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Abstract

In the seminal work of [Bab85], Babai have introduced Arthur-Merlin Protocols and in
particular the complexity classes MA and AM as randomized extensions of the class NP. While
it is easy to see that NP ⊆ MA ⊆ AM, it has been a long standing open question whether these
classes are actually different. In [BGM06], Böhler et al. introduced the probabilistic class of
SBP and showed that MA ⊆ SBP ⊆ AM. Indeed, this is the only known natural complexity
class that lies between MA and AM. In this work we study the relations between these classes
further, partially answering some open questions posed in [BGM06].

1 Introduction

For more than three decades, the question of whether the classes MA and AM are different had
remained open. While it was shown that under widely-believed derandomization assumptions
[KvM02, MV05] MA = AM and, moreover, both to collapse to NP, there has been only a mild
advancement on this front. In particular, Arvind et al. [AKSS95] showed that AM = MA if
NP ⊆ P/poly. Yet, the same premises imply a collapse of the Polynomial Hierarchy (see e.g.
[KL80]) and hence are not believed to be true.

In [BGM06], Böhler et al. introduced the class of SBP, which stands for small bounded-error
probability. They also showed that SBP lies between MA and AM. To the best of our knowledge,
SBP is the only natural class with this property. However, the only known conditional collapse
results of either AM to SBP or SBP to MA are actually those that collapse AM all the way to MA.

SZK (Statistical Zero Knowledge) is the class of decision problems for which a “yes” answer can
be verified by a statistical zero-knowledge proof protocol. Rather than providing a formal definition,
the class can be captured by its complete (promise) problem known as Statistical Difference [SV03]:
given two polynomial-size circuits, C0 and C1 on n variables, decide if the statistical distance
between the induced probability distributions is either at most 1/3 or at least 2/3. This problem
is denoted as SD(2/3,1/3). Similarly to SBP, SZK ⊆ AM (see e.g. [For89]).

A different line of work [Val76, All86, Mor82] has been involved with the study of the compu-
tational power of NP machines with bounded number of accepting paths (or witnesses). In [Val76],
Valiant introduced the complexity class UP that consists of NP problems with unique solutions.
For instance, UNIQUE-SAT stands for a version of the SAT problem in which the given Boolean
formula ϕ is either unsatisfiable or contains exactly one satisfying assignment. Another natural
example of such class is FewP, introduced by Allender in [All86], which consists of NP problems
with polynomially-many solutions. More generally, we consider the class SOLUTIONS[f(n)] that
consists of NP problems with at most f(n) accepting paths or solution, for inputs of size of n. For
a formal definition, see Definition 2.15.
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1.1 Our Results

Our first main result links the aforementioned lines of work:

Theorem 1. Suppose there exists ε > 0 such that 3-SAT ∈ SOLUTIONS[2n
1−ε

]. Then AM = SBP.

In other words, if there exists an NP machine that decides 3-SAT with somewhat less than trivial
number of accepting paths, then AM collapses to SBP. In particular, the result holds if 3-SAT ∈ UP
or even if 3-SAT ∈ FewP. To put the result in the correct context, note that even a subexponential
number of accepting paths is not known to imply a (deterministic) subexponential-time algorithm.
In fact, such an implication is not even known for the case of a unique path (i.e. SAT ∈ UP).

We now would like to elaborate on the premises. For a 3-CNF ϕ of size s, the NP machine is
required to have at most 2s

1−ε
accepting paths for some ε > 0. This requirement is trivially met

when s = n1+δ, for δ > 0. Indeed, the main challenge is to satisfy the requirement for formulas of
linear and slightly super-linear sizes (i.e. when s = O(n) or s = n · polylog(n)). Furthermore, we
observe that the requirement is met for formulas of size n if and only if it is met for formulas of size
n · polylog(n). This in turn allows to define the size of a formula as a number of clause as opposed
to the encoding (i.e. bit) size, as these two notions are within poly-logarithmic factor from each
other. For more details see Section 2.3

