
Improved List Decoding

of Folded Reed-Solomon and Multiplicity Codes∗

Swastik Kopparty† Noga Ron-Zewi‡ Shubhangi Saraf§ Mary Wootters¶

September 28, 2020

Abstract

We show new and improved list decoding properties of folded Reed-Solomon (RS) codes and
multiplicity codes. Both of these families of codes are based on polynomials over finite fields, and
both have been the sources of recent advances in coding theory: Folded RS codes were the first
known explicit construction of capacity-achieving list decodable codes (Guruswami and Rudra,
IEEE Trans. Information Theory, 2010), and multiplicity codes were the first construction of
high-rate locally decodable codes (Kopparty, Saraf, and Yekhanin, J. ACM, 2014).

In this work, we show that folded RS codes and multiplicity codes are in fact better than was
previously known in the context of list decoding and local list decoding. Our first main result
shows that folded RS codes achieve list decoding capacity with constant list sizes, independent of
the block length. Prior work with constant list sizes first obtained list sizes that are polynomial
in the block length, and relied on pre-encoding with subspace evasive sets to reduce the list
sizes to a constant (Guruswami and Wang, IEEE Trans. Information Theory, 2012; Dvir and
Lovett, STOC, 2012). The list size we obtain is (1/ε)O(1/ε) where ε is the gap to capacity, which
matches the list size obtained by pre-encoding with subspace evasive sets.

For our second main result, we observe that univariate multiplicity codes exhibit simi-
lar behavior, and use this, together with additional ideas, to show that multivariate mul-
tiplicity codes are locally list decodable up to their minimum distance. By known reduc-
tions, this gives in turn capacity-achieving locally list decodable codes with query complex-
ity exp(Õ((logN)5/6)). This improves on the tensor-based construction of (Hemenway, Ron-
Zewi, and Wootters, SICOMP, 2019), which gave capacity-achieving locally list decodable codes

of query complexity N Õ(1/ log logN), and almost matches the best known query complexity of
exp(Õ(

√
logN)) for high-rate locally (uniquely) decodable codes (Kopparty, Meir, Ron-Zewi,

and Saraf, J. ACM, 2017).
∗This is an updated and revised version of an extended abstract that has appeared at FOCS 2018 (see [KRSW18]

for a full version). The current version contains some improvements and simplifications over the previous version.
For simplicity and clarity, we have also decided to omit some of the results from [KRSW18].
†Department of Mathematics and Department of Computer Science, Rutgers University. Research supported in

part by NSF grants CCF-1253886 and CCF-1540634. swastik.kopparty@gmail.com.
‡Department of Computer Science, Haifa University. noga@cs.haifa.ac.il. Research supported in part by BSF

grant 2017732 and ISF grant 735/20.
§Department of Mathematics and Department of Computer Science, Rutgers University. Research supported in

part by NSF grants CCF-1350572 and CCF-1540634. shubhangi.saraf@gmail.com.
¶Department of Computer Science and Department of Electrical Engineering, Stanford University.

marykw@stanford.edu. Research supported in part by NSF grants CCF-1657049, CCF/BSF-1814629, and CAREER
grant CCF-1844628, and by a Sloan Research Fellowship.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 91 (2018)

1 Introduction

An error correcting code C ⊂ Σn is a collection of codewords c of length n over an alphabet Σ. The
goal in designing C is to enable the recovery of a codeword c ∈ C given a corrupted version c̃ of c,
while at the same time making C as large as possible. In the classical unique decoding problem,
the goal is to efficiently recover c from any c̃ ∈ Σn so that c and c̃ differ in at most αn places; this
requires the relative distance δ of the code (that is, the minimum fraction of places on which any
two codewords differ) to be at least 2α.

Modern applications of error correcting codes, both in coding theory and theoretical computer
science, have highlighted the importance of variants of the unique decoding problem, incuding list
decoding, and local decoding. In list decoding, the amount of error α is large enough that unique
recovery of the codeword c is impossible (that is, α > δ/2), and instead the goal is to return a short
list L ⊂ C with the guarantee that c ∈ L. In local decoding, we still have α < δ/2, but the goal is to
recover a single symbol ci of a codeword c, after querying not too many positions of the corrupted
codeword c̃. In a variant known as local list decoding, we seek local information about a symbol
even when α > δ/2. List-decoding, local decoding, and local list decoding are important primitives
in error correcting codes, with applications in coding theory, complexity theory, pseudorandomness
and cryptography.

Algebraic codes have been at the heart of the study of list decoding, local-decoding and local list de-
coding. One classical example of this is Reed-Solomon (RS) codes, whose codewords are comprised
of evaluations of low-degree polynomials.1 In the late 1990’s, Guruswami and Sudan [Sud97, GS99]
gave an algorithm for efficiently list decoding Reed-Solomon codes well beyond half the distance of
the code, and this kicked off the field of algorithmic list decoding. A second example is Reed-Muller
(RM) codes, the multivariate analogue of Reed-Solomon codes. The structure of Reed-Muller codes
is very amenable to local algorithms: a codeword of a Reed-Muller code corresponds to a multi-
variate low-degree polynomial, and considering the restriction of that polynomial to a line yields
a univariate low-degree polynomial, a.k.a. a Reed-Solomon codeword. This local structure is the
basis for Reed-Muller codes being locally testable [RS96] and locally decodable [Lip90, BFLS91].
Using this locality in concert with the Guruswami-Sudan algorithm leads to local list decoding
algorithms for these codes [AS03, STV01].

More recently, variants of Reed-Solomon and Reed-Muller codes have emerged to obtain improved
list decoding and local-decoding properties. Two notable examples, which are the focus of this
work, are Folded Reed-Solomon (FRS) codes and multiplicity codes. Both of these constructions
have led to recent advances in coding theory. We introduce these codes informally here, and give
formal definitions in Section 2.

Folded Reed-Solomon codes, introduced by Guruswami and Rudra in [GR08], are a simple variant
of Reed-Solomon codes. If the codeword of a Reed-Solomon code is (c0, c2, . . . , cn−1) ∈ Σn, then

1That is, a codeword of an RS code has the form (f(x0), f(x1), . . . , f(xn−1)) ∈ Fn for some low-degree polynomial
f ∈ F[X].

2

the folded version (with folding parameter s) is

c0

c1
...

cs−1

 ,


cs
cs+1

...
c2s−1

 , . . . ,

cn−s
cn−s+1

...
cn−1


 ∈ (Σs)n/s.

The main property of these codes that makes them interesting is that they admit much better
list decoding algorithms [GR08] than the original Guruswami-Sudan algorithm: more precisely, it
allows for the error tolerance α to be much larger for a code of the same rate,2 asymptotically
obtaining the optimal trade-off.

Multiplicity codes, introduced in the univariate setting by Rosenbloom and Tsfasman in [RT97] and
in the multivariate setting by Kopparty, Saraf and Yekhanin in [KSY14], are variants of polynomial
codes that also include evaluations of derivatives. That is, while a symbol of a RS codeword is
of the form f(x) ∈ Fq for some low-degree polynomial f ∈ F[X] and some x ∈ Fq, a symbol in
a univariate multiplicity code codeword is of the form (f(x), f (1)(x), f (2)(x), . . . , f (s−1)(x)) ∈ Fsq,
where s is the multiplicity parameter. Similarly, while a symbol of an RM codeword is of the form
f(x) for x ∈ Fmq for some low-degree multivariate polynomial f ∈ F[X1, . . . , Xm], a symbol in
a multivariate multiplicty code includes all partial derivatives of order less than s. Multivariate
multiplicity codes were shown in [KSY14] to have strong locality properties, and were the first
constructions known of high-rate locally decodable codes. Meanwhile, univariate multiplicity codes
were shown in [Kop15, GW13] to be list decodable in the same parameter regime as folded Reed-
Solomon codes3, also achieving asymptotically optimal trade-off between rate and error-tolerance.

In this work, we show that Folded Reed-Solomon codes, univariate multiplicity codes, and multi-
variate multiplicity codes are even more powerful than was previously known in the context of list
decoding and local list decoding. Our motivations for this work are threefold:

1. First, FRS codes and multiplicity codes are basic and natural algebraic codes, central to many
recent results in coding theory ([GR08, KSY14, Kop15, GW13, DL12, KMRS17], to name a
few), and understanding their error-correcting properties is important in its own right.

2. Second, while there have been improved constructions of list decodable and locally list decod-
able codes building on FRS and multiplicity codes (discussed more below), those constructions
involve significant additional pseudorandom ingredients. As a consequence, these construc-
tions eliminate many of the original structural properties of the codes, such as linearity. Our
results give simpler and more structured constructions of capacity-achieving list decodable
and locally list decodable codes with the best known parameters.

3. Third, by composing our new results with known reductions, we obtain capacity-achieving
locally list decodable codes with significantly improved query complexity than was previously
known.

2The rate of a code C ⊆ Σn is defined as R = 1
n

log|Σ|(|C|) and quantifies how much information can be sent using
the code. We always have R ∈ (0, 1), and we would like R to be as close to 1 as possible.

3Univariate multiplicity codes were previously shown to be list decodable up to the Johnson bound by
Nielsen [Nie01].

3

In what follows, we state our results and contributions more precisely, and provide a more detailed
account of related work.

1.1 Our results

1.1.1 Improved list decoding of FRS codes

We start by fixing some notation. Let C ⊆ Σn be a code. We define the rate of C as R :=
1
n log|Σ|(|C|). The relative distance δ of C is the minimum fraction of coordinates on which any
two codewords of C differ. The code C is (α,L)-list decodable if for any received word w ∈ Σn,
there are at most L codewords c ∈ C which satisfy that ci = wi for all but an α fraction of the
coordinates i.

The celebrated Guruswami-Sudan list decoding algorithm [Sud97, GS99], mentioned above, can
efficiently list decode Reed-Solomon codes up to radius α = 1−

√
1− δ, with polynomial list sizes

L; this radius is known as the Johnson bound, and as Reed-Solomon codes satisfy R = 1 − δ, this
amounts to a decoding radius of α = 1 −

√
R. It is a classical result that there are codes that go

beyond a decoding radius of 1−
√
R, while keeping the list size polynomial in n, or even constant:

for large alphabet sizes, the “correct” limit, called the list decoding capacity, is α = 1−R, and this
is achieved by uniformly random codes. More precisely, it is well-known that a random code of
rate R and alphabet size exp(1/ε) is (1− R − ε,O(1/ε))-list decodable. For a decade it was open
whether or not one could construct explicit codes which efficiently achieve list decoding capacity.

In a breakthrough result, Guruswami and Rudra [GR08] (building on the work of Parvaresh and
Vardy [PV05]) showed that the folding operation described above can make RS codes approach
capacity with polynomial list-sizes. More precisely, they showed that an FRS code of rate R
and folding parameter s ≈ 1/ε2 is

(
1−R− ε, nO(1/ε)

)
-list decodable. Note that the list size is

polynomial in n for any constant ε > 0, while ideally one could expect the list size to be independent
of n.

Towards reducing the list size, it was later shown by Guruswami and Wang [GW13] that, surpris-
ingly, the list of FRS is contained in a linear subspace of constant dimension O(1/ε). Note that
this still does not give an improvement on the list size, as the alphabet size of FRS is at least n. To
reduce the list size to a constant, [GW13] proposed to pre-encode these codes with pseudorandom
objects called subspace evasive sets that intersect constant dimensional subspaces in a constant
number of points. They further showed that such objects exist non-explicitly, and posed the ques-
tion of searching for an explicit construction. Subsequently, their program was carried out by Dvir
and Lovett [DL12] who gave an explicit construction of subspace evasive sets that intersect any
t-dimensional subspace in at most (t/ε)O(1/ε) points, which led to a list size of (1/ε)O(1/ε). Note
that subspace evasive sets are inherently non-linear, and so the resulting code is non-linear as well.

In this work, we show that in fact FRS codes are already list decodable with constant list-sizes,
with no additional modification needed! Interestingly, the list size we obtain is (1/ε)O(1/ε), which
matches the list size obtained via the subspace evasive approach. In particular, this gives the first
construction of linear4 capacity-achieving list decodable codes with constant list size.

4Many codes in this paper have alphabet Σ = Fsq, where Fq is a finite field. For such “vector alphabet” codes, we

4

Theorem 1.1 (List decoding FRS with constant list size (Informal, see Theorem 3.10)). Let C be an
FRS code of constant rate R ∈ (0, 1) and folding parameter s ≥ 16

ε2
. Then C is

(
1−R− ε, (1/ε)O(1/ε)

)
-

list decodable.

Remark 1.2 (Dealing with large alphabet sizes). The FRS codes in Theorem 3.10 have large alpha-
bet sizes. It turns out that this can be ameliorated using concatenation and expander-based distance
amplification [AEL95, GI04]. The details can be found in our preliminary version [KRSW18, Sec-
tion 6]. In the current version we omit these details and the corresponding theorem statement, as
it is technical, and follows similarly to the use of these techniques for alphabet-reduction in prior
work.

As mentioned above, it is known that it is possible for capacity-achieving list decodable codes to
achieve a list size of O(1/ε), and it would be very interesting to strengthen the above theorem to
this bound.

1.1.2 Improved local list decoding of multiplicity codes

For some time, FRS codes were the only known route to capacity-achieving list decodable codes,
until it was shown in [GW13, Kop15] that univariate multiplicity codes also do the job (again, with
polynomial list sizes). We first observe that our approach to prove Theorem 1.1 above also applies
to univariate multiplicity codes, albeit with a larger (but still constant) list size.5

Theorem 1.3 (List decoding univariate multiplicity codes with constant list size (Informal, see
Theorem 3.8)). Let C be a univariate multiplicity code of constant rate R ∈ (0, 1) and multiplicity

parameter s ≥ 16
ε2

, defined over a sufficiently large prime field Fq. Then C is
(

1−R− ε, (s/ε)O(s/ε2)
)

-

list decodable.

