
Improved decoding of Folded Reed-Solomon and Multiplicity Codes

Swastik Kopparty∗ Noga Ron-Zewi† Shubhangi Saraf‡ Mary Wootters§

May 3, 2018

Abstract

In this work, we show new and improved error-correcting properties of folded Reed-Solomon
codes and multiplicity codes. Both of these families of codes are based on polynomials over finite
fields, and both have been the sources of recent advances in coding theory. Folded Reed-Solomon
codes were the first explicit constructions of codes known to achieve list-decoding capacity;
multivariate multiplicity codes were the first constructions of high-rate locally correctable codes;
and univariate multiplicity codes are also known to achieve list-decoding capacity.

However, previous analyses of the error-correction properties of these codes did not yield
optimal results. In particular, in the list-decoding setting, the guarantees on the list-sizes were
polynomial in the block length, rather than constant; and for multivariate multiplicity codes,
local list-decoding algorithms could not go beyond the Johnson bound.

In this paper, we show that Folded Reed-Solomon codes and multiplicity codes are in fact
better than previously known in the context of list-decoding and local list-decoding. More
precisely, we first show that Folded RS codes achieve list-decoding capacity with constant list
sizes, independent of the block length; and that high-rate univariate multiplicity codes can also
be list-recovered with constant list sizes. Using our result on univariate multiplicity codes, we
show that multivariate multiplicity codes are high-rate, locally list-recoverable codes. Finally,
we show how to combine the above results with standard tools to obtain capacity achieving
locally list decodable codes with query complexity significantly lower than was known before.

∗Department of Mathematics and Department of Computer Science, Rutgers University. Research supported in
part by NSF grants CCF-1253886 and CCF-1540634. swastik.kopparty@gmail.com.
†Department of Computer Science, Haifa University. noga@cs.haifa.ac.il.
‡Department of Mathematics and Department of Computer Science, Rutgers University. Research supported in

part by NSF grants CCF-1350572 and CCF-1540634. shubhangi.saraf@gmail.com.
§Department of Computer Science and Department of Electrical Engineering, Stanford University.

marykw@stanford.edu. Research supported in part by NSF grant CCF-1657049.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 91 (2018)

1 Introduction

An error correcting code C ⊂ Σn is a collection of codewords c of length n over an alphabet Σ. The
goal in designing C is to enable the recovery of a codeword c ∈ C given a corrupted version c̃ of c,
while at the same time making C as large as possible. In the classical unique decoding problem,
the goal is to efficiently recover c from any c̃ ∈ Σn so that c and c̃ differ in at most αn places; this
requires that the relative distance δ of the code (that is, the fraction of places on which any two
codewords differ) to be at least 2α.

Modern applications of error correcting codes, both in coding theory and theoretical computer
science, have highlighted the importance of variants of the unique decoding problem, incuding list
decoding, and local decoding. In list-decoding, the amount of error α is large enough that unique
recovery of the codeword c is impossible (that is, α > δ/2), and instead the goal is to return a short
list L ⊂ C with the guarantee that c ∈ L. In local decoding, we still have α < δ/2, but the goal is to
recover a single symbol ci of a codeword c, after querying not too many positions of the corrupted
codeword c̃. In a variant known as local list-decoding, we seek local information about a symbol
even when α > δ/2. List-decoding, local decoding, and local list-decoding are important primitives
in error correcting codes, with applications in coding theory, complexity theory, pseudorandomness
and cryptography.

Algebraic codes have been at the heart of the study of list-decoding, local-decoding and local
list-decoding. One classical example of this is Reed-Solomon (RS) codes, whose codewords are
comprised of evaluations of low-degree polynomials.1 In the late 1990’s, Guruswami and Su-
dan [Sud97, GS99] gave an algorithm for efficiently list-decoding Reed-Solomon codes well beyond
half the distance of the code, and this kicked off the field of algorithmic list-decoding. A sec-
ond example is Reed-Muller (RM) codes, the multivariate analogue of Reed-Solomon codes. The
structure of Reed-Muller codes is very amenable to local algorithms: a codeword of a Reed-Muller
code corresponds to a multivariate low-degree polynomial, and considering the restriction of that
polynomial to a line yields a univariate low-degree polynomial, a.k.a. a Reed-Solomon codeword.
This local structure is the basis for Reed-Muller codes being locally testable [RS96] and locally
decodable [Lip90, BFLS91]. Using this locality in concert with the Guruswami-Sudan algorithm
leads to local list-decoding schemes [AS03, STV01] for these codes.

More recently, variants of Reed-Solomon and Reed-Muller codes have emerged to obtain improved
list-decoding and local-decoding properties. Two notable examples, which are the focus of this
work, are Folded Reed-Solomon (FRS) and multiplicity codes. Both of these constructions have led
to recent advances in coding theory. We introduce these codes informally here, and give formal
definitions in Section 2.

Folded Reed-Solomon codes, introduced by Guruswami and Rudra in [GR08], are a simple variant
of Reed-Solomon codes. If the codeword of a Reed-Solomon code is (c0, c2, . . . , cn−1) ∈ Σn, then

1That is, a codeword of an RS code has the form (f(x0), f(x1), . . . , f(xn−1)) ∈ Fn for some low-degree polynomial
f ∈ F[X].

1

the folded version (with folding parameter s) is

c0

c1
...

cs−1

 ,


cs
cs+1

...
c2s−1

 , . . . ,

cn−s
cn−s+1

...
cn−1


 ∈ (Σs)n/s.

The main property of these codes that makes them interesting is that they admit much better
list-decoding algorithms [GR08] than the original Guruswami-Sudan algorithm: more precisely, it
allows for the error tolerance α to be much larger for a code of the same rate,2 asymptotically
obtaining the optimal trade-off.

Multiplicity codes, introduced in the univariate setting by Rosenbloom and Tsfasman in [RT97] and
in the multivariate setting by Kopparty, Saraf and Yekhanin in [KSY14], are variants of polynomial
codes that also include evaluations of derivatives. That is, while a symbol of a RS codeword is
of the form f(x) ∈ F for some low-degree polynomial f ∈ F[X] and some x ∈ F, a symbol in
a univariate multiplicity code codeword is of the form (f(x), f (1)(x), f (2)(x), . . . , f (s−1)(x)) ∈ Fs,
where s is the multiplicity parameter. Similarly, while a symbol of an RM codeword is of the form
f(x) for x ∈ Fm for some low-degree multivariate polynomial f ∈ F[X1, . . . , Xm], a symbol in
a multivariate multiplicty code includes all partial derivatives of order less than s. Multivariate
multiplicity codes were shown in [KSY14] to have strong locality properties, and were the first
constructions known of high-rate locally decodable codes. Meanwhile, univariate multiplicity codes
were shown in [Kop15, GW13] to be list-decodable in the same parameter regime as folded Reed-
Solomon codes3, also achieving asymptotically optimal trade-off between rate and error-tolerance.

In this work, we show that Folded Reed-Solomon codes, univariate multiplicity codes, and mul-
tivariate multiplicity codes are even more powerful than was previously known in the context of
list-decoding and local list-decoding. Our motivations for this work are threefold:

1. First, FRS codes and multiplicity codes are basic and natural algebraic codes, central to many
recent results in coding theory ([GR08, KSY14, Kop15, GW13, DL12, KMRS17, GKO+17],
to name a few) and understanding their error-correcting properties is important in its own
right.

2. Second, by composing our new results with known techniques, we obtain capacity-achieving
locally list-decodable codes with significantly improved query complexity than previously
known.

3. Third, while there have been improved constructions of list-decodable and locally list-decodable
codes building on FRS and multiplicity codes (discussed more below), those constructions in-
volve significant additional pseudorandom ingredients. Our results give simpler constructions
of capacity achieving list-decodable and locally list-decodable codes with the best known
parameters. In particular, we give the first constructions of linear4 capacity-achieving list-
decodable codes with constant alphabet size and constant output list size.

2The rate of a code C ∈ Σn is defined as R = 1
n

log|Σ|(|C|) and quantifies how much information can be sent using
the code. We always have R ∈ (0, 1), and we would like R to be as close to 1 as possible.

3They were previously shown to be list-decodable up to the Johnson bound by Nielsen [Nie01].
4Many codes in this paper have alphabet Σ = Fsq, where Fq is a finite field. For such “vector alphabet” codes, we

use the term “linear” to mean “Fq-linear”.

2

We will state our results and contributions more precisely in Section 1.2 after setting up a bit more
notation and surveying related work.

1.1 Related work

List-recoverable codes. While the discussion above focused on the more well-known problem
of list-decoding, in this work we actually focus on a generalization of list-decoding known as list-
recovery. Given a code C ⊆ Σn, an (α, `, L)-list-recovery algorithm for C takes as input a sequence
of lists S1, . . . , Sn ⊆ Σ, each of size at most `, and returns a list L of all of the codewords c ∈ C
so that ci ∈ Si for all but an α fraction of the coordinates i; the combinatorial requirement is that
|L| ≤ L. List-decoding is the special case of list-recovery when ` = 1.

Both list-recovery and list-decoding have been important in coding theory, especially in theoretical
computer science, for the past several decades (see [Sud97, Vad12] for overviews). Initially, the
generalization to list recovery was used as a building block towards constructions of list decodable
and uniquely decodable codes [GI02, GI03, GI04, GI05, KMRS17, GKO+17, HRW17], although it
has since found additional applications in algorithm design [INR10, NPR12, GNP+13].

The Guruswami-Sudan algorithm, mentioned above, is in fact a list-recovery algorithm as well as
a list-decoding algorithm, and can efficiently list-recover Reed-Solomon codes up to radius α =
1 −
√
` ·R, with polynomial list sizes L; this trade-off is known as the Johnson bound. It is a

classical result that there are codes that go beyond the Johnson bound while keeping the output
list size polynomial in n, or even constant: for large alphabet sizes, the “correct” limit (called the
list-decoding or list-recovering capacity), is α = 1 − R, provided q is sufficiently larger than `, and
this is achieved by uniformly random codes. There is a big difference between 1−

√
` ·R and 1−R,

especially when ` > 1. In particular, the Guruswami-Sudan algorithm requires Reed-Solomon codes
to have rate R < 1/` to be (α, `, L)-list-recoverable for nontrivial α, while a completely random
code can achieve rates arbitrarily close to 1 (of course, without efficient decoding algorithms). For
a decade it was open whether or not one could construct explicit codes which efficiently achieve
list-decoding capacity.

In a breakthrough result, Guruswami and Rudra [GR08] (building on the work of Parvaresh and
Vardy [PV05]) showed that the folding operation described above can make RS codes approach
capacity with polynomial list-sizes. For some time, this was the only known route to capacity-
achieving codes, until it was shown in [GW13, Kop15] that univariate multiplicity codes also do
the job (again, with polynomial list sizes). Since then there has been a great deal of work aimed
at reducing the list size and alphabet size of these constructions, both of which were polynomial in
n (and both of which would ideally be independent of n). To reduce the alphabet size to constant,
two high-level strategies are known to work: (1) swapping out the standard polynomial codes
for Algebraic Geometry (AG) codes [GX12, GX13, GK16b], and (2) concatenation and distance
amplification using expander graphs [AEL95, GI04, HW15, GKO+17, HRW17]. To reduce the list-
size to constant, the known strategies involve passing to carefully constructing subcodes of Folded
Reed-Solomon codes and univariate multiplicity codes, via pseudorandom objects such as subspace
evasive sets or subspace designs [DL12, GW13, GX12, GX13, GK16b].

In this work, we show that in fact both folded Reed-Solomon codes and univariate multiplicity
codes are already list-recoverable with constant list-sizes, with no additional modification needed!

3

Code
Alphabet size
|Σ| List size L Explicit? Linear?

Decoding
time

Notes

Completely random code `O(1/ε) O(`/ε) No No -

Random linear code [RW17] `O(1/ε) qOε(log2(`)) No Yes -

Folded RS codes [GR08]
(
n
ε2

)O(log(`)/ε2) (
n
ε2

)O(log(`)/ε2) Yes Yes nO(log(`)/ε)

Univariate Multiplicity
[Kop15]

(
n
ε2

)O(log(`)/ε2) (
n
ε2

)O(log(`)/ε2) Yes Yes nO(log(`)/ε)

Folded RS/Univariate Mul-
tiplicity [GW13]

(
n`
ε2

)O(`/ε2) (
n`
ε

)O(`/ε) Yes Yes O(` ·n2/ε)

Output is a small
subspace contain-
ing all nearby
codewords.

Folded RS codes (This work,
Theorem 3.1)

(
n`
ε2

)O(`/ε2) (
`
ε

)O(1
ε

log(`/ε)) Yes Yes poly(n,L)

Univariate Multiplicity
codes (This work, Theo-
rem 4.1)

(
n`
ε2

)O(`/ε2) (
`
ε

)O(1
ε

log(`/ε)) Yes Yes poly(n,L) For d < q only.

Folded RS subcodes (via
subspace evasive) [DL12]

(
n`
ε2

)O(`/ε2)
O
(
`
ε

)O(`/ε) Yes No O`,ε(n
2)

Folded AG (via subspace
evasive) [GX12]

exp
(
` log(`/ε)

ε2

)
O
(
`
ε

)
No No poly`,ε(n)

Folded AG (via subspace de-
signs) [GX13, GK16b]

exp
(
` log(`/ε)

ε2

)
222

Oε,`(log
∗(n))

Yes Yes O`,ε(n
O(1))

Tensor products of AG sub-
codes, plus expander tech-
niques [HRW17]

exp(`/ε2) 222
Oε,`(log

∗(n))

Yes Yes O`,ε(n
1.01)

Folded RS codes, plus
expander techniques (This
work, Corollary 6.6)

(1 + `)O(1/ε5) Oε,`(1) Yes Yes poly`,ε(n)

Table 1: Constructions of (α, `, L)-list-recoverable codes of rate R∗ − ε, where R∗ = 1 − α is
list-recovering capacity (when |Σ| ≥ (1 + `)Ω(1/ε)). The top part of the table focuses on “simple”
algebraic constructions; the bottom part has constructions which are involved. We assume that
R∗ ∈ (0, 1) is constant (independent of n, ε, `).

The resulting codes still have large alphabet sizes, but this can be ameliorated by using the same
expander-based techniques described above.

We summarize the state of affairs for list-recovery in Table 1, and discuss our contributions in more
detail below in Section 1.2.

Locally list-recoverable codes. As mentioned above, local decoding has been an important
theme in coding theory for the past several decades. Locality makes sense in the context of list-
recovery as well. The definition of local list-recovery (given formally below as Definition 2.3 below)
is a bit involved, but intuitively the idea is as follows. As with list-recovery, we have input lists
S = (S1, . . . , Sn), so that each Si is of size at most `. The goal is to obtain information about a
single symbol ci of a codeword i, given query access to S. More precisely, we will require that the
decoder output a short list of randomized algorithms A1, . . . , AL, each of which corresponds to a
codeword c with |{i : ci 6∈ Si}| ≤ αn. The requirement is that if Ar corresponds to a codeword c,

4

Code Alphabet size |Σ| List size L Locality t Explicit?

Tensor products
of AG Subcodes,
plus expander tech-
niques [HRW17]

exp(`/ε2) 222
Oε,`(log

∗(n))

O`,ε(n
0.01) Yes

Multivariate Multi-
plicity codes, plus
expander techniques
(This work, Theo-
rem 6.2)

(1 + `)O(`/ε11) O`,ε(1) O`,ε(n
0.01) Yes

Multivariate Multi-
plicity codes, plus
expander techniques
(This work, Theo-
rem 6.1)

(1 + `)O(1/ε10) exp(
√

log(n) log log(n)) exp(log3/4(n)(log log(n))1/4) Yes

Table 2: Constructions of (t, α, `, L)-locally-list-recoverable codes of rate R∗− ε, where R∗ = 1−α
is list-recovering capacity (when |Σ| ≥ (1 + `)Ω(1/ε)). We assume that R∗ ∈ (0, 1) is constant
(independent of n, ε, `).

then on input i, Ar(i) outputs ci with high probability, and using no more than t queries to S. If
such a decoder exists, we say that the code is (t, α, `, L)-locally-list-recoverable. Local list-decoding
is the case special case where ` = 1.

This definition may seem a bit convoluted, but it turns out to be the “right” definition for a number
of settings. For example, local list-decoding algorithms are at the heart of algorithms in cryptog-
raphy [GL89], learning theory [KM93], and hardness amplification and derandomization [STV01].
Locally list-recoverable codes have been desirable as a step towards obtaining efficient capacity-
achieving local list-decoding algorithms. In particular, high-rate locally list-recoverable codes,
combined with standard techniques, yield capacity-achieving locally list-decodable and locally list-
recoverable codes.

However, until recently, we did not know of any high-rate locally list-recoverable codes. The first
such construction was given recently in [HRW17]. The approach of [HRW17] is as follows: it takes
a folded AG subcode from [GX13, GK16b] (which uses subspace designs to find the subcode);
applies tensor products many times; and concatenates the result with a locally correctable code.
Finally, to obtain capacity-achieving locally list-decodable/recoverable, codes, that work applies an
expander-based technique of [AEL95] to pseudorandomly scramble up the symbols of the codewords
to amplify the amount of error tolerated.

The reason that so much machinery was used in [HRW17] is that despite a great deal of effort,
the “natural” algebraic approaches did not seem to work. Perhaps the most natural algebraic
approach is via Reed-Muller codes, which have a natural local structure. As discussed above, a
Reed-Muller codeword corresponds to a low-degree multivariate polynomial, and restricting such
a polynomial to a line yields a low-degree univariate polynomial, which corresponds to a Reed-
Solomon codeword. Using this connection, along with the Guruswami-Sudan algorithm for Reed-
Solomon codes, Arora and Sudan [AS03] and Sudan, Trevisan and Vadhan [STV01] gave algorithms
for locally list-decoding Reed-Muller codes up the the Johnson bound5. This algorithm also extends

5Technically these algorithms only came within a factor
√

2 of the Johnson bound. To go all the way to the

5

naturally to local list-recovery up to the Johnson bound [GKO+17], but this means that for large
values of ` one cannot obtain high-rate codes.

One might hope to use a similar approach for multivariate multiplicity codes; after all, the univariate
versions are list-recoverable to capacity. However, the fact that the list sizes were large was an
obstacle to this approach, and again previous work on the local list-decodability of multivariate
multiplicity codes also only worked up to the Johnson bound [Kop15].

In this work, we return to this approach, and—using our results on univariate multiplicity codes—
show that in fact high-rate multivariate multiplicity codes are locally list-recoverable. Using our
construction, combined with some expander-based techniques, we obtain capacity-achieving locally
list-recoverable codes which improve on the state-of-the-art. The quantitative results are stated in
Table 2, and we discuss them in more detail in the next section.

1.2 Our contributions

The main contribution of this work improved results on the (local)-list-recoverability of FRS codes
and multiplicity codes. We discuss a few of the concrete outcomes below.

• Constant list sizes for folded Reed-Solomon codes. Theorem 3.1 says that a folded
RS code of rate R and alphabet size qO(`/ε2) is (1 − R − ε, `, L)-list-recoverable with L =

(`/ε)O(1
ε

log(`/ε)). This improves over the previous best-known list size for this setting, which

was (n/ε)
O
(

1
ε2

log(`)
)
. In particular, when ε, ` are constant, the list size L improves from

polynomial in n to a constant.

• Constant list sizes for univariate multiplicity codes. Theorem 4.1 recovers the same
quantitative results as Theorem 3.1 for univariate multiplicity codes with degree d smaller
than the characteristic of the underlying field.

When the degree d is larger than the characteristic, which is what is relevant for the ap-
plication to multivariate multiplicity codes, we obtain a weaker result. We no longer have
capacity-achieving codes, but we obtain high-rate list-recoverable codes with constant list
sizes. More precisely, Theorem 4.4 implies that rate R univariate multiplicity codes are
efficiently (α, `, L)-list-recoverable for L = `O(` log(`)) and α = O((1 − R)2/`). In particular,
Theorem 4.4 is nontrivial even for high-rate codes, while the Johnson bound only gives results
for R < 1/`.

• High-rate multivariate multiplicity codes are locally list-recoverable. One reason to
study the list-recoverability of univariate multiplicity codes is because list-recovery algorithms
for univariate multiplicity codes can be used in local list-recovery algorithms for multivariate
multiplicity codes. Theorems 5.1 and 5.2 show that high-rate multivariate multiplicity codes
are locally list-recoverable. More precisely, in Theorem 5.1, we show that for constant `, ε,
a multivariate multiplicity code of length n with rate 1 − ε: is efficiently (t, α, `, L)-locally-
list-recoverable for α = 1/polylog(n), with list size L and query complexity t that are sub-
polynomial in the block length n. In Theorem 5.2, we instantiate the same argument with

Johnson bound, one needs some additional ideas [BK09]; see [GK16a, Kop15] for further variations on this.

