2 to derive lower bounds on public-coin oblivious
interactive proofs of proximity, and show an exponential separation between public-coin and
private-coin protocols in this setting. See further discussion in Section 5.

1.2 Related works

The notion of proofs of proximity was originally proposed by Ergün, Kumar and Rubinfeld.
Ben Sasson et al. [BGH+06] and Dinur and Reingold [DR06] considered such proofs in the
context of PCPs. Rothblum, Vadhan and Wigderson [RVW13], considered interactive proofs
of proximity and showed that every language computable by a low-depth circuit has an
interactive proof of proximity (IPP) with a sublinear time verifier. Reingold, Rothblum, and
Rothblum [RRR16] showed constant-round IPPs for any language computable in polynomial-
time and bounded polynomial-space. Goldreich and Gur [GG16a, GG16b] showed general-
purpose IPP with only 3 rounds, albeit for a much smaller class.

Proofs of proximity were further studied by [GGR15] who showed more efficient con-
structions for certain restricted complexity classes, such as functions accepted by small
read-once branching programs and context-free languages. Gur and Rothblum proved a
round hierarchy theorem for IPPs [GR17], showing that the power of IPPs gradually in-
creases with the number of rounds of interaction. Several works focused on studying non-
interactive (MA) proofs of proximity [GR15b,FGL14,GGK15] (see also [Gur17]). In addition,
recent works studied (computationally sound) interactive arguments of proximity [KR15],
zero-knowledge proofs of proximity [BRV17], and proofs of proximity for distribution test-
ing [CG17]. Proofs of proximity have also found applications to property testing and related
models [GR16,FLV15,GR17]. We remark that a concurrent work of Berman et al. [BRV17],
utilizes our results (specifically Theorem 1) to derive a separation between the power of
MAPs and zero-knowledge IPPs.

The notion of MA and AM proofs plays a central role in the study of proofs system in
various computational models, other than in the setting of polynomial-time Turing machines
in which they were originally conceived [BM88]. For example, in quantum computation, the
class QMA (quantum MA proofs) captures the most fundamental type of quantum proof
systems (since quantum algorithms are inherently randomized) and it has been extensively
studied in the last couple of decades (see survey [AN02]). Of particular relevance, Aaronson
[Aar12] considered the problem of deciding whether a function is close to a permutation
to derive a quantum query complexity separation between the class QMA and the class of
statistical zero knowledge SZK, showing that every QMA query complexity algorithm with
a w-qubit witness and query complexity q must satisfy q + w = Ω(n1/6).

In addition, MA and AM proof systems received much attention in the setting of commu-
nication complexity [BFS86, Kla03, RS04, Kla11, GPW15, She16] and streaming algorithms
[CMT10, CTY11, CCMT14, GR15a, CCM+15, Tha16]. The former also has an interesting
connection to the algebrization barrier [AW09] and recently found important applications
to distributed PCPs and hardness of approximation [ARW17].5 The latter can be viewed

5We remark that there are several similarities between MA and AM proof systems in the setting of
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as the property testing analogue of online annotated data streams (there, instead of oracle
access to the input, the algorithm has one-pass sequential access to the input, and the goal
is to minimize space complexity rather than query complexity). Indeed, part of our results
concerning oblivious proofs of proximity are inspired by the techniques for online annotated
data streams in [CCM+15].

Perhaps most relevant to us, the notion of MA and AM proofs for decision tree complexity
(or the “query complexity model”), which can be thought of as property testing for exact
(rather than approximate) decision problems, is closely related to proofs of proximity, though
the query complexity model is much simpler to analyze than property testing. We remark
that the high-level approach of our main lower bound for MAPs is inspired by the work of
Raz et al. [RTVV98].

Comparison with the techniques in [FGL14]. As we discussed above, our MAP lower
bound generalizes the main result of Fischer, Goldhirsh, and Lachish [FGL14]. The latter
result can be interpreted as an MAP lower bound for any k-wise independent property. Our
lower bound extends to a natural generalization of this family. We stress that this extension
is crucial for our main result, as the permutation property (with respect to which we prove
Theorem 1) is not k-wise independent, but does satisfy our more general notion.6

The proof in [FGL14] is technically quite involved and includes several subtle and non-
trivial arguments. For example, while typically property testing lower bounds are shown by
exhibiting two distributions that are chosen only as a function of the property, the argument
in [FGL14] crucially relies on distributions that are functions of both the property and the
description of the specific analyzed algorithm. This entails the usage of several complex
mechanisms. For example, they rely on an involved treatment of adaptivity, which consists
of procedures for “grafting” decision trees, and use a special type of algorithms (called
“readers”) that expose low-entropy portions. Perhaps the most significant complication is
that their argument uses a delicate information theoretic analysis to handle MAPs that have
a two-sided error.

In contrast, our proof is much shorter and consists purely of a combinatorial argument,
which does not require any special treatment of adaptivity and two-sided error, and does
not use information theory.

property testing and communication complexity. In particular, simulating MA communication complexity
protocols by their AM counterparts can also be done while only incurring a quadratic blow-up in complexity,
and on the other hand AM protocols can also be exponentially more powerful than MA protocols [Kla11].
In addition, oblivious MA proofs of proximity can be viewed as analogous to online MA communication
complexity protocols [CCM+15].

6Jumping ahead, we remark that our relaxed notion of k-wise independence refers to distributions for
which the probability that any subset of k indices is equal to any given sequence of k values is upper bounded
by the same probability given the uniform distribution up to a multiplicative constant (whereas the standard
(i.e., non-relaxed) notion requires exact equality). See further details in Section 3.
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1.3 Organization

In Section 2, we introduce the notations and definitions that we use throughout this work.
In Section 3, we prove our main technical contribution, which is an MAP lower bound
for relaxed k-wise independent properties. In Section 4, we derive our main result: an
exponential separation between MAPs and AMPs. In Section 5, we present and prove our
results regarding oblivious proofs of proximity. Finally, in Section 6, we conclude with a
discussion and raise open problems.

2 Preliminaries

In this section we establish the definitions and notions that we will need throughout this
work.

2.1 Properties and Distance

We focus on testing properties of functions and identify a “property” with the set of functions
having that property. More accurately, for each n ∈ N, let Dn and Rn be sets. Let Fn be
the set of functions from Dn to Rn. We define a property as an ensemble Π =

⋃
n Πn, where

Πn ⊆ Fn for all n.
For an alphabet Σ, we denote the Hamming distance between two strings x, y ∈ Σn

by ∆(x, y) := |{xi 6= yi : i ∈ [n]}|. If ∆(x, y) ≤ ε · n, we say that x is ε-close to y,
otherwise we say that x is ε-far from y. For a non-empty set S ⊆ Σn, we similarly define
∆(x, S) := miny∈S ∆(x, y). Again, if ∆(x, S) ≤ ε · n, we also say that x is ε-close to S and
otherwise x is ε-far from S. We extend these definitions to functions by identifying functions
with their truth tables (viewed as strings).

