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Abstract

Suppose Alice and Bob are communicating in order to compute some function f , but instead
of a conventional communication channel, they have a pair of walkie-talkie devices. They can
use some classical communication protocol for f , where every round one of the players sends
a bit, and the other receives it. The question is whether talking via walkie-talkie gives them
more power? Using walkie-talkies instead of a classical communication channel allows players
two extra possibilities: to speak simultaneously (but in this case they do not hear each other)
and to listen at the same time (but in this case they do not transfer any bits). The motivation
for this kind of communication model comes from the study of the KRW conjecture. We show
that for some definitions, this non-classical communication model is, in fact, more powerful than
the classical one as it allows to compute some functions in a smaller number of rounds. We
also prove lower bounds for these models using both combinatorial and information-theoretic
methods.

1 Introduction

In the classical communication complexity model introduced by Yao [12] two players, Alice and
Bob, are trying to compute f(x, y), for some function f , where Alice knows only x and Bob knows
only y. Alice and Bob can communicate by sending bits to each other, one bit per round. The
essential property of this classical model is that in every round of communication one player sends
some bit and the other one receives it.

We define three new communication models that generalize the classical one and resemble
communication over so-called half-duplex channels. A well-known example of half-duplex commu-
nication is talking via walkie-talkie: one has to hold a “push-to-talk” button to speak to another
person, and one has to release it to listen. If two persons try to speak simultaneously then they
do not hear each other. We consider communication models where players are allowed to speak
simultaneously. Every round each player chooses one of three actions: send 0, send 1, or receive.
There are three different types of rounds. If one player sends some bit and the other one receives
then communication works like in the classical case, we call such rounds normal. If both players
send bits during the round then these bits get lost (the same happens if two persons try to speak
via walkie-talkie simultaneously), we call these rounds spent. If both players receive, we call these
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rounds silent. We distinguish three possible models, based on what happens in silent rounds. If
in silent rounds both players receive 0, i.e., players cannot distinguish a silent round from a nor-
mal round where the other player sends 0, we call this model half-duplex communication with zero.
Similar models were studied in [7] (without “canceling” spent rounds) and in [3] (for multi-party
communication with the noisy broadcast channel). Two other models, we will define later.

In this paper, we study the communication complexity of Boolean functions that are hard in
the classical case. It is important to note that we care about multiplicative constants. Every clas-
sical communication can be viewed as half-duplex communication with zero and every half-duplex
communication with zero can be simulated with classical communication doubling the number of
rounds (see Theorem 6 and 7). So the complexity of half-duplex communication is sandwiched
between the complexity of the classical case and a half of it. The task of this study is to improve
these bounds.

1.1 Motivation

The original motivation to study these kinds of communication models arose from the question of
the complexity of the Karchmer-Wigderson games [9] for multiplexers. The Karchmer-Wigderson
game for a function f : {0, 1}n → {0, 1} (KW game) is a (classical) communication problem where
Alice is given x ∈ f−1(0), Bob is given y ∈ f−1(1), and they want to find an i ∈ [n] such that
xi 6= yi. Let D(KW (f)) be a minimal number of rounds that is enough to solve the KW game for
f on any pair of possible inputs.

Conjecture 1 (The KRW conjecture [8]). Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}
be Boolean non-constant functions. Then D(KW (g ◦ f)) ≈ D(KW (g)) + D(KW (f)), where
g ◦ f denotes a composition g ◦ f : ({0, 1}n)m → {0, 1} is defined by (g ◦ f)(x1, . . . , xm) =
g(f(x1), . . . , f(xm)) where x1, . . . , xn ∈ {0, 1}m.

This conjecture implies a super-logarithmic formula depth lower bound (and hence a super-
polynomial size lower bound): we can start with a maximally hard function on log n variables
that requires logn depth and construct a formula on n variables that requires super-logarithmic
depth. In attempt to prove it a lot of work has been done studying KW games where one or
both functions are replaced with universal relations [5, 2, 4]. Another approach to resolving the
conjecture lies in examining multiplexer functions. Amultiplexer (or indexing function) is a function
Mn : {0, 1}2n × {0, 1}n → {0, 1}, such that Mn(t, i) = t[i], i.e., Mn interprets the first part of its
input as the truth table of some function f : {0, 1}n → {0, 1} and the second part as an input
x to the function, and outputs f(x). Multiplexers are similar to universal relations in the sense
that there is a natural reduction from a KW game for some function f : {0, 1}n → {0, 1} to a
KW game for multiplexer Mn: if Alice and Bob are given x and y in the game for f we give
them (tt(f), x) and (tt(f), y), respectively, in the game for Mn, where tt(f) is a truth table of
function f . On the other hand, multiplexers are functions, not relations, so proving analogous
results for multiplexers would be one step toward proving the KRW conjecture. Unfortunately,
all the techniques that were used for universal relations cannot be applied directly to multiplexers
because it is impossible to give Alice and Bob the same input string; all these techniques exploited
the symmetry of universal relations that allows giving players the same input string, but this is
impossible for functions because inputs of Alice and Bob come from disjoint sets.

