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Abstract

Lovász Local Lemma (LLL) is a very powerful tool in combinatorics and probability theory to
show the possibility of avoiding all “bad” events under some “weakly dependent” condition. Over
the last decades, the algorithmic aspect of LLL has also attracted lots of attention in theoretical
computer science [15, 19, 24]. A tight criterion under which the abstract version LLL holds was
given by Shearer [31]. It turns out that Shearer’s bound is generally not tight for variable version
LLL (VLLL) [16]. Recently, Ambainis et al. [3] introduced a quantum version LLL (QLLL), which
was then shown to be powerful for quantum satisfiability problem.

In this paper, we prove that Shearer’s bound is tight for QLLL, affirming a conjecture proposed
by Sattath et. al. [28]. Our result shows the tightness of Gilyén and Sattath’s algorithm [11], and
implies that the lattice gas partition function fully characterizes quantum satisfiability for almost all
Hamiltonians with large enough qudits [28].

Commuting LLL (CLLL), LLL for commuting local Hamiltonians which are widely studied in
literature, is also investigated here. We prove that the tight regions of CLLL and QLLL are general-
ly different. Thus, the efficient region of algorithms for CLLL can go beyond shearer’s bound. Our
proof is by first bridging CLLL and VLLL on a family of interaction bipartite graphs and then ap-
plying the tools of VLLL, e.g., the gapless/gapful results, to CLLL. We also provide a sufficient and
necessary condition for deciding whether the tight regions of QLLL and CLLL are the same for a
given interaction bipartite graph.
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1 Introduction

Classical Lovász Local Lemma The famous Lovász Local Lemma (or LLL) is a very powerful tool
in combinatorics and probability theory to show the possibility of avoiding all “bad” events under some
“weakly dependent” condition, and has numerous applications. Formally, given a set A of bad events in
a probability space, LLL provides the condition under which P(∩A∈AA) > 0. The dependency among
events is usually characterized by dependency graph. A dependency graph is an undirected graph GD =
([m], ED) such that for any vertex i, Ai is independent of {Aj : j /∈ Γi ∪ {i}}, where Γi stands for the
neighborhood of i in GD. In this setting, finding the conditions under which P(∩A∈AA) > 0 is reduced
to the following problem: given a graph GD, determine its abstract interior I(GD) which is the set of
vectors p such that P

(
∩A∈AA

)
> 0 for any event set A with dependency graph GD and probability

vector p. Local solutions to this problem, including the first LLL proved in 1975 by Erdős and Lovász
[8], are referred as abstract-LLL.

The most frequently used abstract-LLL is as follows:

Theorem 1.1 ([32]). Given a dependency graph GD = ([m], ED) and a probability vector p ∈ (0, 1)n,
if there exist real numbers x1, ..., xn ∈ (0, 1) such that pi ≤ xi

∏
j∈Γi

(1 − xj) for any i ∈ [m], then
p ∈ I(GD).

Shearer [31] provided the exact characterization of I(GD) with the independence polynomial defined
as follows.

Definition 1.1 (Multivariate independence polynomial). Let GD = (V,E), x = (xv : v ∈ V ) and let
Ind(GD) be the set of all independent sets ofGD. Then we call I(GD,x) =

∑
S∈Ind(GD)(−1)|S|

∏
v∈S xv

the multivariate independence polynomial.

Definition 1.2. Probability vector p = (pv : v ∈ V ) ∈ R|V | is called above Shearer’s bound for a
dependency graph GD if there is a vertex set V ′ ⊆ V such that for the corresponding induced subgraph
GD[V ′] := (V ′, E′) : I(G′D, (pv : v ∈ V ′)) ≤ 0. Otherwise we say p is below Shearer’s bound.

The tight criterion under which abstract version LLL holds provided by Shearer is as follows.

Theorem 1.2 ([31]). For a dependency graph GD = (V,E) and probabilities p ∈ R|V | the following
conditions are equivalent:

1. p is below Shearer’s bound for GD.

2. for any probability space Ω and {Av ⊆ Ω : v ∈ V } events having GD as dependency graph and
satisfying P(Av) ≤ pv, we have P(∪v∈VAv) ≥ I(GD,p) > 0.

In other words, p ∈ I(GD) if and only if p is below Shearer’s bound for GD.
Another important version of LLL, variable version Lovász Local Lemma (or VLLL), which exploits

richer dependency structures of the events, has also been studied [16, 19]. In this setting, each event
Ai can be fully determined by some subset Xi of a set of mutually independent random variables X =
(X1, · · · , Xn). Thus, the dependency can be naturally characterized by the event-variable graph defined
as follows. An event-variable graph is a bipartite graph GB = ([m], [n], E) such that for any Xj ∈ Xi,
there is an edge (i, j) ∈ [m] × [n]. Similar to the abstract-LLL, the VLLL is for solving the following
problem: given a bipartite graph GB , determine its variable interior VI(GB) which is the set of vectors
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p such that P
(
∩A∈AA

)
> 0 for any variable-generated event system A with event-variable graph GB

and probability vector p.
The VLLL is important because many problems in which LLL has applications naturally conform

with the variable setting, including hypergraph coloring [22], satisfiability [9, 10], counting solutions to
CNF formulas [23], acyclic edge coloring [12], etc. Moreover, most of recent progresses on the algorith-
mic aspects of LLL are based on the variable model [19, 24, 26].

A key problem around the VLLL is whether Shearers bound is tight for variable-LLL [19]. Formally,
given a bipartite graph GB = (U, V,E), its base graph is defined as the graph GD(GB) = (U,E′)
such that for any two nodes ui, uj ∈ U , there is an edge (ui, uj) ∈ E′ if and only if ui and uj share
some common neighbor in GB . That is to say, GD(GB) is a dependency graph of the variable-generated
event system with event-variable graph GB . Thus, we have I(GD(GB)) ⊆ VI(GB) immediately. If
I(GD(GB)) 6= VI(GB), we say that Shearer’s bound is not tight for GB , or GB has a gap. The first
example of gap existence is a bipartite graph whose base graph is a cycle of length 4 [19]. Recently, He
et al. [16] have shown that Shearer’s bound is generally not tight for variable-LLL.

Quantum Satisfiability and Quantum Lovasz Local Lemma Most systems of physical interest can
be described by local Hamiltonians H =

∑
iHi where each k-local term Hi acts nontrivially only on at

most k qudits. We say H is frustration free if the ground state |φ〉 of H is also the ground state of every
Hi. Let Πi be the projection operator on the excited states of Hi and Π =

∑
Πi, it is easy to see the

frustration freeness of H and Π are the same. Henceforth, we only care about the Hamiltonians which
are projectors. Determining whether a given Π is frustration free (or satisfiable, in computer science
language), known as the quantum satisfiability problem, is a central pillar in quantum complexity theory,
and has many applications in quantum many body physics.

Unfortunately, quantum satisfiability problem has been shown to be QMA1-complete [4], which is
widely believed to be intractable in general even for quantum computing. This makes it highly desir-
able to search for efficient heuristics and algorithms in order to, at least, partially answer this question.
In the seminal paper, by generalizing the notations of probability and independence as described in the
following table, Ambainis et al. [3] introduced a quantum version LLL (or QLLL) respect to the depen-
dency graph, i.e., a sufficient condition under which the Hamiltonian is guaranteed to be frustration free.
With QLLL, they greatly improved the known critical density for random k-QSAT from Ω(1) [20] to
Ω(2k/k2), almost meet the best known upper bound O(2k) [20].

Probability space Ω → Vector space: V
Event A → Subspace A ⊆ V
Complement A = Ω\A → Orthogonal subspace A⊥

Probability P(A) → Relative dimension R(A) := dim(A)
dim(V )

Disjunction A ∨B → A+B = {a+ b|a ∈ A, b ∈ B}
Conjunction A ∧B → A ∩B
Independence P(A ∧B) → R(A ∩B) = R(A) ·R(B)

Conditioning P(A|B) = P(A∩B)
P(B) → R(A|B) := R(A∩B)

R(B)

Recently, Sattath et al. [28] generalized Shearer’s theorem to QLLL respect to the interaction bipartite
graph, which can be viewed as the quantum analogue of classical event-variable graph, and showed that
Shearer’s bound is still a sufficient condition here. Remarkably, the probability threshold of Shearer’s
bound turns out to be the first negative fugacity of the hardcore lattice gas partition function, which
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has been extensively studied in classical statistical mechanism. Utilizing the tools in classical statistical
mechanism, they concretely apply QLLL to evaluating some critical threshold to local Hamiltonians
on various regular lattices. In contrast to VLLL [16] which goes beyond Shearer’s bound generally,
they conjectured that Shearer’s bound is tight for QLLL, which, if true, would have important physical
significance and several striking consequence [28].

In the past few years, as a special case of quantum satisfiability problem, the commuting local
Hamiltonian problem (CLH), where [Πi,Πj ] = 0 for all i and j, has attracted considerable atten-
tion [1, 2, 5, 13, 29]. Commuting Hamiltonians are somewhat “halfway” between classical and quan-
tum, and capable of exhibiting intriguing multi-particle entanglement phenomena, such as the famous
toric code [18]. CLH interests people not only because the commutation restriction is natural and often
made in physics, but also it may help us to understand the centrality of non-commutation in quantum
mechanics. CLH can be viewed as a generalization of the classical SAT, thus CLH is at least NP-hard,
and as a sufficient condition, the commuting version LLL (or CLLL) is desirable and would has various
applications.

The QLLLs provide sufficient conditions for frustration freeness. A natural question is whether there
is an efficient way to prepare a frustration-free state under the conditions of QLLL. A series of results
showed that the answer is positive if all local Hamiltonians commute [7, 27, 30]. Recently, Gilyén and
Sattath improved on the previous constructive results by designing an algorithm that works efficiently
under Shearer’s bound for non-commuting terms as well [11].

Therefore, the following two closely related problems beg answers:

1. Tight region for QLLL: complete characterization of the interior of QLLL for a given interac-
tion bipartite graph GB . Here the interior is the set of vectors r such that any local Hamiltonians
with relative dimensions r and interaction bipartite graph GB are frustration free. As Shearer’s
bound has been shown to be a sufficient condition for QLLL [28], a fundamental question here
is whether Shearer’s bound is tight. If it is really tight, there are several striking consequences.
Firstly, the tightness implies Gilyén and Sattath’s algorithm [11] converges up to the tight region.
Moreover, the geometrization theorem [21] says that given the interaction bipartite graph, dimen-
sions of qudits, and dimensions of local Hamiltonians, either all such Hamiltonian are frustration
free, or almost all such Hamiltonians are not. If Shearer’s bound is indeed tight for QLLL, by
geometrization theorem we have that the quantum satisfiability for almost all Hamiltonians with
large enough qudits are completely characterized by the lattice gas partition function. Meanwhile,
the lattice gas critical exponents can be directly applied to the counting of the ground state entropy
of almost all quantum Hamiltonians in the frustration free regime. Thus, the tightness means a lot
for transferring insights from classical statistical mechanics into the quantum complexity domain
[28].

2. Tight region for CLLL: complete characterization of the interior of CLLL for a given interaction
bipartite graphGB which is the set of vectors r such that any commuting Hamiltonians with relative
dimensions r and interaction bipartite graphGB are frustration free. It is immediate that the interior
of QLLL is a subset of the interior of CLLL for any GB . An interesting question is whether the
containment is proper. There are a series of results on the algorithms for preparing a frustration-free
state for commuting Hamiltonians under the conditions of QLLL [7, 27, 30]. A natural question
is whether the algorithm designed for commuting Hamiltonians can still be efficient beyond the
conditions of QLLL, e.g., Shearer’s bound. These questions beg answers not only because the
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various applications in CLH, but also it may help us to understand the role of non-commutation
plays in the quantum world.