Our second main result uses the above theorem (together with some additional ideas) to obtain
improved local list decoding algorithms for multivariate multiplicity codes. The definition of local
list decoding (given formally as Definition 2.2 below) is a bit involved, but intuitively the idea
is as follows. As with list decoding, we have a received word w ∈ Σn, and the goal is to obtain
information about a single symbol ci of close-by codeword c, given query access to w. More precisely,
we will require that the decoder outputs a short list of randomized algorithms A1, . . . , AL, each
of which corresponds to a codeword c with |{i : ci 6= wi}| ≤ αn. The requirement is that if Ar
corresponds to a codeword c, then on input i, Ar(i) outputs ci with high probability, and using
no more than t queries to w. If such a decoder exists, we say that the code is (t, α, L)-locally-list
decodable. Local list decoding algorithms are at the heart of algorithms in cryptography [GL89],
learning theory [KM93], and hardness amplification and derandomization [STV01].

Perhaps the most natural algebraic approach for local list decoding is via Reed-Muller codes, which
have a natural local structure. As discussed above, a Reed-Muller codeword corresponds to a

use the term “linear” to mean “Fq-linear”.
5As shown in our preliminary version [KRSW18, Section 4.1], when the degree d is smaller than the characteristic

of the underlying field, one can obtain the same quantitative bound on the list size as in Theorem 1.1. However, when
the degree d is larger than the characteristic—which is what is relevant for the application to local list decoding of
multivariate multiplicity codes, described below—we only obtain a weaker bound. For simplicity we only state and
prove the weaker bound on the list size here.

5

low-degree multivariate polynomial, and restricting such a polynomial to a line yields a low-degree
univariate polynomial, which corresponds to a Reed-Solomon codeword. Using this connection,
along with the Guruswami-Sudan list decoding algorithm for Reed-Solomon codes, Arora and
Sudan [AS03] and Sudan, Trevisan and Vadhan [STV01] gave algorithms for locally list decoding
Reed-Muller codes up to the Johnson bound.67

One might hope to be able to surpass the Johnson bound, and local list decode multivariate
multiplicity codes up to their minimum distance δ; after all, the univariate versions are (globally)
list decodable up to their minimum distance δ = 1 − R. However, the natural approach (as in
[AS03, STV01]) is to rely on the univariate case, and the fact that the list sizes were large for the
univariate case was an obstacle to this approach. Thus, previous work on the local list decodability
of multivariate multiplicity codes also only worked up to the Johnson bound [Kop15]. In this work,
we use our Theorem 1.3 above, along with some additional ideas, to give a local list decoding
algorithm for multivariate multiplicity codes up to their minimum distance.

Theorem 1.4 (Local list decoding multivariate multiplicity codes up to minimum distance (In-
formal, see Theorem 4.1)). Let C be an m-variate multiplicity code of constant relative distance
δ ∈ (0, 1) and multiplicity parameter s ≥ 64

ε2
, defined over a sufficiently large prime field Fq. Then

C is (t, δ − ε, L)-locally list decodable for L = exp(poly(s/ε)) and t = poly(q) · exp(m · L).

Note that an m-variate multiplicity code has length N := qm, and so for any constant m and s
the above theorem gives a query complexity of the form O(N1/m). Moreover, by compromising on
a sub-constant relative distance, m and s could also be taken to be super-constant, leading to a
sub-polynomial query complexity of No(1).

1.1.3 Capacity-achieving locally list decodable codes

List decoding algorithms for algebraic codes typically extend to the setting of list recovery. A code
C ⊆ Σn is (α, `, L)-list recoverable if for any sequence of input lists S1, . . . , Sn ⊆ Σ, each of size at
most `, there are at most L codewords c ∈ C which satisfy that ci ∈ Si for all but an α fraction of
the coordinates i. List-decoding is the special case of list recovery when ` = 1. The definition can
also be extended naturally to the setting of local list recovery (see Definition 2.2).

In the setting of list recovery, the Johnson bound translates into a decoding radius of α = 1 −√
` · (1− δ), which in particular requires the rate R ≤ 1− δ to be smaller than 1/` for a non-trivial

decoding radius. On the other hand, list recovering up to capacity corresponds to a decoding radius
of α = 1−R (for any `, provided that the alphabet size is sufficiently large compared to `). Thus the
Guruswami-Sudan list decoding algorithm for Reed-Solomon codes gives a list recovery algorithm
for Reed-Solomon codes of rate R < 1/`, while the Guruswami-Rudra list decoding algorithm for
FRS codes gives a list recovery algorithm for FRS codes of high rate (arbitrarily close to 1).

6Technically these algorithms were only able to list decode up to radius of 1 −
√

2(1− δ). To go all the way to
the Johnson bound of 1−

√
1− δ, one needs some additional ideas [BK09]; see [GK16a, Kop15] for further variations

on this.
7There is another regime, where the field size q is constant, and the degree d is much larger than q, in which

the Reed-Muller codes can be locally list decoded well beyond the Johnson bound, up to the minimum distance
[GKZ08, Gop13, BL18]. Note that in this regime the rate of Reed-Muller codes is extremely low, whereas we are
interested in the regime of d < q where both rate and relative distance can be made constant.

6

However, until recently, we did not know of any high-rate locally list recoverable codes. The
significance of these codes is that, as shown in [HRW17], such codes can be transformed, using
the expander-based distance amplification technique of Alon, Edmonds, and Luby (AEL) [AEL95,
AL96], into capacity-achieving locally list decodable codes with roughly the same parameters.
The only previous construction of high-rate locally list recoverable codes was the tensor-based
construction of [HRW17], and applying the AEL distance amplification method mentioned above,
this gave the first construction of capacity-achieving locally list decodable codes. This construction
achieved arbitrarily small polynomial query complexity, and even slightly sub-polynomial query
complexity N Õ(1/ log logN).8 In the recent work [KRR+19], it was shown that using the tensor-
based approach, one cannot reduce the query complexity below NΩ(1/ log logN).

In this work we observe that the above Theorem 1.4 extends also to the setting of list recovery,
and gives an alternative construction of high-rate locally list recoverable codes with significantly
lower query complexity of exp(Õ((logN)5/6)). Combined with the AEL distance amplification, this
gives capacity-achieving locally list decodable codes with the same query complexity. This brings
the query complexity for capacity-achieving local list decodability close to the best known query
complexity for high-rate locally (uniquely) decodable codes [KMRS17], which is exp(Õ(

√
log n))

(for the same codes).

Theorem 1.5 (Capacity-achieving locally list decodable codes (Informal, see Theorem 5.4)). For
any constant R, ε > 0 there exists an infinite family {CN}N of codes that satisfy the following.

1. CN is a code of block length N and rate at least R.

2. CN is (t, 1−R− ε, L)-locally list decodable for

t = expR,ε

(
Õ
(

(logN)5/6
))

and L = expR,ε

(
Õ
(

(logN)2/3
))

.

3. The alphabet size of CN is OR,ε(1).

Remark 1.6 (Running time of the local list decoding algorithm). In the preliminary version of
this work [KRSW18], it was shown that the running time of the local list decoder can be made
polynomial in the query complexity. For simplicity and clarity, we omit this statement—and the
additional detail and notation required to prove it—from the current version.

Remark 1.7 (Reducing the query complexity of local list decoder). In the preliminary version of
this work [KRSW18] we have shown a slightly lower query complexity of exp(Õ((logN)3/4)). This
improvement followed from a tighter bound on the list size of univariate multiplicity codes given
in Theorem 1.3 for the special case of list recovery from a small fraction of errors. As the analysis
is quite involved, and for clarity we present in the current paper a simpler argument which obtains
only the weaker bound of exp(Õ((logN)5/6)).

Next we give an overview of the proofs of our main results.

8Here, the Õ notation hides logarithmic factors in the argument.

7

1.2 Overview of techniques

1.2.1 List decoding FRS codes with constant list size

Let C ⊆ Σn be a folded Reed-Solomon code with constant rate R ∈ (0, 1), relative distance
δ = 1 − R, and folding parameter s, so that Σ = Fsq. We begin by describing a simple argument

that gives a slightly worst list size of (1/ε)O(1/ε2). Then we will explain how it can be tightened to
give a list size of (1/ε)O(1/ε), as stated in Theorem 1.1.

Recall that we are given a received word w ∈ Σn, and we want to find the list L of all codewords
c ∈ C such that dist(w, c) ≤ 1 − R − ε = δ − ε (i.e., ci 6= wi for at most a (δ − ε)-fraction
of the coordinates). Recall also that by [GW13], we know that L is contained in an Fq-linear
subspace V of dimension at most O(1/ε). How many elements c of the subspace V ⊆ C can have
dist(c, w) ≤ δ − ε? We show that there cannot be too many such c.

The proof is algorithmic: we will give a simple randomized algorithm PRUNE, which when given
w and the low dimensional subspace V , either outputs a codeword c ∈ V or outputs ’Fail’. The
guarantee is that for any c ∈ L, c is output by the algorithm PRUNE with probability at least
p0 = Ωε(1). This implies that |L| ≤ 1

p0
= Oε(1).

The algorithm PRUNE works as follows. For some parameter t = Oε(1), to be determined later
on, we pick coordinates i1, i2, . . . , it ∈ [n] uniformly at random, and let I := {i1, . . . , it}. Then the
algorithm PRUNE checks if there is a unique codeword c ∈ V that agrees with w on I (that is,
ci = wi for all i ∈ I). If so, we output that unique element c; otherwise (i.e., either there are zero
or greater than one such c’s) we output Fail.

It remains to show that for any c ∈ L, the algorithm outputs c with constant probability. Fix such
a c. Let E1 be the event that c agrees with w on I, and let E2 be the event that two different
codewords in V agree on I. Note that the algorithm will output c if and only if the event E1 holds
and the event E2 does not hold, so the probability that c is output is at least Pr[E1]− Pr[E2].

By assumption, ci = wi for at least a (1 − δ + ε)-fraction of the coordinates i ∈ [n], and so
Pr[E1] ≥ (1 − δ + ε)t. Next, note that by linearity, the event E2 can be alternatively expressed
as dim

(
V ∩

(⋂
i∈I Hi

))
> 0, where Hi := {v ∈ Σn|vi = 0}. Lemma 2 from [SY11] (stated in a

different language, and proven for a very different purpose) shows that for any linear space V with
dimension r and relative distance at least δ, for a large enough t (depending on r and δ), it is very
unlikely that dim

(
V ∩

(⋂
i∈I Hi

))
> 0.

One way to prove (a version of) Lemma 2 from [SY11] is as follows. First observe that for a
random i ∈ [n], we have that dim(V ∩Hi) < dim(V) with probability at least δ. To see this, fix
a non-zero element v ∈ V . By assumption, v has at least a δ-fraction of non-zero coordinates, so
with probability at least δ we have that vi 6= 0. Conditioned on this, we have that v /∈ V ∩Hi, and
so the dimension reduces by at least 1 when intersecting with Hi. Iterating over this, we conclude
that the probability that dim

(
V ∩

(⋂
i∈I Hi

))
> 0 is at most(

t

t− r + 1

)
· (1− δ)t−r+1 ≤ (1− δ)t ·

(
t

1− δ

)r
.

8

We conclude that c is output by the algorithm with probability at least

p0 ≥ Pr[E1]− Pr[E2] ≥ (1− δ + ε)t − (1− δ)t ·
(

t

1− δ

)r
, (1)

where δ ∈ (0, 1) is a constant and r = O(1/ε). Finally, it can be verified that the right hand term
is comparable to the left hand term when setting t ≈ 1

ε2
log
(

1
ε

)
. In this case, we get that the

algorithm PRUNE outputs any codeword c ∈ L with probability at least p0 = εO(1/ε2), and so the
list size is at most |L| ≤ 1

p0
= (1/ε)O(1/ε2).

Note that in the above argument, the only special property of FRS (besides linearity and distance)
we use is that its list is contained in a low-dimensional subspace. Specifically, the above argument
shows more generally (see Lemma 3.1 for a formal statement) that if C is any Fq-linear code of
relative distance δ that is list decodable up to a radius of δ − ε with a list of dimension r, then C
is (δ − ε, L)-list decodable, where L depends only on δ, ε, and r.

In particular, this argument applies not only to FRS codes but also to univariate multiplicity codes.
This results in Theorem 1.3.

In Theorem 1.1, we get an improved bound of (1/ε)O(1/ε) on the list size of FRS codes. To obtain
this, we use a tighter bound on the probability that dim

(
V ∩

(⋂
i∈I Hi

))
> 0 for the special case

where V is a subspace of FRS. Such a bound was shown in [GK16b] (once again, in a different
language, and for a very different purpose), and it roughly says that the expected dimension of
V ∩Hi, for a random i ∈ [n], is at most (1− δ) dim(V). Thus, with t applications, we get that the
probability that dim

(
V ∩

(⋂
i∈I Hi

))
> 0 is at most (1 − δ)t dim(V). Consequently, the bound in

(1) becomes
p0 ≥ Pr[E1]− Pr[E2] ≥ (1− δ + ε)t − (1− δ)t · r,

for constant δ ∈ (0, 1) and r = O(1/ε), and setting this time t ≈ 1
ε log

(
1
ε

)
gives p0 = εO(1/ε) and

|L| ≤ 1
p0

= (1/ε)O(1/ε).

Remark 1.8 (A tighter bound on the list size for low-degree univariate multiplicity codes.). The
tighter bound of (1/ε)O(1/ε) on the list size can also be shown to hold for univariate multiplicity
codes whose degree d is smaller than the characteristic of the field Fq. The idea is to use a
different but analogous lemma from [GK16b]. The precise statement and proof can be found in our
preliminary version [KRSW18, Section 4.1]. However, for our application to local list decoding of
multivariate multiplicity codes, we need to deal with univariate multiplicity codes where the degree
d is larger than q. In that case the lemma from [GK16b] does not apply. Thus, in this work, for
simplicity we only state and prove the weaker bound of (s/ε)O(s/ε2) stated in Theorem 1.3. This
is what follows from the approach described above using the lemma from [SY11] and the bound of
O(s/ε) on the dimension of the list of univariate multiplicity codes.

1.2.2 Local list decoding multivariate multiplicity codes up to minimum distance

We now describe the high-level view of our local list decoding algorithm for multivariate multiplicity
codes. Our algorithm follows the general paradigm for local list decoding of Reed-Muller codes up
to the Johnson bound by Arora and Sudan [AS03] and Sudan, Trevisan and Vadhan [STV01]. To
locally list decode up to the minimum distance, we use our improved bound on the list size for

9

univariate multiplicity codes (Theorem 1.3), together with some additional ideas elaborated on
below.