Integrality. Throughout this work, for simplicity of notation, we use the convention that
all (relevant) integer parameters that are stated as real numbers are implicitly rounded to
the closest integer.

2.2 Proofs of Proximity

We recall the definitions of MA and AM proofs of proximity (i.e., MAPs and AMPs), fol-
lowing [GR15b]. Throughout, for an algorithm V we denote by V f (n, ε, w) the output of
V given oracle access to a function f and explicit access to inputs n, ε, and w; if V is a
probabilistic algorithm, we write Pr[V f (n, ε, w) = z] to represent the probability over the
internal randomness of V that this outcome is z.

Definition 2.1 (MAP). A Merlin-Arthur proof of proximity (MAP) for a property Π =
⋃
n Πn

consists of a probabilistic algorithm V , called the verifier, that is given as explicit inputs an
integer n ∈ N, a proximity parameter ε > 0, and a proof string w ∈ {0, 1}∗; in addition, it
is given oracle access to a function f ∈ Fn. The verifier satisfies the following conditions.
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1. Completeness: For every n ∈ N and f ∈ Πn, there exists a string w (the proof) such
that for every ε > 0 the verifier accepts with high probability; that is,

Pr
[
V f (n, ε, w) = 1

]
≥ 2

3
.

2. Soundness: For every n ∈ N, function f ∈ Fn, string w, and proximity parameter
ε > 0, if f is ε-far from Πn, then the verifier rejects with high probability; that is,

Pr
[
V f (n, ε, w) = 0

]
≥ 2

3
.

A MAP is said to have query complexity q : N × R+ → N if for every n ∈ N, ε > 0,
f ∈ Fn, and string w ∈ {0, 1}∗, the verifier reads at most q(n, ε) bits in its queries to f .
We say that a MAP has proof complexity p : N → N if for every n ∈ N, there always exists
a w ∈ {0, 1}p(n) satisfying the conditions of Definition 2.1. We define the complexity of the
MAP to be t(n, ε) = q(n, ε) + p(n).

Next, we define AM proofs of proximity (AMPs) similarly to MAPs, except that here the
proof is also a function of the inner randomness of the verifier (alternatively, the verifier first
sends the prover its entire random string).

Definition 2.2 (AMP). An Arthur-Merlin proof of proximity (AMP) for a property Π =
⋃
n Πn

consists of a probabilistic algorithm V , called the verifier, that is given as explicit inputs an
integer n ∈ N, a proximity parameter ε > 0, and a proof string w that depends on the
verifier’s random string r, as well as oracle access to a function f ∈ Fn. The verifier
must also be deterministic given the random string r. The protocol satisfies the following
conditions.

1. Completeness: For every n ∈ N and f ∈ Πn,

Pr
r

[
∃w = w(r) such that V f (n, ε, w; r) = 1

]
≥ 2

3
.

2. Soundness: For every n ∈ N, function f ∈ Fn, and proximity parameter ε > 0, if f
is ε-far from Πn, then:

Pr
r

[
∃w such that V f (n, ε, w; r) = 1

]
≤ 1

3
.

Analogously to MAPs, an AMP is said to have query complexity q : N × R+ → N if for
every n ∈ N, ε > 0, f ∈ Fn, and string w ∈ {0, 1}∗, the verifier reads at most q(n, ε) bits
in its queries to f ; and proof complexity p : N × R+ → N if for every n ∈ N and f ∈ Fn,
with probability at least 2

3
over coin tosses in the first round, there exists a w ∈ {0, 1}p(n,ε)

satisfying the completeness condition of Definition 2.2. We define the complexity of the AMP
to be t(n, ε) = q(n, ε) + p(n, ε).
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We note that we do not include the randomness complexity of the verifier in the com-
plexity of the protocol (although the randomness complexity in all the protocols described
in this work is not large). This is a similar choice to what is done in similar contexts such as
AM query and communication complexities. Moreover, we show in Appendix A (see Theo-
rem 6) that if a property Π of functions f : Dn → Rn, such that |Rn||Dn| = O(exp(poly(n))),
admits an AMP verifier with query complexity q and proof complexity p, then it also ad-
mits an AMP verifier with query complexity O(q), proof complexity O(p), and randomness
complexity O(log n).7 This transformation is similar to known results of Newman [New91]
in the context of communication complexity, Goldreich and Sheffet [GS10] in the context of
property testing, and Gur and Rothblum [GR15b] for MAPs. Its main disadvantage however
is that it does not preserve the computational complexity of the verifier.

3 MAP Lower Bound for (Relaxed) k-wise Independence

In this section we show a general MAP lower bound for a large class of properties. More
specifically, we show that any MAP for a (non-degenerate) property that is k-wise inde-
pendent, must have complexity Ω(

√
k). By a k-wise independent property we mean that

if we sample a random element having the property, than its restriction to any k coordi-
nates looks uniform. As mentioned in the introduction, this generalizes a result due to
Fischer et al. [FGL14].

We would like to apply this lower bound to the permutation property. However, the
permutation property is not k-wise independent and so we cannot apply it directly.8. Rather,
we give a relaxed notion of k-wise independence that does capture the permutation property
and for which we can similarly derive an MAP lower bound.

We proceed to define our relaxed notion of k-wise independence. Recall that we use Fn
to denote the set of all functions from Dn to Rn (see Section 2).

Definition 3.1 (Relaxed k-wise Independence). Let Π =
⋃
n≥1 Πn be a property, where

Πn ⊂ Fn for every n. We say that Π is relaxed k-wise independent, for k = k(n), if there
exists a constant C ≥ 1 such that for all positive integers n, all pairwise distinct k-tuples
(i1, i2, . . . , ik) ∈ (Dn)k and arbitrary (t1, t2, . . . , tk) ∈ (Rn)k, we have that

Pr
f∈Πn

[
f(ij) = tj for all j ∈ [k]

]
≤ C

|Rn|k
. (1)

Note that standard definition of a k-wise independence corresponds to the special case
of Definition 3.1 when C = 1 (in which case the inequality in Eq. (1) can be replaced with
an equality).

At first glance it may seem that the relaxation that we allow in Definition 3.1 is rel-
atively minor and any lower bound that holds for the full-fledged definition should easily

7 For most properties, we have that both the domain and range have size that is polynomial in n. Indeed,
the case that |Rn||Dn| = ω(exp(poly(n))) seems quite pathological.

8Indeed, it is not even pairwise independent: the chance of seeing the same element twice is zero.
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be extendable to our relaxed variant. We argue that it is not the case. For example, in
a seminal work, Braverman [Bra11] showed that any k-wise independent distribution (for
k that is poly-logarithmic) fools AC0 circuits. Now consider the permutation property (to
be defined formally in Section 4) which as noted above is not even pairwise independent
but does satisfy our relaxed variant (with k =

√
n). It is not too hard to see that there

is a very simple AC0 circuit for checking whether a function is a permutation: simply by
checking whether there exist a pair of entries in the truth table that are identical - thus, our
seemingly minor relaxation completely sidesteps Braverman’s result. As a matter of fact, a
similar situation occurs in the context of AMPs: Rothblum et al. [RVW13] showed an AMP
lower bound for exact k-wise independent distribution, whereas we show a protocol for the
permutation property with logarithmic complexity.