Suppose now that Alice and Bob are solving the KW game for multiplexer Mn: Alice is given
(tt(f), x), x ∈ f−1(0), and Bob is given (tt(g), y), y ∈ g−1(1). If the players are also given a promise
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that f = g (note that f and g are parts players inputs, so Alice and Bob plays KW game for Mn on
a subset of inputs) then they can use a protocol for KW game for f . However, what if they do not
have such a promise (i.e., all inputs are possible, in particular, such that f 6= g)? Alice can still try
to act as if she plays KW game for f , Bob at the same time can try to act as if he plays KW game
for g, but if in fact f 6= g then in some round of this “mixed” protocol they might both want to
send or both want to receive at the same time. Such protocol “mixing” is impossible in the classical
model. To make it possible we extend the communication model by allowing players to speak or
listen simultaneously. How does it affect the communication complexity? When answering this
question we care about multiplicative constants — if in this model all (hard) functions become two
times easier than in the classical case then this model is useless for proving the KRW conjecture.
As a first step toward answering this question, we study the half-duplex communication complexity
of Boolean functions {0, 1}n × {0, 1}n → {0, 1}.

1.2 Organization of this paper

In Section 2, we give definitions for the new communication models. Then, in Section 3, we prove
trivial upper and lower bounds that follow immediately from the definitions. Next, in Section 4,
we discuss methods for proving communication complexity lower bounds. In Sections 5, 6 and 7,
we present our main results, upper and lower bounds for proposed communication models. Finally,
in Section 8, we state several open questions.

1.3 Changes from previous versions

In the previous versions on this paper including the conference version [6] we claimed better lower
bounds for IPn in all tree half-duplex models based on an information theoretic approach. Unfor-
tunately, proofs of these results (Theorems 18, 21, and 24 in [6]) contain a critical flaw (Lemma 13
in [6] is not true). Moreover, as far as we know, this flaw can not be fixed — there is an upper
bound of n/2 + 2 on half-duplex complexity of IPn with silence (proven by Tatiana Gladysh) that
matches the lower bound proven here up to an additive constant 2. This upper bound contradicts
the lower bound claimed in the previous versions of the paper. All these theorems were removed
from the paper preserving numeration of other theorems.

2 Definitions

Definition 1. Let X, Y , and Z be some finite sets. We say that two players, Alice and Bob, are
solving the half-duplex communication problem for a relation R ⊆ X × Y × Z if sets X, Y , Z, and
the relation R are known by both players, Alice is given some x ∈ X, Bob is given some y ∈ Y ,
and players want to find some z ∈ Z such that (x, y, z) ∈ R, by communicating to each other via
a half-duplex channel. The communication is organized into rounds. At each round, both players
decide (depending only on their inputs and previous communication) to do one of three available
actions: send 0, send 1 or receive. If one player sends some bit b ∈ {0, 1} and the other one receives
then the latter gets bit b, we call such rounds normal. If both players send bits at the same time
then these bits get lost, we call such rounds spent (it is crucial that the player that is sending cannot
distinguish whether this round is normal or spent). If both players receive at the same time, we
call such rounds silent. There are three variants of half-duplex communication problem depending
on how silent rounds work.
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• In a silent round both players receive a special symbol silence, so it is possible for both
players to distinguish a silent round from a normal one, the corresponding problem is called
a half-duplex communication problem with silence.

• In a silent round both players receive 0, i.e., players cannot distinguish a silent round from a
normal round where the other player sends 0, the corresponding problem is called a half-duplex
communication problem with zero.

• In a silent round each player receives some arbitrary bit, not necessarily the same as the
other player; the corresponding problem is called a half-duplex communication problem with
adversary.

We say that half-duplex communication problem for R is solved if at the end of communication
both players know some z, such that (x, y, z) ∈ R.

Next, we define a notion of communication protocol. In the classical case, a protocol is a binary
rooted tree that describes communication of the players on all possible inputs: every internal node
corresponds to a state of communication and defines which of players is sending this round. Unlike
the classical case in half-duplex communication a player does not always know what the other’s
player action was — the information about it can be “lost,” i.e., in spent rounds a player do not
know what the other player’s action was. It means that a player might not know what node of
the protocol corresponds to the current state of communication. Note also that solving half-duplex
communication problem with zero there is no need to send zeros — a player can receive instead
and the other player will not notice the difference. Keeping all this in mind, we give the following
definition of half-duplex protocol.

