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Abstract

A k-LIN instance is a system of m equations over n variables of the form si1+· · ·+sik = 0 or 1
modulo 2 (each involving k variables). We consider two distributions on instances in which
the variables are chosen independently and uniformly but the right-hand sides are different.
In a noisy planted instance, the right-hand side is obtained by evaluating the system on a
random planted solution and adding independent noise with some constant bias to each equation;
whereas in a random instance, the right-hand side is uniformly random. Alekhnovich (FOCS
2003) conjectured that the two are hard to distinguish when k = 3 and m = O(n).

We give a sample-efficient reduction from solving noisy planted k-LIN instances to distin-
guishing them from random instances. Suppose that m-equation, n-variable instances of the
two types are efficiently distinguishable with advantage ε. We show that O(m · (m/ε)2/k)-
equation, n-variable noisy planted k-LIN instances are efficiently solvable with probability
exp−Õ((m/ε)6/k). Our solver has worse success probability but better sample complexity than
Applebaum’s (SICOMP 2013).

The solver is based on a new approximate local list-decoding algorithm for the k-XOR code
at large distances. The k-XOR encoding of a function F : Σ→ {−1, 1} is its k-th tensor power
F k(x1, . . . , xk) = F (x1) · · ·F (xk). Given oracle access to a function G that µ-correlates with
F k, our algorithm outputs the description of a message that (µ1/k − ε)-correlates with F with

probability exp−Õ(k2µ−2/kε−2). Previous decoders have a worse dependence on µ (Levin,
Combinatorica 1987) or do not apply to subconstant µ1/k. We also prove a new XOR lemma
for this parameter regime.

The decoder and its analysis rely on a new structure-versus-randomness dichotomy for
Boolean-valued functions over product sets.

1 Introduction

XOR lemmas [Yao82] are statements that relate the average-case hardness of a Boolean function
F : Σ→ {−1, 1} to that of its k-XOR encoding F k : Σk → {−1, 1} given by

F k(x1, . . . , xk) = F (x1) · · ·F (xk).

If some algorithm A of low complexity computes F on a (1 + µ1/k)/2-fraction of inputs under the
uniform distribution over Σ, then the algorithm A′(x1, . . . , xk) = A(x1) · · ·A(xk) computes F k on
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a (1 +µ)/2-fraction of inputs. XOR lemmas formalize the intuition that this is essentially the best
possible average-case algorithm for F k.

In computational complexity, XOR lemmas are used for hardness amplification. Typically Σ is
the Boolean cube {0, 1}n, and the function F is mildly hard to compute in the sense that every
circuit of a given size fails on some small fraction of {0, 1}n. The objective is to show that F k is
very hard to compute, namely no circuit of somewhat smaller size can compute F on more than
(1 + µ)/2 of the inputs.

In coding-theoretic language, XOR lemmas are approximate local list-decoding algorithms for
the k-XOR code [STV01]. The function F represents a binary message of length |Σ| and F k is its
encoding. List-decoding is the task of finding all the codewords F k that have relative agreement at
least (1 +µ)/2 with a given corrupted codeword G : Σk → {−1, 1}. The number of such codewords
can be exponentially large in |Σ| which severely restricts the utility of exact list-decoding. It is
common to study the following relaxation.1

Definition 1. Let µ, α ∈ [0, 1] be parameters. A binary code is (1 − α)/2-approximately list-
decodable for error rate (1 − µ)/2 with list size `(µ, α) if for every corrupted codeword G there
exists a list of codewords C1, . . . , C` such that for any codeword C that is (1− µ)/2-close to G, C
is (1− α)/2-close to Ci for some i.

When α > µ the list size is still exponential in Σ (see Proposition 29), so the regime of interest is
α ≤ µ. In the case of the k-XOR code, two codewords F k, F ′k are at distance (1−α)/2 if and only if
the corresponding messages F, F ′ are at distance (1−α1/k)/2. Most XOR lemmas [Imp95,GNW11,
IJK09,IJKW10] study the algorithmic aspects of approximate list-decodability in the regime where
µ is close to zero and α1/k is close to one. Impagliazzo, Jaiswal, Kabanets, and Wigderson [IJKW10]
give a local decoding algorithm with list size O(1/µ) assuming the approximation error (1−α1/k)/2
is at most O((log 1/µ)/k). Their algorithm, as well as most others, does not address the regime
in which k is smaller than log 1/µ. One notable exception is Levin’s XOR lemma [Lev87], which
achieves approximation α1/k = µ1/k − ε for arbitrary ε > 0 but with list size that grows at least
exponentially in 1/µ2 (see discussion below).

In this work study approximate list-decoding XOR codes in the regime µ = o(2−k) and even
µ = o(1/|Σ|). Our main motivation for investigating this extreme parameter setting is the following
connection between the XOR code and the hardness of noisy systems of sparse random linear
equations over GF (2).

Sparse random linear equations We are given a system of linear equations of the form xi1 +
· · · + xik = 0 or 1, where the variables in each equation and the left-hand sides of the different
equations are independent and identically distributed, and the addition is modulo 2. Such a system
has the form Ax = b where A is a random m × n matrix with sparse and independent rows. We
are interested in the following two problems:

Solving a planted instance: Given A and As + e, where s ∼ {0, 1}n is a random planted
solution and e is a vector of random i.i.d. {0, 1}-entries where each entry is 1 with constant
probability η, find s.

Distinguishing planted from random instances: Distinguish the distribution (A,As + e)
from (A, r), where r ∼ {0, 1}m is independent of A.

1More precisely, the list can be of size 2h((1−µ1/k)/2)|Σ|, where h is the binary entropy function.
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The distinguishing variant was introduced by Alekhnovich [Ale11]. He conjectured that when
k = 3 and m = O(n) distinguishing with advantage substantially better than 1/n is intractable.
This is a generalization of Feige’s conjecture [Fei02] from which several hardness of approximation
results are derived.

For the solving variant, Applebaum [App16] describes an efficient solver in the regime m =
ωk(n

k/2) by a reduction to a 2CSP instance, the application of a suitable approximation algo-
rithm [GW95,CW04], and some additional post-processing work.2

Distinguishing algorithms have received considerable attention in the regime where their advan-
tage is very close to one. A refutation algorithm must accept all planted instances in which the error
rate is less than some threshold, say 2η, and reject almost all random instances. Polynomial-time
refutation algorithms are known for random k-XOR instances provided the number of clauses m ex-
ceeds ωk(n

k/2) [AOW15,BM16] and are conjectured not to exist when m = o(nk/2) [ABW10,BM16].
In the latter regime, refutation in time exp Õ(nδ) is possible if m = ω̃k(n

k/2−δ(k/2−1)) [RRS17].
On the negative side, Feldman, Perkins, and Vempala [FPV15] describe a statistical model

in which efficient search is possible when m = ω(nk/2 log2 n), but distinguishing isn’t when m =
o((n/ log n)k/2). Kothari et al. [KMOW17] show that the refutation algorithms of [AOW15,BM16,
RRS17] are optimal among a wide class of semidefinite programs.

A distinguishing advantage of Ω(
(
m
2

)
/
(
n
k

)
) can be attained by a simple collision-finder: The

distinguisher looks for two appearances of the same equation, accepts if the right-hand sides are
equal, and rejects otherwise.

It is a curious coincidence that the threshold m ≈ nk/2 arises as a common barrier for solving
and distinguishing.

We are interested in the relationship between solving planted systems of this type and distin-
guishing planted and random instances. In one direction, a solver that works on an α-fraction of
instances can be used to distinguish with advantage at least α−2−H(2η)m+n, indicating that solving
should be harder than distinguishing. In the other direction, Applebaum [App13] gives an efficient
reduction from solving a constant fraction of instances of size m to that of distinguishing instances
of size (ε2m/ log n)1/3, where ε is the advantage of the distinguisher.

The starting point of Applebaum’s analysis is an application of Yao’s distinguishing-to-prediction
reduction [Yao82]. In this context the reduction turns a distinguisher for planted instances with
m equations and advantage ε into a predictor that guesses the value of any given k-XOR equation
(evaluated on the planted solution) with advantage ε/m, given m−1 planted equations as “training
data”.

Our reduction leverages the fact that the truth-table of the predictor is precisely a corrupted k-
XOR encoding of the planted solution, so recovering the solution amounts to decoding the predictor.
In this setting, the correlation ε/m between the predictor and the actual codeword is smaller than
the inverse of the message length n. None of the known list-decoding algorithms address this range
of parameters.

This perspective has been applied successfully in many cryptographic settings, including anal-
ysis of hard-core predicates [GL89, AGS03, App17] and sample-preserving distinguishing-to-search
reductions for learning with errors3 [MM11,BLRL+18] and learning with rounding [BGM+16]. All
these applications rely on the availability of exact list-decoding algorithms for the underlying code.

2This approach applies more generally to equations with adversarial noise.
3Learning with errors instances over GF (2) are precisely dense variants of noisy k-XOR and amount to list-decoding

the “dense XOR code”, i.e. the Hadamard code.
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1.1 Our results

Our first result is a new approximate local list-decoding algorithm for the k-XOR code at very
large distances. We use the notation E[A ·B] for the product of A(x) and B(x) averaged over their
inputs, i.e., E[A ·B] = Ex[A(x) ·B(x)].

Definition 2. A (µ, α1/k) approximate list-decoder for the k-XOR code is an algorithm that, given
a corrupted codeword G such that E[G · F k] ≥ µ for some message F , outputs a message F̂ such
that E[F · F̂ ] ≥ α1/k with some success probability p.

