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Abstract

In the seminal work of [Bab85], Babai have introduced Arthur-Merlin Protocols and in
particular the complexity classes MA and AM as randomized extensions of the class NP. While
it is easy to see that NP ⊆ MA ⊆ AM, it has been a long standing open question whether these
classes are actually different. In [BGM06], Böhler et al. introduced the probabilistic class of
SBP and showed that MA ⊆ SBP ⊆ AM. Indeed, this is the only known natural complexity
class that lies between MA and AM. In this work we show that the class AM collapses to SBP
if UNIQUE-SAT is NP-hard, where UNIQUE-SAT stands for the problem of deciding whether
a Boolean formula has a unique satisfying assignment or none.

1 Introduction

For more than three decades, the question of whether the classes MA,NP and AM are different
remains open. While AM and MA are conjectured to be equal and, moreover, both are conjectured
to collapse to NP, there has been only a mild advancement on this front. In particular, Arvind et
al. [AKSS95] showed that AM = MA if NP ⊆ P/poly. Yet, the same premises imply a collapse of
the Polynomial Hierarchy (see e.g. [KL80]) and hence are not believed to be true.

A different line of work has been involved with the study of the computational power of unam-
biguous polynomial-time machines, captured by the complexity class UP. This class was introduced
by Valiant [Val76] and it consists of NP problems with unique solutions. A typical example of such
a problem is the problem of UNIQUE-SAT. As in the standard SAT problem, we are given a
Boolean formula ϕ as input, and we need to determine if ϕ is satisfiable. Yet, in UNIQUE-SAT
we are given an addition promise that ϕ is either unsatisfiable or contains exactly one satisfying
assignment. Indeed, UP should be thought of a class of “promise problems” (see Definition 2.1 for
more details).

It is easy to see that UNIQUE-SAT ∈ NP. Conversely, Valiant & Vazirani [VV86] have shown
that UNIQUE-SAT is NP-hard under randomized reductions. That is, NP ⊆ RPUNIQUE-SAT.
Nonetheless, whether UNIQUE-SAT is NP-hard under (the regular notion of) many-to-one re-
duction, remains an open question. Blass & Gurevich [BG82] have shown an oracle relative to
which UNIQUE-SAT is not NP-hard under many-to-one reductions, implying that this kind of
hardness should be obtained by a non-relativizing techniques.

In [BGM06], Böhler et al. introduced the class of SBP, which stands for small bounded-error
probability. They also showed that SBP lies between MA and AM. To the best of our knowledge,
SBP is the only natural class with this property. Moreover, the only known conditional collapse
results of either AM to SBP or SBP to MA are actually those that collapse AM all the way to MA
(for example, see above). Our main result links the aforementioned lines of work:
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Theorem 1. Suppose UNIQUE-SAT is NP-hard under many-to-one reductions. Then AM = SBP.

We also show some technical extension of the result. For more details see Section 3.1. We would
now like to elaborate on the context of the result.

In [Ver92], Vereshchagin have shown that while MA ⊆ PP for every oracle, there exists an
oracle that separates AM from PP. In [BGM06], Böhler et al. have extended this inclusion to
MA ⊆ SBP ⊆ PP ∩ AM. As a corollary, they have concluded that the same oracle separates
SBP from AM and PP. Furthermore, it is an easy exercise to see that AM is closed under union
and intersection. Yet, whether SBP is closed under intersection remains an open question. In
[GLM+16], Göös et al. have shown an oracle relative to which SBP is not closed under intersection.
In conclusion, the collapse of AM to SBP should evade numerous relativization barriers. As was
mentioned earlier, Blass & Gurevich [BG82] have shown an oracle relative to which UNIQUE-SAT
is not NP-hard under many-to-one reductions, indicating that our assumption, indeed, evades these
barriers.

1.1 Ideas and Techniques

We show the collapse by identifying complete sets of AM and SBP1. In [GS86], Goldwasser & Sipser
considered the problem of determining whether a set S is of size at least m or at most m/2, where
membership of x in S can be efficiently determined given a witness w. They show an AM protocol
for the problem.

