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Abstract

We study the 2-ary constraint satisfaction problems (2-CSPs), which can be stated as follows:
given a constraint graph G = (V, E), an alphabet set Σ and, for each edge {u, v} ∈ E, a constraint
Cuv ⊆ Σ× Σ, the goal is to find an assignment σ : V → Σ that satisfies as many constraints as
possible, where a constraint Cuv is said to be satisfied by σ if (σ(u), σ(v)) ∈ Cuv.

While the approximability of 2-CSPs is quite well understood when the alphabet size |Σ|
is constant (see e.g. [Rag08]), many problems are still open when |Σ| becomes super constant.
One open problem that has received significant attention in the literature is whether it is hard
to approximate 2-CSPs to within a polynomial factor of both |Σ| and |V| (i.e. (|Σ||V|)Ω(1)

factor). As a special case of what is now referred to as the Sliding Scale Conjecture, Bellare
et al. [BGLR93] suggested that the answer to this question might be positive. Alas, despite many
efforts by researchers to resolve this conjecture (e.g. [RS97, AS97, DFK+11, DHK15, Mos17]), it
still remains open to this day.

In this work, we separate between |V| and |Σ| and ask a closely related but weaker question:
is it hard to approximate 2-CSPs to within a polynomial factor of |V| (but while |Σ| may be
super-polynomial in |V|)? Assuming the exponential time hypothesis (ETH), we answer this
question positively. Specifically, we show that, unless ETH fails, no polynomial time algorithm
can approximate 2-CSPs to within a factor of |V|1−1/(log |V|)1/2−ρ

for every ρ > 0. Note that
our ratio is not only polynomial but also almost linear. This is almost optimal since a trivial
algorithm yields an O(|V|)-approximation for 2-CSPs.

Thanks to a known reduction [DK99, CFM17] from 2-CSPs to the Directed Steiner Network
(DSN) problem (aka Directed Steiner Forest), our result implies an inapproximability result for
the latter with polynomial ratio in terms of the number of demand pairs. Specifically, assuming
ETH, no polynomial time algorithm can approximate DSN to within a factor of k1/4−o(1) where
k is the number of demand pairs. The ratio is roughly the square root of the best known
approximation ratio achieved by polynomial time algorithms due to Chekuri et al. [CEGS11]
and Feldman et al. [FKN12], which yield O(k1/2+ε)-approximation for every constant ε > 0.

Additionally, if we assume a stronger assumption that there exists ε > 0 such that no
subexponential time algorithm can distinguish a satisfiable 3-CNF formula from one which is
not even (1− ε)-satisfiable (aka Gap-ETH), then, for 2-CSPs, our reduction not only rules out
polynomial time (i.e. (|V||Σ|)O(1) time) algorithms, but also fixed parameter tractable (FPT)
algorithms parameterized by the number of variables |V|. These are algorithms with running
time t(|V|) · (|V||Σ|)O(1) where t can be any function. Similar improvements also apply for
DSN parameterized by the number of demand pairs k.

∗Email: irit.dinur@weizmann.ac.il. This work was supported by BSF grant 2014371.
†Email: pasin@berkeley.edu. This work was done while the author was visiting Weizmann Institute of Science.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 93 (2018)



1 Introduction
We study the 2-ary constraint satisfaction problems (2-CSPs), which can be stated as follows: given
a constraint graph G = (V, E), an alphabet set Σ and, for each edge {u, v} ∈ E, a constraint
Cuv ⊆ Σ× Σ, the goal is to find an assignment σ : V → Σ that satisfies as many constraints as
possible, where a constraint Cuv is said to be satisfied by σ if (σ(u), σ(v)) ∈ Cuv. Throughout the
paper, we use k to denote the number of variables |V|, n to denote the the alphabet size |Σ|, and N
to denote the instance size nk.

Constraint satisfaction problems and their inapproximability have been studied extensively since
the proof of the PCP theorem in the early 90’s [AS98, ALM+98]. Most of the effort has been directed
towards understanding the approximability of CSPs with constant arity and constant alphabet size,
leading to a reasonable if yet incomplete understanding of the landscape [Hås01, Kho02, KKMO07,
Rag08, AM09, Cha16]. When the alphabet size grows, the sliding scale conjecture of [BGLR93]
predicts that the hardness of approximation ratio will grow as well, and be at least polynomial1

in the alphabet size n. This has been confirmed for values of n up to 2(log N)1−δ
, see [RS97, AS97,

DFK+11]. Proving the same for n that is polynomial in N is the so-called polynomial sliding scale
conjecture and is still quite open. Before we proceed, let us note that the aforementioned results
of [RS97, AS97, DFK+11] work only for arity strictly larger than two and, hence, do not imply
inapproximability for 2-CSPs. We will discuss the special case of 2-CSPs in details below.

The polynomial sliding scale conjecture has been approached from different angles. In [DHK15] the
authors try to find the smallest arity and alphabet size such that the hardness factor is polynomial
in n, and in [Din16] the conjecture is shown to follow (in some weaker sense) from the Gap-ETH
hypothesis, which we discuss in more details later. In this work we focus on yet another angle,
which is to separate n and k and ask whether it is hard to approximate constant arity CSPs to within
a factor that is polynomial in k (but possibly not polynomial in n). Observe here that obtaining NP-
hardness of poly(k) factor is likely to be as hard as obtaining one with poly(N); this is because CSPs
can be solved exactly in time nO(k), which means that, unless NP is contained in subexponential
time (i.e. NP *

⋂
ε>0 DTIME(2nε

)), NP-hard instances of CSPs must have k = poly(N).

This motivates us to look for hardness of approximation from assumptions stronger than P 6= NP.
Specifically, our result will be based on the Exponential Time Hypothesis (ETH), which states that
no subexponential time algorithm can solve 3-SAT (see Conjecture 5). We show that, unless ETH
fails, no polynomial time algorithm can approximate 2-CSPs to within an almost linear ratio in k, as
stated below. This is almost optimal since there is a straightforward (k/2)-approximation for any
2-CSP, by simply satisfying all constraints that touch the variable with highest degree.

Theorem 1 (Main Theorem) Assuming ETH, for any constant ρ > 0, no algorithm can, given a 2-CSP
instance Γ with alphabet size n and k variables such that the constraint graph is the complete graph on the k
variables, distinguish between the following two cases in polynomial time:

• (Completeness) val(Γ) = 1, and,
• (Soundness) val(Γ) < 2(log k)1/2+ρ

/k.

Here val(Γ) denotes the maximum fraction of edges satisfied by any assignment.

To paint a full picture of how our result stands in comparison to previous results, let us state
what is know about the approximability of 2-CSPs; due to the vast literature regarding 2-CSPs,
we will focus only the regime of large alphabets which is most relevant to our setting. In terms

1Througout the paper, we use polynomial in x (or poly(x)) to refer to xc for some real number c > 0.
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of NP-hardness, the best known inapproximability ratio is (log N)c for every constant c > 0;
this follows from Moshkovitz-Raz PCP [MR10] and the Parallel Repetition Theorem for the low
soundness regime [DS14]. Assuming a slightly weaker assumption that NP is not contained in
quasipolynomial time (i.e. NP *

⋃
c>0 DTIME(n(log n)c

)), 2-CSP is hard to approximate to within a
factor of 2(log N)1−δ

for every constant δ > 0; this can be proved by applying Raz’s original Parallel
Repetition Theorem [Raz98] to the PCP Theorem. In [Din16], the author observed that running
time for parallel repetition can be reduced by looking at unordered sets instead of ordered tuples.
This observation implies that2, assuming ETH, no polynomial time N1/(log log log N)c

-approximation
algorithm exists for 2-CSPs for some constant c > 0. Moreover, under Gap-ETH (which will be
stated shortly), it was shown that, for every sufficiently small ε > 0, an Nε-approximation algorithm
must run in time NΩ(exp(1/ε)). Note that, while this latest result comes close to the polynomial
sliding scale conjecture, it does not quite resolve the conjecture yet. In particular, even the weak
form of the conjecture postulates that there exists δ > 0 for which no polynomial time algorithm
can approximate 2-CSPs to within Nδ factor of the optimum. This statement does not follow from
the result of [Din16]. Nevertheless, the Gap-ETH-hardness of [Din16] does imply that, for any
f = o(1), no polynomial time algorithm can approximate 2-CSPs to within a factor of N f (N).