Having defined our notion of relaxed k-wise independence, we proceed to describe a
second important condition that we require: namely, that the property is sparse, in the
sense that a random function is far from the property. Sparsity is essential for our result
since there are trivial properties that are k-wise independent but are testable with very few
queries (e.g., the property that consists of all functions).

Definition 3.2 (Sparse Property). Fix the proximity parameter ε = 1
10

. We say that a
property Πn =

⋃
n∈N Πn is t(n)-sparse if:

Pr
f∈Fn

[f is ε-far from Πn] ≥ 1− |Rn|−t(n).

We can now state our main theorem for this section.

Theorem 3. Let Π be a relaxed k-wise independent and k-sparse property. Then, any MAP
for Π, with respect to proximity parameter ε = 1/10, with proof complexity p and query
complexity q must satisfy p · q = Ω(k).

The intuition and high level approach for the proof are as follows. First, we use the
duality of an MAP as a collection of partial testers [FGL14]. More specifically, the existence
of an MAP for a property Π implies that there is some large “sub-property” Π′ ⊆ Π and a
tester T that distinguishes between inputs in Π′ from those that are far from Π.

This simple observation reduces lower bounding MAPs for Π to lower bounding a partial
tester for an arbitrary, but large, sub-property. To show such a lower bound, consider the
uniform distribution on Π′ vs. the uniform distribution over functions that are far from Π.
We would like to argue that these two distributions look the same to T , which therefore
cannot distinguish between them.

As a matter of fact, we will argue that both these distributions are “close” to being k-wise
independent, which suffices as long as k is larger than the tester’s query complexity. First,
by the sparsity condition we have that the uniform distribution over functions that are far
from Π is close to the uniform distribution over all functions. Clearly the latter is k-wise
independent.

As for the uniform distribution over Π′, we would like to argue that since Π′ covers a
substantial part of Π, which is relaxed k-wise independent, then also Π′ is relaxed k-wise
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independent. The problem with this argument is that Π′ only consists of a 2−p fraction of
Π, and so it could be quite far from being even relaxed k-wise independent (e.g., it could be
that the value of functions in Π′ on some fixed elements of Rn is constant over all functions
in Π′).

This seems like a significant difficulty and was overcome using highly elaborate techniques
in [FGL14]. In contrast, we suggest a much simpler argument. The idea is that we first reduce
the soundness error of the MAP to 2−O(p) by repetition. This increases the query complexity
of the tester to O(p · q) but now that the soundness error is so small, that the fact that Π′

covers a 2−p fraction of Π is sufficient to make the argument go through.
We proceed to the actual proof.

3.1 Proof of Theorem 3

Let C be a constant such that Πn satisfies the constraints of Definition 3.1.
Let V be an MAP verifier, with respect to proximity parameter ε, for Πn, and denote

its proof complexity by p and query complexity by q. Note that any MAP with standard
2/3 completeness and soundness probability (as in Definition 2.1) can be amplified, via O(p)
repetitions, to have completeness and soundness errors 1

10C
· 2−p at the cost of increasing the

query (but not the proof) complexity by a multiplicative factor of O(p), to O(p · q). For
concreteness, let us fix a constant C ′ such that a (C ′ ·p)-fold repetition of V has completeness
and soundness errors 1

10C
·2−p (while having proof complexity p and query complexity C ′·p·q).

Assume towards a contradiction that p · q ≤ k
10C′ .

Recall that for Π′ ⊆ Π, a (Π,Π′)-partial tester (a notion due to [FGL14]) is a tester
that is required to accept functions in the subset Π′ and reject functions that are ε-far from
the superset Π. As pointed out by Fischer et al. [FGL14] an MAP as we assumed above,
implies a covering of the property by partial testers as follows. For every possible proof
string w ∈ {0, 1}p, let

Sw =
{
f ∈ Πn : Pr

[
V f (n, ε, w) = 1

]
≥ 1− 1

10C
· 2−p

}
.

By the completeness requirement of an MAP, these sets cover the property Πn. That is,⋃
w Sw = Πn.

Since the number of sets Sw is at most 2p, there exists a proof w that corresponds to a
large Sw. Namely, such that |Sw| ≥ |Πn| · 2−p. We fix such a proof w and argue that the
corresponding (Πn, Sw)-partial tester must make Ω(k) queries, which would contradict our
assumption, thereby proving Theorem 3. Hence, we have reduced proving an MAP lower
bound for Πn to proving a partial testing lower bound for (Πn, Sw).

Let V f
w (n, ε) := V f (n, ε, w) be the (Sw,Πn)-partial tester that is induced by V when

we fix the proof string w (and with respect to parameters n and ε). We use the notation
V f
w (n, ε; r) to denote the deterministic output V f

w when its random string is set to r.
Let Bε = {f ∈ Fn : f is ε-far from Πn} (i.e., the no-instances). As standard in the

property testing literature, we prove a lower bound on the query complexity q′ of a tester by
presenting a distribution over YES-instances (f ∈ Sw) and a distribution over NO-instances
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(f ∈ Bε) and bounding away from 1 the distinguishing probability for every deterministic
algorithm making q′ queries. Specifically, we give distributions over Sw and Bε such that
any deterministic algorithm making q′ queries to f has at most a 1 − 1

4C
· 2−p probability

of distinguishing between them, which is sufficient for our purposes. In our case, we simply
consider the uniform distributions over Sw and Bε.

More formally, we first observe that

Ef∈Sw

[
Pr
r

[
V f
w (n, ε; r) = 1

]]
− Ef∈Bε

[
Pr
r

[
V f
w (n, ε; r) = 1

]]
= Er

[
Pr
f∈Sw

[
V f
w (n, ε; r) = 1

]
− Pr

f∈Bε

[
V f
w (n, ε; r) = 1

]]
, (2)

By Eq. (2), it suffices to bound the distinguishing probably for any deterministic verifier.
We do this via the following lemma.

Lemma 3.3. For any deterministic verifier W with query complexity at most k
10

, we have
that

Pr
f∈Sw

[
W f (n, ε) = 1

]
− Pr

f∈Bε

[
W f (n, ε) = 1

]
≤ 1− 1

4C
· 2−p.