The approximate list-decoder is local if G is provided as an oracle, and its output F̂ is a circuit
(which on input x calculates F̂ (x)), and uniform if its dependence on the parameters µ, |Σ|, k, and
α is uniform (that is, it uses no non-uniform advice).

Theorem 3. There is a uniform local (µ, µ1/k − ε)-approximate list decoder that succeeds with

probability at least Ω(ε)O(k2/µ2/kε2) and runs in time Õ(kkµ−2ε−2k log|Σ|).

In contrast, the algorithm of Impagliazzo et al. [IJKW10] assumes that µ1/k is lower-bounded by
a constant, while the algorithm implicit in Levin’s XOR lemma [Lev87] succeeds with probability
exponential in µ−2.

We apply Theorem 3 to derive the following search-to-decision reduction for noisy linear equa-
tions.

Theorem 4. Suppose that m-equation, n-variable planted η-noisy kLIN instances are distinguish-
able from random ones in time t with advantage ε, where η < 1/2. Then, planted instances with
O(m · (m/ε)2/k + 22kn log n/k) equations and n variables can be solved in time polynomial in t,

m, n, and 1/ε, with probability at least (ε/m)O(k(m/ε)6/k) over the choice of the instance and the
randomness of the solver.

In contrast, the solver in Applebaum’s reduction (see Proposition 23) requires more than m3/ε2

equations but succeeds with high probability. It is possible to obtain other tradeoffs between the
sample complexity and the success probability of the solver.

By combining Theorem 4 with the refutation algorithm of Raghavendra, Rao, and Schramm,
it follows that for constant k and constant noise rate, for every constant 2/3 < δ < 1, m-equation,

n-variable planted noisy k-LIN instances can be solved with probability 2−Õ(m6/k) in time 2Õ(nδ)

as long as m = Ω̃(n(1−δ)k/2+1+2δ/k).

Other consequences As a corollary of Theorem 3 we obtain an upper bound on the list size for
k-XOR codes at high error rates.

Corollary 5. For α = (µ1/k − ε)k, `(µ, α) = O(|Σ|/ε)O(k2/µ2/kε2).

The value of α in Corollary 5 is close to optimal. Proposition 29 shows that when α > µ the list
size becomes exponential in |Σ|. We do not know, however, if the list size has to be exponentially
large in µΘ(1/k) when α ≤ µ. Proposition 30 proves the lower bound ` = Ω(α2/kµ−2) for all α,
assuming µ ≥ |Σ|−1/2. Proposition 28 gives a much tighter non-constructive upper bound when
α < µ2. All of these bounds are proved in Section 4.

We also obtain the following consequence for non-uniform hardness amplification in the low-
correlation regime. Corollary 6 improves the amount of advice in Levin’s proof [Lev87] from linear
in µ−2 to linear in µ−O(1/k).
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Corollary 6. There is a log-time uniform oracle circuit L with O(k log(1/ε)(n+µ−2/kε−2)) bits of
advice and size Õ(kkµ−2ε−2k) such that, if G predicts F k with advantage µ, then for some setting
of the advice LG predicts F : {0, 1}n → {−1, 1} with advantage at least µ1/k − ε.

Corollary 6 is proved in Section 2.4.

1.2 Techniques for list-decoding the XOR code

Our proof of Theorem 3 is a derandomization of Levin’s proof [Lev87] (see also [GNW11]). We
begin with a short outline of his proof and point out its limitations with respect to list size. This
motivates the two main innovations introduced in our work: A new notion of regularity for functions
over product sets, and an analysis of a natural sampler for regular functions.

In the ensuing discussion we ignore the locality of the list-decoder, so the concepts are introduced
in less general form than in Section 2.

Levin’s XOR lemma Here is an outline of Levin’s proof for k = 2. The correlation assumption
E[G · F 2] ≥ µ can be written in the form

Ex
[
F (x) · Ey[F (y)G(x, y)]

]
≥ µ.

One case is that the inner expectation is at least
√
µ in absolute value for some x. Then the

column function Gx(y) = G(x, y) predicts F up to sign with advantage
√
µ. Otherwise, all inner

expectations are bounded by
√
µ. Then the function µ−1/2F̃ , where

F̃ (x) = Ey[F (y)G(x, y)]

is [−1, 1]-bounded and predicts F with advantage
√
µ. The function µ−1/2F̃ can be estimated to

within ε pointwise from Θ̃(1/ε2µ) samples F (y)G(x, y) for random y. Then F can be predicted
with advantage

√
µ− ε given Õ(1/ε2µ) pairs (y, F (y)) as advice.

More generally, given a correlation assumption of the form E[A(x)B(y)G(x, y)] ≥ αβ, ei-
ther some column of G predicts B up to sign with advantage β, or else the empirical average
β−1 E[G(x, y)B(y)] taken over Θ̃(1/ε2β2) samples usually predicts A with advantage α − ε. Since
ε must be less than α, the number of required samples grows at least quadratically in the inverse
of the advantage 1/αβ.

Levin’s k-XOR lemma is proved by applying this proposition inductively. By setting A =
F i, α = µi/k and B = F k−i, β = µ(k−i)/k, proving a k-XOR lemma is reduced to proving an i-XOR
lemma and a (k− i)-XOR lemma. Even though different choices of the parameter i lead to different
proofs, the resulting decoder always requires at least Ω̃(1/α2β2) = Θ̃(1/µ2) values of F as advice.

Our derandomized XOR lemma We illustrate our improvement on the list size for the 3-XOR
code when ε = µ1/3/2. For these parameters Theorem 3 gives a list of size exp Õ(1/µ4/3), which
improves upon Levin’s exp Θ̃(1/µ2).

Assume E[F (x)F (y)F (z)G(x, y, z)] ≥ µ. In case E[F (y)F (z)G(x, y, z)] is at least µ2/3 in mag-
nitude for some x, we apply Levin’s 2-XOR lemma to the function Gx(y, z) = G(x, y, z) to obtain
a list of size Õ(1/µ4/3). Otherwise, we may assume that the function

F̃ (x) = Ey,z[Hx(y, z)], where Hx(y, z) = F (y)F (z)Gx(y, z)
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is bounded in magnitude by µ2/3 for all x. Levin’s proof proceeds by estimating µ−2/3F̃ pointwise
with precision µ1/3/2, or equivalently estimating F̃ pointwise with precision µ/2. This requires
Θ̃(1/µ2) samples of the form F (y)F (z) coming from a set S of independent random pairs (y, z).

The source of our improvement in list size is an emulation of the random set S by a (small
number of) random product set(s) SY × SZ , |SY | = |SZ | of comparable size. Since the list size is
exponential in the advice length, this effectively reduces it from from exp(|S|) bits to exp(|SY |+|SZ |)
bits.

In general, random product sets are poor samplers. For example, if Hx(y, z) happens to be
a dictator in y (i.e. independent of z), then a random sample of size s2 would produce a Θ(s)-
biased estimate. A random product sample of the same size would yield a Θ(

√
s)-biased estimate,

wiping away any potential savings. But then |Ez[Hx(y0, z)]| equals one for any dictator value y0,
so Gx(y0, z) is an exact decoding of F (z) up to sign.

Our approximate list-decoder for the k-XOR code is based on a structure versus randomness
dichotomy: Either the function Hx is “regular”, in which case the product sampler accurately
emulates a truly random sampler, or else one of the rows or columns of Hx is “structured”, in
which case the problem reduces to approximately list-decoding the (k − 1)-XOR code.

Sampling regular functions Let H(y, z) be a function with |E[H]| = µ2/3. We call H regular
if all rows and columns of H are pseudorandom in the sense that |Ey[H(y, z)]| ≤ µ1/3 for all z and
|Ez[H(y, z)]| ≤ µ1/3 for all y. If one of the functions Hx is not regular, then one of the columns or
rows of Gx already predicts F with advantage µ1/3 up to sign.

Our main technical result is Lemma 8, which shows that if H is regular, then a product sampler
of complexity |SY | = |SZ | = Õ(µ−4/3) estimates E[H] to within µ/2 with constant probability. If
all Hx are regular then F can be predicted with Õ(µ−4/3) bits of advice, giving the desired list size.

The product sampler is an unbiased estimator of E[H]. Lemma 8 is proved by upper bounding
its variance for regular functions by o(µ2). This amounts to comparing the bias of the product and
random samplers on a typical pair of samples (y, z) and (y′, z′). The only difference is that the
pairs (y, y′) and (z, z′) have a higher collision probability in the product sampler. Conditioned on
neither of these pairs colliding, (y, z) and (y′, z′) are identically distributed for both samplers.

For the variance analysis, the product sampler is therefore modeled by the following process:
With probability 1− o(µ4/3) emulate the random sampler, with probability o(µ4/3) fix y = y′ to a
random value and emulate the random sampler for the function Hy(z) = H(y, z), with probability
o(µ4/3) do the same with the roles of the two coordinates reversed, and with probability o(µ8/3) fix
both y = y′ and z = z′ to random values and output the constant Hyz = H(y, z). By the regularity
assumption, each of these cases contributes o(µ2) to the variance, giving the desired conclusion.

1.3 Techniques for hardness versus randomness of noisy linear equations

The proof of Theorem 4 is based on the paradigm of Goldreich and Levin [GL89] for converting
hardness into pseudorandomness in cryptographic settings. Yao’s reduction [Yao82] is first applied
to convert the distinguisher into a predictor. The truth-table of the predictor is then viewed as
a corrupted codeword with respect to a suitable encoding of the planted solution. A decoding
algorithm is then used to recover the solution.

