Half-duplex communication complexity

Kenneth Hoover*  Russell Impagliazzo†  Ivan Mihajlin‡  Alexander V. Smal§

April 27, 2018

Abstract

Suppose Alice and Bob are communicating bits to each other in order to compute some function $f$, but instead of a classical communication channel they have a pair of walkie-talkie devices. They can use some classical communication protocol for $f$ where each round one player sends bit and the other one receives it. The question is whether talking via walkie-talkie gives them more power? Using walkie-talkie instead of a classical communication channel allows players two extra possibilities: to speak simultaneously (but in this case they do not hear each other) and to listen at the same time (but in this case they do not transfer any bits). We show that for some definitions this non-classical communication model is, in fact, more powerful than the classical one as it allows to compute some functions in a smaller number of rounds. We also introduce round elimination technique for proving lower bounds in this setting and use it to prove lower bounds for some Boolean functions.

1 Introduction

In the classical communication complexity introduced by Yao [7] there are two players, Alice and Bob, that are trying to compute $f(x, y)$, for some function $f$, where $x$ is given to Alice and $y$ is given to Bob. Alice and Bob can communicate by sending bits to each other, one bit per round. The essential property of this classical model is that in every round of communication one player sends some bit and the other one receives it.

We define three new communication models that generalize the classical one and resemble communication over so-called half-duplex channels. A well-known example of half-duplex communication is talking via walkie-talkie: you have to hold a “push-to-talk” button in order to speak to other person, and you have to release it when you want to listen. If by accident two persons try to speak simultaneously then they do not hear each other. We consider communication models where players are allowed to speak simultaneously. Every round each player chooses one of three actions: send 0, send 1, or receive. There are three different types of rounds. If one player sends some bit and the other one receives in a round then communication works as in the classical case, we call such rounds normal. If both players send bits in a round then these bits get lost (the same happens if two persons try to speak via walkie-talkie simultaneously), we call these rounds spent. If both players receive in a round, we call these rounds silent. We distinguish three possible models, based on what the players receive in silent rounds:

*University of California San Diego, khooveri@eng.ucsd.edu
†University of California San Diego, russell@cs.ucsd.edu
‡University of California San Diego, ivmihajlin@gmail.com
§St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, smal@pdmi.ras.ru
1. both players receive nothing, i.e., it is possible for both players to distinguish a silent round from a normal one, we call this model half-duplex communication with silence;

2. both players receive 0, i.e., players cannot distinguish a silent round from a normal round where the other player sends 0, we call this model half-duplex communication with zero;

3. each player receives some arbitrary bit, not necessary the same as the other player, we call this model half-duplex communication with adversary.

In this paper we study communication complexity of Boolean functions that are hard in the classical communication model.

1.1 Motivation

The original motivation to study these kinds of communication models arose from the question of the complexity of Karchmer-Wigderson games [5] for multiplexers. The Karchmer-Wigderson game for a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is a (classical) communication problem where Alice is given $x \in f^{-1}(0)$, Bob is given $y \in f^{-1}(1)$, and they want to find $i \in [n]$ such that $x[i] \neq y[i]$. A multiplexer (or indexing function) is a function $M_n : \{0, 1\}^{2n} \times \{0, 1\}^n \rightarrow \{0, 1\}$, such that $M_n(t, i) = t[i]$, i.e., $M_n$ interprets the first part of its input as the truth table of some function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ and the second part as an input $x$ to the function, and outputs $f(x)$. There is a lot of work has been done studying Karchmer-Wigderson games for compositions including universal relations [3, 1, 2] as a part of Karchmer-Raz-Wigderson program [4] for proving super-logarithmic formula depth lower bounds. Multiplexers are similar to universal relations in the sense that there is a natural reduction from a Karchmer-Wigderson game for some function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ to a Karchmer-Wigderson game for multiplexer $M_n$: if Alice and Bob are given $x$ and $y$ in the game for $f$ we give them $(tt(f), x)$ and $(tt(f), y)$, respectively, in the game for $M_n$, where $tt(f)$ is a truth table of function $f$. On the other hand multiplexers are functions, universal relations are not, so proving analogous results for multiplexers would be one step toward the goal of Karchmer-Raz-Wigderson program.

Unfortunately all the techniques that were used for universal relations cannot be applied directly to multiplexers because it is impossible to give Alice and Bob the same input string (all these techniques exploited a symmetry of universal relations that allows to give players the same input string, but this is impossible for functions because inputs of Alice and Bob come from disjoint sets).

Suppose now that Alice and Bob are playing Karchmer-Wigderson game for multiplexer $M_n$: Alice is given $(tt(f), x)$, $x \in f^{-1}(0)$, and Bob is given $(tt(g), y)$, $y \in g^{-1}(1)$. If the players are also given a promise that $f = g$ then they can use a protocol for Karchmer-Wigderson game for $f$. But what if this promise is broken? Alice can try to act according to the protocol for $f$, Bob at the same time can try to act according to a protocol for $g$, but in some round of this “mixed” protocol they might both want to send or both want to receive at the same time. Such protocol “mixing” can not be done in the classical model. To make it possible we extend the communication model by allowing players to speak or listen simultaneously. How does it affect the communication complexity? As a first step toward answering this question we study half-duplex communication complexity of Boolean functions $\{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$.