Proof. We first show that

Pr
f∈Bε

[
W f (n, ε) = 1

]
≥ 1

2C
· 2−p · Pr

f∈Sw

[
W f (n, ε) = 1

]
. (3)

We can view the verifier W as a decision tree of depth q′ = k/10. Each leaf of the
decision tree is associated with indices i1, i2, . . . , iq′ ∈ Dn and values t1, t2, . . . , tq′ ∈ Rn such
that a function f ∈ Fn is accepted at that leaf if and only if f(ij) = tj for all j ∈ [q′]. We
may assume without loss of generality that the sets of indices i1, . . . , iq′ for all paths in the
decision tree are pairwise distinct. Fix such a sequence of indices i1, . . . , iq′ ∈ Dn and values
t1, . . . , tq′ ∈ Rn. Then,

Pr
f∈Bε

[
f(ij) = tj for all j ∈ [q′]

]
≥ | {f ∈ Fn : f(ij) = tj for all j ∈ [q′]} | − |Fn\Bε|

|Bε|

≥ 1

|Rn|q′
− 1

|Rn|k − 1

≥ 1

2|Rn|q′
. (4)

Here we have used k-sparsity to note that |Fn\Bε|
|Bε| ≤

1
|Rn|k−1

, and we used that q′ = k
10

.
On the other hand, we also have that:

Pr
f∈Sw

[
f(ij) = tj for all j ∈ [q′]

]
≤

Prf∈Πn

[
f(ij) = tj for all j ∈ [q′]

]
Prf∈Πn [f ∈ Sw]

≤ C · 2p

|Rn|q′
(5)

12



by relaxed q′-wise independence and the lower bound on the size of Sw.
Dividing Eq. (4) by Eq. (5), we obtain that

Pr
f∈Bε

[f(ij) = tj for all j ∈ [q′]] ≥ 1

2C
· 2−p · Pr

f∈Sw

[f(ij) = tj for all j ∈ [q′]] .

Now, summing the above equation over all leaves of the decision tree corresponding to
W (since these correspond to disjoint events) gives us Eq. (3).

Given Eq. (3), we now consider two cases. First, if

Pr
f∈Sw

[
W f (n, ε) = 1

]
≤ 1− 1

2C
· 2−p

we are obviously done. Otherwise, we can assume that Prf∈Sw

[
W f (n, ε) = 1

]
> 1− 1

2C
· 2−p

and so:

Pr
f∈Sw

[
W f (n, ε) = 1

]
− Pr

f∈Bε

[
W f (n, ε) = 1

]
≤ 1− 1

2C
· 2−p · Pr

f∈Sw

[
W f (n, ε) = 1

]
≤ 1− 1

2C
· 2−p ·

(
1− 1

2C
· 2−p

)
≤ 1− 1

4C
· 2−p,

where the first inequality is by Eq. (3). The lemma follows.

Now we are ready to use Lemma 3.3 to complete our proof of Theorem 3. Because V f
w

has completeness and soundness errors 1
10C
· 2−p, we have that

Ef∈Sw

[
Pr
r

[
V f
w (n, ε; r) = 1

]]
− Ef∈Bε

[
Pr
r

[
V f
w (n, ε; r) = 1

]]
≥ 1− 1

10C
· 2−p − 1

10C
· 2−p

= 1− 1

5C
· 2−p.

On the other hand, by Eq. (2) and Lemma 3.3, it holds that

Ef∈Sw

[
Pr
r

[
V f
w (n, ε; r) = 1

]]
− Ef∈Bε

[
Pr
r

[
V f
w (n, ε; r) = 1

]]
≤ 1− 1

4C
· 2−p,

which is a contradiction. Therefore, we can conclude that p · q ≥ k
10C′ , as desired.

4 An Exponential Gap Between MAP and AMP

In this section we prove Theorem 1, by exhibiting a property with an exponential gap between
its AMP and MAP complexities. In fact, we show this separation result with respect to the
permutation property, which we define next:
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Definition 4.1 (The Permutation Property). Let Perm =
⋃
n Permn be the property, where

Permn consists of all functions f : [n]→ [n] that are permutations.

To prove Theorem 1, we prove the following upper and lower bounds for the permutation
property.

Lemma 4.2 (AMP upper bound). There exists an AMP, with respect to proximity parameter
ε > 0, for Perm with proof complexity O(log(n)/ε) and query complexity O(1/ε).

Lemma 4.3 (MAP lower bound). Any MAP, with respect to proximity parameter ε ≤ 1/10,
for Perm with proof complexity p and query complexity q must satisfy p · q = Ω(

√
n).

Note that p · q = Ω(
√
n) implies that p + q = Ω(n1/4), and so combining Lemmas 4.2

and 4.3 shows that Perm has an AMP with logarithmic complexity, whereas any MAP for
Perm has complexity Ω(n1/4). This proves Theorem 1.

Section Organization. The rest of this section is devoted to the proofs of Lemmas 4.2
and 4.3. We first prove the AMP upper bound (Lemma 4.2) in Section 4.1 and then the MAP
lower bound (Lemma 4.3) in Section 4.2.

4.1 AMP Upper Bound - Proof of Lemma 4.2

The AMP for checking whether f : [n]→ [n] is a permutation proceeds as follows. First, the
verifier randomly selects O (1/ε) integers from [n] (with repetition). Denote this (multi-)set
of integers by S. The verifer sends S to the prover and expects to get in response a sequence
of integers (ts)s∈S. After receiving these, the verifier simply checks whether f(ts) = s for
every s ∈ S. If so, it accepts, and otherwise, it rejects.

The proof complexity of this protocol is O (log(n)/ε), as the prover uses O(log n) to
specify each ts. The query complexity is O (1/ε).

Completeness. Suppose f ∈ Permn, i.e. f is indeed a permutation. The prover can
respond with (ts)s∈S, where ts = f−1(s) for every s ∈ S. Given this response the verifier
accepts with probability 1.

Soundness. Assume that f : [n]→ [n] is ε-far from Permn. Note that the range of f has
size at most (1− ε) ·n, i.e. |{f(i) : i ∈ [n]}| ≤ (1− ε) ·n.9 The only way in which the prover
can convince the verifier to accept is if for all s ∈ S it holds that s is in the range of f .
Therefore, the probability that the verifier accepts is at most (1 − ε)O(1/ε) which is smaller
than 1/3 (by setting the constant in the big-Oh notation to be sufficiently large).

9Otherwise, by changing the repeated outputs of f to different outputs, we can construct a permutation
g that is ε-close to f .
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4.2 MAP Lower Bound - Proof of Lemma 4.3

We proceed to show that any MAP for Perm must have complexity Ω(n
1
4 ). More accurately,

for a fixed proximity parameter ε = 1
10

, we show that any MAP for Perm, with respect
to proximity parameter ε, with proof complexity p and query complexity q must satisfy
p · q = Ω(

√
n).

To show this, we simply show that Perm is relaxed
√
n

10
-wise independent and

√
n-sparse

(as defined in Section 3). The MAP lower bound then follows from Theorem 3. This is done
in the two lemmas below. Recall that for our property Perm, we have that Rn = [n].

Lemma 4.4. Perm is relaxed
√
n

10
-wise independent.

