
Tensor Rank is Hard to Approximate

Joseph Swernofsky - Kungliga Tekniska Högskolan ∗

July 3, 2018

Abstract

We prove that approximating the rank of a 3-tensor to within a factor
of 1 + 1/1852 − δ, for any δ > 0, is NP-hard over any field. We do this
via reduction from bounded occurrence 2-SAT.

1 Introduction

The rank of a matrix is well understood and easy to compute. The student first
introduced to the notion of rank often learns that they can perform Gaussian
elimination on a matrix and the number of nonzero rows they obtain is its
rank. They may even learn that this is equivalent to the number of linearly
independent rows of the matrix. A rank 1 matrix can be written as an outer
product of two vectors u and v, meaning its ijth entry is ui · vj . The rank of M
is equivalent to the minimum number of outer products (rank 1 matrices) that
must be added to form M .

This notion of rank has been generalized to describe tensors. A 3-tensor T
is a grid of numbers with 3 indices. A tensor is rank 1 if it is the outer product
of 3 vectors, and the rank of T is the minimum number of rank 1 tensors that
must be added to form it.

Rank of 3-tensors is, apart from its inherent mathematical appeal, a natural
tool for reasoning about bilinear circuit complexity. The inputs and outputs of
a bilinear circuit correspond to indices in the 3 coordinates of a 3-tensor, and
the rank is equal to the number of multiplication nodes needed in the circuit [8].
Strassen’s [17] famous algorithm for 2× 2 matrix multiplication can be viewed
in this light. The multiplication is a circuit computing the entries of the output
matrix from the entries of the input matrices. Writing this as a 22×22×22 tensor,
his basic construction corresponds to a rank 7 decomposition. He then applied
this recursively to create the first algorithm for n×n matrix multiplication that
was faster than the naive algorithm.

Unfortunately, while matrix rank is easy to compute, H̊astad [6] showed that
tensor rank is NP-hard to calculate. More recently, Shitov [14] and Schaefer and
Štefankovič [13] showed that rank over a field F is complete for the existential
theory of F and is also uncomputable over Z. This presents a roadblock for re-
searchers hoping to analyze the rank of tensors for specific applications. Much

∗Lindstedtsvägen 3, Stockholm SE-100 44, Sweden (josephsw@kth.se) Supported by the
Knut and Alice Wallenberg Foundation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 86 (2018)

work has been done since Strassen’s initial paper to analyze larger tensors mod-
eling matrix multiplication and many improvements have been obtained. How-
ever, even very simple tensors stubbornly resist analysis, such as the 32×32×32

tensor for 3× 3 matrix multiplication. Its rank is only known to be between 19
[3] and 23 [9].

Another application for tensor rank is demonstrated by Raz [12], who shows
how strong circuit lower bounds for more general circuits may be possible with a
better understanding of rank. Tensor rank is also a practical tool in a variety of
fields, such as signal processing and computer vision [7]. Our knowledge is very
limited though, because despite knowing that there are 3-tensors with rank at
least n2/3 (which can be seen by dimension counting), the highest rank known
for an explicit family of 3-tensors is O(n) [15]. Also, while we know rank is hard
to compute exactly, we do not know if it can be approximated. Alexeev et al.
[1] and Bläser [4] both mention this open question. Recently Song et al. [16]
proved that, assuming the Exponential Time Hypothesis (ETH), there is some
constant c0 so that tensor rank cannot be approximated within a factor of c0
in polynomial time. We strengthen this to prove an NP-hardness result and in
particular the following theorem.

Theorem 1. It is NP-hard to approximate 3-tensor rank over any field F within
a factor of 1 + 1/1852− δ, for any δ > 0.

Our construction is a re-analysis and simplification of the reduction by
H̊astad [6]. We show that if bounded occurrence SAT is used as the start-
ing point for the reduction then significant extra rank can be guaranteed from
unsatisfied clauses over the rank in the satisfiable case. Independently, Bläser
et al. [5] proved the same result, but without an explicit constant, and with a
slightly more involved argument.

A natural follow-up question to ask is whether tensor rank is hard to approx-
imate within any constant, or within a specific unbounded function. It would
also be interesting to have any nontrivial approximation algorithm. We discuss
these questions briefly in Section 4.