Definition 2. Half-duplex communication protocol with silence that solves a relation R ⊂ X×Y ×Z
is a pair (TA, TB) of rooted trees that describe how Alice and Bob communicate on all possible
inputs (x, y) ∈ X×Y . Every node of TA corresponds to a state of Alice, every node of TB to a state
of Bob. Every leaf l is labeled with zl ∈ Z. Let A = {send(0), send(1), receive} be the set of
possible actions, and E = {send(0), send(1), receive(0), receive(1), silence} be the set of all
possible events. Every node v of TA (of TB) is labeled with two functions gv : X → A (gv : Y → A)
and hv : E → C(v), where C(v) is a set of child nodes of v. Root nodes of TA and TB correspond,
respectively, to the initial states of Alice and Bob. If Alice (Bob) is in a state that corresponds to
node v ∈ TA (v ∈ TB), then she does action gv(x) (he does action gv(y)). Events of both players are
defined in a natural way by their actions in this round. The next node of the protocol is defined by
the function h. When the players reach a leaf they stop (they always reach a leaf simultaneously).
The protocol is correct if for every input pair (x, y) ∈ X×Y communication ends in a pair of leaves
labeled with the same z ∈ Z such that (x, y, z) ∈ R.

Half-duplex communication protocol with zero is defined in the same way with a different set of
possible events E = {send(1), receive(0), receive(1)}, i.e it does not include send(0).

Half-duplex communication protocol with adversary that solves a relation R ⊂ X × Y × Z
is a pair (TA, TB) of rooted trees that describe how Alice and Bob communicate on all possi-
ble inputs (x, y) ∈ X × Y and for any strategy of adversary w ∈ {0, 1}∗. The structure of
the protocol is the same as in half-duplex communication protocol with zero, but with E =
{send(0), send(1), receive(0), receive(1)}. If both players decide to receive in round i, then
Alice and Bob receive bits w2i−1 and w2i respectively. The protocol is correct if for every input
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pair (x, y) ∈ X × Y and any strategy of adversary w ∈ {0, 1}∗ communication ends in two leaves
labeled with the same z ∈ Z such that (x, y, z) ∈ R.

For each of these models, a partial transcript after k rounds is a pair (πa, πb) of length-k
sequences over E that lists the events observed by Alice and Bob, respectively, after running some
protocol on a pair of inputs for k rounds.

The cardinality of set E upper bounds arity of trees TA and TB: arity is 5 for half-duplex
communication with silence, 3 for half-duplex communication with zero, and 4 for half-duplex
communication with the adversary.

Definition 3. Half-duplex communication protocol solves a communication problem for function
f : X × Y → Z if it solves a relation R(f) = {(x, y, f(x, y)) | x ∈ X, y ∈ Y }.

The classical communication complexity of a communication problem for function f , D(f), is de-
fined in terms of the minimal depth of a protocol solving it. Analogously, we define communication
complexity for half-duplex communication problems.

Definition 4. The minimal depth of a communication protocol solving half-duplex communication
problem for function f with silence, with zero, with adversary, defines half-duplex communication
complexity of function f with silence, denoted Dhd

s (f), with zero, denoted Dhd
0 (f), with adversary,

denoted Dhd
a (f), respectively. Analogously, we define half-duplex communication complexity of

relation R with silence, Dhd
s (R), with zero, Dhd

0 (R), and with adversary, Dhd
a (R).

In this paper we study half-duplex communication complexity for a special case of Boolean
functions {0, 1}n × {0, 1}n → {0, 1} (i.e., X = Y = {0, 1}n, Z = {0, 1}).

Definition 5.

• Equality function EQn : {0, 1}n × {0, 1}n → {0, 1}, such that EQn(x, y) = 1 ⇐⇒ x = y.

• Inner product function IPn : {0, 1}n × {0, 1}n → {0, 1}, such that IPn(x, y) =
⊕

i∈[n] xiyi.

• Disjointness function DISJn : {0, 1}n × {0, 1}n → {0, 1}, such that DISJn(x, y) = 1 ⇐⇒ ∀i :
xi 6= 1 ∨ yi 6= 1.

All these function require n bits of communication in the classical model.

3 Trivial bounds

As far as half-duplex communication generalizes classical communication the following upper bound
is immediate.

Theorem 6. For every function f : {0, 1}n×{0, 1}n → {0, 1}, Dhd
s (f) ≤ Dhd

0 (f) ≤ Dhd
a (f) ≤ D(f).

Proof. Every classical communication protocol can be embedded in half-duplex communication
protocol that does not use spent and silent rounds.

Next theorem shows that one can always transform half-duplex protocol with zero or with the
adversary into a classical communication protocol of double depth.

Theorem 7. For every function f : {0, 1}n × {0, 1}n → {0, 1}, D(f)
2 ≤ Dhd

0 (f) ≤ Dhd
a (f).

5



Proof. Every t-round half-duplex communication protocol with zero or with the adversary can be
transformed into 2t-round classical communication protocol. Every round of the original protocol
corresponds to two consecutive rounds of the new one: on the first round Alice sends a bit she was
sending in the original protocol or sends 0 if she was receiving, at second round Bob does the same
thing.