In the setting of noisy random k-LIN instances, the predictor is a function that, given m − 1
equations from the planted distribution as “training data”, produces a guess for the value of the
m-th equation. Given good training data, the truth-table of the predictor is therefore a corrupted
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codeword of the k-XOR code. A distinguisher with advantage ε yields a predictor with advantage
µ = ε/(1 − 2η)m in expectation over the choice of the training data. This step of the reduction
is also carried out (in greater generality) in the work of Applebaum [App13]. He then amplifies
the advantage of the predictor by using independent samples of the training data up to the point
where the solution can be uniquely extracted.

To avoid the increase in sample complexity, we instead apply our list-decoding algorithm for the
k-XOR code to the predictor. With noticeable probability, the list-decoder outputs an approximate
solution ŝ that µ1/k/2-correlates with the planted solution s. In other words, the output of the
list-decoder predicts the value of si for a random index i with advantage µ1/k/2. Our main insight
is Claim 26 which shows that, owing to the symmetries of the k-LIN instance, the same advantage
can be attained for an arbitrary i. This allows the advantage to be amplified by repetition (see
Claim 27). Once it is sufficiently large, the solution can be extracted using a technique of Bogdanov
and Qiao [BQ12].

1.4 Organization

In Section 2 we describe and analyze our approximate list-decoding algorithm for the k-XOR code
and prove Theorem 3 and Corollary 6. In Section 3 we describe the reduction from distinguishing
to solving noisy random k-LIN instances and prove Theorem 4. In Section 4 we prove Corollary 5
and some additional upper and lower bounds for the approximate list size of the k-XOR code.

2 Approximately list-decoding the XOR code

In this section we prove Theorem 3. Section 2.1 introduces the notion of regularity for prod-
uct functions and analyzes the variance of product samplers. Section 2.2 describes and analyzes
the list-decoding algorithm for a function G under the assumption that most of the functions
G(x1, . . . , xk−1, a)F (x1) · · ·F (xk−1) are regular. Section 2.3 describes the list-decoder for general
functions and proves Theorem 3.

2.1 Regularity and product samplers

Suppose R : Σk → {−1, 1} is a random function each of whose entries are i.i.d. with some unknown
bias that we are interested in estimating up to precision µ. Chebyshev’s inequality guarantees that
about 1/µ2 samples are sufficient to produce an accurate estimate with constant probability. When
R is random, it is irrelevant how the samples are chosen as long as they are all distinct. In particular
they can be chosen from a product sample of the form S1×· · ·×Sk where |S1| = · · · = |Sk| = 1/µ2/k.

For general functions, however, product samplers produce substantially poorer estimates than
random samplers of the same size. For example, if H : Σk → {−1, 1} is a dictator (that is, fully
determined by one of its inputs) then the accuracy of the product sampler drops to O((1/µ)2/k).

Regularity is a pseudorandomness property of bounded functions over product sets that guar-
antees the product sampler has about the same accuracy as for a random function. In this context,
the crucial property of the random function turns out to be its “closure” under input restriction:
If some subset I of inputs is restricted, the product sampler on the remaining inputs has standard
deviation µ2(k−|I|)/k. This motivates the following definition of regularity.
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Definition 7. A function H : Σk → {−1, 1} is (µ, λ)-regular if for all nonempty I ⊆ [k],

E[H(x1, . . . , xk)H(x′1, . . . , x
′
k) | xI = x′I ] ≤ µ2λ−|I|.

H is strongly (µ, λ)-regular if the inequality also holds for I = ∅.

(The notation xI = x′I is shorthand for “xi = x′i for all i ∈ I.”)
The regularity requirement is worst-case in the sense that it must hold for all subsets of coordi-

nates, but average-case in the sense that once the coordinates of the input variables to be restricted
are fixed, the deviation need only be small on average over the choice of the restricted values.

The parameter setting that is consistent with the above discussion is λ = µ2/k. For our intended
application it is convenient to allow for a small deviation from this value and so the definition is
stated in this more general form.

The main result of this section is the following lemma which bounds the variance of the product
sampler with respect to regular functions.

Lemma 8. If H is (µ, λ)-regular and S1, . . . , Sk are mutually independent and individually pairwise
independent subsets of Σ of size s each, then

VarS1,...,Sk E[H(x1, . . . , xk) | xi ∈ Si for all i] ≤
((

1 +
1

λs

)k
− 1

)
· µ2.

An interesting setting of parameters is λ = µ2/k and s = O(k · µ−2/k). The variance of the
product sampler is then bounded by µ2 just like for a random function at a (small) multiplicative
cost of O(k) in the sizes of the sets S1, . . . , Sk.

Proof. Let S = (S1, . . . , Sk), x = (x1, . . . , xk) and x′ = (x′1, . . . , x
′
k). In this notation, the variance

of interest equals

VarS Ex,x′ [H(x) | x ∈ S] = ES

[
E[H(x) | x ∈ S]2

]
− E[H]2

= ES,x,x′ [H(x)H(x′) | x,x′ ∈ S]− E[H]2. (1)

The triples (S1, x1, x
′
1), . . . , (Sk, xk, x

′
k) in the first term are independent. Moreover, the induced

marginal distribution on every pair (xi, x
′
i) is

(xi, x
′
i) ∼

{
identical uniformly random element in Σ, with probability 1/s,

uniformly random pair of distinct elements in Σ, with probability 1− 1/s.

This distribution has the following alternative description: Flip a coin Ci with probability of heads
p = (1/s− 1/|Σ|)/(1− 1/|Σ|) ≤ 1/s and sample

(xi, x
′
i) ∼

{
identical uniformly random element in Σ, if Ci is heads,

independent uniformly random pair in Σ× Σ, if Ci is tails.

Letting I ⊆ [k] denote the set of those i for which Ci came out heads we can write

ES,x,x′ [H(x)H(x′) | x,x′ ∈ S] = EI,x,x′ [H(x)H(x′) | xI = x′I ]

=
∑
I⊆[k]

p|I|(1− p)k−|I| Ex,x′ [H(x)H(x′) | xI = x′I ]

≤ E[H]2 +
∑
I⊂[k]

(1

s

)|I|
· µ2λ−|I|.
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Plugging into (1) it follows that

VarS Ex,x′ [H(x) | x ∈ S] ≤
∑
I⊂[k]

(1

s

)|I|
· µ2λ−|I|

≤ µ2
∑
I⊂[k]

( 1

λs

)|I|
= µ2

((
1 +

1

λs

)k
− 1

)
.

The success probability of the sampler can be increased by taking the median run of several
independent repetitions.

Repeated product sampler SH :

1 Choose independent sets Sij , 1 ≤ i ≤ k, 1 ≤ j ≤ t of size s each.
2 Output the median value of E[H(x) | xi ∈ Sij for all i] among all t such values.

The following claim states the effectiveness of the product sampler. The additional parameter
θ controls the tradeoff between the accuracy of the estimate and the product sample size and can
be initially thought of as a small constant.

Claim 9. Assuming H is (µ, λ)-regular, s ≥ k/θλ, and t ≥ 8 log 1/η, with probability at least 1−η,
|SH − E[H]| ≤ 2

√
θ/(1− θ) · µ.

Proof. By Chebyshev’s inequality, for any j, the probability that the estimator

Ej = E[H(x) | xi ∈ Si for all i]

deviates by more than two standard deviations from its mean E[H] is at most 1/4. By Lemma 8 and
the choice of parameters, the standard deviation is at most

√
(1 + θ/k)k − 1 · µ ≤

√
θ/(1− θ) · µ.

Since the estimators Ej are independent and each one falls within two standard deviations of
E[H] with probability at least 3/4, by a large deviation bound the probability that more than half
of them fall outside this range is less than 2−t/8 ≤ η.

2.2 Approximately list-decoding product-sampleable functions

In this section we describe and analyze the list-decoder assuming the correlation function H = G·F k
is “product-sampleable”, meaning that most restrictions to the last coordinate yield a regular
function. The argument follows Levin’s proof of the XOR lemma, except that we apply the product
sampler from Section 2.1 in lieu of Levin’s random sampler.

Definition 10. H : Σk → {−1, 1} is product-sampleable with error ε if for all but an ε-fraction of
inputs a ∈ Σ, the functions Ha(x1, . . . , xk−1) = H(x1, . . . , xk−1, a) are all strongly (µ(k−1)/k, 1

2µ
2/k)-

regular, where µ = |E[H]|.

Lemma 11. Assume k ≥ 2. There is a uniform local (µ, µ1/k − ε) list decoder that succeeds with

probability at least (ε/80)O((k−1)2/µ2/kε2) and runs in time k2 log|Σ| · poly(µ−1/k, ε−1) on input G,

assuming H = G ·F k is product-sampleable with error at most εµ(k−1)/k/80, where µ = |E[H]| ≥ µ.
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Approximate list-decoder LPSG(k, µ, |Σ|, ε):

1 Set s = d514(k − 1)/µ2/kε2e and t = d8 log(80/ε)e.
2 Choose independent sets Sij ⊆ Σ, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ t of size s each.
3 Guess the values F (x) at random for all x ∈ Sij .
4 For every a in Σ:
5 Let Ga : Σk−1 → {−1, 1} be the function G(x1, . . . , xk−1, a)F (x1) · · ·F (xk−1).

6 Let F̃ (a) be the median value of E[Ga(x) | xi ∈ Sij for all i].
7 Choose a uniformly random B from the range [−1, 1] within dlog(4/ε)e bits of precision.

8 Let F̃B(a) = 1 if [[µ−(k−1)/kF̃ (a)]] ≥ B and −1 if not.

9 Output ±F̃B where the sign is chosen at random.

In step 8, [[·]] : R→ [−1, 1] denotes the rounding function

[[t]] =


1, if t > 1,

t, if −1 ≤ t ≤ 1,

−1, if t < −1.

