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Abstract

Suppose Alice and Bob are communicating bits to each other in order to compute some
function f , but instead of a classical communication channel they have a pair of walkie-talkie
devices. They can use some classical communication protocol for f where each round one player
sends bit and the other one receives it. The question is whether talking via walkie-talkie gives
them more power? Using walkie-talkie instead of a classical communication channel allows
players two extra possibilities: to speak simultaneously (but in this case they do not hear each
other) and to listen at the same time (but in this case they do not transfer any bits). We show
that for some definitions this non-classical communication model is, in fact, more powerful than
the classical one as it allows to compute some functions in a smaller number of rounds. We also
introduce round elimination technique for proving lower bounds in this setting and use it to
prove lower bounds for some Boolean functions.

1 Introduction

In the classical communication complexity introduced by Yao [7] there are two players, Alice and
Bob, that are trying to compute f(x, y), for some function f , where x is given to Alice and y is
given to Bob. Alice and Bob can communicate by sending bits to each other, one bit per round.
The essential property of this classical model is that in every round of communication one player
sends some bit and the other one receives it.

We define three new communication models that generalize the classical one and resemble com-
munication over so-called half-duplex channels. A well-known example of half-duplex communication
is talking via walkie-talkie: you have to hold a “push-to-talk” button in order to speak to other
person, and you have to release it when you want to listen. If by accident two persons try to speak
simultaneously then they do not hear each other. We consider communication models where players
are allowed to speak simultaneously. Every round each player chooses one of three actions: send
0, send 1, or receive. There are three different types of rounds. If one player sends some bit and
the other one receives in a round then communication works as in the classical case, we call such
rounds normal. If both players send bits in a round then these bits get lost (the same happens
if two persons try to speak via walkie-talkie simultaneously), we call these rounds spent. If both
players receive in a round, we call these rounds silent. We distinguish three possible models, based
on what the players receive in silent rounds:
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1. both players receive nothing, i.e., it is possible for both players to distinguish a silent round
from a normal one, we call this model half-duplex communication with silence;

2. both players receive 0, i.e., players cannot distinguish a silent round from a normal round
where the other player sends 0, we call this model half-duplex communication with zero;

3. each player receives some arbitrary bit, not necessary the same as the other player, we call
this model half-duplex communication with adversary.

In this paper we study communication complexity of Boolean functions that are hard in the classical
communication model.

1.1 Motivation

The original motivation to study these kinds of communication models arose from the question
of the complexity of Karchmer-Wigderson games [5] for multiplexers. The Karchmer-Wigderson
game for a function f : {0, 1}n → {0, 1} is a (classical) communication problem where Alice is given
x ∈ f−1(0), Bob is given y ∈ f−1(1), and they want to find i ∈ [n] such that xi 6= yi. A multiplexer
(or indexing function) is a function Mn : {0, 1}2n × {0, 1}n → {0, 1}, such that Mn(t, i) = t[i], i.e.,
Mn interprets the first part of its input as the truth table of some function f : {0, 1}n → {0, 1} and
the second part as an input x to the function, and outputs f(x). There is a lot of work has been
done studying Karchmer-Wigderson games for compositions including universal relations [3, 1, 2] as
a part of Karchmer-Raz-Wigderson program [4] for proving super-logarithmic formula depth lower
bounds. Multiplexers are similar to universal relations in the sense that there is a natural reduction
from a Karchmer-Wigderson game for some function f : {0, 1}n → {0, 1} to a Karchmer-Wigderson
game for multiplexer Mn: if Alice and Bob are given x and y in the game for f we give them
(tt(f), x) and (tt(f), y), respectively, in the game for Mn, where tt(f) is a truth table of function
f . On the other hand multiplexers are functions, universal relations are not, so proving analogous
results for multiplexers would be one step toward the goal of Karchmer-Raz-Wigderson program.
Unfortunately all the techniques that were used for universal relations cannot be applied directly
to multiplexers because it is impossible to give Alice and Bob the same input string (all these
techniques exploited a symmetry of universal relations that allows to give players the same input
string, but this is impossible for functions because inputs of Alice and Bob come from disjoint sets).