Proof. Define q :=
√
n

10
. Fix pairwise distinct indices i1, i2, . . . , iq ∈ [n] and values t1, t2, . . . , tq ∈

[n]. If the tj’s are not distinct then clearly it holds that:

Pr
f∈Perm

[
f(ij) = tj for all j ∈ [q]

]
= 0.

If the tj’s are distinct, then:

Pr
f∈Perm

[
f(ij) = tj for all j ∈ [q]

]
=

1∏q−1
i=0 (n− i)

=
1

nq
·
q−1∏
i=0

(
1− i

n

)−1

≤ 1

nq
·
(

1− q2

2n

)−1

≤ 2

nq
,

where the last inequality uses the fact that q =
√
n

10
.

We still need to show that Perm is sparse. Recall thatBε = {f ∈ Fn : f is ε-far from Perm}
(i.e., the no-instances).

Claim 4.5. For any constant ε ≤ 1
10

, we have that

Pr
f∈Fn

[f ∈ Bε] ≥ 1− e−
n
10

.

Proof. Recall that f : [n]→ [n] is ε-far from Permn if and only if the image of f has size at
most (1 − ε) · n. Thus, we need to upper bound the probability that a random function f
has an image of size greater than (1− ε) · n.

Let k = n
2

+ εn and consider the set S = {f(i) : i ∈ [k]}. If f is to have image with
size greater than (1 − ε) · n, then certainly we must have |S| ≥ n

2
. Now each of the values
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f(k + 1), . . . , f(n) has probability at least |S|
n
≥ 1

2
of colliding with a previous value. By the

Chernoff bound, the probability that we get at most εn collisions among these last n − k
values is at most

exp

(
−(1− 2ε)2 · (n− k)

2

)
≤ e−

n
10

for any ε ≤ 1
10

, as desired.

Corollary 4.6. Perm is
√
n-sparse.

Proof. We clearly have that e−
n
10 ≤ n−

√
n for sufficiently large n.

This completes the proof of Lemma 4.3.

5 MA vs AM Revisited: Oblivious Proofs of Proximity

We revisit the MA versus AM problem within the context of oblivious proofs of proximity.
These are proofs of proximity that have the special feature that the queries that the verifier
makes are independent of the proof (or prover messages in the interactive setting). Such
oblivious proofs should be thought of as a two phase process. First, there is a query phase
in which the verifier can makes its queries but is not allowed to interact with the prover. In
the communication phase, the verifier interacts with the prover (or just receives the proof in
the non-interactive setting) but is not allowed to make any more queries.

We thus define (equivalently to the definition in [RVW13, GR15b]) an oblivious MAP as
an MAP in which a verifier V operates in the following stages: (1) V queries the input f ,
(2) V receives a proof w, and (3) V decides whether to accept or reject according to w and
the queries that it made in the first stage.

The definition of oblivious AMPs is analogous, except for one subtle point. Namely, it
is crucial that the query phase is decoupled from the proof phase; that is, the verifier first
queries the input f , then it engages in a public-coin interaction in which it sends a fresh
random string r, receives a proof w that depends on f and r, and rules according to w and
the queries it made. In particular, the randomness that was used for the first step is not
revealed to the prover.10 While we find this definition to be the most natural one, we do
remark that it has the unfortunate consequence that an oblivious AMP according to our
definition is not necessarily an AMP. The reason is that the verifier in an oblivious AMP
is allowed to toss coins that are not revealed to the prover. Still, an oblivious AMP can be
viewed as an an AMAP (i.e., an AMP that is allowed to toss coins after receiving the proof).

In the next subsection, we show that the gap between the power of oblivious AMPs and
oblivious MAPs is much smaller than the one exhibited in Theorem 1. Subsequently, we use
this result to derive an exponential separation between the power of public and private coin
oblivious proofs of proximity.

10Indeed, note that if the verifier also sends the old randomness that was used to determine its queries, then
the resulting proof system is rendered completely degenerate. Namely, the verifier has all the information
necessary to fully emulate the optimal prover (by say, enumerating over all possible proofs), and thus this
model is equivalent to standard property testing (without a proof or a prover).
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5.1 A Generic Lower Bound

In this subsection we prove Theorem 2, which shows that oblivious AMPs can only be quadrat-
ically stronger than oblivious MAPs, and in fact, standard testers. We remark that this result
generalizes the lower bound on oblivious MAPs in [GR15b].

Fix ε > 0 and input length n ∈ N, and let Π be any property of inputs of length n.
Suppose that there exists an AMP verifier V , with respect to proximity parameter ε, for Π
with proof complexity p and query complexity q. We show that this implies that there exists
a tester (i.e., MAP with proof complexity 0), also with respect to proximity parameter ε,
for Π with query complexity O(p · q). We begin with a high-level overview, followed by a
complete proof.

Overview. Recall that an AMP protocol has the following structure. The tester makes
(possibly adaptive) queries a1, . . . , aq to the input function f , using randomness ρqueries.
Then, the verifier samples fresh randomness ρmsg and sends it to the prover. In return, the
prover replies with a proof w, which may arbitrarily depend on f , the proximity parameter
ε, and the verifier message ρmsg. Finally the verifier reads w and decides according to it and
the queries a1, . . . , aq.

The high-level idea is that since the query phase is independent of the proof phase (i.e.,
the verifier’s message ρmsg and the prover’s message w), a tester can emulate all possible
proofs, while using the same samples for all invocations. To support a union bound over all
possible proofs, we wish to perform standard parallel repetition. Indeed, this is the simple
argument used in the lower bound on oblivious MAPs in [GR15b].

However, the situation is more involved when dealing with oblivious AMPs. Specifically,
we cannot perform standard parallel repetition, as this would increase the proof complexity.11

In addition, it is not clear a priori how the verifier should identify an (emulated) valid proof,
since it is possible that for some verifier message there exists a proof that always fools the
verifier.

The way these difficulties are dealt with is by observing that since the query phase and
the proof phase are decoupled, then each oblivious AMP induces a family of testers that
are determined by the verifier and prover messages. In particular, this allows us to perform
soundness amplification on the induced testers, rather than on the protocol, and hence
this does not increase the proof complexity. This implies that, with high probability over
verifier’s message ρmsg, each of the corresponding induced testers decides correctly, with only
an exponentially small probability of error.

Thus, we can invoke all the testers that are induced by all proofs that correspond to a
particular verifier message ρmsg, while reusing the queries for all invocations. Finally, the
completeness and soundness of the original AMP assert that with high probability we choose
a good verifier message ρmsg, and so we can rule according to the induced tester. A complete
proof follows.