Our first observation is that this problem is, in fact, hard for the class AM. In conclusion, we
obtain a natural AM-complete problem - WSSE (see Definition 2.4 for more details). Next, we
observe that the class SBP corresponds to a simpler version of the problem - SSE. As before, we
would like to determine whether a set S is of size at least m or at most m/2. Yet, in this version of
the problem, the membership of x can be efficiently determined given (just) x (see Definition 2.6
for more details).

In what follows, we show a polynomial-time reduction from WSSE to SSE, under the assumption
that UNIQUE-SAT is NP-hard. The natural approach would be to regard the set S as a set of
tuples (x,w) such that w is a witness for membership of x in S. By definition, each x ∈ S has at
least one witness w associated with it. Yet, the actual number of such witnesses could be arbitrary.
To illustrate this, consider the following two sets: S1 contains only one element x1 with K � 2
witnesses of membership; S2 contains two elements element e1, e2 with 1 witnesses of membership
each. Suppose m = 2. Viewing S1 and S2 as above, we obtain sets with K and 2 elements,
respectively. One approach to over to over this issue would be to count the actually number of
witness. Yet this turns out to be a #P-hard problem. Instead, we will use utilize the NP-hardness
of UNIQUE-SAT to prevent the inversion.

We will operate by “flipping the chair”. Fix x and consider the set Wx of witnesses associated
with x. By definition, if x 6∈ S then Wx = ∅; otherwise, if x ∈ S then |Wx| ≥ 1. Moreover, observe
that the membership of w in Wx can be efficiently determined given (just) w. We will apply the
mapping f , from the NP-hardness reduction of UNIQUE-SAT, on Wx. Observe that in the former
case, f(Wx) = ∅ and in the latter case |f(Wx)| = 1. In other words, every x ∈ S will have a unique
witness w of its membership in S.

1Technically, we are looking at the promise versions of AM and SBP.
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2 Preliminaries

For a unary relation R(x), we define #xR
∆
= |{x | x ∈ R}|. For a binary relation R(x,w), we

define ∃w#xR
∆
= |{x | ∃w s.t. (x,w) ∈ R}| . For technical reasons will we need to consider promise

problems. A promise problem is a relaxation of a language. Formally:

Definition 2.1 (Promise Problems). Π = (ΠY ES ,ΠNO) is a promise problem if ΠY ES ∩ΠNO = ∅.
We will be mostly concerned with the two following complexity classes. We refer the reader to

[AB09] for the definitions of other standard complexity classes.

Definition 2.2 ([Bab85]). A language L is in AM if there exists a polynomial-time computable
predicate A(x, r, w) such that:

x ∈ L =⇒ Prr[∃w : A(x, r, w) = 1] ≥ 2/3
x 6∈ L =⇒ Prr[∃w : A(x, r, w) = 1] ≤ 1/3.

Definition 2.3 ([BGM06]). A language L is in SBP if there exists ε > 0, k ∈ N and a polynomial-
time computable predicate B(x, r) such that:

x ∈ L =⇒ Prr[B(x, r)) = 1] ≥ (1 + ε) · 1

2nk

x 6∈ L =⇒ Prr[B(x, r)) = 1] ≤ (1− ε) · 1

2nk .

where n = |x|.
In [GS86], Goldwasser & Sipser consider the problem of determining whether a set S is of size at

least m or at most m/2, where membership of x can be efficiently determined given x and witness
w. Formally, we define the following promise problem.

Definition 2.4. Witnessed Set-Size Estimation. WSSE = (WSSEY ES ,WSSENO) where,
WSSEY ES = {(C,m) | ∃w#xC ≥ m},WSSENO = {(C,m) | ∃w#xC ≤ m/2}.
Here C(x,w) is a Boolean circuit and m is an integer given in binary representation.

In the same paper, an AM protocol for the problem was given. In other words, it was shown that
WSSE ∈ PromiseAM. We begin by observing that WSSE is also hard for the class AM. Recall

Definition 2.2. Let L ∈ AM and suppose r ∈ {0, 1}`. Furthermore, set Ax(r, w)
∆
= A(x, r, w) and

m = 2`+1/3. We observe that:

x ∈ L =⇒ ∃w#rAx ≥ m
x 6∈ L =⇒ ∃w#rAx ≤ m/2.