In all hardness results mentioned above, the constructions give 2-CSP instances in which the
alphabet size n is smaller than the number of variables k. In other words, even if we aim for an
inapproximability ratio in terms of k instead of N, we still get the same ratios as stated above. Thus,
our result is the first hardness of approximation for 2-CSPs with poly(k) factor. Note again that our
result rules out any polynomial time algorithm and not just NO(exp(1/ε))-time algorithm ruled out
by [Din16]. Moreover, our ratio is almost linear in k whereas the result of [Din16] only holds for ε
that is sufficiently small depending on the parameters of the Gap-ETH Hypothesis.

An interesting feature of our reduction is that it produces 2-CSP instances with the alphabet size
n that is much larger than k. This is reminiscence of the setting of 2-CSPs parameterized by the
number of variables k. In this setting, the algorithm’s running time is allowed to depend not only
polynomially on N but also on any function of k (i.e. g(k) · poly(N) running time for some function
g); such algorithm is called a fixed parameter tractable (FPT) algorithm parameterized by k. The
question here is whether this added running time can help us approximate the problem beyond the
O(k) factor achieved by the straightforward algorithm. We show that, even in this parameterized
setting, the trivial algorithm is still essentially optimal (up to lower order terms). This result holds
under the Gap Exponential Time Hypothesis (Gap-ETH), a strengthening of ETH which states that,
for some ε > 0, even distinguishing between a satisfiable 3-CNF formula and one which is not even
(1− ε)-satisfiable cannot be done in subexponential time (see Conjecture 7), as stated below.

Theorem 2 Assuming Gap-ETH, for any constant ρ > 0 and any function g, no algorithm can, given a
2-CSP instance Γ with alphabet size n and k variables such that the constraint graph is the complete graph
on the k variables, distinguish between the following two cases in g(k) · (nk)O(1) time:

• (Completeness) val(Γ) = 1, and,
• (Soundness) val(Γ) < 2(log k)1/2+ρ

/k.

To the best of our knowledge, the only previous inapproximability result for parameterized 2-CSPs
is from [CFM17]. There the authors showed that, assuming Gap-ETH, no ko(1)-approximation
g(k) · (nk)O(1)-time algorithm exists; this is shown via a simple reduction from parameterized
inapproximbability of Densest-k Subgraph from [CCK+17] (which is in turn based on a construction

2In [Din16], only the Gap-ETH-hardness result is stated. However, the ETH-hardness result follows rather easily.
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from [Man17]). Our result is a direct improvement over this result.

We end our discussion on 2-CSPs by noting that several approximation algorithms have also been
devised for 2-CSPs with large alphabets [Pel07, CHK11, KKT16, MM17, CMMV17]. In particular,
while our results suggest that the trivial algorithm achieves an essentially optimal ratio in terms
of k, non-trivial approximation is possible when we measure the ratio in terms of N instead of k:
specifically, a polynomial time O(N1/3)-approximation algorithm is known [CHK11].

Direct Steiner Network. As a corollary of our hardness of approximation results for 2-CSPs, we
obtain an inapproximability result for Directed Steiner Network with polynomial ratio in terms of
the number of demand pairs. In the Directed Steiner Network (DSN) problem (sometimes referred
to as the Directed Steiner Forest problem [FKN12, CDKL17]), we are given an edge-weighed
directed graph G and a set D of k demand pairs (s1, t1), . . . , (sk, tk) ∈ V ×V and the goal is to find a
subgraph H of G with minimum weight such that there is a path in H from si to ti for every i ∈ [k].
DSN was first studied in the approximation algorithms context by Charikar et al. [CCC+99] who
gave a polynomial time Õ(k2/3)-approximation algorithm for the problem. This ratio was later
improved to O(k1/2+ε) for every ε > 0 by Chekuri et al. [CEGS11]. Later, a different approximation
algorithm with similar approximation ratio was proposed by Feldman et al. [FKN12].

Algorithms with approximation ratios in terms of the number of vertices n have also been de-
vised [FKN12, BBM+13, CDKL17, AB17]. In this case, the best known algorithm is that of Berman
et al. [BBM+13], which yields an O(n2/3+ε)-approximation for every constant ε > 0 in polynomial
time. Moreover, when the graph is unweighted (i.e. each edge costs the same), Abboud and Bodwin
recently gave an improved O(n0.5778)-approximation algorithm for the problem [AB17].

On the hardness side, there exists a known reduction from 2-CSP to DSN that preserves approxi-
mation ratio to within polynomial factor3 [DK99]. Hence, known hardness of approximation of
2-CSPs translate immediately to that of DSN: it is NP-hard to approximate to within any poly-
logarithmic ratio [MR10, DS14], it is hard to approximate to within 2log1−ε n factor for every ε > 0
unless NP ⊆ QP [Raz98], and it is Gap-ETH-hard to approximate to within no(1) factor [Din16].
Note that, since k is always bounded above by n2, all these hardness results also hold when n is
replaced by k in the ratios. Recently, this reduction was also used by Chitnis et al. [CFM17] to
rule out ko(1)-FPT-approximation algorithm for DSN parameterized by k assuming Gap-ETH. Alas,
none of these hardness results achieve ratios that are polynomial in either n or k and it remains
open whether DSN is hard to approximate to within a factor that is polynomial in n or in k.

By plugging our hardness result for 2-CSPs into the reduction, we immediately get ETH-hardness
and Gap-ETH-hardness of approximating DSN to within a factor of k1/4−o(1) as stated below.

Corollary 3 Assuming ETH, for any constant ρ′ > 0, there is no polynomial time k1/4

2(log k)1/2+ρ′ -approximation
algorithm for DSN.

Corollary 4 Assuming Gap-ETH, for any constant ρ′ > 0 and any function g, there is no g(k) · (nk)O(1)-
time k1/4

2(log k)1/2+ρ′ -approximation algorithm for DSN.

In other words, if one wants a polynomial time approximation algorithm with ratio depending
only on k and not on n, then the algorithms of Chekuri et al. [CEGS11] and Feldman et al. [FKN12]

3That is, for any non-decreasing function ρ , if DSN admits ρ(nk)-approximation in polynomial time, then 2-CSP also
admits ρ(nk)c-approximation polynomial time for some absolute constant c.
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are roughly within a square of the optimal algorithm. To the best of our knowledge, these are the
first inapproximability results of DSN whose ratios are polynomial in terms of k. Again, Corollary 4
is a direct improvement over the FPT inapproximability result from [CFM17] which, under the
same assumption, rules out only ko(1)-factor FPT-approximation algorithm.

Agreement tests

Our main result is proved through an agreement testing argument. In agreement testing there is
a universe U , a collection of subsets S1, . . . , Sk ⊆ U , and for each subset Si we are given a local
function fSi : Si → {0, 1}. A pair of subsets are said to agree if their local functions agree on every
element in the intersection. The goal is, given a non-negligible fraction of agreeing pairs, to deduce
the existence of a global function g : U → {0, 1} that (approximately) coincides with many of the
local functions. For a more complete description see [DK17].

Agreement tests capture a natural local to global statement and are present in essentially all
PCPs, for example they appear explicitly in the line vs. line and plane vs. plane low degree tests
[RS96, AS97, RS97]. Our reduction is based on a combinatorial agreement test, where the universe
is [n] and the subsets S1, . . . , Sk have Ω(n) elements each and are “in general position”, namely
they behave like subsets chosen independently at random. A convenient feature about this setting
is that every pair of subsets intersect.

Since we are aiming for a large gap, the agreement test must work (i.e., yield a global function)
with a very small fraction of agreeing pairs, which in our case is close to 1/k.

In this small agreement regime the idea, as pioneered in the work of Raz-Safra [RS97], is to zero in
on a sub-collection of subsets that is (almost) perfectly consistent. From this sub-collection it is easy
to recover a global function and show that it coincides almost perfectly with the local functions in
the sub-collection. A major difference between our combinatorial setting and the algebraic setting
of Raz-Safra is the lack of “distance” in our case: we can not assume that two distinct local functions
differ on many points (in contrast, this is a key feature of low degree polynomials). We overcome
this by considering different “strengths” of agreement, depending on the fraction of points on
which the two subsets agree. This notion too is present in several previous works on combinatorial
agreement tests [IKW12, DN17].

Hardness of Approximation through Subexponential Time Reductions. Our result is one of the
many results in recent years that show hardness of approximation via subexponential time reduc-
tions [AIM14, BKW15, Rub16b, DFS16, Din16, BKRW17, MR17, Man17, Rub16a, Rub16b, Rub17,
ARW17, CCK+17, KLM18, Rub18, BGKM18]. These results are often based on the Exponential
Time Hypothesis (ETH) and its variants. Proposed by Impagliazzo and Paturi [IP01], ETH can be
formally stated as follows:

Conjecture 5 (Exponential Time Hypothesis (ETH) [IP01]) There exists a constant δ > 0 such that
no algorithm can decide whether any given 3-CNF formula is satisfiable in time O(2δm) where m denotes the
number of clauses4.