11This causes a “circular” argument, since we want to reduce the soundness to be exponentially small in
the proof complexity, but the amplification itself increases the proof complexity.
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Proof of Theorem 2. We follow the notation used in the overview. Assume, without loss of
generality, that the AMP verifier V has soundness error at most 1/100 (this can be obtained
via parallel repetition, while only increasing the proof and query complexity by a constant).
For a verifier message ρmsg and prover message w denote by Tρmsg,w the tester that is induced
by ρmsg and w = w(f, ρmsg, ε) (i.e., the decision procedure that the oblivious AMP verifier
invokes after receiving the proof). Denote by Tρmsg,w(a1, . . . , aq; ε) the random variable that
represents the output of Tρmsg,w with respect to queries a1, . . . , aq drawn according to V ’s
distribution of queries. Let T ′ρmsg,w be the induced tester that is obtained by amplifying
the soundness of Tρmsg,w via O(p) repetitions; denote its query complexity by q′ = O(p · q),
to be determined precisely later. Note that all (amplified) induced testers perform queries
according to the exact same distribution.

Consider the following tester T , which operates as follows.

1. Query step: Make the queries a1, . . . , aq′ that the (amplified) induced testers perform.

2. Emulation step: Choose a uniform random string ρmsg, and invoke the induced ampli-
fied testers {T ′ρmsg,w}w∈{0,1}p with respect to proximity parameter ε and queries a1, . . . , a

′
q.

3. Decision step: Accept if and only if there exists w ∈ {0, 1}p such that T ′ρmsg,w(a1, . . . , aq; ε) =
1.

Clearly the query complexity of T is as stated. We proceed to prove its correctness. For a
function f (purportedly in the property Π), consider the quantity

hardf,Π(ρmsg) = max
w

Pr
a1,...,aq

[Tρmsg,w(a1, . . . , aq; ε) = 1] ,

which can be viewed as measuring the hardness of the random “challenge” ρmsg that is posed
by the verifier V ; that is, the probability of the optimal prover strategy to convince the
verifier given the random message ρmsg.

For completeness, suppose f ∈ Π, and observe that Eρmsg [hardf,Π(ρmsg)] ≥ 99/100. Thus,
by an averaging argument, we have that Prρmsg [hardf,Π(ρmsg) ≥ 9/10] ≥ 9/10, which corre-
spond to the “good” event that the verifier chose a random challenge ρmsg that admits a
convincing prover strategy. In which case, there exists a proof w ∈ {0, 1}p such that

Pr[T f (ε) = 1] ≥ Pr
ρmsg

[hardf,Π(ρmsg)]·Pr[T ′ρmsg,w(a1, . . . , aq; ε) = 1] ≥ 9

10
·Pr[Tρmsg,w(a1, . . . , aq; ε) = 1] ≥ 2

3
,

as required.
The soundness argument is similar, only that now we need to rely on the amplification

to tolerate a union bound over all possible proofs. More precisely, suppose f is ε-far from
Π, and observe that Eρmsg [hardf,Π(ρmsg)] < 1/100. Thus, by an averaging argument, we have
that Prρmsg [hardf,Π(ρmsg) ≥ 9/10] ≤ 1/10, which correspond to the “good” event that the
verifier chose a random challenge ρmsg that does not admit a convincing prover strategy.
Thus,

Pr[T f (ε) = 1] ≥ Pr
ρmsg

[hardf,Π(ρmsg)]·Pr[∃w ∈ {0, 1}p such that T ′ρmsg,w(a1, . . . , aq; ε) = 1] ≥ 9

10
·2p·2O(−p) .
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We conclude the argument by choosing a sufficiently large q′ = O(pq) such that Pr[T f (ε) =
1] ≥ 2/3.

5.2 Application: a Chasm Between Public and Private Coin

As an application, we use Theorem 2 to derive lower bounds on public-coin oblivious in-
teractive proofs of proximity, and show an exponential separation between public-coin and
private-coin protocols in this setting.

More specifically, (private-coin) oblivious interactive proofs of proximity (oblivious IPPs)
[RVW13] are a natural extension of oblivious MAPs, in which the proof is replaced with
a prover with whom the verifier can interact. More accurately, an r-round oblivious IPP
consists of a verifier V and prover P that interact as follows: (1) V queries the input f , (2)
V and P exchange messages in r rounds, where each round contains one message from each
of the parties, and (3) at the end of the interaction, V rules according to the transcript of
the interaction and the queries it made.

A public-coin oblivious interactive proof of proximity is simply referred to as an r-round
oblivious AMP. Here the definition is the same as with oblivious IPPs, except that now the
verifier is only allowed to send a (fresh) random string in each round. Note that standard
oblivious AMPs (to which we referred in the previous subsection) are simply 1-round oblivious
AMPs. The complexity of an oblivious IPP is the sum of its communication complexity and
query complexity.

We remark that in polynomial time computation, as well as in non-oblivious proofs of
proximity, the aforementioned models are roughly equivalent (see, e.g., [RVW13]). In stark
contrast, as the following theorem shows, it turns out that oblivious IPPs can be much more
powerful than their public-coin counterparts.

Theorem 4. There exists a property Π for which there exists a 2-round oblivious IPP whose
complexity is exponentially smaller than that of any r-round oblivious AMP, for constant
r ∈ N.

We prove Theorem 4 with respect to the following natural property that consists of all
low-degree polynomials that have a root in a predetermined subset. More precisely, let F be
a finite field, let m, d ∈ N such that d ·m < |F|/10 and let H be an arbitrary subset of F of
size d+ 1. Consider the following property.

Definition 5.1. The Tensor Root property, denoted TensorRootF,m,d,H , is parameterized by a
field F, a dimension m ∈ N, a degree d ∈ N and a subset H ⊂ F, and contains all polynomials
P : Fm → F of individual degree d that takes a root in Hm; that is,

TensorRootF,m,d,H = {P : Fm → F of individual degree 2d : ∃z ∈ Hm such that P (z) = 0} .

Throughout this section we fix a fairly standard parameterization of low degree extension
from the PCP literature; namely, we fix a size parameter n ∈ N, degree d = log(n) − 1,
dimension m = log(n)/ log log(n), a finite field F of size 10 · dm, and a subset H of F of size
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d (note that |H|m = n). Then, we denote TensorRoot = TensorRootF,m,d,H , with the respect
to the parameters that we fixed.12

We prove Theorem 4 via the following two lemmas.

Lemma 5.2. Fix ε < 1/10 and a constant r ∈ N. Any oblivious r-round oblivious AMP,
with respect to proximity parameter ε, for TensorRoot, with communication complexity c and
query complexity q must satisfy c+ q = nΩ(1/r).

Lemma 5.3. For any ε > 0, there exists a 2-round oblivious IPP for for TensorRoot, with
communication complexity O(log2 n) and query complexity O(log(n)).

Before we proceed to prove the lemmas above, we shall first need the following immediate
corollary of Theorem 2, which follows by a straightforward application of the Babai-Moran
[BM88] speedup theorem, as worked out in the setting of proofs of proximity in [RVW13],
while noting that this transformation preserves the oblivious feature.