6

slightly different parameters to show a similar result where α and L are constant, but the
query complexity t is of the form t = O(n0.01).

• Capacity-achieving locally list-recoverable codes over constant-sized alphabets.
Theorems 5.1 and 5.2 give high-rate locally-list-recoverable codes; however, these codes do
not achieve capacity, and the alphabet sizes are quite large. Fortunately, following previ-
ous work, we can apply a series of by-now-standard expander-based techniques to obtain
capacity-achieving locally list-recoverable codes over constant-sized alphabets. We do this in
Theorems 6.1 and 6.2, respectively.

The only previous construction of capacity-achieving locally list-recoverable codes (or even
high-rate locally list-recoverable codes) is due to [HRW17], which achieved arbitrary polyno-
mially small query complexity (and even subpolynomial query complexity nO(1/ log logn)) with
slightly superconstant list size.

Our codes in Theorem 6.1 achieve subpolynomial query complexity ẽxp(log3/4 n) and subpoly-
nomial list size. This brings the query complexity for capacity achieving local list-decodability
close to the best known query complexity for locally decodable codes [KMRS17], which is
ẽxp(log1/2 n) (for the same codes).

Our codes in Theorem 6.2 have arbitrary polynomially small query complexity, and constant
list-size. This improves upon the codes of [HRW17].

The quantitative details are shown in Table 2.

• Deterministic constructions of capacity-achieving list-recoverable codes with con-
stant alphabet size and list size. Our result in Theorem 3.1 for Folded Reed-Solomon
codes give capacity-achieving list-recoverable codes with constant list size, but with polyno-
mial alphabet size. By running these through some standard techniques, we obtain in Corol-
lary 6.6 efficient deterministic constructions of Fq-linear, capacity-achieving, list-recoverable
codes with constant alphabet size and list size, with a decoding algorithm that runs in time
nO(1) · log(n)O`,ε(1).

Codes with these properties do not seem to have been written down anywhere in the literature.
Prior to our work, the same standard techniques could have also been applied to the codes of
[DL12] (which are nonlinear subcodes of Folded Reed-Solomon codes) to construct nonlinear
codes with the same behavior.

1.3 Overview of techniques

In this subsection, we give an overview of the proofs of our main results.

1.3.1 List recovery of folded Reed-Solomon and univariate multiplicity codes with
constant output list size

Let C ⊆ Σn be either a folded Reed-Solomon code or a univariate multiplicity code with constant
distance δ > 0. Suppose that s is the “folding parameter” or “multiplicity parameter,” respectively,
so that Σ = Fsq. We begin with a warm-up by describing an algorithm for zero-error list-recovery;

7

that is, when α = 0. Here we are given “received lists” S ∈
(

Σ
`

)n
, and we want to find the list L of

all codewords c ∈ C such that ci ∈ Si for each i. The groundbreaking work of [GR08] showed that
for constant ` and large but constant s, L has size at most qO`(1), and can be found in time qO`(1).
We now show that L is in fact of size at most L = O`,δ(1), and can be found in time poly(q, L).

The starting point for our improved list-recovery algorithms for folded Reed-Solomon and univariate
multiplicity codes is the linear-algebraic approach to list-recovering these codes that was taken
in [GW13]. The main punchline of this approach is that the list L is contained in an Fq affine-
subspace v0 + V of dimension at most Oε(`), and further that this subspace can be found in time
poly(q) (this immediately leads to the previously known bound on L). Armed with this insight, we
now bring the received lists S back into play. How many elements c of the affine space v0 + V ⊆ C
can have ci ∈ Si for all i ∈ [n]? We show that there cannot be too many such c.

The proof is algorithmic: we will give a randomized algorithm PRUNE, which when given the
low dimensional affine space v0 + V , outputs a list of K = O(1) elements of C, such that such
that for any c ∈ L, c is included in the output of A with high probability. This implies that
|L| ≤ O(K) = O(1).

The algorithm PRUNE works as follows. For some parameter τ = O(1), we pick coordinates
i1, i2, . . . , iτ ∈ [n] uniformly at random. Then the algorithm iterates over all the `τ choices of
(y1. . . . , yτ) ∈

∏τ
j=1 Sij . For each such (y1, . . . , yτ), PRUNE checks if there is a unique element w

of v0 + V such that wij = yj for all j ∈ [τ]. If so, we output that unique element w; otherwise
(i.e., either there are either zero or greater than one such w’s) we do nothing. Thus the algorithm
PRUNE outputs at most `τ = O(1) elements of C.

It remains to show that for any c ∈ L, the algorithm outputs c with high probability. Fix such a
c. By assumption, for every i ∈ [n], ci ∈ Si. Thus there will be an iteration where the algorithm
PRUNE takes (y1, . . . , yτ) = (ci1 , . . . , ciτ). In this iteration, there will be at least one w (namely c)
which has the desired property. Could there be more? If there was another c′ ∈ v0 + V with this
property, then the nonzero vector c − c′ ∈ V would have the property that c − c′ vanishes on all
coordinates i1, . . . , iτ . It turns out that this can only happen with very low probability. Lemma 2
from [SY11] shows that that for any linear space V with dimension k and distance at least δ, for τ a
large enough constant (τ = Ω(k/δ)), it is very unlikely that there exists a nonzero element of V that
vanishes at τ random coordinates i1, . . . , iτ . Thus with high probability, c is the unique w found in
that iteration, and is thus included in the output of PRUNE. This completes the description and
analysis of the algorithm PRUNE, and thus of our zero-error list-recovery algorithm.

One way to prove (a version of) Lemma 2 from [SY11] is as follows. First we note the following
simple but important lemma:

Lemma 1.1. Let Σ = Fsq. Let W ⊆ (Σ)n be an Fq-subspace with dim(W) = t ≥ 1. Suppose W has
minimum distance at least δ. Then:

Ei∈[n][dim(W ∩Hi)] ≤ t− δ,

where Hi = {v ∈ Σn | vi = 0}.

Lemma 1.1 says that for any subspace W ⊆ Σn of good distance, fixing a coordinate to 0 reduces
the dimension a little in expectation. Iterating this, we see that fixing many coordinates is very
likely to reduce the dimension down to zero, and this proves the result that we needed above.

8

With our warm-up complete, we turn to our main theorem on the list-recoverability of Folded
Reed-Solomon codes (Theorem 3.1), which shows that the output list size is small even in the
presence of an α = δ − ε fraction of errors (for small ε > 0). Our approach generalizes the α = 0
case described above. Let L be the list of (δ − ε)-close codewords. Again, the linear-algebraic list
decoder of [GW13] can produce a low dimensional affine subspace v0 + V such that L ⊆ v0 + V .
Next, we show that the very same algorithm PRUNE described above (with a different setting of
the parameter τ) does the desired list-recovery with at least some small constant probability p0.
This will imply that |L| ≤ `τ

p0
.

To see why this works, fix a codeword c ∈ L. First observe that if we pick i1, . . . , iτ uniformly at
random, the probability that cij ∈ Sij for all j = 1, . . . , τ is at least p′ = (1 − δ + ε)τ . This is
small, but not too small; thus, there is some chance that at least one w (the correct one) is found
by PRUNE.

Following the previous analysis, we now have to bound the probability that for random i1, . . . , iτ ∈
[n], the space of codewords from V that vanish on all of i1, . . . , itau has dimension at least one.
This is the probability that strictly greater than one w is found by PRUNE. This time we will
need a stronger (and much more specialized) version of Lemma 1.1, which shows that for subspaces
W of the Folded Reed-Solomon code, fixing a random coordinate to 0 reduces the dimension by a
lot: much more than the δ that we got from Lemma 1.1. Such a lemma was proved in [GK16b],
although in a different language, and for a very different purpose. This lemma roughly shows that
the expected dimension of W ∩ Hi, for a random i ∈ [n], is at most (1 − δ) dim(W). Setting
τ = O(log(dim(V))/δ), with τ applications of this lemma, we get that the probability that the
space of codewords from V that vanish on all of i1, . . . , iτ has dimension at least one is at most
p′′ = (1 − δ)τ dim(V). Note that this probability is tiny compared to p′, and thus the probability
that the algorithm PRUNE succeeds in finding c is at least p′ − p′′ ≈ p′, as desired.

The description above was for folded RS codes, but same method works for univariate multiplicity
codes whose degree d is smaller than the characteristic of the field Fq. We state this in Theorem 4.1.
The proof follows the same outline, using a different but analogous lemma from [GK16b].

For application to local list-recovery of multivariate multiplicity codes, however, we need to deal
with univariate multiplicity codes where the degree d is larger than q. In Theorem 4.4, we show
how to accomplish this when the fraction of errors α is very small. The algorithm and the outline
of the analysis described above can again do the job for this setting, although the analysis is much
more involved. The proof, which we give in Section 4, gives better quantitative bounds than the
previous approach, and requires us to open up the relevant lemma from [GK16b]. At the end of
the day, we are able to prove a reasonable version of this lemma for the case when d > q, and this
allows the analysis to go through.

1.3.2 Local list-recovery of multivariate multiplicity codes

We now describe the high-level view of our local list-recovery algorithms. Our algorithm for local
list-recovery of multivariate multiplicity codes follows the general paradigm for local list-decoding
of Reed-Muller codes by Arora and Sudan [AS03] and Sudan, Trevisan and Vadhan [STV01]. In
addition to generalizing various aspects of the paradigm, we need to introduce some further ideas

9

to account for the fact that we are in the high rate setting6.

Local list-decoding of Reed-Muller codes is the following problem: we are given a function r :
Fmq → Fq which is promised to be close to the evaluation table of some low degree polynomial
Q(X1, . . . , Xm). At the high level, the local list-decoding algorithm of [STV01] for Reed-Muller
codes has two phases: generating advice, and decoding with advice. To generate the advice, we
pick a uniformly random a ∈ Fmq and “guess” a value z ∈ Fq (this guessing can be done by going
over all z ∈ Fq). Our hope for this guess is that z equals Q(a).

Once we have this advice, we see how to decode. We define an oracle machine M r[a, z], which
takes as advice [a, z], has query access to r, and given an input x ∈ Fmq , tries to compute Q(x).
The algorithm first considers the line λ passing through x and the advice point a, and list-decode
the restriction of r to this line to obtain a list Lλ of univariate polynomials. These univariate
polynomials are candidates for Q|λ. Which of these univariate polynomials is Q|λ? We use our
guess z (which is suppose to be Q(a)): if there is a unique univariate polynomial in the list with
value z at a, then we deem that to be our candidate for Q|λ, and output its value at the point x
as our guess for Q(x). This algorithm will be correct on the point x if (1) there are not too many
errors on the line through x and a, and (2) no other polynomnial in Lλ takes the same value at a
as Q|λ does. The first event is low probability by standard sampling bounds, and the second is low
probability using the random choice of a and the fact that Lλ is small. This algorithm does not
succeed on all x, but one can show that for random a and z = Q(a), this algorithm does succeed
on most x. Then we can run a standard local correction algorithm for Reed-Muller codes to then
convert it to an algorithm that succeeds on all x with high probability.

We are trying to locally list-recover a multivariate multiplicity code; the codewords are of the

form (Q(<s)(y))y∈Fmq , where Q(<s)(y) ∈ F(m+s−1
m)

q =: Σm,s is a tuple that consists of all partial
derivatives of Q of order less than s, evaluated at y. We are given query access to a function
S : Fmq →

(Σm,s
`

)
, where S(y) ⊂ Σm,s is the received list for the coordinate indexed by y. Suppose

for the following discussion that Q(X) ∈ Fq[X1, . . . , Xm] is a low-degree multivariate polynomial so
that |{y : Q(<s)(y) 6∈ S(y)}| ≤ αqm. We want to describe an algorithm that, with high probability
will output a randomized algorithm Aj : Fmq → Σm,s that will approximate Q(<s).

There are two main components to the algorithm again: generating the advice, and decoding with
advice. The advice is again a uniformly random point a ∈ Fmq , and a guess z which is supposed

to equal Q(<s∗)(a), a very high order evaluation of Q at a, for some s∗ � s. We discuss how to
generate z later, let us first see how to use this advice to decode.

To decode using the advice [a, z], we give an oracle machine MS [a, z] which takes advice [a, z] and
has query access to S. If z = Q(<s∗)(a), then MS [a, z](x) will be equal to Q(<s)(x) with high
probability over x and a. This algorithm is discussed in Section 5.3. Briefly, the idea is to consider
the line λ through x and a and again run the univariate list-recovery algorithm on the restrictions
of S to this line to obtain a list Lλ. We hope that Q|λ is in this list, and that Q|λ does not have
the same order s∗ evaluation7 on a as any other element of Lλ – this will allow us to identify it

6These ideas can also be used to improve the analysis of the [AS03] and [STV01] local list-decoders for Reed-Muller
codes. In particular, they can remove the restriction that the degree d needs to be at most 1/2 the size of the field
Fq for the local list-decoder to work.

7This is why we take s∗ large: it is much more unlikely that there will be a collision of higher order evaluations
at the random point a.

10

with the help of the advice z = Q(<s∗)(a). Once we identify Q|λ, we output its value at x as our
guess for Q(x).

To generate the advice z, we give an algorithm RecoverCandidates, which takes as input a point
a ∈ Fmq , has query access to S, and returns a short list Z ⊂ Σm,s∗ of guesses for Q(<s∗)(a). Recall
that we have s∗ quite a bit larger than s. This algorithm is discussed in Section 5.2. Briefly,
RecoverCandidates works by choosing random lines through a and running the (global) list-recovery
algorithm for univariate multiplicity codes on the restriction of the lists S to these lines. Then
it aggregates the results to obtain Z. This aggregation turns out to be a list-recovery problem
for Reed-Muller codes evaluated on product sets. We describe this algorithm for list-recovery in
Appendix D.

Summarizing, our local list-recovery algorithm works as follows. First, we run RecoverCandidates
on a random point a ∈ Fmq to generate a short list Z ⊆ Σm,s∗ of possibilities for Q(<s∗)(a). Then,

for each z ∈ Z, we will form the oracle machine MS [a, z]. We are not quite done even if the advice
z is good, since MS [a, z](x) may not be equal to Q(<s)(x); we know this probably happens for
most x’s, but not necessarily for the one that we care about. Fortunately, MS [a, z] will agree with
Q(<s) for many inputs y, and so we can use the fact that multivariate multiplicity codes are locally
correctable to finish the job [KSY14]. When we iterate over the advice z ∈ Z, this will give the list
of randomized algorithms A1, . . . , AL that the local list-recovery algorithm returns.

1.3.3 Organization

We begin in Section 2 with notation and preliminary definitions. Once these are in place, we will
prove Theorem 3.1 about Folded RS codes in Section 3. In Section 4, we extend our analysis
of Folded RS codes to univariate multiplicity codes, and prove Theorems 4.1 and 4.4 for small
and large degrees d respectively. In Section 5, we present our local list-recovery algorithm for
multivariate multiplicity codes, and state Theorems 5.1 and 5.2 about high-rate local list-recovery
of multivariate multiplicity codes. Finally in Section 6 we run our results through the expander-
based machinery of [AEL95], to obtain Theorems 6.1 and 6.2 which give capacity-achieving locally
list-recoverable codes over constant-sized alphabets.

2 Notation and Preliminaries

We begin by formally defining the coding-theoretic notions we will need, and by setting notation.
We denote by Fq the finite field of q elements. For any pair of strings x, y ∈ Σn, the relative
distance between x and y is the fraction of coordinates on which x and y differ, and is denoted by
dist(x, y) := |{i ∈ [n] : xi 6= yi}| /n. For a positive integer ` we denote by

(
Σ
`

)
the set containing

all subsets of Σ of size `, and for any pair of strings x ∈ Σn and S ∈
(

Σ
`

)n
we denote by dist(x, S)

the fraction of coordinates i ∈ [n] for which xi /∈ Si, that is, dist(x, S) := |{i ∈ [n] : xi /∈ Si}| /n.
Throughout the paper, we use exp(n) to denote 2Θ(n). Whenever we use log, it is to the base 2.
The notation Oa(n) and polya(n) means that we treat a as a constant; that is, polya(n) = nOa(1).

11

2.1 Error-correcting codes

Let Σ be an alphabet and let n be a positive integer (the block length). A code is simply a subset
C ⊆ Σn. The elements of a code C are called codewords. If F is a finite field and Σ is a vector space
over F, we say that a code C ⊆ Σn is F-linear if it is an F-linear subspace of the F-vector space
Σn. In this work most of our codes will have alphabets Σ = Fs, and we will use linear to mean
F-linear. The rate of a code is the ratio log |C|

log(|Σ|n) , which for F-linear codes equals dimF(C)
n·dimF(Σ) . The

relative distance dist(C) of C is the minimum δ > 0 such that for every pair of distinct codewords
c1, c2 ∈ C it holds that dist(c1, c2) ≥ δ.

Given a code C ⊆ Σn, we will occasionally abuse notation and think of c ∈ C as a map c : D → Σ,
where D is some domain of size n. With this notation, the map c : D → Σ corresponds to the
vector (c(x))x∈D ∈ Σn.

For a code C ⊆ Σn of relative distance δ, a given parameter α < δ/2, and a string w ∈ Σn, the
problem of decoding from α fraction of errors is the task of finding the unique c ∈ C (if any) which
satisfies dist(c, w) ≤ α.

2.2 List-decodable and list-recoverable codes

List decoding is a paradigm that allows one to correct more than a δ/2 fraction of errors by returning
a small list of close-by codewords. More formally, for α ∈ [0, 1] and an integer L we say that a code
C ⊆ Σn is (α,L)-list-decodable if for any w ∈ Σn there are at most L different codewords c ∈ C
which satisfy that dist(c, w) ≤ α.

List recovery is a more general notion where one is given as input a small list of candidate symbols
for each of the coordinates and is required to output a list of codewords that are consistent with
many of the input lists. Formally we say that a code C ⊆ Σn is (α, `, L)-list-recoverable if for any
S ∈

(
Σ
`

)n
there are at most L different codewords c ∈ C which satisfy that dist(c, S) ≤ α. Note

that list decoding corresponds to the special case of ` = 1.

2.3 Locally correctable and locally list-recoverable codes

Locally correctable codes. Intuitively, a code is said to be locally correctable [BFLS91, STV01,
KT00] if, given a codeword c ∈ C that has been corrupted by some errors, it is possible to decode
any coordinate of c by reading only a small part of the corrupted version of c. Formally, it is defined
as follows.

Definition 2.1 (Locally correctable code (LCC)). We say that a code C ⊆ Σn is (t, α)-locally
correctable if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A takes as input a coordinate i ∈ [n] and also gets oracle access to a string w ∈ Σn

that is α-close to a codeword c ∈ C.

• Query complexity: A makes at most t queries to the oracle w.

• Output: A outputs ci with probability at least 2
3 .

12

Remark 2.2. By definition it holds that α < dist(C)/2. The above success probability of 2
3 can

be amplified using sequential repetition, at the cost of increasing the query complexity. Specifi-
cally, amplifying the success probability to 1 − e−t requires increasing the query complexity by a
multiplicative factor of O(t).

Locally list-recoverable codes. The following definition generalizes the notion of locally cor-
rectable codes to the setting of list decoding / recovery. In this setting the algorithm A is required
to find all the nearby codewords in an implicit sense.

Definition 2.3 (Locally list-recoverable code). We say that a code C ⊆ Σn is (t, α, `, L)-locally
list-recoverable if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A gets oracle access to a string S ∈
(

Σ
`

)n
.

• Query complexity: A makes at most t queries to the oracle S.

• Output: A outputs L randomized algorithms A1, . . . , AL, where each Aj takes as input a
coordinate i ∈ [n], makes at most t queries to the oracle S, and outputs a symbol in Σ.

• Correctness: For every codeword c ∈ C for which dist(c, S) ≤ α, with probability at least 2
3

over the randomness of A the following event happens: there exists some j ∈ [L] such that
for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2

3
,

where the probability is over the internal randomness of Aj.

We say that A has running time T if A outputs the description of the algorithms A1, . . . , AL in
time at most T and each Aj has running time at most T . We say that a code is (t, α, L)-locally
list-decodable if it is (t, α, 1, L)-locally list-recoverable.