A crucial ingredient in most, but not all5, reductions in this line of work is a nearly-linear size
PCP Theorem. For the purpose of our work, the PCP Theorem can be viewed as a polynomial

4The original conjecture states the lower bound as exponential in terms of the number of variables not clauses.
However, thanks to the sparsification lemma [IPZ01], it is by now known that the two versions are equivalent.

5The exceptions are [Rub16b, ARW17, Rub18, KLM18, Che18] in which gaps are not created via the PCP Theorem.

4



time transformation of a 3-SAT instance Φ̃ to another 3-SAT instance Φ that creates a gap between
the YES and NO cases. Specifically, if Φ̃ is satisfiable, Φ remains satisfiable. On the other hand,
if Φ̃ is unsatisfiable, then Φ is not only unsatisfiable but it is also not even (1− ε)-satisfiable for
some constant ε > 0 (i.e. no assignment satisfies (1− ε) fraction of clauses). The “nearly-linear
size” part refers to the size of the new instance Φ compared to that of Φ̃. Currently, the best known
dependency in this form of the PCP Theorem between the two sizes is quasi-linear (i.e. with a
polylogarithmic blow-up), as stated below.

Theorem 6 (Quasi-Linear Size PCP [BS08, Din07]) For some constants ε, ∆, c > 0, there is a polyno-
mial time algorithm that, given any 3-CNF formula Φ̃ with m clauses, produces another 3-CNF formula Φ
with O(m logc m) clauses such that

• (Completeness) if val(Φ̃) = 1, then val(Φ) = 1, and,
• (Soundness) if val(Φ̃) < 1, then val(Φ) < 1− ε, and,
• (Bounded Degree) each variable in Φ appears in at most ∆ clauses.

The aforementioned ETH-hardness of approximation proofs typically proceed in two steps. First,
the PCP Theorem is invoked to reduce a 3-SAT instance Φ̃ of size m to an instance of the gap version
of 3-SAT Φ of size m′ = O(m logc m). Second, the gap version of 3-SAT is reduced in subexponential
time to the problem at hand. As long as the reduction takes time 2o(m′/ logc m′) = 2o(m), we can obtain
hardness of approximation result for the latter problem. This is in contrast to proving NP-hardness
of approximation for which a polynomial time reduction is required.

Another related but stronger version of ETH that we will also employ is the Gap Exponential
Time Hypothesis (Gap-ETH), which states that even the gap version of 3-SAT cannot be solved in
subexponential time:

Conjecture 7 (Gap Exponential Time Hypothesis (Gap-ETH) [Din16, MR16]) There exist con-
stants δ, ε, ∆ > 0 such that no algorithm can, given any 3-CNF formula Φ such that each of its variable
appears in at most ∆ clauses6, distinguish between the following two cases7 in time O(2δm) time where m
denotes the number of clauses:

• (Completeness) val(Φ) = 1.
• (Soundness) val(Φ) < 1− ε.

By starting with Gap-ETH instead of ETH, there is no need to apply the PCP Theorem and hence a
polylogarithmic loss in the size of the 3-SAT instance does not occur. As demonstrated in previous
works, this allows one to improve the ratio in hardness of approximation results [Din16, MR16,
Man17] and, more importantly, it can be used to prove inapproximability results for some param-
eterized problems [BEKP15, CCK+17, CFM17]8, which are not known to be hard to approximate
under ETH. Specifically, for many parameterized problems, the reduction from the gap version
of 3-SAT to the problem has size 2m′/ f (k) for some function f that grows to infinity with k (i.e.
f = ω(1)), where m′ is the number of clauses in the 3-CNF formula and k is the parameter of the
problem. For simplicity, let us focus on the case where f (k) = k. If one wishes to derive a meaning-
ful result starting form ETH, 2m′/k must be subexponential in terms of m, the number of clauses in
the original (no-gap) 3-CNF formula. This means that the term k must dominate the logc m factor
blow-up from the PCP Theorem. However, since FPT algorithms are allowed to have running time
of the form g(k) for any function g, we can pick g to be 22k

. In this case, the algorithm runs in

6This bounded degree assumption can be assumed without loss of generality; see [MR16] for more details.
7Note that when Φ satisfies neither case (i.e. 1− ε 6 val(Φ) < 1), the algorithm is allowed to output anything.
8While [BEKP15] states that the assumption is the existence of a linear-size PCP, Gap-ETH clearly suffices there.
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superexponential time in terms of m and we cannot deduce anything regarding the algorithm. On
the other hand, if we start from Gap-ETH, we can pick k to be a large constant independent of m,
which indeed yields hardness of the form claimed in Theorem 2 and Corollary 4.

Finally, we remark that Gap-ETH would follow from ETH if a linear-size (constant-query) PCP
exists. While constructing short PCPs has long been an active area of research [BGH+06, BS08,
Din07, MR10, BKK+16], no linear-size PCP is yet known. On the other hand, there are some
supporting evidences for the hypothesis. For instance, it is known that the natural relaxation of 3-
SAT in the Sum-of-Squares hierarchy cannot refute Gap-ETH [Gri01, Sch08]. Moreover, Applebaum
recently showed that the hypothesis follows from certain cryptographic assumptions [App17]. For
a more in-depth discussion on Gap-ETH, please refer to [Din16].

Organization of the Paper. In the next section, we describe our reduction and give an overview
of the proof. Then, in Section 3, we define additional notions and state some preliminaries. We
proceed to provide the full proof of our main agreement theorem in Section 4. Using this agreement
theorem, we deduce the soundness of our reduction in Section 5. We then plug in the parameters
and prove the inapproximability results for 2-CSPs in Section 6. In Section 7, we show how the
hardness of approximation result for 2-CSPs imply inapproximability for DSN as well. Finally, we
conclude our work with some discussions and open questions in Section 8.

2 Proof Overview
Like other (Gap-)ETH-hardness of approximation results, our proof is based on a subexponential
time reduction from the gap version of 3-SAT to our problem of interest, 2-CSPs. Before we describe
our reduction, let us define more notations for 2-CSPs and 3-SAT, to facilitate our explanation.

2-CSPs. For notational convenience, we will modify the definition of 2-CSPs slightly so that each
variable is allowed to have different alphabets; this definition is clearly equivalent to the more
common definition used above. Specifically, an instance Γ of 2-CSP now consists of (1) a constraint
graph G = (V, E), (2) for each vertex (or variable) v ∈ V, an alphabet set Σv, and, (3) for each edge
{u, v} ∈ E, a constraint Cuv ⊆ Σu × Σv. Additionally, to avoid confusion with 3-SAT, we refrain
from using the word assignment for 2-CSPs and instead use labeling, i.e., a labeling of Γ is a tuple
σ = (σv)v∈V such that σv ∈ Σv for all v ∈ V. An edge {u, v} ∈ E is said to be satisfied by a labeling
σ if (σu, σv) ∈ Σu × Σv. The value of a labeling σ, denoted by val(σ), is defined as the fraction of
edges that it satisfies, i.e., |{{u, v} ∈ E | (σu, σv) ∈ Cuv}|/|E|. The goal of 2-CSPs is to find σ with
maximum value; we denote the such optimal value by val(Γ), i.e., val(Γ) = maxσ val(σ).

3-SAT. An instance Φ of 3-SAT consists of a variable set X and a clause set C where each clause
is a disjunction of at most three literals. For any assignment ψ : X → {0, 1}, val(ψ) denotes the
fraction of clauses satisfied by ψ. The goal is to find an assignment ψ that satisfies as many clauses
as possible; let val(Φ) = maxψ val(ψ) denote the fraction of clauses satisfied by such assignment.
For each C ∈ C, we use var(C) to denote the set of variables whose literals appear in C. We extend
this notation naturally to sets of clauses, i.e., for every T ⊆ C, var(T) =

⋃
C∈T var(C).

Our Construction

Before we state our reduction, let us again reiterate the objective of our reduction. Roughly speaking,
given a 3-SAT stance Φ = (X, C), we would like to produce a 2-CSP instance ΓΦ such that

• (Completeness) If val(Φ) = 1, then val(ΓΦ) = 1,
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• (Soundness) If val(Φ) < 1− ε, then val(ΓΦ) < ko(1)/k where k is number of variables of ΓΦ,
• (Reduction Time) The time it takes to produce ΓΦ should be 2o(m) where m = |C|,

where ε > 0 is some absolute constant.