In terms of oracle separation, in [Ver92], Vereshchagin have shown that while MA ⊆ PP for
every oracle, there exists an oracle that separates AM from PP. In [BGM06], Böhler et al. have
extended this inclusion to MA ⊆ SBP ⊆ PP ∩ AM. As a corollary, they have concluded that the
same oracle also separates SBP from PP. Furthermore, it is an easy exercise to see that AM is
closed under union and intersection. Yet, whether SBP is closed under intersection remains an
open question. In [GLM+16], Göös et al. have shown an oracle relative to which SBP is not closed
under intersection. In conclusion, the collapse of AM to SBP should evade numerous relativization
barriers. In [Rub88], Rubinstein have shown an oracle relative to which SAT is not in UP and
FewP. Since the proof of Theorem 1 is relativizable, we obtain a further oracle separation as a
corollary:

Corollary 1.1. There exist an oracle relative to which for any ε > 0, SAT 6∈ SOLUTIONS[2n
1−ε

].

This result partially answers an open question posed in [BGM06], whether one could extend
the oracle separations to collapse consequences.

1.1.1 Relations Between SBP and SZK

Our next result studies the relation between SBP and SZK. To that end, we consider the general
Statistical Difference problem: for functions α(n) > β(n), SD(α(n),β(n)) is the (promise) problem of
deciding whether the statistical distance is either at most β(n) or at least α(n) (for a formal defi-
nition, see Definition 2.13). Our next main result exhibits a non-trivial problem in the intersection
of the promised versions of SZK and SBP.

Theorem 2. SD

(
1− 1

2n+3 , 1
2n+3

)
∈ PromiseSBP.

First of all, it is to be noted that since PromiseSZK is closed under complement (see e.g.

[Oka00]), SD

(
1− 1

2n+3 , 1
2n+3

)
∈ PromiseSZK. Furthermore, the problem represents a somewhat more

general version of SD
(1 , 0)

, which is complete for the class of the so-called problems with “V-bit”

perfect zero knowledge protocols [KMS15]. And while, SD
(1 , 0) ⊆ PromiseNP and hence is clearly in
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PromiseSBP, to the best of our knowledge, SD

(
1− 1

2n+3 , 1
2n+3

)
is not known to lie in any subclass of

PromiseSBP (not even PromiseMA). In that sense, the proposed problem constitutes the first known
non-trivial problem in PromiseSZK∩PromiseSBP. Indeed, this result partially answers another open
question posed in [BGM06], whether there is a natural problem in SBP that is not contained in MA.
It is to be noted that Watson [Wat16] has shown another natural problem complete for PromiseSBP.

1.1.2 Relation to Polarization

The polarization lemma, introduced by Sahai and Vadhan in [SV03], is an efficient transformation
that takes as input a pair of Boolean circuits (C0, C1) and an integer k and coverts them into a
new pair of circuits (D0, D1) such that:

∆(C1, C2) ≥ 2/3 =⇒ ∆(D1, D2) ≥ 1− 2k

∆(C1, C2) ≤ 1/3 =⇒ ∆(D1, D2) ≤ 2k

We would like to highlight one important aspect of this transformation: if the input circuits C1

and C2 are defined on n variables - i.e. the distributions are samplable using n random bits, the
resulting circuits D1 and D2 are defined on poly(k) · n variables, thus requiring more random bits.
Similar phenomenon occurs when one tries to naively amplify the success probability of a BPP
algorithm by a simple repetition. Indeed, if a given BPP algorithm achieves an error probability of
1/3 using r random bits, one could drive down the error probability to 2−t using O(t) · r random
bits. More efficient amplification procedures (see e.g. [Zuc96, Gol11]) allow us to achieve a similar
probability bound using only O(t)+r random bits. This raises a natural question: could we obtain
a “randomness-efficient” polarization procedure? Our Theorem 2 suggests that in a very efficient
regime of parameters, the existence of such a procedure implies that SZK ⊆ SBP.

Corollary 1.2 (Informal). If there exists a randomness-efficient polarization, then SZK ⊆ SBP.