1.1 Results and Discussion

In this paper, we mainly concentrate on the following three problems: the tight region for QLLL, the tight
region for CLLL, and whether the tight regions for QLLL and CLLL are the same for a given interaction
bipartite graph. We provide the complete answer for the first problem and partial answers for other two
problems. Our results show that Shearer’s bound, which is tight for abstract-LLL, is also tight for QLLL.
The CLLL behaves very different from QLLL, i.e., the interior of CLLL goes beyond Shearer’s bound
generally. And we also show that the tight regions for CLLL and VLLL are the same for a family of
Hamiltonians. The main results of this paper are listed and discussed as follows.

1.1.1 Tight region for QLLL

Shearer’s bound is tight for QLLL In this paper, we first prove the tightness of Shearer’s bound for
QLLL, which affirms the conjecture in [28]. More precisely,

Theorem 1.3 (Shearer’s bound is tight for QLLL). Given an interaction bipartite graph GB and and
relative projector ranks ri = R(ImΠi) for all i,

• If (GB, r) is below Shearer’s bound, then all such Hamiltonians are frustration free [28].

• Otherwise, there is a set of local Hamiltonians with interaction bipartite graph GB and relative
projector rank r which is not frustration free.

In contrast to the VLLL which goes beyond Shearer’s bound generally, QLLL is another example
exhibiting the difference between the classical world and the quantum world. As mentioned above, The-
orem 1.3 means that the position of the first negative fugacity zero of partition function is exactly the
critical threshold of quantum satisfiability for almost all Hamiltonians with large enough qudits. The
above theorem also shows the tightness of Gilyén and Sattath’s algorithm [11], which prepares a frustra-
tion free state under Shearer’s bound.

1.1.2 Tools for CLLL

Connection between CLLL and VLLL For CLLL, we first prove that if any two Hamiltonians share
at most one qudit, then the frustration freeness region of commuting Hamiltonians and that of classical
Hamiltonians are the same.

Theorem 1.4. Given an interaction bipartite graph where any pair of Hamiltonians share at most one
qudit, the dimensions of qudits and the relative dimensions of Hamiltonians, if there is such a commuting
local Hamiltonian which is frustration free, there is also such a frustration free classical local Hamilto-
nian.

The following is a direct corollary.

Corollary 1.5. Given any interaction bipartite graph GB where any pair of Hamiltonians share at most
one qudit, the tight regions of CLLL and VLLL are the same.
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Many local Hamiltonians studied in literature can be regarded as this type, for example, the Hamil-
tonians of which the lattice is chain [25], tree [6, 28], cycle, triangular, square [33], and so on. Actually,
for lattices where the vertices are qudits and edges are Hamiltonians or vice versa, any two Hamiltonians
share at most one qudit. Thus, Corollary 1.5 means that the VLLL can be applied to many important
local Hamiltonians in the literature.

A sufficient and necessary condition for gap existence Since the Hamiltonians are restricted to be
commuting for CLLL, it is naturally expected that the tight regions of QLLL and CLLL are different. We
propose a necessary and sufficient condition to decide whether such a difference exist. Our condition is
a nontrivial extension of the classical condition for VLLL [16] to the commuting case. Because we have
proved that Shearer’s bound is tight for QLLL, to ask whether the difference between QLLL and CLLL
exists is equivalent to ask whether Shearer’s bound is not tight for CLLL.

For any interaction bipartite graph GB and any vector r of positive reals, there is a critical threshold
λ1 such that any Hamiltonians with relative dimensions less than λ1r are frustration-free but the Hamil-
tonians with relative dimensions larger than λ1r can be not. Similarly, for commuting Hamiltonians, we
have another critical threshold λ2. We say there is a gap between QLLL and CLLL for GB in direction
r if and only if λ1 6= λ2. We say there is a gap between QLLL and CLLL for GB if there is a direc-
tion r with a gap. For conciseness of presentation, we also say GB is gapful if it has a gap, and gapless
otherwise. The following theorem gives a sufficient and necessary condition for gap existence.

Theorem 1.6. Given any interaction bipartite graph GB and a vector r of positive reals, the following
two conditions are equivalent:

1. For any rational λr where λ is less than the critical threshold of CLLL in direction r, there is a
commuting Hamiltonian set with interaction bipartite graph GB and relative dimension vector λr
such that any Hamiltonians sharing qudits are exclusive.

2. GB is gapless for CLLL in the direction of r.

Here the qualifier “exclusive” means that the images of Hamiltonians are orthogonal. By this theo-
rem, one can prove the existence of a gap just by proving the non-existence of commuting Hamiltonian
set, without computing the critical threshold of QLLL or CLLL.

Meanwhile, we also have the following corollary.

Corollary 1.7. Given any interaction bipartite graph GB and a rational λr where λ is the critical
threshold of CLLL in direction r, if there is a set of commuting Hamiltonians with interaction bipartite
graph GB and relative dimension vector λr such that any Hamiltonians sharing qudits are exclusive,
then GB is gapless in the direction of r.

Reduction method He et. al. proposed five operations for VLLL which transforms a bipartite graph
without changing the existence or nonexisence of a gap to discover more instances that have or have
no gaps [16]. Here, we extend the reduction rules about these operations to CLLL. Meanwhile, we also
propose another operation preserving both gapful and gapless. By these reduction rules, we can prove
two interesting results.

Theorem 1.8. An interaction bipartite graph GB is gapless for CLLL if GB is a tree.
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Here the interaction bipartite graph which is a tree includes two interesting families of interaction
bipartite graphs, the treelike bipartite graphs [16] and the regular trees [6, 17, 28]. As an application, the
critical threshold λc = 1

t ·
(k−1)(k−1)

kk
for QLLL [28] on infinite (t, k)-regular tree also applies for CLLL

and VLLL as well.
We say a graph GD = ([m], ED) is strongly a-gapful, if any interaction bipartite graph satisfying

GD(GB) = GD is gapful, otherwise we call it is strongly a-gapless. In 2011, Kolipaka et al. [19]
proposed to characterize strongly a-gapful graphs for VLLL, and this problem remains open until last
year [16]. Here we can give a complete characterization of strongly a-gapful graphs for CLLL by our
new reduction rule.

Theorem 1.9. A dependency graph is strongly a-gapless for CLLL if and only if it is chordal.

1.1.3 CLLL: beyond Shearer’s bound

Tight region for trees Besides proving that all interaction bipartite graphs which are trees are gapless,
we also give the tight region for CLLL on trees. Actually, our result provides the tight condition of
frustration freeness of commuting Hamiltonians where the interaction bipartite graph is a tree and the
dimensions of qudits are given. Our theorem extends the classical result on treelike bipartite graphs
[16] to the commuting case on a larger family of graphs even if the dimensions of qudits are given.
Without loss of generality, we can assume that the leaves of all trees are qudits, since we can add some
1-dimension qudits if necessary.

Theorem 1.10. Given an interaction bipartite graph GB = ([m], [n], EB) which is a tree and dimen-
sions of qudits d, appoint the qudit n as the root. For ranks r ∈ Zm, define q = (q1, ..., qn) ∈ Zn to
be

qi =

{
0 if vertex i is a leaf of GB,∑

j∈Cibrj ·
∏
k∈Cj

1
dk−qk c otherwise. (1)

Here Ci is the set of children of i. Then there is such a commuting instance with rank r spanning the
whole space if and only if there is some qi ≥ di.

The above theorem also implies the tight region for VLLL, CLLL and QLLL on trees, ignoring the
dimensions of qudits.

Corollary 1.11. Given an interaction bipartite graph GB = ([m], [n], EB) which is a tree, appoint the
qudit n as the root. For r ∈ (0, 1)m, define q = (q1, ..., qn) ∈ [0, 1]n to be

qi =

{
0 if vertex i is a leaf of GB,∑

j∈Ci rj ·
∏
k∈Cj

1
1−qk otherwise. (2)

Here Ci is the set of children of i. Then r ∈ VI(GB) = CI(GB) = I(GB) if and only if ∀i ∈ [n], qi < 1.

CLLL is generally different from QLLL By coupling our tools for CLLL with the results about
VLLL [16], we could obtain a list of gapless/gapful results for CLLL. We have proved that trees are
gapless. On the other side, we can prove the following theorem.

Theorem 1.12. Any interaction bipartite graph that some Hamiltonians form a cycle is gapful.
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Here, we say more than three Hamiltonians form a cycle if and only if the induced subgraph contain-
ing exact these Hamiltonians and their qudits can be transformed to a cycle by deleting dummy qudits.

The above theorem shows that CLLL is very different from QLLL, i.e., the interior of CLLL can go
beyond Shearer’s bound. Thus, it is possible to design more specialized algorithm for CLLL which is
efficient beyond Shearer’s bound.

By Theorems 1.8 and 1.12, we can prove the following corollary, which almost gives a complete
characterization of gapful/gapless for CLLL except when the base graph has only 3-cliques.

Corollary 1.13. An interaction bipartite graph is gapless for CLLL if its base graph is tree, is gapful if
its base graph has an induced cycle of length at least 4.

Local Hamiltonians on regular lattices As mentioned above, many local Hamiltonians in studies can
be regarded as that any two Hamiltonians share at most one qudit, including various regular lattices in
research. For these Hamiltonians, we further have the following results.

Theorem 1.14. Let GB = ([m], [n], EB) be a interaction bipartite graph where any two Hamiltonians
share at most one qudit, then GB is gapful if and only if it is a tree. Moreover, if GB is gapful, it is gapful
in all directions.

This theorem indicates that the critical thresholds of frustration freeness to commuting Hamiltonians
on many regular lattices are different from that to general Hamiltonians.

Finally, we wonder whether CLLL and VLLL are the same.

Conjecture 1.1. For any interaction bipartite graph, the tight regions of CLLL and VLLL are the same.

It should be noticed that QLLL and CLLL only exploit the information of the interaction bipartite
graph and relative ranks of Hamiltonians, ignoring the dimensions of qudits. The frustration free condi-
tions for Hamiltonians with specified dimensions of qudits, as another fundamental question, deserves
the effort.

The organization of this paper is as follows. Section 2 provides the definitions and notations. In
Section 3, we prove that Shearer’s bound is tight for QLLL. Section 4 provides the tools for CLLL. We
show that the tight region of CLLL is generally different from that of QLLL in Section 5. Section 6 gives
the hardness result.

2 Definitions and Notations

In this paper, the tight region of QLLL (CLLL) for a given interaction bipartite graphGB = ([m], [n], EB)
is defined as the set of vectors r such that any projectors (commuting projectors) with relative dimensions
r and interaction bipartite graph GB are frustration free. Without loss of generality, we assume that GB
is connected and r = (r1, r2, · · · , rm) ∈ (0, 1]m. For any r and r′, we say r ≥ r′ if r ≥ r′ holds for any
i ∈ [m]. We say r > r′ if r ≥ r′ and ri > r′i holds for some i ∈ [m]. The dependency graphs in this
paper are also assumed to be connected. And all vector spaces are of finite dimensions and over C. We
will use r,p,q,d to denote vectors.

Definition 2.1 (Hilbert space of the qudits). Let n be the number of qudits, so the Hilbert space of the
quantum system is a nth-order tensor product H = H1 ⊗ H2 ⊗ · · · ⊗ Hn. The {Hi} are of dimension

8



d = (d1, d2, · · · , dn) respectively and labelled with elements from [n]. ForA ⊆ [n] letHA :=
⊗

i∈AHi
denote the Hilbert space of the qudits in A.