As we will see later, half-duplex protocols with silence can use silent rounds as an additional
third symbol and hence not every t-round half-duplex protocol with silence can be embedded in 2t
classical protocol. The following theorem shows that instead, we can embed every such protocol in
a classical protocol with 3t rounds.

Theorem 8. For every function f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
s (f) ≥ D(f)

3 .

Proof. Every t-round half-duplex communication protocol with silence can be transformed into
3t-round classical communication protocol. Every round of the original protocol corresponds to
three consecutive rounds of the new one: on the first round, Alice sends 1 to indicate if she was
sending a bit in the original protocol, or sends 0 otherwise, at second round Bob does the same
thing symmetrically. After that, they are both aware of the intentions of each other. If they were
both planning to send, they could skip the third round. If they were both planning to receive, then
they can assume that they heard silence. If one player was planning to send and the other one was
planning to receive they can perform such action on the third round.

Remark 1. Theorems 6, 7, and 8 hold also for f : {0, 1}n × {0, 1}n → {0, 1}k.

4 Methods for lower bounds

4.1 Rectangles

Many lower bounds on classical communication complexity were proved by considering combinato-
rial rectangles associated with the nodes of communication protocol [11]: it is easy to see that every
node v of the (classical) protocol corresponds to a combinatorial rectangle Rv = Xv × Yv, where
Xv ⊆ X, Yv ⊆ Y , such that if Alice and Bob are given an input from Rv then their communication
will necessarily pass through node v. This implies that the rectangles associated with the child
nodes of v define a subdivision of Rv.

There is a general technique [11] for proving lower bounds using associated combinational rect-
angles in: if for some sub-additive measure µ defined on combinatorial rectangles we show both
a lower bound on the measure of X × Y , the rectangle in the root node, i.e., µ(X × Y ) ≥ µr for
some µr > 0, and an upper bound on the measure of rectangles in leaves, i.e., for every leaf l the
measure of the corresponding rectangle Rl is at most µℓ for some µℓ > 0, then we can claim lower
bound of log2(µr/µℓ) on the depth of the protocol.

One of the most studied sub-additive measure on rectangles is µM (R) that is equal to the
minimal number of monochromatic rectangles that covers R. Rectangle R is z-monochromatic in
respect to function f for some z ∈ Z if for all (x, y) ∈ R, f(x, y) = z. As far as both players
have to come up with the same answer at the end of communication every rectangle in leaves is
monochromatic, thus for this measure µℓ = 1.

We can use almost the same technique for half-duplex protocols. There are some technical
differences that we have to keep in mind. First of all, we can apply this idea to both trees TA and
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TB. We should also note that trees TA and TB are non-binary; hence arity became the base of
the logarithm. Secondly, we should be careful while defining associated combinatorial rectangles
for half-duplex protocols with adversary — in case of silent rounds the next node of the protocol
depends also on a strategy w of adversary, so we have to formally consider w as a part of input.
This leads to the following lower bound for equality.

Theorem 9.

• Dhd
s (EQn) ≥ log5 2

n = n/ log 5,

• Dhd
0 (EQn) ≥ log3 2

n = n/ log 3,

• Dhd
a (EQn) ≥ log4 2

n = n/2.

Proof. Let µ = µM . All leaf rectangles are monochromatic, µℓ = 1. Every 1-monochromatic
rectangle is of size one: if some rectangle contains two elements, say (x, x) and (x′, x′), then it also
contains (x, x′) and (x′, x), so it is not 1-monochromatic. Thus, the root rectangle has measure at
least µr = 2n + 1 (see [11] for more information).

Surprisingly, as we will see later, first two result are sharp up to additive logarithmic term. We
developed an extension of this technique that we call round elimination.

4.2 Round elimination

Let us fix a protocol for some half-duplex communication problem and consider the first round. Let
Rc = X × Y be the corresponding rectangle of all possible inputs. We can subdivide Rc in nine
rectangles, one for each possible combination of actions.

Alice\Bob send(0) send(1) receive

send(0) R00 R01 R0r

send(1) R10 R11 R1r

receive Rr0 Rr1 Rrr

Consider two rectangles: Rgood = R00 ∪ R01 ∪ R0r and Rbad = R0r ∪ R1r. If we restrict f to be a
partial function defined only on Rgood, i.e., the players will always get some (x, y) ∈ Rgood, then
there is no need in the first round — the information the players get about the other part of the
input is fixed: Alice does not get any information, Bob can receive 0 if he decides to receive. On the
other hand if we restrict f to Rbad then the first round is still needed: Bob can receive both 0 and
1 and this information in necessary to proceed to the next round. Lets call a rectangle R good for
(partial) function f if restricting f to R makes the first round unnecessary (i.e., protocol without
the first round is correct for all (x, y) ∈ R). The idea of this method is to consider some covering
of Rc with a set of good rectangles and prove that there is always a good rectangle of large enough
measure. If we can show that there is always a rectangle of measure at least α · µ(Rc) then we can
iterate this idea and claim that protocol depth is at least log1/α(µr/µℓ), where µr is a lower bound
on the measure of the root rectangle and µℓ is an upper bound on the measure of leaf rectangles.