Steps 2 to 6 implement the product sampler. The output of this sampler produces real-valued
estimates F̂ (a) of the message bits F (a). The accuracy of the product sampler guarantees that
when Ga is regular, [[F̂ ]] is likely to significantly correlate with F . In order to extract a {−1, 1}-
valued codeword from F̂ , steps 7 and 8 rounds its values with respect to the random threshold
B. The rounding preserves the correlation in expectation. The expectation can be turned into a
noticeable probability at a small price in accuracy.

Fact 12. [[·]] is a contraction, i.e., |[[s]]− [[t]]| ≤ |s− t| for all s and t.

Proof of Lemma 11. Let R be the set of all a for which the function Ha is strongly (µ(k−1)/k, 1
2µ

2/k)-

regular, where µ = |E[H]|. By assumption, R has measure at most εµ(k−1)/k/80. For every a ∈ N ,
the function

Ga(x1, . . . , xk−1) = Ha(x1, . . . , xk−1)F (a) = G(x1, . . . , xk−1, a)F (x1) · · ·F (xk−1).

is also strongly (µ(k−1)/k, 1
2µ

2/k)-regular, as Ga and Ha may differ only in sign.
By Claim 9 with parameters θ = ε2/257 and η = 80/ε, for all but at most ε/80 of those a that

are in R, ∣∣F̃ (a)− E[Ga(x)]
∣∣ ≤ µ(k−1)/k · ε

8
(2)

with probability at least 1− ε/80 over the random choices in step 2. Let A ⊆ R be the set of those
a’s for which inequality (2) holds. Then A has expected measure at least 1− ε/80− εµ(k−1)/k/80 ≥
1−ε/40. By Markov’s inequality, A has measure at least 1−ε/20 with probability at least 1/2 (3).

If a is in A, then by (2),∣∣µ−(k−1)/kF̃ (a)− µ−(k−1)/k E[Ga(x)]
∣∣ ≤ ε

8
.

By the strong regularity of Ga, |µ−(k−1)/k E[Ga(x)]| ≤ 1. Since [[·]] is a contraction,∣∣[[µ−(k−1)/kF̃ (a)]]− µ−(k−1)/k E[Ga(x)]
∣∣ ≤ ε

8
.
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If a is in R (but not in A), then strong regularity still holds and∣∣[[µ−(k−1)/kF̃ (a)]]− µ−(k−1)/k E[Ga(x)]
∣∣ ≤ 2,

as both terms take values between −1 and 1. Finally, if a is not in R then∣∣[[µ−(k−1)/kF̃ (a)]]− µ−(k−1)/k E[Ga(x)]
∣∣ ≤ 1 + µ−(k−1)/k ≤ 2µ−(k−1)/k.

Therefore∣∣Ea[F (a) · ([[µ−(k−1)/kF̃ (a)]]− µ−(k−1)/k E[G̃a(x)])
]∣∣ ≤ ε

8
· Pr[a ∈ A] + 2 · Pr[a ∈ R \A]

+ 2µ−(k−1)/k · Pr[a 6∈ R]

≤ ε

8
+ 2 · ε

20
+ 2µ−(k−1)/k · εµ

(k−1)/k

80

≤ ε

4
. (4)

By the definition of µ,∣∣Ea[F (a) · µ−(k−1)/k E[Ga(x)]
]∣∣ = µ−(k−1)/k

∣∣Ex,a[G(x, a) · F (x1) · · ·F (xk−1)F (a)
]∣∣ = µ1/k. (5)

From (4), (5) and the triangle inequality it follows that∣∣Ea[F (a) · [[µ−(k−1)/kF̃ (a)]]
]∣∣ ≥ µ1/k − ε

4
. (6)

If B was a uniform [−1, 1] random variable, EB[F̃B(a)] would equal [[µ−(k−1)/kF̃ (a)]]. As B is
precision-bounded, we have the weaker guarantee∣∣EB[F̃B(a)]− [[µ−(k−1)/kF̃ (a)]]

∣∣ ≤ ε

4
(7)

for every a ∈ Σ. From (6) and (7) it follows that∣∣EB,a[F (a) · F̃B(a)]
∣∣ ≥ µ1/k − ε

2
.

By Markov’s inequality, the inequality∣∣Ea[F (a) · F̃B(a)]
∣∣ ≥ µ1/k − ε.

must hold for at least a ε/2 (8) fraction of B’s. If such a B is chosen, the correlation between the
output and F is at least µ1/k − ε with probability 1/2 (9) over the choice of sign in step 9.

To summarize, conditioned on events (3), (8), and (9) occurring and the guesses in step 3 of the
algorithm being correct, the output of the algorithm has the desired correlation with F . As step 3

involves guessing at most (k− 1)st boolean values, the algorithm succeeds with probability at least

ε

8
· 2−(k−1)st ≥

( ε
80

)O((k−1)2/µ2/kε2)

by our choice of parameters.
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2.3 Proof of Theorem 3

The approximate list-decoder L guesses whether the function H = G · F k is product-sampleable.
If its guess is positive it runs the list-decoding algorithm LPS for product-sampleable functions
from Section 2.2. Definitions 10 and 7 ensure that if H is not product-sampleable then a noticeable
fraction of its restrictions have large bias. In this case, L guesses the suitable restriction and runs
recursively on it.

The following specification is obtained by unwinding the recursion with uniform guessing prob-
abilities. This choice turns out to be convenient for the analysis. We use the notation aI to describe
a partial assignment restricted to the subset of indices I ⊆ [k], and ai as a shorthand for a{i}.

Algorithm LG(k, µ, |Σ|, ε):

1 Choose a random subset R ⊆ [k] and a random partial assignment aR ∼ ΣR.

2 Let G′ : ΣR → {−1, 1} to be the function G restricted to xR = aR.

3 If |R| = 0, fail.

4 If |R| = 1, output G′ or −G′ with equal probability.

5 Otherwise, output LPSG
′
(|R|, µ|R|/k, |Σ|, ε).

To prove Theorem 3, we will show by strong induction on k that L is a (µ, µ1/k−ε)-approximate
list decoder with success probability at least

p(k, µ) = 2−k−1 · (ε/80)C(k−1)2/µ2/kε2

where C is a sufficiently large constant.

Base case k = 1: R is non-empty with probability 1/2. In this case the larger one of E[F ·G] and
E[F · (−G)] is µ ≥ µ− ε, so the output of L has correlation at least µ− ε with F with probability
1/4, which is larger than p(1, µ).

Inductive step: Assume k ≥ 2 and the claim holds up to k−1. To prove it holds for k we consider
two cases. Let H = G · F k and µ = |E[H]|.

If H is product-sampleable with error at most εµ(k−1)/k/80, then in step 1 the empty set is
chosen with probability 2−k, in which case step 5 is triggered with G′ = G. By Lemma 11, the

output of LPSG (µ1/k − ε)-correlates with F with probability at least (ε/80)C(k−1)2/µ2/kε2 , so the
overall success probability exceeds p(k, µ) as desired.

The following claim summarizes the irregularity of functions that are not product-sampleable.

Claim 13. If H is not product-sampleable then with probability at least εµ(k−1)/k/80 over the choice

of ak there exists a proper subset I ⊂ [k] with k ∈ I for which with probability at least µ2|I|/k over

the choice of aI\{k}, |E[H(x) | xI = aI ]| ≥ µ|I|/k.

Proof. By Definition 10, for more then a εµ(k−1)/k/80 fraction of ak there exists a subset I ⊆ [k],
k ∈ I that violates strong regularity in the following sense:

E[H(x)H(x′) | xI = x′I , xk = x′k = ak] > (µ(k−1)/k)2 · (1
2µ

2/k)−|I\{k}| = 2|I|−1 · µ2|I|/k. (10)

The subset I must be proper because when |I| = k, the right-hand side exceeds one. Fix such an
ak and let aI be a random extension of ak. By the independence of xI and x′

I
,

EaI
[
E[H(x) | xI = aI ]

2
]

= E[H(x)H(x′) | xI = x′I , xk = x′k = ak]. (11)
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When I = {k}, the claim follows from (10) and (11) after taking square roots. Otherwise, by

Markov’s inequality E[H(x) | xI = aI ]
2 ≥ µ2|I|/k with probability at least (2|I|−1 − 1)µ2|I|/k over

the choice of aI . Because 2|I|−1−1 is at least 1, the claim follows again after taking square roots.

Let U be the event “|E[H(x) | xI = aI ]| ≥ µ|I|/k and I ⊆ R.” By Claim 13 and the uniform
choice of R, U has probability at least

Pr[U ] ≥ 2−|I| · εµ
(k−1)/k

80
· µ2|I|/k ≥ (ε/80)µ3(k−1)/k

2|I|
. (12)

Claim 14. Conditioned on U , the output LG(k, µ) has correlation at least µ1/k − ε with F with

probability at least p(|I|, µ|I|/k).

Proof. Conditioned on U , the view of L(k, µ) when querying the oracle G is identical to the view

of L(|I|, µ|I|/k) when querying the oracle Ĝ(xI) = G(xI , aI). Also conditioned on U , the function

Ĥ(xI) = H(xI , aI) is µ|I|/k-biased. The function Ĥ equals

Ĥ(xI) = σ · Ĝ(xI) ·
∏

i∈I
F (xi)

where σ =
∏
i∈I F (ai) is a possible change of sign. By inductive assumption, LĜ(|I|, µ|I|/k) then

has correlation at least (µ|I|/k)1/|I| − ε = µ1/k − ε with F with the desired probability.