Definition 2.2 (Projectors, subspaces and relative dimensions). Given a subspace V ⊂ H, let ΠV be the
orthogonal projector to V . The relative dimension of ΠV is defined asR(ΠV ) := tr(ΠV )

dim(H) = dim(V )
dim(H) . Easy

to see that R(ΠV ) is a rational number. We say two subspaces V and V ′ are commuting if ΠV and ΠV ′

are commuting. ΠV is called a classical Hamiltonian if ΠV is diagonal with respect to the computational
basis. In this paper, the two terms “subspaces” and “projectors” will be used interchangeably.

Definition 2.3 (Interaction bipartite graphs and dependency graphs). Given a bipartite graph GB =
([m], [n], EB), we say a set of local Hamiltonians V = (V1, · · · , Vm) conforms withGB , denoted by V ∼
GB , if for any i ∈ [m], ΠV acts trivially on qubits [n] \N (i). Thus we can write Vi = V loc

i ⊗H[n]\N (i),
where V loc ⊆ HN (i). In this paper, for convenience of presentation, we use NGB

(i) (or N (i) if GB is
implicit) to denote the neighbors of vertex i in GB , if which side this vertex belongs to is clear from the
context. Here, we usually call GB the interaction bipartite graph.

The corresponding dependency graph ofGB is defined asGD(GB) = ([m], ED), where (i, j) ∈ ED
if and only if N (i) ∩N (j) 6= ∅. For i ∈ [m] let Γi := {j ∈ [m] : (i, j) ∈ ED} and Γ+

i := Γi ∪ {i}. We
define the multivariate independence polynomial I(GB,x) (or I(GB) if x is implicit) of GB as that of
GD, i.e., I(GB,x) := I(GD(GB),x).

ForA ⊆ [m], letGB[A] (GD[A] resp.) be the induced subgraph ofGB (GD resp.) discarding [m]\A.

Definition 2.4 (Random subspaces). When we say randomly picking a subspace, we always use Haar
measure. Whenever it comes to random V , we always mean V loc

i is a random subspace ofHN (i) accord-
ing to the Haar measure, except the case specified.

3 QLLL: Shearer’s Bound is Tight

The section aims at proving that Shearer’s bound is tight for QLLL. As the Shearer’s bound has been
shown to be a sufficient condition for QLLL [28], it remains to show there exists a set of local Hamilto-
nians which is not frustration free for any relative dimension vector above Shearer’s bound.

Our proof is an induction on the number of Hamiltonians m. Roughly speaking, suppose Vm, · · · ,
Vm−t+1 depend on qudit n, we decompose Hn to t orthogonal subspaces Hn =

⊕t
i=1Hin. If i ∈

[m − t + 1,m], let V loc
i = Hm−i+1

n ⊗ V loc,−n
i where V loc,−n

i ⊆ HN (i)\{n} is a random subspace,
otherwise, let V loc

i be randomly picked inHN (i). By the induction hypothesis, eachHin⊗H[n−1] can be
spanned by these Vi’s with high probability, so canH[n]. The geometrization theorem shown by Laumann
et al. [21] plays an important role here∗.

Theorem 3.1 (The geometrization theorem, adapted from [21]). Fix the interaction bipartite graph
GB = ([m], [n], EB), dimensions of qudits d = (d1, · · · , dn) and relative dimensions of local Hamil-
tonians r = (r1, · · · , rm), if there exist such Hamiltonians {V ∗i }i∈[m] satisfying R(

⊕m
i=1 V

∗
i ) = 1,

then

PV1,...,Vm [R(

m⊕
i=1

Vi) = 1] = 1.

The following is a direct corollary of the geometrization theorem.
∗Though they only showed the case of qubits, the proof applies for the general qudits as well
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Corollary 3.2. Fix the interaction bipartite graph GB = ([m], [n], EB), dimensions of qudits d =
(d1, · · · , dn) and relative dimensions of local Hamiltonians r = (r1, · · · , rm), if there exist such Hamil-
tonians {V ∗i }i∈[m] satisfying R(

⊕m
i=1 V

∗
i ) = 1, then for any d′ = (k1d1, · · · , kndn) where ki’s are

positive integers, we have

PV1,...,Vm [R(
m⊕
i=1

Vi) = 1] = 1.

Armed with the geometrization theorem, we are going to give the whole proof.

Proposition 3.3. For any interaction bipartite graphGB = ([m], [n], EB) and nonnegative r = (r1, · · · ,
rm), if I(GB, r) ≤ 0 and ∀A ( [m], I(GB[A], r) > 0, then

1. ∀A ⊆ [m], I(GB[A]) ≤ 1,

2. ∀i ∈ [m], ri > 0,

3. GD(GB) is connected.

Proof. 1. If i /∈ A, then I(GB[A ∪ {i}]) = I(GB[A]) − ri · I(GB[A\Γi]), which means I(GB[A]) is
non-increasing as A grows up, thus I(GB[A]) ≤ I(GB[∅]) = 1.

2. Suppose ri = 0, then I(GB[[m]\{i}]) = I(GB) ≤ 0, a contradiction.
3. Suppose there exists ∅ ( S ( [m], s.t., there is no edge between S and [m]\S in GD, then

I(GB) = I(GB[S])I(GB[[m]\S]) ≤ 0, which implies I(GB[S]) ≤ 0 or I(GB[[m]\S]) ≤ 0, a contra-
diction.

2

Theorem 1.3 (restated). For any interaction bipartite graph GB = ([m], [n], EB) and rational r =
(r1, · · · , rm) above Shearer’s bound (i.e., ∃A ⊆ [m] s.t. I(GB[A], r) ≤ 0), then there is a appropriate
d, such that

PV1,...,Vm [R(

m⊕
i=1

Vi) = 1] = 1.

Proof. We prove this theorem by induction on m.
Basic: m ≤ 2 holds obviously.
Induction: We assume this theorem has already been proven for small cases. Let A ⊆ [m] be of the
minimal size such that I(GB[A], r) ≤ 0. If A ( [m], then by the induction hypothesis,

PV1,...,Vm [R(
⊕
i∈A

Vi) = 1] = 1.

In the following we assume A = [m], thus I(GB[A], r) > 0 for any A ( [m]. By Proposition 3.3, GD
is connected, so there must exist a qudit s.t. at least two local Hamiltonians acts on it. Without loss of
generality, we assume this qudit is Hn, and the Hamiltonians acting on Hn are Vm, · · · , Vm−t+1, where
t ≥ 2.

According to Theorem 3.1, it suffices to show that there exists V1, · · · , Vm with given relative dimen-
sion r such thatR(

⊕m
i=1 Vi) = 1. Now we are going to show the existence. First, we decomposeHn into

t orthogonal subspacesH1
n, · · · ,Htn where dim(Hin) :=

rm−i+1·(1−I(GB [[m]\Γ+
m−i+1],r))∑t

i=1 rm−i+1·(1−I(GB [[m]\Γ+
m−i+1],r))

·dim(Hn).

This is well-defined, since
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1.
∑t

i=1 dim(Hin) = dim(Hn).

2. ∀i ≤ t, rm−i+1(1− I(GB[[m]\Γ+
m−i+1]) > 0 due to Proposition 3.3.

3. ∀i ≤ t, rm−i+1(1 − I(GB[[m]\Γ+
m−i+1]) is a rational number, so a appropriate dn = dim(Hn)

can make all dim(Hin) positive integer.

Then, we choose V1, . . . , Vm randomly as follows,

• For i ≥ m− t+ 1, let V loc
i = V loc,−n

i ⊗Hm−i+1
n , where V loc,−n

i is randomly picked inHN (i)\{n}

with R(Vi) =
dim(V loc

i )
dim(HN (i))

=
dim(Hm−i+1

n )·dim(V loc,−n
i )

dim(Hn) dim(HN (i)\{n})
= ri. Thus, we have

dim(V loc,−n
i )

dim(HN (i)\{n})
= ri ·

∑t
i=1 ri · (1− I(GB[[m]\Γ+

i ], r))

ri · (1− I(GB[[m]\Γ+
i ], r))

.

• For i ≤ m− t, V loc
i is randomly picked inHN (i) with R(Vi) =

dim(V loc
i )

dim(HN (i))
= ri.

Now, we are going to show the following claim, which implies the existence by using the union
bound.

Claim. For appropriate (d1, · · · , dn−1), and V1, · · · , Vm are randomly picked using the above method,
then for any i ∈ [t],

PV1,...,Vm [H[n−1] ⊗Hin ⊆
m⊕
i=1

Vi] = 1.

Proof. We only show the case i = 1, and the other cases follows the same argument. Let V ′m = V loc,−n
m ⊗

H[n−1]\N (m) and V ′i = V loc
i ⊗H[n−1]\N (i) for i ≤ m−t. Note that for i ≤ m−t or i = m, V ′i ⊗H1

n ⊆ Vi,
so it suffices to show

PV1··· ,Vm [(
m−t⊕
i=1

V ′i )⊕ V ′m = H[n−1]] = 1.

Note that the induced subgraph ofGB on ([m− t]∪{m}, [n−1]) is the interaction bipartite graph of

these V ′i ’s, denoted byG′B . In addition,R(V ′m) = dim(V ′m)
dim(H[n−1])

= dim(V loc,−n
m )

dim(HN (m)\{n})
=

∑t
i=1 ri·(1−I(GB [[m]\Γ+

i ],r))

1−I(GB [[m]\Γ+
m],r)

,

and for i ≤ m− k, R(V ′i ) =
dim(V loc

i )
dim(HN (i))

= R(Vi). Let r′ = (R(V ′1), · · · , R(V ′t ), R(V ′m)), thus

I(G′B, r
′) = I(G′B[[m− k]], r′) +R(V ′m)(1− I(G′B[[m− k]\Γm]), r′)

= I(GB[[m− k]], r) +R(V ′m)(1− I(GB[[m− k]\Γm], r))

= I(GB[[m− k]], r) +

t∑
i=1

rm−i+1 · (1− I(G[[m]\Γ+
m−i+1], r))

= I(GB, r) ≤ 0.

(3)

The second equality is because GD(G′B[A]) = GD[GB[A]] if A ⊆ [m − k] and R(V ′i ) = ri. Now, by
induction hypothesis, we get the conclusion. 2 2

As an application, it is not difficult to see that the region of frustration freeness approaches to I(GB),
as the dimension of qudits goes to infinite.
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Corollary 3.4. For any interaction bipartite graph GB = ([m], [n], EB) and any ε > 0, there is D =
(D1, · · · , Dn), such that for all d ≥ D and r = (r1, · · · , rm) above Shearer’s bound, there is a r′ with
‖r′ − r‖1 ≤ ε, s.t. randomly picked V1, · · · , Vm with R(Vi) = r′i span the whole space.

4 Tools for Commuting LLL

In this section, we focus on the tight region of commuting LLL. The CLLL lies between VLLL and
QLLL, and appears to be much more similar with VLLL than QLLL.

4.1 Properties of Relative Dimension

Additional to the properties for general subspaces proved in [3], we prove some additional properties of
the relative dimension only holding for the commuting case. These additional properties will be used in
the following proofs implicitly.

Lemma 4.1. For any commuting subspaces V,W, Vi the following hold

(i) Mutual independence for orthogonal complementary space: let V ⊥ be the orthogonal complement
of V , then R(V |W ) +R(V ⊥|W ) = 1. Thus if R(V ∩W ) = R(V ) ·R(W ), then R(V ⊥ ∩W ) =
R(V ⊥) ·R(W )

(ii) Inclusion-exclusion principle:

R

(
n⊕
i=1

Vi

)
=

n∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤n

R(Vi1 ∩ · · · ∩ Vik)

 .