Lemma 10. Let µ be some sub-additive measure on rectangles such that µ(X × Y ) ≥ µr and for
any leaf rectangle Rl, µ(Rl) ≤ µℓ. Fix a protocol P. If for any rectangle R appearing in the protocol
there is a good subrectangle for function f ↾ R of measure at least α · µ(R) then the depth of the
protocol is at least log1/α

µr

µℓ
.
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Proof. We start with R = X × Y . Every round we show that f ↾ R can be restricted to some good
Rgood ⊂ R such that µ(Rgood) ≥ α · µ(R), let R to be Rgood, and proceed to the next round until
we reach a leaf. Thus there are at least log1/α(µr/µℓ) rounds.

4.3 Upper bound on internal information

Another useful tool for proving lower bounds on the communication complexity of problems in the
classical model is upper bounding the information Alice and Bob have learned about the other’s
inputs, as a function of the number of rounds.

Let P be a half-duplex communication protocol for relation R ⊂ X × Y × Z, and consider an
arbitrary distribution D over the pair of inputs of Alice and Bob. Let X , and Y be the marginal
distributions over inputs to Alice and Bob, also, let ΠA and ΠB be the marginal distributions over
Alice and Bob’s transcripts induced by D.

Definition 11. An internal information cost of protocol P is

ICD(P) = I(X : ΠB | Y) + I(Y : ΠA | X ).

For any k let Πk
A and Πk

B be the marginal distributions over Alice and Bob’s partial transcripts
after running P for k rounds induced by D. An internal information cost of first k rounds of P is

ICk
D(P) = I(X : Πk

B | Y) + I(Y : Πk
A | X ).

For more details on information theory, we refer to [1, 4].

Lemma 12. Suppose that H(X | Y)+H(Y | X ) ≥ ρ. If for any half-duplex communication protocol
with silence/zero/adversary P computing R,

• H(X | Y,ΠA) +H(Y | X ,ΠB) ≤ λ, and

• for every k, ICk
D(P) ≤ αk,

then half-duplex complexity of R with silence/zero/adversary is at least (ρ− λ)/α.

Proof. We know that before any communication Alice and Bob have total uncertainty at least ρ
about (X ,Y). After the protocol ends, Alice and Bob have total uncertainty at most λ about
(X ,Y). Thus, during the protocol Alice and Bob have to learn at least ρ−λ bits of information. In
k rounds the players can learn at most αk bits. Hence, the number of rounds is at least (ρ− λ)/α.

5 Half-duplex communication with silence

The main advantage of this model over the other models we consider is that whenever the players
have silent round, they learn about it. In some sense they have a third symbol in the alphabet —
the receiving player can get either 0/1 or a special symbol corresponding to “silence”. Next theorem
shows how the players can take the advantage of silence to transfer data.

Theorem 14. For every f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
s (f) ≤ ⌈n/ log 3⌉+ 1.
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Proof. Alice encodes x in ternary alphabet {0, 1, 2} and sends it to Bob: in order to send 0 or
1 Alice sends the corresponding bit, sending 2 is emulated by receiving (keeping silence). This
requires ⌈log3 2n⌉ = ⌈n/ log 3⌉ bits. At the last round Bob evaluates f(x, y) and sends the result to
Alice.

Using the idea of non-binary encoding, we prove a better upper bound for equality.

Theorem 15. Dhd
s (EQn) ≤ ⌈n/ log 5⌉+ ⌈logn/ log 3⌉+ 2.

Proof. Alice and Bob encode their inputs in alphabet of size five {0, 1, 2, 3, 4}. Then they process
their inputs symbol by symbol sequentially in ⌈n/ log 5⌉ rounds. At round i they process ith symbol
in the following manner.

Symbol Alice Bob

0 send(0) receive

1 send(1) receive

2 receive send(0)

3 receive send(1)

4 receive receive

If ith round is normal then one player can check whether ith symbols are different. If ith round
is silent then again one player knows if ith symbols are different. If after ⌈n/ log 5⌉ rounds one of
the players has already learned that the answer is 0, then he or she sends 0. If this round is not
silent, then both players know that the answer is 0. Otherwise, Alice and Bob have to make sure
that there were no spent rounds. To check it, Alice sends the number of normal rounds she was
receiving encoded in ternary, that requires ⌈log n/ log 3⌉ rounds. Bob checks whether this number
is equal to the number of rounds he was sending in. If so, inputs are equal. In the last round, Bob
sends the answer back to Alice.

Using almost the same ideas we can show an upper bound for disjointness.

Theorem 16. Dhd
s (DISJn) ≤ ⌈n/2⌉+ 2.

Proof. Alice and Bob process their inputs two bits per round, ⌈n/ log 2⌉ rounds. At round i they
process symbols 2i− 1 and 2i in the following manner.