From (12) and Claim 14 it follows that LG(k, µ) succeeds with probability at least

Pr[U ] · p(|I|, µ|I|/k) ≥ (ε/80)µ3(k−1)/k

2|I|
· 2−|I|−1 · (ε/80)C(|I|−1)2/µ2/|I|ε2

≥ 2−k−1 · (ε/80)3k−2 · (ε/80)C(k−2)2/µ2/kε2

≥ 2−k−1 · (ε/80)C(k−1)2/µ2/kε2

= p(k, µ)

assuming ε ≤ µ1/k in the second inequality and C ≥ 4 in the third one. This completes the
inductive step and the proof of Theorem 3.

2.4 Proof of Corollary 6

Let Σ = {0, 1}n. The proof of Theorem 3 shows that the circuit LG computes a function that
predicts F with advantage µ1/k− ε with positive probability. In particular, the prediction succeeds
for some fixed choice of the randomness. The amount of advice is therefore upper bounded by the
randomness complexity of LG.

The randomness complexity of the list-decoder LPS is governed by the (k − 1)t choices of the
sets Sij chosen in step 2 and the (k − 1)st values of F guessed in step 3. If the elements of each
set Sij are chosen in a pairwise independent manner, step 2 can be performed using at most 2ktn
bits of randomness. Plugging in the parameters for s and t we conclude that LPS has randomness
complexity O(k log(1/ε)(n+ µ−2/kε−2)).

In step 5 of the list-decoder L the randomness complexity of the call to LPS is maximized when
R is the empty set. In step 1, L requires k(n+ 1) additional bits of randomness, so the randomness
complexity of L is also O(k log(1/ε)(n+ µ−2/kε−2)) as desired.
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3 From Distinguishing to Solving Random Noisy Linear Equations

In this section, we show how to use an approximate list-decoder of the k-XOR code to reduce
solving random planted k-LIN instances to distinguishing them from completely random instances.

Definition 15 (k-LIN). Let k,m, n ∈ N, and η ∈ [0, 1/2). An m-equation n-variable k-LIN
instance is a pair (A, b), where A ∈ {0, 1}m×n is such that each row ai of A has at most k non-zero
entries, and b ∈ {0, 1}m. A random planted η-noisy k-LIN instance is such a pair (A,As+e) where:

• Each row of A ∈ {0, 1}m×n is sampled independently from the row distribution Rn,k, which
is the modulo 2 sum of k independent random indicator vectors in {0, 1}n (i.e. vectors of the
form (0, . . . , 0, 1, 0, . . . , 0)).

• s ∈ {0, 1}n, called the planted solution, is chosen uniformly at random.

• e ∈ {0, 1}m, called the noise vector, is chosen such that each bit in it is 1 independently with
probability η.

In the rest of this section, unless specified otherwise, the number of equations in a k-LIN instance
is to be taken to be m, the number of variables to be n, and the noise to be η.

Remark 1. Another natural distribution on the rows of A is the uniform distribution on strings
on Hamming weight k. Our results and analysis can be modified to apply to this distribution as
well.

Definition 16 (Solving and Distinguishing k-LIN). We define the following two operations for
random k-LIN instances:

• An algorithm S is said to solve planted η-noisy k-LIN instances with success probability p if,
given a random planted η-noisy k-LIN instance (A,As + e), it outputs s with probability p
(over the randomness of A, e and S itself).

• An algorithm D is said to distinguish planted η-noisy k-LIN instances from random with
advantage ε if it distinguishes, with advantage ε, between a random planted η-noisy k-LIN
instance (A,As+ e) and (A, r), where A is chosen as in k-LIN, but r ∼ {0, 1}m is chosen at
uniform independently of A. That is,

EA,s,e[D(A,As+ e)]− EA,r[D(A, r)] ≥ ε

We will be reducing the task of solving a k-LIN instance with m′-equations to that of dis-
tinguishing instances with m equations from random (with advantage ε) for some m′ > m. Our
objective here is to keep m′ as small as possible in relation to m. It is already known (from [App13])
how to perform such a reduction with m′ = Θ̃(m3/ε2) that results in constant success probability
for the solver (see Proposition 23). Using the approximate list-decoder constructed in Section 2,
we are able to bring m′ down significantly at the cost of lower success probability.

Theorem 17 (Refined Theorem 4). Suppose that m-equation n-variable planted η-noisy kLIN
instances are distinguishable from random in time t with advantage ε. Then planted η-noisy kLIN
instances with m′ equations and n variables can be solved in time polynomial in t, m, n, 1/ε, and
1/(1− 2η) with probability at least p where:

m′ = O
(
(1− 2η)2/k ·m · (m/ε)2/k + 22k n log n/k(1− 2η)2) and p = (ε/(1− 2η)m)O(k((1−2η)m/ε)6/k).
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The rest of this section is dedicated to the proof of this theorem. Our approach for getting
a solver for k-LIN from a distinguisher is broadly divided into the following three parts, each of
which we describe briefly below:

1. Using the distinguisher to get a predictor.

2. Using the predictor to get an approximate-solver.

3. Using the approximate-solver to get an actual solver.

The first step is to show (Lemma 19 in Section 3.1) that a distinguisher for k-LIN can be used
to construct a predictor that, given a noisy k-LIN instance (A,As + e), has a small advantage in
predicting the answers to random equations – that is, the value of 〈a, s〉 for random a from the row
distribution Rn,k. This operation is defined as below.

Definition 18. An algorithm P is called a predictor for η-noisy k-LIN with advantage δ if, when
given a random planted η-noisy k-LIN instance (A,As + e) and a random “row” a from the row
distribution Rn,k, predicts 〈a, s〉 with advantage δ. That is,

EA,s,e,a[P(a;A,As+ e) · (−1)〈a,s〉] ≥ δ

We say that such a predictor P predicts s with advantage δ from the training data (A,As+ e).

The predictor is constructed from the distinguisher using standard hybrid arguments. The
following lemma is proven in Section 3.1.

Lemma 19. Suppose there is an algorithm that distinguishes m-equation n-variable planted η-noisy
k-LIN instances from random with advantage ε and runs in time t. Then, there is a predictor for
m-equation n-variable η-noisy k-LIN that also runs in time t and has advantage ε/(1− 2η)m.

Once we have such a predictor, we then use it to solve k-LIN “approximately”. That is, given
a planted instance (A,As + e), we recover an s̃ that correlates well with s. We use the following
shorthand for the measure of correlation between two binary strings. Given s, s̃ ∈ {0, 1}n,

s · s̃ = Ei[(−1)s[i](−1)s̃[i]]

where the expectation is over i drawn at random from [n]. Note that this quantity is contained in
[−1, 1], and s · s̃ = γ is the same as saying that s and s̃ agree on a (1 +γ)/2 fraction of coordinates.
We also overload this notation to handle the case where s (or s̃) is a {−1, 1}-string, in which case
(−1)s[i] in the expression above is to be replaced with s[i].

The operation of approximately solving k-LIN instances is now defined as below.

Definition 20 (Approximately Solving k-LIN). An algorithm S̃ is said to γ-approximately solve
planted η-noisy k-LIN instances with success probability p if, given a random planted η-noisy k-LIN
instance (A,As+ e), with probability p it outputs some s̃ such that s · s̃ ≥ γ.

To construct an approximate solver for k-LIN from a predictor, we use the approximate list-
decoder for the k-XOR code. Given a k-LIN instance (A,As + e) as training data, we view the
“truth-table” of the predictor P(·;A,As+e) as a corrupt codeword of the k-XOR code. Intuitively,
the correctness of the predictor should say that this codeword is not too far from the k-XOR
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encoding of s. We are unable to decode or list-decode this codeword, however, as the noise in
the codeword is too high. Instead, we use the approximate list-decoder and obtain, as one of the
elements in the list, an s̃ that is noticeably correlated with s. We then amplify this correlation
by exploiting certain symmetries of k-LIN. See Section 3.2 for a more thorough exposition of the
intuition behind this approach and the proof of the following lemma that states our results in this
respect.

Lemma 21. Let µ, α, γ ∈ [0, 1], and k ∈ N be a constant. For some m,n ∈ N, suppose:

1. There is a predictor for m-equation n-variable η-noisy k-LIN that runs in time t1 and has
advantage δ.

2. There is a (µ, α1/k) approximate list-decoder for the k-XOR code with messages of length n
that runs in time t2 and has success probability p.

Let r = 8 log(8/(1 − γ))/α2/k. Then, there is an algorithm that γ-approximately solves (mr)-
equation n-variable planted η-noisy k-LIN instances that runs in time Õ(r(t1 + t2 +mn)), and has
success probability 3

4 [p (δ − µ)]r.

The final step in our reduction is to convert the approximate solution produced by the ap-
proximate solver above into an actual solution. To do this, we employ a technique of Bogdanov
and Qiao [BQ12]. In brief, given an approximate solution s̃, to recover the first bit s[1] of the
actual solution, we first find a number of equations where the first bit is involved. In each of these
equations, we pretend that s̃ is correct about the values of the remaining bits and solve for s[1],
and finally set s[1] to be the majority answer. This is repeated for each bit of s and, if enough
equations are used, all the bits are recovered correctly. The end result in our case is stated in the
following lemma.

Lemma 22. Assuming m ≥ 40 n log n/k(1− 2η)2γ2(k−1), there is a O(mn2)-time algorithm that,
given a m-equation, n-variable planted noisy k-LIN instance (A,As + e) and a γ-approximate
solution ŝ that is independent of A and e, outputs s with probability 1− o(1).