Corollary 5.4. For any property Π and constant r ∈ N, if there exists an oblivious r-round
AMP for Π with communication complexity c and query complexity q, then there also exists
a tester for Π with query complexity cO(r) · q.

In particular, Corollary 5.4 implies that for a property Π that requires t queries to test, it
holds that any oblivious AMP for Π with communication complexity c and query complexity
q must satisfy c+ q = tΩ(1/r).

Comparison with proofs of proximity for distributions. In a recent work [CG17],
the question of private versus public coin interaction was studied in the context of proofs
of proximity for distribution testing. These proof systems differ from standard proofs of
proximity in three respects: (1) the input is a distribution, rather than a function; (2) query
access is replaced with independent samples from the input distribution; and (3) proximity
is measured by total variation distance, rather than Hamming distance.

Proofs of proximity for distribution testing can be thought of as oblivious in a very
strong sense (because the verifier cannot query its input, but rather passively receives a set
of samples). This allows for a very strong lower bound on r-round AM proofs of proximity for
distribution testing. Namely, for any number of rounds r (including super-constant values)
these proofs of proximity can be emulated by standard distribution testers (i.e., without
proof or prover) at only a quadratic cost.

In contrast, our lower bound on r-round oblivious AMPs degrades as the round complexity
increases. Hence, it is natural to inquire whether our lower bound can be improved to match
the stronger lower bound that holds in the distribution testing setting.

However, we remark that the above strengthening is impossible, and in fact any lower
bound for oblivious AMPs must degrade with the round complexity. This follows from the
bounds on the Tensor Sum property that appear in [GR15b]. More specifically, the argument
in [GR15b] shows that for every r, there exist an r-round AMP protocol for the Tensor Sum

12Note that the input is of size |F|m, which is larger than |H|m.
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property with complexity Õ(n1/r).13 Moreover, their sumcheck-based protocol is actually an
oblivious AMP. Since in [GR15b] it is shown that the Tensor Sum property requires Ω̃(n)
queries to test, then together with our Theorem 4, it holds that any r-round oblivious AMP
must have complexity nΩ(1/r). So the complexity of r-round oblivious AMPs for the Tensor
Sum property decreases with as the number of rounds increases.

5.2.1 Proof of Lemma 5.2

By Corollary 5.4 (and the discussion that follows it), to prove Lemma 5.2 it suffices to prove
that any (standard) property tester for TensorRoot must make Ω̃(n) queries. We prove this
via the framework of Blais, Brody, and Matulef [BBM12] for showing property testing lower
bounds via communication complexity lower bounds. To this end, we assume basic famil-
iarity with communication complexity (for a comprehensive introduction to communication
complexity, see [KN97]).

The basic approach of [BBM12] is to reduce a hard communication complexity problem to
the property testing problem for which we want to show a lower bound. We follow [BBM12]
by showing a reduction from the well-known communication complexity problem of set-
disjointness. The aforementioned framework allows us to obtain a lower bound on the query
complexity of testing the Tensor Root property.

Recall that the set-disjointness problem is the communication complexity problem wherein
Alice gets an n-bit string x, Bob gets an n-bit string y, and their goal is to decide whether
there exists i ∈ [n] such that xi = yi = 1. Equivalently, Alice and Bob’s inputs can be viewed
as indicator vectors of sets A,B ⊆ [n]. In this case, the goal of the players is to decide if the
sets corresponding to their inputs intersect or not. We denote this problem by DISJn.

It is well-known that the randomized communication complexity of the set-disjointness
problem is linear in the size of the inputs, even under the promise that A and B intersect in
at most one element.

Theorem 5 ( [KS92]). For every n ∈ N, every randomized communication complexity pro-
tocol for DISJn must use Ω(n) bits of communication.

We are now ready to prove the property testing lower bound on the TensorRoot property
via reduction from the set-disjointness problem DISJn. Let T be a tester, with respect to
proximity parameter ε = 1/10, for TensorRoot with query complexity q. We prove that
q = Ω̃(n).

Consider the following randomized communication complexity protocol. There are two
parties, Alice and Bob. Alice receives an input x ∈ {0, 1}n, and Bob receives an input
y ∈ {0, 1}n. The goal is to decide whether (x, y) ∈ DISJn, i.e., there exists an i ∈ [n]
such that xi = yi = 1; or whether (x, y) /∈ DISJ, i.e., for every i ∈ [n] either xi = 0 or
yi = 0.14 Recall that we fixed d = log(n)+1, m = log(n)/ log log(n), and H ⊆ F of size d (so
|H|m = n), and that the low-degree extension of a string x ∈ {0, 1}n is the unique m-variate

13Actually, in [GR15b] this result is only stated for r = 1, 2, 3, log(n). However, straightforward inspection
shows that it generalizes to any value of r.

14More accurately, this is actually the set-intersection problem, i.e., the complement of DISJn; however,
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polynomial Px of individual degree d that agrees with fx on Hm, where fx : Hm → {0, 1} is
an arbitrary predetermined embedding of x in Hm. The protocol takes places as follows:

1. Creating distance: Alice computes the (unique) low-degree extension of x, denoted Px;
Bob computes the (unique) low-degree extension of y, denoted Py.

2. Emulating the Tensor Root tester: Alice invokes the tester T , which requires (possibly
adaptive) queries to a function P : Fm → F. For each query z ∈ Fm, Alice evaluates
Px(z), sends z to Bob, and Bob sends back Py(z) to Alice.

3. The combining operator: For each query z ∈ Fm asked by the tester and values Px(z)
and Py(z) computed by Alice and Bob, Alice feeds the tester T with the evaluation of
the m-variate individual degree 2d polynomial P (z) := 1− Px(z) · Px(z).

For completeness, note that if (x, y) ∈ DISJn, then there exists an i ∈ [n] such that xi =
yi = 1. Hence, there exists a t ∈ Hm such that Px(t) = Py(t) = 1, and so 1−Px(t) ·Px(t) = 0.
Therefore, the (combined) polynomial P has a root in Hm, and so P ∈ TensorRoot.

For soundness, note that if (x, y) ∈ DISJn, then for every i ∈ [n] either xi = 0 or yi = 0.
Hence, for every t ∈ Hm it holds that either Px(t) = 0 or Py(t) = 0, and so 1−Px(t)·Px(t) = 1.
Therefore, the (combined) polynomial P does not have a root in Hm. By the distance of
the Reed-Muller code (i.e., the Schwartz-Zippel Lemma), this implies that P is ε-far from
TensorRoot.

Since Alice can obtain the answer to each query of the tester T to the function P using
O(log n) bits of communication, then the reduction above implies a communication com-
plexity protocol for DISJn with communication complexity O(q · log(n)), where recall that
q denotes the query complexity of T . Plugging the Ω(n) lower bound on the (randomized)
communication complexity of DISJn, we obtain that q = Ω̃(n), which concludes the proof of
Lemma 5.2.