1.2 Organization of this paper

In Section 2, we give definitions for considered communication models. Then, in Section 3, we prove trivial upper and lower bounds that follows immediately from the definitions. Next, in Section 4, we
discuss combinatorial rectangles of input pairs that can be associated with communication protocol, and their application for proving communication complexity lower bounds. In Sections 5, 6 and 7, we present our main results, upper and lower bounds for proposed communication models. Finally, in Section 8, we state several open questions.

2 Definitions

Definition 1. Let $X$, $Y$ and $Z$ be some finite sets. We say that two players, Alice and Bob, are solving \textit{half-duplex communication problem} for function $f : X \times Y \to Z$ if sets $X$, $Y$, $Z$ and function $f$ are known by both players, Alice is given some $x \in X$, Bob is given some $y \in Y$, and players want to compute the value of $f(x, y)$ by communicating to each other. The communication is organized in rounds. At every round, each player decides (depending only on its own input and previous communication) to do one of three available actions: send 0, send 1 or receive. If one player sends some bit $b \in \{0, 1\}$ and the other one receives then the latter gets bit $b$, we call such rounds \textit{normal}. If both players send bits at the same time then these bits get lost, we call such rounds \textit{spent} (it is important that the player that is sending can not distinguish whether this round is normal or spent). If both players receive at the same time, we call such rounds \textit{silent}. There are three variants of half-duplex communication problem depending on how silent rounds work.

- In a silent round both players receive \textit{nothing}, so it is possible for both players to distinguish a silent round from a normal one, the corresponding problem is called \textit{half-duplex communication problem with silence}.
- In a silent round both players receive 0, i.e., players cannot distinguish a silent round from a normal round where the other player sends 0, the corresponding problem is called \textit{half-duplex communication problem with zero};
- In a silent round each player receives some arbitrary bit, not necessarily the same as the other player; the corresponding problem is called \textit{half-duplex communication problem with adversary}.

We say that half-duplex communication problem is \textit{solved} if at the end of communication both players know $f(x, y)$.

Note that solving half-duplex communication problem with zero there is no need to send zeros — player can receive instead and the other player will not notice the difference.

Definition 2. \textit{Half-duplex communication protocol with silence (with zero)} for function $f : X \times Y \to Z$ is a rooted tree that describes how Alice and Bob solve communication problem using half-duplex channel on all possible inputs. Every leaf $l$ of the protocol is labeled with $z_l \in Z$. Let $A = \{\text{send 0}, \text{send 1}, \text{receive}\}$ be the set of possible actions. Every internal node $v$ of the protocol is labeled with three functions $g_v^A : X \to A$, $g_v^B : Y \to A$, and $h_v : A \times A \to C(v)$, where $C(v)$ is a set of child nodes of $v$. Root node corresponds to the initial state of communication. If the current state of communication corresponds to a node $v$, then Alice does action $g_v^A(x)$, Bob does action $g_v^B(y)$, and the next node is defined by $h(g_v^A(x), g_v^B(y))$.

The protocol definition for half-duplex communication problems with an adversary is a little bit more complicated.
Theorem 2. For every function \( f : X \times Y \rightarrow Z \) between functions, the following upper bound is immediate.

\[
D^s(f) \leq D^0(f) \leq D^a(f) \leq D(f).
\]

Proof. Every classical communication protocol can be embedded in half-duplex communication protocol that does not use spent and silent rounds.

Next theorem shows that every half-duplex protocol with zero or with adversary can be transformed in a classical communication protocol of double depth.

Theorem 3. Half-duplex communication protocol with adversary for function \( f : X \times Y \rightarrow Z \) is a rooted tree that describes how Alice and Bob solves communication problem over half-duplex channel on all possible inputs and for any strategy of adversary \( w \in \{0,1\}^* \). Every leaf \( l \) of the protocol is labeled with \( z_l \in Z \). Let \( A = \{\text{send } 0, \text{send } 1, \text{receive}\} \) be the set of possible actions, and \( E = \{\text{send } 0, \text{send } 1, \text{receive } 0, \text{receive } 1\} \) be the set of all possible events. Every inner node \( v \) of the protocol is labeled with three functions \( g_v^A : X \rightarrow A, g_v^B : Y \rightarrow A \), and \( h_v : E \times E \rightarrow C(v) \), where \( C(v) \) is a set of child nodes of \( v \). Root node corresponds to the initial state of communication. If the current state of communication corresponds to a node \( v \), then Alice does action \( g_v^A(x) \), Bob does action \( g_v^B(y) \). If at least one of players decides to send then corresponding events are defined in a natural way. If both players decide to receive, i.e., this is a silent round, then Alice receives bit \( w_{2i-1} \) and Bob receives bit \( w_{2i} \). The next node of the protocol is defined by function \( h \).