2 Preliminaries

We work over an arbitrary field F throughout this paper.
A d-tensor is a function from d-tuples of natural numbers to F. The entries

in the tuple represent coordinates in a d-dimensional space. A given d-tensor
has size ni in coordinate i and is defined at exactly those s where si ∈ [ni]
for all i. It is helpful to think of this as a grid with numbers written in the
cells. We typically write Ts to denote T (s), or even Ts1s2...sd . For vi ∈ Fni , an
outer product ⊗i∈[d]vi of d vectors is a rank 1 tensor. The rank, rk(T), is the

minimum r so that T =
∑

j∈[r]⊗i∈[d]v
j
i .

A minimization problem P consists of a set of valid strings L together with
a score function s : L → R+. An approximation algorithm for P is an
algorithm A that takes strings in L and outputs numbers in R+ with ∀x ∈
L.A(x) ≥ s(x). Let Ln be the strings in L of length n. For a function c : N →
R+, A is a c-approximation algorithm if maxx∈Ln

A(x)
s(x) ≤ c(n).

A MAX-E2-SAT instance consists of a set of variables x = {xk}k∈[n] and
a set of disjunctive clauses {li1 ∨ li2}i∈[m] of size exactly 2 over those variables.

2

Here n,m ∈ N and lij is a literal of a variable in x for each i ∈ [m], j ∈
[2]. The problem is to compute the maximum number of clauses that can
be simultaneously satisfied by an assignment to x. E3-OCC-MAX-2SAT is
MAX-E2-SAT where every variable occurs in exactly 3 clauses. Note that in
E3-OCC-MAX-2SAT we have m = 3n

2 .

2.1 Slices

A slice of a tensor is the grid obtained from fixing one of the coordinates. The
slice Ti:x of a d-tensor T is a (d−1)-tensor with Ti:x(s) := T (s1, s2, . . . si−1, x, si, . . . sd−1).
That is, when indexing into Ti:x one is indexing into T but omitting the coor-
dinate i. For example, if d = 3 then T3:k is the matrix M where Mij = Tijk.
Even more concretely, if we draw the first coordinate as the row and the second
coordinate as the column:

A =

[
a b
c d

]
, A2:1 =

[
a
c

]
We want to recover some of our intuition about matrix rank and use row

reduction when computing tensor rank.

Lemma 1. If a slice is scaled by a nonzero constant or added to another slice
in the same coordinate, the rank does not change.

Proof. Suppose we have a rank r decomposition T =
∑

h∈[r]⊗j∈[d]v
h
j . If slice

Ti:x is scaled by λ, simply replace vhi (x) with λvhi (x) for every h. This shows
that the rank does not increase. Given a rank r′ decomposition of the new
tensor, scale by 1/λ to see that r′ ≥ r.

To add Ti:x to Ti:y, simply replace vhi (y) with vhi (y) + vhi (x). Again, this
operation can be inverted by replacing vhi (y) with vhi (y) − vhi (x), so the ranks
before and after adding Ti:x to Ti:y are the same.

Corollary 1. If a slice is a linear combination of other slices in the same
coordinate, setting every entry to 0 or removing it does not change the rank.

We call the process of iteratively removing dependent slices until all remain-
ing slices are independent slice elimination. When performing row reduction
on a matrix, one can add any row u to any other row v without changing the
rank. Gaussian elimination turns this into a simple strategy for calculating rank
where a row u is added, scaled appropriately, to each other row according to a
simple rule. One can think of this as choosing some vector c to extend u by,
forming the outer product u⊗ c, and adding this to the rank decomposition of
the matrix.

Unfortunately, slice elimination does not give an efficient algorithm for tensor
rank for two reasons. First, unlike in a matrix, the non-eliminated slices can
have rank greater than 1 and it will be unclear what the overall rank of the
tensor is. Second, even choosing what multiples to use when adding one slice to
the others is NP-hard, and this is the property exploited in showing NP-hardness
of tensor rank.