Observe that, when plugging a reduction with these properties to Gap-ETH, we directly arrive at
the claimed k1−o(1) inapproximability for 2-CSPs. However, for ETH, since we start with a decision
version of 3-SAT without any gap, we have to first invoke the PCP theorem to produce an instance
of the gap version of 3-SAT before we can apply our reduction. Since the shortest known PCP has a
polylogarithmic blow-up in the size (see Theorem 6), the running time lower bound for gap 3-SAT
will not be exponential anymore, rather it will be of the form 2Ω(m/polylogm) instead. Hence, our
reduction will need to produce ΓΦ in 2o(m/polylogm) time. As we shall see later in Section 6, this will
also be possible with appropriate settings of parameters.

With the desired properties in place, we now move on to state our reduction. In addition to a
3-CNF formula Φ, the reduction also takes in a collection T of subsets of clauses of Φ. For now, the
readers should think of the subsets in T as random subsets of C where each element is included in
each subset independently at random with probability α, which will be specified later. As we will
see below, we only need two simple properties that the subsets in T are “well-behaved” enough
and we will later give a deterministic construction of such well-behaved subsets. With this in mind,
our reduction can be formally described as follows.

Definition 8 (The Reduction) Given a 3-CNF formula Φ = (X, C) and a collection T of subsets of C, we
define a 2-CSP instance ΓΦ,T = (G = (V, E), Σ, {Cuv}{u,v}∈E) as follows:

• The graph G is the complete graph where the vertex set is T , i.e., V = T and E = (T2 ).
• For each T ∈ T , the alphabet set ΣT is the set of all partial assignments to var(T) that satisfies every

clause in T, i.e., ΣT = {ψT : var(T)→ {0, 1} | ∀C ∈ T, ψT satisfies C}.
• For every T1 6= T2 ∈ T , (ψT1 , ψT2) is included in CT1T2 if and only if they are consistent, i.e.,

CT1T2 = {(ψT1 , ψT2) ∈ ΣT1 × ΣT2 | ∀x ∈ var(T1) ∩ var(T2), ψT1(x) = ψT2(x)}.

Let us now examine the properties of the reduction. The number of vertices in ΓΦ,T is k = |T |.
For the purpose of the proof overview, α should be thought of as 1/polylogm whereas k should be
thought of as much larger than 1/α (e.g. k = exp(1/α)). For such value of k, all random sets in T
will have size O(αm) w.h.p., meaning that the reduction time is 2m/polylogm as desired.

Moreover, when Φ is satisfiable, it is not hard to see that val(ΓΦ,T ) = 1; more specifically, if
ψ : X → {0, 1} is the assignment that satisfies every clause of Φ, then we can label each vertex
T ∈ T of ΓΦ,T by ψ|var(T), the restriction of ψ on var(T). Since ψ satisfies all the clauses, ψ|var(T)
satisfies all clauses in T, meaning that this is a valid labeling. Moreover, since these are restrictions
of the same global assignment ψ, they are all consistent and every edge is satisfied.

Hence, we are only left to show that, if val(Φ) < 1− ε, then val(ΓΦ,T ) < ko(1)/k; this is indeed
our main technical contribution. We will show this by contrapositive: assuming that val(ΓΦ,T ) >
ko(1)/k, we will “decode” back an assignment to Φ that satisfies 1− ε fraction of clauses.

2.1 Soundness Analysis as an Agreement Theorem

Our task at hand can be viewed as agreement testing. Informally, in agreement testing, the input
is a collection { fS}S∈S of local functions fS : S → {0, 1} where S is a collection of subsets of
some universe U such that, for many pairs S1 and S2, fS1 and fS2 agree, i.e., fS1(x) = fS2(x) for
all x ∈ S1 ∩ S2. An agreement theorem says that there must be a global function g : U → {0, 1}
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that coincides (exactly or approximately) with many of the local functions, and thus explains the
pairwise “local” agreements. In our case, a labeling σ = {σT}T∈T with high value is exactly a
collection of functions σT : var(T) → {0, 1} such that, for many pairs of T1 and T2, σT1 and σT2

agrees. The heart of our soundness proof is an agreement theorem that recovers a global function
ψ : X→ {0, 1} that approximately coincides with many of the local functions σT’s and thus satisfies
1− ε fraction of clauses of Φ. To discuss the agreement theorem in more details, let us define several
additional notations, starting with those for (approximate) agreements of a pair of functions:

Definition 9 For any universe U , let fS1 : S1 → {0, 1} and fS2 : S2 → {0, 1} be any two functions whose
domains S1, S2 are subsets of U . We use the following notations for (dis)agreements of these two functions:

• Let disagr( fS1 , fS2) denote the number of x ∈ S1 ∩ S2 that fS1 and fS2 disagree on, i.e.,
disagr( fS1 , fS2) = |{x ∈ S1 ∩ S2 | fS1(x) 6= fS2(x)}|.
• For any ζ > 0, we say that fS1 and fS2 are ζ-consistent if disagr( fS1 , fS2) 6 ζ|U |, and we say that

the two functions are ζ-inconsistent otherwise. For ζ = 0, we sometimes drop 0 and refer to these
simply as consistent and inconsistent (instead of 0-consistent and 0-inconsistent).

• We use fS1

ζ
≈ fS2 and fS1

ζ

6≈ fS2 as shorthands for ζ-consistency and ζ-inconsistency respectively.
Again, for ζ = 0, we may drop 0 from the notations and simply use fS1 ≈ fS2 and fS1 6≈ fS2 .

Next, we define the notion of agreement probability for any collection of functions:

Definition 10 For any ζ > 0 and any collection F = { fS}S∈S of functions, the ζ-agreement probability,
denoted by agreeζ(F ) is the probability that fS is ζ-consistent with fS′ where S and S′ are chosen indepen-

dently uniformly at random from S , i.e., agreeζ(F ) = PrS,S′∈S [ fS
ζ
≈ fS′ ]. When ζ = 0, we will drop 0 from

the notation and simply use agree(F ).

Our main agreement theorem, which works when each S ∈ S is a large “random” subset, says
that, if agree(F ) is noticeably large, then there exists a global function that is approximately
consistent with many of the local functions in F . This is stated more precisely (but still informally)
below.

Theorem 11 (Informal; See Theorem 21) Let S be a collection of k independent random αn-element
subsets of [n]. The following holds with high probability: for any β > 0 and any collection of functions
F = { fS}S∈S such that δ , agree(F ) > koβ,α(1)/k, there exist a function g : [n] → {0, 1} and a

subcollection S ′ of size δk1−oβ,α(1) such that g
β
≈ fS′ for all S′ ∈ S ′.

To see that Theorem 11 implies our soundness, let us view a labeling σ = {σT}T∈T as a collection
F = { fS}S∈S where S = {var(T) | T ∈ T } and fvar(T) is simply σT. Now, when val(σ) is large,
agree(F ) is large as well. Moreover, while the sets S ∈ S are not random subsets of variables but
rather variable sets of random subsets of clauses, it turns out that these sets are “well-behaved”
enough for us to apply Theorem 11. This yields a global function ψ : X→ {0, 1} that are β-consistent
with many σT’s. Note that, if instead of β-consistency we had exact consistency, then we would
have been done because ψ must satisfy all clauses that appear in any T such that ψ is consistent with
σT; since there are many such T’s and these are random sets, ψ indeed satisfies almost all clauses.
A simple counting argument shows that this remains true even with approximate consistency,
provided that most clauses appear in at least a certain fraction of such T’s (an assumption which
holds for random subsets). Hence, the soundness of our reduction follows from Theorem 11, and
we devote the rest of this section to outline an overview of its proof.

Optimality of the parameters of Theorem 11. Before we proceed to the overview, we would like
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to note that the size of the subcollection S ′ in Theorem 11 is nearly optimal. This is because, we can
partition S into 1/δ subcollections S1, . . . ,S1/δ each of size δk and, for each i ∈ [1/δ], randomly
select a global function gi : [n]→ {0, 1} and let each fS be the restriction of gi to S for each S ∈ Si.
In this way, we have agree(F ) > δk and any global function can be (approximately) consistent
with at most δk local functions. This means that S ′ can be of size at most δk in this case and, up to a
koβ,α(1) multiplicative factor, Theorem 11 yields almost a largest possible S ′.

2.2 A Simplified Proof: δ > ko(1)/k1/2 Regime

We now sketch the proof of Theorem 11. Before we describe how we can find g when δ > koβ,α(1)/k,
let us sketch the proof assuming a stronger assumption that δ > Θα,β(1)/k1/2. Note that this
simplified proof already implies a k1/2−o(1) factor ETH-hardness of approximating 2-CSPs. In the
next subsection, we will then proceed to refine the arguments to handle smaller values of δ.