Definition 4. We say that half-duplex communication protocol computes function \( f : X \times Y \rightarrow Z \) if for all \( (x,y) \in X \times Y \), every leaf \( l \) of the protocol labeled with \( z_l \) corresponds to a state where both players know \( z_l = f(x,y) \).

The arity of half-duplex communication protocols with silence and with zero is at most nine. The arity of half-duplex communication problems with adversary is at most 12: there are four possible events for each player, 16 options in total, but four of them are prohibited (e.g., if Alice sends 0 and Bob receives 1).

The classical communication complexity of a communication problem for function \( f \), \( D(f) \), is defined in terms of the minimal depth of a protocol solving it. Analogously, we define communication complexity for half-duplex communication problems.

Definition 5. The minimal depth of a communication protocol solving half-duplex communication problem for function \( f \) with silence, with zero, with adversary, defines half-duplex communication complexity of function \( f \) with silence, denoted \( D^s(f) \), with zero, denoted \( D^0(f) \), with adversary, denoted \( D^a(f) \), respectively.

In this paper we study half-duplex communication complexity for a special case of Boolean functions \( \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\} \) (i.e., \( X = Y = \{0,1\}^n, Z = \{0,1\} \)).

3 Trivial bounds

As far as half-duplex communication generalizes classical communication the following upper bound is immediate.

Theorem 1. For every function \( f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^k \),

\[
D^s(f) \leq D^0(f) \leq D^a(f) \leq D(f).
\]

Proof. Every classical communication protocol can be embedded in half-duplex communication protocol that does not use spent and silent rounds. \qed

Next theorem shows that every half-duplex protocol with zero or with adversary can be transformed in a classical communication protocol of double depth.

Theorem 2. For every function \( f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^k \),

\[
\frac{D(f)}{2} \leq D^0(f) \leq D^a(f).
\]
Proof. Every $t$-round half-duplex communication protocol with silence or with adversary can be transformed into $2t$-round classical communication protocol. Every round of the original protocol corresponds to two consecutive rounds of the new one: at first round Alice sends a bit she was sending in the original protocol or sends 0 if she was receiving, at second round Bob does the same thing.

As we will see later, half-duplex protocols with silence can use silent rounds as an additional third symbol and hence not every $t$-round half-duplex protocol with silence can be embedded in $2t$ classical protocol. The following theorem shows that instead we can embed every such protocol in a classical protocol with $3t$ rounds.

**Theorem 3.** For every function $f : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^k$, $D_{hd}^{\mathcal{D}}(f) \geq \frac{D(f)}{3}$.

**Proof.** Every $t$-round half-duplex communication protocol with silence can be transformed into $3t$-round classical communication protocol. Every round of the original protocol corresponds to three consecutive rounds of the new one: at first round Alice sends 1 to indicate if she was sending a bit in the original protocol, or sends 0 otherwise, at second round Bob does the same thing symmetrically. After that they are both aware of the intentions of each other. If they were both planning to send, they can skip the third round. If they were both planning to receive, then they can just assume that they heard silence. If one player was planning to send and the other one was planning to receive they can perform such an action on third round.

## 4 Rectangles

Many lower bounds on classical communication complexity were proved by considering combinatorial rectangles that are associated with the nodes of communication protocol [6]: it’s easy to see that every node $v$ of the (classical) protocol corresponds to a combinatorial rectangle $R_v = X_v \times Y_v$, where $X_v \subseteq X$, $Y_v \subseteq Y$, such that if Alice and Bob are given an input from $R_v$ then their communication will necessarily pass through node $v$. This implies that the rectangles associated with the child nodes of $v$ define a subdivision of $R_v$.

There is a general technique [6] for proving lower bounds using associated combinatorial rectangles in: if for some sub-additive measure $\mu$ defined on combinatorial rectangles we show both

1. a lower bound on the measure of $X \times Y$, the rectangle in the root node, i.e., $\mu(X \times Y) \geq \mu_r$ for some $\mu_r$, and

2. an upper bound on the measure of rectangles in leaves, i.e., for every leaf $l$ the measure of the corresponding rectangle $R_l$ is at most $\mu_\ell$ for some $\mu_\ell$,

then we can claim lower bound of $\log_2(\mu_r/\mu_\ell)$ on the depth of the protocol.

One of the most studied sub-additive measure on rectangles is $\mu_M(R)$ that is equal to the minimal number of monochromatic rectangles that covers $R$. Rectangle $R$ is $z$-monochromatic in respect to function $f$ for some $z \in Z$ if for all $(x, y) \in R$, $f(x, y) = z$. As far as both players have to come up with the same answer at the end of communication every rectangle in leaves is monochromatic, thus for this measure $\mu_\ell = 1$.