Suppose now that Alice and Bob are playing Karchmer-Wigderson game for multiplexer Mn:
Alice is given (tt(f), x), x ∈ f−1(0), and Bob is given (tt(g), y), y ∈ g−1(1). If the players are also
given a promise that f = g then they can use a protocol for Karchmer-Wigderson game for f . But
what if this promise is broken? Alice can try to act according to the protocol for f , Bob at the same
time can try to act according to a protocol for g, but in some round of this “mixed” protocol they
might both want to send or both want to receive at the same time. Such protocol “mixing” can not
be done in the classical model. To make it possible we extend the communication model by allowing
players to speak or listen simultaneously. How does it affect the communication complexity? As a
first step toward answering this question we study half-duplex communication complexity of Boolean
functions {0, 1}n × {0, 1}n → {0, 1}.

1.2 Organization of this paper

In Section 2, we give definitions for considered communication models. Then, in Section 3, we prove
trivial upper and lower bounds that follows immediately from the definitions. Next, in Section 4, we
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discuss combinatorial rectangles of input pairs that can be associated with communication protocol,
and their application for proving communication complexity lower bounds. In Sections 5, 6 and 7,
we present our main results, upper and lower bounds for proposed communication models. Finally,
in Section 8, we state several open questions.

2 Definitions

Definition 1. Let X, Y and Z be some finite sets. We say that two players, Alice and Bob, are
solving half-duplex communication problem for function f : X ×Y → Z if sets X, Y , Z and function
f are known by both players, Alice is given some x ∈ X, Bob is given some y ∈ Y , and players want
to compute the value of f(x, y) by communicating to each other. The communication is organized
in rounds. At every round, each player decides (depending only on its own input and previous
communication) to do one of three available actions: send 0, send 1 or receive. If one player sends
some bit b ∈ {0, 1} and the other one receives then the latter gets bit b, we call such rounds normal.
If both players send bits at the same time then these bits get lost, we call such rounds spent (it
is important that the player that is sending can not distinguish whether this round is normal or
spent). If both players receive at the same time, we call such rounds silent. There are three variants
of half-duplex communication problem depending on how silent rounds work.

• In a silent round both players receive nothing, so it is possible for both players to distinguish a
silent round from a normal one, the corresponding problem is called half-duplex communication
problem with silence.

• In a silent round both players receive 0, i.e., players cannot distinguish a silent round from a
normal round where the other player sends 0, the corresponding problem is called half-duplex
communication problem with zero;

• In a silent round each player receives some arbitrary bit, not necessarily the same as the other
player; the corresponding problem is called half-duplex communication problem with adversary.

We say that half-duplex communication problem is solved if at the end of communication both
players know f(x, y).

Note that solving half-duplex communication problem with zero there is no need to send zeros —
player can receive instead and the other player will not notice the difference.

Definition 2. Half-duplex communication protocol with silence (with zero) for function f : X×Y →
Z is a rooted tree that describes how Alice and Bob solve communication problem using half-
duplex channel on all possible inputs. Every leaf l of the protocol is labeled with zl ∈ Z. Let
A = {send 0, send 1, receive} be the set of possible actions. Every internal node v of the protocol is
labeled with three functions gAv : X → A, gBv : Y → A, and hv : A×A → C(v), where C(v) is a set
of child nodes of v. Root node corresponds to the initial state of communication. If the current
state of communication corresponds to a node v, then Alice does action gAv (x), Bob does action
gBv (y), and the next node is defined by h(gAv (x), gBv (y)).

The protocol definition for half-duplex communication problems with an adversary is a little bit
more complicated.
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Definition 3. Half-duplex communication protocol with adversary for function f : X × Y → Z is
a rooted tree that describes how Alice and Bob solves communication problem over half-duplex
channel on all possible inputs and for any strategy of adversary w ∈ {0, 1}∗. Every leaf l of the
protocol is labeled with zl ∈ Z. Let A = {send 0, send 1, receive} be the set of possible actions, and
E = {send 0, send 1, receive 0, receive 1} be the set of all possible events. Every inner node v of the
protocol is labeled with three functions gAv : X → A, gBv : Y → A, and hv : E × E → C(v), where
C(v) is a set of child nodes of v. Root node corresponds to the initial state of communication. If
the current state of communication corresponds to a node v, then Alice does action gAv (x), Bob
does action gBv (y). If at least one of players decides to send then corresponding events are defined
in a natural way. If both players decide to receive, i.e., this is a silent round, then Alice receives bit
w2i−1 and Bob receives bit w2i. The next node of the protocol is defined by function h.