We finish our proof by putting the above lemmas together with the approximate list-decoder
for the k-XOR code from Section 2.

Proof of Theorem 17. The hypothesis of the theorem promises a k-LIN distinguisher that runs in
time t and has advantage ε. Lemma 19 now immediately implies the existence of a k-LIN predictor
P that runs in time t and has advantage δ = (ε/(1− 2η)m).

Set µ = δ/2 and α to be such that α1/k = µ1/k/2 (= µ1/k − µ1/k/2). Theorem 3 implies a
(µ, α1/k) approximate list-decoder for the k-XOR code that runs in time Õ(µ−4 log n), and has

success probability Ω(µ)O(k/µ4/k).
Set γ = 1/2. Along with the above predictor and list-decoder, Lemma 21 now implies an

algorithm that γ-approximately solves m′-equation n-variable planted η-noisy k-LIN instances,
where m′ is equal to:

10 · 32 m

α2/k
= 1280 · m

µ2/k
≤ 2560 · m

δ2/k
= 2560 · (1− 2η)2/k ·m ·

(m
ε

)2/k
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This approximate solver runs in time on the order of:

1

α2/k
· (t+ µ−4 log n+mn)) = poly(t, (1− 2η),m, n, 1/ε)

It has success probability at least:

3

4

[
(µ)O(k/µ4/k) · (δ − µ)

]32/α2/k

≥ µO(k/µ4/kα2/k)

≥
(

ε

(1− 2η)m

)O(k((1−2η)m/ε)6/k)

With the above probability, we have a γ-approximate solution. In order to recover the actual
solution, we apply Lemma 22 with this approximate solution and a fresh set of m′′ equations with
the same planted solution, where m′′ = 40 · 22(k−1) n log n/k(1 − 2η)2. This gives us the actual
solution, incurs an additional running time of O(mn2) and the final success probability becomes
the above multiplied by (1− o(1)). This completes the proof of the theorem.

In the rest of this section, we prove Lemmas 19, 21 and 22 (in Sections 3.1, 3.2, and 3.3,
respectively).

3.1 From Distinguishing to Prediction: Proof of Lemma 19

Our proof of Lemma 19 uses standard hybrid arguments and distinguishing-to-prediction reduc-
tions [Yao82]. The same technique was applied in the more general setting of Goldreich’s one-way
function by Applebaum [App13].

Proof of Lemma 19. Recall that we consider the distribution on k-LIN instances (A,As+e), where
s ∼ {0, 1}n is random, each row of A ∈ {0, 1}m×n is drawn from Rn,k, and the entries of e are
independent {0, 1}-bits each equal to 1 with probability η. Let D be the distinguisher promised by
the hypothesis. Then, taking r ∈ {0, 1}m to be uniformly random, we have the following:

EA,s,e[D(A,As+ e)]− EA,r[D(A, r)] ≥ ε, (13)

Denote the rows of A by a1, . . . , am. Consider the following hybrid distributions (for all i ∈ [m]):

Hi = (A, 〈a1, s〉+ e1, . . . , 〈ai, s〉+ ei, ri+1, . . . , rm)

By (13), for some i we must have:

E[D(Hi)]− E[D(Hi−1)] ≥ ε/m

Without loss of generality, assume i = m. Let A′ be the first m− 1 rows of A and u be a random
bit. We can write the above expression as:

EA′,am,s,e′,em [D(A′, am, A
′s+ e′, 〈a, s〉+ em)]− EA′,am,e′,s,u[D(A′, am, A

′s+ e′, u)] ≥ ε/m

Given a k-LIN instance (A′, b′) and a row a to predict for, the predictor P chooses a random
u ∼ {0, 1} and outputs (−1)u · D(A′, a, b′, u). The advantage of P as a predictor for k-LIN is:

EA′,a,s,e′ [P(a;A′, A′s+ e′) · (−1)〈a,s〉] = EA′,a,s,e′,ẽ[P(a;A′, A′s+ e′) · (−1)〈a,s〉+ẽ] · Ee[(−1)ẽ]
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where ẽ is a bit set to be 1 with probability η independent of everything else. We can now bound
the first term in the above product as:

EA′,a,s,e′,ẽ[P(a;A′, a, A′s+ e′) · (−1)〈a,s〉+ẽ]

= EA′,a,s,e′,ẽ

[
1

2

(
D(A′, a, A′s+ e′, 〈a, s〉+ ẽ)− D(A′, a, A′s+ e′, 〈a, s〉+ ẽ)

)]
= EA′,a,s,e′,ẽ[D(A′, a, A′s+ e′, 〈a, s〉+ ẽ)]− EA′,a,s,e′,u[D(A′, a, A′s+ e′, u)]

≥ ε/m.

As the bias of ẽ is equal to (1− 2η), which is positive, the above two expressions imply that:

EA′,a,s,e′ [P(a;A′, A′s+ e′) · (−1)〈a,s〉] ≥ ε

(1− 2η)m
. (14)

This proves the lemma, and P is the necessary predictor.

We note that Applebaum’s reduction [App13] proceeds by amplifying the advantage of the
predictor via repetition, giving the following conclusion.

Proposition 23. Suppose that m-equation, n-variable planted η-noisy k-LIN instances are dis-
tinguishable from random in time t with advantage ε. Then there is a solver for random planted
η-noisy n-variable k-LIN instances with O(m · (m/ε)2 log n) equations that runs in time polynomial
in the running time of the distinguisher and has constant success probability.

3.2 From Prediction to Approximate Solving: Proof of Lemma 21

Given a predictor with advantage δ, that is

EA,a,s,e[P(a;A,As+ e) · (−1)〈a,s〉] ≥ δ

we aim to recover an approximate solution ŝ that correlates with s. By Markov’s inequality, the
function G(a) = P(a;A,As + e) as a function of a has correlation at least δ/2 with 〈a, s〉 for at
least a δ/2-fraction of the choices of A, s, and e. The function 〈a, s〉 is the k-XOR encoding sk

of s (under a reduced representation), so our list-decoder from Section 2 outputs an approximate
codeword s̃ that, say, δ1/k/2-correlates with s with noticeable probability. This is the solver S̃ we
obtain in Claim 25.

It remains to amplify this correlation to a sufficiently large threshold so that the solution can
be fully recovered by the correction procedure in Section 3.3. A natural idea is to run S̃ several
times on independent training data and take pointwise majorities of its outputs. However, this
transformation may not be effective. It could be the case that the output of S̃ completely reveals
the first δ1/kn/2 bits of s but provides no information about the rest. Then additional runs of S̃
wouldn’t yield any additional information about the planted solution s.

To rule out this scenario, we first apply a random self-reduction to the instance (A, b = As+ e).
More precisely, we run the approximate solver S̃ on the instance (A′, b′) = (Aπ, b+ Aπs′) where π
is a random permutation (matrix) and s′ ∼ {0, 1}n is a random shift and recover the answer via
the transformation π(S̃ + s′).

This transformation preserves the correlation between the output of the solver and the planted
solution. On the other hand, since s is hidden and its coordinates are randomly permuted, the
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coordinates on which s and π(S̃ + s′) agree are uniformly distributed (conditioned on the number
of agreements). In particular, for any fixed coordinate i, whenever S̃ succeeds, s and π(S̃+s′) agree
in position i with probability at least 1/2 + δ1/k/4. Incidentally, the fact that s is hidden means
that this agreement is as good for any planted solution s, which simplifies some of our technical
arguments. We call this pair of properties uniformity.

Definition 24 (Uniform Solver). A k-LIN solver S̃ is uniform if its advantage is uniformly dis-
tributed across all planted solutions and co-ordinates. To be precise, it satisfies the following
conditions for any γ ∈ [−1, 1]:

• Uniformity across solutions: The probability that S̃ outputs a γ-approximate solution is
independent of the planted solution. That is, for any s ∈ {0, 1}n,

Pr
A,e,S̃

[
s · S̃(A,As+ e) = γ

]
= Pr

s′,A,e,S̃

[
s′ · S̃(A,As′ + e) = γ

]
• Uniformity across co-ordinates: For any s, the correlation of s̃ ← S̃(A,As + e) with s is

distributed uniformly across all the co-ordinates. That is, for any s ∈ {0, 1}n and i ∈ [n],

Es̃[(−1)s[i]+s̃[i]| s · s̃ = γ] = γ

Lemma 21 is a direct consequence of the following three claims.

Claim 25. Under the assumptions of Lemma 21, there is an algorithm that α1/k-approximately
solves m-equation n-variable planted η-noisy k-LIN instances that runs in time O(t1 + t2), and has
success probability at least p (δ − µ).

Claim 26. Suppose there is an algorithm that γ-approximately solves m-equation n-variable planted
η-noisy k-LIN instances that runs in time t, and has success probability p. Then, there is an
algorithm that uniformly γ-approximately solves k-LIN with the same parameters, runs in time
t+ Õ(mn), and has success probability p.

Claim 27. Let γ, γ′ ∈ (0, 1] such that γ′ > γ, and r = 8 · log(8/(1 − γ′))/γ2. Suppose there is
an algorithm that uniformly γ-approximately solves m-equation n-variable planted η-noisy k-LIN
instances that runs in time t, and has success probability p. Then, there is an algorithm that γ′-
approximately solves (mr)-equation n-variable planted η-noisy k-LIN instances that runs in time
O(rt), and has success probability at least 3pr/4.