2.4 Polynomials and derivatives

Let Fq[X] be the space of univariate polynomials over Fq. We will often be working with linear
and affine subspaces of Fq[X]. We will denote linear subspaces of Fq[X] by the letters U, V,W , and
affine subspaces of Fq[X] as v0 + V , where v0 ∈ Fq[X] and V is a linear subspace.

For polynomials P1, . . . , Ps ∈ Fq[X], we define their Wronskian, W (P1, . . . , Ps), by

W (P1, . . . , Ps)(X) =


P1(X) · · · Ps(X)

P
(1)
1 (X) · · · P

(1)
s (X)

...
...

P
(s−1)
1 (X) · · · P

(s−1)
s (X)

 .

For i ∈ N, we define the i’th (Hasse) derivative P (i)(X) as the coefficient of Zi in the expansion

P (X + Z) =
∑
i

P (i)(X)Zi.

13

For multivariate polynomials P ∈ Fq[X1, . . . , Xm], we use the notation X = (X1, . . . , Xm) and

Xi =
∏
j X

ij
j where i = (i1, . . . , im) ∈ Zm. For i ∈ Zm, we define the i’th (Hasse) derivative P (i)(X)

by

P (X + Z) =
∑
i

P (i)(X)Zi.

2.5 Some families of polynomial codes

In this section, we formally define the families of codes we will study: folded Reed-Solomon
codes [GR08], univariate multiplicity codes [RT97, KSY14, GW13], and multivariate multiplicity
codes [KSY14].

Folded Reed-Solomon codes. Let q be a prime power, and let s, d, n be nonnegative integers
such that n ≤ (q − 1)/s. Let γ ∈ Fq be a primitive element of Fq, and let a1, a2, . . . , an be distinct
elements in {γsi | 0 ≤ i ≤ (q − 1)/s− 1}. Let D = {a1, . . . , an}.

For a polynomial P (X) ∈ Fq[X] and a ∈ Fq, let P [s](a) ∈ Fsq denote the vector:

P [s](a) =


P (a)
P (γa)

...
P (γs−1a)

 .

The folded Reed-Solomon code FRSq,s(n, d) is a code over alphabet Fsq. To every polynomial P (X) ∈
Fq[X] of degree at most d, there corresponds a codeword c:

c : D → Fsq,

where for each a ∈ D:
c(a) = P [s](a).

Explicitly,

P (x) 7→
(
P [s](a1), P [s](a2), . . . , P [s](an)

)

=




P (a1)
P (γa1)

...
P (γs−1a1)

 ,


P (a2)
P (γa2)

...
P (γs−1a2)

 , . . . ,


P (an)
P (γan)

...
P (γs−1an)


 .

We denote the codeword of FRSq,s(n, d) corresponding to the polynomial P (X) by FRSEncs(P)
(when the parameters q, n are clear from the context).

Note that Reed-Solomon codes correspond to the special case of s = 1. The following claim sum-
marizes the basic properties of folded Reed-Solomon codes.

Claim 2.4 ([GR08]). The folded Reed-Solomon code FRSq,s(n, d) is an Fq-linear code over alphabet
Fsq of block length n, rate (d+ 1)/(sn), and relative distance at least 1− d/(sn).

14

Univariate multiplicity codes. Let q be a prime power, and let s, d, n be nonnegative integers
such that n ≤ q. Let a1, a2, . . . , an be distinct elements in Fq. Let D = {a1, . . . , an}.

For a polynomial P (X) ∈ Fq[X], let P (<s)(x) ∈ Fsq denote the vector:

P (<s)(a) =


P (a)

P (1)(a)
...

P (s−1)(a)

 .

The univariate multiplicity code MULT
(1)
q,s(n, d) is a code over alphabet Fsq. To every polynomial

P (X) ∈ Fq[X] of degree at most d, there corresponds a codeword c:

c : D → Fsq,

where for each a ∈ D:
c(a) = P (<s)(a).

Explicitly,

P (x) 7→
(
P (<s)(a1), P (<s)(a2), . . . , P (<s)(an)

)

=




P (a1)

P (1)(a1)
...

P (s−1)(a1)

 ,


P (a2)

P (1)(a2)
...

P (s−1)(a2)

 , . . . ,


P (an)

P (1)(an)
...

P (s−1)(an)


 .

We denote the codeword of MULT
(1)
q,s(n, d) corresponding to the polynomial P (X) by MultEncs(P)

(when the parameters q, n are clear from the context).

Once again, Reed-Solomon codes correspond to the special case of s = 1.

Claim 2.5 ([KSY14], Lemma 9). The univariate multiplicity code MULT
(1)
q,s(n, d) is an Fq-linear

code over alphabet Fsq of block length n, rate (d+ 1)/(sn), and relative distance at least 1− d/(sn).

Of particular importance is the setting where q = n and D equals the whole field Fq. We refer to

this code as the whole-field univariate multiplcity code, and denote it by MULT
(1)
q,s(d). This will be

relevant to multivariate multiplicity codes, which we define next.

Multivariate multiplicity codes. Multivariate multiplicity codes are a generalization of whole-
field univariate multiplicity codes to the multivariate setting.

Let q be a prime power, and let s, d,m be nonnegative integers. Let Um,s denote the set {i ∈ Nm |
wt(i) < s}. Note that |Um,s| =

(
s+m−1
m

)
. Let Σm,s = FUm,sq .

For a polynomial P (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm], and a point a ∈ Fmq , define P (<s)(a) ∈ Σm,s

by:
P (<s)(a) = (P (i)(a))i∈Um,s .

15

The multiplicity code MULT
(m)
q,s (d) is a code over alphabet Σm,s. To every polynomial P (X1, . . . , xm) ∈

Fq[X1, . . . , Xm] of (total) degree at most d, there corresponds a codeword as

c : Fmq → Σm,s,

where for each a ∈ Fmq ,

c(a) = P (<s)(a).

Note that Reed-Muller codes correspond to the special case of s = 1.

Claim 2.6 ([KSY14], Lemma 9). The multivariate multiplicity code MULT
(m)
q,s (d) is an Fq-linear

code over alphabet F(m+s−1
m)

q of block length qm, rate at least (1 − m2/s)(d/(sq))m, and relative
distance at least 1− d/(sq).

3 List recovering folded Reed-Solomon codes with constant out-
put list size

Our first main result shows that folded Reed-Solomon codes are list-recoverable (and in particular,
list-decodable) up to capacity with constant output list size, independent of n.

Theorem 3.1 (List recovering FRS with constant output list size). Let q be a prime power, and let
s, d, n be nonnegative integers such that n ≤ (q−1)/s. Let ε > 0 and ` ∈ N be such that 16`/ε2 ≤ s.
Then the folded Reed-Solomon code FRSq,s(n, d) is (α, `, L)-list-recoverable for α = 1− d/(sn)− ε
and L =

(
`
ε

)O(1
ε

log `
ε).

Moreover, there is a randomized algorithm that list recovers FRSq,s(n, d) with the above parameters
in time poly(log q, s, d, n, (`/ε)log(`/ε)/ε).

In particular, the ` = 1 case yields the following statement about list-decoding.

Corollary 3.2 (List decoding FRS with constant output list size). Let q be a prime power, and
let s, d, n be nonnegative integers such that n ≤ (q − 1)/s. Let ε > 0 be such that 16/ε2 ≤ s.
Then the folded Reed-Solomon code FRSq,s(n, d) is (α,L)-list decodable for α = 1− d/(sn)− ε and

L =
(

1
ε

)O(1
ε

log 1
ε).

Moreover, there is a randomized algorithm that list decodes FRSq,s(n, d) with the above parameters
in time poly(log q, s, d, n, (1/ε)log(1/ε)/ε).

The proof of Theorem 3.1 consists of two main steps. The first step, from [GW13], shows that the
output list is contained in a low dimensional subspace. The second step, which relies on results from
[GK16b], shows that the output list cannot contain too many codewords from a low dimensional
subspace, and therefore is small. The two steps are presented in Sections 3.1 and 3.2, respectively,
followed by the proof of Theorem 3.1 in Section 3.3.

16

3.1 Output list is contained in a low dimensional subspace

The following theorem from [GW13] shows that the output list is contained in a low dimensional
subspace, which can also be found efficiently.

Theorem 3.3 ([GW13], Theorem 7). Let q be a prime power, and let s, d, n, `, r be nonnegative

integers such that n ≤ (q − 1)/s and r ≤ s. Let S : D →
(Fsq
`

)
be an instance of the list-recovery

problem for FRSq,s(n, d). Suppose the decoding radius α satisfies:

α ≤ 1− `

r + 1
− r

r + 1
· s

s− r + 1
· d
sn
. (1)

Let
L = {P (X) ∈ Fq[X] | deg(P) ≤ d and dist(FRSEncs(P), S) ≤ α}.

There is a (deterministic) algorithm that given S, runs in time poly(log q, s, d, n, `), and computes
an affine subspace v0 + V ⊆ Fq[X] such that:

1. L ⊆ V ,

2. dim(V) ≤ r − 1.

Remark 3.4. Theorem 7 of [GW13] only deals with the case where ai = γs(i−1) for all i = 1, . . . , n,
and ` = 1. However, it can be verified that the proof goes through for any choice of distinct
a1, a2, . . . , an in {γsi | 0 ≤ i ≤ (q − 1)/s − 1}, and ` ∈ N (for the latter see discussion at end of
Section 2.4 of [GW13]).

3.2 Output list cannot contain many codewords from a low dimensional sub-
space

To show that the output list L cannot contain too many elements from a low dimensional subspace
(and to find L in the process), we first give a preliminary randomized algorithm PruneListFRS that
outputs a constant size list L′ such that any codeword of L appears in L′ with a constant probability
p0. This implies that |L| ≤ |L′|/p0, proving the first part of Theorem 3.1. Now that we know that
|L| is small, our final algorithm simply runs PruneListFRS O(1

p0
log |L|) times and returns the union

of the output lists. By a union bound, all elements of L will appear in the union of the output lists
with high probability. This will complete the proof of the second part of Theorem 3.1.

We start by describing the algorithm PruneListFRS and analyzing it. The algorithm is given as
input S : D →

(Fsq
`

)
, an Fq-affine subspace v0 + V ⊆ Fq[X] consisting of polynomials of degree at

most d and of dimension at most r, and a parameter τ ∈ N.

Algorithm PruneListFRS(S, v0 + V, τ)

17

1. Initialize L′ = ∅.

2. Pick b1, b2, . . . , bτ ∈ D independently and uniformly at random.

3. For each choice of y1 ∈ S(b1), y2 ∈ S(b2), . . . , yτ ∈ S(bτ):

• If there is exactly one codeword P (X) ∈ v0+V such that P [s](bj) = yj for all j ∈ [τ],
then:

L′ ← L′ ∪ {P (X)}.

4. Output L′.

Lemma 3.5. The algorithm PruneListFRS runs in time poly(log q, s, n, `τ), and outputs a list L′
containing at most `τ polynomials, such that any polynomial P (X) ∈ v0+V with dist(FRSEncs(P), S) ≤
α appears in L′ with probability at least

(1− α)τ − r
(

d

(s− r)n

)τ
.

Proof. We clearly have that |L′| ≤ `τ , and that the algorithm has the claimed running time. Fix a
polynomial P̂ ∈ v0 + V such that dist(FRSEncs(P̂), S) ≤ α, we shall show below that P̂ belongs to
L′ with probability at least

(1− α)τ − r
(

d

(s− r)n

)τ
.

Let E1 denote the event that P̂ [s](bj) ∈ S(bj) for all j ∈ [τ]. Let E2 denote the event that for all
nonzero polynomials Q ∈ V there exists some j ∈ [τ] such that Q[s](bj) 6= 0. By the assumption
that dist(FRSEncs(P̂), S) ≤ α, we readily have that

Pr[E1] ≥ (1− α)τ .

Claim 3.6 below also shows that

Pr[E2] ≥ 1− r
(

d

(s− r)n

)τ
.

So both E1 and E2 occur with probability at least

(1− α)τ − r
(

d

(s− r)n

)τ
.

If E2 occurs, then for every choice of y1 ∈ S(b1), y2 ∈ S(b2), . . . , yτ ∈ S(b2), there can be at most
one polynomial P (X) ∈ v0 + V such that P [s](bj) = yj for all j ∈ [τ] (otherwise, the difference
Q = P1 − P2 ∈ V of two such distinct polynomials would have Q[s](bj) = 0 for all j ∈ [τ],
contradicting E2). If E1 also occurs, then in the iteration of Step 3 where yj = P̂ [s](bj) for each
j ∈ [τ], the algorithm will take P = P̂ , and thus P̂ will be included in L′. This completes the proof
of the lemma.

18

It remains to prove the following claim.

Claim 3.6.

Pr[E2] ≥ 1− r
(

d

(s− r)n

)τ
.

The proof of the claim relies on the following theorem from [GK16b].

Theorem 3.7 ([GK16b], Theorem 14). Let W ⊆ Fq[X] be a linear subspace of polynomials of
degree at most d. Suppose dim(W) = t ≤ s. Let a1, a2, . . . , an be distinct elements in {γsi | 0 ≤ i ≤
(q − 1)/s− 1}, and for i ∈ [n] let

Hi = {P (X) ∈ Fq[X] | P (γjai) = 0 ∀j ∈ {0, 1, . . . , s− 1}}.

Then
n∑
i=1

dim(W ∩Hi) ≤
d

s− t+ 1
· t.

Proof of Claim 3.6. For 0 ≤ j ≤ τ , let

Vj := V ∩Hi1 ∩Hi2 ∩ . . . ∩Hij ,

and tj := dim(Vj). Observe that r = t0 ≥ t1 ≥ . . . ≥ tτ , and that event E2 holds if and only if
tτ = 0.

By Theorem 3.7,

E[tj+1 | tj = t] = Ei∈[n][dim(Vj ∩Hi) | dim(Vj) = t] ≤ t

s− t+ 1
· d
n
≤ t · d

(s− r)n
.

Thus

E[tj+1] ≤ E[tj] ·
d

(s− r)n
,

and

E[tτ] ≤ E[t0] ·
(

d

(s− r)n

)τ
= r

(
d

(s− r)n

)τ
.

Finally, by Markov’s inequality this implies in turn that

Pr[E2] = Pr[tτ = 0] = 1− Pr[tτ ≥ 1] ≥ 1− r
(

d

(s− r)n

)τ
.

19

3.3 Proof of Theorem 3.1

We now prove Theorem 3.1 based on Theorem 3.3 and Lemma 3.5.

Proof of Theorem 3.1. Let S : D →
(Fsq
`

)
be the received sequence of input lists. We would like to

find a list L of size
(
`
ε

)O(1
ε

log(`/ε))
that contains all polynomials P (X) of degree at most d with

dist(FRSEncs(P), S) ≤ α.

Let v0 + V be the subspace found by the algorithm of Theorem 3.3 for S and r = 4`
ε (so r ≤ 1

4εs
by assumption that s ≥ 16`/ε2). Note that for this choice of r the RHS of (1) is at least

1− ε

4
− 1

1− ε/4
· d
sn
≥ 1− d

sn
− ε = α,

and so all polynomial P (X) of degree at most d with dist(FRSEncs(P), S) ≤ α are included in V .

Next we invoke Lemma 3.5 with S, v0 +V and τ = O(1
ε log(`/ε)). Then the algorithm PruneListFRS

returns a list L′ of size at most `τ such that each polynomial P (X) of degree at most d with
dist(FRSEncs(P), S) ≤ α is included in L′ with probability p0, which is at least

(1− α)τ − r
(

d

(s− r)n

)τ
≥ (1− α)τ − r

(
1

1− ε/4
· d
sn

)τ
≥ (1− α)τ − 1

2

(
1 + ε/4

1− ε/4
· (1− α− ε)

)τ
≥ 1

2
(1− α)τ ,

where the first inequality follows since r ≤ 1
4εs, and the second inequality holds since r = 4`

ε ≤
1
2 · (1 + ε

4)τ and α = 1− d
sn − ε.

The above implies in turn that

|L| ≤ |L
′|

p0
≤ 2

(
`

1− α

)τ
≤
(
`

ε

)O(1
ε

log(`/ε))
.

Moreover, by running the algorithm PruneListFRS O(1
p0

log |L|) times and returning the union of all
output lists, by a union bound, all elements of L will appear in the union of the output lists with
high probability (say, at least 0.99). This gives a randomized list recovery algorithm with output

list size
(
`
ε

)O(1
ε

log(`/ε))
and running time poly(log q, s, d, n, (`/ε)log(`/ε)/ε).

4 List recovering high-rate univariate multiplicity codes with con-
stant output list size

In this section, we show that univariate multiplicity codes of high rate can be list recovered from
constant-sized input lists with constant-sized output lists.

20

4.1 Small d

If the degree d of the univariate multiplicity code is less than char(Fq), the characteristic of the
field Fq, then the proof from the previous section works verbatim. The only changes needed are as
follows.

• First, use Theorem 17 from [GW13] instead of Theorem 7 from that paper, to show that the
list is contained in a low-dimensional subspace.

• Second, use Theorem 17 from [GK16b] instead of Theorem 14 from that paper, to show that
for a low dimensional subspace W , at a typical a ∈ D we have dim({P (X) ∈W | P (<s)(a) =
0}) is small.

The condition d < char(Fq) is used in both steps. These changes lead to the following theorem.

Theorem 4.1 (List recovering univariate multiplicity codes over prime fields with d < char(Fq)).
Let q be a prime power, and let s, d, n be nonnegative integers such that d < char(Fq) and n <
char(Fq)/s.

Let ε > 0 and ` ∈ N be such that 16`/ε2 ≤ s. Then the univariate muliplicity code MULT
(1)
q,s(n, d)

is (α, `, L)-list recoverable for α = 1− d/(sn)− ε and L =
(
`
ε

)O(1
ε

log `
ε).

Moreover, there is a randomized algorithm that list recovers MULT
(1)
q,s(n, d) with the above parameters

in time poly(log q, s, d, n, (`/ε)log(`/ε)/ε).

Remark 4.2 (Fields of characteristic zero.). The exact same techniques also work over fields of
characteristic 0. We state the the analogous combinatorial statement over C, which may be of
independent interest.

Theorem 4.3. Let ε > 0. Let d, n > 0 be an integer. Let D ⊆ C with |D| = n. Let s > 16`
ε2

be an

integer. Let α ≤ 1− d
sn − ε.

Let S : D →
(Cs
`

)
be arbitrary. Then:

∣∣∣{P (X) ∈ C[X] | deg(P) ≤ d s.t. |{a ∈ D | P (<s)(a) ∈ S(a)}| ≥ (1− α)n
}∣∣∣ ≤ (`

ε

)O(1
ε

log `
ε)
.

In particular, when δ > 0 is a constant and we take d = (1 − δ)n, ε = δ, s = O(`/δ2) and α = 0,
then the bound on L is independent of n.

4.2 Large d

Theorem 4.1 works when d < q, but for application to multivariate multiplicity codes, however, it
is important that we can list-recover univariate multiplicity codes when the evaluation set D equals
all of Fq (i.e., whole-field univariate multiplicity codes).

21

For the rest of this section we assume that D = Fq, and hence that n = q. In this setting, for the
rate to be high, we would also like the degree d to be close to sq, and thus � q ≥ char(Fq). This
precludes use of the Theorem 4.1.

Instead, we will dig deeper into the proof to see what can be salvaged when d is larger than q.
For the first step, it turns out that if d is only moderately larger than char(Fq), then the list can
be captured inside a moderately small dimensional subspace. Thus if we make q prime, so that
q = char(Fq), then this step can still work for d < sq and s not too large. The second step uses the
d < char(Fq) condition more essentially. By a reworking of several algebraic tools used in the proof
of Theorem 17 from [GK16b], we prove a generalization of it to handle polynomials of degree > q.
This generalization will only apply to subspaces W of a special kind (“(Xq, d)-closed” subspaces).
The list-recoverability we show here is quantitatively weaker (in terms of the fraction of errors that
can be tolerated) than the results we proved in Theorem 3.1 and Theorem 4.1. Nevertheless, this
form of the result still suffices to needed to show high-rate local list-recoverability of multivariate
multiplicity codes in the following section.

Theorem 4.4. Let δ > 0. Let q be a prime, and let s, d, ` be nonnegative integers such that s < q
and d < (1− δ)sq, and 1 ≤ ` < δ2s

16 . Suppose α < 1
2s .

Then the whole-field univariate muliplicity code MULT
(1)
q,s(d) is (α, `, L)-list recoverable for L =

`O(s log s) · sO(1).