Symbols Alice Bob

00 send(0) receive

01 receive send(0)

10 receive send(1)

11 receive receive

At the end of communication Bob tells Alice whether there was a silent round in which Bob’s input
was 11 (i.e., inputs are not disjoint). Alice tells Bob whether she ever received 0 having 01 or 11,
or received 1 having 10 or 11 (again, inputs are not disjoint).

Using round elimination we get the following lower bound for the inner product function.

Theorem 17. Dhd
s (IPn) ≥ n/2.

To prove this theorem we need the following property of IPn.
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Lemma 18. Every leaf rectangle of a protocol for IPn has size at most 2n.

Proof. We start with proving it for leaves labeled with 0. Let Rl = Xl × Yl be a rectangle of leaf
l labeled with 0, i.e., Rl is 0-monochromatic. For every x ∈ Xl and y ∈ Yl, IPn(x, y) = 0, set Xl

must be contained in the orthogonal complement for span of Yl. Thus, dim({Xl})+dim({Yl}) ≤ n,
and hence, |R| = |Xl| × |Yl| ≤ 2n.

If leaf is labeled with 1 then for every x ∈ Xl and y ∈ Yl, IPn(x, y) = 1. Let y′ be arbitrary
element of Yl. Consider a set Y ′

l = {y ⊕ y′ | y ∈ Yl}. It is easy to see that for every x ∈ Xl and
y ∈ Y ′

l , IPn(x, y) = 0, so we can apply the argument above to show that |Xl|×|Y ′
l | ≤ 2n. It remains

to notice that |Yl| = |Y ′
l |.

Now we are ready to prove Theorem 17.

Proof of Theorem 17. Let Rc be the rectangle of all possible inputs and µ(R) = |R|. Consider the
following set of good rectangles: a rectangle Rsilent = Rrr where round is silent, four rectangles
R0∗ = R00 ∪ R01 ∪ R0r, R1∗ = R10 ∪ R11 ∪ R1r, R∗0 = R00 ∪ R10 ∪ Rr0, R∗1 = R01 ∪ R11 ∪ Rr1,
where one of the players sends some bit, and a rectangle Rspent = R00 ∪ R01 ∪ R10 ∪ R11, where
round is spent. We claim one of these good rectangles has measure at least µ(Rc)/4.

For µ(R) = |R| we can use the following fact. Let a0, a1 and ar be the probability over all
possible inputs that Alice sends 0, sends 1, and receives, respectively. Analogously, we define b0,
b1 and br to be the probability that Bob sends 0, sends 1, and receives. It is easy to see that
a0 + a1 + ar = b0 + b1 + br = 1 and for all α, β ∈ {0, 1, r}, µ(Rαβ) = aα · bβ · µ(Rc).

We need to show that max
{

µ(R0∗), µ(R1∗), µ(R∗0), µ(R∗1), µ(Rsilent), µ(Rspent))
}

≥ µ(Rc)/4.
This is equivalent to showing that max

{

a1, a0, b1, b0, arbr, (1 − ar)(1 − br)
}

≥ 1/4 for any reals
a0, a1, ar, b0, b1, br ∈ [0, 1], such that a0 + a1 + ar = b0 + b1 + br = 1. If a0, a1, b0, b1 < 1/4 then
(1− ar)(1− br) > 1/4. Now we apply Lemma 10 for µr = 4n, µℓ = 2n (Lemma 18), α = 1/4, and
get the desired bound.

6 Half-duplex communication with zero

As we have already mentioned before there are only two reasonable actions in this model: send 1 or
receive. The following theorem shows that half-duplex communication with zero is more powerful
than classical communication; namely, it is possible to compute equality in less than n rounds of
communication.

Theorem 19. Dhd
0 (EQn) ≤ ⌈n/ log 3⌉+ 2⌈logn⌉+ 1.

Proof. Alice and Bob encode their inputs in ternary. In the first phase of the protocol, they process
their inputs sequentially symbol by symbol in ⌈n/ log 3⌉ rounds. At round i they process ith symbol
in the following manner.

Symbol Alice Bob

0 receive receive

1 send(1) receive

2 receive send(1)

In the next 2⌈log n⌉ they send each other the number of ones they sent in the first phase. Depending
on values of corresponding inputs, i.e., xi and yi, we distinguish 6 types of witnesses of inequality:
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(0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1). If we make sure that each type can be detected by at least
one of the players we are done. In the first phase, Alice can detect types (0, 2), (2, 0), (2, 1), while
Bob can detect types (1, 0), (0, 1), and (2, 1) (again). This leaves us with detecting witnesses of
type (1, 2). Assuming that there are no witnesses of other types, this will be detected in the second
phase.

The best lower bound for this model is again for IPn. The following theorem is proved using
round elimination.

Theorem 20. Dhd
0 (IPn) ≥ n/ log 2

3−
√
5
> n/1.39.