Proof of Claim 25. Let P and LD denote the predictor and the approximate list-decoder, respec-
tively. Let G(i1, . . . , ik) be the function P ([i1, . . . , ik];A, b), where [·] is a conversion to the format
required by the predictor, i.e. as a vector in {0, 1}n whose j-th bit is the parity of the number of
appearances of i among i1, . . . , ik. The approximate solver outputs LDG. By assumption,

EA,e,s,a

[
P(a;A,As+ e) · (−1)〈a,s〉

]
≥ δ

For fixed A and b,

Ei1,...,ik [G(i1, . . . , ik) · (−1)s[i1]+···+s[ik]] = Ea[P(a;A, b) · (−1)〈a,s〉]
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by the definition of G and the change of representation convention. Combining these two equations
(and abusing notation to treat G also as a string once its randomness is fixed), we conclude that
E[G · sk] ≥ δ, where the expectation is taken over the choice of the instance A, b = Ax+ e, and the
randomness of P. By Markov’s inequality,

Pr
[
G · sk < µ

]
≤ 1− δ

1− µ
= 1− δ − µ

1− µ
≤ 1− (δ − µ)

By our assumption on the list decoder, whenever the above condition does not happen, LDG outputs
a message s̃ that α1/k-correlates with s with probability at least p. So the solver succeeds with
probability at least p(δ − µ) as desired.

Notation. In the following proof, for a permutation π : [n] → [n], we also use π to denote the
corresponding permutation matrix. For a matrix A with n columns, Aπ denotes the multiplication
of A by the matrix π, which gives the matrix resulting from applying the permutation π to the
columns of A; and for a vector s, the matrix-vector product πs gives the vector resulting from
applying π to the coordinates of s.

Proof of Claim 26. Let S̃ be the γ-approximate solver from the hypothesis. The following solver
has the additional uniformity property:

The uniform approximate solver S̃′ on input (A, b = As+ e) works as follows:

1 Pick a random permutation π : [n]→ [n] and s′ ∼ {0, 1}n. Set A′ = Aπ and b′ = b+A′s′.

3 Compute s̃← S̃(A′, b′), and set s̃′ = π(s̃+ s′).
4 Output s̃′.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The running time of S̃′ can be verified by inspection. We start by showing that S̃′ is uni-
form across solutions. For any s ∈ {0, 1}n and γ′ ∈ [−1, 1], we are concerned with the following
probability:

Prs̃′ [s · s̃′ = γ′] = Prs̃,π,s′ [s · π(s̃+ s′) = γ′] = Prs̃,π,s′ [(π
−1s+ s′) · s̃ = γ′] = Prs̃,s′′ [s

′′ · s̃ = γ′]

where we have denoted (π−1s+ s′) by s′′ – note that s′′ is uniformly distributed, independently of
s. The last expression is the probability that the output of S̃ has correlation γ′ with s′′. The input
to S̃ is:

(A′, b′) = (A′, As+ e+A′s′) = (A′, A′(π−1s+ s′) + e) = (A′, A′s′′ + e)

which is a random k-LIN instance independent of s. Thus, the last probability above, which only
involves random variables independent of s, is also independent of s, and hence, so is the probability
that s · s̃′ = γ′. This shows that S̃′ is uniform across solutions.

Next we show that S̃′ is indeed a γ-approximate solver with success probability p. This success
probability, following the equalities above, is as follows:

Prs,s̃′ [s · s̃′ ≥ γ] = Prs,s̃,π,s′ [(π
−1s+ s′) · s̃ ≥ γ] = Prs̃,s′′ [s

′′ · s̃ ≥ γ]

where, as argued before, s′′ is uniformly distributed, and s̃ is the output of S̃ on input (A′, A′s′′+e).
In other words, the input to S̃ is actually a random k-LIN instance with a random planted solution,
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and the last expression above is its success probability as a γ-approximate solver. This shows that
S̃′ has the same success probability as S̃, which is p.

It remains to show that S̃′ is uniform across co-ordinates. For any s ∈ {0, 1}n, i ∈ [n] and
γ′ ∈ [−1, 1], we are concerned with the following expectation, which we manipulate in the same
way as the expressions above:

Es̃′
[
(−1)s[i]+s̃

′[i]
∣∣∣ s · s̃′ = γ′

]
= Es̃,π,s′

[
(−1)s[i]+π(s̃+s′)[i]

∣∣∣ s · π(s̃+ s′) = γ′
]

= Es̃,π,s′
[
(−1)(π−1s+s′)[π−1(i)]+s̃[π−1(i)]

∣∣∣ (π−1s+ s′) · s̃ = γ′
]

= Es̃,π,s′′
[
(−1)s

′′[π−1(i)]+s̃[π−1(i)]
∣∣∣ s′′ · s̃ = γ′

]
This time, we use the fact that the distribution of s′′ (and hence s̃) is independent of π. This
implies that π−1(i) is distributed uniformly over [n], independently of both s′′ and s̃. Thus, we
have:

Es̃,π,s′′
[
(−1)s

′′[π−1(i)]+s̃[π−1(i)]
∣∣∣ s′′ · s̃ = γ′

]
= Es̃,s′′

[
Eπ

[
(−1)s

′′[π−1(i)]+s̃[π−1(i)]
] ∣∣∣ s′′ · s̃ = γ′

]
= Es̃,s′′

[
s′′ · s̃

∣∣∣ s′′ · s̃ = γ′
]

= γ′

This shows that S̃′ is uniform across co-ordinates, and therefore that it is a uniform γ-approximate
solver with success probability p.

Proof of Claim 27. Let S̃ be the uniform γ-approximate solver for m-equation n-variable η-noisy k-
LIN. We show how to amplify it into a γ′-approximate solver S̃′ for (rm)-equation k-LIN instances,
where r = 8 · log(8/(1− γ′))/γ2.

The approximate solver S̃′ on input (A, b = As+ e) works as follows:

1 Divide (A, b) into r instances (A1, b1), . . . , (Ar, br), where each (Aj , bj) has m equations.

2 For each j ∈ [r], compute s̃j ← S̃(Aj , bj).
3 For each i ∈ [n], set s̃[i] = majj∈[r]s̃j [i].

4 Output s̃.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The γ-approximate solver S̃, owing to its uniformity over co-ordinates, gives us the following
guarantee on each s̃j and any i ∈ [n]:

Pr[s̃j [i] = s[i] | s · s̃j ≥ γ] ≥ 1

2
+
γ

2

For each i ∈ [n], as s̃[i] = majj∈[r]s̃j [i], by the above expression and the Chernoff bound, we can
bound the probability that s̃[i] is wrong, conditioned on all the s̃j ’s having γ-correlation with s as
follows:

Pr
[
s̃[i] 6= s[i]

∣∣∣ ∀j ∈ [r] : s · s̃j ≥ γ
]
≤ e−rγ2/8
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In our case, r = 8 log(8/(1− γ′))/γ2. This gives us:

Pr
[
s̃[i] 6= s[i]

∣∣∣ ∀j ∈ [r] : s · s̃j ≥ γ
]
≤ 1

8
· (1− γ′)

Let I 6= be the set of i ∈ [n] such that s̃[i] 6= s[i]. By linearity of expectation, we have:

E
[
|I 6=|

∣∣∣ ∀j ∈ [r] : s · s̃j ≥ γ
]
≤ (1− γ′)n

8

The correlation s · s̃ is more than γ′ exactly when |I6=| is at most n · (1−γ′)/2. Thus, by the Markov
bound, we have:

Pr
[
s · s̃ ≥ γ′

∣∣∣ ∀j ∈ [r] : s · s̃j ≥ γ
]

= Pr
[
|I6=| ≤ n · (1− γ′)/2

∣∣∣ ∀j ∈ [r] : s · s̃j ≥ γ
]
≥ 3

4

Accounting for the probability of the event being conditioned on above happening, we have the
following success probability for S̃′:

Pr[s · s̃ ≥ γ′] ≥ Pr [∀j ∈ [r] : s · s̃j ≥ γ] · Pr
[
s · s̃ ≥ γ′

∣∣∣ ∀j ∈ [r] : s · s̃j ≥ γ
]

≥ pr · 3

4

where the bound on the first probability in the product above uses the fact that S̃ is uniform across
solutions, and so has success probability p for any arbitrary planted solution s. This completes the
proof of the claim.

3.3 Correcting an approximate solution: Proof of Lemma 22

Before we give the proof of Lemma 22 we need to address one technicality. The k variables in a
random k-LIN equation are sampled independently and with repetition, so a variable can occur in
an equation several times. The matrix A only records the parity of the number of occurrences of
each variable. For example, when n = 3, the left-hand side of both equations x1 + x3 + x1 = 0
and x3 + x3 + x3 = 0 is represented by the same row vector (0, 0, 1). The latter representation was
useful when proving Claim 26 but it will now be useful to revert to the former one. This amounts
to reverse-sampling the missing variables in A and randomly reordering them. So we will assume,
without loss of generality, that the k-LIN equation xi1 + · · ·+xik = b is represented by the ordered
tuple (i1, . . . , ik, b) where i1, . . . , ik are independent and uniform indices from [n].

Proof of Lemma 22. To predict s[1], the algorithm collects all equations in its input system in
which variable x1 appears. Such equations have the form (i1, . . . , ij = 1, . . . , ik, b), where j is the
index of a random occurrence of variable x1 (in case there are several). Using each such equation,
the value of s[1] is estimated by

s̃[1] = b+ ŝ[i1] + · · ·+ ŝ[ij−1] + ŝ[ij+1] + · · ·+ ŝ[ik]

where ŝ is the given approximate solution, and the majority value of these estimates is output. The
procedure is repeated for s2 up to sn.
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Conditioned on ij = 1, the other indices are independent and uniform. Assuming b is a noisy
solution, that is b equals s[i1] + · · · + s[ik] plus a noise bit e, the correlation between s[1] and its
estimator s̃[1] is given by

E[(−1)s[1]+s̃[1]] = E[(−1)(s[i1]+ŝ[i1])+···+(s[ij−1]+ŝ[ij−1])+(s[ij+1]+ŝ[ij+1])+···+(s[ik]+ŝ[ik])+e]

where the second expression excludes ij . By independence, this can be written as a product of
expectations

E[(−1)s[i1]+ŝ[i1]] · · ·E[(−1)s[ij−1]+ŝ[ij−1]] · E[(−1)s[ij+1]+ŝ[ij+1]] · · ·E[(−1)s[ik]+ŝ[ik]] · E[(−1)e].