Let us consider the consistency graph of F . This is the graph GF whose vertex set is S and there is
an edge between S1 and S2 if and only if fS1 and fS2 are consistent. Note that the number of edges
in GF is equal to k2δ−k

2 , where the subtraction of k comes from the fact that δ = agree(F ) includes
the agreement of each set and itself (whereas GF does not).

Previous works on agreement testers exploit particular structures of the consistency graph to decode
a global function. One such property that is relevant to our proof is the notion of almost transitivity
defined by Raz and Safra in the analysis of their test [RS97]. More specifically, a graph G = (V, E)
is said to be q-transitive for some q > 0 if, for every non-edge {u, v} (i.e. {u, v} ∈ (V

2) \ E), u and
v can share at most q common neighbors9. Raz and Safra showed that their consistency graph
is (k1−Ω(1))-transitive where k denotes the number of vertices of the graph. They then proved a
generic theorem regarding (k1−Ω(1))-transitive graphs that, for any such graph, its vertex set can
be partitioned so that the subgraph induced by each partition is a clique and that the number of
edges between different partitions is small. Since a sufficiently large clique corresponds to a global
function in their setting, they can then immediately deduce that their result.

Observe that, in our setting, a large clique also corresponds to a global function that is consistent
with many local functions. In particular, suppose that there exists S ′ ⊆ S of size sufficiently large
such that S induces a clique in GF . Since fS′ ’s are perfectly consistent with each other for all S′ ∈ S ′,
there is a global function g : [n]→ {0, 1} that is consistent with all such fS′ ’s. Hence, if we could
show that our consistency graph GF is (k1−Ω(1))-transitive, then we could use the same argument
as Raz and Safra’s to deduce our desired result. Alas, our graph GF does not necessarily satisfy
this transitivity property; for instance, consider any two sets S1, S2 ∈ S and let fS1 , fS2 be such that
they disagree on only one variable, i.e., there is a unique x ∈ S1 ∩ S2 such that fS1(x) 6= fS2(x). It
is possible that, for every S ∈ S that does not contain x, fS agrees with both fS1 and fS2 ; in other
words, every such S can be a common neighbor of S1 and S2. Since each variable x appears roughly
in only Θ(α) fraction of the sets, there can be as many as (1− Θ(α))k = (1− o(1))k common
neighbors of S1 and S2 even when there is no edge between S1 and S2!

Fortunately for us, a weaker statement holds: if fS1 and fS2 disagree on more than ζn variables (in-
stead of just one variable as above), then S1 and S2 have at most O(ln(1/ζ)/α) common neighbors
in GF . Here ζ should be thought of as β2 times a small constant which will be specified later. To
see why this statement holds, observe that, since every S ∈ S is a random subset that includes each

9In [RS97], the transitivity parameter q is used to denote the fraction of vertices that are neighbors of both u and v
rather than the number of such vertices as defined here. However, the latter notion will be more convenient for us.
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clause x ∈ [n] with probability α, Chernoff bound implies that, for every subcollection S̃ ⊆ S of
size Ω(ln(1/ζ)/α),

⋃
S∈S̃ S contains all but O(ζ) fraction of variables. Let S̃S1,S2 ⊆ S denote the set

of common neighbors of S1 and S2. It is easy to see that S1 and S2 can only disagree on variables
that do not appear in

⋃
S∈S̃S1,S2

S. If S̃S1,S2 is of size Ω(ln(1/ζ)/α), then
⋃

S∈S̃S1,S2
S contains all but

O(ζ) fraction of variables, which means that S1 and S2 disagrees only on O(ζ) fraction of variables.
By selecting the constant appropriately inside O(·), we arrive at the claim statement.

In other words, while the transitive property does not hold for every edge, it holds for the edges
{S1, S2} where fS1 and fS2 are ζ-inconsistent. This motivates us to define a two-level consistency
graph, where the edges with ζ-inconsistent are referred to as the red edges whereas the original
edges in GF is now referred to as the blue edges. We define this formally below.

Definition 12 (Red/blue Graph) A red-blue graph is an undirected graph G = (V, E = Er ∪ Eb) where
its edge set E is partitioned into two sets Er, the set of red edges, and Eb, the set of blue edges. We use
the prefixes “blue-” and “red-” to refer to the quantities of the graph (V, Eb) and (V, Er) respectively; for
instance, u is said to be a blue-neighbor of v if {u, v} ∈ Eb.

Definition 13 (Two-Level Consistency Graph) Given a collection of functions F = { fS}S∈S and a
real number 0 6 ζ 6 1, the two-level consistency graph GF ,ζ = (VF ,ζ , EF ,ζ

r ∪ EF ,ζ
b ) is a red-blue graph

defined as follows.

• The vertex set VF ,ζ is simply S .
• The blue edges are the consistent pairs {S1, S2}, i.e., Eb = {{S1, S2} ∈ (S2) | fS1 ≈ fS2}.

• The red edges are the ζ-inconsistent pairs {S1, S2}, i.e., Er = {{S1, S2} ∈ (S2) | fS1

ζ

6≈ fS2}.

Note that S1, S2 constitute neither a blue nor a red edge when 0 < disagr( fS1 , fS2) 6 ζn.

Now, the transitivity property we argue above can be stated as follows: for every red-edge {S1, S2}
of GF ,ζ , there are at most O(ln(1/ζ)/α) different S’s such that both {S, S1} and {S, S2} are blue
edges. For brevity, let us call any red-blue graph G = (V, Er ∪ Eb) q-red/blue-transitive if, for every
red edge {u, v} ∈ Er, u and v have at most q common blue-neighbors. We will now argue that in
any q-red/blue-transitive of average blue-degree d, there exists a subset U ⊆ V of size Ω(d) such
that only O(qk/d2) fraction of pairs of vertices in U are red edges.

Before we prove this, let us state why this is useful for decoding the desired global function
g. Observe that such a subset U of vertices in the two-level consistency graph translates to a
subcollection S ′ ⊆ S such that, for all but O(qk/d2) fraction of pairs of sets S1, S2 ⊆ S ′, {S1, S2}
does not form a red edge. Recall from definition of red edges that, for such S1, S2, fS1 and fS2

disagrees on at most ζn variables. In other words, S ′ is similar to a clique in the (not two-level)
consistency graph, except that (1) O(qk/d2) fraction of pairs {S1, S2} are allowed to disagree on as
many variables as they like, and (2) even for the rest of pairs, the guarantee now is that they agree on
all but at most ζn variables, instead of total agreement as in the previous case of clique. Fortunately,
this still suffices to find g that is O(

√
qk/d2 + ζ)-consistent with Ω(d) functions. One way construct

such a global function is to simply assign each g(x) according to the majority of fS(x) for all S ∈ S ′
such that x ∈ S. (This is formalized in Section 4.3.) Note that in our case q = O(ln(1/ζ)/α) and
d = Ω(δk). Hence, if we pick ζ � β2 and δ � (q1/2/β)/k1/2 = Oβ,α(1)/k1/2, we indeed get a
global function g that is β-consistent with Ω(δk) local functions.

We now move on to sketch how one can find such an “almost non-red subgraph”. For simplicity,
let us assume that every vertex has the same blue-degree (i.e. (V, Eb) is d-regular). Let us count the

10



number of red-blue-blue triangle (or rbb triangle), which is a 3-tuple (u, v, w) of vertices in V such that
{u, v}, {v, w} are blue edges whereas {u, w} is a red edge. An illustration of a rbb triangle can be
found in Figure 1a. The red/blue transitivity can be used to bound the number of rbb triangles
as follows. For each (u∗, w∗) ∈ V2, since the graph is q-red/blue-transitive there are at most q rbb
triangle with u = u∗ and w = w∗. Hence, in total, there can be at most qk2 rbb triangles. As a result,
there exists v∗ ∈ V such that the number of rbb triangles (u, v, w) such that v = v∗ is at most qk.
Let us now consider the set U = Nb(v∗) that consists of all blue-neighbors of v∗. There can be at
most qk red edges with both endpoints in Nb(v∗) because each such edge corresponds to a rbb
triangle with v = v∗. From our assumption that every vertex has blue degree d, we indeed have
that |U| = d and that the fraction of pairs of vertices in U that are linked by red edges is O(qk/d2)
as desired. This completes our overview for the case δ > Θβ,α(1)/k1/2.

u

v

w

(a) a red-blue-blue triangle

v1

v2

v3

v4

v5

(b) a red-filled 4-walk

u w

v2

v3

v4 v′2

v′3
v′4

(c) disjoint red-filled 4-walks

Figure 1: Illustrations of red-filled walks. The red edges are represented by red dashed lines
whereas the blue edges are represented by blue solid lines. Figure 1a and Figure 1b demonstrate
a red-filled 2 walk (aka rbb triangle) and a red-filled 4-walk respectively. Figure 1c shows two
disjoint red-filled 4-walks.