Nonetheless, we believe that this result should be regarded as evidence that a “randomness-
efficient” polarization may not be possible. Since while polarization is an inherently relativiz-
able procedure, there exist an oracle that separates SZK from SBP (and, in fact, from PP. See
[BCH+17]).

1.2 Ideas and Techniques

We show the collapse of AM to SBP by identifying complete sets of AM and SBP1. In [GS86],
Goldwasser & Sipser considered the problem of determining whether a set S is of size at least m or
at most m/2, where membership of x in S can be efficiently determined given a witness w. They
show an AM protocol for the problem. Our first observation is that this problem is, in fact, hard
for the class AM. In conclusion, we obtain a natural AM-complete problem - WSSE (see Definition
2.8 for more details). Next, we observe that the class SBP corresponds to a simpler version of the
problem - SSE. As before, we would like to determine whether a set S is of size at least m or at
most m/2. Yet, in this version of the problem, the membership of x can be efficiently determined
given (just) x (see Definition 2.10 for more details).

In what follows, we show a polynomial-time reduction from WSSE to SSE. The natural approach
would be to regard the set S as a set of tuples (x,w) such that w is a witness for membership of x in
S. By definition, each x ∈ S has at least one witness w associated with it. Yet, the actual number
of such witnesses could be arbitrary. To illustrate this, consider the following two sets: S1 contains

1Technically, we are looking at the promise versions of AM and SBP.
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only one element x1 with K � 2 witnesses of membership; S2 contains two elements element e1, e2

with 1 witnesses of membership each. Suppose m = 2. Viewing S1 and S2 as above introduces
order inversion between S1 and S2 as we will obtain sets with K and 2 elements, respectively. One
approach to overcome this issue could be to actually count the number of witnesses. However this
task turns out to be a #P-hard problem. We take a slightly different approach.

Rather than counting witnesses, we would like to ensure that each element x has only a “small”
number of witnesses. For the sake of intuition, let us assume that SAT ∈ UP. Fix x and consider
the set Wx of witnesses associated with x. By definition, if x 6∈ S then Wx = ∅; otherwise, if x ∈ S
then |Wx| ≥ 1. Moreover, observe that the membership of w in Wx can be efficiently determined
given (just) w. Will now run the unique-solution NP machine A on the predicate (formula) that
corresponds to Wx. Observe that in the former case (i.e. Wx = ∅) A has zero accepting paths and
in the latter case A has one exactly accepting path. In other words, every x ∈ S will have a unique
witness w of its membership in S. To handle the more general case of SAT 6∈ SOLUTIONS[2n

1−ε
] we

“preprocess” the circuit by applying sequential repetition thus increasing the gap between number
of witnesses in the “yes” and the “no” cases. See Lemma 3.1 for the formal proof.

In order to related SZK and SBP we study the relation between Statistical and the Collision
Distances. See Lemma 2.4 for the formal proof.

1.3 Organization

We start by some basic definitions and notation in Section 2. In Section 3 we prove our main
results. In fact, we prove somewhat more general and technical statements. Finally, we discuss
some open questions in Section 4.

2 Preliminaries

For a unary relation R(x), we define #xR
∆
= |{x | x ∈ R}|. For a binary relation R(x,w), we define

#x∃wR
∆
= |{x | ∃w s.t. (x,w) ∈ R}| . For k ∈ N, we define R⊗k - the tensor power of R as

R⊗k
∆
= R(x1, w1) ∧R(x2, w2) ∧ . . . ∧R(xk, wk)

where x1, . . . , xk and w1, . . . wk are k disjoint copies of x and w, respectively.

Observation 2.1. Let x̄ = (x1, . . . , xk) and w̄ = (w1, . . . , wk). Then #x̄∃w̄R⊗k = (#x∃wR)k.

We will require the following technical lemma.

Lemma 2.2. For any s > 1 and 0 < ε < 1 it holds:

1. s−ε ≤ (s−1 − 1)ε+ 1.

2. s
1
ε ≥ 1 + ln s · 1

ε .

2.1 Probability Distributions and Circuits

Let X and Y be two random variables taking values in some finite domain U .