Each of the first k − 1 terms equals γ and the noise contributes 1 − 2η, so s[1] and s̃[1] have
correlation κ = (1− 2η)γk−1.

The probability that x1 appears in any given equation is at least 1− (1− 1/n)k ≥ k/2n, so by
a Chernoff bound the probability that x1 appears in fewer than km/4n of the equations is at most
exp(−km/16n) = o(1/n). Assuming this isn’t the case, the estimates arising from the different
equations containing x1 are independent, so as km/4n ≥ 10 log n/κ2, by another Chernoff bound
the probability that the majority estimate for s[1] is incorrect is o(1/n). By a union bound, the
majority estimates for all n co-ordinates of s are correct except with probability o(1).

4 Bounds on list size

In this section we state and prove upper and lower bounds on the list size `(µ, α). The upper
bound in Corollary 5 follows from Theorem 3 and a counting argument. Proposition 28 gives
a substantially tighter non-constructive upper bound in the regime α < µ2. The lower bound
of Proposition 29 in the regime α > µ is proved by a volume argument. The lower bound in
Proposition 30, which applies to the whole range of parameters, is obtained by analyzing a specific
corrupted codeword.

4.1 Proof of Corollary 5

We show that the existence of an approximate list-decoder for a code of message length |Σ| that
succeeds with probability at least p implies ` ≤ ln 2 · |Σ|/p. Plugging in the value of p from
Theorem 3 then gives Corollary 5.

Let list be the collection of outputs generated by ln 2·|Σ|/p independent runs of the approximate
list-decoder LG. If a codeword µ-correlates with G, the probability that it doesn’t α-correlate with
anything in list is at most (1 − p)ln 2·|Σ|/p < 2−|Σ|. Since there are at most 2|Σ| codewords that
µ-correlate with G, by a union bound there is a positive probability that list covers all of them.

4.2 Non-constructive upper bound in the regime α < µ2

The following lemma, which is essentially the proof of the Johnson bound, gives a much tighter
upper bound on list size than Corollary 5 in the regime α < µ2.

Proposition 28. For every 0 < α < µ2 and every binary code, `(µ, α) ≤ (1− α)/(µ2 − α).

For example, `(µ, µ2/2) ≤ 4/µ2. In the case of the k-XOR code, Proposition 28 shows the
existence of a list F1, . . . , F` of messages such that E[G ·F k] ≥ µ implies |E[F ·Fi]| ≥ α1/k for some
i ∈ [`] (since E[F k · F ki ] = E[F · Fi]k).
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Proof. Let ` be the maximal value for which there exists a list C1, . . . , C` such that E[G · Ci] ≥ µ
for all 1 ≤ i ≤ ` and E[Ci · Cj ] ≤ α for all i 6= j. Then for every t ≥ 0,

0 ≤ E
[
(C1 + · · ·+ C` − tG)2

]
≤
∑̀
i=1

E[C2
i ] +

∑
i 6=j

E[Ci · Cj ]− 2t
∑̀
i=1

E[Ci ·G] + t2 E[G2]

≤ `+ `(`− 1)δ − 2`µt+ t2

This is only possible if the discriminant 4`2µ2−4(`+(`2−`)α) (of the quadratic in t) is nonnegative,
implying that δ ≥ µ2 or ` ≤ (1− α)/(µ2 − α).

If E[G ·C] ≥ µ then E[C ·Cki ] must be greater than α for some i, for otherwise the maximality
of ` would be contradicted.

4.3 Lower bound in the regime α > µ

Proposition 29. For the k-XOR code, when µ < α < 1,

`(µ, α) ≥ 4

e
√

1− µ2/k · |Σ|
· exp

(
1
2(α2/k − µ2/k)|Σ|

)
.

Let h denote the binary entropy function and 0 ≤ δ ≤ 1. We will use the following bounds on
the volume of Hamming balls:

(
N

≤ (1− δ)N/2

)
≤ 2Nh(

1−δ
2 ) (15)(

N

(1− δ)N/2

)
≥ 4

e
√

1− δ2N
2Nh(

1−δ
2 ) (16)

The following Taylor expansion is valid for all −1 ≤ δ ≤ 1:

h

(
1− δ

2

)
= 1− 1

2 ln 2
·
∞∑
i=1

δ2i

i(2i− 1)
. (17)

Proof of Proposition 29. Let N = |Σ| and G be the constant function 1. The codewords C that are
(1 − µ)/2-close to G are exactly those that encode messages of relative Hamming weight at most
(1− µ1/k)/2, so the number of such codewords is at least

|C| ≥
(

N

(1− µ1/k)N/2

)
≥ 4

e
√

1− µ2/k ·N
· 2h
(

1−µ1/k

2

)
·N ,

by (16). On the other hand, the codewords that are (1−α)/2-close to any given codeword Ci = F ki
are those that encode messages within Hamming distance at most (1 − α1/k)/2 from Fi, so there

are at most 2h((1−α1/k)/2)·N of them by (15). Therefore covering C requires a list of size

4

e
√

1− µ2/k ·N
· 2h
(

1−µ1/k

2

)
·N−h

(
1−α1/k

2

)
·N .

Using the Taylor expansion (17), we can lower bound h((1 − µ1/k)/2) − h((1 − α1/k)/2) by the
difference of the leading terms in the summation, which equals (α2/k −µ2/k)/2 ln 2, completing the
proof.
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4.4 A general lower bound

Proposition 30. For the k-XOR code, when µ ≥ |Σ|−1/2, `(µ, α) ≥ Ω(α2/kµ−2), assuming |Σ| is
a power of two.

Proof. We first assume that µ is equal to |Σ|−1/2. Let Σ be a F2-vector space and H ⊆ {−1, 1}Σ
be the Hadamard code. Its codewords are the functions H(x) = (−1)〈a,x〉. The codewords of the
k-wise tensor product Hk of H are given by Hk(x1, . . . , xk) = H(x1) · · ·H(xk) = H(x1 + · · ·+ xk).
Thus the code Hk is isomorphic to H as a linear space.

Let G be the corrupted codeword G(x1, . . . , xk) = B(x1 + · · ·+xk), where B is the bent function

B(z) = (−1)z1z2+···+zt−1zt , t = log|Σ|.

For every codeword H of H, E[GHk] = E[BH]. The correlation of B with every linear function
is identical up to sign, so by Parseval’s identity E[BH] always equals |Σ|−1/2 or −|Σ|−1/2. After a
possible change of sign in G we may assume that E[GHk] ≥ |Σ|−1/2 for at least half the codewords in
Hk. Since all these codewords also belong to the k-XOR code, there must exist a list Xk

1 , . . . , X
k
` of

k-XOR codewords such that half the codewords in H α1/k-correlate to some Xi. Viewed as vectors
in RΣ, the elements of H are orthonormal. By Pythagoras’ theorem any Xi can α1/k-correlate with
at most α−2/k of them. It follows that ` = Ω(|Σ| · α2/k).

When µ > |Σ|−1/2 we apply the argument to a dimension-dlog 1/µ2e quotient of the Hadamard
code.

5 Open Questions

The main coding-theoretic question left open is the dependence of the list size on the correlation µ
at large distances for the k-XOR code. The upper bound in Corollary 5 is exponential in µΘ(1/k),
while the lower bound in Proposition 30 is proportional to 1/µ2. A tensoring argument shows
that `2k(µ

k, αk) > `2(µ, α), where `k is the list size for the k-XOR code. If, say, `2(µ, µ/2) were
lower bounded by an exponential in 1/µ, an exponential lower bound certifying the optimality of
Corollary 5 would follow. On the other hand, any improvement in the success probability in the
decoder (and therefore the list size) would improve the success probability of our k-LIN reduction.

Regarding hardness versus randomness of k-LIN instances, one natural question is whether our
sample-efficient reduction can be carried out for general k-CSP predicates. Such a reduction would
relate the pseudorandomness and one-wayness of efficient local functions with small output length.
Most of the techniques developed in this work apply to the more general setting. The only exception
is Claim 26, which exploits the symmetry of the XOR predicate. Can this “uniformisation” of solvers
be done for general predicates?

While our reduction is sample-efficient, it still incurs a loss of O(m2/k). Is it possible to reduce
this loss by reusing training data in different uses of the predictor? One intriguing possibility is
suggested by our product sampler for regular functions. When predicting the answer to a fixed
equation a, the predictor P takes as input m samples (a1, b1), . . . , (am, bm), and the bias of the pre-
dictor over all these samples is towards 〈a, s〉. So amplifying the probability of successful prediction
is the same as estimating the bias of P. And if P were a regular function, we would be able to use
our product sampler to reuse samples during amplification. While there is no reason to expect an
arbitrary predictor to be regular, it might be possible to convert it into a regular one.
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Finally, the success probability of the solver produced by our reduction becomes trivial for
small values of k (that is, if k ≤ 6 and m = Ω(n)). Is it possible to perform meaningful solving-to-
distinguishing reductions for k-LIN for such small values of k?
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