Proof. Because subspaces V,W, Vi are commuting, all the terms can be diagonalized simultaneous-
ly with respect to an orthonormal basis. Without loss of generality, we assume the orthonormal basis is
{|e1〉, · · · , |em〉}. Then we can define a probability space (Ω,F ,P) as follows. Let Ω = {|e1〉, · · · , |em〉},
P(|ei〉) = 1/m for each i and F = 2Ω. Let AV = {|ei〉 : |ei〉 ∈ V }, then R(V ) = P(AV ),
AV ∩W = AV ∩ AW and AV⊕W = AV ∪ AW . Thus it is easy to see the above properties holds ac-
cording to the analogue properties of probability. 2

4.2 Connection between CLLL and VLLL

In this section, we prove that the tight regions for CLLL and VLLL are the same for interaction bipartite
graphs where any two Hamiltonians share at most one qudit.

A key tool used in our proof is Bravyi and Vyalyi’s Structure Lemma [5], which dissects the struc-
ture of commuting local Hamiltonians and turns out to be a powerful tool in studying commuting local
Hamiltonian problems.

Lemma 4.2 (Structure Lemma, adapted from [5]). Suppose X , Y , Z are complex Euclidean spaces, ΠV

and ΠW are projection operators acting on X ⊗ Y and Y ⊗ Z respectively. If [ΠV ,ΠW ] = 0, then Y
can be decomposed to some orthogonal subspaces Y =

⊕
i Yi =

⊕
Yi1 ⊗ Yi2 such that for any i:

1. ΠV and ΠW preserve Yi.

12



2. Restricted to Yi, ΠV and ΠW act non-trivially only on Yi1 and Yi2, respectively.

In other words, V can be decomposed to some orthogonal subspace V =
⊕

i V |Yi1⊗Yi2, where V |Yi1 is
a subspace ofX⊗Yi1, and similarly,W can be written asW =

⊕
iW |Yi2⊗Yi1, whereW |Yi2 ⊆ Yi2⊗Z .

The following theorem is a direct application of the structure lemma.

Theorem 1.4. Given an interaction bipartite graph where any pair of Hamiltonians share at most one
qudit, the dimensions of qudits and the relative dimensions of Hamiltonians, if there is such a commuting
local Hamiltonian which is frustration free, there is also such a frustration free classical local Hamilto-
nian.

Proof. LetGB = ([m], [n], EB) be the interaction bipartite graph, d be the dimension of qudits. W.l.o.g.,
assumeN (Π1) = [k]. For each i ∈ [k], let Πi :=

∑
j 6=1:i∈N (Πj) Πj be the sum of all local Hamiltonians

acting onHi except Π1. Since each Πi other than Π1 intersects Π1 on at most one qudit, so does each Πi.
By applying the structure lemma simultaneously for all the first k qudits, we have that for each i ∈ [k],
Hi can be decomposed to some orthogonal subspaces Hi =

⊕
j Hi,j =

⊕
j H0

i,j ⊗ H1
i,j , such that for

each i, j

1. Hi,j is preserved by Πi, so does each Πk.

2. Restricted toHi,j , Π1 (and Πi resp.) act non-trivially only onH0
i,j (andH1

i,j resp.)

Thus, the first k qudits can be sliced, i.e.,

H[k] =
⊕

j1,··· ,jk

H1,j1 ⊗ · · · ⊗ Hk,jk ,

and each sliceH1,j1⊗· · ·⊗Hk,jk is preserved by all Πi’s as well as Π, so Π is unsatisfiable if and only if
the restricted Π on each slice is unsatisfiable. Note that in each slice, the restricted Π1 and each restricted
Πi act on disjoint sets of subqudits, thus properly rotating each of the first k qubits can make Πi classical,
without changing the satisfiability of Π. Repeating this procedure can make all Π be classical. 2

By Theorem 1.4 we have the following corollary immediately, which provides a connection between
CLLL and VLLL.

Corollary 1.5. Given any interaction bipartite graph GB where any pair of Hamiltonians share at most
one qudit, the tight regions of CLLL and VLLL are the same.

As mentioned earlier, many systems of physical interest are of this kind. Thus, Corollary 1.5 means
that the VLLL can be applied to many important local Hamiltonians in literature.

The following is a simple corollary of Lemma 4.2, which will be used in the proof of Theorem 1.14.

Corollary 4.3. In the setting of the Structure Lemma, if V ⊥ W = ∅, then one can write Y = Y1 ⊕ Y2,
such that V loc ∈ X ⊗ Y1 and V loc ∈ X ⊗ Y2.
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4.3 A Theorem for Gap Decision

In this subsection, we study whether or when Shearer’s bound is tight for CLLL. Here, our main result,
namely Theorem 1.6, is a sufficient and necessary condition for deciding whether Shearer’s bound re-
mains tight for CLLL on a given interaction bipartite graph, which is an extension of [16, Theorem 5]
for VLLL.

Firstly, we give the definitions of interior, boundary and gap.

Definition 4.1 (Commuting Interior). The commuting interior of an interaction bipartite graph GB =
([m], [n],
EB), denoted by CI(GB), is the set {r ∈ (0, 1)m: there is a rational vector r′ ≥ r such thatR

(⊕
V ∈V V

)
< 1 for any commuting subspace set V ∼ GB with R(V) = r′}.

The commuting interior is well-defined, since

Lemma 4.4 (Monotonicity Lemma). Suppose there is a commuting subspace set V ∼ GB with R(V) =
r such that R

(⊕
V ∈V V

)
= 1. Then for any rational relative dimension vector r′ ≥ r, there is a

commuting subspace set V ′ ∼ GB with R(V ′) = r′ such that R
(⊕

V ′∈V ′ V
′) = 1.

The monotonicity is obvious for VLLL and QLLL, and becomes less trivial for CLLL due to the
commutation restriction. Here, we add a new qudit to get around this problem.
Proof. Without loss of generality, we assume that r′ = (r1 + ε, r2, · · · , rm) and V1 is related to H1.
Since r′ and r are both rational vectors, ε

1−r1 is rational as well. Suppose ε
1−r1 = a/b where a and b are

integers. Let H′1 = H1 ⊗Hc1 where dim (Hc1) = b, and H′i = Hi for any i ≥ 2. Thus the whole vector
space isH′ =

⊗m
i=1H′i =

⊗m
i=1Hi ⊗Hc1.

We construct the subspace set V ′ as follows. Let V ′1 = (V1 ⊗Hc1)⊕ (W ⊗
⊗m

i=1H′i) where W can
be any subspace of Hc1 with dimension a. For each i ≥ 2, let V ′i = Vi

⊗
Hc1. It is not difficult to verify

that V ′ satisfying the conditions. 2

Thus, by contradiction, we have:

Corollary 4.5. Given an interaction bipartite graph GB = ([m], [n], EB) and a rational r ∈ CI(GB),
R
(⊕

V ∈V
V
)
< 1 holds for any commuting subspace set V ∼ GB with R(V) = r.

So, CI(GB) consists of two sets: one is the set of rational vectors r such that R
(⊕

V ∈V V
)
< 1

for any such commuting subspace set V , and the other is the set of irrational vectors r to make CI(GB)
continuous.

Definition 4.2 (Commuting Boundary). The commuting boundary of an interaction bipartite graph GB ,
denoted by C∂(GB), is the set of vectors r on (0, 1] such that (1−ε)r ∈ CI(GB) and (1+ε)r /∈ CI(GB)
for any ε ∈ (0, 1). Any r ∈ C∂(GB) is called a commuting boundary vector of GB .

According to the definition, the following proposition is obvious.

Proposition 4.6. Given an interaction bipartite graph GB = ([m], [n], EB), for any r ∈ (0, 1]n, there
exists a unique λ > 0 such that λr ∈ C∂(GB).

Similar to the classic case [16], the idea of exclusiveness is the key of many proofs for CLLL.
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Definition 4.3 (Commuting Exclusiveness). A commuting subspace set V is called exclusive with respect
to an interaction bipartite graph GB , if V conforms with GB and R(Vi ∩ Vj) = 0 (or Vi ⊥ Vj) for any
i, j such that i ∈ Γj . We do not mention “with respect to GB” if it is clear from context. An exclusive
subspace set is implicitly commuting.

Recall that I(GD) is the classical abstract interior of the dependency graph GD, which is exactly the
set of probability vectors below Shearer’s bound. Let ∂(GD) be the set of critical probability vector, that
is

Definition 4.4 (Shearer’s Boundary). The Shearer’s boundary of a graph GD = ([m], ED), denoted by
∂(GD), is the set {r ∈ (0, 1]m : (1 − ε)r ∈ I(GD) and (1 + ε)r /∈ I(GD) for any ε ∈ (0, 1)}. Any
r ∈ ∂(GD) is called an Shearer’s boundary vector of GD.

I(GD) is a open set, i.e., I(GD) ∩ ∂(GD) = ∅. For simplicity, let I(GB) := I(GD(GB)). Gilyén
and Sattath [11] have shown I(GB) ⊆ CI(GB) for any interaction bipartite graph GB . Here, we care
about whether or when the boundaries ∂(GB) and C∂(GB) are same.

Definition 4.5 (Gap). An interaction bipartite graph GB is called gapful for CLLL in the direction of
r ∈ (0, 1)m, if there is a gap between ∂(GB) and C∂(GB) in this direction, i.e., λ > 0 such that
λr ∈ (CI(GB) ∪ C∂(GB)) \ (I(GB) ∪ ∂(GB)), otherwise it is called gapless in this direction. GB is
said to be gapful for CLLL if it is gapful in some direction, otherwise it is gapless. Similarly, we can
also define gapful/gapless for VLLL. We do not mention “for CLLL” or “for VLLL” if it is clear from
context.

Remark. Another natural definition of gapful/gapless is as follows: An interaction bipartite graph GB is
called gapful for CLLL in the direction of r ∈ (0, 1)m, if there is a λ > 0 such that λr ∈ CI(GB)\I(GB),
otherwise it is called gapless in this direction. The only difference of these two definitions appears in the
case there is a λ0 > 0 such that λ0r ∈ C∂(GB), λ0r ∈ ∂(GB) but λ0r 6∈ CI(GB), λ0r ∈ I(GB).
Informally, the boundaries in direction r are the same, but the interiors are different. We use the above
definition because this case should be regarded as gapless for the same boundaries.

The main result of this section, namely Theorem 1.6, is a necessary and sufficient condition for
deciding whether an interaction bipartite graph is gapful. It bridges gaplessness and exclusiveness in the
interior. Though this theorem seems similar to Theorem 5 in [16], the proof is very different. The proof in
[16] relies on the exclusive cylinder set on the boundary, which connects gaplessness with exclusiveness
naturally. The existence of such exclusive cylinder set is ensured by Theorem 3 [16], the key idea of
which is that the discreteness degree of each variable is bounded by the number of events related to this
variable. However, for CLLL there is no such subspace set on the boundary if the relative dimension on
boundary is irrational. Even if the relative dimensions are rational, it is still very difficult to bound the
discreteness degree of subspaces because of the possible entanglement. Thus, we need new techniques
to connect gaplessness with exclusiveness. Roughly speaking, in our proof, we first get a commuting
subspace set, the relative dimensions of which exceeds the boundary. Then we adapt it to be exclusive by
slicing the subspaces and discarding some slices. The main techniques used are a probability tool shown
in Lemma 4.9 and the structure lemma.

Here are some properties of classical exclusive event sets, which will be used.