We define the support of a random variable X as Supp(X)
∆
= {a ∈ U | Pr[X = a] > 0}.
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Definition 2.3 (Distances Between Distributions). The Statistical Distance between X and Y is
defined as

∆(X,Y ) = max
U ′⊆U

Pr[X ∈ U ′]− Pr[Y ∈ U ′].

The equality is attained for U ′ = UX
∆
= {a ∈ U | Pr[X = a] ≥ Pr[Y = a]}.

The Collision Distance between X and Y is defined as Col(X,Y )
∆
= Pr[X = Y ].

We prove two properties relating the Statistical and the Collision Distances.

Lemma 2.4. Let k = |Supp(X) ∪ Supp(Y )|. Then 1/k ≤ ∆(X,Y ) + Col(X,Y ) ≤ 1.

Proof. Let U ′ = Supp(X) ∪ Supp(Y ), UX = {a ∈ U | Pr[X = a] ≥ Pr[Y = a]} and UY = U ′ \ UX .
For the first inequality:

Col(X,Y ) =
∑
a∈U ′

Pr[X = a] Pr[Y = a] =
∑
a∈U ′

(Pr[X = a])2 −
∑
a∈U ′

Pr[X = a](Pr[X = a]− Pr[Y = a]) ≥

≥

( ∑
a∈U ′

Pr[X = a]

)2

|U ′|
−
∑
a∈UX

Pr[X = a](Pr[X = a]− Pr[Y = a]) ≥

≥ 1

|U ′|
−
∑
a∈UX

(Pr[X = a]− Pr[Y = a]) =
1

|U ′|
−∆(X,Y ).

We now move to the second inequality.

Col(X,Y ) + ∆(X,Y )− 1 =
∑
a∈U ′

Pr[X = a] Pr[Y = a] +
∑
a∈UX

Pr[X = a]− Pr[Y = a]− 1 ≤

Pr[X ∈ UX ] Pr[Y ∈ UX ] + Pr[X ∈ UY ] Pr[Y ∈ UY ] + Pr[X ∈ UX ]− Pr[Y ∈ UX ]− 1 =

= (Pr[X ∈ UX ]− 1)(Pr[Y ∈ UX ] + 1) + (1− Pr[X ∈ UX ])(1− Pr[Y ∈ UX ]) =

= 2(Pr[X ∈ UX ]− 1) Pr[Y ∈ UX ] ≤ 0.

Observe that Pr[X ∈ UY ] = 1− Pr[X ∈ UX ] and Pr[Y ∈ UY ] = 1− Pr[Y ∈ UX ].

We complement our result by observing that for a pair of variables X and Y with disjoint
supports it holds that: ∆(X,Y ) = 1 and Col(X,Y ) = 0, and hence ∆(X,Y ) + Col(X,Y ) = 1. In
addition, for any n ≥ 1 and ε ≥ 0, consider a random variable X over {0, 1}n defined as follows:
For ā ∈ {0, 1}n:

Pr[X = ā] = 1+ε
2n if an = 0

Pr[X = ā] = 1−ε
2n otherwise.

Observe that k = 2n, ∆(X, 1̄−X) = ε and Col(X, 1̄−X) = 1−ε2
k .

A Boolean circuit C : {0, 1}n → {0, 1}m induces a probability distribution on {0, 1}m by
evaluating C on a uniformly chosen input in {0, 1}n. For two Boolean circuits, C1 and C2, we will
use the notations ∆(C1, C2) and Col(C1, C2) to denote the corresponding distances between the
induced distributions.
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2.2 Complexity Classes and Promise Problems

We will be mostly concerned with the two following complexity classes. We refer the reader to
[AB09] for the definitions of other standard complexity classes.

Definition 2.5 ([Bab85]). A language L is in AM if there exists a polynomial-time computable
predicate A(x, r, w) such that:

x ∈ L =⇒ Prr[∃w : A(x, r, w) = 1] ≥ 2/3
x 6∈ L =⇒ Prr[∃w : A(x, r, w) = 1] ≤ 1/3.