Definition 4. We say that half-duplex communication protocol computes function f : X × Y → Z
if for all (x, y) ∈ X × Y , every leaf l of the protocol labeled with zl corresponds to a state where
both players know zl = f(x, y).

The arity of half-duplex communication protocols with silence and with zero is at most nine.
The arity of half-duplex communication problems with adversary is at most 12: there are four
possible events for each player, 16 options in total, but four of them are prohibited (e.g., if Alice
sends 0 and Bob receives 1).

The classical communication complexity of a communication problem for function f , D(f), is
defined in terms of the minimal depth of a protocol solving it. Analogously, we define communication
complexity for half-duplex communication problems.

Definition 5. The minimal depth of a communication protocol solving half-duplex communication
problem for function f with silence, with zero, with adversary, defines half-duplex communication
complexity of function f with silence, denoted Dhd

s (f), with zero, denoted Dhd
0 (f), with adversary,

denoted Dhd
a (f), respectively.

In this paper we study half-duplex communication complexity for a special case of Boolean
functions {0, 1}n × {0, 1}n → {0, 1} (i.e., X = Y = {0, 1}n, Z = {0, 1}).

3 Trivial bounds

As far as half-duplex communication generalizes classical communication the following upper bound
is immediate.

Theorem 1. For every function f : {0, 1}n × {0, 1}n → {0, 1}k,

Dhd
s (f) ≤ Dhd

0 (f) ≤ Dhd
a (f) ≤ D(f).

Proof. Every classical communication protocol can be embedded in half-duplex communication
protocol that does not use spent and silent rounds.

Next theorem shows that every half-duplex protocol with zero or with adversary can be trans-
formed in a classical communication protocol of double depth.

Theorem 2. For every function f : {0, 1}n × {0, 1}n → {0, 1}k,

D(f)

2
≤ Dhd

0 (f) ≤ Dhd
a (f).
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Proof. Every t-round half-duplex communication protocol with silence or with adversary can be
transformed into 2t-round classical communication protocol. Every round of the original protocol
corresponds to two consecutive rounds of the new one: at first round Alice sends a bit she was
sending in the original protocol or sends 0 if she was receiving, at second round Bob does the same
thing.

As we will see later, half-duplex protocols with silence can use silent rounds as an additional
third symbol and hence not every t-round half-duplex protocol with silence can be embedded in 2t
classical protocol. The following theorem shows that instead we can embed every such protocol in a
classical protocol with 3t rounds.

Theorem 3. For every function f : {0, 1}n × {0, 1}n → {0, 1}k, Dhd
s (f) ≥ D(f)

3 .

Proof. Every t-round half-duplex communication protocol with silence can be transformed into
3t-round classical communication protocol. Every round of the original protocol corresponds to three
consecutive rounds of the new one: at first round Alice sends 1 to indicate if she was sending a bit in
the original protocol, or sends 0 otherwise, at second round Bob does the same thing symmetrically.
After that they are both aware of the intentions of each other. If they were both planning to send,
they can skip the third round. If they were both planning to receive, then they can just assume that
they heard silence. If one player was planning to send and the other one was planning to receive
they can perform such an action on third round.

4 Rectangles

Many lower bounds on classical communication complexity were proved by considering combinatorial
rectangles that are associated with the nodes of communication protocol [6]: it’s easy to see that
every node v of the (classical) protocol corresponds to a combinatorial rectangle Rv = Xv×Yv, where
Xv ⊆ X, Yv ⊆ Y , such that if Alice and Bob are given an input from Rv then their communication
will necessarily pass through node v. This implies that the rectangles associated with the child
nodes of v define a subdivision of Rv.