Lemma 4.7 (Theorem 1 in [31]). Given GD and p ∈ I(GD) ∪ ∂(GD). Among all event sets A ∼ GD
with P(A) = p, there is an exclusive one such that P(∪A∈AA) is maximized.
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Lemma 4.8 (Lemma 29 in [16]). Suppose thatGD is a dependency graph of event setsA and B, P(A) =
P(B), and B is exclusive. Then P(∪A∈AA) ≤ P(∪B∈BB), and the equality holds if and only if A is
exclusive.

By Lemma 4.7 and Lemma 4.8, we have that for any event set A ∼ GD where P(A) ∈ I(GD) ∪
∂(GD) and any i, j where i ∈ Γj , if P(Ai ∩ Aj) > 0, then P

(
∩A∈A A

)
> 0. The following lemma,

namely Lemma 4.9, further shows that P
(
∩A∈A A

)
can be lower bounded, and can be viewed as a

quantitative version of Lemma 4.8. The proof of this lemma is presented in the appendix.
Define I(GD,p, k) := min{I(GD[V ′], (pv : v ∈ V ′)) : |V ′| = k}. Let pmin be the minimum

element in p = (p1, p2, · · · , pm) If p ∈ I(GD) ∪ ∂(GD) and t ≤ m− 2, let

F(GD,p, t) =:

{
ptmin

∏t
k=1

I(GD,p,k)
(m−1−k) if p ∈ ∂(GD),

I(GD,p) if p ∈ I(GD).
(4)

It is not hard to see F(GD,p, t) > 0, F(G,p, t′) ≤ F(G,p, t) for t′ ≥ t, and F(GD,p
′, t) ≤ F(GD,p, t)

for any p′ ≥ p.

Lemma 4.9. Given a dependency graph GD = ([m], ED), a vector p ∈ I(GD)∪∂(GD). For any event
setA ∼ GD where P(A) = p and any i, j where i ∈ Γj , we have P

(
∩A∈AA

)
≥ P(Ai∩Aj)F(G,p,m−

2).

The following property of exclusive subspace sets will also be used.

Lemma 4.10. Given an interaction bipartite graph GB = ([m], [n], EB) and a rational vector r on
(0, 1], if there is an exclusive subspace set V ∼ GB with R(V) = r, then for any rational r′ < r, there is
an exclusive subspace set V ′ ∼ GB with R(V ′) = r′.

Proof. W.l.o.g, we can assume that r′ = (r1 − ε, r2, · · · , rm) and H1 is related to V1. Since r′ and
r are both rational vectors, ε

r1
is rational as well. Suppose ε

r1
= a/b where a and b are integers. Let

H′1 = H1 ⊗ Hc1 where dim (Hc1) = b, and H′i = Hi for any i ≥ 2. Thus the whole vector space is
H′ =

⊗m
i=1H′i =

⊗m
i=1Hi ⊗Hc1.

We construct the subspace set V ′ as follows. Let V ′1 = V1 ⊗W , where W can be any subspace of
Hc1 with dimension b − a. For each i ≥ 2, let V ′i = Vi

⊗
Hc1. It is not difficult to verify that V ′ ∼ GB ,

R(V ′) = r′, V ′ is commuting and exclusive. 2

Now we are ready to prove the main result of this section. The following lemma gives the necessary
condition of gapless.

Lemma 4.11. Given an interaction bipartite graph GB = ([m], [n], EB). For any rational vector r ∈
CI(GB) \ C∂(GB) on (0, 1] such that GB is gapless in direction r, there is an exclusive subspace set
V ∼ GB with R(V) = r.

Proof. Let q = λr ∈ ∂(GB). For any 0 < ε ≤ 1 where (1 − ε)q is rational, the construction of the
exclusive subspace set V ∼ GB with R(V) = (1− ε)q are as follows. We can assume m ≥ 2, since the
case m = 1 is trivial.

Let ε1 = (εqmin)2

(3m)2‖q‖1
F(G,q,m − 2). Let q′,q′′ be rational vectors such that q < q′ ≤ φ((1 + ε1)q)

and (1 − ε1)q ≤ q′′ ≤ q. Here, φ(p) ∈ (0, 1]m is the vector whose i-th entry is min{1, pi} for any i.
Note that if m ≥ 2, then q < 1, thus such q′ always exist.
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According to the definition of C∂(GB), there is a commuting subspace set V(1) ∼ GB withR(V(1)) =

q′ and R
(⊕

V
(1)
i ∈V(1) V

(1)
i

)
= 1, and letH(1) = (H(1)

1 , · · · ,H(1)
m ) denote the corresponding qudits.

We construct a commuting subspace set V(2) ∼ H with R(V(2)) = q′′ from V(1) as follows.
Suppose q′′i /q

′
i = ai/bi where ai and bi are integers for i ∈ [m]. Let H(2)

i = H(1)
i

⊗
Hci where

dim (Hci ) = bi, and V
(2)
i = V

(1)
i

⊗
Wi where Wi can be any subspace of Hci with dimension ai.

Let V(2) = {V (2)
1 , · · · , V (2)

m }. It is not difficult to verify that V(2) ∼ H , P(V(2)) = q′′ and V(2) is
commuting.

Meanwhile, denote the orthogonal complement of Wi in spaceHci by Wi, we have

1−R
(⊕

V ∈V(2) V
)

= R
(⊕

V ∈V(1) V
)
−R

(⊕
V ∈V(2) V

)
= R

(⊕
V ∈V(1) V ⊗Hci

)
−R

(⊕
V ∈V(2) V

)
≤ R

(⊕
i∈[m] V

(1)
i

⊗
Wi

)
≤
∑

i∈[m]R(V
(1)
i

⊗
Wi)

=
∑

i∈[m]R(V
(1)
i )R(Wi) ≤

∑
i∈[m] q

′
i(bi − ai)/bi

=
∑

i∈[m](q
′
i − q′′i ) = ‖q′‖1 − ‖q′′‖1 ≤ 2ε1‖q‖1.

(5)

According to the gaplessness in direction r, q′′ ∈ Ia(H)∪∂a(G). From formula (5) and Lemma 4.9,
we have for any i, j where i ∈ Γj ,

R(V
(2)
i ∩ V (2)

j ) = P(A
V

(2)
i

∩A
V

(2)
j

)

≤ P
(
∩
V

(2)
i ∈V(2) AV (2)

i

)
/F(G,q′′, n− 2)

≤ P
(
∩
V

(2)
i ∈V(2) AV (2)

i

)
/F(G,q, n− 2)

= (1−R
(⊕

V
(2)
i ∈V(2) V

(2)
i

)
)/F(G,q, n− 2)

≤ 2ε1‖q‖1/F(G,q, n− 2) = 2( εqmin

3n )2.

(6)

Recall that AV is the corresponding classical event of V defined in the proof of Lemma 4.1, and
F(G,p, n− 2) monotonically decreases as p increases.

Now, we are going to construct an exclusive subspace set V(3) ∼ GB with R(V(3)) ≥ (1− ε)q from
V(2), which concludes the proof coupled with Lemma 4.10. For simplicity, we useHi and Vi to represent
H(2)
i and V (2)

i respectively.
For any i, j where i ∈ Γj , according to the structure lemma,HN (i)∩N (j) can be decomposed to some

orthogonal subspacesHN (i)∩N (j) =
⊕

kWk =
⊕

kWk1 ⊗Wk2 s.t.

1. V loc
i =

⊕
k Vi|Wk1

⊗Wk2, where Vi|Wk1
⊆ HN (i)\N (j) ⊗Wk1.

2. V loc
j =

⊕
k Vj |Wk2

⊗Wk1, where Vj |Wk2
⊆ HN (j)\N (i) ⊗Wk2.

For simplicity, let Xijk = Vi|Wk1
⊗ Wk2 ⊗ H[n]\N (i), Xjik = Vj |Wk2

⊗ Wk1 ⊗ V[n]\N (j), and
Yijk = Wk⊗H[n]\(N (i)∩N (j)). Thus

⊕
kXijk = Vi,

⊕
kXjik = Vj and

⊕
k Yijk = H. For any i ∈ [m],

we define V (3)
i as the orthogonal complement of

⊕
j:j∈Γi,k:R(Xijk)≤R(Xjik)Xijk in Vi. Since Xijk only

depends onHN (i), so does V (3)
i . Therefore, V(3) ∼ GB .

V(3) is commuting and exclusive: for any given i, j where i ∈ Γj , it is not hard to see V (3)
i is a

subspace of
⊕

k:R(Xijk)>R(Xjik) Yijk and V (3)
j is a subspace of

⊕
k:R(Xjik)>R(Xijk) Yjik, thus V (3)

i and

V
(3)
j are orthogonal, therefore commuting and exclusive.
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R(V(3)) ≥ (1 − ε)q: since Vijk and Vjik are R-independent in Yijk, we have R(Xijk ∩ Xjik

)
=

R
(
Xijk ∩Xjik|Yijk) ·R(Yijk) = R(Xijk|Yijk)R(Xjik|Yijk)R(Yijk), thus,

R
(
Vi ∩ Vj

)
= R(

⊕
kXijk ∩Xjik) =

∑
k R(Xijk ∩Xjik)

=
∑

k R(Xijk|Yijk)R(Xjik|Yijk)R(Yijk)

≥
∑

k (min{R(Xijk|Yijk), R(Xjik|Yijk)})2R(Yijk)

= Ek[(min{R(Xijk|Yijk), R(Xjik|Yijk)})2].

(7)

Meanwhile, we also have∑
k min{R(Xijk), R(Xjik)} =

∑
k min{R(Xijk|Yijk), R(Xjik|Yijk)}R(Yijk)

= Ek(min{R(Xijk|Yijk), R(Xjik|Yijk)}).

By Jensen’s inequality, we have

R
(
Vi ∩ Vj

)
≥ Ek[(min{R(Xijk|Yijk), R(Xjik|Yijk)})2]
≥ [Ek(min{R(Xijk|Yijk), R(Xjik|Yijk)})]2
= (
∑

k min{R(Xijk), R(Xjik)})2.

(8)

Thus, for any i,

R
(∑

j:j∈Γi

⊕
k:R(Xijk)≤R(Xjik)Xijk

)
≤
∑

j:j∈Γi

∑
k:R(Xijk)≤R(Xjik)R(Xijk))

≤
∑

j:j∈Γi

∑
k min{R(Xijk), R(Xjik)}

≤
∑

j:j∈Γi

(
R
(
Vi ∩ Vj

))1/2
(by (8))

≤
∑

j:j∈Γi
(2( εqmin

3n )2)
1/2

(by (6))

≤ n(2( εqmin

3n )2)
1/2

< 2εqmin/3.

Recall V (3)
i is the orthogonal complement of

∑
j:j∈Γi

⊕
k:R(Xijk)≤R(Xjik)Xijk in space Vi, we have

R(V
(3)
i ) = R

(
Vi)−R(

∑
j:j∈Γi

⊕
k:R(Xijk≤R(Xjik)Xijk)

)
≥ (1− ε1)qi − 2εqmin/3 ≥ (1− ε/3)qi − 2εqmin/3 ≥ (1− ε)qi.

Therefore, we have R(V(3)) ≥ (1− ε)q. 2

Theorem 1.6 (restated). Given an interaction bipartite graph GB and a vector r of positive reals, the
following two conditions are equivalent:

1. For rational λr ∈ CI(GB) \ C∂(GB), there is an exclusive subspace set with interaction bipartite
graph GB and probability vector λr.