Local list decoding of Reed-Muller codes is the following problem: we are given a function r : Fmq →
Fq which is promised to be close to the evaluation table of some degree d polynomial Q(X1, . . . , Xm).
At the high level, the local list decoding algorithm of [STV01] for Reed-Muller codes has two phases:
generating advice, and decoding with advice. To generate the advice, we pick a uniformly random
a ∈ Fmq and “guess” a value z ∈ Fq (this guessing can be done by going over all z ∈ Fq; each
possible guess corresponds to an element in the list). Our hope for this guess is that z equals Q(a).

Once we have this advice, we use it to decode. We define an oracle machine M r[a, z], which
takes as advice [a, z], has query access to r, and given an input x ∈ Fmq , tries to compute Q(x).
The algorithm first considers the line λ passing through x and the advice point a, and globally
list decodes the restriction of r to this line to obtain a list Lλ of univariate polynomials. These
univariate polynomials are candidates for Q|λ. Which of these univariate polynomials is Q|λ? We
use our guess z (which is supposed to be Q(a)): if there is a unique univariate polynomial in the
list with value z at a, then we deem that to be our candidate for Q|λ, and output its value at the
point x as our guess for Q(x).

The above algorithm will be correct on the point x if (1) there are not too many errors on the
line through x and a, and (2) no other polynomial in Lλ takes the same value at a as Q|λ does.
The first event is high probability by standard sampling bounds. As to the second event, using the
random choice of a, and that any pair of polynomials in Lλ differ by at least a δ := 1− d

q fraction of
the points, we get that any other polynomial P ∈ Lλ will agree with Q|λ on a with probability at
most 1− δ. Assuming that L := |Lλ| � 1

1−δ , one can then apply a union bound over all elements
of Lλ to show that with high probability, no other polynomial P ∈ Lλ agrees with Q|λ on a.

The Johnson bound tells us that L � 1
1−δ as long as the decoding radius α is smaller than

1 −
√

2(1− δ). Suppose we wanted to locally list decode the Reed-Muller code from a larger
decoding radius, in which case L may be larger. Our first idea is to use derivatives to disambiguate
the list. Specifically, as before the advice is generated by choosing a uniformly random point
a ∈ Fmq , but now the guess z is supposed to equal to all derivatives up to order s of Q at a for
some integer s > 0. To take advantage of derivatives, we recall the “Schwartz-Zippel lemma with
multiplicities” from [DKSS13], which says that two univariate degree d polynomials agree on all
derivatives up to order s on at most a d

sq -fraction of points. This implies in turn that the advice

fails to disambiguate any pair of polynomials in Lλ with probability at most d
sq , and taking s� L

allows us to apply a union bound over Lλ.

The above idea can be used to locally list decode the Reed-Muller code up to a radius of 1 −√
1− δ, where the Johnson bound guarantees a constant size list (in particular, this can remove

the restriction from [AS03, STV01] that the degree d needs to be at most 1/2 the size of the field
Fq).9 Beyond this radius, the only guarantee on the list size given by the above algorithm is the

9In [BK09] (see also [GK16a, Kop15]), an alternative approach was given to locally list decode the Reed-Muller
code up to the Johnson bound. In a nutshell, the idea is to generate the advice by choosing a random line `, globally
list decoding on the line, and treating each output element in the list as a separate advice. Then to locally decode
a point x one restricts to the unique plane spanned by ` and x, globally list decodes on the plane, and chooses the
unique element in the output list L that agrees with the advice on `, if such exists. Jumping ahead, this approach
will not work for us since in order to locally list decode up to the minimum distance we shall require a good bound

10

number of different guesses which is q(
m+s−1
m) (since the number of m-variate derivatives up to order

s is
(
m+s−1
m

)
, and each such derivative can evaluate to any point in Fq). Note that this number is

greater than the code length N := qm for any s > 0 (and generally, is very large for our choice of
s� L).

To get a sublinear list size, we generate the guess z more cleverly. Specifically, we first choose
t random lines through a, then (globally) list decode on the restriction of r to these lines, and
finally aggregate the results to obtain a short list Z of guesses for all derivatives up to order s of
Q at a. This aggregation turns out to be a list recovery problem for Reed-Muller codes evaluated
on product sets, and in particular the Johnson bound for list recovery implies that by choosing
t = LO(m), the size of Z can be made as small as O(L). Note however that number of queries grew
to LO(m) · q (since we are querying t = LO(m) lines, and each containing q points).

For Reed-Muller codes L� q beyond the Johnson bound, and so this time number of queries would
be super-linear in the code length N = qm. However, at this point we can resort to our improved
bound on the list size of univariate multiplicity codes (Theorem 1.3), which gives a constant list
size well beyond the Johnson bound, up to the minimum distance of the code. We show that the
above approach, with some modifications, can be adapted to locally list decode multiplicity codes
up to their minimum distance with sublinear query complexity and list size.

Organization. We begin in Section 2 with notation and preliminary definitions. Once these are
in place, in Section 3 we show that folded Reed-Solomon codes and univariate multiplicity codes
achieve list decoding capacity with constant list size. In Section 4, we present our local list decoding
algorithm for multivariate multiplicity codes up to their minimum distance. Finally, in Section 5
we explain how one can use an extension of the local list decoding algorithm to the setting of
list recovery, combined with the expander-based machinery of [AEL95], to give capacity-achieving
locally list decodable codes with low query complexity.

2 Notation and Preliminaries

We begin by formally defining the coding-theoretic notions we will need, and by setting notation.
We denote by Fq the finite field of q elements. For any finite alphabet Σ and for any string
x ∈ Σn the relative weight wt(x) of x is the fraction of non-zero coordinates of x, that is, wt(x) :=
|{i ∈ [n] : xi 6= 0}| /n. For any pair of strings x, y ∈ Σn, the relative distance between x and y is the
fraction of coordinates on which x and y differ, and is denoted by dist(x, y) := |{i ∈ [n] : xi 6= yi}| /n.
For a positive integer ` we denote by

(
Σ
`

)
the set containing all subsets of Σ of size `, and for any

pair of strings x ∈ Σn and S ∈
(

Σ
`

)n
we denote by dist(x, S) the fraction of coordinates i ∈ [n] for

which xi /∈ Si, that is, dist(x, S) := |{i ∈ [n] : xi /∈ Si}| /n. Throughout the paper, we use exp(n)
to denote 2Θ(n). Whenever we use log, it is to the base 2. The notation Oa(n) and polya(n) means
that we treat a as a constant; that is, polya(n) = nOa(1).

on the size of L. Our Theorem 1.3 gives such a bound for univariate multiplicity codes, but a priori we cannot show
such a bound for bivariate multiplicity codes.

11

2.1 Error-correcting codes

Let Σ be an alphabet and let n be a positive integer (the block length). A code is simply a subset
C ⊆ Σn. The elements of a code C are called codewords. If F is a finite field and Σ is a vector space
over F, we say that a code C ⊆ Σn is F-linear if it is an F-linear subspace of the F-vector space
Σn. The rate of a code C is the ratio R := log |C|

log(|Σ|n) , which for F-linear codes equals dimF(C)
n·dimF(Σ) . The

relative distance dist(C) of C is the minimum δ > 0 such that for every pair of distinct codewords
c1, c2 ∈ C it holds that dist(c1, c2) ≥ δ, which for F-linear codes equals the minimum δ > 0 such
that wt(c) ≥ δ for every c ∈ C.

Given a code C ⊆ Σn, we will occasionally abuse notation and think of c ∈ C as a map c : D → Σ,
where D is some domain of size n. With this notation, the map c : D → Σ corresponds to the
vector (c(x))x∈D ∈ Σn. For a code C ⊆ Σn of relative distance δ, a given parameter α < δ/2, and
a string w ∈ Σn, the problem of decoding from α fraction of errors is the task of finding the unique
c ∈ C (if any) which satisfies dist(c, w) ≤ α.

List decoding is a paradigm that allows one to correct more than a δ/2 fraction of errors by returning
a small list of close-by codewords. More formally, for α ∈ [0, 1] and an integer L we say that a
code C ⊆ Σn is (α,L)-list decodable if for any w ∈ Σn there are at most L different codewords
c ∈ C which satisfy that dist(c, w) ≤ α. List recovery is a more general notion where one is given as
input a small list of candidate symbols for each of the coordinates and is required to output a list
of codewords that are consistent with many of the input lists. Formally we say that a code C ⊆ Σn

is (α, `, L)-list recoverable if for any S ∈
(

Σ
`

)n
there are at most L different codewords c ∈ C which

satisfy that dist(c, S) ≤ α. Note that list decoding corresponds to the special case of ` = 1.

2.2 Locally correctable and locally list recoverable codes

Intuitively, a code is said to be locally correctable [BFLS91, STV01, KT00] if, given a codeword
c ∈ C that has been corrupted by some errors, it is possible to decode any coordinate of c by
reading only a small part of the corrupted version of c. Formally, it is defined as follows.

Definition 2.1 (Locally correctable code (LCC)). We say that a code C ⊆ Σn is (t, α)-locally
correctable if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A takes as input a coordinate i ∈ [n] and also gets oracle access to a string w ∈ Σn

that is α-close to a codeword c ∈ C.

• Query complexity: A makes at most t queries to the oracle w.

• Output: A outputs ci with probability at least 2
3 .

The following definition generalizes the notion of locally correctable codes to the setting of list
decoding / recovery. In this setting the algorithm A is required to find all the nearby codewords in
an implicit sense.

Definition 2.2 (Locally list recoverable code). We say that a code C ⊆ Σn is (t, α, `, L)-locally list
recoverable if there exists a randomized algorithm A that satisfies the following requirements:

12

• Input: A gets oracle access to a string S ∈
(

Σ
`

)n
.

• Query complexity: A makes at most t queries to the oracle S.

• Output: A outputs L randomized algorithms A1, . . . , AL, where each Aj takes as input a
coordinate i ∈ [n], makes at most t queries to the oracle S, and outputs a symbol in Σ.

• Correctness: For every codeword c ∈ C for which dist(c, S) ≤ α, with probability at least 2
3

over the randomness of A the following event happens: there exists some j ∈ [L] such that
for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2

3
,

where the probability is over the internal randomness of Aj.

We say that a code is (t, α, L)-locally list decodable if it is (t, α, 1, L)-locally list recoverable.

2.3 Some families of polynomial codes

In this section, we formally define the families of codes we will study: folded Reed-Solomon
codes [GR08], univariate multiplicity codes [RT97, KSY14, GW13], and multivariate multiplicity
codes [KSY14].

Folded Reed-Solomon codes. Let q be a prime power, and let s, d, n be nonnegative integers
such that n ≤ (q − 1)/s. Let γ ∈ Fq be a primitive element of Fq, and let a1, a2, . . . , an be distinct
elements in {γsi | 0 ≤ i ≤ (q − 1)/s− 1}. Let D = {a1, . . . , an}.

For a polynomial P (X) ∈ Fq[X] and a ∈ Fq, let P [s](a) ∈ Fsq denote the vector:

P [s](a) =


P (a)
P (γa)

...
P (γs−1a)

 .
The folded Reed-Solomon code FRSq,s(n, d) is a code over alphabet Fsq. To every polynomial P (X) ∈
Fq[X] of degree at most d, there corresponds a codeword c:

c : D → Fsq,

where for each a ∈ D:
c(a) = P [s](a).

Explicitly,

P (x) 7→
(
P [s](a1), P [s](a2), . . . , P [s](an)

)

=




P (a1)
P (γa1)

...
P (γs−1a1)

 ,


P (a2)
P (γa2)

...
P (γs−1a2)

 , . . . ,


P (an)
P (γan)

...
P (γs−1an)


 .

13

Note that Reed-Solomon codes correspond to the special case of s = 1. The following claim sum-
marizes the basic properties of folded Reed-Solomon codes.

Claim 2.3 ([GR08]). The folded Reed-Solomon code FRSq,s(n, d) is an Fq-linear code over alphabet
Fsq of block length n, rate (d+ 1)/(sn), and relative distance at least 1− d/(sn).

Univariate multiplicity codes. Let P (x) be a univariate polynomial over Fq. For i ∈ N, we
define the i’th (Hasse) derivative P (i)(X) as the coefficient of Zi in the expansion

P (X + Z) =
∑
i

P (i)(X)Zi.

Let q be a prime power, and let s, d, n be nonnegative integers such that n ≤ q. Let a1, a2, . . . , an
be distinct elements in Fq. Let D = {a1, . . . , an}.

For a polynomial P (X) ∈ Fq[X], let P (<s)(a) ∈ Fsq denote the vector:

P (<s)(a) =


P (a)

P (1)(a)
...

P (s−1)(a)

 .

The univariate multiplicity code MULT
(1)
q,s(n, d) is a code over alphabet Fsq. To every polynomial

P (X) ∈ Fq[X] of degree at most d, there corresponds a codeword c:

c : D → Fsq,

where for each a ∈ D:
c(a) = P (<s)(a).

Explicitly,

P (x) 7→
(
P (<s)(a1), P (<s)(a2), . . . , P (<s)(an)

)

=




P (a1)

P (1)(a1)
...

P (s−1)(a1)

 ,


P (a2)

P (1)(a2)
...

P (s−1)(a2)

 , . . . ,


P (an)

P (1)(an)
...

P (s−1)(an)


 .

Once again, Reed-Solomon codes correspond to the special case of s = 1.

Claim 2.4 ([KSY14], Lemma 9). The univariate multiplicity code MULT
(1)
q,s(n, d) is an Fq-linear

code over alphabet Fsq of block length n, rate (d+ 1)/(sn), and relative distance at least 1− d/(sn).

Of particular importance is the setting where q = n and D equals the whole field Fq. We refer to

this code as the whole-field univariate multiplcity code, and denote it by MULT
(1)
q,s(d). This will be

relevant to multivariate multiplicity codes, which we define next.

14

Multivariate multiplicity codes. Multivariate multiplicity codes are a generalization of whole-
field univariate multiplicity codes to the multivariate setting. For multivariate polynomials P ∈
Fq[X1, . . . , Xm], we use the notation X = (X1, . . . , Xm) and Xi =

∏
j X

ij
j where i = (i1, . . . , im) ∈

Nm. For i ∈ Nm, we define the i’th (Hasse) derivative P (i)(X) by

P (X + Z) =
∑
i

P (i)(X)Zi.

Let q be a prime power, and let s, d,m be nonnegative integers. Let Um,s denote the set {i ∈ Nm |
wt(i) < s}. Note that |Um,s| =

(
m+s−1
m

)
. Let Σm,s = FUm,sq .