3

2.2 Substitution

While slice elimination does not give an algorithm for tensor rank, it can be
used to analyze the rank of some tensors. A rank 1 slice T ′ of T can be written
uniquely as an outer product, so it is natural to assume T ′ appears in some
minimum rank decomposition of T . Indeed, we show this can be assumed in the
following lemma. A form of this for polynomials comes from Pan [11] and goes
by many names, such as “slice reduction”, “layer reduction”, and “substitution”.
We slightly generalize the proof by H̊astad [6]. More general versions can be
found in papers by Alexeev et al. [1] and Landsberg and Micha lek [10]:

Lemma 2 (Substitution). Given a d-tensor T of rank r, suppose the 1-slices
T1:j for j ∈ [k] are rank 1 and linearly independent as vectors. Then there is an
expansion T =

∑r
j=1 v

j ⊗M j with rk(M j) = 1 and M j = T1:j for j ∈ [k].

Note that the lemma is stated using 1-slices and using coordinates j ∈ [k] for
T1:j for simplicity. It also holds when taking slices in an arbitrary coordinate i
and considering an arbitrary list S ⊂ [ni] of i-coordinates.

Proof. Suppose k = 1 and write T1:1 as a linear combination of M j . We pick one
of the M j and rearrange the equation to write it in terms of T1:1 and the other
M j′ . Then we substitute this into the equations for the other slices, thereby
eliminating the use of M j and introducing T1:1.

Explicitly, the rank decomposition gives us

T1:x =
∑
j∈[r]

vj(x)M j

Assume without loss of generality that v1(1) 6= 0. We use this equation to
replace all occurrences of M1 with T1:1. First we rearrange the equation for T1:1
to get

M1 =
1

v1(1)
T1:1 −

r∑
j=2

vj(1)

v1(1)
M j

Now we can substitute this in the remaining equations and simplify to get

T1:x = v1(x)

 1

v1(1)
T1:1 −

r∑
j=2

vj(1)

v1(1)
M j

+

 r∑
j=2

vj(x)M j


=
v1(x)

v1(1)
T1:1 +

r∑
j=2

(
vj(x)− vj(1)v1(x)

v1(1)

)
M j

To find an expansion with M j = T1:j for subsequent j, we simply repeat
this procedure. We must be careful that we do not replace an earlier M j .
Fortunately the T1:j for j ≤ k are independent, so each one must use some M j

for j > k when it is reached.

We would like to extend this proof to delete rank 1 slices and simplify the
tensor. With the same notation as in Lemma 2, write T = T̃ +

∑k
h=1 v

h ⊗Mh

and note that rk(T) = rk(T̃) + k. We get the following consequence of Lemma
2.

4

Corollary 2. Given a d-tensor T of rank r, suppose the 1-slices T1:j for j ∈ [k]
are rank 1 and linearly independent as vectors. Then

rk(T) = k + min(rk(T −
k∑

j=1

vj ⊗ T1:j)),

where the minimum is taken over the choice of {vj}j∈[k] ⊆ Fn1 . Furthermore,

in the T −
∑k

j=1 v
j ⊗ T1:j of minimum rank, we can assume slice 1 : j, for

j ∈ [k], has all zero entries.

In Section 3 we use T ′ to refer to the minimum rank tensor in Corollary 2
with slices 1 : j removed, for j ∈ [k].

3 Hardness

To establish NP-hardness of approximation we adapt the proof of NP-hardness
by H̊astad [6] but reduce from bounded occurrence SAT. H̊astad started with a
3-SAT instance φ with n variables and m clauses and created a (2 + n+ 2m)×
3n×(3n+m) tensor T . If φ was satisfiable then rk(T) = 4n+2m, and otherwise
rk(T) > 4n+ 2m. We follow the same general approach but by starting with a
bounded occurence SAT instance we are able to more tightly relate the rank of
the resulting tensor to the minimal number of falsified clauses.

3.1 Reduction

Let us give an overview of our reduction. Though the reduction works for
a varying number of literals per clause, here we just reduce from MAX-E2-
SAT. Given a SAT formula φ with n variables and m clauses, we create a
(1 + n+m)× 2n× (n+m) tensor T with n variable slices and m clause slices.
We represent each literal as a vector as follows: vxi

∈ F2n contains a 1 in position
2i− 1 and 0 everywhere else. Vector vxi

∈ F2n contains a 1 in positions 2i− 1
and 2i, and 0 everywhere else. The 3-slices are then defined as follows:

• For i ≤ n, T3:i represents variable xi. It has a 1 in positions (1, 2i − 1)
and (i+ 1, 2i), and is otherwise 0.