2. GB is gapless for CLLL in the direction of r.

Proof. (1 ⇒ 2): Arbitrarily fix λ > 0 such that q , λr ∈ I(GB) and q is rational. Let V ∼ GB be an
exclusive subspace set such thatR(V) = q andR(

⊕
V ∈V V ) < 1. Recall in the proof of Lemma 4.1,AV

is the classical event corresponding to V , and AV ∼ GD(GB), P(AVi) = qi, P(∪iAVi) = R(
⊕

i Vi) <
1. In addition,AVi’s are exclusive, thus according to Lemma 4.8, q ∈ I(GB), which meansH is gapless
in the direction of r.
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(2⇒ 1): It is immediate by Lemma 4.11. 2

By Theorem 1.6, one can prove the existence of a gap just by proving non-existence of exclusive
subspace set, without computing the critical threshold of QLLL or CLLL.

The following corollary is immediate by Theorem 1.6 and Lemma 4.10. By this corollary, one can
prove gaplessness just by constructing an commuting subspace set, without computing the critical thresh-
old of QLLL or CLLL.

Corollary 1.7 (restated). Given an interaction bipartite graph GB and a rational vector r ∈ C∂(GB),
if there is an exclusive subspace set with interaction bipartite graph GB and probability vector r, then
GB is gapless in the direction of r.

4.4 Reduction Rules

To infer gap existence for VLLL of a bipartite graph from known ones, a set of reduction rules are
established for VLLL [16]. With these rules, various bipartite graphs, in particular combinatorial ones,
are shown to be gapful/gapless. In this subsection, we show these reduction rules apply for CLLL as well.
Meanwhile, we introduce another operation (the sixth one) which preserves both gapful and gapless. With
these operation, the interaction bipartite graph which is a tree can be shown to be gapless immediately
and a complete characterization of strongly a-gapful bipartite graphs is provided.

Given an interaction bipartite graph GB = ([m], [n], EB), we consider the following 6 types of
operations on GB are:

1. Delete-R-Leaf: Delete a vertex j ∈ [n] on the right side with |N (j)| ≤ 1, and remove the incident
edge if any.

2. Duplicate-L-Vertex: Given a vertex i ∈ [m] on the left side, add a vertex i′ to the left side, and add
edges incident to i′ so that N (i′) = N (i).

3. Duplicate-R-Vertex: Given a vertex j ∈ [n] on the right side, add a vertex j′ to the right side, and
add some edges incident to j′ so that N (j′) ⊆ N (j).

4. Delete-Edge: Delete an edge from EB provided that the base graph GD remains unchanged.

5. Delete-L-Vertex: Delete a vertex i ∈ [m] on the left side, and remove all the incident edges.

6. Delete-L-Leaf: Delete a vertex i ∈ [m] on the left hand with |N (i)| ≤ 1, and remove the incident
edge if any.

We also define the inverses of the above operations. The inverse of an operation O is the operation O′

such that for any GB , O′(O(GB)) = O(O′(GB)) = GB .
The next theorems show how these operations influence the existence of gaps for CLLL.

Theorem 4.12. A gapless interaction bipartite graph remains gapless for CLLL after applying Delete-
L-Vertex or the inverse of Delete-Edge.

Theorem 4.13. A gapful interaction bipartite graph remains gapful for CLLL after applying Delete-Edge
or the inverse of Delete-L-Vertex.

These two theorems are trivial and the proofs are omitted.
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Theorem 4.14. An interaction bipartite graph GB = ([m], [n], EB) is gapful for CLLL, if and only if it
is gapful after applying Delete-L-Leaf, Delete-R-Leaf, Duplicate-L-Vertex, Duplicate-R-Vertex, or their
inverse operations.

Proof. (Duplicate-L-Vertex, Duplicate-R-Vertex): The proofs of Duplicate-L-Vertex and Duplicate-R-
Vertex are similar to that in [16]. Moreover, let G′B be the resulting graph by applying Duplicate-R-
Vertex to GB , we have C∂(G′B) = C∂(GB).

(Delete-R-Leaf): Suppose vertex n + 1 is added to the right side, if N (n + 1) is empty, it’s trivial,
otherwise assumeN (n+ 1) = {m} and G′B = ([m], [n+ 1], E′B}) is the resulting bipartite graph. Note
that the base graph GD remains unchanged, it suffices to prove C∂(GB) = C∂(G′B). It is easy to see
C∂(G′B) ⊆ CI(GB) ∪ C∂(GB), so it remains to show C∂(GB) ⊆ CI(G′B) ∪ C∂(G′B).

Consider another interaction bipartite graph G′′B = ([m], [n + 1], E′′B) obtained by applying the
inverse operation of Delete-Edge to G′B: ∀i ∈ N (n), we add the edge (i, n + 1). On one hand, it is
easy to see C∂(G′′B) ⊆ CI(G′B) ∪ C∂(G′B). On the other hand, note that N (n) = N (n + 1), thus
G′′B can be viewed as the resulting bipartite graph by applying Duplicate-R-Vertex to GB , we have
C∂(G′′B) = C∂(GB).

(Delete-L-Leaf): Suppose vertex m + 1 is added to the left side, if N (m + 1) is empty, it’s trivial,
otherwise assume N (m + 1) = {n} and G′B = ([m], [n + 1], E′B}) is the resulting bipartite graph. In
addition, assume N (m) = {1, 2, · · · , k, n+ 1}.

GB is gapless⇒ G′B is gapless: By Theorem 1.6, if suffices to show for any rational r′

, (r′1, · · · , r′m+1) ∈ CI(G′B) \ C∂(G′B), there is such an exclusive subspace set V ′. Let r =
( r′1

1−r′m+1
,

r′2
1−r′m+1

, · · · , r′k
1−r′m+1

, r′k+1, · · · , r′m
)
. First, we claim that r ∈ CI(GB) \ C∂(GB).

This is because otherwise, by the definition of C∂(GB), there is a commuting subspace set V ∼ GB
with R(V) = (1 + ε)r satisfying R

(⊕
V ∈V V

)
= 1 for any rational ε > 0 . We construct a commuting

subspace set V ′ ∼ G′B as follows: suppose 1−r′n+1 = a/bwhere a and b are integers. LetH′n = Hn⊗Hcn
where dim (Hcn) = b, andH′i = Hi for any i < n. Then let

• If i ∈ [k], V ′i = Vi
⊗
Y , where Y can be any subspace ofHcn with dimension a.

• If k < i ≤ n, V ′i = Vi
⊗
Hcn.

• If i = n+ 1, V ′i = Y ⊥ ⊗
⊗n

i=1Hi

It is easy to verify that V ′ is commuting, V ′ ∼ G′B ,R
(⊕

V ′∈V ′ V
′) = 1 andR(V ′) = ((1+ε)r′1, · · · , (1+

ε)r′n, r
′
n+1) ≤ (1 + ε)r′. Thus, by Lemma 4.4 there is also a commuting subspace set V ′′ ∼ G′B with

relative dimensions (1 + ε)r′ such that R
(⊕

V ′′∈V ′′ V
′′) = 1, a contradiction.

since r ∈ CI(GB) \ C∂(GB) and GB is gapless, by Thereom 1.6 we have there is an exclusive
subspace set V with interaction bipartite graph GB and relative dimensions r. Then it is easy to verify
that the commuting subspace set V ′ constructed above is also exclusive, V ′ ∼ G′B , and R(V ′) = r′.

G′B is gapless⇒ GB is gapless: By Theorem 1.6, it suffices to show there is an exclusive V ∼ GB
for any r ∈ CI(GB) \ C∂(GB). Let (1 + λ)r ∈ C∂(GB) be the vector on the boundary, and r′ = (r, ε)
where ε < λr1. It is not hard to see that r′ ∈ CI(G′B) \ C∂(G′B). And then, by Theorem 1.6, there
is an exclusive subspace set V ′ = {V ′1 , · · · , V ′m+1} with interaction bipartite graph G′B and relative
dimensions r′. Let V = {V ′1 , V ′2 , · · · , V ′m}, it is easy to see that V is exclusive, V ∼ GB and R(V) = r.
2
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Remark. Following the above proof or that of [16, Lemma 46], it can be proved that Delete-L-Leaf also
applies for VLLL. That is

Theorem 4.15. An interaction bipartite graph GB is gapful for VLLL, if and only if it remains gapful
after applying Delete-L-Leaf or its inverse operation.

With these reduction rules, it is easy to see all trees are gapless, which includes two interesting
families of interaction bipartite graphs, the treelike bipartite graphs [16] and the regular trees [6, 17, 28].

Theorem 1.8. An interaction bipartite graph GB is gapless for CLLL if GB is a tree.

Proof. Applying Delete-L-Leaf or Delete-R-Leaf on GB repeatedly results in an interaction bipartite
graph G′B = ([1], [1], {(1, 1)}). Obviously, G′B is gapless, which implies GB is gapless as well by
Theorems 4.14. 2

Another application of these reduction rules is the characterization of strongly a-gapful graphs [16,
19]. We say a graph GD = ([m], ED) is strongly a-gapful, if any interaction bipartite graph satisfying
GD(GB) = GD is gapful, otherwise we call it is strongly a-gapless. The canonical bipartite graph, as
defined below, is the key to studying strongly a-gapless.

Definition 4.6 (Canonical bipartite graph [16]). Given a dependency graph GD = ([m], ED) with
Cliq(GD) = {C1, ..., Cn}, its canonical bipartite graph, denoted by H(GD), is the bipartite graph
([m], [n], EH) where EH = {(i, j) ∈ [m] × [n] : i ∈ Cj}. Here, Cliq(GD) be the set of maximal
cliques of GD.

Informally, H(GD) is the interaction bipartite graph where each maximal clique has a distinct sub-
system and an subspace depends on a subsystem if it is in the corresponding maximal clique. H(GD)
can be shown to have the minimum interior for CLLL among the bipartite graphs whose base graph is
GD, thus GD is strongly a-gapful for CLLL if and only if H(GD) is gapful. The proof is very similar
with the classical case [16], and we omit it here.

Lemma 4.16. Given a dependency graph GD, for any interaction bipartite graph GB with GD(GB) =
GD, we have CI(GB) ⊇ CI(H(GD)).

The following theorem extends the classic result of strongly a-gapful graphs for VLLL to commuting
Hamiltonians. A chordal graph is one with no induced cycle of length greater than three. A well known
property of chordal graphs is that it has a vertex which lies in exactly one maximal clique.

Theorem 1.9. A dependency graph is strongly a-gapless for CLLL if and only if it is chordal.

Proof. =⇒: Suppose GD is not chordal, then there must exist an induced cycle of length at least four. By
Theorem 1.12, H(G) is gapful, which means GD is strongly a-gapful.
⇐=: The proof of this direction is similar to the proof of [16, Lemma 46], but we still give the

proof here for completeness. The proof is by induction on m. The case m = 1 is trivial. Suppose we
have already shown the small cases, and now we would like to show the case GD = ([m], ED). Let
H = H(GD) = ([m], [n], EH). W.l.o.g, assume that the vertex m of GD lies in exactly one maximal
clique S = {m−k+1, ...,m}. That is, the vertexm has only one neighbor, say n, inH , andNH(n) = S.
Let H ′ be the resulting bipartite graph by deleting the vertex m. By Theorem 4.14, the gaplessness of H
are H ′ are same.
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Let G′D be the chordal graph obtained by deleting the vertex m from GD. If S \ {m} remains a
maximal clique in G′D, then obviously H ′ = H(G′D); Otherwise, H(G′D) can be obtained by applying
the inverse operation of Duplicate-R-Vertex to H ′. Hence, we always have that H ′ is gapless if and only
if so is H(G′D), which implies the conclusion by the induction hypothesis.