Definition 2.6 ([BGM06]). A language L is in SBP if there exists ε > 0, k ∈ N and a polynomial-
time computable predicate B(x, r) such that:

x ∈ L =⇒ Prr[B(x, r)) = 1] ≥ (1 + ε) · 1

2nk

x 6∈ L =⇒ Prr[B(x, r)) = 1] ≤ (1− ε) · 1

2n
k .

where n = |x|.

For technical reasons we will need to consider promise problems. A promise problem is a
relaxation of a language. Formally:

Definition 2.7 (Promise Problems). Π = (ΠY ES ,ΠNO) is a promise problem if ΠY ES ∩ΠNO = ∅.

In [GS86], Goldwasser & Sipser consider the problem of determining whether a set S is of size at
least m or at most m/2, where membership of x can be efficiently determined given x and witness
w. Formally, we define the following promise problem.

Definition 2.8 (Witnessed Set-Size Estimation). WSSE
∆
= (WSSEY ES ,WSSENO) where,

WSSEY ES = {(C,m) | #x∃wC ≥ m},WSSENO = {(C,m) | #x∃wC ≤ m/2}.
Here C(x,w) is a Boolean circuit and m is an integer given in binary representation.

In the same paper, an AM protocol for the problem was given. In other words, it was shown that
WSSE ∈ PromiseAM. We begin by observing that WSSE is also hard for the class AM. Recall

Definition 2.5. Let L ∈ AM and suppose r ∈ {0, 1}`. Furthermore, set Ax(r, w)
∆
= A(x, r, w) and

m = 2`+1/3. We observe that:

x ∈ L =⇒ #r∃wAx ≥ m
x 6∈ L =⇒ #r∃wAx ≤ m/2.

Corollary 2.9. WSSE is PromiseAM-complete.

In this paper, we also study a simpler version of the problem. As before, we would like to
determine whether a set S is of size at least m or at most m/2. Yet, in this version of the problem,
the membership of x can be efficiently determined given (just) x. Formally, we define the following
promise problem.

Definition 2.10 (Set-Size Estimation). SSE
∆
= (SSEY ES ,SSENO) where,

SSEY ES = {(C,m) | #xC ≥ m}, SSENO = {(C,m) | #xC ≤ m/2}.
Here C(x) is a Boolean circuit and m is an integer given in binary representation.

Lemma 2.11 (Implicit in [BGM06]). SSE is PromiseSBP-complete.
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Indeed, SSE and WSSE capture the complexity classes SBP and AM, respectively. Indeed, AM
corresponds to the class of all languages that reduce to WSSE. Likewise, SBP is the class of all
languages that reduce to SSE. We now define the class SZK in a similar fashion.

Definition 2.12 (Statistical Difference - [SV03]). Let α(n) : N → N and β(n) : N → N be com-
putable functions, such that α(n) > β(n).

Then SD(α(n) , β(n)) ∆
= (SD

(α(n) , β(n))
Y ES , SD

(α(n) , β(n))
NO ) where,

SD
(α(n) , β(n))
Y ES = {(C1, C2) | ∆(C1, C2) ≥ α(n)},SD

(α(n) , β(n))
NO = {(C1, C2) | ∆(C1, C2) ≤ β(n)}.

Here, C1 and C2 are Boolean circuits C1, C2 : {0, 1}n → {0, 1}m of size poly(n).

Definition 2.13 (Statistical Zero Knowledge). SZK is defined as class of all languages that reduce
to SD(2/3 , 1/3).

We remark that originally SZK was defined in by Goldwasser et al. in [GMR89] as the class
of decision problems for which a “yes” answer can be verified by a statistical zero-knowledge proof
protocol. The alternate characterization via the complete problem was given in [SV03].

In order the explore the relation between SZK and SBP further, we define a sparse version of
the Statistical Difference problem.

Definition 2.14 (Sparse Statistical Difference). For a computable function t(n) : N→ N,
t(n)-SSD(α(n) , β(n)) is a specialization of SD to the case where the support size of distributions
induced by C1 and C2 is bounded by t(n). Formally: |Supp(C1)| , |Supp(C2)| ≤ t(n).