Almost the same technique can be used for half-duplex protocols. There are some technical differences that we have to keep in mind. First of all, as we have already mentioned above, half-duplex protocol trees has different arities. Secondly, we should be careful while defining associated
combinatorial rectangles for half-duplex protocols with adversary — in case of silent rounds the next node of the protocol depends also on a strategy \( w \) of adversary, so we have to formally consider \( w \) it as a part of input. This leads to the following lower bound for equality function \( \text{EQ}_n : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\} \), such that \( \text{EQ}_n(x, y) = |x = y| \).

**Theorem 4.**

- \( D_{\text{hd}}^s(\text{EQ}_n) > \log_9 2^n = n / \log 9 \),
- \( D_{\text{hd}}^0(\text{EQ}_n) > \log_9 2^n = n / \log 9 \),
- \( D_{\text{hd}}^a(\text{EQ}_n) > \log_{12} 2^n = n / \log 12 \).

**Proof.** Let \( \mu = \mu_M \). All rectangle in leaves are monochromatic, \( \mu_\ell = 1 \). Every 1-monochromatic rectangle is of size one: if some rectangle contains two elements, say \((x, x)\) and \((x', x')\), then it also contains \((x, x')\) and \((x', x)\), so it is not 1-monochromatic. Thus, the root rectangle has measure at least \( \mu_r = 2^n + 1 \). \(\square\)

Unlike the classical communication in half-duplex communication players do not always know what was the other’s player action — the information about it can be “lost” i.e., in spent rounds player do not know what was that other’s player action. It means that a player might not know what node of the protocol corresponds to the current state of communication. Keeping this in mind, we can give an alternative definition of half-duplex protocols.

**Definition 6.** *Internal half-duplex communication protocol* for function \( f : X \times Y \to Z \) is a pair \((T_A, T_B)\) of rooted trees that describe how Alice and Bob solve half-duplex communication problem on all possible inputs (and for any strategy of adversary \( w \in \{0, 1\}^* \)). Every node of \( T_A \) corresponds to a state of Alice, every node of \( T_B \) — to a state of Bob. Every leaf \( l \) is labeled with \( z_l \in Z \). Let \( \mathcal{A} = \{\text{send 0}, \text{send 1}, \text{receive}\} \) be the set of possible actions, and \( \mathcal{E} = \{\text{send 0}, \text{send 1}, \text{receive 0, receive 1}\} \) be the set of all possible events. Every node \( v \) of \( T_A \) (of \( T_B \)) is labeled with two functions \( g_v : X \to \mathcal{A} \) (\( g_v : Y \to \mathcal{A} \)) and \( h_v : \mathcal{E} \to C(v) \), where \( C(v) \) is a set of child nodes of \( v \). Root nodes of \( T_A \) and \( T_B \) correspond, respectively, to the initial states of Alice and Bob. If Alice (Bob) is in a state that corresponds to node \( v \in T_A \) (\( v \in T_B \)), then she does action \( g_v(x) \) (he does action \( g_v(y) \)). The next node of the protocol is defined by the function \( h \) (and also by strategy \( w \) in case of silent round).

Trees \( T_A \) and \( T_B \) have smaller arity than protocol trees we defined earlier. In fact,

- arity is 5 for half-duplex communication with silence (send 0 or 1, receive 0 or 1, silence),
- arity is 3 for half-duplex communication with zero (send 1, receive 0 or 1),
- arity is 4 for half-duplex communication with adversary (send 0 or 1, receive 0 or 1).

For internal half-duplex protocols we still can define associated combinatorial rectangles and apply the same technique. This allows us to improve Theorem 4.

**Theorem 5.**

- \( D_{\text{hd}}^s(\text{EQ}_n) \geq \log_5 2^n = n / \log 5 \),
• $D_{0}^{hd}(\text{EQ}_n) \geq \log_3 2^n = n/\log 3$,

• $D_{a}^{hd}(\text{EQ}_n) \geq \log_4 2^n = n/2$.

Proof. See the proof of Theorem 4.

Surprisingly, as we will see later, first two result are sharp up to additive logarithmic term. We can get better bound if we improve this technique using round elimination.

4.1 Round elimination

Let us fix a protocol for some half-duplex communication problem and consider the first round. Let $R_e = X \times Y$ be the corresponding rectangle of all possible inputs. We can subdivide $R_e$ in nine rectangles, one for each possible combination of actions.