2

Remark. Theorem 1.8 is an immediate corollary of Theorem 1.9. The proof is retained since it is concise
and a good example to show the power of our reduction rules.

5 CLLL: beyond Shearer’s bound

5.1 Tight region for trees

In the above section, we have proved that trees are gapless. In this section, we give the tight region
for CLLL on trees. Moreover, our results also applies for the case where the dimensions of qudits are
specified. The interaction bipartite graph which is a tree include two interesting families of bipartite
graphs, the treelike bipartite graphs defined in [16] and the regular trees defined in [6, 17, 28]. He et al.
[16] have already calculated the tight region of treelike bipartite graphs for VLLL. Here we extends the
classical result to the commuting case on a larger family of graphs even if the dimensions of qudits are
given.

Without loss of generality, we can assume that the leaves of all trees are qudits, since we can add
some 1-dimension qudits if necessary.

Theorem 1.10. Given an interaction bipartite graph GB = ([m], [n], EB) which is a tree and dimen-
sions of qudits d, appoint the qudit n as the root. For ranks r ∈ Zm, define q = (q1, ..., qn) ∈ Zn to
be

qi =

{
0 if vertex i is a leaf of GB,∑

j∈Cibrj ·
∏
k∈Cj

1
dk−qk c otherwise. (1)

Here Ci is the set of children of i. Then there is such a commuting instance with rank r spanning the
whole space if and only if there is some qi ≥ di.

Proof. ⇐=: Suppose there is i ∈ [n] such that qi ≥ di. Fix such an i each of whose descendant k
satisfies qk < dk. Let Ti be the subtree rooted at i. We will construct classical events, i.e., whose basis
are computational basis, and show those events in Ti suffice to span the whole space. The constructs are
as following:

• For each qudit j in Ti except i, letHaj := span{|1〉, · · · , |qj〉} andHbj := span{|qj+1〉, · · · , |dj〉}.

• For each event j in Ti except Ci, let Vj :=
⊗

k∈Cj H
b
k ⊗ H

j
Fj

. Here Fj is the father of j,

dim(HjFj
) = brj ·

∏
k∈Cj

1
dk−qk c, and the HjFj

⊆ HaFj
are mutually orthogonal for j’s with

the same father Fj , thus theseHjFj
spanHaFj

• For each event j ∈ Ci, let Vj be
⊗

k∈Cj H
b
k ⊗Hki . Here dim(Hki ) = brj ·

∏
k∈Cj

1
dk−qk c, andHki ’s

satisfy
⊕

k∈Ci H
k
i = Hi.
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Note that rank(Vj) =
∏
k∈Cj (dk−pk) ·brj ·

∏
k∈Cj

1
dk−qk c ≤ rj . Now we will prove that these subspaces

span the whole space, which concludes this direction of the proof. Arbitrarily fix a computational basis
|s〉 = |s1, s2, · · · , sn〉.

Let l = i. Then, if there are events j ∈ Cl such that |sl〉 ∈ HjFj
, pick such a j arbitrarily, if ∃k ∈ Cj

s.t., |sk〉 ∈ Hak, let l be such a k arbitrarily. Iterate this process and finally one of the following two cases
must be reached.

Case 1: C(l) = ∅, namely l is a leaf.
Case 2: C(l) 6= ∅ and for any t ∈ Ck, |st〉 ∈ Hbt .
Let the final l be l0, it is easy to see that Case 1 cannot happen, so we have |s〉 ∈ Vk, which implies

these these subspaces span the whole space.
=⇒: By induction on m. The case m = 1 is trivial. Now suppose it holds for m − 1, and we are

going to show it also holds for GB = ([m], [n], EB). Let t be any such a event where Ct are all leaves,
G′B be the interaction bipartite graph by deleting t and its children, r′ ∈ Zn−1 be the induced r on G′B ,
and d′ be induced d on G′B except d′Ft

= dFt − brt ·
∏
k∈Ct

1
dk−qk c = dFt − brt ·

∏
k∈Ct

1
dk
c. ThusH′Ft

can be viewed as HbFt
. Note that q′ is induced q′ on G′B except q′Ft

= qFt − brt ·
∏
k∈Ct

1
dk
c. So the

following claim concludes the proof.

Claim. The case (H, r,d) has an unsatisfying instance if and only if the case (H ′, r′,d′) has an unsat-
isfying one.

Proof.⇐: Suppose the satisfying instance of (G′B, r
′,d′) is V ′ = {V ′1 , · · · , V ′t−1, V

′
t+1, · · · , V ′m}, which

can spanHbFt
⊗H[n]\Ft

by definition. Let Vt = HaFt
⊗HCt . Then it is easy to see that V = {V ′, Vt} is a

satisfying instance of (H,p,d).
⇐: Suppose the satisfying instance of (H, r,d) is V = {V1, · · · , Vm}. Let V ′ = V \ {Vt} Define

HgF = span({|i〉 : |i〉 ⊗ H[n]\Ft
⊆ Vt}). It is easy to see that dim(HgFt

) ≤ brt ·
∏
k∈Ct

1
dk
c, and

(HFt −H
g
Ft

)⊗H[n]\Ft
⊆
⊕

V ∈V ′ V . Thus V ′ is an unsatisfiable instance of (H ′, r′,d′). 2

2

The above theorem also implies the tight region for VLLL, CLLL and QLLL on tree, ignoring the
dimensions of qudits.

Corollary 1.11. Given an interaction bipartite graph GB = ([m], [n], EB) which is a tree, appoint the
qudit n as the root. For r ∈ (0, 1)m, define q = (q1, ..., qn) ∈ [0, 1]n to be

qi =

{
0 if vertex i is a leaf of GB,∑

j∈Ci rj ·
∏
k∈Cj

1
1−qk otherwise. (2)

Here Ci is the set of children of i. Then r ∈ VI(GB) = CI(GB) = I(GB) if and only if ∀i ∈ [n], qi < 1.

5.2 CLLL is generally different from QLLL

In this section, we show that many interaction bipartite graphs are gapful for CLLL. An easy observa-
tion is that an interaction bipartite graph GB is gapless for CLLL if it is gapless for VLLL. Thus, the
combinatorial interaction bipartite graph gapless for VLLL defined in [16] are also gapless for CLLL.

Definition 5.1 (Combinatorial interaction bipartite graph [16]). Given two positive integers m < n, let
Gn,m = ([(nm)], [n], En,m) where (i, j) ∈ En,m if and only if j is in them-sized subset of [n] represented
by i. Gn,m is called the (n,m)-combinatorial interaction bipartite graph.
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Corollary 5.1. For n ≥ 4, Gn,n−1 is gapless.

Corollary 5.2. For any constant m, when n is large enough, Gn,n−m is gapless.

On the other side, it can be proved that all cyclic graphs are gapful. An interaction bipartite graph
is called n-cyclic, or cyclic for short, if its base graph is a cycle of length n. If n = 3, we additionally
requires the three Hamiltonians sharing no common qudit. Note that any cyclic interaction bipartite
graph satisfies that any pair of Hamiltonians sharing at most one qudit, by Corollary 1.5 we have the
tight regions of CLLL and VLLL are the same for cyclic graphs. Thus, we can obtain the tight region of
CLLL for cyclic interaction bipartite graph from the tight region of VLLL [16]. Meanwhile, because it
has been proved that cyclic graphs are gapful for VLLL, we immediately have the following corollary.

Corollary 5.3. Cyclic interaction bipartite graphs are gapful.

By Corollary 5.3, we can get a large class of gapful interaction bipartite graphs.

Definition 5.2 (Containing [16]). We say that an interaction bipartite graphs GB = ([m], [n], EB) con-
tains another interaction bipartite graphs G′B = ([m′], [n′], E′B), if there are injections πL : [m′] → [m]
and πR : [n′]→ [n] such that the following two conditions hold simultaneously:

1. For any i ∈ [m′] and j ∈ [n′], πR(j) ∈ NGB
(πL(i)) if and only if j ∈ NG′B (i).

2. For any j ∈ [n] \ πR([n′]), j /∈ NGB
(πL(i)) ∩NGB

(πL(k)) for any i, k ∈ [m′].

By Theorem 4.14 and Theorem 4.12, an interaction bipartite graphGB is gapful if it contains a gapful
one. According to Theorem 5.3, we obtain the following result.

Theorem 1.12 (restated). Any interaction bipartite graphs containing a cyclic one is gapful.

It is easy to verify that any interaction bipartite graph contains a cyclic one if its base graph has an
induced cycle of length at least four. Thus, by Theorems 1.8 and 1.12, we have the following corollary,
which almost gives a complete characterization of gapful/gapless for CLLL except when the base graph
has only 3-cliques.

Corollary 1.13. An interaction bipartite graph is gapless for CLLL if its base graph is tree, is gapful if
its base graph has an induced cycle of length at least 4.

5.3 Local Hamiltonians on regular lattices

In this subsection, we focus on the interaction bipartite graph where any pair of Hamiltonians share at
most one qudit, which includes many system of physical interest, such as lattice[6, 25, 28, 33]. For this
special kind of interaction bipartite graphs, we have already known CLLL is equal to VLLL by Corollary
1.5, and here we will completely solve the gapful/gapless problem. Moreover, we find that if a GB of
this kind is gapful, then it is gapful in all directions, here, we should mention that this doesn’t hold for
general GB .
Example. Let GB = ([4], [3], EB) with EB = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 1), (4, 1), (4, 2),
(4, 3)}. By Corollary 1.12, we have GB is gapful because it contains a cyclic interaction bipartite graph.
However, GB is gapless in the direction of r = (1/4, 1/4, 1/4, 1/4). To see this, firstly, we decompose
eachHi to two orthogonal subspaceHi = Hai ⊕Hbi with dim(Hai ) = dim(Hbi ), then let V loc

1 = Ha1⊗Hb2,
V loc

2 = Ha2 ⊗ Hb3, V loc
3 = Ha3 ⊗ Hb1, and V4 be the orthogonal complementary space of V1 ⊕ V2 ⊕ V3,

easy to see they are orthogonal and span the whole space, thus by Corollary 1.7, GB is gapless in this
direction.
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Theorem 1.14 (restated). Let GB = ([m], [n], EB) be an interaction bipartite graph where any two
Hamiltonians share at most one qudit, then

(a) GB is gapless for CLLL (or VLLL) if and only if GB is a tree.

(b) If GB is not a tree, GB is gapful for CLLL (or VLLL) in all directions.

Therefore, on many regular lattices, the critical threshold of commuting Hamiltonians is strictly
larger than the general non-commutative one.
Proof. Part(a). If GB is not a tree, it is easy to see that GB contains a cyclic interaction bipartite graph
G′B . Hence, Theorem 1.8 and Theorem 1.12 implies this part directly.

Part(b). W.l.o.g., assumeG′B = ([m′], [n′], E′B), wherem′ = n′ andEm′ = {(i, i), (i, (i+1)(mod n′)) :
i ∈ [m′]}. Here the value k(mod n′) is defined to be (k − 1)(mod n′) + 1. To simplify notation, the op-
erator “(mod n′)” will be omitted whenever clear from context.

By contradiction, assume GB is gapless in some direction r, and let λr be the vector on C∂(GB), so
by Theorem 1.6, for a sufficiently small ε > 0, there is an exclusive subspace set V ∼ GB with R(V) =
(1− ε)λr. Moreover, according to Corollary 4.3, eachHi, where i ∈ [n′], can be decomposed into three
orthogonal subspacesHi = H0

i ⊕H1
i ⊕Hci , such that for any i ∈ [m′], Vi ⊂ H0

i ⊗H1
i+1 ⊗H[n]\{i,i+1},

and for any other i /∈ [m′] which depends on some qudit in [n′], Vi ⊂ H[n]\[n′] ⊗
⊗

j∈[n′]Hcj . For
simplicity, letH0 :=

⊗
i∈[n′]H0

i ,H1 :=
⊗

i∈[n′]H1
i .