Moreover, there is a randomized algorithm that list recovers MULT
(1)
q,s(d) with the above parameters

in time poly(q, `O(s log s)).

The proof of this theorem is again in two steps.

First we use the linear-algebraic approach to list-recovering univariate multiplicity codes [GW13]
to show that the list is contained in a subspace. Technically, we need to redo this proof using some
additional algebraic ideas, because it will be important for us to deal with polynomials of degree
� q, and [GW13] only worked for polynomials of degree at most char(Fq). As a consequence, the
low-dimensional subspace will be of noticeably higher dimension than in [GW13], but will be of a
special form.

Next we show that the output list L cannot contain too many elements from a low-dimensional
subspace of this special form. As before, we will do this via a randomized algorithm.

4.3 Output list is contained in a special subspace

Suppose we are given a received word S : Fq →
(Fsq
`

)
for the univariate multiplicity code with degree

d and multiplicity parameter s < q.

The following theorem is essentially Lemma 14 from [GW13]. (This lemma is part of the proof of
Theorem 17 of [GW13], which is used in the proof of our Theorem 4.1 above). The theorem gives
a special affine subspace v0 + V of Fq[X] which contains all f(X) whose codeword MultEncs(f) is
close to S.

The main differences between the following theorem and Lemma 14 of [GW13] are: (1) we
need to talk about list-recovery, not just list-decoding, and (2) we work with Hasse derivatives,

22

while [GW13] works with standard derivatives. Both differences are minor; for completeness we
include a proof in the appendix.

Theorem 4.5. Let S : Fq →
(Fsq
`

)
. Let

α < 1− `

r + 1
− r

r + 1
· s

s− r + 1
· d
sq
. (2)

Let
L = {g(X) ∈ Fq[X] | deg(g) ≤ d and dist(MultEncs(g), S) ≤ α}.

There is an algorithm A, which when given as input r, finds polynomials A(X), B0(X), . . . , Br−1(X)
such that the affine space:

v0 + V = {f(X) ∈ Fq[X] | deg(f) ≤ d and A(X) +

r−1∑
i=0

Bi(X)f (i)(X) = 0}

satisifies:
L ⊆ v0 + V.

4.4 Special subspaces

In this subsection, we study certain special linear spaces of polynomials. In the next subsection we
show how this is relevant to the kinds of spaces v0 + V returned by the algorithm of Theorem 4.5.

Definition 4.6 ((Xq, d)-closed). A subspace W ⊆ Fq[X] consisting of polynomials of degree at
most d is called (Xq, d)-closed if for every f(X) ∈W with deg(f) ≤ d− q, we have

f(X) ·Xq ∈W.

For a (Xq, d)-closed subspace W , we define the q-dimension by

qdim(W) = |{deg(f) mod q | f ∈W \ {0}}| .

Observe that if W is (Xq, d)-closed with d ≤ sq, then

dim(W) ≤ s · qdim(W).

The next lemma gives a nice basis for every (Xq, d)-closed subspace.

Lemma 4.7. Suppose W ⊆ Fq[X] is (Xq, d)-closed. Then there exist f1, . . . , ft′ ∈W such that:

1. deg(fi) 6≡ deg(fj) mod q for all i 6= j.

2. Every f ∈W can be uniquely written as:

f(X) =

t′∑
i=1

Ci(X
q)fi(X),

where for all i, Ci(Y) ∈ Fq[Y] with q · deg(Ci) + deg(fi) ≤ d.

23

Furthermore, we have qdim(W) = t′.

Proof. Let f1 be the lowest degree nonzero element of W , and let M1 = {C1(Xq)f1(X) | C1(Y) ∈
Fq[Y] and q deg(C1) + deg(f1) ≤ d}. Note that M1 ⊆W . If M1 = W we are done with r′ = 1.

Otherwise, we proceed. Let f2 be the lowest degree nonzero element of W \M1. Observe that
deg(f2) 6≡ deg(f1) mod q: otherwise for some a ∈ Fq and b ≥ 0, we would have that

f ′2(X) = f2(X)− aXbqf1(X) ∈ f2 +M1

is an element of W \M1 with even lower degree than f2(X), contradicting the choice of f2. Define
M2 = {C1(Xq)f1(X) + C2(Xq)f2(X) | For i ≤ 2 we have Ci(Y) ∈ Fq[Y] and q deg(Ci) + deg(fi) ≤
d}. Note that M2 ⊆W . If M2 = W , we are done with r′ = 2.

Repeating this argument, we get polynomials f1, f2, . . . , ft′ ∈ V̄ with degrees d1, d2, . . . , dt′ satisfy-
ing:

di 6≡ dj mod q ∀i 6= j

This implies that the polynomials Xcqfi(X) all have distinct degrees, and are thus linearly inde-
pendent. Furthermore, we have that W is equal to

Mt′ =

{
t′∑
i=1

Ci(X
q)fi(X) | For i ≤ t′ we have Ci(Y) ∈ Fq[Y] and q deg(Ci) + deg(fi) ≤ d

}
.

In particular, if we define ji =
⌊
d−deg(fi)

q

⌋
, then

{Xcqfi(X) | q ≤ i ≤ t′, 0 ≤ c ≤ ji}

is a basis for W .

The next theorem is a variant of Theorem 14 from [GK16b] for (Xq, d)-closed subspaces of poly-
nomials of degree d > q.

Theorem 4.8. Let W ⊆ Fq[X] be a (Xq, d)-closed linear subspace of polynomials of degree at most
d. Suppose dim(W) = t and qdim(W) = t′ ≤ s.

Suppose d ≤ (s− t′)q. Then:

Eb∈Fq [dim(W ∩Hb)] ≤ (1− 1/s) · t.

Proof. Let f1, . . . , ft′ be those given by Lemma 4.7. Let di = deg(fi), and assume that d1 ≤ d2 ≤
. . . ≤ dt′ . Let U = span{f1, . . . , ft′}.

For b ∈ Fq, consider the map Φb : W → Fsq given by

Φ(f) = f (<s)(b).

24

Then ker(Φb) = W ∩Hb. Thus dim(W ∩Hb) = dim(W)− dim(Φ(W)). Similarly, dim(U ∩Hb) =
dim(U)− dim(Φ(U)). Thus

dim(W ∩Hb) ≤ dim(W)− dim(U) + dim(U ∩Hb).

Below we will show that

dim(U)− Eb[dim(U ∩Hb)] ≥
t

s− t′ + 1
. (3)

Assuming this, we get that

E[dim(W ∩Hb)] ≤ t−
t

s− t′ + 1
≤
(

1− 1

s− t′ + 1

)
t ≤

(
1− 1

s

)
t,

which is what we wanted to prove.

We now prove Equation (3). Let D =
∑t′

i=1 di. By Item 2 of Lemma 4.7, we have that:

t =

t′∑
i=1

(
1 +

⌊
d− di
q

⌋)
≤ t′

(
1 +

d

q

)
− D

q
.

Let Q(X) be the determinant of the Wronskian matrix of f1, . . . , ft′ . By Lemma A.1, Q(X) is a
nonzero polynomial. We have:

deg(Q) ≤ D.

By Claim 19 from [GK16b], we have that

mult(Q, b) ≥ (s− t′ + 1) · dim(U ∩Hb).

Now using the fact that Eb∈Fq [mult(Q, b)] ≤ deg(Q)
q ≤ D

q , we get:

Eb∈Fq [dim(U ∩Hb)] ≤
1

s− t′ + 1
Eb∈Fq [mult(Q, b)] ≤ 1

s− t′ + 1
· D
q
.

Thus

dim(U)− Eb∈Fq [dim(U ∩Hb)] ≥ t′ −
1

s− t′ + 1

D

q
.

Thus

(s− t′ + 1) ·
(
dim(U)− Eb∈Fq [dim(U ∩Hb)]

)
≥ (s− t′ + 1)t′ − D

q

≥ t′
(

1 +
d

q

)
− D

q
By the assumption d ≤ (s− t′)q

≥ t.

This completes the proof of the lemma.

25

4.5 Properties of the space of solutions of a linear differential equation

Let v0 + V be the affine space of low degree solutions to a linear differential equation:

v0 + V =

{
f(X) ∈ Fq[X] | deg(f) ≤ d and A(X) +

r−1∑
i=0

Bi(X)f (i)(X) = 0

}
.

We now prove some properties of V that will help us in the second step of our list-decoding
algorithm.

First we note that V is (Xq, d)-closed.

Lemma 4.9. V is (Xq, d)-closed.

Proof. Observe that:

V =

{
f(X) ∈ Fq[X] | deg(f) ≤ d and

r∑
i=0

Bi(X)f (i)(X) = 0

}
.

Now take any f(X) ∈ V . We want to show that g(X) = Xqf(X) ∈ V . For any i < q, we have:

g(i)(X) =
i∑

i′=0

(Xq)(i′) · f (i−i′)(X)

=
i∑

i′=0

(
q

i′

)
Xq−i′ · f (i−i′)(X)

= Xqf (i)(X).

Thus (using the fact that r < q):

r∑
i=0

Bi(X)g(i)(X) = Xq(
r∑
i=0

Bi(X)f (i)(X)) = 0.

We conclude that g(X) ∈ V , as desired.

Lemma 4.10.
qdim(V) ≤ r − 1.

Proof. Apply Lemma 4.7 to V to obtain f1, . . . , fr′ ∈ V , where r′ = qdim(V).

Suppose r′ ≥ r. Since f1, . . . , fr ∈ V we have that for each j ∈ [r],

r−1∑
i=0

Bi(X)f
(i)
j (X) = 0.

This means that the Wronskian matrix of (f1, . . . , fr) is singular. However, Lemma A.1 shows that
the Wronskian matrix is nonsingular, a contradiction. This completes the proof.

26

The next two lemmas and the following corollary are trivial and we omit the proofs.

For b ∈ Fq, let

Hb = {f(X) ∈ Fq[X] | deg(f) ≤ d and f (<s)(b) = 0}.

Lemma 4.11. For each b ∈ Fq, Hb is (Xq, d)-closed.

Lemma 4.12. The intersection of (Xq, d)-closed subspaces is (Xq, d)-closed.

Corollary 4.13. Given elements b1, . . . , bj ∈ Fq, the space V ∩Hb1 ∩Hb2 . . . Hbj is (Xq, d)-closed.

4.6 Pruning the list

Having developed the relevant machinery about (Xq, d)-closed subspaces, we can now describe and
analyze the second part of the list-decoding algorithm for univariate multiplicity codes. Below we
give the algorithm PruneListMULT, and after that we analyze it. The algorithm is given as input
S : Fq →

(Fsq
`

)
, an Fq-affine subspace v0 + V ⊆ Fq[X], and a parameter τ ∈ N.

Algorithm PruneListMULT(S, v0 + V, τ)

1. Initialize L′ = ∅.

2. Pick b1, b2, . . . , bτ ∈ Fq independently and uniformly at random.

3. For each choice of y1 ∈ S(b1), y2 ∈ S(b2), . . . , yτ ∈ S(bτ):

• If there is exactly one codeword P (X) ∈ v0 + V such that P (<s)(bj) = yj for all
j ∈ [τ], then:

L′ ← L′ ∪ {P (X)}.

4. Output L′.

Lemma 4.14. Suppose v0 + V is an affine space of polynomials of degree at most d. Suppose V is
(Xq, d)-closed and qdim(V) = r′. Suppose d ≤ (s− r′)q.

Then the algorithm PruneListMULT runs in time poly(q, s, `τ), and outputs a list L′ containing at
most `τ polynomials, such that any polynomial P (X) ∈ v0 + V with dist(MultEncs(P), S) ≤ α
appears in L′ with probability at least

(1− α)τ − r′s(1− 1/s)τ .

Proof. We clearly have that |L′| ≤ `τ , and that the algorithm has the claimed running time. Fix a
polynomial P̂ ∈ v0 + V such that dist(MultEncs(P̂), S) ≤ α. Below we will show that P̂ belongs to
L′ with probability at least

(1− α)τ − r′s(1− 1/s)τ .

Let E1 denote the event that P̂ (<s)(bj) ∈ S(bj) for all j ∈ [τ]. Let E2 denote the event that for all
nonzero polynomials Q ∈ V there exists some j ∈ [τ] such that Q(<s)(bj) 6= 0. By assumption that

27

dist(MultEncs(P̂), S) ≤ α, we readily have that

Pr[E1] ≥ (1− α)τ .

Claim 4.15 below also shows that

Pr[E2] ≥ 1− r′s · (1− 1/s)τ .

So both E1 and E2 occur with probability at least

(1− α)τ − r′s · (1− 1/s)τ .

If E2 occurs, then for every choice of y1 ∈ S(b1), y2 ∈ S(b2), . . . , yτ ∈ S(b2), there can be at most
one polynomial P (X) ∈ v0 + V such that P (<s)(bj) = yj for all j ∈ [τ] (otherwise, the difference
Q = P1 − P2 ∈ V of two such distinct polynomials would have Q(<s)(bj) = 0 for all j ∈ [τ],
contradicting E2). If E1 also occurs, then in the iteration of Step 3 where yj = P̂ (<s)(bj) for each
j ∈ [τ], the algorithm will take P = P̂ , and thus P̂ will be included in L′. This completes the proof
of the lemma.

It remains to prove the following claim.

Claim 4.15.
Pr[E2] ≥ 1− r′s · (1− 1/s)τ .

Proof of Claim 4.15. We will use Theorem 4.8.

Since qdim(V) ≤ r′, we have dim(V) ≤ r′s. For 0 ≤ j ≤ τ , let

Vj := V ∩Hb1 ∩Hb2 ∩ . . . ∩Hbj ,

and tj := dim(Vj). Observe that r′s ≥ t0 ≥ t1 ≥ . . . ≥ tτ , and that event E2 holds if and only if
tτ = 0.

By Corollary 4.13, all the Vj are (Xq, d)-closed. Since Vj ⊆ V , we have qdim(Vj) ≤ qdim(V) = r′.

We now study the distribution of t0, . . . , tτ . Since qdim(Vj) ≤ r′ and d ≤ (s− r′)q, we may apply
Theorem 4.8. We get:

E[tj+1 | tj = t] = Ebj+1∈Fq [dim(Vj ∩Hbj |) | dim(Vj) = t] ≤ (1− 1/s) · t.

Thus
E[tj+1] ≤ (1− 1/s) · E[tj],

and
E[tτ] ≤ (1− 1/s)τ · E[t0] ≤ (1− 1/s)τ · r′s.

Finally, by Markov’s inequality this implies in turn that

Pr[E2] = Pr[tτ = 0] = 1− Pr[tτ ≥ 1] ≥ 1− r′s (1− 1/s)τ .

28

4.7 Proof of Theorem 4.4

We now prove Theorem 4.4 based on Theorem 4.5 and Lemma 4.14.

Proof of Theorem 4.4. Let S : D →
(Fsq
`

)
be the received sequence of input lists. We would like to

find a list L of size `O(s log s) · sO(1) that contains all polynomials P (X) of degree at most d with
dist(MultEncs(P), S) ≤ α.

Let v0 + V be the affine subspace found by the algorithm of Theorem 4.5 for S and r = 4`/δ (and
so s > 4r

δ by our assumption that s > 16`/δ2). Note that for this choice of r the RHS of (2) is at
least

1− δ

4
− 1

1− δ/4
(1− δ) > δ

3
> α,

and so all polynomial P (X) of degree at most d with dist(MultEncs(P), S) ≤ α are included in
v0 + V .

By Lemma 4.10, qdim(V) ≤ r. Since V is (Xq, d)-closed, qdim(V) ≤ r, and

d ≤ (1− δ)sq ≤ (s− 4r)q ≤ (s− r)q,

we may invoke Lemma 4.14. It tells us that algorithm PruneListMULT with inputs S, v0 + V and
τ = O(s log(2rs)) returns a list L′ of size at most `τ such that each polynomial P (X) of degree at
most d with dist(MultEncs(P), S) ≤ α is included in L′ with probability p0, where:

p0 ≥ (1− α)τ − rs
(

1− 1

s

)τ
≥ (1− 1

2s
)τ − rs

(
1− 1

s

)τ
≥ 1

2
(1− 1

2s
)τ ,

where the first inequality holds since α ≤ 1
2s , and the second inequality holds since

(1− 1

2s
) > (1 +

1

2s
)(1− 1

s
) > e1/6s(1− 1

s
) > eln(2rs)/τ (1− 1

s
).

The above implies in turn that

|L| ≤ |L
′|

p0
≤ 2

(
`

1− 1
2s

)τ
≤ `O(s log s)sO(1).

Moreover, by running the algorithm PruneListMULT O(1
p0

log |L|) times and returning the union of
all output lists, by a union bound, all elements of L will appear in the union of the output lists with
high probability (say, at least 0.99). This gives a randomized list recovery algorithm with output
list size `O(s log s) and running time poly(q, s, `O(s log s)).

29

5 Local list-recovery of multivariate multiplicity codes

In this section we show that multivariate multiplicity codes can be locally list recovered from
constant sized input lists with small (or even constant) sized output lists.

Let δ > 0 be a parameter, and m, s be integers. Let d = (1 − δ)sq. Let MULT
(m)
q,s (d) be the

corresponding multiplicity code. Given `, α, we will demonstrate a local list recovery algorithm for
multivariate multiplicity codes of degree d and multiplicity parameter s, with input list size ` and
error tolerance α. Our main technical statement is Lemma 5.15, which we will state and prove
later in this section. However, we first state two instantiations of Lemma 5.15, which show that (a)
multivariate multiplicity codes are locally list-recoverable with sub-polynomial query complexity
and sub-polynomial list size, and (b) multivariate multiplicity codes are locally list-recoverable with
polynomial query complexity and constant list size.

Our first statement establishes sub-polynomial query complexity and list size.

Theorem 5.1. Let ε > 0 be sufficiently small, and let m, ` > 0 be any integers.

Then there is a multivariate multiplicity code C ⊆ ΣN with distance δ = ε/2m and rate at least
1− ε so that C is (t, α, `, L)-locally-list-recoverable for

α ≤ δ2

160`
,

L = `O(`m2 log(`m/ε)/ε2) ·
(m
ε

)O(1)

and

t =

(
Lm`

ε

)O(m)

.

Moreover, we have

N =

(
Lm`

ε

)O(m2)

.

and

|Σ| =
(
Lm`

ε

)O((`m2/ε2)m)

.

The code is explicit, and can be locally-list-recovered in time poly(t).

In particular, if ε, ` are constant, and ` > 1, we have

L = mO(m2), t = mO(m3), |Σ| = mO(m2m+2), N = mO(m4),

and so
L = exp

(√
log(N) · log log(N)

)
, t = exp

(
log3/4(N) · (log log(N))1/4

)
,

|Σ| = exp
(

exp
(

log1/4(N) · log log3/4(N)
))

.

Our second theorem establishes constant output list size with polynomial query complexity.

30

Theorem 5.2. Let δ, ε > 0 be sufficiently small, and choose τ ∈ (0, 1) and ` ∈ N.

Then for infinitely many N ∈ N, there is a multivariate multiplicity code C ⊆ ΣN with distance δ
and rate at least (1− δ)O(1/τ)(1− ε) so that C is (t, α, `, L)-locally-list-recoverable for some

α = Ω

(
min

{
δ2

`
, τ2ε

})
,

with
t = Oδ,ε,`,τ (N τ),

L = Oδ,ε,`,τ (1),

and
|Σ| = polyδ,ε,`,τ (N).

Notice that the alphabet size in Theorem 5.2 is large (polynomial in N) and in Theorem 5.1 is very
large (super-polynomial in N). However, we will deal with this in Section 6 to obtain capacity-
achieving codes with the roughly the same parameters t and L, and with constant alphabet size.

The rest of this section is devoted to the proof of Theorems 5.1 and 5.2, both of which follow from
the more general Lemma 5.15 below. We give a short overview of the approach in Section 5.1, and
then flesh out the details in the subsequent three subsections.

5.1 Overview and some more notation

We first introduce some terminology that will be useful for this section. Let Um,s = {i ∈ Nm |
wt(i) < s}. Let Σm,s = FUm,sq be the alphabet of the multiplicity code. Let w = |Um,s| =

(
m+s−1
m

)
.

For an element z ∈ Σm,s, and a direction b ∈ Fmq , we define the restriction of z to direction b
(denoted z|b) to equal h ∈ Σ1,s, where given by:

h(j) =
∑

wt(j)=j

z(j)bj

for each j such that 0 ≤ j < s.