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>send 0</td>
<td>send 0</td>
</tr>
<tr>
<td>$R_{00}$</td>
<td>$R_{01}$</td>
</tr>
<tr>
<td>send 1</td>
<td>send 1</td>
</tr>
<tr>
<td>$R_{10}$</td>
<td>$R_{11}$</td>
</tr>
<tr>
<td>receive</td>
<td>receive</td>
</tr>
<tr>
<td>$R_{r0}$</td>
<td>$R_{r1}$</td>
</tr>
</tbody>
</table>

Consider two rectangles: $R_{\text{good}} = R_{00} \cup R_{01} \cup R_{0r}$ and $R_{\text{bad}} = R_{0r} \cup R_{1r}$. If we restrict $f$ to be a partial function defined only on $R_{\text{good}}$, i.e., players will always get some $(x, y) \in R_{\text{good}}$, then there is no need in the first round — the information the players get about the other part of the input is fixed: Alice does not get any information, Bob can receive 0 if he decide to receive. On the other hand if we restrict $f$ to $R_{\text{bad}}$ then the first round is still needed: Bob can receive both 0 and 1 and this information in necessary to proceed to the next round. Lets call a rectangle $R$ good for functions $f$ if restricting $f$ to $R$ makes the first round unnecessary (i.e., protocol without the first round is correct for all $(x, y) \in R$). The idea of this method is to consider some covering of $R_e$ with a set of good rectangles and prove that there is always a good rectangle of large enough measure.

If we can show that there is always a rectangle of measure at least $\alpha \cdot \mu(R_c)$ then we can iterate this idea and claim that protocol depth is at least $\frac{\log_1/\alpha}{\mu_r/\mu_\ell}$, where $\mu_r$ is a lower bound on the measure of the root rectangle and $\mu_\ell$ is an upper bound on the measure of leaf rectangles.

Lemma 1. Let $\mu$ be some sub-additive measure on rectangles such that $\mu(X \times Y) \geq \mu_r$ and for any leaf rectangle $R_t$, $\mu(R_t) \leq \mu_\ell$. If for any rectangle $R$ there is always a good subrectangle for function $f \upharpoonright R$ of measure at least $\alpha \cdot \mu(R)$ then the depth of the protocol is at least $\log_{1/\alpha}(\mu_r/\mu_\ell)$.

Proof. We start with $R = X \times Y$. Every round restrict $f$ to some good $R_{\text{good}} \subseteq R$ such that $\mu(R_{\text{good}}) \geq \alpha \cdot \mu(R)$, let $R$ to be $R_{\text{good}}$, and proceed to the next round. At the end we will reach some leaf. Thus there is at least $\log_{1/\alpha}(\mu_r/\mu_\ell)$ rounds.

5 Half-duplex communication with silence

The main advantage of this model over the other models we consider is that whenever players have silent round, they learn about it. In some sense they have a third symbol in the alphabet — receiving player can get either 0/1 or a special symbol corresponding to “silence”. Next theorem shows how players can take the advantage of silence to transfer data.

Theorem 6. For every $f : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}$, $D_s^{hd}(f) \leq \lceil n/\log 3 \rceil + 1$. 


Proof. Alice encodes $x$ in ternary alphabet \{0, 1, 2\} and sends it to Bob: in order to send 0 or 1 Alice sends the corresponding bit, sending 2 is emulated by receiving (keeping silence). This requires \lceil \log_3 2^n \rceil = \lceil n / \log 3 \rceil$ bits. At the last round Bob computes $f(x, y)$ and sends it back to Alice.

Using the idea of encoding in a non-binary alphabet, we managed to prove a better upper bound for equality function.

**Theorem 7.** $D^{bd}_s (\text{EQ}_n) \leq \lceil n / \log 5 \rceil + \lceil \log n / \log 3 \rceil + 2.$

**Proof.** Alice and Bob encode their inputs in alphabet of size five \{0, 1, 2, 3, 4\}. Then they process their inputs symbol by symbol sequentially in \lceil n / \log 5 \rceil rounds. At round $i$ they process $i$th symbol in the following manner.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>send 0</td>
<td>receive</td>
</tr>
<tr>
<td>1</td>
<td>send 1</td>
<td>receive</td>
</tr>
<tr>
<td>2</td>
<td>receive</td>
<td>send 0</td>
</tr>
<tr>
<td>3</td>
<td>receive</td>
<td>send 1</td>
</tr>
<tr>
<td>4</td>
<td>receive</td>
<td>receive</td>
</tr>
</tbody>
</table>

If $i$th round is normal then one player can check whether $i$th symbols are different. If $i$th round is silent then again one player knows if $i$th symbols are different. If after \lceil n / \log 5 \rceil rounds one of the players has already learned that the answer is 0, then he or she sends 0. If this round is not silent, then both players know that the answer is 0. Otherwise, Alice and Bob have to make sure that there were no spent rounds. In order to check it, Alice sends the number normal rounds she was receiving in encoded in ternary, that requires \lceil \log n / \log 3 \rceil rounds. Bob checks whether this number is equal to the number of rounds he was sending in. If so, inputs are equal. In the last round, Bob sends the answer back to Alice.

The next theorem shows better than $n / \log 3$ upper bound for disjointness function $\text{DISJ}_n : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$, such that $\text{DISJ}_n(x, y) = \bigwedge_{i \in [n]} \neg(x_i \land y_i)$, which in classical case is one of the hardest functions of this type.