For a polynomial P (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm], and a point a ∈ Fmq , define P (<s)(a) ∈ Σm,s

by:
P (<s)(a) = (P (i)(a))i∈Um,s .

The multiplicity code MULT
(m)
q,s (d) is a code over alphabet Σm,s. To every polynomial P (X1, . . . , Xm) ∈

Fq[X1, . . . , Xm] of (total) degree at most d, there corresponds a codeword c:

c : Fmq → Σm,s,

where for each a ∈ Fmq ,

c(a) = P (<s)(a).

Note that Reed-Muller codes correspond to the special case of s = 1.

Claim 2.5 ([KSY14], Lemma 9). The multivariate multiplicity code MULT
(m)
q,s (d) is an Fq-linear

code over alphabet Σm,s of block length qm, rate at least (1−m2/s)(d/(sq))m, and relative distance
at least 1− d/(sq).

3 Constant-size output list for folded Reed-Solomon and univari-
ate multiplicity codes

In this section we show that folded Reed-Solomon and univariate multiplicity codes are list de-
codable up to capacity with constant list size, independent of the block length. For this, we first
show in Section 3.1 that the list cannot contain many codewords from a low dimensional subspace.
Then in Section 3.2 we instantiate this with the results of [GW13] showing that the list of both
folded Reed-Solomon and univariate multiplicity codes is contained in a low-dimensional subspace.
Finally in Section 3.3 we show a tighter bound on the list size of FRS codes. Towards our results
on local list decoding, we prove a more general result that applies also to list recovery.

3.1 Output list has small intersection with low dimensional subspaces

Our main lemma shows that when list recovering a linear code of large distance, the output list
cannot contain many codewords from a low dimensional subspace.

15

Lemma 3.1. Suppose that C ⊆ (Fsq)n is an Fq-linear code of relative distance δ that is (δ−ε, `, L)-
list recoverable. Suppose furthermore that the output list is contained in an Fq-linear subspace
V ⊆ C of dimension r. Then C is (δ − ε, `, L′)-list recoverable with

L′ =

(
`

1− δ

)O(
r

ε(1−δ) ·log
(

r
ε(1−δ)

))

Moreover, there is a randomized algorithm that, given a basis for V , list recovers C with the above
parameters in time poly (log q, s, n, L′) .

To show that the output list L of C cannot contain too many elements from V (and to find L in
the process), we first give a preliminary randomized algorithm PRUNE that outputs a small size
list L̂ such that any codeword of L appears in L̂ with probability at least p0. This implies that
|L| ≤ |L̂|/p0, proving the first part of Lemma 3.1. Now that we know that |L| is small, our final
algorithm simply runs PRUNE O(1

p0
log |L|) times and returns the union of the output lists. By a

union bound, all elements of L will appear in the union of the output lists with high probability.
This will complete the proof of the second part of Lemma 3.1.

We start by describing the algorithm PRUNE and analyzing it. The algorithm is given as input a
tuple of input lists S ∈

(Fsq
`

)n
, (a basis for) an Fq-linear subspace V ⊆ C of dimension r containing

the output list, and a parameter t ∈ N to be determined later on.

Algorithm PRUNE(S, V, t)

1. Initialize L̂ = ∅.

2. Pick i1, i2, . . . , it ∈ [n] independently and uniformly at random.

3. For each choice of y1 ∈ Si1 , y2 ∈ Si2 , . . . , yt ∈ Sit :

• If there is exactly one codeword c ∈ V such that cij = yj for all j ∈ [t], then:

L̂ ← L̂ ∪ {c}.

4. Output L̂.

Lemma 3.2. The algorithm PRUNE runs in time poly(log q, s, n, `t), and outputs a list L̂ containing
at most `t codewords of C, such that any codeword c ∈ V with dist(c, S) ≤ δ − ε appears in L̂ with
probability at least

(1− δ + ε)t − (1− δ)t ·
(

t

1− δ

)r
.

Proof. We clearly have that |L̂| ≤ `t, and that the algorithm has the claimed running time. Fix
a codeword ĉ ∈ V such that dist(ĉ, S) ≤ δ − ε, we shall show below that ĉ belongs to L̂ with
probability at least

(1− δ + ε)t − (1− δ)t ·
(

t

1− δ

)r
.

16

Let E1 denote the event that ĉij ∈ Sij for all j ∈ [t]. Let E2 denote the event that two different
codewords v, v′ ∈ V agree on i1, . . . , it (that is, vij = v′ij for all j ∈ [t]). By the assumption that

dist(ĉ, S) ≤ δ − ε, we readily have that

Pr[E1] ≥ (1− δ + ε)t.

Claim 3.3 below also shows that

Pr[E2] ≤ (1− δ)t ·
(

t

1− δ

)r
. (2)

So we have that both E1 occurs and E2 does not occur with probability at least

(1− δ + ε)t − (1− δ)t ·
(

t

1− δ

)r
.

If E2 does not occur, then for every choice of y1 ∈ Si1 , y2 ∈ Si2 , . . . , yt ∈ Sit , there can be at most
one codeword c ∈ V such that cij = yj for all j ∈ [t]. If E1 also occurs, then in the iteration of
Step 3 where yj = ĉij for each j ∈ [t], the algorithm will take c = ĉ, and thus ĉ will be included in

L̂. This completes the proof of the lemma.

It remains to prove the following claim.

Claim 3.3.

Pr[E2] ≤ (1− δ)t ·
(

t

1− δ

)r
.

Proof. For i ∈ [n], let
Hi := {v ∈ (Fsq)n | vi = 0},

and for j = 0, 1, . . . , t, let
Vj := V ∩Hi1 ∩Hi2 ∩ . . . ∩Hij ,

and rj := dimFq(Vj). Observe that r = r0 ≥ r1 ≥ . . . ≥ rt, and that event E2 holds if and only if
rt > 0.

Next we claim that for any j = 0, 1, . . . , t− 1, it holds that rj+1 ≤ min{0, rj − 1} with probability
at least δ over the choice of ij+1. To see this, note first that if rj = 0, then rj+1 ≤ rj ≤ 0 and
so we are done. Otherwise, if rj 6= 0 then there exists a non-zero vector v ∈ Vj . Recalling that
Vj ⊆ V ⊆ C, we have that wt(v) ≥ δ, and so vij+1 6= 0 with probability at least δ over the choice of
ij+1. But recalling that Vj+1 ⊆ Hij+1 , this implies in turn that v /∈ Vj+1. We conclude that there
exists a non-zero v ∈ Vj so that v /∈ Vj+1, and so the dimension of Vj+1 is strictly smaller than that
of Vj .

Finally, note that if rt > 0, then it must hold that rj+1 > min{0, rj − 1} for at least t − r + 1 of
the j’s in 0, 1, . . . , t− 1. By the above, the probability of this event is at most(

t

t− r + 1

)
· (1− δ)t−r+1 ≤ (1− δ)t ·

(
t

1− δ

)r
.

17

Our main Lemma 3.1 now follows as an immediate corollary of the above Lemma 3.2.

Proof of Lemma 3.1. Setting

t := 3 · r

ε(1− δ)
· log

(
r

ε(1− δ)

)
in Lemma 3.2, we have that

|L̂| ≤ `t ≤ `O
(

r
ε(1−δ) ·log

(
r

ε(1−δ)

))
,

and moreover, any codeword in the output list L of C appears in L̂ with probability at least

p0 : = (1− δ + ε)t − (1− δ)t ·
(

t

1− δ

)r
≥ (1− δ)t ·

[
(1 + ε)t −

(
t

1− δ

)r]
≥ (1− δ)t ·

[(
r

ε(1− δ)

)3·r
−
(

3 · r

ε(1− δ)2
· log

(
r

ε(1− δ)

))r]
≥ (1− δ)t

≥ (1− δ)O
(

r
ε(1−δ) ·log

(
r

ε(1−δ)

))
,

where the one before last inequality holds when the ratio r
ε(1−δ) is sufficiently large.

This implies in turn that

|L| ≤ |L̂|
p0
≤
(

`

1− δ

)O(
r

ε(1−δ) ·log
(

r
ε(1−δ)

))
,

proving the first part of Lemma 3.1.

To find L, our final algorithm simply runs PRUNE O(1
p0

log |L|) times and returns the union of the
output lists. By a union bound, all elements of L will appear in the union of the output lists with
high probability (say, at least 0.99). This completes the proof of the second part of Lemma 3.1.

3.2 Constant-size output list for folded Reed-Solomon and univariate multiplic-
ity codes

Our first corollary is obtained by instantiating Lemma 3.1 with the following result from [GW13]
(see also [GW12]), showing that the output list of folded Reed-Solomon codes is contained in a low
dimensional subspace (which can also be found efficiently).

Theorem 3.4 (Constant-dimensional output list for FRS, [GW12], Theorem 7). Let q be a prime
power, and let s, d, n be nonnegative integers such that n ≤ (q − 1)/s. Let δ := 1 − d

sn be a lower
bound on the relative distance of the folded Reed-Solomon code FRSq,s(n, d). Let ε > 0 and ` ∈ N
be such that 16`

ε2
≤ s. Then FRSq,s(n, d) ⊆ (Fsq)n is (δ − ε, `, L)-list recoverable, where the output

list is contained in an Fq-linear subspace V ⊆ FRSq,s(n, d) of dimension at most r = 4`
ε .

Moreover, there is a (deterministic) algorithm that outputs a basis for V in time poly(log q, s, d, n).

18

Remark 3.5. Theorem 7 of [GW12] only deals with the case where ai = γs(i−1) for all i = 1, . . . , n,
and ` = 1. However, it can be verified that the proof goes through for any choice of distinct
a1, a2, . . . , an in {γsi | 0 ≤ i ≤ (q − 1)/s− 1}, and ` ∈ N (see discussion at end of [GW12, Section
2.4]). In this setting, the bound on the decoding radius in Theorem 7 of [GW12] becomes

α := 1− `

r + 1
− r

r + 1
· s

s− r + 1
· d
sq
,

and the above Theorem 3.4 then follows by noting that α ≥ δ− ε when setting s ≥ 16`
ε2

and r = 4`
ε .

We now obtain the following theorem as an immediate corollary of Lemma 3.1 and Theorem 3.4.

Theorem 3.6 (Constant-size output list for FRS). Let q be a prime power, and let s, d, n be
nonnegative integers such that n ≤ (q − 1)/s. Let δ := 1 − d

sn be a lower bound on the relative

distance of the folded Reed-Solomon code FRSq,s(n, d). Let ε > 0 and ` ∈ N be such that 16`
ε2
≤ s.

Then FRSq,s(n, d) is (δ − ε, `, L)-list recoverable with

L =

(
`

ε(1− δ)

)O(
`

ε2(1−δ)
·log(`

1−δ)
)
.

In particular, if δ ∈ (0, 1) and ` ∈ N are constant, then the output list size is
(

1
ε

)O(1/ε2)
.

Moreover, there is a randomized algorithm that list recovers FRSq,s(n, d) with the above parameters
in time poly(log q, s, d, n, L).

Our second corollary is obtained by replacing Theorem 7 of [GW12] with Theorem 17 of that paper,
showing that the output list of univariate multiplicity codes is contained in a low-dimensional sub-
space. However, towards our application for local list decoding, we shall need a slight modification
of that result, specifically: (1) we need to talk about list recovery, not just list decoding, (2) we
allow the degree to be larger than the field size, while [GW12] assumes that the degree is smaller
than the characteristic of the field, and (3) we work with Hasse derivatives, while [GW12] works
with standard derivatives. All differences are minor; for completeness we include a full proof in
Appendix A.

Theorem 3.7 (Constant-dimensional output list for UniMULT). Let q be a prime power, and let
s, d, n be nonnegative integers such that n ≤ q. Let δ := 1 − d

sn be a lower bound on the relative

distance of the univariate multiplicity code MULT
(1)
q,s(n, d). Let ε > 0 and ` ∈ N be such that 16`

ε2
≤ s

and 4`
ε ≤ char(Fq). Then MULT

(1)
q,s(n, d) ⊆ (Fsq)n is (δ−ε, `, L)-list recoverable, where the output list

is contained in an Fq-linear subspace V ⊆ MULT
(1)
q,s(n, d) of dimension at most 4`

ε ·
(

1 + d
char(Fq)

)
.

Moreover, there is a (deterministic) algorithm that outputs a basis for V in time poly(log q, s, d, n).

Instantiating Lemma 3.1 with the above theorem gives the following.

Theorem 3.8 (Constant-size output list for UniMult). Let q be a prime power, and let s, d, n be
nonnegative integers such that n ≤ q. Let δ := 1 − d

sn be a lower bound on the relative distance

19

of the univariate multiplicity code MULT
(1)
q,s(n, d). Let ε > 0 and ` ∈ N be such that 16`

ε2
≤ s and

4`
ε ≤ char(Fq). Then MULT

(1)
q,s(n, d) is (δ − ε, `, L)-list recoverable with

L =

(
d

char(Fq)
· `

ε(1− δ)

)O(
d

char(Fq)
· `
ε2(1−δ)

·log(`
1−δ)

)
.

Moreover, there is a randomized algorithm that list recovers MULT
(1)
q,s(n, d) with the above parameters

in time poly(log q, s, d, n, L).

3.3 Tighter bound on output list size of folded Reed-Solomon codes

For the case of folded Reed-Solomon codes we can obtain the following stronger version of Lemma
3.1, showing that the output list of folded Reed-Solomon codes contains even fewer elements from
a low-dimensional subspace.

Lemma 3.9. Let q be a prime power, and let s, d, n be nonnegative integers such that n ≤ (q −
1)/s. Let δ := 1 − d

sn be a lower bound on the relative distance of the folded Reed-Solomon code
FRSq,s(n, d). Suppose that FRSq,s(n, d) is (δ − ε, `, L)-list recoverable, and that the output list is
contained in an Fq-linear subspace V ⊆ FRSq,s(n, d) of dimension r ≤ εs

4 . Then FRSq,s(n, d) is

(δ − ε, `, L′)-list recoverable with L′ =
(

`
1−δ

)O((log r)/ε)
.

Moreover, there is a randomized algorithm that, given a basis for V , list recovers FRSq,s(n, d) with
the above parameters in time poly (log q, s, n, L′) .