• Suppose the hth clause is Ch = `1 ∨ `2, where `i is a literal. Then

– (T3:(n+h))1:1 = v`1

– (T3:(n+h))1:h+n+1 = v`1 − v`2
– T3:(n+h) is 0 everywhere else

Here are the slices for the formula (x∨ y)∧ (x∨ y). We use “.” to represent
0 for readability:

1 . . .
. 1 . .
. . . .
. . . .
. . . .

 ,

. . 1 .
. . . .
. . . 1
. . . .
. . . .

 ,


1 . . .
. . . .
. . . .
1 . −1 .
. . . .

 ,


1 1 . .
. . . .
. . . .
. . . .
1 1 −1 −1


5

This tensor is a subset of the tensor from H̊astad’s paper [6], with all auxiliary
3-slices and the third copy of the variable columns removed. We use Corollary
2 to reduce the problem of computing the rank of T to that of computing a
realization of some matrix M ′. The matrix M ′ consists of:

• For each i ∈ [n], a row v′i, representing variable xi. This row has a 1 in
position 2i− 1, a variable ai in position 2i, and 0 everywhere else.

• For each h ∈ [m], a row c′h, representing clause Ch = `1 ∨ `2. This row
is nonzero only in the columns for variables appearing in the clause. It
depends on a variable bh and equals (1− bh)v`1 + bhv`i .

For example, for the formula (x ∨ y) ∧ (x ∨ y) we obtain
1 a1 . .
. . 1 a2

1− b1 . b1 .
1− b2 1− b2 b2 b2

 , which might yield


1 . . .
. . 1 1
1 . . .
. . 1 1


for a specific assignment to the variables. We use M to represent M ′ under

some assignment to its variables, and call it a realization of M ′. We use ch
to refer to c′h and ui to refer to v′i under an assignment to the variables of M ′.
Then we have the following:

Lemma 3.
rk(T) = min(rk(M)) + n+m

where the minimum is taken over all realizations M of M ′.

As one might expect, the variables in M ′ correspond to the choices taken in
Corollary 2 of how to subtract slices.

Proof. We perform slice elimination on the 1-slices of T . We think of the third
coordinate as being perpendicular to the page, so we can think of 1-slices as
cutting horizontally across the page and also through the page. For i ≥ 2 each
1-slice T1:i is a matrix with a single nonzero row. Only the 3-slice T3:i−1 has
nonzero values on T1:i. Slice T3:i−1 is the 3-slice for variable xi−1 if i ≤ n or
clause Ci−n−1 if i > n.

Each of these 1-slices thus has nonzero entries only in positions T1:i(x, i− 1)
for some x. The 1-slices are thus independent as vectors. We apply Corollary
2 and call the simplified tensor T ′. There is a variable ai in T ′ obtained from
subtracting some multiple of T1:i+1 from T1:1 for i ≤ n. There is a variable bj
obtained from subtracting some multiple of T1:n+j+1 from T1:1. Finally, T ′ has
only size 1 in its 1st coordinate, so we view it as the matrix T ′3:1 = M ′ and it
has the same rank as T ′.

3.2 Bounding the rank

Now we use hardness properties of SAT. We define an a-good instance to be a
formula φ with m clauses where some assignment leaves at most am clauses un-
satisfied and an a-bad instance ψ to be a formula where every assignment leaves
at least am clauses unsatisfied. We use the following theorem from Berman and
Karpinski [2]:

6

Theorem 2. It is NP-hard to distinguish between (4/792+ε)-good and (5/792−
ε)-bad instances of E3-OCC-MAX-2SAT, for any ε > 0.

We relate the rank of M to the fraction of clauses that φ can satisfy to obtain
our main theorem.

Lemma 4 (Completeness). If φ is a-good then for some realization M of M ′,
we have rk(M) ≤ n+ am.

Proof. There is some assignment ρ so ρ(C) is true for the maximum number of
clauses C ∈ φ. Set ai = 1 − ρ(xi). Suppose clause Ch = `1 ∨ `2, where `1 is
a literal of xi and `2 is a literal of xj . If ρ(`1) is true then set bh = 0 so that
ch = v`1 = ui. If instead ρ(`2) is true, then set bh = 1 so that ch = v`2 = uj .
Thus no satisfied clause contributes to the rank of M . There are only am
remaining rows, and hence rk(M) ≤ n+ am.