**Theorem 8.** $D^{bd}_s (\text{DISJ}_n) \leq \lceil n / 2 \rceil + 2.$

**Proof.** Alice and Bob process their inputs two bits per round, \lceil n / \log 2 \rceil rounds. At round $i$ they process symbols $2i - 1$ and $2i$ in the following manner.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>send 0</td>
<td>receive</td>
</tr>
<tr>
<td>01</td>
<td>receive</td>
<td>send 0</td>
</tr>
<tr>
<td>10</td>
<td>receive</td>
<td>send 1</td>
</tr>
<tr>
<td>11</td>
<td>receive</td>
<td>receive</td>
</tr>
</tbody>
</table>

At the end of communication Bob tells Alice whether there was a silent round in which Bob’s input was 11 (i.e., inputs are not disjoint). Alice tells Bob whether she ever received 0 having 01 or 11, or received 1 having 10 or 11 (again, inputs are not disjoint).
The next function we have results for is the inner product function $\mathrm{IP}_n : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, such that $\mathrm{IP}_n(x,y) = \bigoplus_{i \in [n]} x_i y_i$. In the classical model, this function is one of the harder ones. This might also be the case for half-duplex models as the same time we do not know efficient protocols for it, and this is the function we can prove the best lower bounds for. On the other hand, the best lower bound we can prove for it in this model is $n/2$.

**Theorem 9.** $D_{s}^{bd}(\mathrm{IP}_n) \geq n/2$.

For this theorem we need the following fact about inner product function.

**Lemma 2.** Every leaf rectangle of a protocol solving communication problem for $\mathrm{IP}_n$ has size at most $2^n$.

**Proof.** We start with proving it for leaves labeled with $0$. Let $R_l = X_l \times Y_l$ be a rectangle of leaf $l$ labeled with $0$, i.e., $R_l$ is 0-monochromatic. For every $x \in X_l$ and $y \in Y_l$, $\mathrm{IP}_n(x,y) = 0$, set $X_l$ must be contained in the orthogonal complement for span of $Y_l$. Thus, $\dim(\{X_l\}) + \dim(\{Y_l\}) \leq n$, and hence, $|R_l| = |X_l| \times |Y_l| \leq 2^n$.

If leaf is labeled with $1$ then for every $x \in X_l$ and $y \in Y_l$, $\mathrm{IP}_n(x,y) = 1$. Let $y'$ be arbitrary element of $Y_l$. Consider a set $Y'_l = \{y \oplus y' \mid y \in Y_l\}$. It is easy to see that for every $x \in X_l$ and $y \in Y'_l$, $\mathrm{IP}_n(x,y) = 0$, so we can apply the argument above to show that $|X_l| \times |Y'_l| \leq 2^n$. It remains to notice that $|Y_l| = |Y'_l|$.

**Proof of Theorem 9.** Let $R_c$ be the rectangle of all possible inputs and $\mu(R) = |R|$. Consider the following set of good rectangles: a rectangle $R_{\text{silent}} = R_{rr} \times \{0\}$ where round is silent, four rectangles $R_{00} = R_{00} \cup R_{01} \cup R_{0r}, R_{1s} = R_{10} \cup R_{11} \cup R_{r1}, R_{s0} = R_{00} \cup R_{10} \cup R_{r0}, R_{s1} = R_{01} \cup R_{11} \cup R_{r1}$, where one of players sends some bit, and a rectangle $R_{\text{spent}} = R_{00} \cup R_{01} \cup R_{10} \cup R_{11}$, where round is spent. We claim one of these good rectangles has measure at least $\mu(R_c)/4$.

For $\mu(R) = |R|$ we can use the following fact. Let $a_0, a_1$ and $a_r$ be the probability over all possible inputs that Alice sends $0$, sends $1$, and receives, respectively. Analogously, we define $b_0, b_1$ and $b_r$ to be the probability that Bob sends $0$, sends $1$, and receives. It is easy to see that $a_0 + a_1 + a_r = b_0 + b_1 + b_r = 1$ and for all $\alpha, \beta \in \{0,1,r\}$, $\mu(R_{\alpha\beta}) = a_\alpha \cdot b_\beta \cdot \mu(R_c)$.

We need to show that $$\max\{\mu(R_{0s}), \mu(R_{1s}), \mu(R_{s0}), \mu(R_{s1}), \mu(R_{\text{silent}}), \mu(R_{\text{spent}})\} \geq \mu(R_c)/4.$$ This is equivalent to showing that $$\max\{a_1, a_0, b_1, b_0, a_r, b_r, (1-a_r)(1-b_r)\} \geq 1/4$$ for any $a_0, a_1, a_r, b_0, b_1, b_r \in [0,1]$, such that $a_0 + a_1 + a_r = b_0 + b_1 + b_r = 1$. Let $\bar{a} = (a_1 + a_0)/2$, $\bar{b} = (b_1 + b_0)/2$. As far as $\max\{a_0, a_1\} \geq \bar{a}$ and $\max\{b_0, b_1\} \geq \bar{b}$,