2.3 Towards δ = ko(1)/k Regime

To handle smaller δ, we need to first understand why the approach above fails to work for δ 6
1/k1/2. To do so, note that the above proof sketch can be summarized into three main steps:

(1) Show that the two-level consistency graph GF is q-red/blue-transitive for some q = ko(1).
(2) Use red/blue transitivity to find a large subgraph of GF with few induced red edges.
(3) Decode a global function from such an “almost non-red subgraph”.

The reason that we need δ� 1/k1/2, or equivalently d� k1/2, lies in Step (2). Although not stated
as such earlier, our argument in this step can be described as follows. We consider all length-2
blue-walks, i.e., all (u, v, w) ∈ V3 such that {u, v} and {v, w} are both blue edges, and, using the
red/blue transitivity of the graph, we argue that, for almost of all these walks, {u, w} is not a red
edge (i.e. (u, v, w) is not a rbb triangle), which then allows us to find an almost non-red subgraph.
For this argument to work, we need the number of length-2 blue-walks to far exceed the number of
rbb triangles. The former is kd2 whereas the latter is bounded above by k2q in q-red/blue-transitive
graphs. This means that we need kd2 � k2q, which implies that d� k1/2.

To overcome this limitation, we instead consider all length-` blue-walks for ` > 2 and we will
define a “rbb-triangle-like” structure on these walks. Our goal is again to show that this structure
appears rarely in random length-` blue-walks and we will then use this to find a subgraph that
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allows us to decode a good assignment for Φ. Observe that the number of length-` blue walks is
kd`. We also hope that the number of “rbb-triangle-like” structures is still small; in particular, we
will still get a similar bound k2+o(1) for such generalized structure, similar to our previous bound
for the red-blue-blue triangles. When this is the case, we need kd` > k2+o(1), meaning that when
` = ω(1) it suffices to select d = ko(1), which yields k1−o(1) factor inapproximability as desired. To
facilitate our discussion, let us define notations for `-walks here.

Definition 14 (`-Walks) For any red/blue graph G = (V, Er ∪ Eb) and any integer ` > 2, an `-blue-
walk in G is an (`+ 1)-tuple of vertices (v1, v2, . . . , v`+1) ∈ V`+1 such that every pair of consecutive
vertices are joined by a blue edge, i.e., {vi, vi+1} ∈ Eb for every i ∈ [`]. For brevity, we sometimes refer to
`-blue walks simply as `-walks. We useWG

` to denote the set of all `-walks in G.

Note here that a vertex can appears multiple times in a single `-walk.

One detail we have yet to specify in the proof is the structure that generalizes the rbb triangle for
`-walks where ` > 2. Like before, this structure will enforce the two end points of the walk to be
joined by a red edge, i.e., {v1, v`+1} ∈ Er. Additionally, we require every pair of non-consecutive
vertices to be joined by a red edge. We call such a walk a red-filled `-walk (see Figure 1b):

Definition 15 (Red-Filled `-Walks) For any red/blue graph G = (V, Er ∪ Eb), a red-filled `-walk is
an `-walk (v1, v2, . . . , v`+1) such that every pair of non-consecutive vertices is joined by a red edge, i.e.,
{vi, vj} ∈ Er for every i, j ∈ [`+ 1] such that j > i + 1. Let ŴG

` denote the set of all red-filled `-walks
in G. Moreover, for every u, v ∈ V, let ŴG

` (u, v) denote the set of all red-filled `-walks from u to v, i.e.,
WG

` (u, v) = {(v1, . . . , v`+1) ∈ ŴG
` | v1 = u ∧ v`+1 = v}.

As mentioned earlier, we will need a generalized transitivity property that works not only for rbb
triangles but also for our new structure, i.e. the red-filled `-walks. This can be defined analogously
to q-red/blue transitivity as follows.

Definition 16 ((q, `)-Red/Blue Transitivity) For any positive integers q, ` ∈N, a red/blue graph G =
(V, Er ∪ Eb) is said to be (q, `)-red/blue-transitive if, for every pair of vertices u, v ∈ V that are joined by
a red edge, there exists at most q red-filled `-walks starting at u and ending at v, i.e., |ŴG

` (u, v)| 6 q.

Using a similar argument to before, we can show that, when S consists of random subsets where
each element is included in a subset with probability α, the two-level agreement graph is (q, `)-
red/blue transitive for some parameter q that is a function of only α and `. When 1/α and ` are small
enough in terms of k, q can made to be ko(1). (The full proof can be found in Section 4.1.1.)

Once this is proved, it is not hard (using a similar argument as before) to show that, when
d � (kq)1/`, most `-walks are not red-filled, i.e., |WG

` | � |ŴG
` |. Even with this, it is still unclear

how we can get back a “clique-like” subgraph; in the case of ` = 2 above, this implies that a
blue-neighborhood induces few red edges, but the argument does not seem to generalize to larger
`. Fortunately, it is still quite easy to find a large subgraph that a non-trivial fraction of pairs of
vertices do not form red edges; specifically, we will find two subsets U1, U2 ⊆ V each of size d such
that for at least 1/`2 fraction of (u1, u2) ∈ U1 ×U2, {u1, u2} is not a red edge. To find such sets,
observe that, if |WG

` | > 2|ŴG
` |, then for a random (v1, . . . , v`+1) ∈ WG

` the probability that there
exists non-consecutive vertex vi, vj in the walk that are joined by a red edge is at least 1/2. Since
there are less than `2/2 such i, j, union bound implies that there must be non-consecutive i∗, j∗ such
that the probability that vi∗ , vj∗ are not joined by a red edge is at least 1/`2. Let us assume without
loss of generality that i∗ < j∗; since they are not consecutive, we have i∗ + 1 < j∗.
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Let us consider vi∗+1, vj∗−1. By a simple averaging argument, there must be u∗ and w∗ such that,
conditioning on vi∗+1 = u∗ and vj∗+1 = w∗, the probability that {vi∗ , vj∗} /∈ Er is at least 1/`2.
However, this conditional probability is exactly equal to fraction of (u1, u2) ∈ Nb(u∗)× Nb(w∗)
that u1 and u2 are not joined by a red edge. Recall again that Nb(v) is used to denote the set of all
blue-neighbors of v. Thus, U1 = Nb(u∗) and U2 = Nb(w∗) are the sets with desired property.

We are still not done yet since we have to use these sets to decode back the global function g. This
is still not obvious: the guarantee we have for our sets U1, U2 is rather weak since we only know
that at least 1/`2 of the pairs of vertices from the two sets do not form red edges. This is in contrast
to the ` = 2 case where we have a subgraph such that almost all induced edges are not red.

To see how to overcome this barrier, recall that a pair S1, S2 that does not form a red edge cor-

responds to fS1

ζ
≈ fS2 . As a thought experiment, let us think of the following scenario: if in-

stead of just ζ-consistency, these pairs satisfy (exact) consistency, then we can consider the col-
lection F̃ = { fS}S∈Ũ where Ũ = U1 ∪U2. This is a collection of Θ(d) local functions such that
agree(F̃ ) > Ω(1/`2). Thus, when d � `4, we are in the regime where agree(F̃ ) � 1/d1/2,
meaning that we can apply our earlier argument (for the δ > ko(1)/k1/2 regime) to recover g!

The approach in the previous paragraph of course does not work directly because we only know
that Ω(1/`2) fraction of the pairs {S1, S2} ⊆ Ũ are ζ-consistent, not exactly consistent. However,
we can still try to mimic the proof in the regime δ > ko(1)/k1/2 and define a red/blue graph in
such a way that such ζ-consistent pairs are now blue edges. Naturally, the red edges will now
be the ζ ′-inconsistent pairs for some ζ ′ > ζ. In other words, we consider the generalized two-level
consistency graph defined as follows.

Definition 17 (Generalized Two-Level Consistency Graph) Given a collection of functions F =
{ fS}S∈S and two real numbers 0 6 ζ 6 ζ ′ 6 1, the generalized two-level consistency graph GF ,ζ,ζ ′ =

(VF ,ζ,ζ ′ , EF ,ζ,ζ ′
r ∪ EF ,ζ,ζ ′

b ) is a red/blue graph defined as follows.