Combining the above lemma with Theorem 3.4, we obtain the following corollary.

Theorem 3.10 (Tighter bound on output list size for FRS). Let q be a prime power, and let s, d, n
be nonnegative integers such that n ≤ (q − 1)/s. Let δ := 1 − d

sn be a lower bound on the relative

distance of the folded Reed-Solomon code FRSq,s(n, d). Let ε > 0 and ` ∈ N be such that 16`
ε2
≤ s.

Then FRSq,s(n, d) is (δ − ε, `, L)-list recoverable with

L =

(
`

ε

)O(1
ε
·log(`

1−δ))
.

In particular, if δ ∈ (0, 1) and ` ∈ N are constant, then the output list size is
(

1
ε

)O(1/ε)
.

Moreover, there is a randomized algorithm that list recovers FRSq,s(n, d) with the above parameters
in time poly(log q, s, d, n, L).

Remark 3.11. Note that also with respect to input list size `, the above theorem reduces the output
list size to quasi-logarithmic in `, whereas Theorem 3.6 only gave a bound that is exponential in `.

The proof of Lemma 3.9 is identical to that of Lemma 3.1, except that we obtain a better bound
on the probability of the event E2 using the following theorem from [GK16b].

20

Theorem 3.12 ([GK16b], Theorem 14). Let q be a prime power, and let s, d, n be nonnegative
integers such that n ≤ (q − 1)/s. Let δ := 1 − d

sn be a lower bound on the relative distance of the
folded Reed-Solomon code FRSq,s(n, d). Let V ⊆ FRSq,s(n, d) be an Fq-linear subspace of dimension
r ≤ s. For i ∈ [n], let

Hi =
{
v ∈ (Fsq)n | vi = 0

}
.

Then

Ei∈[n] [dim(V ∩Hi)] ≤
1− δ

1− r/s
· r.

Proof of Lemma 3.9. We first use the above Theorem 3.12 to deduce a better bound on the prob-
ability of the event E2, compared to the bound given in Claim 3.3. As in the proof of Claim 3.3,
for i ∈ [n], let

Hi := {v ∈ (Fsq)n | vi = 0},

and for j = 0, 1, . . . , t, let
Vj := V ∩Hi1 ∩Hi2 ∩ . . . ∩Hij ,

and rj := dimFq(Vj). Recall once more that r = r0 ≥ r1 ≥ . . . ≥ rt, and that event E2 holds if and
only if rt > 0.

By Theorem 3.12,

E
[
rj+1 | rj = r′

]
= Ei∈[n]

[
dim(Vj ∩Hi) | dim(Vj) = r′

]
≤ 1− δ

1− r′/s
· r′ ≤ 1− δ

1− r/s
· r′.

Thus

E [rj+1] ≤ E [rj] ·
1− δ

1− r/s
,

and

E [rt] ≤ E [r0] ·
(

1− δ
1− r/s

)t
= (1− δ)t · r

(1− r/s)t
.

Finally, by Markov’s inequality this implies in turn that

Pr [E2] = Pr [rt > 0] ≤ (1− δ)t · r

(1− r/s)t
≤ (1− δ)t · r

(1− ε/4)t
,

where the last inequality follows by assumption that r ≤ εs
4 .

Plugging the above bound in the proof of Lemma 3.2, we obtain that any codeword c ∈ V with
dist(c, S) ≤ δ − ε appears in L̂ with probability at least

(1− δ + ε)t − (1− δ)t · r

(1− ε/4)t
. (3)

Setting t := 4 log r
ε in Lemma 3.2, we have that |L̂| ≤ `t ≤ `O((log r)/ε). Moreover, using (3) any

21

codeword in the output list L of C appears in L̂ with probability at least

p0 : = (1− δ + ε)t − (1− δ)t · r

(1− ε/4)t

≥ (1− δ + ε)t − 1

2
·
(

1 + ε/4

1− ε/4
· (1− δ)

)t
≥ 1

2
(1− δ + ε)t

≥ (1− δ)O((log r)/ε),

where the first inequality holds for sufficiently small ε > 0 by our choice of t = 4 log r
ε .

Finally, this implies in turn that |L| ≤ |L̂|
p0
≤
(

`
1−δ

)O((log r)/ε)
, as well as the claimed running

time.

4 Local list decoding multivariate multiplicity codes

In this section we use our results from Section 3 on global list decoding of univariate multiplicity
codes with constant list size to show that multivariate multiplicity codes can be locally list decoded
up to their minimum distance. As before, we show a more general version that applies also to list
recovery.

Theorem 4.1 (Local list recovering up to minimum distance for MultiMult). There exists an
absolute constant c0 > 0 so that the following holds. Let q be a prime, let s, d,m be nonnegative

integers, and let δ := 1 − d
sq . Let ε > 0 and `, L ∈ N be such that s ≥ 64`

ε2
, L ≥

(
1

1−δ

)(s`ε)
c0

,

and q ≥ max{10m, exp(L)}. Then the multivariate multiplicity code MULT
(m)
q,s (d) is (t, δ − ε, `, L)-

locally list recoverable for t = qO(1) · δ−O(m) · exp(m · L).

The above theorem is a consequence of the following lemma which relates the parameters of the
global list recovery algorithm for univariate multiplicity codes to that of the local list recovery
algorithm for the corresponding multivariate multiplicity codes.

Lemma 4.2. Let q be a prime power, let s, d,m be nonnegative integers, and let δ := 1− d
sq . Let

α ∈ (0, δ) and ` ∈ N, and suppose that the univariate multiplicity code MULT
(1)
q,s(d) is (α, `, L)-

(globally) list recoverable and (α, 100L,L′)-(globally) list recoverable. Let ε > 0 be a parameter,

and suppose that q ≥ max{10m, 1002 s·L·L′
α3·ε2 }. Then the multivariate multiplicity code MULT

(m)
q,s (d)

is (t, α− ε, `, O(L))-locally list recoverable for t = qO(1) ·
(
s·L·L′
α

)O(m)
.

Instantiating the above lemma with the global list recovery algorithm for univariate multiplicity
codes from Theorem 3.8 gives our main Theorem 4.1. The rest of this section is devoted to the
proof of Lemma 4.2. We first give a short overview of the approach, and then flesh out the details
in the subsequent three subsections.

The local list recovering algorithm has three main subroutines that we will describe and analyze in
the next three subsections. Briefly, the three components are the following:

22

1. A subroutine RecoverCandidates, given in Section 4.1. RecoverCandidates takes as input a
point a ∈ Fmq , has query access to the tuple of input lists S, and returns a short list Z of

guesses for Q(<s̃)(a), where we will take s̃ to be some parameter larger than s.

2. A (deterministic) oracle machine MS [a, z] to evaluations of Q(<s), given in Section 4.2. The
oracle machine MS [a, z] is defined using an advice string (a, z), has query access to S, and
with high probability over the choice of a random point a, we will have that MS [a, Q(<s̃)(a)]
recovers most of the points of Q(<s).

3. The final local list recovery algorithm LocalListRecoverMULT, given in Section 4.3. Recall
that the goal is to output a list of randomized algorithms Aj so that for each codeword

c ∈ MULT
(m)
q,s (d) that agrees with many of the input lists in S, with probability at least 2/3,

there exists some Aj so that for any coordinate i, Pr [Aj(i) = ci] ≥ 2/3. We arrive at these
algorithms Aj as follows.

First, the algorithm runs RecoverCandidates on a random point a ∈ Fmq to generate a short

list Z of possibilities for Q(<s̃)(a). Then, for each z ∈ Z, it forms the oracle machine MS [a, z].
At this point it would be tempting to output the list of these oracle machines, but we are not
quite done: even if z = Q(<s̃)(a) corresponds to the correct advice and the choice of a is good,
for some small fraction of points x, we may still have MS [a, z](x) 6= Q(<s)(x). Fortunately,
for most x this will not be the case, and so we can implement the local correction algorithm of
[KSY14] for multiplicity codes on top of MS [a, z]. This will give us our final list of randomized
algorithms Aj that the local list recovery algorithm returns.

4.1 The algorithm RecoverCandidates

As an important subroutine of the local list recovering algorithm, we will implement an algorithm
which we call RecoverCandidates. The main feature of this algorithm is that given oracle access to
small lists, that for most coordinates agree with the evaluations of order s derivatives of Q, it can
output for most coordinates, a small list that agrees with evaluations of order s̃ derivatives of Q
(think of s̃ to be much larger than s).

Specifically, the algorithm RecoverCandidates will have oracle access to a function S : Fmq →
(Σm,s

`

)
.

Think of this function as assigning to each element of Fmq a list of size ` of alphabet symbols of
the multiplicity code. Now suppose that Q is an m-variate polynomial of degree at most d (think
of Q to represent a true codeword of the multiplicity code) that “agrees” with at least 1 − α + ε
fraction of these lists. On being input x, a random element of Fmq , and for some parameter s̃, the
algorithm RecoverCandidates will make few queries to S and output a small list Z ⊆ Σm,s̃, such
that with high probability (over the choice of x and the randomness of the algorithm), the list Z
contains Q(<s̃)(x).

Lemma 4.3. Let q be a prime power, and let s, d,m be nonnegative integers. Let α ∈ (0, 1) and

` ∈ N, and suppose that MULT
(1)
q,s(d) is (α, `, L)-(globally) list recoverable. Let s̃ > 0 be a parameter,

and suppose that q > 100 · L · s̃. Let ε > 0 be a parameter.

Let S : Fmq →
(Σm,s

`

)
, and suppose that Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] is a polynomial of degree

23

at most d such that:
Pr

x∈Fmq

[
Q(<s)(x) ∈ S(x)

]
> 1− α+ ε.

There is an algorithm RecoverCandidates which on input x ∈ Fmq , and given oracle access to S,

makes at most q · (Ls̃)O(m) queries to S, and outputs a list Z ⊆ Σm,s̃ of size at most 100L such that

Pr
[
Q(<s̃)(x) ∈ Z

]
≥ 1− 1

ε2q
,

where the probability is over the choice of a uniform random x ∈ Fmq and the random choices of the
algorithm RecoverCandidates.

The high level idea of the algorithm is as follows. On input x, we take several random lines passing
through x, and run the univariate multiplicity list recovery algorithm on the restrictions of the
input lists to those lines. This gives us, for each of these lines, a list of univariate polynomials. For
a given line, this list of univariate polynomials contains candidates for Q restricted to that line. In
particular, this gives us candidate values for Q(x) and the all higher order directional derivatives of
Q at x in the directions of those lines. We combine this information about the different directional
derivatives to reconstruct Q(<s̃)(x). This combination turns out to be a certain kind of polynomial
list recovery problem: namely list recovery for tuples of polynomials.

Lemma 4.4 (Vector-valued Reed-Muller list recovery on a grid). Let d,m, `,K be given parameters.
Let F be a finite field. Suppose that U ⊆ F and |U | ≥ 2d`K. Let α < 1− 1√

K
be a parameter.

Then for every f : Um →
(Ft
`

)
, if

L =
{

(Q1, Q2, . . . , Qt) ∈ (F[Y1, Y2, . . . , Ym])t | ∀i ∈ [t],deg(Qi) ≤ d and

Pr
u∈Um

[(Q1(u), Q2(u), . . . , Qt(u)) 6∈ f(u)] < α
}
,

then |L| ≤ 2K`.

Proof. We shall reduce the case of tuples of polynomials to the case of a single polynomial over a
large field. Specifically, let K be the degree t field extension of F, and let φ : Ft → K be an arbitrary
F-linear bijection. Then to every function f : Um → Ft, we can associate a function f̃ : Um → K,
where f̃ = φ ◦ f . This identifies the underlying Hamming metric spaces. The key observation is
that under this identification, f is the evaluation table of a tuple of t polynomials in F[X1, . . . , Xm]
of degree ≤ d if and only if f̃ : Um → K is the evaluation table of a degree ≤ d polynomial in
K[X1, . . . , Xm].

The bound on |L| then follows from the Johnson bound for list recovery, which is a general statement
implying good list recoverability for codes with large distance. Specifically, Lemma V.2 in [GKO+18]
(see also Corollary 3.7 in [Gur04]) states that a code of relative distance δ is (α, `, L) list recoverable
for α > 1−

√
`(1− δ) and L = `

(1−α)2−`(1−δ) . In our setting, the code of polynomials of degree at

most d on Um has relative distance δ at least 1− d
|U | ≥ 1− 1

2K` . Thus for α < 1− 1√
K

, the Johnson

bound for list recovery implies that we can take L = 2K`, as desired.

24

To see why the above lemma is relevant, we note the following chain rule for Hasse derivatives.

Claim 4.5. Let Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm], let x,b ∈ Fmq , and let λ(T) = x + Tb be the
line passing through x in direction b. Then for any integer j ≥ 0,

(Q ◦ λ)(j)(0) =
∑

j:wt(j)=j

Q(j)(x)bj.

Proof. We have from the definition of the Hasse derivative that∑
i

(Q ◦ λ)(i)(0) · T i = (Q ◦ λ)(T)

= Q(x + Tb)

=
∑
i

Q(i)(x) · bi · Twt(i)

=
∑
i

 ∑
i:wt(i)=i

Q(i)(x)bi

T i,

and so by matching coefficients we have

(Q ◦ λ)(j)(0) =
∑

j:wt(j)=j

Q(j)(x)bj.

Now let s̃ be an integer, and for each 0 ≤ j < s̃, define the polynomial

Hx,j(Y1, . . . , Ym) =
∑

j:wt(j)=j

Q(j)(x)Yj,

and let Hx(Y1, . . . , Ym) ∈ (Fq[Y1, . . . , Ym])s̃ be the tuple of polynomials:

Hx = (Hx,0, Hx,1, . . . ,Hx,s̃−1).

Then we have
(Q ◦ λ)(<s̃)(0) = Hx(b). (4)

Thus, given information about (Q ◦ λ)(<s̃)(0) for various lines λ and for some s̃, we have informa-
tion about the tuple of polynomials Hx(Y), evaluated at many different points b. It is on these
polynomials that we will use Lemma 4.4. The polynomials Hx(Y) will let us in turn to reconstruct
Q(<s̃)(x).

Now we present our main subroutine RecoverCandidates, and analyze it below. For an element
z ∈ Σm,s, and a direction b ∈ Fmq , we define the restriction of z to direction b (denoted z|b) to
equal h ∈ Σ1,s, given by:

h(j) =
∑

wt(j)=j

z(j)bj

for each j such that 0 ≤ j < s.