Corollary 2.5. WSSE is PromiseAM-complete.

In this paper, we also study a simpler version of the problem. As before, we would like to
determine whether a set S is of size at least m or at most m/2. Yet, in this version of the problem,
the membership of x can be efficiently determined given (just) x. Formally, we define the following
promise problem.

Definition 2.6. Set-Size Estimation. SSE = (SSEY ES , SSENO) where,
SSEY ES = {(C,m) | #xC ≥ m}, SSENO = {(C,m) | #xC ≤ m/2}.
Here C(x) is a Boolean circuit and m is an integer given in binary representation.

Lemma 2.7 (Implicit in [BGM06]). SSE is PromiseSBP-complete.

Fact 2.8. There exists a polynomial-time algorithm that given a program P , that runs in time t,
converts it into a circuit of size poly(t) with the same functionality.
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3 Relation to UNIQUE-SAT

In this section we prove our main result and discuss some extension. We begin by formally intro-
ducing the problem of UNIQUE-SAT.

Definition 3.1. UNIQUE-SAT = (UNIQUE-SATY ES ,UNIQUE-SATNO) where,
UNIQUE-SATY ES = {ϕ | #xϕ = 0},UNIQUE-SATY ES = {ϕ | #xϕ = 1}.
Here ϕ is Boolean formula.

The next lemma is our main technical contribution. The proof implements the idea outlined
in Section 1.1. In particular, if UNIQUE-SAT is NP-hard, it can be reduced from Circuit-SAT.
That is, the problem of decided whether a given Boolean circuit C is satisfiable. Let f be the
corresponding mapping reduction and suppose f can be computed in time |C|k.

Before moving to the proof, we would like to address a technical issue. Given two circuits C1, C2

of the same size s, their corresponding images ϕ̂1 = f(C1) and ϕ̂2 = f(C2) could, potentially, depend
on a different number of variables t1 6= t2, respectively. Clearly, t1, t2 ≤ sk and hence we can regard
both ϕ̂1 and ϕ̂2 as circuits defined on sk variables. While this would not affect the satisfiability of
ϕ̂1 and ϕ̂2, it might affect the uniqueness property. For example, while the formula ϕ̂1(x) = ¬x has
a unique satisfying assignment, regarding ϕ̂1 as ϕ̂1(x, y, z) = ¬x introduces additional satisfying
assignments. We resolve this issue by connecting the remaining variables to the circuit via the ∧
connector. Going back to our example, observe that ϕ̂1(x)∧y∧ z = ¬x∧y∧ z has (again) a unique
satisfying assignment.

Lemma 3.2. Suppose UNIQUE-SAT is NP-hard. Then there exist an algorithm that given a
Boolean circuit C(x,w) outputs (another) Boolean circuit Ĉ(x, z) such that #(x,z)Ĉ = ∃w#xC, in
time poly(|C|).

Proof. By the assumption, there exists k ∈ N and a mapping ϕ̂(u) = f(C), computable in time
|C|k satisfying:

#xC > 1 =⇒ #uϕ̂ = 1
#xC = 0 =⇒ #uϕ̂ = 0.

Consider the following program P .

Input: Description of a Boolean circuit 〈C(x,w)〉
Boolean vector x
Boolean variables z1, . . . , z|C|k

1 C ′(w)← C(x,w); /* plugging in the value of x */

2 ϕ̂(u1, . . . , ut)← f(C ′) ;

3 return ϕ̂(z1, . . . , zt) ∧ zt+1 ∧ . . . ∧ z|C|k /* By definition, t ≤ |C|k */

Let Ĉ(x, z) denote the circuit that results from converting the program P into a Boolean circuit
(applying Fact 2.8) having 〈C(x,w)〉 hard-coded. Suppose x is such that there exists a witness
w for which C(x,w) = 1. We show that for each such, and only such, x there exists a unique z
satisfying C(x, z) = 1.
By definition, #wC

′ > 1. Therefore, by the properties of f , there exists a unique assignment
u = (u1, . . . , ut) such that ϕ̂(u) = 1. Consequently, C(x, z) = 1 iff z = (u1, . . . , ut, 1, . . . , 1).
Conversely, suppose x is such that ∀w : C(x,w) = 0. By definition, #wC

′ = 0. Again, by the
properties of f , #uϕ̂ = 0 and consequently, ∀z : C(x, z) = 0.
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We now prove our main theorem. We restate it for completeness.