The local list recovering algorithm has three main subroutines that we will describe and analyze in
the next three subsections. Briefly, the three components are the following:

1. A subroutine RecoverCandidates, given in Section 5.2. RecoverCandidates takes as input a
point a ∈ Fmq , has query access to S, and returns a short list Z ⊂ Σm,s∗ of guesses for

Q(<s∗)(a), where we will take s∗ to be some parameter larger than s.

2. An oracle machine MS [a, z], given in Section 5.3. The oracle machine MS [a, z] is defined
using an advice string (a, z) and has query access to S. If z = Q(<s∗)(a), then with high
probability over the choice of a random point a, we weill have that

dist
(
MS [a, Q(<s∗)(a)], Q(<s)

)
≤ 4ε.

31

3. The final local list-recovery algorithm LocalListRecoverMULT, given in Section 5.4. Recall that
the goal is to output a list of randomized algorithms A1, . . . , AL so that for each codeword

c ∈ MULT
(m)
q,s (d) with dist(c, S) ≤ α, with probability at least 2/3, there exists some j so that

Pr [Aj(i) = ci] ≥ 2/3. We arrive at these algorithms Aj as follows.

First, the algorithms runs RecoverCandidates on a random point a ∈ Fmq to generate a short

list Z ⊆ Σm,s∗ of possibilities for Q(<s∗)(a). Then, for each z ∈ Z, it forms the oracle machine
MS [a, z]. At this point it would be tempting to output the list of these oracle machines, but
we are not quite done: even if z = Q(<s∗)(a) corresponds to the correct advice and the choice
of a is good, for some small fraction of points x, we may still have MS [a, z](x) 6= Q(<s)(x) with
decent probability. Fortunately, for most y this will not be the case, and so we can implement
the local correction algorithm of [KSY14] for multiplicity codes on top of MS [a, z]. This will
give us our final list of randomized algorithms A1, . . . , AL that the local list-recovery algorithm
returns.

We flesh out the details in the next three subsections.

5.2 The algorithm RecoverCandidates

As an important subroutine of the local list recovering algorithm, we will implement an algorithm
which we call RecoverCandidates which will have the following features. It will have oracle access to
a function S : Fmq →

(Σm,s
`

)
. Think of this function as assigning to each element of Fmq a list of size

` of alphabet symbols of the multiplicity code. Now suppose that Q is an m-variate polynomial of
degree at most d (think of Q to represent a true codeword of the multiplicity code) that “agrees”
with at least 1−α fraction of these lists. On being input x, a random element of Fmq , and for some
parameter s̃ (think of s̃ to be much larger than s), the algorithm RecoverCandidates will make few
queries to S and output a small list Z ⊆ Σm,s̃, such that with high probability (over the choice of
x and the randomness of the algorithm), the list Z contains Q(<s̃)(x).

The main feature of this algorithm is that given oracle access to small lists, that for most coordinates
agree with the evaluations of order s derivatives of Q, can output for most coordinates, a small list
that agrees with evaluations of order s̃ derivatives of Q.

Lemma 5.3. Let q be a prime, let δ > 0 and let s, d,m be nonnegative integers such that d =
(1− δ)sq. Let α, α′ be parameters such that 0 < α < α′.

Let L = L(d, q, s, `, α′) be the list size for list recovering univariate multiplicity codes MULT
(1)
q,s(d)

of degree d and multiplicity parameter s with input list size ` and error tolerance α′, and T be the
corresponding running time for list recovering univariate multiplicity codes of the same parameters.

Let S : Fmq →
(Σm,s

`

)
. Let s̃ > 0 be a parameter. Suppose that q > 100 · s̃ · L ·m2, and suppose that

Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] is a polynomial of degree at most d such that:

Pr
x∈Fmq

[Q(<s)(x) ∈ S(x)] > 1− α.

There is an algorithm RecoverCandidates which on input x ∈ Fmq and s̃, and given oracle access to
S, makes at most poly (q · (Ls̃m)m) queries to S, runs in time at most poly (T · q · (Ls̃m)m), and

32

outputs a list Z ⊆ of size at most O(L) such that if x ∈ Fmq uniformly at random, then:

Pr[Q(<s̃)(x) ∈ Z] ≥ 1− 12

(α′ − α)q
,

where the probability is over the random choice of x and the random choices of the algorithm
RecoverCandidates.

The high level idea of the algorithm is as follows. On input x, we take several random lines passing
through x, and run the univariate multiplicity list-recovery algorithm on the restrictions of the
received word to those lines. This gives us, for each of these lines, a list of univariate polynomials.
For a given line, this list of univariate polynomials contains candidates for Q restricted to that
line. In particular, this gives us candidate values for Q(x) and the all higher order directional
derivatives of Q at x in the directions of those lines. We combine this information about the
different directional derivatives to reconstruct Q(<s̃)(x).

This combination turns out to be a certain kind of polynomial list-recovery problem: namely list-
recovery for tuples of polynomials. The following lemma, which is proved in Appendix D, shows
how this can be done algorithmically.

Lemma 5.4 (Vector-valued Reed-Muller list recovery on a grid). Let `, s̃,K,m be given parameters.
Let F be a finite field. Suppose that U ⊆ F and |U | ≥ 2`s̃K. Let α < 1− 1√

K
be a parameter.

Then for every f : Um →
(Ft
`

)
, if

L ={(Q1, Q2, . . . , Qt) ∈ (F[Y1, Y2, . . . , Yt])
t | ∀i ∈ [t],deg(Qi) ≤ s̃ and

Pr
u∈Um

[(Q1(u), Q2(u), . . . , Qt(u)) 6∈ f(u)] < α},

the following hold:

1. |L| ≤ 2K`.

2. If K ≥ m2 and α < 1− m√
K

, then there is a poly(|U |m, t, log |F |)-time algorithm VectorRMListRecover

which computes L.

We will use VectorRMListRecover as a subroutine of RecoverCandidates. To see why this is relevant,
we make the following observation about Hasse derivatives.

Claim 5.5. Let Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm]. Let x,b ∈ Fmq . Let s̃ be an integer. Let
λ(T) = x + Tb be the line passing through x in direction b.

For each j < s̃, define polynomial

Hx,j(Y1, . . . , Ym) =
∑

j:wt(j)=j

Q(j)(x)Yj,

and let Hx(Y1, . . . , Ym) ∈ (Fq[Y1, . . . , Ym])s̃ be the tuple of polynomials:

Hx = (Hx,0, Hx,1, . . . ,Hx,s̃−1).

Then we have
(Q ◦ λ)(<s̃)(0) = Q(<s̃)(x)|b = Hx(b).

33

Proof. We have from the definition of the Hasse derivative that∑
i

(Q ◦ λ)(i)(0) · T i = (Q ◦ λ)(T)

= Q(x + Tb)

=
∑
i

Q(i)(x) · bi · Twt(i)

=
∑
i

 ∑
i:wt(i)=i

Q(i)(x)bi

Twt(i),

and so by matching coefficients we have

(Q ◦ λ)(j)(0) =
∑

j:wt(j)=j

Q(j)(x)bj = Hx,j(b).

This implies the claim.

Thus, given information about (Q ◦ λ)(<s̃)(0) for various lines λ and for some s̃, we have informa-
tion about the tuple of polynomials Hx(Y), evaluated at many different points b. It is on these
polynomials that we will use Lemma 5.4.

Now we present our main subroutine RecoverCandidates, and analyze it below.

Main Subroutine RecoverCandidates.

• Oracle access to S : Fmq →
(Σm,s

`

)
.

• INPUT: x ∈ Fmq , parameter s̃ ∈ N.

• The goal is to recover a small list of candidates for Q(<s̃)(x).

1. Let U ⊆ Fq be a set of size 100s̃Lm2.

2. Let b ∈ Fmq be picked uniformly at random.

3. Let B = {bu = b + u | u ∈ Um}.

4. For each u ∈ Um:

(a) Let λu(T) be the line λu(T) = x + Tbu.

(b) Consider the restriction Su : Fq →
(Σ1,s

`

)
of S to λu. Formally:

Su = S ◦ λu(t) = {z|bu | z ∈ S(λu(t))}.

34

(c) Run the univariate list recovery algorithm on Su with error-tolerance α′ for degree
d polynomials to obtain a list Lλu ⊆ Fq[T].

.

5. Define a function f : Um →
(Fs̃q
L

)
as follows. For each u ∈ Um, define

f(u) = {P (<s̃)(0) | P (T) ∈ Lλu}.

6. Let L′ be the set of all s̃-tuples of polynomials

(Q′j(Y1, . . . , Ym))s̃−1
j=0

where Q′j is homogeneous of degree j, and such that

(Q′j(u))s̃−1
j=0 ∈ f(u)

for at least 2/3 fraction of the u ∈ Um.

Obtain this list L′ by running the VectorRMListRecover (from Lemma 5.4) for s̃-tuples of
polynomials of degree ≤ s̃, where the evaluation points are Um. Then prune the resulting
list L to ensure that for each member

(Q′j(Y1, . . . , Ym))s̃−1
j=0

of the list L, and for each j such that 0 ≤ j ≤ s̃−1, Q′j is homogeneous of degree j. This
pruned list is L′.

7. For each
(Q′j(Y))s̃−1

j=0 ∈ L
′,

let
(Pj(Y))s̃−1

j=0 = (Q′j(Y − b))s̃−1
j=0,

and add this to a new list of tuples of polynomials that we call L′′.

8. Let

Z =

z ∈ Σm,s̃ | (
∑

wt(i)=j

z(i)Yi)s̃−1
j=0 ∈ L

′′

 .

9. Return Z.

We now prove Lemma 5.3.

Proof of Lemma 5.3. Suppose Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] is a polynomial of degree at most
d such that:

Pr
x∈Fmq

[Q(<s)(x) ∈ S(x)] > 1− α.

35

For each line λ in Fmq , let Lλ be the result of univariate list-recovering S ◦ λ with error-parameter
α′. Let b ∈ Fmq be the random choices of RecoverCandidates. For x,b ∈ Fmq , and for u ∈ Um, recall
that λu(T) denotes the line λu(T) = x + Tbu, where bu = b + u. Then for each u ∈ Um, let Bu

be the event that Q ◦ λu(T) is not in Lλu .

Claim 5.6. For each fixed u ∈ Um,

Pr
x,b∈Fmq

[Bu] ≤ 4

(α′ − α)q
.

Proof. Note that when x,b are uniformly random elements of Fmq , then λu(T) is a uniformly

random line. The event that Q ◦ λu(T) is not in Lλu is a subset of the event that Q(<s)(x) 6∈ S(x)
for more than α′ fraction of points x on the line λu(T). The claim then follows from a standard
application of Chebyshev’s inequality, using the fact that the points on a uniformly random line
are pairwise independent.

More precisely,

Pr
x,b∈Fmq

[Bu] ≤ Pr
x,b∈Fmq

∑
t∈Fq

1
{
Q(<s)(λu(t) 6∈ S(λu(t))

}
> α′q


=: Pr

Y

∑
t∈Fq

Yt > α′q


= Pr

Y

∑
t∈Fq

(Yt − EYt) > (α′ − α)q

 ,
where the Yt are pairwise independent {0, 1}-valued random variables with EYt ≤ α. Then by
Chebyshev’s inequality, this last quantity is at most∑

t∈Fq E(Yt − EYt)2

(α′ − α)2q2
≤ 4

(α′ − α)2q
.

Claim 5.7.

Pr
x,b1,...,bm

[∑
u∈Um

1Bu >
|U |m

3

]
<

12

(α′ − α)q
.

Proof. The proof is immediate from the previous claim and Markov’s inequality.

Thus we conclude that with probability at least 1− 12
(α′−α)q , when x is a uniformly random element

of Fmq , for at least 1/3 of the u ∈ Um, we have that

Q ◦ λu(T) ∈ Lλu .

We assume that this happens, and let G ⊆ Um be this set of u.

36

Recall that Lλu is a list of size L. Consider the function

f : Um →
(
Fs̃q
L

)
,

where for each u ∈ Um,
f(u) = {P (<s̃)(0) | P (T) ∈ Lλu}.

Fix any u ∈ G. Then since
Q ◦ λu(T) ∈ Lλu ,

it holds that
(Q ◦ λu)(<s̃)(0) ∈ f(u).

Now observe that by Claim 5.5, we have

Hx(bu) = (Q ◦ λu)(<s̃)(0),

and thus
Hx(b + u) = Hx(bu) ∈ f(u).

Since this happens for each u ∈ G, we have that this happens for at least 1/3 fraction of u ∈ Um.

Now by our assumption that |U | ≥ 100m2Ls̃, Lemma 5.4 implies8 that the algorithm VectorRMListRecover
on input f and error parameter 2/3 will include Hx(b + Y) in L′ (here we also use the fact that
Hx,j is an m-variate polynomial of degree at most j).

In this event, L′′ will contain
Hx(Y)

and then it follows that in Step 8 of RecoverCandidates, the list Z will contain Q(<s̃)(x).

5.3 The Oracle Machine M

Our final local list recovery algorithm will output a short list of oracle machines, each of which is
defined by a piece of advice. In this case, the advice will be a point a ∈ Fmq , and z ∈ Σm,s∗ , which

is meant to be a guess for Q(<s∗)(a). Given this advice, the oracle machine works as follows: on
input x, with corresponding input list Y = S(x), it will run the univariate list-recovery algorithm
on the line λ(T) = x+T (a−x) through x and a to obtain a list L of univariate polynomials P (T).
We will show that with high probability (assuming the advice is good), there will be a unique
polynomial P (T) in L so that both P (<s∗)(1) is consistent with z, and P (<s∗)(0) is consistent with
some element of Y . Then the oracle machine will output the symbol in Y that P (<s∗)(0) agrees
with.

The key later will be that the advice z will not vary over all possibilities in Σm,s∗ ; this would result
in too long a list. Rather, we will use RecoverCandidates in order to generate this advice.

8WARNING: we invoke the algorithm and statement of Lemma 5.4 with input list size equal to L; iė,̇ we take
` = L (and K = 100m2) in the statement when we invoke it.

37

Formally, we will prove the following lemma about our oracle machine, which we define below.

Lemma 5.8. Let q be a prime, let δ > 0 and let s, d,m be nonnegative integers such that d =
(1− δ)sq. Let α, α′ be parameters such that 0 < α < α′.

Let L = L(d, q, s, `, α′) be the list size for list recovering univariate multiplicity codes MULT
(1)
q,s(d)

of degree d and multiplicity parameter s with input list size ` and error tolerance α′, and T be the
corresponding running time for list recovering univariate multiplicity codes of the same parameters.

Let S : Fmq →
(Σm,s

`

)
. Let s∗ > 0 be a parameter. Suppose that q > C · s∗ ·L ·m2, for some absolute

constant C, and suppose that Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] is a polynomial of degree at most d
such that:

Pr
x∈Fmq

[Q(<s)(x) ∈ S(x)] > 1− α.

Let

ε = α+
`s

q
+

4

(α′ − α)q
+
sL

s∗
.

There is an algorithm MS [a, z](x) which on input x ∈ Fmq , given as advice a point a ∈ Fmq , and
z ∈ Σm,s∗, and given oracle access to S, makes at most q queries to S, runs in time at most
poly (T, q, (s · s∗)m), and outputs an element of Σm,s ∪ {⊥} such that if x,a ∈ Fmq are chosen
uniformly at random, then:

Pr
a,x∈Fmq

[
MS [a, Q(<s∗)(a)](x) = Q(<s)(x)

]
≥ 1− ε.

In particular, if we view MS [a, Q(<s∗)(a)] as a function from Fmq → Σm,s∪{⊥}, then with probability
at least 3/4 over the choice of a ∈ Fmq ,

dist
(
MS [a, Q(<s∗)(a)], Q(<s)

)
≤ 4ε.

We will first decribe the algorithm and then show that it satisfies the required properties.

Oracle machine M .

• Oracle access to S : Fmq →
(Σm,s

`

)
.

• INPUT: x ∈ Fmq .

• ADVICE: Point a ∈ Fmq , and z ∈ Σm,s∗ .

1. Let Y = S(x).

2. Set b∗ = a− x.

38

3. Let λb∗ be the line λb∗(T) = x + Tb∗.

4. Consider the restriction Sb∗ : Fq →
(Σ1,s

`

)
of S to the line λb∗ , and list recover this with

error-tolerance α′ for degree d polynomials, and obtain the list Lλb∗ ⊆ Fq[T].

5. If there exists exactly one P (T) ∈ Lλb∗ such that P (<s∗)(1) = z|b∗ , then set Pb∗(T) to
equal that P (T), otherwise output ⊥ and exit.

6. If there exists exactly one y ∈ Y for which y|b∗ = P
(<s)
b∗

(0), then output that y.

7. Otherwise output ⊥.

We will now analyze the above algorithm and show that is satisfies the required properties.

Proof of Lemma 5.8. By the description of the oracle machine, it is clear that it makes at most
q queries. Moreover its running time is at most poly (T, q, (s · s∗)m), since in addition to running
the univariate list recovery algorithm, it needs to do some field calculations such as computing
the restriction of S to a line, as well as computing for each P (T) ∈ L∗, P (<s∗)(1) and z|b∗ and
comparing the two. This takes time at most poly (q, (s · s∗)m).

It remains to show that when a and x are chosen uniformly at random from Fmq , then

Pr
a,x∈Fmq

[
MS [a, Q(<s∗)(a)](x) = Q(<s)(x)

]
≥ 1− ε.

Claim 5.9. Let y0 = Q(<s)(x). With probability at least 1− α over the random choice of x ∈ Fmq ,
y0 ∈ Y .

Proof. Recalling that Y = S(x), the proof is immediate since it is given to us that

Pr
x∈Fmq

[Q(<s)(x) ∈ S(x)] > 1− α.

Claim 5.10. Let y0 = Q(<s)(x). For any y ∈ Y with y 6= y0, with probability at least 1 − s
q over

the random choice of a ∈ Fmq , we have that

y|b∗ 6= y0|b∗ .

Proof. Recall that by definition, for an element z ∈ Σm,s, and a direction b ∈ Fmq , z|b is to equal
h ∈ Σ1,s, where:

h(j) =
∑

wt(j)=j

z(j)bj

for each j such that 0 ≤ j < s. Note that h(j) can be viewed as a polynomial of degree at most j
evaluated at b, where the coefficients of the polynomial depend only on z.

Since y 6= y0, the corresponding tuples of polynomials (each of degree at most s) will differ in at
least one coordinate. Observe also that for any fixed choice of x, the randomness of a implies that

39

b∗ is a uniformly random element of Fmq . This in the coordinate where the tuples of polynomials
differ, the evaluations at b∗ will be distinct with probability at least 1− s

q by the Schwartz-Zippel
Lemma.

Thus with probability at least 1− s
q over the random choice of a ∈ Fmq , we have that

y|b∗ 6= y0|b∗ .

Claim 5.11. Let y0 = Q(<s)(x). For any x ∈ Fmq such that y0 ∈ Y , with probability at least 1− `s
q

over the random choice of a ∈ Fmq , y0|b∗ is unique element y of Y for which y|b∗ = Q ◦ λ(<s)
b∗

(0).

Proof. Clearly, by definition, y0|b∗ = Q ◦ λ(<s)
b∗

(0). Also, taking a union bound over all ` elements

of Y , by Claim 5.10, y0|b∗ 6= y|b∗ for all other y ∈ Y with probability at least 1− `s
q .

Claim 5.9 and Claim 5.11 together imply that with probability at least 1−
(
α+ `s

q

)
over the random

choice of a and x ∈ Fmq , Q(<s)(x)|b∗ is the unique element y of Y for which y|b∗ = Q ◦ λ(<s)
b∗

(0).

We will now show that with probability at least 1 −
(

4
(α′−α)q + sL

s∗

)
over the random choice of a

and x ∈ Fmq , Pb∗(T) = Q ◦λb∗(T). Once we will have this, then it will immediately follow that the

algorithm will output Q(<s)(x) with probability at least 1−
(

4
(α′−α)q + sL

s∗ + 4
(α′−α)q + sL

s∗

)
over the

random choice of a and x ∈ Fmq
For each line λ in Fmq , let Lλ be the result of list-recovering S ◦ λ with error-parameter α′. For
points x and a picked uniformly at random from Fmq , let b∗ = a − x, and let λb∗ be the line
λb∗(T) = x + Tb∗.

Let Bλb∗ denote the event that Lλb∗ does not contain Q◦λb∗(T). Let Cλb∗ ,a denote the event that

there exist P (T) ∈ Lλb∗ with P (T) 6= Q ◦ λb∗(T), but P (<s∗)(0) = (Q ◦ λb∗)(<s∗)(0). Thus Bλb∗ is
the event that there are too many errors on λb∗ . Cλb∗ ,a is the event that a is not a disambiguating
point.