There is a general technique [6] for proving lower bounds using associated combinational
rectangles in: if for some sub-additive measure µ defined on combinatorial rectangles we show both

1. a lower bound on the measure of X × Y , the rectangle in the root node, i.e., µ(X × Y ) ≥ µr
for some µr, and

2. an upper bound on the measure of rectangles in leaves, i.e., for every leaf l the measure of the
corresponding rectangle Rl is at most µ` for some µ`,

then we can claim lower bound of log2(µr/µ`) on the depth of the protocol.
One of the most studied sub-additive measure on rectangles is µM (R) that is equal to the

minimal number of monochromatic rectangles that covers R. Rectangle R is z-monochromatic
in respect to function f for some z ∈ Z if for all (x, y) ∈ R, f(x, y) = z. As far as both players
have to come up with the same answer at the end of communication every rectangle in leaves is
monochromatic, thus for this measure µ` = 1.

Almost the same technique can be used for half-duplex protocols. There are some technical
differences that we have to keep in mind. First of all, as we have already mentioned above, half-
duplex protocol trees has different arities. Secondly, we should be careful while defining associated
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combinatorial rectangles for half-duplex protocols with adversary — in case of silent rounds the
next node of the protocol depends also on a strategy w of adversary, so we have to formally
consider w it as a part of input. This leads to the following lower bound for equality function
EQn : {0, 1}n × {0, 1}n → {0, 1}, such that EQn(x, y) = [x = y].

Theorem 4.

• Dhd
s (EQn) > log9 2n = n/ log 9,

• Dhd
0 (EQn) > log9 2n = n/ log 9,

• Dhd
a (EQn) > log12 2n = n/ log 12.

Proof. Let µ = µM . All rectangle in leaves are monochromatic, µ` = 1. Every 1-monochromatic
rectangle is of size one: if some rectangle contains two elements, say (x, x) and (x′, x′), then it also
contains (x, x′) and (x′, x), so it is not 1-monochromatic. Thus, the root rectangle has measure at
least µr = 2n + 1 [6].

Unlike the classical communication in half-duplex communication players do not always know
what was the other’s player action — the information about it can be “lost” i.e., in spent rounds
player do not know what was that other’s player action. It means that a player might not know
what node of the protocol corresponds to the current state of communication. Keeping this in mind,
we can give an alternative definition of half-duplex protocols.

Definition 6. Internal half-duplex communication protocol for function f : X × Y → Z is a
pair (TA, TB) of rooted trees that describe how Alice and Bob solve half-duplex communication
problem on all possible inputs (and for any strategy of adversary w ∈ {0, 1}∗). Every node
of TA corresponds to a state of Alice, every node of TB — to a state of Bob. Every leaf l
is labeled with zl ∈ Z. Let A = {send 0, send 1, receive} be the set of possible actions, and
E = {send 0, send 1, receive 0, receive 1} be the set of all possible events. Every node v of TA (of
TB) is labeled with two functions gv : X → A (gv : Y → A) and hv : E → C(v), where C(v) is a
set of child nodes of v. Root nodes of TA and TB correspond, respectively, to the initial states of
Alice and Bob. If Alice (Bob) is in a state that corresponds to node v ∈ TA (v ∈ TB), then she does
action gv(x) (he does action gv(y)). The next node of the protocol is defined by the function h (and
also by strategy w in case of silent round).

Trees TA and TB have smaller arity than protocol trees we defined earlier. In fact,

• arity is 5 for half-duplex communication with silence (send 0 or 1, receive 0 or 1, silence),

• arity is 3 for half-duplex communication with zero (send 1, receive 0 or 1),

• arity is 4 for half-duplex communication with adversary (send 0 or 1, receive 0 or 1).

For internal half-duplex protocols we still can define associated combinatorial rectangles and apply
the same technique. This allows us to improve Theorem 4.

Theorem 5.

• Dhd
s (EQn) ≥ log5 2n = n/ log 5,
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• Dhd
0 (EQn) ≥ log3 2n = n/ log 3,

• Dhd
a (EQn) ≥ log4 2n = n/2.

Proof. See the proof of Theorem 4.

Surprisingly, as we will see later, first two result are sharp up to additive logarithmic term. We
can get better bound if we improve this technique using round elimination.