Proof. Let Rc be the rectangle of all possible inputs and µ(R) = |R|. Consider the following set of
good rectangles: Rsilent = Rrr, R1∗ = R11 ∪R1r and R∗1 = R11 ∪Rr1. We claim one of these good

rectangles has measure at least 3−
√
5

2 · µ(Rc). We need to show that

max
{

µ(R1∗), µ(R∗1), µ(Rsilent)
}

≥ 3−
√
5

2
· µ(R).

It is equivalent to showing that for any a, b ∈ [0, 1], max
{

a, b, (1− a)(1− b)
}

≥ 3−
√
5

2 , where a and
b denote the probabilities over all possible inputs that, respectively, Alice and Bob sends 1. Now
we can argue that minimum value of this max is achieved when a = b = (1 − a)(1 − b): indeed,
increasing or decreasing a or b increases one of the arguments. Solving corresponding quadratic

equation a = (1 − a)2 we get a = 3−
√
5

2 , and hence max
{

a, b, (1 − a)(1 − b)
}

≥ 3−
√
5

2 . Applying

Lemma 10 for µr = 4n, µℓ = 2n (Lemma 18), and α = 3−
√
5

2 finishes the proof.

7 Half-duplex communication with adversary

The main feature of this model is that receiving player cannot be 100% sure that the received bit if
in fact is “real”, i.e., this bit originates from the other player, not from an adversary. The protocol
must be correct for any strategy of the adversary. Our intuition prompts that in this setting silent
and spent rounds would be useless. Using combinatorial methods, one can show the following two
lower bounds.

Theorem 22. Dhd
a (EQn) ≥ n/ log 2.5.

Proof. Let Rc be the rectangle of all possible inputs and µ(R) =
∣

∣{(x, x) ∈ R}
∣

∣. Consider the
following set of 5 good rectangles: Rspent = R00 ∪R01 ∪R10 ∪R11, and four rectangles

R1̄1̄ = R00 ∪R0r ∪Rr0 ∪Rrr, R0̄1̄ = R10 ∪R1r ∪Rr0 ∪Rrr,

R1̄0̄ = R01 ∪R0r ∪Rr1 ∪Rrr, R0̄0̄ = R11 ∪R1r ∪Rr1 ∪Rrr,

where Alice does not send α and Bob does not send β some fixed bits α, β.
Now let us observe that together all these good rectangles cover the entire rectangle of possible

inputs twice, and hence one of it has measure at least 2/5 · µ(Rc).

Theorem 23. Dhd
a (IPn) ≥ n/ log 7

3 .
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Proof. Let Rc be the rectangle of all possible inputs and µ(R) = |R|. We use a set of good rectangles
consisted of rectangles Rspent, R1̄1̄, R0̄1̄, R1̄0̄, R0̄0̄ from the proof of Theorem 22, and four additional
rectangles

R0∗ = R00 ∪R01 ∪R0r, R∗0 = R00 ∪R10 ∪Rr0,

R1∗ = R10 ∪R11 ∪R1r, R∗1 = R01 ∪R11 ∪Rr1,

where one of the players sends some fixed bit.
Now we show that for this set of good rectangles and this specific measure we can prove a better

bound. In fact, for all half-duplex protocols with adversary

max
{

µ(Rspent), µ(R0∗), µ(R∗0), µ(R1∗), µ(R∗1), µ(R1̄1̄), µ(R0̄1̄), µ(R1̄0̄), µ(R0̄0̄)
}

≥ 3
7 · µ(Rc).

We use the idea we have already seen in the proof of Theorem 17. Let a0, a1 and ar be the proba-
bilities over all possible inputs that Alice sends 0, sends 1 and receives, respectively. Analogously,
we define b0, b1 and br to be the probabilities that Bob sends 0, sends 1 and receives. It is easy
to see that a0 + a1 + ar = b0 + b1 + br = 1 and for all α, β ∈ {0, 1, r}, µ(Rαβ) = aα · bβ · µ(Rc)
(it is important here that µ(R) = |R|). Minimization of maximum of linear functions with such
constraints can be reduced to a semidefinite programming problem giving us the desired bound.
Application of the Lemma 10 for µr = 4n, µℓ = 2n (Lemma 18) and α = 3/7, finishes the proof.

Now we proceed to proving 2 log n lower bound on the half-duplex complexity of Karchmer-
Wigderson relation for parity function.

Definition 25. Let X = f−1(0), Y = f−1(1) for some Boolean function f : {0, 1}n → {0, 1}. The
KW relation for function f , Rf ⊆ X × Y × [n], is defined by Rf = {(x, y, i) | xi 6= xi}.

It it well known that parity function ⊕n : {0, 1}n → {0, 1}, ⊕n(x) =
∑n

i=1 xi mod 2, requires
Ω(n2) De Morgan formula size [10]. In the classical communication complexity, it is equivalent to
saying that KW relations for parity requires 2 log n rounds of communication [9, 4].