$$\max\{a_1, a_0, b_1, b_0, a_r, b_r, (1-a_r)(1-b_r)\} \geq \max\{\bar{a}, \bar{b}, a_r b_r, (1-a_r)(1-b_r)\}.$$ Note that $a_r + 2\bar{a} = 1, b_r + 2\bar{b} = 1$. Hence $\bar{a} = (1-a_r)/2, \bar{b} = (1-b_r)/2$,

$$\max\{\bar{a}, \bar{b}, a_r b_r, (1-a_r)(1-b_r)\} = \max\{(1-a_r)/2, (1-b_r)/2, a_r b_r, (1-a_r)(1-b_r)\}.$$ If $a_r \leq 1/2$ or $b_r \leq 1/2$ then one of first arguments is at least $1/4$. On the other hand if $a_r > 1/2$ and $b_r > 1/2$ then $a_r b_r > 1/4$. Now we apply Lemma 1 for $\mu_r = 4^n, \mu_\ell = 2^n$ (Lemma 2), $\alpha = 1/4$, and get the desired bound.


6 Half-duplex communication with zero

As we have already mentioned before there are only two reasonable actions in this model: send 1 or receive. The following theorem shows that half-duplex communication with zero is more powerful than classical communication, namely, it is possible to solve communication problem for $EQ_n$ in less than $n$ rounds of communication.

**Theorem 10.** $D_{hd}^0(EQ_n) \leq \lceil n/\log 3 \rceil + 2\lceil \log n \rceil + 1$.

**Proof.** Alice and Bob encode their inputs in ternary. In the first phase of the protocol, they process their inputs sequentially symbol by symbol in $\lceil n/\log 3 \rceil$ rounds. At round $i$ they process $i$th symbol in the following manner.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>receive</td>
<td>receive</td>
</tr>
<tr>
<td>1</td>
<td>send 1</td>
<td>receive</td>
</tr>
<tr>
<td>2</td>
<td>receive</td>
<td>send 1</td>
</tr>
</tbody>
</table>

In the next $2\lceil \log n \rceil$ they send each other the number of ones they sent in the first phase. If inputs were different then one of players must have noticed it. At the first phase at round $i$ Alice learns if their corresponding symbols are $(0,2)$, $(2,0)$ or $(2,1)$, Bob learns if their symbols are $(0,1)$ or $(1,0)$. In the second phase, they can learn whether any of $(1,2)$ situation happened in the first phase. The last round players use to notify each other if somebody noticed a mismatch — in this case the player that noticed sends 1. □

Next theorem shows that there are functions of higher complexity than $EQ_n$.

**Theorem 11.** $D_{hd}^0(IP_n) \geq n/\log\frac{2}{3-\sqrt{5}} > n/\log 2.62$.

**Proof.** Let $R_c$ be the rectangle of all possible inputs and $\mu(R) = |R|$. Consider the following set of good rectangles: $R_{silent} = R_{rrr}$, $R_{spent} = R_{11}$, $R_{1*} = R_{11} \cup R_{1r}$, and $R_{*1} = R_{11} \cup R_{r1}$. We claim one of these good rectangles has measure at least $\frac{3-\sqrt{5}}{2} \cdot \mu(R_c)$. We need to show that

$$\max\{\mu(R_{1*}), \mu(R_{*1}), \mu(R_{silent}), \mu(R_{spent})\} \geq \frac{3-\sqrt{5}}{2} \cdot \mu(R).$$

It is equivalent to showing that for any $a, b \in [0, 1]$,

$$\max\{a, b, ab, (1-a)(1-b)\} \geq \frac{3-\sqrt{5}}{2},$$

where $a$ and $b$ denote the probabilities over all possible inputs that, respectively, Alice and Bob send 1. It’s easy to see minimum value of $\max\{a, b, ab, (1-a)(1-b)\}$ is at most $1/2$, so we can consider only $a \leq 1/2$ and $b \leq 1/2$. Thus,

$$\max\{a, b, ab, (1-a)(1-b)\} = \max\{a, b, (1-a)(1-b)\}.$$

Now we can argue that minimum of this max is achieved when $a = b = (1-a)(1-b)$: indeed, increasing or decreasing $a$ or $b$ increases one of the arguments. Solving corresponding quadratic equation $a = (1-a)^2$ we get $a = \frac{3-\sqrt{5}}{2}$, and hence

$$\max\{a, b, ab, (1-a)(1-b)\} \geq \frac{3-\sqrt{5}}{2}.$$

Applying Lemma 1 for $\mu_r = 4^n$, $\mu_{1r} = 2^n$, and $\alpha = \frac{3-\sqrt{5}}{2}$ finishes the proof. □
7 Half-duplex communication with adversary

The main feature of this model is that receiving player can not be 100% sure that the received bit if in fact is “real”, i.e., this bit originates from the other player, not from an adversary. But the protocol must be correct for any strategy of adversary. Our intuition prompts that in this setting silent and spent rounds would be useless. So we state a conjecture.

Conjecture 1. There is function \( f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\} \) that requires \( n - o(n) \) rounds of half-duplex communication with an adversary.