Claim 5.12.

Pr[Bλb∗] =
4

(α′ − α)q
.

Proof. The proof is identical to that of Claim 5.6, and it follows from a standard application of
Chebyshev’s inequality, using the fact that the points on a uniformly random line are pairwise
independent.

Claim 5.13.

Pr[Cλb∗ ,a] <
sL

s∗
.

40

Proof. Because of the way x, a and the line λb∗ are sampled, equivalently one could let x be picked
uniformly at random from Fmq , λb∗ be a uniformly random line through x and a be a uniformly
random point on λb∗ .

Now fix any polynomial P (T) ∈ Lλb∗ with P (T) 6= Q ◦ λb∗(T). We want to bound the probability

that P (<s∗)(α) = (Q ◦ λb∗)(<s∗)(α) where α is picked uniformly at random. But P and Q ◦ λb∗
are fixed distinct polynomials of degree at most sq. Thus the probability that they agree with
multiplicity s∗ on a random point of Fq is at most sq

s∗q = s
s∗ .

The result follows from a union bound over all P (T) ∈ Lλb∗ .

Claim 5.12 and Claim 5.13 together imply that with probability at least 1−
(

4
(α′−α)q + sL

s∗

)
over the

random choice of a and x ∈ Fmq , neither Bλb∗ nor Cλb∗ ,a occurs, and hence Pb∗(T) = Q ◦ λb∗(T).

Thus the result follows.

5.4 Main local list-recovery algorithm

Together, Lemmas 5.3 and 5.8 inspire a local-list-recovery algorithm for multivariate multiplicity
codes. The idea is that RecoverCandidates will first obtain a list of possibilities, Z, for Q(<s∗)(a).
Then for each possibility z ∈ Z, we will create an oracle machine as in Lemma 5.8 which guesses
Q(<s∗)(a) = z. Unfortunately, this will still have some amount of error; that is, there will be some
small fraction of x ∈ Fmq so that the approach above will not be correct on x. To get around
this, we will wrap the whole thing in the local (unique) correction algorithm for multiplicity codes
from [KSY14].

Theorem 5.14 ([KSY14], Theorem 3.6). Let C be multiplicity code MULT
(m)
q,s (d). Let δ = 1− d

sq .

Suppose that q ≥ max{10m, d+6s
s , 12(s + 1)}. Then C is locally correctable from δ

10 -fraction of
errors with (O(s)m · q) queries. Moreover, the local corrector SelfCorrectc(x), with query access to
a codeword c ∈ C running on a position x ∈ Fmq , can be9 made to run in time O(s)m · qO(1).

With the self-correction algorithm for multiplicity codes in hand, we define our local-list-recovery
algorithm as follows.

Algorithm LocalListRecoverMULT.

• Oracle access to S : Fmq →
(Σm,s

`

)
.

9This claim about the running time in [KSY14] was only proved for fields of small characteristic. There, in
the discussion about “Solving the Noisy System” in Section 4.3, it was shown that the running time can be made
poly(O(s)m ·q) provided one could efficiently decode Reed-Muller codes over certain product sets in Fq, and remarked
that this was known over fields of small characteristic. Recently [KK17] showed that this Reed-Muller decoding
problem could be solved over all fields. This justifies the running time claim over all fields.

41

1. Pick a ∈ Fmq uniformly at random.

2. Set s∗ = 160·L·s
δ .

3. Let Z be the output of RecoverCandidatesS(a, s∗).

4. for z ∈ Z, define Az by:

• INPUT: x ∈ Fmq

(a) Let M denote the oracle machine MS [a, z]

(b) Return SelfCorrectM (x)

5. Return L = {Az : z ∈ Z}.

The following lemma shows that this algorithm works, assuming a list-recovery algorithm for uni-
variate multiplicity codes. In the proof of Theorem 5.1, we will instantiate this with the list-recovery
algorithm given in Section 4.

Lemma 5.15. There is some constant C > 0 so that the following holds. Let q be a prime, let
δ > 0 and let s, d,m be nonnegative integers such that d = (1− δ)sq. Let α, α′ be parameters such
that 0 < α < α′ < 1.

Let L = L(d, q, s, `, α′) be the list size for list recovering univariate multiplicity codes MULT
(1)
q,s(d)

of degree d and multiplicity parameter s with input list size ` and error tolerance α′, and T be the
corresponding running time for list recovering univariate multiplicity codes of the same parameters.

Let S : Fmq →
(Σm,s

`

)
. Suppose that

s∗ ≥ 160 · L · s
δ

and that

q ≥ max

{
160`s

δ
,

640

(α′ − α) · δ
, Cs∗Lm2,

20 · Cm
α′ − α

, 10m,
d+ 6

s
, 12(s+ 1)

}
and that

α ≤ δ

160
.

Then for all Q(X1, . . . , Xm) ∈ Fmq [X1, . . . , Xm] with degree at most d and so that

Prx∈Fmq [Q(<s)(x) ∈ S(x)] > 1− α,

with probability at least 2/3 over the algorithm LocalListRecoverMULT, the following holds. For all
x ∈ Fmq , there exists an oracle machine Az ∈ L so that

Pr [Az(x) = Q(x)] ≥ 2/3.

Moreover, the output list L has size |L| = O(L); and LocalListRecoverMULT makes poly(q, (Ls∗m)m)
queries to S, and each Az makes O(s)m·q2 queries to S. Finally, the algorithm LocalListRecoverMULT
runs in time poly(T, q, (Ls∗m)m) and each Az runs in time O(s)m · poly(q, T, (s · s∗)m).

42

Proof. Fix a polynomial Q ∈ Fq[X1, . . . , Xm] of degree at most d, so that dist(Q,S) ≤ α. We first
establish the correctness of the algorithm LocalListRecoverMULT given above.

By Lemma 5.3, with probability at least 1 − 20m
(α′−α)q ≥ 1 − 1

C over the randomness of both

RecoverCandidates and a, RecoverCandidatesS(a, s∗) returns a list Z of size at most O(L) so that
Q(<s∗)(a) ∈ Z. Let G1 be the set of a ∈ Fmq so that PrRecoverCandidates[Q

(<s∗)(x) ∈ Z] ≥ 1− 1√
C

. By

Markov’s inequality along with the conclusion of Lemma 5.3 above, G1 has density at least 1−1/
√
C.

Now let G2 be the set of a ∈ Fmq so that dist(MS [a, Q(<s∗)(a], Q(<s)) ≤ 4ε. By Lemma 5.8, G2

has density at least 3/4. Thus by the union bound, with probability at least 3/4− 1/
√
C over the

choice of a, both events hold, and so with probability at least 3/4− 2/
√
C over the choice of a and

the randomness of RecoverCandidates, there is some z ∈ Z so that

dist(MS [a, z], Q(<s)) ≤ 4ε (4)

for any

ε ≤ α+
`s

q
+

4

(α′ − α)q
+
sL

s∗
.

By choosing C ≥ 242 (as well as large enough so that Lemma 5.3 and 5.8 hold), we can ensure that
(4) occurs with probability at least 2/3. Suppose that this happens, and (4) does occur. Observe
that our parameter choices above are made precisely so that

δ

40
≥ α+

`s

q
+

4

(α′ − α)q
+
sL

s∗
.

Thus, we may take ε = δ/40 in the above, and conclude that in the favorable case of (4), we have

dist(MS [a, z], Q(<s)) ≤ δ

10
.

We may then apply Theorem 5.14 to the oracle machine M = MS(a, z) in the algorithm above,

and conclude that SelfCorrectM (x) is a local-self-corrector for MULT
(m)
q,s (d). In particular, for all

x ∈ Fmq , with probability at least 2/3, Az(x) = Q(<s)(x), as desired.

Now that we have established that the algorithm is correct, we quickly work out the list size, query
complexity, and runtime. The list size is clearly O(L), because this is the list size returned by
RecoverCandidates. For the query complexity, the algorithm LocalListRecoverMULT has the same
query complexity as RecoverCandidates, while each Az has query complexity which is the product
of the query complexities of the oracle machines MS [a, z] (which is q) and SelfCorrect (which is
O(s)m · q), and together these give the reported values. The runtime calculation is similar.

Finally, we may choose parameters and use Theorem 4.4 to prove Theorems 5.1 and 5.2.

Proof of Theorem 5.1. The proof proceeds by setting parameters in Lemma 5.15. We will let C =

MULT
(m)
q,s (d), where m is the parameter from the theorem statement. We will choose q, s, d below.

Let δ = ε/(2m); we will verify below that δ is a bound on the distance of C.

Choose s = 16·`
δ2 , and α ≤ δ2

160·` as in the theorem statement. We will choose α′ = 2α, so α′−α = α.

We note that these choices ensure that ` ≤ δ2s
16 and that α′ < 1/2s, both of which are required for

43

Theorem 4.4 to hold (when called with α′ as the error parameter), as well as α < δ
160 , as required

by Lemma 5.15.

Now, with these choices Theorem 4.4 says that MULT
(1)
q,s(d) is (α′, `, L′)-list-recoverable with

L′ = `O(s log(s)) · sO(1) = `O(` log(`/δ)/δ2) ·
(

1

δ

)O(1)

= `O(`·m2 log(m`/ε)/ε2) ·
(m
ε

)O(1)
,

using our choice of s and δ. Since the list size in Lemma 5.15 grows by at most a constant factor,
this establishes our choice of L in the theorem statement.

We will next choose q. We need q to be large enough so that Lemma 5.15 holds. It can be checked
that of all of the requirements on q given in Lemma 5.15, the binding one is that q = Ω(s∗Lm2),
where we chose s∗ = Θ(Ls/δ). We shall choose q safely larger than this, choosing a prime q so that

q := Θ

((
Lms∗

δ

)m)
= (Lm`/ε)O(m) .

The reason for this choice is that this is the largest we may take q so that the query complexity
expression

poly(q · (Ls∗m)m)

from Lemma 5.15 does not substantially grow.

Now that we have chosen s and q, we will finally choose

d =
(

1− ε

2m

)
sq

so that the distance of C is

δ = 1− d

sq
=

ε

2m

as claimed.

With this choice the query complexity given in Lemma 5.15 is

t = O(s)m · q2 + qO(1) ·
(
Ls∗m

δ

)O(m)

,

which with our choices of s, δ and q is

t =

(
Lm`

ε

)O(m)

as claimed.

We now verify the rate. As per Claim 2.6, the rate of C is at least

R ≥
(

1− m2

s

)
(1− δ)m

=

(
1− ε2

16`

)(
1− ε

2m

)m
≥
(

1− ε2

16`

)(
1− 2ε

3

)
≥ 1− ε,

44

where the last two lines hold for sufficiently small ε. We first note that our choice of α ≤ δ2

160`

satisfies α ≤ δ
160 , which was required in Lemma 5.15.

Finally, we note that the length of the code C is

N = qm =

(
Lm`

ε

)O(m2)

and that the alphabet size is similarly

|Σ| = qs
m

=

(
Lm`

ε

)O(sm)

,

which results in the expression given in the theorem statement. Finally, the running time for the
list-recovery algorithm guaranteed by Lemma 5.15 is dominated by the (Ls∗m)m term, which is
poly(t).

Proof of Theorem 5.2. Again, we set parameters in Lemma 5.15. Let δ, ε, τ, ` be as in the statement

of Theorem 5.2. We will choose C = MULT
(m)
q,s (d), and we set parameters below. First, we choose

s = max

{
16`

δ2
,
c2

τ2ε

}
,

where c is some universal constant that will be chosen below. We will choose

m =
c

τ
,

and d so that d = (1 − δ)sq, ensuring that the relative distance of the code is at least δ. Now we
choose

α′ ≤ min

{
δ2

160`
,
τ2ε

2c2

}
,

and α = α′/2. which ensures that α ≤ δ/160 (as is required for Lemma 5.15) and that α′ ≤ 1/2s,
which is required for Theorem 4.4. We also have (α′ − α) = Ωδ,ε,`,τ (1).

Notice that all of the requirements on the size of q in Lemma 5.15 simply require q = Ω`,ε,δ,τ (1), so
we choose any prime q sufficiently large, and let N = qm is be the length of the multiplicity code.

By Claim 2.6, C has rate at least(
1− m2

s

)(
d

sq

)m
≥ (1− ε)(1− δ)m = (1− ε)(1− δ)c/τ ,

which is what was claimed.

Then by Theorem 4.4, the univariate multiplicity code MULT
(1)
q,s(d) is (α, `, L)-list-recoverable with

L = `O(s log(s))sO(1) = O`,δ,ε,τ (1)

in time poly`,δ,ε,`(q).

45

Now we choose s∗ = 160Ls/δ = O`,δ,ε,τ (1), and Lemma 5.15 concludes that C is (t, α, `, L′)-list-
recoverable for L′ = O(L) = O`,δ,ε,τ (1) and for

t = qc · (Ls∗m)O(m) = O`,δ,ε,τ (qc)

for some constant c. (This defines the constant c). Now, since N = qm = qc/τ , we have t =
O`,δ,ε,τ (N τ), as desired. Finally, Lemma 5.15 further implies that the running time of the local
list-recovery algorithm is poly(t), where the exponent in the polynomial does not depend on `, δ, ε,
or τ .

6 Capacity-achieving codes over constant-sized alphabets

Theorems 5.1 and 5.2 show that high-rate multivariate multiplicity codes are efficiently locally list-
recoverable. However, the alphabet sizes for both of these constructions are large, and they only
tolerate a small amount of error. Fortunately, via standard techniques, we can both boost the error
tolerance and improve the alphabet size without substantially impacting the locality or list size.
We will prove the following theorems, based on Theorems 5.1 and 5.2 respectively.

First we give a statement with sub-polynomial query complexity and list size.

Theorem 6.1. Let R > 0. Let ε > 0 be sufficiently small, and let m, ` > 0 be integers. Suppose
that ε, ` are constants, independent of m, and that R ∈ (ε, 1 − 2ε). There is a code C ⊆ ΣN with
rate R that is (t, 1−R− ε, `, L)-list-recoverable for

L = mO`,ε(m
2)

t = mO`,ε(m
3)

N = mO`,ε(m
4)

|Σ| = O`,ε(1)

which can be locally list-recovered in time poly(t). Moreover, C has a deterministic encoding algo-
rithm which runs in time poly(N).

In particular, solving for m ≈
(

log(N)
log log(N)

)1/4
, we have that

L = exp
(√

log(N) log log(N)
)

t = exp
(

log3/4(N) · (log log(N))1/4
)
.

Next we give a statement with polynomial query complexity but constant list size.

Theorem 6.2. Let R > 0. Let ε, τ > 0 be sufficiently small, and let ` > 0 be an integer. Suppose
that ε, τ, ` are constants, and that R ∈ (ε, 1 − 2ε). Then for infinitely many N , there is a code
C ⊆ ΣN of rate R that is (t, 1−R− ε, `, L)-list-recoverable for

L = O`,ε,τ (1)

46

t = O`,ε,τ (N τ)

|Σ| = O`,ε,τ (1),

which can be locally list-recovered in time poly(t). Moreover, C has a deterministic encoding algo-
rithm that runs in time poly(N).

The proof of Theorems 6.1 and 6.2 will follow from an expander-based construction [AEL95] which
has been used in similar settings to reduce alphabet sizes and improve the rate/distance trade-offs
(and in particular in [GR08, GKO+17, HRW17] in the context of list-recovery). We state a general
transformation below.

Theorem 6.3. Choose ε, γ, ζ, R ∈ (0, 1). Let C1 ⊆ Σn1
1 be a code of rate 1− ζ. Suppose that there

exists a code C0 ⊆ Σn0
0 of rate R which is (1 − R − ε, `, `1)-list-recoverable in time T (C0), which

can be deterministically constructed in time Tconstruct(C0).

Then there exists a code C ⊆ ΣN of rate (1− ζ) ·R over an alphabet of size

|Σ| = |Σ0|O(1/(ε3·γ))

and block length

N = O

(
n1 log |Σ1|ε3γ

R log |Σ0|

)
.

so that C can be deterministically constructed in time Tconstruct(C0) + poly(|Σ1|, n1, 1/ε, 1/γ) and
so that:

• If C1 is (γ, `1, L)-list-recoverable in time T (C1), then C is (1 − R − 4ε, `, L)-list-recoverable
in time O (n1T (C0) + T (C1)) .

• If C1 is (t, γ, `1, L)-list-recoverable in time T ′(C1), then C is (t′, 1−R− 4ε, `, L)-locally list-
recoverable in time

O

(
T (C0) + T ′(C1)

ε3γ

)
,

where

t′ = O

(
t log |Σ1|
R log |Σ0|

)
.

The proof of Theorem 6.3 is by now standard, and we include it in Appendix E for completeness.
The basic idea is to concatenate C1 with C0, and then to scramble up and re-aggregate the symbols
of the resulting concatenated code using a bipartite expander graph.

We will use Theorem 6.3 three times: once with C0 as a random linear code and C1 as the con-
catenation of two folded RS codes; and the next two times with C0 as the code produced by the
first application of Theorem 6.3 and with C1 as a multivariate multiplicity code from Theorem 5.1
and Theorem 5.2, respectively.

For the list-recoverability of a random linear code, we use a result of [RW17].

47

Theorem 6.4 (Follows from Theorem 6.1 in [RW17]). Choose R ∈ (0, 1) be constant, and let
ε, ` > 0. There is some q0 = (1 + `)O(1/ε) and

`1 =

(
q`

ε

)O(log(`)/ε3)

so that the following holds. Let q be a prime power, and let C0 be a random linear code over Fq of
rate R and length n0. Then with high probability, C0 is (1−R− ε, `, `1)-list-recoverable.

We will also use the following corollary of Theorem 3.1.

Corollary 6.5. Let ε > 0 and ` ∈ N be constants. Then for infinitely many values of n, there is a
code C ⊆ Σn of rate 1− ε, which is (ε2/16, `, L)-list-recoverable in time poly(n,L), for L = O`,ε(1),
and which has |Σ| = poly`,ε(log(n)).

Proof. The proof follows by concatenating two folded Reed-Solomon codes. More precisely, let
C0 ⊆ Σn0

0 be a folded RS code of rate 1 − 2γ which is (γ, `, `1)-list-recoverable for `1 = O`,γ(1),
which has alphabet size |Σ0| = poly`,γ(n0) and is list-recoverable in time poly(n0, `1); this exists by
Theorem 3.1. Then let C1 ⊆ Σn1

1 be another code of rate 1− 2γ which is (γ, `1, L)-list-recoverable
for L = O`1,γ(1) = O`,γ(1) and has |Σ1| = poly`,γ(n1) and is list-recoverable in time poly(n1, L);

again this exists by Theorem 3.1. Since |C0| = n
O`,γ(n0)
0 and |Σ1| = poly`,γ(n1), there is a choice of

n1 so that n0 = O`,γ(log(n1)) so that |C0| ≥ |Σ1|.

Now consider the code C which is the concatenation of C1 with C0. The length of the code
is n = n1 · n0. The alphabet size of C is |Σ0| = poly`,γ(n0) = poly`,γ(log(n)), and the rate is
(1− 2γ)2 ≥ 1− 4γ. Finally, it is not hard to see that the composition of two list-recoverable codes
is again list-recoverable (see, eg, [HRW17], Lemma 7.4), and we conclude that C is (γ2, `, L)-list-
recoverable in time poly(N,L). Setting ε = 4γ completes the proof.

Next, we instantiate Theorem 6.3 using the codes from Corollary 6.5 as the outer code, and a
random linear code as the inner code.

Corollary 6.6. Let R ∈ (0, 1), `, ε > 0 be constants so that ε < R < 1− 2ε, and let α < 1−R− ε.
Then there is a code C ⊂ Σn of rate R, constructable in time poly`,ε(n), which is (α, `, L)-list-

recoverable in time O`,ε(n
O(1)) +O(n · log(n)O`,ε(1)) with

|Σ| = (1 + `)O(1/ε6) = O`,ε(1)

and
|L| = O`,ε(1).

Proof. The proof follows by applying Theorem 3.1 in Theorem 6.3. Let the outer code C1 ⊆ Σn1
1

be a code of rate 1− ε/4 which is (α, `1, L)-list-recoverable in time poly(n1 ·O`,ε(1)) for α = Ω(ε2),
and which has |Σ1| = poly`,ε(log(n1)), as guaranteed by Corollary 6.5.