We conclude that the variable rows contribute n to the rank and satisfied
clause rows contribute nothing. Unsatisfied clause rows contribute to the rank
as well, but we have to be careful. In general it is hard to get a precise bound
on the contribution of clauses to the rank of M . When many clauses share the
same variable, we can only guarantee that the rank increases by some fraction
of the number of unsatisfied clauses. However, for the very simple formulas we
study, we can establish that Lemma 4 is sharp.

Lemma 5 (Soundness). If φ is an a-bad instance of E3-OCC-MAX-2SAT then
for every realization M of M ′, we have rk(M) ≥ n+ am.

Proof. Fix M , a realization of M ′ of minimum rank. We build a boolean as-
signment ρ that falsifies at most rk(M)−n clauses in φ. Say a row uses i if its
last nonzero entry is in column 2i − 1 or 2i. Sort the rows of M by the index
used.

One row using i is ui. There are at most 3 more rows using i, which we call
r, s, and t, if they exist. Call the corresponding clauses Cr, Cs, and Ct. Let
Mi be the submatrix of M consisting of those rows that use values up to i. If
rk(Mi) − rk(Mi−1) = 1 then Cr, Cs, and Ct share the same literal of xi. Call
this literal `i. Then setting ρ(`i) true satisfies all these clauses. Otherwise, set
ρ(`i) to satisfy the majority of the clauses Cr, Cs, and Ct.

Because there are only 3 clauses that contain xi, this leaves at most 1 clause
unsatisfied. There are at most rk(M) − n indices i ∈ [n] where rk(Mi) −
rk(Mi−1) > 1, so we end up with at most rk(M) − n falsified clauses. Since
every assignment to φ falsifies at least am clauses, we conclude that rk(M) ≥
n+ am.

3.3 Inapproximability

Now we get our main theorem.

Theorem 3 (Theorem 1). It is NP-hard to approximate 3-tensor rank over any
field F within a factor of 1 + 1/1852− δ, for any δ > 0.

Proof. We combine Theorem 2, Lemma 4, and Lemma 5. We know rk(T) =
min(rk(M))+n+m. If φ is a-good then min(rk(M)) ≤ n+am. If φ is a-bad then

7

min(rk(M)) ≥ n+ am. By Theorem 2 it is NP-hard to distinguish (4/792 + ε)-
good and (5/792−ε)-bad instances. Hence, it is NP-hard to distinguish whether
rk(T) ≤ 2n+ (1 + 4/792 + ε)m or rk(T) ≥ 2n+ (1 + 5/792− ε)m.

Since m = 3n
2 in E3-OCC-MAX-2SAT, given δ > 0 we can choose ε > 0 so

that we have an inapproximability ratio of 1 + 1/1852− δ.

4 Discussion

It seems likely that much better inapproximability results are possible for tensor
rank. By counting, we know there are tensors of shape n× n× n with rank at
least n2/3. Say that a family T (n) of tensors of increasing size n is “explicit”
if there is a polynomial time algorithm that takes input n written in unary and
prints T (n). Despite the existence of n × n × n tensors of quadratic rank, the
only “explicit” such tensors have rank at most O(n) [15].

Alexeev et al. [1] claim that “any gap-preserving reduction from NP to tensor
rank would automatically yield lower bounds for explicit tensors”. While it is not
obvious to us how to turn this into a technically precise statement, we sketch the
main idea. Suppose we reduce SAT to 3-tensor rank and obtain a superconstant
hardness of approximation for tensor rank. If the reduction always outputs a
tensor T with largest dimension n, and where the slices in every direction are
independent, then the tensor has rank at least n. If, for some c > 3, the
reduction demonstrates c-hardness of approximation then it must sometimes
output tensors of rank at least cn. If this happens on unsatisfiable formulas, we
can apply the reduction to get an explicit high rank tensor.