5.2.2 Proof of Lemma 5.3

We show a 2-round oblivious IPP for for TensorRoot, with communication complexityO(log2 n)
and query complexity O(log(n)). The main idea underlying this protocol can be traced back
to a work on quantum information and the PCP theorem by Raz [Raz09], and was also used
in the study of streaming interactive proofs [CCM+15].

Note that the TensorRoot problem is trivial for non-oblivious proofs of proximity: the
prover can simply indicate the location of the root in Hm, and then the verifier checks that
this is the case. However, in oblivious proofs of proximity, the query is performed prior to
the interaction with the prover, and so even if the prover tells the verifier the location of the
root, the verifier cannot “go back in time” and make the query.

However, we show that by capitalizing on the algebraic structure of low-degree polyno-
mials and on private-coin communication (which we know is required, by Lemma 5.2), we

since standard randomized communication complexity is closed under complement, the same lower bound
applies.
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can in a sense “go back in time” and recover the value pointed by the prover, even though
we can no longer make queries to the input function.

Consider the following 2-round oblivious IPP, with respect to proximity parameter ε > 0,
for TensorRoot, where, assume without loss of generality that ε < 1/10.

1. Query phase:

(a) Low-degree test: The verifier performs a standard low (individual) degree test on
the input function P : Fm → F, and accepts if and only if the low-degree test
accepts. (See [GR15b] for details of applying low-degree tests in the setting of
proofs of proximity.)

(b) Secret query: The verifier draws uniformly at random a point r ∈ Fm and queries
P (r).

2. Interaction phase:

(a) Pointing to the root: The prover sends a purported root z ∈ Hm (i.e., such that
allegedly P (z) = 0).

(b) A line through the root: The verifier sends (some canonical representation) of the
line ` that passes through its secret query r and the purported root z. (Note that
this does not reveal the full identity of r to the prover).

(c) Restricting the polynomial to the line: the prover sends the purported restriction

of P to the line `, denoted P̃ |`, specified by its 2d coefficients.

(d) Line-versus-point consistency: The verifier checks that P̃ |`, restricted to the point
r, agrees with the value P (r) that it had originally queried.

Since low-degree testing can be performed via O(log(n)) queries, the protocol above clearly
satisfies the query complexity requirement. In terms of communication, the verifier sends a
line (which can be characterized by two canonically chosen points), and the prover sends 2d
coefficients, thus the communication complexity is O(log2 n).

Completeness is immediate by construction. For soundness, suppose that P is ε-far from
TensorRoot. If P is ε-far from being an individual degree 2d polynomial, then the low-degree
test rejects with high probability. Otherwise, by the distance of the Reed-Muller code (i.e.,
the Schwartz-Zippel Lemma) we can assume that P is ε-close to an individual degree 2d
polynomial P̂ such that P̂ (x) 6= 0 for all x ∈ Hm. Note that with probability 1 − ε (and
by our assumption we have 1 − ε > 9/10) the verifier queries a “good” point r such that
P (r) = P̂ (r). Suppose hereafter that this is the case.

The prover receives the line ` that passes through the secret query r and the purported
root z. However, since this line is canonically represented, the prover does not know the
location of the point r on the line `. Since a low-degree polynomial restricted to a line is a
Reed-Solomon codeword, then P̃ |` must disagree with P except on a negligible number of
points, and so the verifier rejects with probability at least 9/10 · (1− o(1)) ≥ 2/3.
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6 Discussion and Open Problems

The complexity of the permutation property for testers, which do not use a proof, is Θ̃(
√
n).

In this work we showed a lower bound of Ω̃(n
1
4 ) for MAPs for Perm. Thus, the MAP com-

plexity of Perm is somewhere between Ω̃(n
1
4 ) and Õ(

√
n) - resolving the exact complexity is

an interesting open problem:

Problem 6.1. Does every MAP for Permutation have complexity Ω̃(
√
n)?

Second, our work shows that AMPs can be exponentially more efficient than MAPs. It
is natural to ask whether the converse also holds - can MAPs be much more efficient than
AMPs? A partial answer to this question is known. As mentioned in Footnote 3, every MAP
with complexity c can be emulated by an AMP with complexity (roughly) c2.

Thus, MAPs can be at most quadratically more efficient than AMPs. However, we do not
know a property for which this gap is tight. In particular, the following problem is open:

Problem 6.2. Does this exist a property Π that has an MAP with complexity O(
√
n) but

every AMP for Π must have complexity Ω(n)?
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[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communica-
tion complexity theory. In 27th Annual Symposium on Foundations of Computer
Science, Toronto, Canada, 27-29 October 1986, pages 337–347, 1986.

24



[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P.
Vadhan. Robust pcps of proximity, shorter pcps, and applications to coding.
SIAM J. Comput., 36(4):889–974, 2006.
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A Randomness Reduction in AMPs

In this section, we prove the following theorem, which shows that for reasonable properties,
we can reduce the randomness of any AMP for the property down to O(log n). Specifically,
we have the following theorem.

Theorem 6. Let Π be a property of functions f : Dn → Rn, where |Rn||Dn| ≤ exp(poly(n)).
If Π has an AMP verifier that makes q queries, uses a proof of length p, and uses r random
bits, then Π has an AMP that makes O(q) queries, uses a proof of length O(p), and uses
O(log n) random bits.

We note that most properties that are considered have |Rn| = O(poly(n)) and |Dn| =
O(poly(n)), so properties that have |Rn||Dn| = ω(exp(poly(n))) seem quite pathological.

Proof. Our proof follows closely to the proof of MAP randomness reduction in [GR15b]. Let
Fn denote the set of all functions Dn → Rn. Let V be an AMP verifier for Πn. For a function
f ∈ Fn, let V f (n, ε, w; t) denote the output of V when running with oracle access to f with
random string t of length r. For every function f ∈ Fn and subset S ⊆ {0, 1}r, define

βf (S) =

∣∣∣∣ Pr
t∈{0,1}r

[
∃w such that V f (n, ε, w; t) = 1

]
− Pr

t∈S

[
∃w such that V f (n, ε, w; t) = 1

]∣∣∣∣ .
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We show, using the probabilistic method, that there exists a multiset S of strings in
{0, 1}r of size poly(n) such that for all functions f ∈ Fn it holds that βf (S) ≤ 1/7.

Fix a function f ∈ Fn. Sample k strings from {0, 1}r uniformly at random and let these
be the set S. By the Chernoff bound, we have that βf (S) ≤ 1/7 with probability 2−Ω(k) over
our random choice of S. Thus by setting k = O(log |Fn|) = O

(
log(|Rn||Dn|)

)
= O(poly(n))

and applying the union bound over all f ∈ Fn, we obtain that there exists a multiset S as
desired.

Now, we can obtain an AMP verifier using only O(log |S|) = O(log n) random bits by
simply running the original verifier V but with respect to random strings selected uniformly
from S (instead of {0, 1}r). We can amplify the completeness and soundness to 2

3
with O(1)

repetitions.
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