• The vertex set VF ,ζ,ζ ′ is simply S .

• The blue edges are the ζ-consistent pairs {S1, S2}, i.e., EF ,ζ,ζ ′

b = {{S1, S2} ∈ (S2) | fS1

ζ
≈ fS2}.

• The red edges are the ζ ′-inconsistent pairs {S1, S2}, i.e., EF ,ζ,ζ ′
r = {{S1, S2} ∈ (S2) | fS1

ζ ′

6≈ fS2}.

As its name suggests, the generalized two-level consistency graph is a generalization of the two-
level consistency graph from Definition 13; namely GF ,0,ζ in the more general definition coincides
with GF ,ζ in the original definition.

Now, it is not hard to show that when ζ ′ � ζ/α, the graph GF ,ζ,ζ ′ is again q-red/blue transitive
for some q that depends only on α and ζ. This means that we can apply our argument from the
δ > 1/k1/2−o(1) regime on the graph GF̃ ,ζ,ζ ′ , which yields a subset U ⊆ Ũ such that almost all pairs
{S1, S2} ⊆ U are ζ ′-consistent. By selecting the parameters appropriately, such an almost non-red
subgraph once again gives us the desired global function. This wraps up our proof overview.

Changes from Previous Version. The proof presented in this manuscript differs slightly from that
in the conference version of this work [DM18]. Specifically, while both versions follow the same
approach to find U1, U2, they diverge afterwards. In [DM18], instead of reapplying the argument of
the regime δ� 1/k1/2 on U1, U2 as we do in this version, we resorted to the Kővári-Sós-Turán (KST)
Theorem [KST54], which roughly states that every dense bipartite graph has a biclique (complete
bipartite subgraph) of logarithmic size. By applying this theorem to the bipartite graph between U1
and U2 where there is an edge between u1 ∈ U1 and u2 ∈ U2 if and only if {u1, u2} is not a red edge,
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we arrived at subsets V1 ⊆ U1, V2 ⊆ U2 of reasonable large size such that for all (u1, u2) ∈ V1 ×V2,
u1 and u2 are not joined by a red edge. Finally, we observed that such a “non-red biclique” can also
be used to decode a global function, by taking the majority of either V1 or V2 side.

A disadvantage of the proof in [DM18] is that the agreement theorem there finds a global function
that approximately agrees with only Ωβ,α(log(δk)) of the local functions whereas Theorem 11 finds
one that approximately agrees with δk1−oβ,α(1) local functions, which, as discussed earlier, is nearly
optimal. This loss in [DM18] also affects the low order term in the inapproximability ratio: while
the ETH-hardness in the current manuscript has inapproximability ratio k/2(log k)1/2+ρ

for any ρ > 0,
the ratio in [DM18] is only k/2(log k)1−γ

for some (small) γ > 0.

3 Preliminaries

3.1 Well-Behaved Subsets

We next define two properties of collections of subsets, which will be needed in our soundness
analysis. First, recall that, in our proof overview for the weaker k1/2−o(1) factor hardness, we need
the following to show the red/blue transitivity of the consistency graph: for any r subsets from the
collection, their union must contain almost all clauses. Here r is a positive integer that effects the
red/blue transitivity parameter. Collections with this property are sometimes called dispersers. For
walks with larger length, we need a stronger property that any union of r intersections of ` subsets
are large. We call such collections intersection dispersers:

Definition 18 (Intersection Disperser) For any universe U , a collection S of subsets of U is an (r, `, η)-
intersection disperser if, for any r disjoint subcollections S1, . . . ,S r ⊆ S each of size at most `, we
have ∣∣∣∣∣ r⋃

i=1

( ⋂
S∈S i

S

)∣∣∣∣∣ > (1− η)|U |.

Note that in the definition we require S1, . . . ,S r to be disjoint. This is necessary because otherwise
we can include a common set S ∈ S into all the subcollections. In this case, the union will be
contained in S and hence will not cover almost all the universe.

Another property we need is that any sufficiently large subcollection S̃ of S is “sufficiently uni-
form”. This is used when we decode a good assignment from an almost non-red subgraph. More
specifically, the uniformity condition requires that almost all clauses appear in not too small number
of subsets in S̃ , as formalized below.

Definition 19 (Uniformity) For any universe U , a collection S̃ of subsets of U is (γ, µ)-uniform if, for at
least (1− µ) fraction of elements u ∈ U , u appears in at least γ fraction of the subsets in S̃ . In other words,
S̃ is (γ, µ)-uniform if and only if |{u ∈ U | PrS∈S̃ [u ∈ S] > γ}| > (1− µ)|U |.

Using standard concentration bounds, it is not hard to show that, when m is sufficiently large, a
collection of random subsets where each element is included in each subset independently with
probability α is an (1/O(α`), `, O(1))-disperser and every subcollection of size Ω(1/α) is (α, O(1))
uniform. The exact parameter dependencies are shown in the lemma below.

Lemma 20 (Deterministic Construction of Well-Behaved Subsets) For any 0 < α, µ, η < 1 and
any k, ` ∈ N, let m0 be 1000(log k log(1/µ)/(αµ2) + ` log(1/η) log k/(α`η) + 1/α + 1). For any
integer m > m0 and m-element set U , there is a collection T of subsets of U with the following properties.
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• (Size) Every subset in T has size at most 2αm.
• (Intersection Disperser) T is a (dln(2/η)/α`e, `, η)-disperser.
• (Uniformity) Any subcollection T̃ ⊆ T of size d8 ln(2/µ)/αe is (α/2, µ)-uniform.

Moreover, such a collection T can be deterministically constructed in time poly(m)2O(m0k2).

Since all techniques involved in the proof of Lemma 20 are standard, we defer it to Appendix A. Let
us turn our focus back to our main technical contribution: the agreement testing theorem.

4 The Main Agreement Theorem
The main goal of this section is to prove the following agreement theorem, which is the formal
version of Theorem 11 and is also the main technical contribution of this work.

Theorem 21 For any 0 < η, ζ, γ, µ < 1 and r, `, k, h, n, d ∈ N such that ` > 2, let S be any collection
of k subsets of [n] such that S is (r, `, ζ)-intersection disperser and every subcollection S̃ ⊆ S of size h is
(γ, µ)-uniform, and let F = { fS}S∈S be any collection of functions. If δ , agree(F ) > 10+64(r`)2k1/`

k , then

there exists a subcollection S ′ ⊆ S of size at least δk
256`2 and a function g : [n]→ {0, 1} such that g

β
≈ fS

for all S ∈ S ′ where

β = 2

√
65536h`6

δk
+ µ + 2ζ/γ.

While the parameters of the theorem can be confusing, when each subset in S is a random αn-size
subset of [n], the parameters we are interested in are as follows: µ and η both go to 0 as n goes to
infinity, h and γ depend only on α, and, r is O(1/α`). Since we want the requirement on soundness
as weak as possible, we want to minimize (r`)2k1/` = 2Oα(`+(log k)/`). Hence, our best choice is to
let ` =

√
log k, which indeed yields the k/2(log k)1/2+ρ

ratio inapproximability for 2-CSPs.

To prove this theorem, we follow the general outline as stated in the proof overview section. In
particular, the proof contains five main steps, as elaborated below.

(1) First, we will show that when S is an intersection disperser with appropriate parameters,
then the two-level consistency graph GF ,ζ satisfies (q, `)-red/blue transitivity for certain q, `.

(2) Second, we argue that, for any red/blue transitive graphs that contains sufficiently many blue
edges, we can find a large subset Ũ of vertices such that a reasonably large fraction of pairs
{S1, S2} ⊆ Ũ are non-red. This is done by counting red-filled `-walks for an appropriate `.

(3) We then focus on F̃ = { fS}Ũ and show, using a uniformity condition of S , that the generalized
two-level consistency graph GF̃ ,ζ,ζ ′ is red/blue transitive with certain parameters.

(4) Next, counting rbb triangles reveals a large “almost non-red subgraph” in the graph GF̃ ,ζ,ζ ′ .
(5) Finally, we decode a global function from this almost non-red subgraph.