There is a common obstacle our methods faced when we were trying to prove this conjecture — it could be the case that players send different bits in spent rounds. For some reason, our methods do not work in this case which is strange because these spend rounds do not transmit any information. If we somehow forbid players to send different bits in spent rounds (e.g., in this case, we immediately terminate the communication and make players output 0) then we can prove that \( EQ_n \) requires \( n \) rounds of communication. The same bound can be achieved if we allow such spent rounds only on distinct inputs. We suppose that this is an artifact of our methods and there is a way to overcome this obstacle. For unrestricted model, the best we can show is the following two theorems.

Theorem 12. \( D^{hd}_a(EQ_n) \geq n / \log 2.5 \).

Proof. Let \( R_c \) be the rectangle of all possible inputs and \( \mu(R) = |\{(x, x) \in R\}| \). Consider the following set of 5 good rectangles:

\[ R_{\text{spent}} = R_{00} + R_{01} + R_{10} + R_{11}, \]

and four rectangles

\[ R_{11} = R_{00} \cup R_{0r} \cup R_{r0} \cup R_{rr}, \quad R_{01} = R_{10} \cup R_{1r} \cup R_{r0} \cup R_{rr}, \]

\[ R_{10} = R_{01} \cup R_{0r} \cup R_{r1} \cup R_{rr}, \quad R_{00} = R_{11} \cup R_{1r} \cup R_{r1} \cup R_{rr}, \]

where Alice does not send \( \alpha \) and Bob does not send \( \beta \) some fixed bits \( \alpha, \beta \).

Now let us observe that together all these good rectangles cover the entire rectangle of possible input twice, and hence one of it has measure at least \( 2/5 \cdot \mu(R_c) \).

The last theorem of this section demonstrates the best known lower bound for this model.

Theorem 13. \( D(IP_n) \geq n / \log \frac{7}{3} \).

Proof. Let \( R_c \) be the rectangle of all possible inputs and \( \mu(R) = |R| \). We use a set of good rectangles consisted of rectangles \( R_{\text{spent}}, R_{11}, R_{01}, R_{10}, R_{00} \) from the proof of Theorem 12 and four additional rectangles

\[ R_{0*} = R_{00} \cup R_{01} \cup R_{0r}, \quad R_{00} = R_{00} \cup R_{10} \cup R_{r0}, \]

\[ R_{1*} = R_{10} \cup R_{11} \cup R_{1r}, \quad R_{11} = R_{01} \cup R_{11} \cup R_{r1}, \]

where one of players sends some fixed bit. The following lemma shows that for this set of good rectangles and this specific measure we can prove a better bound.
Lemma 3. For all half-duplex protocols with adversary $\mu$

$$\max\{\mu(R_{spent}), \mu(R_{0s}), \mu(R_{0t}), \mu(R_{1s}), \mu(R_{1t}), \mu(R_{01}), \mu(R_{10}), \mu(R_{00})\} \geq \frac{3}{7} \cdot \mu(R_c).$$

Proof. We use the idea we have already seen in the proof of Theorem 9. Let $a_0$, $a_1$ and $a_r$ be the probabilities over all possible inputs that Alice sends 0, sends 1 and receives, respectively. Analogously, we define $b_0$, $b_1$ and $b_r$ to be the probabilities that Bob sends 0, sends 1 and receives. It is easy to see that $a_0 + a_1 + a_r = b_0 + b_1 + b_r = 1$ and for all $\alpha, \beta \in \{0, 1, r\}$, $\mu(R_{0\alpha}) = a_\alpha \cdot b_\beta \cdot \mu(R_c)$ (it is important here that $\mu(R) = |R|$). Minimization of maximum of linear functions with such constraints can be reduced to a semidefinite programming problem. Its solution gives us a desired bound.

Application of the Lemma 1 for $\mu_r = 4^n$, $\mu_t = 2^n$ and $\alpha = 3/7$, finishes the proof. $
$

8 Open problems

It would be interesting to improve upper and lower bounds for Boolean functions for all three half-duplex communication models. The next step in studying these models would be proving non-trivial lower bound for some Karchmer-Wigderson game, e.g., prove that Karchmer-Wigderson game for parity function requires $2\log n - o(\log n)$. So we propose the following list of open problems.

1. Prove that for any $f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$, $D^{hd}_s(f) \leq n/2 + o(n)$, or disprove it by showing that there is $f$ such that $D^{hd}_s(f) \geq \alpha n - o(n)$ for some $\alpha > 1/2$.

2. Show that there is $f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$ such that $D^{hd}_0(f) \geq \alpha n - o(n)$ for some $\alpha > 1/\log \frac{2}{3-\sqrt{5}}$ (it is hard to believe that this is in fact correct constant).

3. Is there any $\alpha < 1$ such that for any $f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$, $D^{hd}_0(f) \leq \alpha n + o(n)$?

4. Prove that for any $f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$, $D^{hd}_s(f) \geq n - o(n)$.

5. Prove explicit lower bounds for some Karchmer-Wigderson game in the new models.

References