2.3 SOLUTIONS[f(n)]

In this section we formally define the class SOLUTIONS[f(n)] and discuss some of its properties.
Indeed, SOLUTIONS[f(n)] constitutes a subclass of NP with a bounded number of solutions.

Definition 2.15. Let f : N→ N be a computable function. We say that a language L in the class
SOLUTIONS[f(n)], if there exists a polynomial-time computable predicate A(x, y) such that:

x ∈ L =⇒ 1 ≤ #yAx ≤ f(|x|)
x 6∈ L =⇒ #yAx = 0.

where Ax(y) = A(x, y).

In other words, SOLUTIONS[f(n)] is special case of NP where for each x ∈ L there are at most
f(n) witnesses. Observe that: UP = SOLUTIONS[1] ⊆ FewP = SOLUTIONS[poly(n)] ⊆ NP.

Remark: We note the definition would not change if we relaxed the requirement “to have of at
most f(n) solutions” to hold only for sufficiently large values of n. Next, we would like to point
out a property of the SOLUTIONS[f(n)] in a sub-exponential regime of parameters.

Observation 2.16. Suppose there exists ε > 0 such that L ∈ 2n
1−ε

. Then there exists ε′ > 0 and

an NP machine that decides instances of size n1+ε of L with at most 2n
1−ε′

solutions.

Proof. For instances of size n1+ε, the number of solutions be at most 2(n1+ε)1−ε
= 2n

1−ε2

.

We conclude this section by presenting two facts about transforming Turing machine into
Boolean circuits and Boolean circuits into Boolean formulas.
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Fact 2.17. There exists a polynomial-time algorithm that given a Turing machine M that computes
a Boolean predicate A(z) in time t(|z|), and input length n, outputs a Boolean circuit C of size
poly(t(n)) on n inputs such that C(z) = A(z) for every z ∈ {0, 1}n.

Fact 2.18. There exists a polynomial-time algorithm that given a Boolean circuit C of size s
transforms it into a 3-CNF formula ϕ of size O(s) such that ϕ is satisfiable iff C is satisfiable.

Combined with Observation 2.16, we obtain that wlog we can use various notions of size (i.e.
number of gates in the circuit, number of clauses in a formula, bit-size complexity, etc..) inter-
changeably as they are with poly-log factor from each other and s · polylog(s) = o(s1+ε) for any
ε > 0.

Corollary 2.19. There exists ε > 0 such that CKT-SAT ∈ SOLUTIONS[2n
1−ε

] iff there exists

ε′ > 0 such that 3-SAT ∈ SOLUTIONS[2n
1−ε′

].

3 Proofs of the Main Results

In this section we prove our main results Theorems 1 and 2. In fact, we prove somewhat more
general and technical results.

Lemma 3.1. Suppose there exists ε > 0 such that CKT-SAT ∈ SOLUTIONS[2n
1−ε

]. Then PromiseAM =
PromiseSBP.

Proof. We show that PromiseAM ⊆ PromiseSBP by showing that WSSE ≤p SSE. In particular, let

C(x,w) be a circuit of size s. We map an instance (C(x,w),m) of WSSE to
(
Ĉ(x̄, y),mk

)
, where

Ĉ(x̄, y) is a circuit of size poly(sk), for k = s
1
ε .

Let A(C ′, y) be a polynomial-time computable predicate that given a Boolean circuit C ′(z) of size
s satisfies:

#zC
′ ≥ 1 =⇒ 1 ≤ #yAC′ ≤ 2s

1−ε

#zC
′ = 0 =⇒ #yAC′ = 0.

where AC′(y) = A(C ′, y). Consider the following Boolean predicate Â(x̄, y), where x̄ = (x1, . . . , xk):

1 C ′x̄(w̄)← C⊗k(x̄, w̄); /* Taking k-th tensor power of the circuit C(x,w) and

plugging in the value of x̄. Here w̄ = (w1, . . . , wk). */

2 return A(C ′, y)

Let Ĉ(x̄, y) denote the circuit that results from converting Â(x̄, y) into a Boolean circuit (ap-
plying Fact 2.17). The claim about the runtime is clear. We now analyze the reduction.