We will prove 2 log n lower bound in the half-duplex model with adversary using information-
theoretic approach. We start with proving an upper bound on the information Alice and Bob
have learned about the other’s inputs, as a function of the number of rounds. Next, we show that
there is a distribution on inputs of players such that we can show a lower bound on the amount of
information the players have to transmit to each other. Together that gives us a lower bound on
the number of rounds.

In the following lemma we show that in the half-duplex model with adversary the players need
at least k rounds to transmit k bits of information.

Lemma 26. For any half-duplex protocol P with adversary, arbitrary probability distribution D,
and natural k,

ICk
D(P) ≤ k.

Proof. It suffices to show that

I(X : Ek+1
B | Y,Πk

B) + I(Y : Ek+1
A | X ,Πk

A) ≤ 1.

12



Assume that adversarial bits that players receive in silent rounds are independent uniformly random
distributed. Let (y, πk

B) be a particular valid input-transcript pair for Bob. Consider I(X : Ek+1
B |

Ey,πk

B

) where Ey,πk

B

denotes an event “Y = y,Πk
B = πk

B”. Note that

I(X : Ek+1
B | Ey,πk

B

) ≤ I(X ,Πk
A : Ek+1

B | Ey,πk

B

) = H(Ek+1
B | Ey,πk

B

)−H(Ek+1
B | Ey,πk

B

,X ,Πk
A).

Suppose that on input y and given a partial transcript πk
B Bob decides to receive in round k + 1;

otherwise Ek+1
B depends only on y and πk

B, and hence H(Ek+1
B | Ey,πk

B

) = H(Ek+1
B | Ey,πk

B

,X ,Πk
A) =

0. Consider each (x, πk
A) input-transcript pair for Alice consistent with (y, πk

B). Note that

H(Ek+1
B | Y = y,Πk

B = πk
B,X = x,Πk

A = πk
A)

will either be 0, if Alice is sending a bit in round k + 1, or 1, if she is receiving (i.e., round k + 1
is silent). The latter is because the adversary will choose whether Bob receives a 0 or 1 in round
k + 1 uniformly at random independent of Alice or Bob’s transcripts or inputs. Thus

H(Ek+1
B | Ey,πk

B

,X ,Πk
A) = Pr[Alice receives | Ey,πk

B

],

and hence I(X : Ek+1
B | Y = y,Πk

B = πk
B) ≤ 1− Pr[Alice receives | Ey,πk

B

] ≤ Pr[Alice sends | Ey,πk

B

].
We then have that

I(X : Ek+1
B | Y,Πk

B) =
∑

(y,πk

B
)

Pr[Ey,πk

B

] · I(X : Ek+1
B | Ey,πk

B

)

≤
∑

(y,πk

B
)

Pr[Alice sends, Ey,πk

B

] · 1[Bob receives]

≤ Pr[Alice sends, Bob receives].

A symmetric argument holds for Alice, giving

I(X : Ek+1
B | Y,Πk

B) + I(Y : Ek+1
A | X ,Πk

A)

≤ Pr[Alice sends, Bob receives] + Pr[Alice receives, Bob sends] ≤ 1.

Theorem 27. Dhd
a (R⊕n

) ≥ 2 log n.

Proof. Let D be the uniform distribution over valid input pairs with a single bit of difference: X
is uniformly distributed over n-bit strings with even number of ‘1’, and Y = X ⊕ I, where I is
uniformly distributed over n-bit strings with exactly one ‘1’. Thus, before any communication takes
place,

H(Y | X ) +H(X | Y) = 2H(I) = 2 log n.

On the other hand, consider some half-duplex protocol P for R⊕n
with adversary. It is easy to

see that H(Y | X ,ΠA) + H(X | Y,ΠB) = 0 at any leaf . So the players have to learn at least
2 logn bits of information, ICD(P) ≥ 2 log n. Applying Lemma 12 for ρ = 2 logn, λ = 0, and α = 1
(Lemma 26), we get the desired lower bound on the number of rounds.
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8 Open problems

The following table lists lower and upper bounds that we managed to prove in this paper.

EQn IPn DISJn

Dhd
s

≥ n/ log 5 ≥ n/2 ≥ n/3
≤ n/ log 5 + o(n) ≤ n/ log 3 ≤ n/2 +O(1)

Dhd
0

≥ n/ log 3 ≥ n/ log(2/(3−
√
5)) ≥ n/2

≤ n/ log 3 + o(n)

Dhd
a ≥ n/ log 2.5 ≥ n/ log(7/3) ≥ n/2

It would be interesting to improve bounds where it is possible to determine the true complexity of
these functions in half-duplex models. So we propose the following list of open problems.

1. Prove better upper and lower bounds for the half-duplex model with silence and zero.

2. Is there any α < 1 such that for any f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
0 (f) ≤ αn+ o(n)?

3. Is there any f : {0, 1}n × {0, 1}n → {0, 1}, such that at the same time D(f) ≥ n− o(n) and
Dhd

a (f) ≤ αn+ o(n) for some α < 1.
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