4.1 Round elimination

Let us fix a protocol for some half-duplex communication problem and consider the first round. Let
Rc = X × Y be the corresponding rectangle of all possible inputs. We can subdivide Rc in nine
rectangles, one for each possible combination of actions.

Alice\Bob send 0 send 1 receive

send 0 R00 R01 R0r

send 1 R10 R11 R1r

receive Rr0 Rr1 Rrr

Consider two rectangles: Rgood = R00 ∪ R01 ∪ R0r and Rbad = R0r ∪ R1r. If we restrict f to be a
partial function defined only on Rgood, i.e., players will always get some (x, y) ∈ Rgood, then there is
no need in the first round — the information the players get about the other part of the input is
fixed: Alice does not get any information, Bob can receive 0 if he decide to receive. On the other
hand if we restrict f to Rbad then the first round is still needed: Bob can receive both 0 and 1
and this information in necessary to proceed to the next round. Lets call a rectangle R good for
functions f if restricting f to R makes the first round unnecessary (i.e., protocol without the first
round is correct for all (x, y) ∈ R). The idea of this method is to consider some covering of Rc with
a set of good rectangles and prove that there is always a good rectangle of large enough measure.
If we can show that there is always a rectangle of measure at least α · µ(Rc) then we can iterate
this idea and claim that protocol depth is at least log1/α(µr/µ`), where µr is a lower bound on the
measure of the root rectangle and µ` is an upper bound on the measure of leaf rectangles.

Lemma 1. Let µ be some sub-additive measure on rectangles such that µ(X × Y ) ≥ µr and for any
leaf rectangle Rl, µ(Rl) ≤ µ`. If for any rectangle R there is always a good subrectangle for function
f � R of measure at least α · µ(R) then the depth of the protocol is at least log1/α

µr
µ`
.

Proof. We start with R = X × Y . Every round restrict f to some good Rgood ⊆ R such that
µ(Rgood) ≥ α · µ(R), let R to be Rgood, and proceed to the next round. At the end we will reach
some leaf. Thus there is at least log1/α(µr/µ`) rounds.

5 Half-duplex communication with silence

The main advantage of this model over the other models we consider is that whenever players
have silent round, they learn about it. In some sense they have a third symbol in the alphabet —
receiving player can get either 0/1 or a special symbol corresponding to “silence”. Next theorem
shows how players can take the advantage of silence to transfer data.

Theorem 6. For every f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
s (f) ≤ dn/ log 3e+ 1.
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Proof. Alice encodes x in ternary alphabet {0, 1, 2} and sends it to Bob: in order to send 0 or 1
Alice sends the corresponding bit, sending 2 is emulated by receiving (keeping silence). This requires
dlog3 2ne = dn/ log 3e bits. At the last round Bob computes f(x, y) and sends it back to Alice.

Using the idea of encoding in a non-binary alphabet, we managed to prove a better upper bound
for equality function.

Theorem 7. Dhd
s (EQn) ≤ dn/ log 5e+ dlog n/ log 3e+ 2.

Proof. Alice and Bob encode their inputs in alphabet of size five {0, 1, 2, 3, 4}. Then they process
their inputs symbol by symbol sequentially in dn/ log 5e rounds. At round i they process ith symbol
in the following manner.

Symbol Alice Bob

0 send 0 receive

1 send 1 receive

2 receive send 0

3 receive send 1

4 receive receive

If ith round is normal then one player can check whether ith symbols are different. If ith round is
silent then again one player knows if ith symbols are different. If after dn/ log 5e rounds one of the
players has already learned that the answer is 0, then he or she sends 0. If this round is not silent,
then both players know that the answer is 0. Otherwise, Alice and Bob have to make sure that
there were no spent rounds. In order to check it, Alice sends the number normal rounds she was
receiving in encoded in ternary, that requires dlog n/ log 3e rounds. Bob checks whether this number
is equal to the number of rounds he was sending in. If so, inputs are equal. In the last round, Bob
sends the answer back to Alice.

The next theorem shows better than n/ log 3 upper bound for disjointness function DISJn :
{0, 1}n × {0, 1}n → {0, 1}, such that DISJn(x, y) =

∧
i∈[n] ¬(xi ∧ yi), which in classical case is one

of the hardest functions of this type.