48

For the inner code, we use a random linear code, choosing |Σ0| = (1+ `)O(1/ε). By Theorem 6.4, for
any n0, there exists a linear code C0 ⊆ Σn0

0 of rate R+ ε/2 that is (1−R− ε, `, `1)-list-recoverable,
for

`1 =

(
`

ε

)O(log(`)/ε4)

= O`,ε(1).

We have |C0| = (1 + `)O(n0/ε), so there is a choice of n0 = O`,ε(log log(n1)) so that |C0| ≥ |Σ1| =
poly`,ε(log(n1)), and we make this choice. Thus, we may use C0 and C1 in the construction in

Theorem 6.3 to construct a code C ⊆ ΣN of rate (1− ε/4)(R+ ε/2) ≥ R that is (1−R− 4ε, `, L)-
list-recoverable, where N = Oε(n0 · n1). The final alphabet size is |Σ| = |Σ0|O(1/ε3α) = (1 + `)1/ε6 .

Finally, we consider how long it takes to construct and decode C. To construct C0 we iterate
over all possible generator matrices and verify their list-recovery properties. There are at most
|Σ0|Rn

2
0 = |C0|ε log`(|C0|) linear codes, and checking the list-recoverability of any one of them takes

time O(|Σ0|`n0 · |C0|`1+1 · n0`), the time to search over all lists S1, . . . , Sn0 of size `, and all subsets
of L + 1 codewords and compute their distance. Since n0 will be much larger than `, ε, this is
dominated by the |Σ0|Rn

2
0 term, and the time it takes to find the generator matrix of such a code is

Tconstruct(C0) = O(|Σ0|R·n
2
0) = O(|C0|n0) = log(n1)O`,ε(log log(n1)) = poly`,ε(n1) = poly`,ε(N).

Thus time to construct the whole code C ⊆ ΣN is also poly(N).

The time to perform list-recovery on the inner code C0 by brute force is poly(|C0|) = poly`,ε(log(n1)).
The time to perform list-recovery is then the time to run the list-recovery algorithm for C1 (which
is poly(N,O`,ε(1))), plus the time to brute-force decode C0 n1 times, which is O(N · log(N)O`,ε(1)).

Instantiating Theorem 6.3 with these choices yields the corollary.

Remark 6.7. The reason to concatenate folded RS codes with themselves to obtain the outer code
C1 above is to make the alphabet size small enough that a brute-force search over all generator
matrices for the inner code is still polynomial time. If one omits this step, then the construction
above still works with a quasipolynomial-time construction and a better list size. It may be possi-
ble to create a version of Corollary 6.6 which has a significantly smaller list size (close to the one
guaranteed by Theorem 3.1) by using a folded RS code as C1 and a derandomization of existing
Monte-Carlo constructions of capacity-achieving list-recoverable codes as the inner code C0. How-
ever, since a list size of O`,ε(1) is sufficient for our applications going forward, we stick with the
simpler machinery.

One might try to prove Theorem 6.1 in the same way, with multivariate multiplicity codes as C1

and a random linear code as C0. However, in this case the alphabet size is so large that doing
exhaustive search to decode C0 would yield a super-polynomial decoding time, and concatenating
the outer code with smaller versions of itself until the alphabet size is smaller will yield too large
a list size. Therefore, we instead use for C0 the code we have just created in Corollary 6.6 instead.

There is one more catch, which is that the codes from Theorem 5.1 don’t meet list-decoding capacity,
since they have rate 1 − ε, but can only handle up to O(ε2/`m2) fraction of errors, which in our
parameter regime is sub-constant. If we applied Theorem 6.3 directly, we would need to take γ
in that theorem to be sub-constant, which would result in a super-constant alphabet size. Thus,

49

before we apply Theorem 6.3 to reduce the alphabet size, we amplify the distance to a constant,
by applying a different version of the expander-based argument stated in Lemma 6.9 below. This
will very slightly increase the alphabet size, but not so much that it will affect the asymptotics,
and then we can apply Theorem 6.3.

Remark 6.8. We believe it is possible to combine the two expander-based constructions into only
one (with only one expander), which would give a slight improvement in the parameters. However,
our approach here (using both Lemma 6.9 and Theorem 6.3 in serial) is more modular and still
yields the desired asymptotic result, so we stick with it for simplicity of exposition.

We use the following lemma from [GKO+17].

Lemma 6.9 ([GKO+17], Distance amplification for local list-recovery). For any constants δ1, α1, γ >
0, there exists an integer d ≤ poly(1/δ1, 1/α1, 1/γ) so that the following holds.

• Let C1 ⊆ Σn1
1 have rate R1 and and distance δ1 and be (t, α1, `1, L)-locally-list-recoverable in

time T (C1).

• Let C0 ⊆ Σn0
0 have rate R0 and be (α0, `, `1)-globally-list-recoverable in time T (C0).

• Further suppose that n0 ≥ d, |Σ1| = |C0|.

Then there exists a code C ⊆ (Σn0
0)n1 of block length n1 over Σ = Σn0

0 with rate R0 · R1 that is
(t′, α0 − γ, `, L)-locally-list-recoverable for

t′ = t · n2
0 · log(n0).

Moreover there is a local list-recovery algorithm for C which runs in time O(T (C1))+O(t ·T (C0))+
poly(t, n0, `). Further, if both codes can be constructed in time Tconstruct(C0) and Tconstruct(C1) (in
the sense that this is the time it take to generate a short description which suffices for polynomial-
time encoding), then the final code C can be constructed in time O(Tconstruct(C0) + Tconstruct(C1)).

Remark 6.10. The statement of this lemma in [GKO+17] is slightly different in that both the
hypotheses and the conclusion are slightly stronger. They both specify linear codes, and the both
have an additional “soundness” parameter which we will not need. However, an inspection of the
proof shows that it goes through if these additional requirements and conclusions are dropped.

Corollary 6.11. Let ε > 0 be sufficiently small, and let m, ` > 0 be any integers. Suppose that ε, `
are constant, and m is growing. Then there is a code C ⊆ ΣN with rate at least 1 − 3ε so that C
is (t, ε, `, L)-locally-list-recoverable for

L = mO`,ε(m
2)

N = mO`,ε(m
4)

t = mO`,ε(m
3)

|Σ| = mO`,ε(m
2m+2)

Further, C can be locally list recovered in time poly(t), and can be deterministically encoded in time
poly(N).

50

Proof. We instantiate Lemma 6.9 using the code from Corollary 6.6 with rate 1 − 2ε as C0 and a
multivariate multiplicity code, from Theorem 5.1, as C1. Thus, C0 ⊆ Σn0

0 has rate R0 = 1− 2ε and
is (1− ε, `, `1)-globally list-recoverable in time poly`,ε(n0), with `1 = O`,ε(1). Meanwhile, C1 ⊆ Σn1

1

is (α, `1, L)-list-recoverable with
α = O`,ε(1/m

2),

L = mO`1,ε(m
2) = mO`,ε(m

2),

N = mO`1,ε(m
4) = mO`,ε(m

4),

t = mO`1,ε(m
3) = mO`,ε(m

3),

|Σ| = mO`1,ε(m
2m+2),= mO`,ε(m

2m+2),

where we have used the fact that `1 = O`,ε(1) to turn O`1,ε(·) into O`,ε(·). The fact that |C0| = |Σ1|
thus implies that

n0 = O(log |Σ1|) = O`,ε(m
2m+2 log(m)).

Observe that n0 is much larger than the poly(1/α, 1/ε, 1/δ1) = poly`,ε(m) that is require by
Lemma 6.9, for sufficiently largem. Now we check the conclusions. We immediately have the desired
expressions for N = n1 and L. The final alphabet size is |Σ| = |Σ1|1/R0 = poly(|Σ1|) = mO`,ε(m

3),
as before. The query complexity is

t′ = t · n2
0 log(n0) = mO`,ε(m

3) ·mO`,ε(m) = mO`,ε(m
3).

The dominating term in the local list-recovery time is poly(t), so the running time is still poly(t).
And finally the time to construct a generator matrix for the inner code is poly(n0) = poly(N).
Thus we may treat C as a deterministic code whose encoding map performs the search for C0 in
polynomial time and then encodes the message in polynomial time.

Finally we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. Again we will use Theorem 6.3.

Let C0 ⊆ Σn0
0 be the code from Corollary 6.6, with rate R+ 4ε. Thus, we have

|Σ0| = (1 + `)O(1/ε6),

and C0 is (1−R− 5ε, `, `1)-list-recoverable in time poly`,ε(n0), for `1 = O`,ε(1). Moreover, C0 can

be constructed in time n
O`,ε(log(n0))
0 .

We choose C1 ⊆ Σn1
1 to be the code from Corollary 6.11, so that C1 is a code of rate (1−3ε), which

is (t, ε, `1, L)-list-recoverable, for

L = mO`,ε(m
2)

n1 = mO`,ε(m
4)

t = mO`,ε(m
3)

|Σ1| = mO`,ε(m
2m+2)

51

where as in the proof of Corollary 6.11, above we have used the fact that `1 = O`,ε(1) to hide
dependence on `1 in the notation O`,ε(·).

Now we apply Theorem 6.3, which concludes that there exists a code C ⊂ ΣN of rate (1 − 3ε) ·
(R+ 4ε) ≥ R which is (t′, 1−R− 9ε, `, L)-locally list-recoverable in time

O`,ε(T (C0) + T (C1)) = poly`,ε(n0) +mO`,ε(m
3) = mO`,ε(m) +mO`,ε(m

3) = mO`,ε(m
3) = poly(t),

where
t′ = O`,ε(t log |Σ1|) = mO`,ε(m

3).

Moreover, we have
N = O`,ε(n1 · log |Σ1|) = mO`,ε(m

3)

and
|Σ| = |Σ0|O(1/ε4) = (1 + `)O(1/ε10) = O`,ε(1).

Finally, to deterministically encode a message in C, we run the construction algorithm for C0 (in

time n
O(log(n0))
0 = mO(m2 log(m)) = poly(N)), and then use the polynomial-time encoding algorithm

for C1 which exists from Corollary 6.11.

Now applying the proof above with ε/9 instead of ε gives the theorem statement.

Finally, we prove Theorem 6.2.

Proof of Theorem 6.2. Choose δ, τ, ε > 0 constant and sufficiently small, and ` > 0 constant. Let
C0 ⊆ Σn0

0 be a code from Corollary 6.6, so that the rate of C0 isR+2ε, |Σ0| = (1+`)O(1/ε6) = Oε,`(1),
and so that C0 is (1−R− 3ε, `, `1)-list-recoverable in time poly`,ε(n0).

Now choose C1 ⊆ Σn1
1 which is (t, α, `1, L)-locally list-recoverable in time poly(t) for α = Ωε,`,τ,`(1),

so that C1 has rate 1 − ε, query complexity t = O`,δ,τ,ε(n
τ/2
1), L = O`,δ,τ,ε(1), and |Σ1| =

poly`,δ,τ,ε(N). Such a code exists by Theorem 5.2 (where we have used the fact that `1 = Oε,`(1)).

Now we apply Theorem 6.3, and conclude that there exists a code C ⊆ ΣN , so that the rate of C
is at least (1− ε)(R+ 2ε) ≥ R and so that

|Σ| = |Σ0|O(1/(ε3α)) = O`,δ,τ,ε(1),

so that C is (t′, 1−R− 7ε, `, L)-list-recoverable for

t′ = O

(
t log |Σ1|

(R+ 2ε) log |Σ0|

)
= O`,δ,τ,ε(N

τ/2 log(N)) = O`,δ,τ,ε(N
τ),

in time
O`,δ,τ,ε(T (C0) + T ′(C1)) = O`,δ,τ,ε(N

O(τ)).

Moreover, C has rate (1− ε)(R+ 2ε) ≥ R. The stated result follows by replacing ε with ε/7 in the
above analysis.

52

7 Conclusion

We have shown that folded Reed-Solomon codes and multiplicity codes perform better than previ-
ously known in the context of (local) list-recovery. In addition to improving our knowledge about
these codes, our results also lead to new and improved constructions of locally-list-recoverable
codes. However, there is still much left to do, and we conclude with some open questions.

1. Theorem 3.1 shows that the list size for folded Reed-Solomon codes is (`/ε)O(1
ε

log(`/ε)). How-
ever, it is known that it is possible for codes to achieve a list size of O(`/ε). It would be
very interesting to strengthen our result to this bound, or even to reduce the list size to
poly(`, 1/ε).

2. It would be very interesting to improve the list size in Theorem 4.4 on univariate multiplicity
codes with large d to be sO`,1/ε(1), rather than the current bound of `O(s log(s)) · sO(1). Beyond
intrinsic interest, such an improvement would lead to an improvement in the query complexity
of local list-recovery of multivariate multiplicity codes.

3. The algorithm given in Theorem 3.1 is a randomized algorithm. It is a very interesting
open problem to design a deterministic list-decoding algorithm for folded RS codes with fixed
polynomial running time that works up to list-decoding capacity.

4. We give a construction of a high-rate locally list-recoverable code with sub-polynomial query
complexity. But we do not know if this is the best we could do; for example, could one get
away with polylogarithmic query complexity in the same setting? Any lower bounds would
be extremely interesting.

Acknowledgements

We would like to thank Atri Rudra and Venkatesan Guruswami for helpful discussions.

References

[AEL95] Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with nearly
optimal recovery. In proceedings of the 36th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 512–519. IEEE Computer Society, 1995.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications.
Combinatorica, 23(3):365–426, 2003.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing (STOC), pages 21–31. ACM Press, 1991.

[BK09] K. Brander and S. Kopparty. List-decoding Reed-Muller over large fields upto the
Johnson radius. Manuscript, 2009.

53

[DL12] Zeev Dvir and Shachar Lovett. Subspace evasive sets. In Proceedings of the 44th
Symposium on Theory of Computing Conference (STOC), pages 351–358. ACM Press,
2012.

[GI02] Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique
decoding and new list-decodable codes over smaller alphabets. In Proceedings of the
34th Annual ACM Symposium on Theory of Computing (STOC), pages 812–821. ACM
Press, 2002.

[GI03] Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list decodable
codes. In STOC, pages 126–135, 2003.

[GI04] Venkatesan Guruswami and Piotr Indyk. Linear-time list decoding in error-free settings.
In ICALP, volume 3142, pages 695–707. Springer, 2004.

[GI05] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

[GK16a] Alan Guo and Swastik Kopparty. List-decoding algorithms for lifted codes. IEEE
Transactions on Information Theory, 62(5):2719–2725, 2016.

[GK16b] Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Combinator-
ica, 36(2):161–185, 2016.

[GKO+17] Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and Shubhangi
Saraf. Locally testable and locally correctable codes approaching the gilbert-varshamov
bound. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 2073–2091. SIAM, 2017.

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lift-
ing. In proceedings of the 4th Innovations in Theoretical Computer Science Conference
(ITCS), pages 529–540. ACM Press, 2013.

[GL89] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages
25–32. ACM, 1989.

[GNP+13] Anna C. Gilbert, Hung Q. Ngo, Ely Porat, Atri Rudra, and Martin J. Strauss. `2/`2-
foreach sparse recovery with low risk. In Automata, Languages, and Programming,
volume 7965 of Lecture Notes in Computer Science, pages 461–472. Springer Berlin
Heidelberg, 2013.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity:
Error-correction with optimal redundancy. IEEE Transactions on Information Theory,
54(1):135–150, 2008.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and
algebraic-geometry codes. IEEE Trans. Information Theory, 45(6):1757–1767, 1999.

54

[Gur04] Venkatesan Guruswami. List decoding of error-correcting codes: winning thesis of the
2002 ACM doctoral dissertation competition, volume 3282. Springer Science & Business
Media, 2004.

[GW13] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants of
reed-solomon codes. IEEE Transactions on Information Theory, 59(6):3257–3268, 2013.

[GX12] Venkatesan Guruswami and Chaoping Xing. Folded codes from function field towers
and improved optimal rate list decoding. In Proceedings of the forty-fourth annual ACM
symposium on Theory of computing, pages 339–350. ACM, 2012.

[GX13] Venkatesan Guruswami and Chaoping Xing. List decoding reed-solomon, algebraic-
geometric, and gabidulin subcodes up to the singleton bound. In Proceedings of the
45th annual ACM symposium on Theory of Computing (STOC), pages 843–852. ACM
Press, 2013.

[HOW15] Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability of expander
codes. Information and Computation, 243:178–190, 2015.

[HRW17] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local list recovery of high-rate
tensor codes and applications. In Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society, 2017.

[HW15] Brett Hemenway and Mary Wootters. Linear-time list recovery of high-rate expander
codes. In proceedings of the 42nd International Colloquium on Automata, Languages,
and Programming (ICALP), volume 9134 of LNCS, pages 701–712. Springer, 2015.

[INR10] Piotr Indyk, Hung Q. Ngo, and Atri Rudra. Efficiently decodable non-adaptive group
testing. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’10, pages 1126–1142, Philadelphia, PA, USA, 2010. Society for
Industrial and Applied Mathematics.

[KK17] John Y Kim and Swastik Kopparty. Decoding reed–muller codes over product sets.
Theory of Computing, 13(21):1–38, 2017.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spec-
trum. SIAM Journal on Computing, 22(6):1331–1348, 1993.

[KMRS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally
correctable and locally testable codes with sub-polynomial query complexity. Journal
of ACM, 64(2):11:1–11:42, 2017.

[Kop15] Swastik Kopparty. List-decoding multiplicity codes. Theory of Computing, 11(5):149–
182, 2015.

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with
sublinear-time decoding. Journal of ACM, 61(5):28, 2014.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing (STOC), pages 80–86. ACM Press, 2000.

55

[Lip90] Richard J. Lipton. Efficient checking of computations. In Proceedings of the 7th Annual
ACM Symposium on Theoretical Aspects of Computer Science (STACS), pages 207–215.
Springer, 1990.

[Nie01] R. R. Nielsen. List decoding of linear block codes. PhD thesis, Technical University of
Denmark, 2001.

[NPR12] Hung Q. Ngo, Ely Porat, and Atri Rudra. Efficiently Decodable Compressed Sensing by
List-Recoverable Codes and Recursion. In Christoph Dürr and Thomas Wilke, editors,
29th International Symposium on Theoretical Aspects of Computer Science (STACS
2012), volume 14 of Leibniz International Proceedings in Informatics (LIPIcs), pages
230–241, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[PV05] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the guruswami-sudan
radius in polynomial time. In Foundations of Computer Science, 2005. FOCS 2005. 46th
Annual IEEE Symposium on, pages 285–294. IEEE, 2005.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[RT97] M. Yu. Rosenbloom and M. A. Tsfasman. Codes for the m-metric. Problemy Peredachi
Informatsii, 33(1):55–63, 1997.

[RW17] Atri Rudra and Mary Wootters. Average-radius list-recovery of random linear codes.
arXiv preprint arXiv:1704.02420, 2017.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without
the xor lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction bound.
Journal of Complexity, 13(1):180–193, 1997.

[SY11] Shubhangi Saraf and Sergey Yekhanin. Noisy interpolation of sparse polynomials, and
applications. In Computational Complexity (CCC), 2011 IEEE 26th Annual Conference
on, pages 86–92. IEEE, 2011.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1–3):1–336, 2012.

A A Wronskian lemma

In this section, we prove a lemma that shows that certain Wronskian determinants needed in
Section 4 are nonzero.

Lemma A.1. Suppose q is prime. Suppose f1, . . . , ft ∈ Fq[X] are such that deg(fi) 6≡ deg(fj)
mod q for i 6= j. Then W (f1, . . . , ft) is nonsingular.

56

Proof. Let dj = deg(fj).

For 0 ≤ i ≤ t − 1 and j ∈ [t], the (i, j) entry of the Wronskian matrix is f
(i)
j (X), whose leading

term is
(dj
i

)
Xdj−i.

Thus the determinant of the Wronskian matrix has degree at most D =
∑t

j=1 dj−
∑t−1

i=0 i. Further-

more, the coefficient of XD in the Wronskian determinant equals the determinant of the matrix
whose (i, j) entry (for 0 ≤ i < t, 1 ≤ j ≤ t) equals

(dj
i

)
. This latter determinant is essentially a Van-

dermonde determinant, and by our hypotheses on the dj , is nonzero in Fq. Thus the determinant
of the Wronskian matrix is a polynomial of degree exactly D, and in particular is nonzero.

B Proof of Theorem 4.5

Here we prove Theorem 4.5, which adapts a theorem of [GW13] to our setting.

Proof of Theorem 4.5. We begin by giving the algorithm.

Algorithm FindPolys.