25

Main Subroutine RecoverCandidates.

• Oracle access to S : Fmq →
(Σm,s

`

)
.

• INPUT: x ∈ Fmq , parameter s̃ ∈ N.

• The goal is to recover a small list of candidates for Q(<s̃)(x).

1. Let U ⊆ Fq be a set of size 100s̃L.

2. Let b ∈ Fmq be picked uniformly at random.

3. Let B = {bu = b + u | u ∈ Um}.

4. For each u ∈ Um:

(a) Let λu(T) be the line λu(T) = x + Tbu.

(b) Consider the restriction Su : Fq →
(Σ1,s

`

)
of S to λu. Formally:

Su = S ◦ λu(T) = {z|bu | z ∈ S(λu(T))}.

(c) Run the univariate list recovery algorithm on Su with error-tolerance α for degree
d polynomials to obtain a list Lλu ⊆ Fq[T].

5. Define a function f : Um →
(Fs̃q
L

)
as follows. For each u ∈ Um, define

f(u) =
{
P (<s̃)(0) | P (T) ∈ Lλu

}
.

6. Let L′ be the set of all s̃-tuples of polynomials

(Q′j(Y1, . . . , Ym))s̃−1
j=0

where Q′j is homogeneous of degree j, and such that

(Q′j(u))s̃−1
j=0 ∈ f(u)

for at least 1/4 fraction of the u ∈ Um.

Obtain this list L′ by applying Lemma 4.4 for s̃-tuples of polynomials of degree ≤ s̃,
where the evaluation points are Um. Then prune the resulting list L to ensure that for
each member

(Q′j(Y1, . . . , Ym))s̃−1
j=0

of the list L, and for each j such that 0 ≤ j ≤ s̃−1, Q′j is homogeneous of degree j. This
pruned list is L′.

26

7. For each
(Q′j(Y))s̃−1

j=0 ∈ L
′,

let
(Pj(Y))s̃−1

j=0 = (Q′j(Y − b))s̃−1
j=0,

and add this to a new list of tuples of polynomials that we call L′′.

8. Let

Z =

z ∈ Σm,s̃ | (
∑

wt(j)=j

z(j)Yj)s̃−1
j=0 ∈ L

′′

 .

9. Return Z.

We now prove Lemma 4.3.

Proof of Lemma 4.3. Suppose Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] is a polynomial of degree at most
d such that:

Pr
x∈Fmq

[Q(<s)(x) ∈ S(x)] > 1− α+ ε.

For each line λ in Fmq , let Lλ be the result of univariate list recovering S ◦ λ with error-parameter
α. Let b ∈ Fmq be the random choices of RecoverCandidates. For x,b ∈ Fmq , and for u ∈ Um, recall
that λu(T) denotes the line λu(T) = x + Tbu, where bu = b + u. Then for each u ∈ Um, let Bu

be the event that Q ◦ λu(T) is not in Lλu .

Claim 4.6. For each fixed u ∈ Um,

Pr
x,b∈Fmq

[Bu] ≤ 1

4ε2q
.

Proof. Note that when x,b are uniformly random elements of Fmq , then λu(T) is a uniformly

random line. The event that Q ◦ λu(T) is not in Lλu is a subset of the event that Q(<s)(x) 6∈ S(x)
for more than α-fraction of points x on the line λu(T). The claim then follows from a standard
application of Chebyshev’s inequality, using the fact that the points on a uniformly random line
are pairwise independent.

More precisely,

Pr
x,b∈Fmq

[Bu] ≤ Pr
x,b∈Fmq

∑
t∈Fq

1
{
Q(<s)(λu(t)) 6∈ S(λu(t))

}
> αq


= Pr

Y

∑
t∈Fq

Yt > αq


≤ Pr

Y

∑
t∈Fq

(Yt − EYt) > ε · q

 ,
27

where the Yt are pairwise independent {0, 1}-valued random variables with EYt ≤ α− ε. Then by
Chebyshev’s inequality, this last quantity is at most∑

t∈Fq E(Yt − EYt)2

ε2q2
≤ 1

4ε2q
.

Claim 4.7.

Pr
x,b∈Fmq

[∑
u∈Um

1Bu >
|U |m

4

]
<

1

ε2q
.

Proof. The proof is immediate from the previous claim and Markov’s inequality.

Thus we conclude that with probability at least 1− 1
ε2q

, when x is a uniformly random element of

Fmq , for at least 1/4 of the u ∈ Um, we have that

Q ◦ λu(T) ∈ Lλu .
We assume that this happens, and let G ⊆ Um be this set of u.

Recall that Lλu is a list of size L. Consider the function

f : Um →
(
Fs̃q
L

)
,

where for each u ∈ Um,
f(u) = {P (<s̃)(0) | P (T) ∈ Lλu}.

Fix any u ∈ G. Then since
Q ◦ λu(T) ∈ Lλu ,

it holds that
(Q ◦ λu)(<s̃)(0) ∈ f(u).

Now observe that by (4), we have

Hx(bu) = (Q ◦ λu)(<s̃)(0),

and thus
Hx(b + u) = Hx(bu) ∈ f(u).

Since this happens for each u ∈ G, we have that this happens for at least 1/4 fraction of u ∈ Um.

Now by our assumption that |U | ≥ 100Ls̃, Lemma 4.4 implies that Hx(b + Y) is included in L′
(here we also use the fact that Hx,j is an homogeneous m-variate polynomial of degree j). In this
event, L′′ will contain

Hx(Y)

and then it follows that in Step 8 of RecoverCandidates, the list Z will contain Q(<s̃)(x).

It remains to show the claimed output list size and query complexity. To this end, note first that
the output list size is at most the size of L, which is at most 100L by Lemma 4.4. The algorithm
RecoverCandidates runs the global list recovery algorithm for the univariate multiplicity codes on
|U |m = (Ls̃)O(m) lines, and so the query complexity is at most q · (Ls̃)O(m).

28

4.2 The Oracle Machine M

The oracle machine M will output a short list of oracle machines, each of which is defined by a
piece of advice. In this case, the advice will be a point a ∈ Fmq , and z ∈ Σm,s̃, which is meant

to be a guess for Q(<s̃)(a). Given this advice, the oracle machine works as follows: on input x,
with corresponding input list S(x), it will run the univariate list recovery algorithm on the line
λ(T) = x + T (a− x) through x and a to obtain a list L of univariate polynomials P (T). We will
show that with high probability (assuming the advice is good), there will be a unique polynomial
P (T) in L so that both P (<s̃)(1) is consistent with z, and P (<s)(0) is consistent with some element
of S(x). Then the oracle machine will output the symbol in S(x) that P (<s)(0) agrees with.

The key later will be that the advice z will not vary over all possibilities in Σm,s̃; this would result
in too long a list. Rather, we will use RecoverCandidates in order to generate this advice.

Formally, we will prove the following lemma about our oracle machine, which we define below.

Lemma 4.8. Let q be a prime power, and let s, d,m be nonnegative integers such that d < sq. Let

α ∈ (0, 1) and ` ∈ N, and suppose that MULT
(1)
q,s(d) is (α, `, L)-(globally) list recoverable. Let s̃ > 0

and ε > 0 be parameters.

Let S : Fmq →
(Σm,s

`

)
, and suppose that Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] is a polynomial of degree

at most d such that:
Pr

x∈Fmq

[
Q(<s)(x) ∈ S(x)

]
> 1− α+ ε.

There is an algorithm MS [a, z](x) which on input x ∈ Fmq , given as advice a point a ∈ Fmq , and
z ∈ Σm,s̃, and given oracle access to S, makes at most q queries to S, and outputs an element of
Σm,s ∪ {⊥} such that if x,a ∈ Fmq are chosen uniformly at random, then:

Pr
a,x∈Fmq

[
MS [a, Q(<s̃)(a)](x) = Q(<s)(x)

]
≥ 1− γ

for

γ = α− ε+
`s

q
+

1

ε2q
+
sL

s̃
.

We will first decribe the algorithm and then show that it satisfies the required properties.

Oracle machine M .

• Oracle access to S : Fmq →
(Σm,s

`

)
.

• INPUT: x ∈ Fmq .

• ADVICE: Point a ∈ Fmq , and z ∈ Σm,s̃.

1. Set b∗ = a− x.

2. Let λb∗ be the line λb∗(T) = x + Tb∗.

29

3. Consider the restriction Sb∗ : Fq →
(Σ1,s

`

)
of S to the line λb∗ , and list recover this with

error-tolerance α for degree d polynomials, and obtain the list Lλb∗ ⊆ Fq[T].

4. If there exists exactly one P (T) ∈ Lλb∗ such that P (<s̃)(1) = z|b∗ , then set Pb∗(T) to
equal that P (T), otherwise output ⊥ and exit.

5. If there exists exactly one y ∈ S(x) for which y|b∗ = P
(<s)
b∗

(0), then output that y.

6. Otherwise output ⊥.

We will now analyze the above algorithm and show that is satisfies the required properties.

Proof of Lemma 4.8. By the description of the oracle machine, it is clear that it makes at most q
queries.

It remains to show that when a and x are chosen uniformly at random from Fmq , then

Pr
a,x∈Fmq

[
MS [a, Q(<s̃)(a)](x) = Q(<s)(x)

]
≥ 1− γ.

Claim 4.9. Let y0 = Q(<s)(x). With probability at least 1 − α + ε over the random choice of
x ∈ Fmq , y0 ∈ S(x).

Proof. The proof is immediate since it is given to us that

Pr
x∈Fmq

[Q(<s)(x) ∈ S(x)] > 1− α+ ε.

Claim 4.10. Let y0 = Q(<s)(x). For any y ∈ S(x) with y 6= y0, with probability at least 1− s
q over

the random choice of a ∈ Fmq , we have that

y|b∗ 6= y0|b∗ .

Proof. Recall that by definition, for an element z ∈ Σm,s, and a direction b ∈ Fmq , z|b is to equal
h ∈ Σ1,s, where:

h(j) =
∑

wt(j)=j

z(j)bj

for each j such that 0 ≤ j < s. Note that h(j) can be viewed as a polynomial of degree at most j
evaluated at b, where the coefficients of the polynomial depend only on z.

Since y 6= y0, the corresponding tuples of polynomials (each of degree at most s) will differ in at
least one coordinate. Observe also that for any fixed choice of x, the randomness of a implies that
b∗ is a uniformly random element of Fmq . Thus in the coordinate where the tuples of polynomials
differ, the evaluations at b∗ will be distinct with probability at least 1− s

q by the Schwartz-Zippel
Lemma.

Thus with probability at least 1− s
q over the random choice of a ∈ Fmq , we have that y|b∗ 6= y0|b∗ .

30

Claim 4.11. Let y0 = Q(<s)(x). Then with probability at least 1 − `s
q over the random choice of

a ∈ Fmq , y0 is the unique element y of S(x) for which y|b∗ = Q ◦ λ(<s)
b∗

(0).

Proof. Clearly, by definition, y0|b∗ = Q ◦ λ(<s)
b∗

(0). Also, taking a union bound over all ` elements

of S(x), by Claim 4.10, y0|b∗ 6= y|b∗ for all other y ∈ S(x) with probability at least 1− `s
q .

Claim 4.9 and Claim 4.11 together imply that with probability at least 1 −
(
α− ε+ `s

q

)
over

the random choice of a and x ∈ Fmq , Q(<s)(x) is the unique element y of S(x) for which y|b∗ =

Q ◦ λ(<s)
b∗

(0).

We will now show that with probability at least 1 −
(

1
ε2q

+ sL
s̃

)
over the random choice of a and

x ∈ Fmq , Pb∗(T) = Q ◦ λb∗(T). Once we will have this, then it will immediately follow that

the algorithm will output Q(<s)(x) with probability at least 1 −
(
α− ε+ `s

q + 1
ε2q

+ sL
s̃

)
over the

random choice of a and x ∈ Fmq
For each line λ in Fmq , let Lλ be the result of list recovering S ◦ λ with error-parameter α. For
points x and a picked uniformly at random from Fmq , let b∗ = a − x, and let λb∗ be the line
λb∗(T) = x + Tb∗.

Let Bλb∗ denote the event that Lλb∗ does not contain Q◦λb∗(T). Let Cλb∗ ,a denote the event that

there exists P (T) ∈ Lλb∗ with P (T) 6= Q ◦ λb∗(T), but P (<s̃)(0) = (Q ◦ λb∗)(<s̃)(0). Thus Bλb∗ is
the event that there are too many errors on λb∗ . Cλb∗ ,a is the event that a is not a disambiguating
point.

Claim 4.12.

Pr
[
Bλb∗

]
≤ 1

ε2q
.

Proof. The proof is identical to that of Claim 4.6, and it follows from a standard application of
Chebyshev’s inequality, using the fact that the points on a uniformly random line are pairwise
independent.

Claim 4.13.

Pr
[
Cλb∗ ,a

]
≤ sL

s̃
.

Proof. Because of the way x, a and the line λb∗ are sampled, equivalently one could let x be picked
uniformly at random from Fmq , λb∗ be a uniformly random line through x, and a be a uniformly
random point on λb∗ .

Now fix any polynomial P (T) ∈ Lλb∗ with P (T) 6= Q ◦ λb∗(T). We want to bound the probability

that P (<s̃)(α) = (Q◦λb∗)(<s̃)(α) where α is picked uniformly at random. But P and Q◦λb∗ are fixed
distinct polynomials of degree at most d. Thus the probability that they agree with multiplicity s̃
on a random point of Fq is at most d

s̃q ≤
s
s̃ , where the inequality follows by assumption that d < sq.

The result follows from a union bound over all P (T) ∈ Lλb∗ .

31

Claim 4.12 and Claim 4.13 together imply that with probability at least 1 −
(

1
ε2q

+ sL
s̃

)
over the

random choice of a and x ∈ Fmq , neither Bλb∗ nor Cλb∗ ,a occurs, and hence Pb∗(T) = Q ◦ λb∗(T).

Thus the result follows.