While it is possible that a randomized reduction could avoid this barrier, we
are still motivated to find high rank tensors. One approach to finding higher
rank explicit 3-tensors or to improving the gap in a reduction is to Kronecker
multiply together smaller 3-tensors. It is known [18] that the product is not
multiplicative. For the curious reader, let us give a simple counterexample:

Example 1. Take a 3-tensor T with slices[
1 .
. 1

] [
. 1
. .

]
Kronecker multiplying this with itself, we get a 3-tensor with slices

1 . . .
. 1 . .
. . 1 .
. . . 1



. 1 . .
. . . .
. . . 1
. . . .



. . 1 .
. . . 1
. . . .
. . . .



. . . 1
. . . .
. . . .
. . . .


The former has rank 3, but the latter set can be formed as a linear combination
of 8 rank 1 matrices:

1 1 . .
. . . .
. . . .
. . . .



. −1 . .
. 1 . .
. . . .
. . . .



. 1 1 .
. . . .
. . . .
. . . .



. . . .
. −1 . 1
. . . .
. . . .



. . . .
. . . −1
. . . −1
. . . .



8


. . . 1
. . . .
. . . .
. . . .



. . . .
. . . .
. . 1 .
. . . .



. . . .
. . . .
. . . .
. . . 1


T has rank 3, but when Kronecker multiplying with itself it has rank at most 8,
not 9. This is true over any field F.

Perhaps it is still true that when k copies of a 3-tensor T of shape n×n×n
with rk(T) > n are multiplied together, the rank grows as rk for some rk(T) ≥
r > n. If true, this would immediately give high rank 3-tensors.

Acknowledgements

I thank Johan H̊astad for guidance during research and for thoroughly review-
ing and giving advice on the writing of this paper. I thank Per Austrin for
discussions and for improving the inapproximability constant.

References

[1] Boris Alexeev, Michael A. Forbes, and Jacob Tsimerman. Tensor rank:
Some lower and upper bounds. CoRR, abs/1102.0072, 2011.

[2] Piotr Berman and Marek Karpinski. Efficient amplifiers and bounded de-
gree optimization. Electronic Colloquium on Computational Complexity
(ECCC), 8(53), 2001.

[3] Markus Bläser. On the complexity of the multiplication of matrices of small
formats. J. Complexity, 19(1):43–60, 2003.

[4] Markus Bläser. Explicit tensors. In Perspectives in Computational Com-
plexity, pages 117–130. Springer, 2014.

[5] Markus Bläser, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov.
Generalized matrix completion and algebraic natural proofs. Electronic
Colloquium on Computational Complexity (ECCC), 25:64, 2018.

[6] Johan H̊astad. Tensor rank is np-complete. J. Algorithms, 11(4):644–654,
1990.

[7] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and appli-
cations. SIAM Review, 51(3):455–500, 2009.

[8] Joseph B Kruskal. Three-way arrays: rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and statistics.
Linear algebra and its applications, 18(2):95–138, 1977.

[9] Julian D Laderman. A noncommutative algorithm for multiplying 3× 3
matrices using 23 multiplications. Bulletin of the American Mathematical
Society, 82(1):126–128, 1976.

[10] J. M. Landsberg and Mateusz Michalek. Abelian tensors. CoRR,
abs/1504.03732, 2015.

9

[11] Viñtor Yakovlevich Pan. Methods of computing values of polynomials.
Russian Mathematical Surveys, 21(1):105–136, 1966.

[12] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. Electronic
Colloquium on Computational Complexity (ECCC), 17:2, 2010.

[13] Marcus Schaefer and Daniel Stefankovic. The complexity of tensor rank.
CoRR, abs/1612.04338, 2016.

[14] Yaroslav Shitov. How hard is the tensor rank? arXiv preprint
arXiv:1611.01559, 2016.

[15] Amir Shpilka. Lower bounds for matrix product. CoRR, cs.CC/0201001,
2002.

[16] Zhao Song, David P. Woodruff, and Peilin Zhong. Relative error tensor low
rank approximation. CoRR, abs/1704.08246, 2017.

[17] Volker Strassen. Gaussian elimination is not optimal. Numerische mathe-
matik, 13(4):354–356, 1969.

[18] Nengkun Yu, Eric Chitambar, Cheng Guo, and Runyao Duan. Tensor rank
of the tripartite state |w〉⊗n. Physical Review A, 81(1):014301, 2010.

10

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