Theorem 8. Dhd
s (DISJn) ≤ dn/2e+ 2.

Proof. Alice and Bob process their inputs two bits per round, dn/ log 2e rounds. At round i they
process symbols 2i− 1 and 2i in the following manner.

Symbols Alice Bob

00 send 0 receive

01 receive send 0

10 receive send 1

11 receive receive

At the end of communication Bob tells Alice whether there was a silent round in which Bob’s input
was 11 (i.e., inputs are not disjoint). Alice tells Bob whether she ever received 0 having 01 or 11, or
received 1 having 10 or 11 (again, inputs are not disjoint).
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The next function we have results for is the inner product function IPn : {0, 1}n×{0, 1}n → {0, 1},
such that IPn(x, y) =

⊕
i∈[n] xiyi. In the classical model, this function is one of the harder ones.

This might also be the case for half-duplex models as the same time we do not know efficient
protocols for it, and this is the function we can prove the best lower bounds for. On the other hand,
the best lower bound we can prove for it in this model is n/2.

Theorem 9. Dhd
s (IPn) ≥ n/2.

For this theorem we need the following fact about inner product function.

Lemma 2. Every leaf rectangle of a protocol solving communication problem for IPn has size at
most 2n.

Proof. We start with proving it for leaves labeled with 0. Let Rl = Xl × Yl be a rectangle of leaf l
labeled with 0, i.e., Rl is 0-monochromatic. For every x ∈ Xl and y ∈ Yl, IPn(x, y) = 0, set Xl must
be contained in the orthogonal complement for span of Yl. Thus, dim({Xl}) + dim({Yl}) ≤ n, and
hence, |R| = |Xl| × |Yl| ≤ 2n.

If leaf is labeled with 1 then for every x ∈ Xl and y ∈ Yl, IPn(x, y) = 1. Let y′ be arbitrary
element of Yl. Consider a set Y ′l = {y ⊕ y′ | y ∈ Yl}. It is easy to see that for every x ∈ Xl and
y ∈ Y ′l , IPn(x, y) = 0, so we can apply the argument above to show that |Xl|× |Y ′l | ≤ 2n. It remains
to notice that |Yl| = |Y ′l |.

Proof of Theorem 9. Let Rc be the rectangle of all possible inputs and µ(R) = |R|. Consider the
following set of good rectangles: a rectangle Rsilent = Rrr where round is silent, four rectangles
R0∗ = R00 ∪ R01 ∪ R0r, R1∗ = R10 ∪ R11 ∪ R1r, R∗0 = R00 ∪ R10 ∪ Rr0, R∗1 = R01 ∪ R11 ∪ Rr1,
where one of players sends some bit, and a rectangle Rspent = R00 ∪R01 ∪R10 ∪R11, where round
is spent. We claim one of these good rectangles has measure at least µ(Rc)/4.

For µ(R) = |R| we can use the following fact. Let a0, a1 and ar be the probability over all
possible inputs that Alice sends 0, sends 1, and receives, respectively. Analogously, we define b0,
b1 and br to be the probability that Bob sends 0, sends 1, and receives. It is easy to see that
a0 + a1 + ar = b0 + b1 + br = 1 and for all α, β ∈ {0, 1, r}, µ(Rαβ) = aα · bβ · µ(Rc).

We need to show that

max
{
µ(R0∗), µ(R1∗), µ(R∗0), µ(R∗1), µ(Rsilent), µ(Rspent))

}
≥ µ(Rc)/4.

This is equivalent to showing that

max
{
a1, a0, b1, b0, arbr, (1− ar)(1− br)

}
≥ 1/4

for any a0, a1, ar, b0, b1, br ∈ [0, 1], such that a0 + a1 + ar = b0 + b1 + br = 1. Let ā = (a1 + a0)/2,
b̄ = (b1 + b0)/2. As far as max{a0, a1} ≥ ā and max{b0, b1} ≥ b̄,

max
{
a1, a0, b1, b0, arbr, (1− ar)(1− br)

}
≥ max

{
ā, b̄, arbr, (1− ar)(1− br)

}
.