4.3 Main local list recovery algorithm

Together, Lemmas 4.3 and 4.8 inspire a local-list recovery algorithm for multivariate multiplicity
codes. The idea is that RecoverCandidates will first obtain a list of possibilities, Z, for Q(<s̃)(a).
Then for each possibility z ∈ Z, we will create an oracle machine as in Lemma 4.8 which guesses
Q(<s̃)(a) = z. Unfortunately, this will still have some amount of error; that is, there will be some
small fraction of x ∈ Fmq so that the approach above will not be correct on x.

To get around this, we first reduce the fraction of erroneous input lists by replacing each given
input list S(y) with the result of applying RecoverCandidates on y with oracle access to S and
parameter s̃ = s, to obatin a list of possibilities Ŝ(y) for Q(<s)(y). By Lemma 4.8, this will result
in a reduced amount of error in the decoded codewords. Once the error is sufficiently small, we can
wrap the whole thing in the local (unique) correction algorithm. Specifically, we use the following
local correction algorithm for multivariate multiplicity codes from [KSY14].

Theorem 4.14 ([KSY14], Theorem 3.6). Let q be a prime power, let s, d,m be nonnegative integers,
and let δ := 1− d

sq . Suppose that q ≥ max{10m, d+6s
s , 12(s+1)}. Then the multivariate multiplicity

code MULT
(m)
q,s (d) is locally correctable from δ

10 -fraction of errors with (O(s)m · q) queries.

Assuming the above local-correction algorithm LocalCorrect for multivariate multiplicity codes in
hand, we define our final local-list recovery algorithm as follows.

Algorithm LocalListRecoverMULT.

• Oracle access to S : Fmq →
(Σm,s

`

)
.

1. Pick a,b,b′ ∈ Fmq uniformly at random.

2. Set s̃ = 100·L′·s
α .

3. Let Z be the output of RecoverCandidatesS(a, s̃), where the random choice of the proce-
dure RecoverCandidates is fixed to b.

4. For y ∈ Fmq , let Ŝ(y) = RecoverCandidatesS(y, s), where the random choice of the proce-
dure RecoverCandidates is fixed to b′.

5. For z ∈ Z, define Az by:

• INPUT: x ∈ Fmq

32

(a) Let M denote the oracle machine M Ŝ [a, z].

(b) Return LocalCorrectM (x)

6. Return L = {Az : z ∈ Z}.

The following lemma shows that this algorithm works, assuming a (global) list recovery algorithm
for univariate multiplicity codes. This lemma implies in turn our main Lemma 4.2.

Lemma 4.15. Let q be a prime power, let s, d,m be nonnegative integers, and let δ := 1 − d
sq .

Let α ∈ (0, δ) and ` ∈ N, and suppose that the univariate multiplicity code MULT
(1)
q,s(d) is (α, `, L)-

(globally) list recoverable and (α, 100L,L′)-(globally) list recoverable. Let ε > 0 be a parameter, and
suppose that q ≥ 1002 s·L·L′

α3·ε2 .

Let S : Fmq →
(Σm,s

`

)
, and suppose that Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] is a polynomial of degree

at most d such that:
Prx∈Fmq

[
Q(<s)(x) ∈ S(x)

]
> 1− α+ ε.

Then with probability at least 2
3 over the choice of uniform random a,b,b′ ∈ Fmq , the following

holds. There exists an oracle machine Az ∈ L so that for all x ∈ Fmq ,

Pr
[
Az(x) = Q(<s)(x)

]
≥ 2

3
,

where the probability is over the internal randomness of Az.

Moreover, the output list L has size |L| = O(L); and LocalListRecoverMULT makes q ·
(
s·L·L′
α

)O(m)

queries to S, and each Az makes q3 · (s · L)O(m) queries to S.

The rest of this section is devoted to the proof of the above lemma. We first establish the correctness
of the algorithm LocalListRecoverMULT given above.

Let E1 be the event that Q(<s̃)(a) ∈ Z. By Lemma 4.3, we have that,

Claim 4.16.

Pr
a,b

[E1] ≥ 1− 1

ε2q
.

Next, let E2 be the event that Q(<s)(y) ∈ Ŝ(y) for at least
(
1− α

100

)
-fraction of y ∈ Fmq .

Claim 4.17.

Pr
b′

[E2] ≥ 1− 100

αε2q
.

Proof. By Lemma 4.3,

Ey,b′

[
1
{
Q(<s)(y) ∈ Ŝ(y)

}]
≥ 1− 1

ε2q
,

33

and so by Markov’s inequality,

Pr
b′

[
Pr
y

[
Q(<s)(y) ∈ Ŝ(y)

]
≥ 1− α

100

]
≥ 1− 100

αε2q
.

Finally, let E3 be the event that M Ŝ
[
a, Q(<s̃)(a)

]
(x) = Q(<s)(x) for at least

(
1− α

10

)
-fraction of

inputs x ∈ Fmq .

Claim 4.18.

Pr
a

[E3|E2] ≥ 1− 10γ

α

for

γ :=
α

100
+

100Ls

q
+

1

0.992α2q
+
sL′

s̃
. (5)

Proof. By Lemma 4.8, assuming event E2 holds,

Ex,a

[
1
{
M Ŝ

[
a, Q(<s̃)(a)

]
(x) = Q(<s)(x)

}]
≥ 1− γ,

recalling that by Lemma 4.3 Ŝ(y) has size at most 100L for all y ∈ Fmq , and our assumption that the
univariate multiplicity code is (α, 100L,L′)-list recoverable. By Markov’s inequality, this implies in
turn that

Pr
a

[
Pr
x

[
M Ŝ

[
a, Q(<s̃)(a)

]
(x) = Q(<s)(x)

]
≥ 1− α

10

]
≥ 1− 10γ

α
.

Thus, by the union bound, the above Claims 4.16, 4.17, and 4.18 imply that with probability at
least 1 − 1

ε2q
− 100

αε2q
− 10γ

α over the choice of a,b,b′, all of the events E1, E2, E3 occur, where γ is

as given in (5). Recalling our choice of s̃ := 100·L′·s
α and q ≥ 1002 s·L·L′

α3·ε2 , we can ensure that this
probability is at least 2/3.

So with probability at least 2/3 over the choice of a,b,b′, there exists z = Q(<s̃)(a) ∈ Z so that

M = M Ŝ [a, z] recovers correctly all but at most α
10 -fraction of the inputs x ∈ Fmq . Recalling our

assumption that α ∈ (0, δ), we may now apply the local correction algorithm from Theorem 4.14

to the oracle machine M = M Ŝ [a, z], and conclude that for all x ∈ Fmq , with probability at least

2/3, Az(x) = Q(<s)(x), as desired.

Now that we have established that the algorithm is correct, we quickly work out the list size
and query complexity. The list size is clearly O(L), because this is the list size returned by
RecoverCandidates. For the query complexity, the algorithm LocalListRecoverMULT has the same
query complexity as RecoverCandidates, while each Az has query complexity which is the product
of the query complexities of the oracle machines MS [a, z] (which is q), RecoverCandidates with
parameter s̃ = s, and LocalCorrect, and together these give the reported values.

34

5 Capacity-achieving locally list decodable codes

In this section we use the results from the previous section to construct capacity-achieving locally
list decodable codes with low (sub-polynomial) query complexity. For this, we first show that high-
rate multivariate multiplicity codes are locally list recoverable with small query complexity, and
then use the AEL distance amplification [AEL95, AL96] to transform these codes into capacity-
achieving locally list decodable codes, while roughy preserving the query complexity. These two
steps are described in Sections 5.1 and 5.2 below.

5.1 High-rate locally list recoverable codes

In this section we use our results from the previous section to show that high-rate multivariate
multiplicity codes are locally list recoverable with low query complexity.

Theorem 5.1. For any γ > 0 and ` ∈ N there exists an infinite family {CN}N of codes that satisfy
the following.

1. CN is a code of block length N and rate at least 1− γ.

2. CN is (t, α, `, L)-locally list recoverable for

t = expγ,`

(
(logN)5/6 · (log logN)1/3

)
, α = Ωγ,`

(
(log logN)1/3

(logN)1/6

)
,

and L = expγ,`

(
(logN)2/3 · (log logN)2/3

)
.

3. The alphabet size of CN is expγ,` exp
(
(logN)1/6 · (log logN)2/3

)
.

While in principle we could have used Theorem 4.1 as our starting point for the proof of the above
theorem, this will lead to pretty high query complexity since the field size is exponential in L,
which is in turn exponential in s.10 The reason for this exponential dependency of the field size
on L is the fact that in our main local list recovery algorithm LocalListRecoverMULT (in Section
4.3) we have first run the algorithm RecoverCandidates on each point y to reduce the amount of
errors in the input lists. This step was necessary in order to be able to locally list recover up to
the minimum distance.

Here we observe that if we are not interested in locally list recovering up to the minimum distance,
but just up to some small fraction of the minimum distance then we can eliminate this step, which
will result in turn in polynomial dependency of the field size on L. This in turn will suffice for
applying the AEL transformation, and obtaining capacity-achieving locally list decodable codes.

10To achieve high-rate we shall need to set s to be larger than the number of variables m, and so the field size
would be doubly-exponential in m. But this means that m ≤ O(log logN) where N = qm is the block length, and so
the query complexity is at least q = N1/m ≥ NΩ(1/ log logN).

35

Theorem 5.2. There exist absolute constants c0, c1 > 0 so that the following holds. Let q be a
prime, let s, d,m be nonnegative integers, let δ := 1 − d

sq , and assume that δ < 1
2 . Let `, L ∈ N

be such that s ≥ 64`
δ2 , L ≥ 2c0(s log s)2

, and q ≥ (m · L)c1. Then the multivariate multiplicity code

MULT
(m)
q,s (d) is

(
t, δ

100 , `, L
)
-locally list recoverable for t = qO(1) · LO(m).

We sketch the proof of the above theorem in Section 5.1.1, but first we show how this theorem
implies Theorem 5.1.

Proof of Theorem 5.1. We shall let CN := MULT
(m)
q,s (d), as per the following choice of parameters.

Let m be a parameter to be determined later on. Let

s :=
300`

γ2
·m2 = Θγ,`(m

2). (6)

Let q be a prime such that

L := 2c0(s log s)2
= expγ,`

(
m4 log2m

)
, (7)

where c0 is the constant guaranteed by Theorem 5.2.

Let
q := Lc1·m = expγ,`(m

5 log2m), (8)

where c1 is the constant guaranteed by Theorem 5.2, and note that q ≥ (m ·L)c1 . Jumping ahead,
the reason for this choice of q is that this is the largest we may take q so that the query complexity
expression qO(1) ·LO(m) from Theorem 5.2 does not substantially grow. Finally, let d :=

(
1− γ

2m

)
sq,

and note that this choice implies that

δ :=
γ

2m
, (9)

and that under this choice we have that δ < 1
2 and s ≥ 64`

δ2 .

Finally, to guarantee block length N we must have that N = qm = expγ,`(m
6 log2m), which implies

in turn that

m = Θγ,`

(
(logN)1/6

(log logN)1/3

)
. (10)

First observe that as per Claim 2.5, the rate of C is at least

R ≥
(

1− m2

s

)
(1− δ)m

=

(
1− γ2

300`

)(
1− γ

2m

)m
≥
(

1− γ2

300`

)(
1− γ

2

)
≥ 1− γ,

where the first equality follows by choices of s and δ in (6) and (9), respectively, and the last two
inequalities hold for sufficiently small γ.

36

By Theorem 5.2, the query complexity for locally list recovering CN is

t = qO(1) · LO(m) = expγ,`(m
5 log2m) = expγ,`

(
(logN)5/6 · (log logN)1/3

)
,

the decoding radius is

α =
δ

100
=

γ

2m
= Ωγ,`

(
(log logN)1/3

(logN)1/6

)
,

and the output list size is

L = expγ,`(m
4 log2m) = expγ,`

(
(logN)2/3 · (log logN)2/3

)
,

where the equalities follow by our choice of q, L, δ, and m in (8), (7), (9), and (10).

Finally, the alphabet size is

q(
s+m−1
m) = expγ,`

(
mO(m)

)
= expγ,` exp

(
(logN)1/6 · (log logN)2/3

)
,

where the equalities follow by our choice of q, s, and m in (8), (6), and (10), respectively.

5.1.1 Proof sketch of Theorem 5.2

As before, Theorem 5.2 follows from the following lemma which relates the parameters of the global
list recovery algorithm for univariate multiplicity codes to that of the local list recovery algorithm
for the corresponding multivariate multiplicity codes. Theorem 5.2 follows by instantiating this
lemma with the global list recovery algorithm for univariate multiplicity codes from Theorem 3.8.

Lemma 5.3. Let q be a prime power, let s, d,m be nonnegative integers, and let δ := 1 − d
sq .

Let ` ∈ N, and suppose that the univariate multiplicity code MULT
(1)
q,s(d) is

(
δ
2 , `, L

)
-(globally)

list recoverable. Suppose that q ≥ max{10m, 1002 s·`·L2

δ3 }. Then the multivariate multiplicity code

MULT
(m)
q,s (d) is

(
t, δ

100 , `, O(L)
)
-locally list recoverable for t = qO(1) ·

(
s·L
δ

)O(m)
.

The main advantage of the above lemma over Lemma 4.2 is that we do not need to assume that the
univariate code is (α, 100L,L′)-list recoverable, and the dependency on L′ is eliminated. However,
we only get that the multivariate code is locally list recoverable from at most δ

100 -fraction of errors.
Since the proof of the above lemma is very similar to that of Lemma 4.2, we just sketch the
differences below.

Proof of Lemma 5.3 (sketch). We use the same algorithm as before, except that in algorithm
LocalListRecoverMULT (in Section 4.3) we simply replace the input lists Ŝ with the original in-
put lists S (and we do not need to sample b′). We also choose s̃ := 100·L·s

δ .

As before, we let E1 be the event that Q(<s̃)(a) ∈ Z, and by Lemma 4.3, we have that

Pr
a,b

[E1] ≥ 1− 16

δ2q
.

37

Next, note that by our assumption, it holds that Q(<s)(y) ∈ S(y) for at least
(
1− δ

100

)
-fraction of

y ∈ Fmq . Finally, let E3 be the event that MS
[
a, Q(<s̃)(a)

]
(x) = Q(<s)(x) for at least

(
1− δ

10

)
-

fraction of inputs x ∈ Fmq . Then as before, by Lemma 4.8 and Markov’s inequality, we have that

Pr
a

[E3] ≥ 1− 10γ

δ

for

γ :=
δ

100
+
`s

q
+

16

δ2q
+
sL

s̃
.