Theorem 3.3 (Theorem 1 restated). Suppose UNIQUE-SAT is NP-hard. Then AM = SBP.

Proof. We show that AM ⊆ SBP by showing that WSSE ≤p SSE. We map an instance (C(x,w),m)

of WSSE to
(
Ĉ(x, z),m

)
via the procedure described in Lemma 3.2. The claim regarding the

runtime and the correctness follow from Lemma 3.2.

3.1 Extensions

In this section we discuss some extension to the main result. First, we observe that ϕ is not
required to be a formula. We can extend the result further to the case when there exists a mapping
ϕ̂(u) = f(C) computable polynomial-time satisfying:

#xC > 1 =⇒ #uϕ̂ = α
#xC = 0 =⇒ #uϕ̂ = 0,

for some universal constant α ∈ N+. By repeating the previous arguments, we can show that in this

case #(x,z)Ĉ = ∃w#xC · v. Hence, in this case, map an instance (C(x,w),m) to
(
Ĉ(x, z),m · α

)
.

We show that we can handle a certain kind of randomized algorithms, where we have a bound in
expectation.

Lemma 3.4. Suppose there exists a universal constant α ∈ R+ and a mapping ϕ̂(u) = f(C)
computable in randomized polynomial time satisfying:

#xC > 1 =⇒ EX[#uϕ̂] = α
#xC = 0 =⇒ EX[#uϕ̂] = 0.

Then there exists a mapping Ĉ = f̂(C) computable in deterministic polynomial time such that
#(x,z)Ĉ = ∃w#xC · α · 2`, when ` = poly(|C|).

Proof. We regard the mapping f as f(C; τ), when τ ∈ {0, 1}` is treated as a random string. Let
C(x) be a Boolean circuit. Consider the following program P .

Input: Description of a Boolean circuit 〈C(x)〉
Boolean variables z1, . . . , z|C|k and τ1, . . . , τ`

1 ϕ̂(u1, . . . , ut)← f(C; τ);
2 return ϕ̂(u) ∧ zt+1 ∧ . . . ∧ z|C|k ;

Let Ĉ ′(u, τ) denote the circuit that results by converting the program P into a Boolean circuit
having 〈C(x)〉 hard-coded. Observe that

#xC > 1 =⇒ #(z,τ)Ĉ ′ = α · 2`

#xC = 0 =⇒ #(z,τ)Ĉ ′ = 0.

The remainder of the claim follows by repeating the previous arguments.
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4 Discussion & Open Question

There is another interesting link between the complexity class AM and the UNIQUE-SAT problem:
both the AM protocol for WSSE of [GS86] and the proof that NP ⊆ RPUNIQUE-SAT of [VV86] utilize
pairwise independent hash functions. A natural question to ask is whether pairwise independent
hash functions could be used to obtain the premises of Lemma 3.4.

One could extend these ideas to construct a mapping ϕ̂(u) = f(C), computable in randomized
polynomial time, satisfying EX[#uϕ̂] = #xC/α for some constant α ∈ R+. It not clear, thought,
how this construction could be used for the proof of our main result. Moreover, it is to be noted that
both [GS86] and [VV86] utilize pairwise independent hash functions in a relativizable fashion, which
precludes direct application of these ideas to our proof, due to oracle separations (see discussion
after Theorem 1 for more details).

Another natural question is to identify a corresponding MA-complete problem in the flavor
of WSSE for AM and SSE for SBP. Could the presented collapse, then, be extended to MA?
Conversely, could one show that any collapse either AM, SBP or MA to a subclass implies that
UNIQUE-SAT is NP-hard? Perhaps under an even strong assumption that NP ⊆ P/poly?
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[BGM06] E. Böhler, C. Glaßer, and D. Meister. Error-bounded probabilistic computations be-
tween MA and AM. J. Comput. Syst. Sci., 72(6):1043–1076, 2006.
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