• INPUT: A parameter r, and access to S : Fq →
(Fsq
`

)
• OUTPUT: An affine subspace v0 + V that contains all polynomials that are close to S.

1. Set D = (s− r + 1)(1− α)q − 1.

2. By solving a linear system of equations over Fq, find a nonzero
(A(X), B0(X), . . . , Br(X)) ∈ (Fq[X])r+1 such that:

(a) deg(A) ≤ D, and for all i, deg(Bi) ≤ D − d.

(b) For each λ with 0 ≤ λ ≤ s− r, for each x ∈ Fq, for each y ∈ S(x):

A(x) +

r−1∑
i=0

λ∑
j=0

(
i+ j

i

)
y(i+j)B(λ−j)(x) = 0.

3. Let v0 + V be the affine space

v0 + V = {f(X) | A(X) +

r−1∑
i=0

f (i)(X)Bi(X) = 0}.

4. Output v0 + V .

We need to show:

57

1. The linear system has a nonzero solution,

2. L ⊆ v0 + V ,

To see that the linear system has a nonzero solution, we show that the homogeneous system of
linear equations in Step 2 of the algorithm has more variables than constraints. The total number
of free coefficients in A(X), B0(X), . . . , Br(X) equals:

(D + 1) + r(D − d+ 1) = (D + 1)(r + 1)− d · r
= (s− r + 1)(1− α)q(r + 1)− dr

> (s− r + 1)

(
`

r + 1
+

r

r + 1

d

(s− r + 1)q

)
q(r + 1)− dr

= (s− r + 1)`q + dr − dr
= (s− r + 1)`q.

The total number of constraints equals:

q · (s− r + 1) · `.

By choice of D, the number of free coefficients is larger than the number of constraints. This proves
that the algorithm can find a nonzero solution in Step 2.

Now take any g(X) ∈ L. We will show that g(X) is an element of the affine space v0 + V that is
output by the algorithm.

Define Q(X) = A(X) +
∑r−1

i=0 g
(i)(X)Bi(X). Observe that deg(Q) ≤ D.

Now take any x ∈ Fq and y ∈ S(x) for which

g(<s)(x) = y. (5)

Let λ be an integer with 0 ≤ λ ≤ s− r. Then by the chain rule for Hasse derivatives:

Q(λ)(x) = A(λ)(x) +
r−1∑
i=0

(
g(i) ·Bi

)(λ)
(x)

= A(λ)(x) +
r−1∑
i=0

λ∑
j=0

(
g(i)
)(j)

(x)B(λ−j)(x)

= A(λ)(x) +
r−1∑
i=0

λ∑
j=0

(
i+ j

i

)
g(i+j)(x)B(λ−j)(x)

= A(λ)(x) +
r−1∑
i=0

λ∑
j=0

(
i+ j

i

)
y(i+j)B(λ−j)(x)

= 0

Since this holds for every λ with 0 ≤ λ ≤ s− r, we get that:

mult(Q, x) ≥ s− r + 1.

58

By assumption on g, there are at least (1 − α)q values of x ∈ Fq such that there exists some
y ∈ S(x) for which Equation (5) holds. Thus there are at least (1 − α)q points where Q vanishes
with multiplicity at least s − r + 1. Since deg(Q) ≤ D < (s − r + 1)(1 − α)q, we conclude that
Q(X) = 0.

By definition of Q(X) and v0 + V , this implies that g(X) ∈ v0 + V , as desired.

C Coordinate restrictions of subspaces

In this section, we discuss the relationship between the list-recovery results for Folded Reed-Solomon
codes and univariate multiplicity codes, as well as the ideas that go into their proofs.

First we point out that we could use Lemma 1.1 to analyze Algorithm PruneListFRS and Algorithm
PruneListMULT. This can be used in place of Theorem 3.7 and Theorem 4.8, and would give a proof
of the list recoverability of Folded Reed-Solomon and univariate multiplicity codes from very small
error. However, this approach is not able to reproduce the capacity achieving list-decodability in
Theorem 3.1 and Theorem 4.1, and only gives a quantiatively weaker version of Theorem 4.410.

The statement of Theorem 4.4 on list-recovery of whole field univariate multiplicity codes is notice-
ably weaker than the statement of Theorem 3.1 on list-recovery of Folded Reed-Solomon codes: the
former only gives list-recoverability in the presence of very few errors. The proof of the former is
also noticeably more involved. Inspecting the components of the proofs, we see that this difference
arises from the significantly different quantitative natures of the analyses of algorithm PruneListFRS
and PruneListMULT.

The following example shows that this difference is not just an artifact of the analysis: there
are instances where the algorithm PruneListMULT (which is exactly analogous to the algorithm
PruneListFRS) really requires the error fraction to be very small, and produces an output list size
which is exponentially large in s.

Example C.1. Let V ⊆ Fq[X] be given by:

V = {
∑
i<d/q

aiX
iq | ai ∈ Fq}.

Let τ be any integer < d/q − 1, and let b1, . . . , bτ ∈ Fq be distinct. Then:

V ∩
τ⋂
j=1

Hbj =


τ∏
j=1

(X − bj)q ·

 ∑
i<d/q−τ

ciX
iq

 | ci ∈ Fq

 .

In particular:
dim(V ∩Hb1 ∩Hb2 ∩ . . . ∩Hbτ) = dim(V)− τ ≥ 1.

10The version proved using Lemma 1.1 requires α < 1
s2

, and gives an output list-size of `O(s2 log s). This in turn
would be sufficient to give a local list-recovery algorithm for length N multivariate multiplicity codes with query
complexity exp(log5/6(N)).

59

This means that when we run the algorithm PruneListMULT on V as input, the step where we
search for P (X) ∈ v0 + V will NEVER find a unique solution.

Thus for the algorithm PruneListMULT to succeed with positive probability we must have τ ≥ d/q.
For the constant rate setting, this means that τ = Ω(s). With τ = Ω(s), the success probability of
PruneListMULT is at most (1 − α)Ω(s), and the output list-size is at least `Ω(s). Thus the analysis
of the algorithm PruneListMULT in Lemma 4.14 cannot be improved.

D List recovering Reed-Muller codes on product sets

In this section, we prove Lemma 5.4 about list-recovery of Reed-Muller codes that we need for
RecoverCandidates and Lemma 5.3.

We will prove Lemma 5.4 by reducing the case of tuples of polynomials to the case of a single
polynomial over a large field. We go through the details in the next two subsections.

D.1 Replacing vector values with big field values

Let F be a finite field, and let K be the degree t field extension of F. Let φ : Ft → K be an arbitrary
F-linear bijection. Let U ⊆ F (and thus U ⊆ K).

Then to every function f : Um → Ft, we can associate a function f̃ : Um → K, where f̃ = φ ◦ f .
This identifies the underlying Hamming metric spaces. The key observation is that under this
identification, f is the evaluation table of a tuple of t polynomials in F[X1, . . . , Xm] of degree ≤ d if
and only if f̃ : Um → K is the evaluation table of a degree ≤ d polynomial in K[X1, . . . , Xm]. Thus
questions about decoding (list-decoding, list-recovering) vector valued polynomial codes reduce to
questions about decoding (list-decoding, list-recovering) scalar valued polynomial codes over larger
fields.

Through this connection, Lemma 5.4 is a consequence of the following lemma (and the fact that K
can be constructed in randomized poly(log |K|) time).

Lemma D.1 (Reed-Muller list recovery on a grid). Let `, s̃,K,m be given parameters. Let K be a
finite field. Suppose that U ⊆ K and |U | ≥ 2`s̃K. Let α < 1− 1√

K
be a parameter.

Then for every f : Um →
(K
`

)
, if

L = {Q(Y1, . . . , Ym) ∈ K[Y1, . . . , Ym] | deg(Q) ≤ s̃ and Pr
u∈Um

[Q(u) 6∈ f(u)] < α},

we have:

1. |L| ≤ 2K`.

2. Suppose further that K > m2 and α ≤ 1 − m√
K

, then there is a poly(|U |m, log |K|) time

algorithm to compute L.

60

D.2 Proof of Lemma D.1

Proof of Lemma D.1. Item 1 will follow from the Johnson bound for list-recovery, which is a general
statement implying good list recoverability for codes with large distance. Specifically, Lemma V.2
in [GKO+17] (see also Corollary 3.7 in [Gur04]) states that a code of distance δ is (α, `, L) list-
recoverable for α > 1 −

√
`(1− δ) and L = `

(1−α)2−`(1−δ) . In our setting, the code of polynomials

of degree at most s̃ on Um has distance δ at least 1 − s̃
|U | ≥ 1 − 1

2K` . Thus for α < 1 − 1√
K

, the

Johnson bound for list-recovery implies that we can take L = 2K`, as desired.

We prove Item 2 by induction on m. The m = 1 case is simply the Sudan list-recovery algo-
rithm [Sud97] for Reed-Solomon codes, which works with the claimed parameters (since the total
number of points n = ` · |U |, the number of agreement points A is at least (1− α)n ≥ n√

K
, and so

A ≥ 2
√
ns̃, which is the requirement for the Sudan algorithm to work).

For general m, we first do list-recovery on m − 1 dimensional grids, and then combine the results
using list-recovery for vector-valued univariate polynomials. We crucially use the previous com-
binatorial bound on the list size to ensure that the intermediate list size is under control (as the
recursion unfolds).

More concretely, the algorithm proceeds as follows:

1. First, for each setting of u ∈ U , we consider the received word fu : Um−1 →
(K
`

)
, given by

fu(y) = f(y, u).

Now list-recover fu to radius β =
(

1− m−1√
K

)
to find the set of nearby m − 1-variate poly-

nomials Lu. By the previous combinatorial bound, we can assume (after confirming that all
elements of Lu are indeed close to fu) that:

|Lu| ≤ 2K`.

2. Next we combine all Lu. Let M1(Y1, . . . , Ym−1), . . . ,Mt(Y1, . . . , Ym−1) be all the (m − 1)-
variate monomials of total degree at most s̃. Define a function

g : U →
(

Kt

2K`

)
as follows: for each u ∈ U and each element P of Lu, include the vector of coefficients of P
into g(u).

Then, using a vector-valued Sudan list-recovery algorithm for univariate polynomials (ob-
tained from the standard scalar-valued Sudan list-recovery algorithm via the connection
in Section D.1), we find all tuples of univariate polynomials P(Z) = (P1(Z), . . . , Pt(Z)) ∈
(K[Z])t such that:

Pr
u∈U

[P(u) 6∈ g(u)] < γ,

where γ = 1− 1√
K

.

61

3. For each P(Z) ∈ (K[Z])t found in the previous step, we construct the polynomial:

R(Y1, . . . , Ym−1, Ym) =
t∑
i=1

Mi(Y1, . . . , Ym−1)Pi(Ym).

If this polynomial has total degree at most s̃ and is α-close to f , then we include it in the
output list.

To prove correctness of this algorithm, consider any Q(Y1, . . . , Ym) ∈ L. Let Qu(Y1, . . . , Ym−1) =
Q(Y1, . . . , Ym−1, u). Then we have:

Eu∈U [dist(Qu, fu)] = dist(Q, f) < α.

Thus

Pr
u∈U

[dist(Qu, fu) ≥ β] ≤ α

β
<

1−m/
√
K

1− (m− 1)/
√
K
≤ 1− 1√

K
= γ.

This implies that for at most γ-fraction of u ∈ U , we have that Qu 6∈ Lu.

Write Q(Y1, . . . , Ym) as
∑t

i=1Mi(Y1, . . . , Ym−1)Gi(Ym). Then the above discussion means that
for at most γ fraction of u ∈ U , we have that (G1(u), . . . , Gt(u)) 6∈ g(u). This implies that
(G1(u), . . . , Gt(u)) will be included in the list returned by the univariate list-recovery algorithm in
Step 2, and thus that Q will be included in the output of the algorithm in Step 3.

This completes the proof of correctness. The bound on the running time follows immediately from
the description of the algorithm (using the fact that t ≤ (s̃+m)m ≤ |U |m).

E Proof of Theorem 6.3

In this section, we prove Theorem 6.3. Our proof is based on a construction first attributed
to [AEL95], which has since been used in many works to improve the parameters of list-recoverable
and locally list-recoverable codes. We include the proof here for completeness.

Proof of Theorem 6.3. The construction uses three ingredients: a bipartite expander graph G; the
code C1 guaranteed in the problem statement; and an inner code C0 as in the theorem statement.

Notice that the size and rate of C0 implies that n0 =
⌈

log |Σ1|
R·log |Σ0|

⌉
. Choosing |Σ0| = (max{2, `}O(1/ε),

this reads

n0 = O

(
log |Σ1| · ε

R · (1 + log(`))

)
.

It is known that the double-cover of a Ramanujan graph has the properties we want; we state these
properties formally in the following claim.

Claim E.1. [See [KMRS17], Lemma 2.7] Let ξ, ε, R ∈ [0, 1], so that ξ and ε are sufficiently small.
For infinitely many integers N > 0, there exists a D = O(1/ξε2) so that the following holds. There
exists a bipartite expander graph G = (VL, VR, E) be a bipartite expander graph with N vertices on

62

each side, with degree D, and with the following property: for any set Y ⊆ VR of right-hand-vertices
with |Y | ≥ (R+ 4ε)N , we have

|{v ∈ VL : |Γ(v) ∩ Y | < (R+ 3ε)D}| ≤ ξN,

where Γ(v) ⊆ VR is the set of neighbors of v in G.

We will instantiate Claim E.1 with the ε from the guarantee in C0, and with ξ := γ · ε. Thus,
we have D = O(1/(ε3γ)). With these ingredients C0 and G in hand, let C1 be as in the theorem
statement, and let C̄ = C0 ◦C1 be the concatenation of C0 and C1. Thus, a codeword in C̄ has the
form

c̄ = (C0(x1), C0(x2), . . . , C0(xn1)) ∈ (Σn0
0)n1

for (x1, . . . , xn1) ∈ C1. Suppose without loss of generality that D divides n0. (Otherwise, we may
pad the codewords of C0 with zeros to make this be the case). Then break up the codewords c̄ into
N = n0n1/D blocks of length D:

c̄ = (y(1), y(2), . . . , y(N)) ∈ (ΣD
0)N .

We will form our final code C ⊆ (ΣD
0)N as follows: for each codeword (y(1), . . . , y(N)) ∈ C̄ (thought

of as an element of (ΣD
0)N), define a codeword c = (c(1), . . . , c(N)) ∈ C ⊆ (ΣD

0)N by

c
(j)
` = y(i)

r ,

where j = Γr(VL[i]) and i = Γ`(VR[j]) and where the notation Γr(v) denotes the r’th neighbor of
vertex v (according to some arbitrary order) and VL[i] denotes the i’th vertex in VL (again according
to an arbitrary order).

The code C ⊆ (ΣD
0)N will be the set of all codewords obtained this way. Notice that the rate of

C is the same as that of C̄, since the operation above just permutes the symbols of a codeword.
Thus, the rate of C is

(1− ζ) ·R,

as claimed.

Global list-recovery. We first argue that if C1 is efficiently (ε, `1, L)-list-recoverable, then C
is efficiently (1 − R − 4ε, `, L)-list-recoverable. Suppose that S1, . . . , SN ⊂ ΣD

0 have |Si| ≤ `, and
suppose that c ∈ C has c(i) ∈ Si for all i ∈ Y , for some set Y ⊆ [N] of size at least (R + 2γ)N .
Suppose that c is obtained as above from (y(1), . . . , y(N)) ∈ C̄, which is obtained by concatenation
from (x1, . . . , xn1) ∈ C1. Suppose that z is the original message so that C1(z) = (x1, . . . , xn1).
Thus, our goal is to recover a short list S of size at most L, so that z ∈ S.

For i ∈ [N] and r ∈ [D], let

Ti,r = {α ∈ Σ0 : ∃β ∈ Sj ⊆ ΣD
0 , β` = α, j = Γr(VL[i]), i = Γ`(VR[j])}.

That is, Ti,r is the list of symbols in Σ0 that y
(i)
r could be that is consistent with the lists S1, . . . , SN .

The decoding algorithm for C is then straightforward: given S1, . . . , SN , compute the lists Ti,r, and
then run the list-recovery algorithm for C0 on each block C0(xt) to obtain a list S′t ⊂ Σ1 of possible

63

values of xt. Since C0 is obtained via a random coding argument, there is not an efficient algorithm
for this; however, C0 is small enough that the brute-force decoding algorithm will do. Next, we run
the list-recovery algorithm for C1 on the lists S′t, to obtain our final list S of size at most L.

Before we show that this is correct, consider the run-time of this algorithm. The dominating term
in the running time is the time to run the list-recovery algorithms of C0 and C1. The time to
list-recover C1 is given by T (C1), and the time to list-recover each of the n1 copies of C0 is bounded
above by O(|C0|) = O(|Σ1|). Together, these expressions give the runtime bound claimed in the
theorem.

Next, we argue that this algorithm is correct. Let c ∈ C be as above, so that c(i) ∈ Si for all i ∈ Y ,
for some set Y ⊆ [N] of size at least (R+ 4ε)N . By the expansion property of G, the set S ⊆ [N]
of indices i so VL[i] has at most (R + 3ε)D neighbors in Y has size |W | ≤ ξN = γεN . Thus, for

each i 6∈W , y
(i)
r ∈ Ti,r for at least (R+ 3ε)D values of r ∈ [D].

Now consider the blocks c̄ = (C0(x1), . . . , C0(xn1)). Each C0(xt) is made up of n0/D blocks
y(i) ∈ ΣD

0 . By an averaging argument, since |W | ≤ γεN , at most an γ-fraction of the blocks C0(xt)
have more than an ε-fraction of its constituent length-D blocks in W .

Suppose that the block C0(xt) is one of the (1 − γ)-fraction of the blocks for which this does not
hold; that is, at most an ε-fraction of the blocks y(i) in C0(xt) have i ∈ W . Then the number of

symbols y
(i)
r ∈ Σ0 that make up C0(xt) so that y

(i)
r ∈ Ti,r is at least

|{(i, r) : r ∈ [D], y(i) is contained in C0(xt), and y(i)
r ∈ Ti,r}| ≥ (R+3ε) ·D · (1−ε)n0

D
≥ (R+ε)n0.

Since C0 is (1−R−ε, `, `1)-list-recoverable, this implies that for all such t, the list-recovery algorithm
for C0 returns a list S′t of length at most `1 so that xt ∈ S′t.

Now since there are at least (1− γ)n1 such blocks, the list-recovery algorithm for C1 will return a
list S of size at most L, so that the original message z is guaranteed to be contained in S. Thus,
the algorithm is correct.

Local list-recovery. Suppose that C1 is (t, γ, `1, L)-locally list-recoverable via an algorithm A,
which expects advice ξ ∈ [L]. Now we may use exactly the same construction as above to obtain a
locally list-recoverable code.

More precisely, for any x ∈ C1 resulting in a codeword c ∈ C that agrees with a 1−R− 4ε fraction
of the lists Si, the argument above shows that, for a 1− γ fraction of the indices i ∈ [n1], we may
obtain a list S′i ⊆ Σ1 of size at most L, so that xi ∈ S′i, using n0 = O(log|Σ0| |Σ1|/R) queries to the
input lists Si. This immediately implies the following local list-recovery algorithm:

Algorithm LocalListRecoveryAEL

• INPUT: Query access to the lists S1, . . . , SN ⊆ ΣD
0 , and an index i ∈ [N]

• ADVICE: ξ ∈ [L]

64

1. For each j ∈ Γ(VR[i]):

• Let r ∈ [n1] be the index so that the block y(j) is contained in C0(xr).

• Run C1’s local list-recovery algorithm A with advice ξ, simulating query access to
the lists S′s by using n0 queries to the lists S1, . . . , SN , as described above. This
returns xr.

• Use C0’s encoder (which in this case we may treat as a look-up table) to obtain
C0(xr) and hence y(j).

2. Given y(j) for each j ∈ Γ(VR[i]), assemble c(i) and return it.

The correctness of this algorithm follows from the correctness of the query-simulation procedure,
which was shown above.

The query complexity is D · t · n0, because for each of D values of j, we need to simulate t queries
to the lists S′r, each of which requires n0 queries to the lists Sr. Plugging in our settings of D and
n0 gives the query complexity claimed in the theorem.

The running time for each simulated query to a list S′r is dominated by the time to correct C0,
which is O(|C0|) = O(|Σ1|) by using a brute-force algorithm, plus the time used by A, which is
T (C1). There are D = O(1/(ε3γ)) such queries which gives the running time claimed in the theorem
statement.

65

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