Thus, by the union bound, we get that with probability at least 2/3 over the choice of a,b ∈ Fmq ,

there exists z = Q(<s̃)(a) ∈ Z so that M = MS [a, z] recovers correctly all but at most δ
10 -fraction

of the inputs x ∈ Fmq . As before, we may then apply the local correction algorithm from Theorem
4.14 to the oracle machine, and conclude that for all x ∈ Fmq , with probability at least 2/3,

Az(x) = Q(<s)(x), as desired. Finally, it can be verified that query complexity and output list size
are as stated.

5.2 Capacity-achieving locally list decodable codes

In this section we apply the Alon-Edmonds-Luby (AEL) distance amplification method [AEL95,
AL96] on the codes given by Theorem 5.1 to obtain capacity-achieving locally list decodable (in
fact, recoverable) codes with small (sub-polynomial) query complexity.

Theorem 5.4. For any R ∈ (0, 1), γ > 0 and ` ∈ N there exists an infinite family {CN}N of codes
that satisfy the following.

1. CN is a code of block length N and rate at least R.

2. CN is (t, 1−R− γ, `, L)-locally list recoverable for

t = expR,γ,`

(
(logN)5/6 · (log logN)1/3

)
and L = expR,γ,`

(
(logN)2/3 · (log logN)2/3

)
.

3. The alphabet size of CN is OR,γ,`(1).

To prove the above theorem one can use the following version of the AEL transformation for local
list recovery from [GKO+18] which roughly says the following. Given an “outer” code C of rate
approaching 1 that is locally list recoverable from a tiny fraction of errors, and a small “inner” code
C ′ that is a capacity-achieving (globally) list recoverable code, they can be combined to get a new
code CAEL that on the one hand, inherits the tradeoff between rate and error correction that C ′

enjoys, and on the other hand, inherits the locality of C.

Lemma 5.5 (Distance amplification for local list recovery, [GKO+18], Lemma 5.4.). There exists
an absolute constant b0 so that the following holds for any α, γ > 0 and s ≥ (α ·γ)−b0. Suppose that
C ⊆ (ΣR·s)n is an outer code of rate 1− γ that is (t, α, `, L)-locally list recoverable, and C ′ ⊆ Σs is
an inner code of rate R that is (1 − R − γ, `′, `)-globally list recoverable. Then there exists a code
CAEL ⊆ (Σs)n of rate R− γ that is (t · poly(s), 1−R− 2γ, `′, L)-locally list recoverable.

38

Since the AEL transforation has been applied in a similar way in a sequence of recent papers
[KMRS17, GKO+18, HRW17, KRR+19], we only sketch the proof of Theorem 5.4. The reader is
referred to the previous papers for full details. First note that one can apply the above distance
amplification Lemma 5.5 with the outer code being the high-rate locally list recoverable codes
given by Theorem 5.1, and the inner code being a capacity-achieving (globally) list recoverable
code with constant output list size (depending only on R, γ, `; e.g., a random code). This will give
the code family advertised in Theorem 5.4, except for the alphabet size that would be very large
expR,γ,` exp

(
(logN)1/6 · (log logN)2/3

)
.

To reduce the alphabet size to a constant one can then concatenate the resulting code with a high-
rate globally list recoverable code with constant decoding radius, alphabet size, and output list
size (once more depending only on R, γ, `; e.g, a random code). This will give a high-rate locally
list recoverable code with essentially the same parameters as in Theorem 5.1 but with constant
decoding radius and alphabet size. Finally, one can apply once more the distance amplification
Lemma 5.5 to obtain the decoding radius advertised by Theorem 5.4.

Acknowledgements

We would like to thank Atri Rudra and Venkatesan Guruswami for helpful discussions.

References

[AEL95] Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with nearly
optimal recovery. In proceedings of the 36th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 512–519. IEEE Computer Society, 1995.

[AL96] Noga Alon and Michael Luby. A linear time erasure-resilient code with nearly optimal
recovery. IEEE Transactions on Information Theory, 42(6):1732–1736, 1996.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications.
Combinatorica, 23(3):365–426, 2003.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing (STOC), pages 21–31. ACM Press, 1991.

[BK09] Kristian Brander and Swastik Koparty. List-decoding reed-muller over large fields upto
the johnson radius. Manuscript, 2009.

[BL18] Abhishek Bhowmick and Shachar Lovett. The list decoding radius for reed-muller codes
over small fields. IEEE Transactions on Information Theory, 64(6):4382–4391, 2018.

[DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the
method of multiplicities, with applications to kakeya sets and mergers. SIAM Journal
on Computing, 42(6):2305–2328, 2013.

39

[DL12] Zeev Dvir and Shachar Lovett. Subspace evasive sets. In Proceedings of the 44th
Symposium on Theory of Computing Conference (STOC), pages 351–358. ACM Press,
2012.

[GI04] Venkatesan Guruswami and Piotr Indyk. Linear-time list decoding in error-free set-
tings. In proceedings of the 31st International Colloquium on Automata, Languages
and Programming (ICALP), volume 3142 of Lecture Notes in Computer Science, pages
695–707. Springer, 2004.

[GK16a] Alan Guo and Swastik Kopparty. List-decoding algorithms for lifted codes. IEEE
Transactions on Information Theory, 62(5):2719–2725, 2016.

[GK16b] Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Combinator-
ica, 36(2):161–185, 2016.

[GKO+18] Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and Shubhangi
Saraf. Locally testable and locally correctable codes approaching the gilbert-varshamov
bound. IEEE Transactions on Information Theory, 64(8):5813–5831, 2018.

[GKZ08] Parikshit Gopalan, Adam R. Klivans, and David Zuckerman. List-decoding reed-muller
codes over small fields. In Proceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC), pages 265–274. ACM Press, 2008.

[GL89] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC),
pages 25–32. ACM Press, 1989.

[Gop13] Parikshit Gopalan. A fourier-analytic approach to reed-muller decoding. IEEE Trans-
actions on Information Theory, 59(11):7747–7760, 2013.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity:
Error-correction with optimal redundancy. IEEE Transactions on Information Theory,
54(1):135–150, 2008.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and
algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767,
1999.

[Gur04] Venkatesan Guruswami. List decoding of error-correcting codes: winning thesis of the
2002 ACM doctoral dissertation competition, volume 3282. Springer Science & Business
Media, 2004.

[GW12] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants
of reed-solomon codes. Electronic Colloquium on Computational Complexity (ECCC),
19:73, 2012.

[GW13] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants of
reed-solomon codes. IEEE Transactions on Information Theory, 59(6):3257–3268, 2013.

40

[HRW17] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local list recovery of high-rate
tensor codes and applications. In Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society, 2017.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spec-
trum. SIAM Journal on Computing, 22(6):1331–1348, 1993.

[KMRS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally
correctable and locally testable codes with sub-polynomial query complexity. Journal
of ACM, 64(2):11:1–11:42, 2017.

[Kop15] Swastik Kopparty. List-decoding multiplicity codes. Theory of Computing, 11(5):149–
182, 2015.

[KRR+19] Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, and Shashwat
Silas. On list recovery of high-rate tensor codes. In proceedings of the 23rd International
Conference on Randomization and Computation (RANDOM), pages 68:1–68:22. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

[KRSW18] Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. Improved
decoding of folded reed-solomon and multiplicity codes. Electronic Colloquium on Com-
putational Complexity (ECCC), 25:91, 2018.

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with
sublinear-time decoding. Journal of ACM, 61(5):28, 2014.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing (STOC), pages 80–86. ACM Press, 2000.

[Lip90] Richard J. Lipton. Efficient checking of computations. In Proceedings of the 7th Annual
ACM Symposium on Theoretical Aspects of Computer Science (STACS), pages 207–215.
Springer, 1990.

[Nie01] R. R. Nielsen. List decoding of linear block codes. PhD thesis, Technical University of
Denmark, 2001.

[PV05] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the Guruswami–
Sudan radius in polynomial time. In 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 285–294. IEEE Computer Society, 2005.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[RT97] M. Yu. Rosenbloom and M. A. Tsfasman. Codes for the m-metric. Problemy Peredachi
Informatsii, 33(1):55–63, 1997.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without
the xor lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

41

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction bound.
Journal of Complexity, 13(1):180–193, 1997.

[SY11] Shubhangi Saraf and Sergey Yekhanin. Noisy interpolation of sparse polynomials, and
applications. In Proceedings of the IEEE 26th Annual Conference on Computational
Complexity (CCC), pages 86–92. IEEE Computer Society, 2011.

A Constant-dimensional output list for univariate multiplicity codes

In this section we prove the following lemma which implies Theorem 3.7.

Lemma A.1. Let q be a prime power, and let s, d, n be nonnegative integers such that n ≤ q. Let
r be a nonnegative integer such that r ≤ min{s, char(Fq)}. Then the univariate multiplicity code

MULT
(1)
q,s(n, d) is (α, `, L)-list recoverable for

α < 1− `

r + 1
− r

r + 1
· s

s− r + 1
· d
sq
,

where the output list is contained in an Fq-affine subspace v0+V of dimension at most r·
(

1 + d
char(Fq)

)
.

Moreover, there is a (deterministic) algorithm that outputs a basis for V in time poly(log q, s, d, n).

Theorem 3.7 follows by setting s ≥ 16`
ε2

and r = 4`
ε , and noting that in this setting of parameters

we have that α ≥ δ − ε.

The proof of Lemma A.1 above adapts Theorem 17 of [GW12] to our setting. We refer the reader
to [GW12] for more context and intuition.

We begin by giving the algorithm.

Algorithm FindSubspace.

• INPUT: Access to input lists S ⊆
(Fsq
`

)n
• OUTPUT: (A basis for) an Fq-affine subspace v0 + V containing all codewords c ∈
MULT

(1)
q,s(n, d) with dist(c, S) ≤ α.

1. Set D = (s− r + 1)(1− α)q − 1.

2. By solving a linear system of equations over Fq, find nonzero polynomials

A(X), B0(X), . . . , Br−1(X) ∈ Fq[X]

such that:

(a) deg(A) ≤ D, and for all i = 0, . . . , r − 1, deg(Bi) ≤ D − d.

42

(b) For each λ with 0 ≤ λ ≤ s − r, for each evaluation point ai ∈ Fq, and for each
β = (β0, . . . , βs−1) ∈ Si:

A(λ)(ai) +
r−1∑
i=0

λ∑
j=0

(
i+ j

i

)
βi+jB

(λ−j)
i (ai) = 0.

3. Let v0 +V be the affine space containing the encoding of all polynomials f(X) satisfying

A(X) +

r−1∑
i=0

f (i)(X)Bi(X) = 0.

We need to show:

1. The linear system has a nonzero solution,

2. Any codeword c ∈ MULT
(1)
q,s(n, d) with dist(c, S) ≤ α is contained in v0 + V .

We show these two items below.

Item (1): To see that the linear system has a nonzero solution, we show that the homogeneous
system of linear equations in Step 2 of the algorithm has more variables than constraints. The total
number of free coefficients in A(X), B0(X), . . . , Br−1(X) equals:

(D + 1) + r(D − d+ 1) = (D + 1)(r + 1)− d · r
= (s− r + 1)(1− α)q(r + 1)− d · r

> (s− r + 1)

(
`

r + 1
+

r

r + 1
· s

s− r + 1
· d
sq

)
q(r + 1)− d · r

= (s− r + 1)`q + d · r − d · r
= (s− r + 1)`q.

The total number of constraints equals:

q · (s− r + 1) · `.

Thus the number of free coefficients is larger than the number of constraints, and this proves that
the algorithm can find a nonzero solution in Step 2.

Item (2): Let c be a codeword with dist(c, S) ≤ α that is the encoding of a polynomial g(X). We
will show that c ∈ v0 + V . Define Q(X) = A(X) +

∑r−1
i=0 g

(i)(X)Bi(X). Observe that deg(Q) ≤ D.

Now take any evaluation point ai ∈ Fq and β = (β0, . . . , βs−1) ∈ Si for which

g(<s)(ai) = β (11)

43

Let λ be an integer with 0 ≤ λ ≤ s− r. Then by the chain rule for Hasse derivatives:

Q(λ)(ai) = A(λ)(ai) +
r−1∑
i=0

(
g(i) ·Bi

)(λ)
(ai)

= A(λ)(ai) +
r−1∑
i=0

λ∑
j=0

(
g(i)
)(j)

(ai)B
(λ−j)
i (ai)

= A(λ)(ai) +
r−1∑
i=0

λ∑
j=0

(
i+ j

i

)
g(i+j)(ai)B

(λ−j)
i (ai)

= A(λ)(ai) +
r−1∑
i=0

λ∑
j=0

(
i+ j

i

)
βi+jB

(λ−j)
i (ai)

= 0

Since this holds for every λ with 0 ≤ λ ≤ s− r, we get that:

mult(Q, ai) ≥ s− r + 1.

By assumption on g, there are at least (1−α)q evaluation points ai ∈ Fq such that there exists some
β ∈ Si for which Equation (11) holds. Thus there are at least (1 − α)q points where Q vanishes
with multiplicity at least s − r + 1. Since deg(Q) ≤ D < (s − r + 1)(1 − α)q, we conclude that
Q(X) = 0.

By definition of Q(X) and v0 + V , this implies that c ∈ v0 + V , as desired.

Finally, we turn to bound the dimension of V .

Dimension of affine subspace: Let f =
∑d

i=0 fix
i be a polynomial satisfying Q(x) := A(X) +∑r−1

i=0 f
(i)(X)Bi(X) = 0. Then for each i = r − 1, . . . , d, the coefficient of Xi−r+1 in Q(x) is(

i
r−1

)
· fi + `i, where `i is an affine linear combination of f1, . . . , fi−1. Thus, whenever

(
i

r−1

)
=

i·(i−1)···(i−r+1)
(r−1)! 6= 0 we get that the coefficient fi is determined by prior coefficients. By assumption

that r ≤ char(Fq) we get that (r− 1)! 6= 0. Moreover, i · (i− 1) · · · (i− r+ 1) can be non-zero for at
most r · d+1

char(Fq) values in Fq. We conclude that the number of undetermined coefficients is at most

r − 1 + r · d+1
char(Fq) ≤ r ·

(
1 + d

char(Fq)

)
, and this also gives a bound on the dimension of V .

44

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