Note that ar + 2ā = 1, br + 2b̄ = 1. Hence ā = (1− ar)/2, b̄ = (1− br)/2,

max
{
ā, b̄, arbr, (1− ar)(1− br)

}
= max

{
(1− ar)/2, (1− br)/2, arbr, (1− ar)(1− br)

}
.

If ar ≤ 1/2 or br ≤ 1/2 then one of first arguments is at least 1/4. On the other hand if ar > 1/2
and br > 1/2 then arbr > 1/4. Now we apply Lemma 1 for µr = 4n, µ` = 2n (Lemma 2), α = 1/4,
and get the desired bound.
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6 Half-duplex communication with zero

As we have already mentioned before there are only two reasonable actions in this model: send 1 or
receive. The following theorem shows that half-duplex communication with zero is more powerful
than classical communication, namely, it is possible to solve communication problem for EQn in
less than n rounds of communication.

Theorem 10. Dhd
0 (EQn) ≤ dn/ log 3e+ 2dlog ne+ 1.

Proof. Alice and Bob encode their inputs in ternary. In the first phase of the protocol, they process
their inputs sequentially symbol by symbol in dn/ log 3e rounds. At round i they process ith symbol
in the following manner.

Symbol Alice Bob

0 receive receive

1 send 1 receive

2 receive send 1

In the next 2dlog ne they send each other the number of ones they sent in the first phase. If inputs
were different then one of players must have noticed it. At the first phase at round i Alice learns if
their corresponding symbols are (0, 2), (2, 0) or (2, 1), Bob learns if their symbols are (0, 1) or (1, 0).
In the second phase, they can learn whether any of (1, 2) situation happened in the first phase.
The last round players use to notify each other if somebody noticed a mismatch — in this case the
player that noticed sends 1.

Next theorem shows that there are functions of higher complexity than EQn.

Theorem 11. Dhd
0 (IPn) ≥ n/ log 2

3−
√

5
> n/ log 2.62.

Proof. Let Rc be the rectangle of all possible inputs and µ(R) = |R|. Consider the following set of
good rectangles: Rslilent = Rrr, Rspent = R11, R1∗ = R11 ∪R1r and R∗1 = R11 ∪Rr1. We claim one

of these good rectangles has measure at least 3−
√

5
2 · µ(Rc). We need to show that

max
{
µ(R1∗), µ(R∗1), µ(Rsilent), µ(Rspent))

}
≥ 3−

√
5

2
· µ(R).

It is equivalent to showing that for any a, b ∈ [0, 1],

max
{
a, b, ab, (1− a)(1− b)

}
≥ 3−

√
5

2
,

where a and b denote the probabilities over all possible inputs that, respectively, Alice and Bob
sends 1. It’s easy to see minimum value of max

{
a, b, ab, (1− a)(1− b)

}
is at most 1/2, so we can

consider only a ≤ 1/2 and b ≤ 1/2. Thus,

max
{
a, b, ab, (1− a)(1− b)

}
= max

{
a, b, (1− a)(1− b)

}
.

Now we can argue that minimum of this max is achieved when a = b = (1 − a)(1 − b): indeed,
increasing or decreasing a or b increases one of the arguments. Solving corresponding quadratic

equation a = (1− a)2 we get a = 3−
√

5
2 , and hence

max
{
a, b, ab, (1− a)(1− b)

}
≥ 3−

√
5

2
.

Applying Lemma 1 for µr = 4n, µ` = 2n, and α = 3−
√

5
2 finishes the proof.
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7 Half-duplex communication with adversary

The main feature of this model is that receiving player can not be 100% sure that the received bit
if in fact is “real”, i.e., this bit originates from the other player, not from an adversary. But the
protocol must be correct for any strategy of adversary. Our intuition prompts that in this setting
silent and spent rounds would be useless. So we state a conjecture.

Conjecture 1. There is function f : {0, 1}n × {0, 1}n → {0, 1} that requires n − o(n) rounds of
half-duplex communication with an adversary.