• Suppose that #x∃wC ≥ m. By Observation 2.1: #x̄∃w̄C⊗k ≥ mk. In other words, there exist
at least mk different inputs x̄ for which #w̄C

′
x̄ ≥ 1. By the properties of A, for each such x̄

there exists y such that Ĉ(x̄, y) = 1. Therefore, #(x̄,y)Ĉ ≥ mk.

• Suppose that #x∃wC ≤ m/2. By Observation 2.1: #x̄∃w̄C⊗k ≤ (m/2)k. In other words,
there exist at most (m/2)k different inputs x̄ for which #w̄C

′
x̄ ≥ 1. Since C ′x̄ is a circuit of

size at most sk, by the properties of A, for each such x̄ there exists at most 2(sk)1−ε
witnesses

y such that Ĉ(x̄, y) = 1. Therefore, #(x̄,y)Ĉ ≤ (m/2)k · 2(sk)1−ε ≤ mk/2. To justify the last
inequality, assume wlog that s > 4 and recall Lemma 2.2:
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(sk)1−ε − k = s(1+ 1
ε

)(1−ε) − s
1
ε = s

1
ε
−ε − s

1
ε ≤ s

1
ε [(s−1 − 1)ε+ 1− 1] =

= s
1
ε (s−1 − 1)ε ≤ (1 + ln s · 1

ε
)(s−1 − 1)ε ≤ (ε+ ln s)(s−1 − 1) < −1

Theorem 1 follows from the lemma combined with Corollary 2.19

Lemma 3.2. Let β(n) and t(n) be such that β(n) · t(n) ≤ 1/6. Then t(n)-SSD
(1−β(n) , β(n)) ∈

PromiseSBP.

Proof. Given two circuits C1, C2 : {0, 1}n → {0, 1}m, the algorithm will try to find a collision.
Namely, pick x, x′ ∈ {0, 1}n uniformly at randomly and accept iff C1(x) = C2(x′). Observe that
the success probably of the algorithm is exactly Col(C1, C2). We now analyze this probability.

• Suppose ∆(C1, C2) ≤ β(n). Observe that |Supp(C1) ∪ Supp(C2)| ≤ 2t(n). Therefore, by
Lemma 2.4, Col(C1, C2) ≥ 1

2t(n) − β(n) ≥ 3β(n)− β(n) = 2β(n).

• Suppose ∆(C1, C2) ≥ 1− β(n). By Lemma 2.4, Col(C1, C2) ≤ β(n).

Theorem 2 follows by observing that for circuits defined over n bits we have:
|Supp(C1)| , |Supp(C2)| ≤ 2n, and instantiating the lemma to t(n) = 2n and β(n) = 1

2n+3 .

4 Discussion & Open Question

The major widely-believed derandomization assumption of [KvM02] that implies the collapse of
AM and MA to NP is that some language in NE ∩ coNE requires SAT-oracle circuits of size 2Ω(n).
Later in [MV05], the assumption of SAT-oracle circuits was relaxed to nondeterministic circuits.
Can one prove that the premises of Theorem 1 are implies by a weaker assumption? For example,
the assumption of [KvM02, MV05] that some language in E requires SAT-oracle circuits of size
2Ω(n) implies a deterministic version of the argument of [GS86]. Could one utilize this connection?

Another natural question is to identify a corresponding MA-complete problem in the flavor of
WSSE for AM and SSE for SBP. Could the presented collapse, then, be extended to MA? Con-
versely, could one show that any collapse either AM, SBP or MA to a subclass implies the premises
of Theorem 1? Perhaps under an even stronger assumption that NP ⊆ P/poly?

Finally, we note that setting β(n) = 0 in the statement of Lemma 3.2, will recover the class

SD
(1 , 0)

. Could we identify a natural problem that reduces to t(n)-SSD
(1−β(n) , β(n))

that does not

reduce to SD
(1 , 0)

(with β(n) · t(n) ≤ 1/6)? Such a problem will attest the non-triviality of the
SSD problem.
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