W.l.o.g., assume R(H0) ≥ R(H1). Note that

R(H0) ·R(H1) =
∏
i∈[m′]

R(H0
i ) ·

∏
i∈[m′]

R(H1
i ) =

∏
i∈[m′]

R(H0
i ⊗H1

i+1) ≥
∏
i∈[m′]

ri,

thus R(H0) ≥
√∏

i∈[m′] ri. Moreover, let D := {j ∈ [m′ + 1,m] : N (j) ∩ [n′] = ∅} be the collection

of Vi’s which doesn’t depend on any qudit in [n′], it is easy to see that

R(H0 ∩
⊕
V ∈V

V ) = R(H0 ∩
⊕
i∈D

Vi) = R(H0) ·R(
⊕
i∈D

Vi) = R(H0) · I(GD[D]),

which means

1−R(
⊕
V ∈V

V ) ≥ R(H0)−R(H0 ∩
⊕
V ∈V

V ) ≥
√ ∏
i∈[m′]

ri · (1− I(GD[D])) = θ,

where θ > 0 is independent with ε.
On the other hand, for a sufficiently small δ > 0 satisfying (ε+ δ)λ‖r‖1 ≤ θ, there is a subspace set

V ′ ∼ GB with R(V) = (1 + δ)λr spanning the whole space. However, by Lemma 4.7 and union bound,
we have R(

⊕
V ∈V ′ V ) ≤ R(

⊕
V ∈V V ) + (ε+ δ)λ‖r‖1 < 1, a contradiction. 2

6 Hardness Results

It is immediate that testing membership in quantum interior is #P-hard because testing membership in
Shearer’s region is #P-hard [14]. We show that testing membership in commuting interior is also #P-hard.

25



Definition 6.1 (CINT Problem). Given an interaction bipartite graphGB and a rational vector r on (0, 1),
decide whether r ∈ CI(GB).

Theorem 6.1. CINT is #P-hard.

Proof. Given a (3, 2)-regular bipartite graph GB = ([m], [n], EB), let G′B := ([m + 1], [n], E′B) where
E′B = EB∪{(m+1, 1), (m+1, 2), . . . , (m+1, n)}, and r(λ) = (1

8 ,
1
8 , . . . ,

1
8 , λ) with rational λ ∈ [0, 1].

To decide whether r(λ) ∈ VI(H ′) has shown to be #P-hard [16]. Moreover, for such G′B , we have
I(G′B) = VI(G′B) [16]. Since CI(G′B) lies between I(G′B) and VI(G′B), thus I(G′B) = CI(G′B) =
VI(G′B), which implies CINT is also #P-hard.
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from the tree threshold down to the roots. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1557–1576. SIAM, 2018.
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A Proof of Lemma 4.9

Let A = {A1, ..., Am} be a set of events conforms with GD, and P(A) = p = (p1, ..., pm). From
p ∈ I(GD) ∪ ∂(GD) and Lemma 4.7, there exists an exclusive event set B ∼ GD where P(B) = p.
We assume P(Ai ∩ Aj) > 0, since the case P(Ai ∩ Aj) = 0 holds trivially. Furthur, we can assume
p ∈ ∂(GD), since otherwise p ∈ I(GD), then due to Theorem 1.2, we have P

(
∩A∈A A

)
≥ I(G,p) =

F(G,p,m− 2) ≥ P(Ai ∩Aj)F(G,p,m− 2).
Let’s borrow the notation from the proof of [31, Theorem 1]. For any S ⊆ [n], define α(S) =

P(∩i∈SAi) and β(S) = P(∩i∈SBi). We first review some useful properties of α(S) and β(S). Note
that α(S)/β(S) monotonically increases as |S| increases provided β(S) 6= 0. This can be proved by
induction on |S|. The base cases holds since α(∅) = β(∅) and α(S) = β(S) for any singleton S. For
induction, given S1 ⊂ [m] and j ∈ [m] \ S1, let S2 = S1 ∪ {j}, T2 = S1 ∩ Γj , and T1 = S1 \ T2. We
have

α(S2)
β(S2) −

α(S1)
β(S1) ≥

α(S1)−pjα(T1)
β(S1)−pjβ(T1) −

α(S1)
β(S1) =

pjβ(T1)
β(S1)−pjβ(T1)

[
α(S1)
β(S1) −

α(T1)
β(T1)

]
≥ 0. (9)

The last inequality is by induction. The first inequality holds because

α(S2) = P(∩i∈S2Ai) = P(∩i∈S1Ai)− P(∩i∈S1Ai ∩Aj)
= P(∩i∈S1Ai)− P(∩i∈T1Ai ∩Aj) + P(∩i∈T1Ai ∩Aj ∩ (∪i∈T2Ai))
≥ P(∩i∈S1Ai)− P(∩i∈T1Ai ∩Aj) = α(S1)− pjα(T1).

(10)

and by a similarly formula we also have β(S2) = β(S1) − pjβ(T1) because B is exclusive and then
P(∩i∈T1Bi ∩Bj ∩ (∪i∈T2Bi)) = 0. Hence, α(S)/β(S) is increasing.
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Now we return to the proof of the lemma. Let S2 = [m], S1 = S2 \ {j}, T1 = S1 \ Γj , T2 =

S1 \ T1 = Γj . Since β(S1) > 0 and β(S2) = 0, α(S2) = α(S2) − α(S1)
β(S1)β(S2). Moreover, since GD is

connected, |T1| ≤ m − 2, we have P(Aj ∩ (∪i∈T2Ai))F(GD,p, |T1|) ≥ P(Ai ∩ Aj)F(GD,p,m − 2).
Thererore, to prove P

(
∩A∈AA

)
≥ P(Ai∩Aj)F(GD,p,m−2), it suffices to show α(S2)−α(S1)

β(S1)β(S2) ≥
P(Aj ∩ (∪i∈T2Ai))F(GD,p, |T1|).

Claim. For any S2 ⊆ [m] and j ∈ S2, let S1 = S2 \ {j}, T1 = S1 \ Γj , T2 = S1 \ T1. Then α(S2) −
α(S1)
β(S1)β(S2) ≥ P(Aj ∩ (∪i∈T2Ai))F(GD,p, |T1|).

Proof. The following form of α(S2)− α(S1)
β(S1)β(S2) will be used:

α(S2)− α(S1)
β(S1)β(S2) = α(S2)− α(S1)

β(S1) (β(S1)− pjβ(T1))

= α(S2)− α(S1) + pjα(T1) + pjβ(T1)

(
α(S1)
β(S1) −

α(T1)
β(T1)

)
.

(11)

The proof of this claim is by induction on |T1|.
Basis: T1 = ∅. We have

α(S2)− α(S1)
β(S1)β(S2) ≥ α(S2)− α(S1) + pjα(T1)

= P(∩i∈T1Ai ∩Aj ∩ (∪i∈T2Ai)) = P(Aj ∩ (∪i∈T2Ai)).

The first inequality is due to formula (11) and the monotonicity of α(S)/β(S), the first equality is due
to formula (10), and the second equality is due to T1 = ∅. Note that F(GD,p, 0) = 1, the claim holds
for this case.

Hypothesis: The claim holds if |T1| < t.
Induction: Suppose |T1| = t. Since the case T2 = ∅ is trivial, we assume T2 6= ∅. By the union bound

there is j′ ∈ T2 such that P(Aj ∩Aj′) ≥ P(Aj ∩ (∪i∈T2Ai))/|T2| ≥ P(Aj ∩ (∪i∈T2Ai))/(m−1−|T1|),
the last inequality is becasue |T2| ≤ m− 1− |T1|.

If T1 ∩ Γj′ = ∅, then

α(S2)− α(S1)
β(S1)β(S2) ≥ α(S2)− α(S1) + pjα(T1) by (11)

= P(∩i∈T1Ai ∩Aj ∩ (∪i∈T2Ai)) by (10)

≥ P(∩i∈T1Ai ∩Aj ∩Aj′)
= P(∩i∈T1Ai)P(Aj ∩Aj′) by T1 ∩ Γj′ = ∅
≥ I(GD,p, |T1|)

P(Aj∩(∪i∈T2Ai))

n−1−|T1| by def. of I(GD,p, t)

≥ F(GD,p, |T1|)P(Aj ∩ (∪i∈T2Ai)). by def. of F(GD,p, t)

(12)

Otherwise, T1 ∩ Γj′ 6= ∅, then

P(Aj′ ∩ (∪i∈T1∩Γj′Ai)) + P(∩i∈T1Ai ∩Aj ∩ (∪i∈T2Ai))
≥ P(Aj′ ∩ (∪i∈T1∩Γj′Ai)) + P(∩i∈T1Ai ∩Aj ∩Aj′)
≥ P(Aj′ ∩ (∪i∈T1∩Γj′Ai) ∩Aj ∩k∈T1\Γj′ Ak) + P(∩i∈T1Ai ∩Aj ∩Aj′)
= P(Aj ∩Aj′ ∩k∈T1\Γj′

Ak)

= P(Aj ∩Aj′)P(∩k∈T1\Γj′
Ak),

(13)
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we have

P(Aj′ ∩ (∪i∈T1∩Γj′Ai))

≥ P(Aj ∩Aj′)P(∩k∈T1\Γj′
Ak)− P(∩i∈T1Ai ∩Aj ∩ (∪i∈T2Ai))

= P(Aj ∩Aj′)P(∩k∈T1\Γj′
Ak)− (α(S2)− α(S1) + pjα(T1)).

(14)

The last equality is due to formula (10). Let S′2 , T1 ∪ {j′}, S′1 , T1, T
′
1 , S′1 \ Γj′ , T

′
2 , S′1 \ T ′1 =

T1 ∩ Γj′ . Thus,

α(S1)
β(S1) −

α(T1)
β(T1) ≥ α(S′2)

β(S′2)
− α(S′1)

β(S′1)
= 1

β(S′2)

(
α(S′2)− β(S′2)α(S′1)

β(S′1)

)
≥ 1

β(S′2)
P(Aj′ ∩ (∪i∈T ′2Ai))F(GD,p, |T ′1|),

(15)

the first inequality is since S′1 = T1, S′2 ⊆ S1 and the monotonicity of α(S)
β(S) . The last inequality is by

applying the induction hypothesis to T ′1. Therefore, we have

α(S2)− α(S1)
β(S1)β(S2)

= α(S2)− α(S1) + pjα(T1) + pjβ(T1)
(
α(S1)
β(S1) −

α(T1)
β(T1)

)
by (11)

≥ α(S2)− α(S1) + pjα(T1) + pjβ(S′2)
(
α(S1)
β(S1) −

α(T1)
β(T1)

)
by T1 ⊂ S′2

≥ α(S2)− α(S1) + pjα(T1) + pjP(Aj′ ∩ (∪i∈T ′2Ai))F(GD,p, |T ′1|) by (15)

≥ pj(P(Aj ∩Aj′)P(∩k∈T1\Γj′
Ak))F(GD,p, |T ′1|) by (14)

≥ pminI(G,p, |T1|)F(GD,p, |T ′1|)
P(Aj∩(∪i∈T2Ai))

(m−1−|T1|)
≥ P(Aj ∩ (∪i∈T2Ai))F(GD,p, |T1|).
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