There is a common obstacle our methods faced when we were trying to prove this conjecture — it
could be the case that players send different bits in spent rounds. For some reason, our methods do
not work in this case which is strange because these spend rounds do not transmit any information.
If we somehow forbid players to send different bits in spent rounds (e.g., in this case, we immediately
terminate the communication and make players output 0) then we can prove that EQn requires n
rounds of communication. The same bound can be achieved if we allow such spent rounds only on
distinct inputs. We suppose that this is an artifact of our methods and there is a way to overcome
this obstacle. For unrestricted model, the best we can show is the following two theorems.

Theorem 12. Dhd
a (EQn) ≥ n/ log 2.5.

Proof. Let Rc be the rectangle of all possible inputs and µ(R) =
∣∣{(x, x) ∈ R}

∣∣. Consider the
following set of 5 good rectangles:

Rspent = R00 +R01 +R10 +R11,

and four rectangles

R1̄1̄ = R00 ∪R0r ∪Rr0 ∪Rrr, R0̄1̄ = R10 ∪R1r ∪Rr0 ∪Rrr,
R1̄0̄ = R01 ∪R0r ∪Rr1 ∪Rrr, R0̄0̄ = R11 ∪R1r ∪Rr1 ∪Rrr,

where Alice does not send α and Bob does not send β some fixed bits α, β.
Now let us observe that together all these good rectangles cover the entire rectangle of possible

input twice, and hence one of it has measure at least 2/5 · µ(Rc).

The last theorem of this section demonstrates the best known lower bound for this model.

Theorem 13. D(IPn) ≥ n/ log 7
3 .

Proof. Let Rc be the rectangle of all possible inputs and µ(R) = |R|. We use a set of good rectangles
consisted of rectangles Rspent, R1̄1̄, R0̄1̄, R1̄0̄, R0̄0̄ from the proof of Theorem 12 and four additional
rectangles

R0∗ = R00 ∪R01 ∪R0r, R∗0 = R00 ∪R10 ∪Rr0,
R1∗ = R10 ∪R11 ∪R1r, R∗1 = R01 ∪R11 ∪Rr1,

where one of players sends some fixed bit. The following lemma shows that for this set of good
rectangles and this specific measure we can prove a better bound.

11



Lemma 3. For all half-duplex protocols with adversary

max
{
µ(Rspent), µ(R0∗), µ(R∗0), µ(R1∗), µ(R∗1), µ(R1̄1̄), µ(R0̄1̄), µ(R1̄0̄), µ(R0̄0̄)

}
≥ 3

7
· µ(Rc).

Proof. We use the idea we have already seen in the proof of Theorem 9. Let a0, a1 and ar be
the probabilities over all possible inputs that Alice sends 0, sends 1 and receives, respectively.
Analogously, we define b0, b1 and br to be the probabilities that Bob sends 0, sends 1 and receives. It
is easy to see that a0 + a1 + ar = b0 + b1 + br = 1 and for all α, β ∈ {0, 1, r}, µ(Rαβ) = aα · bβ ·µ(Rc)
(it is important here that µ(R) = |R|). Minimization of maximum of linear functions with such
constraints can be reduced to a semidefinite programming problem. Its solution gives us a desired
bound.

Application of the Lemma 1 for µr = 4n, µ` = 2n and α = 3/7, finishes the proof.

8 Open problems

It would be interesting to improve upper and lower bounds for Boolean functions for all three
half-duplex communication models. The next step in studying these models would be proving
non-trivial lower bound for some Karchmer-Wigderson game, e.g., prove that Karchmer-Wigderson
game for parity function requires 2 log n−o(log n). So we propose the following list of open problems.

1. Prove that for any f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
s (f) ≤ n/2 + o(n), or disprove it by

showing that there is f such that Dhd
s (f) ≥ αn− o(n) for some α > 1/2.

2. Show that there is f : {0, 1}n × {0, 1}n → {0, 1} such that Dhd
0 (f) ≥ αn − o(n) for some

α > 1/ log 2
3−
√

5
(it is hard to believe that this is in fact correct constant).

3. Is there any α < 1 such that for any f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
0 (f) ≤ αn+ o(n)?

4. Prove that for any f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
s (f) ≥ n− o(n).

5. Prove explicit lower bounds for some Karchmer-Wigderson game in the new models.
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