This section is organized as follows. In Subsection 4.1, we show transitivity properties of the two-
level and generalized two-level consistency graphs, i.e., Steps (1) and (3). Subsection 4.2 contains
a structural lemma regarding an existence of a large subgraph with certain non-red density in
red/blue transitive graphs; this lemma is at the heart of Steps (2) and (4). Next, in Subsection 4.3, we
prove Step (5). Finally, in Subsection 4.4, we put these parts together and prove Theorem 21.
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4.1 Red/Blue-Transitivity of (Generalized) Two-Level Consistency Graph

4.1.1 Red/Blue-Transitivity from Intersection Disperser

The first step in our proof is to show that the two-level consistency graph GF ,ζ is red/blue-transitive,
assuming that S is an intersection disperser. Specifically, our main lemma is the following:

Lemma 22 If S is an (r, `, ζ)-intersection disperser, then, for any F = { fS}S∈S , GF ,ζ is ((r`)2(`−1), `)-
red/blue-transitive.

We note here that both in Lemma 22 and Claim 23 below, the transitivity property holds not only
for `-walks as specified in the statements, but also for (`+ 1)-walks. However, since the latter
does not yield any improvement to our main results, we work with only `-walks, which makes the
calculations cleaner.

In other words, we would like to show that, for every S1, S2 ∈ S that are joined by a red edge in
GF ,ζ , there are at most (r`)2(`−1) red-filled `-walks from S1 to S2. The intersection disperser does not
immediately imply such a bound, due to the requirement in the definition that the subcollections are
disjoint. Rather, it only directly implies a bound on number of disjoint `-walks from S1 to S2, where
two ` walks from S1 to S2, (T1 = S1, . . . , T`+1 = S2), (T′1 = S1, . . . , T′`+1 = S2) ∈ WGF ,ζ

` (S1, S2),
are said to be disjoint if they do not share any vertex except the starting and ending vertices, i.e.,
{T2, . . . , T`} ∩ {T′2, . . . , T′`} = ∅. Note that multiple walks sharing starting and ending vertices are
said to be disjoint if they are mutually disjoint. The following claim follows almost immediately
from definition of intersection dispersers:

Claim 23 If S is an (r, `, ζ)-intersection disperser, then, for any F = { fS}S∈S , any integer 2 6 p 6 ` and
any {S1, S2} ∈ EF ,ζ

r , there are less than r disjoint p-walks from S1 to S2 in GF ,ζ .

Proof. Suppose for the sake of contradiction that S is an (r, `, ζ)-intersection disperser but there exist
F = { fS}S∈S , 2 6 p 6 ` and {S1, S2} ∈ EF ,ζ

r such that there are at least r disjoint p-walks from S1
to S2. Let these walks be (T1,1 = S1, T1,2, . . . , T1,p, T1,p+1 = S2), . . . , (Tr,1 = S1, Tr,2, . . . , Tr,p, Tr,p+1 =

S2) ∈ WGF ,ζ

p (S1, S2).

For each i ∈ [r], consider any x ∈ ⋂p+1
j=1 Ti,j. Apriori this intersection may be empty but since S is

an intersection disperser this usually does not occur. Since {Ti,j, Ti,j+1} ∈ EF ,ζ
b for every j ∈ [p], we

have

fS1(x) = fTi,1(x) = fTi,2(x) = · · · = fTi,p(x) = fTi,p+1(x) = fS2(x).

Hence, for every x ∈ ⋃r
i=1

(⋂p+1
j=1 Tq,j

)
, fS1(x) = fS2(x). Let T∗ denote

⋃r
i=1

(⋂p
j=2 Tq,j

)
. Since

Ti,1 = S1 and Ti,p+1 = S2 for all i ∈ [r], we have

r⋃
i=1

p+1⋂
j=1

Tq,j

 = (S1 ∩ S2) ∩ T∗.

In other words, fS1 and fS2 can only disagree on variables outside of T∗. However, since S is
an (r, `, ζ)-intersection disperser, we have |T∗| > (1− ζ)n. Hence, disagr(S1, S2) 6 ζn, which
contradicts with {S1, S2} ∈ EF ,ζ

r . �
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Since all 2-walks from S1 to S2 are disjoint, the above claim immediately gives a bound on the
number of red-filled 2-walks from S1 to S2. To bound the number of red-filled walks of larger
lengths, we will use induction on the length of the walks. Suppose that we have bounded the
number of red-filled i-walks sharing starting and ending vertices for i 6 z− 1. The key idea in the
proof is that we can use this inductive hypothesis to show that, for any S1, S2, S ∈ S , few z-walks
from S1 to S2 contain a given S. Here we say that a z-walk (T1 = S1, . . . , Tz = S2) from S1 to S2
contains S if S ∈ {T2, . . . , Tz}. This implies that for a given z-walk from S1 to S2 there are only few
walks that are not disjoint from it. This allows us to show that, if there are too many z-walks, then
there must also be many disjoint z-walks as well, which would violate Claim 23. A formal proof of
Lemma 22 based on this intuition is given below.

Proof of Lemma 22. For every integer i such that 2 6 i 6 `, let P(i) denote the following statement:
for every S1, S2 ∈ S , |ŴGF ,ζ

i (S1, S2)| 6 (ri)2(i−1). For convenience, let Bi = (ri)2(i−1) for every
2 6 i 6 `.

Base Case. Since every different 2-walks from S1 to S2 are disjoint, Claim 23 immediately implies
that the number of 2-walks from S1 to S2 is at most r 6 B2.

Inductive Step.

Suppose that, for some integer z such that 3 6 z 6 `, P(3), . . . , P(z− 1) are true. We will show that
P(z) is true. To do so, let us first prove that, for any fixed starting and ending vertices, any vertex
cannot appears in too many red-filled z-walks, as stated in the following claim.

Claim 24 For all S1, S2, S ∈ S , the number of red-filled z-walks from S1 to S2 containing S in GF ,ζ is at
most Bz/(zr).

Proof. First, observe that the number of red-filled z-walks from S1 to S2 containing S is at most the
sum over all positions 2 6 j 6 z of the number of z-walks from S1 to S2 such that the j-th vertex in
the walk is S. More formally, the number of red-filled z-walks from S1 to S2 containing S is

|{(T1, . . . , Tz+1) ∈ ŴGF ,ζ

z (S1, S2) | ∃2 6 j 6 z, Tj = Sj}| 6
z

∑
j=2
|{(T1, . . . , Tz+1) ∈ ŴGF ,ζ

z (S1, S2) | Tj = S}|.

Now, for each 2 6 j 6 z, to bound the number of red-filled z-walks from S1 to S2 whose j-th vertex
is S, let us consider the following three cases based on the value of j:

1. 3 6 j 6 z− 1. Observe that, for any such walk (T1 = S1, T2, . . . , Tj = S, . . . , Tz, Tz+1 = S2), the
subwalk (T1 = S1, . . . , Tj = S) and (Tj = S, . . . , Tz+1 = S2) must be red-filled walks as well.
Since the numbers of red-filled (j− 1)-walks from S1 to S and red-filled (z+ 1− j)-walks from
S to S2 are bounded by Bj−1 and Bz+1−j respectively (from the inductive hypothesis), there are
at most Bj−1 choices of (T1 = S1, . . . , Tj = S) and Bz+1−j choices of (Tj = S, . . . , Tz−1, Tz = S2).
Hence, there are at most Bj−1Bz+1−j red-filled z-walks from S1 to S2 whose j-th vertex is S.

2. j = 2. In this case, the subwalk (Tj = S, . . . , Tz+1 = S2) must be a red-filled (z− 1)-walk from
S to S2. Hence, the number of red-filled z-walks from S1 to S2 where Tj = S is bounded above
by Bz−1.

3. j = z. Similar to the previous case, we also have the bound of Bz−1.
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For convenience, let B1 = 1. The above argument gives us the following bound for every 2 6 j 6 z:

|{(T1, . . . , Tz+1) ∈ ŴGF ,ζ

z (S1, S2) | Tj = S}| 6 Bj−1Bz+1−j.

Summing this over j, we have the following upper bound on the number of red-filled z-walks from
S1 to S2 containing S:

z

∑
j=2

Bj−1Bz+1−j =
z

∑
j=2

(r(j− 1))2(j−2)(r(z + 1− j))2(z−j) 6
z

∑
j=2

(rz)2(z−2) 6 Bz/(zr),

which concludes the proof of the claim. y

Having proved the above claim, it is now easy to show that P(z) is true. Suppose for the sake of
contradiction that there exists S1, S2 ∈ S such that |ŴGF ,ζ

z (S1, S2)| > Bz. Consider the following
procedure of selecting disjoint walks from ŴGF ,ζ

z (S1, S2). First, initialize U = ŴGF ,ζ

z (S1, S2) and
repeat the following process as long as U 6= ∅: select any (T1, . . . , Tz+1) ∈ U and remove every
(T′1, . . . , T′z+1) that is not disjoint with (T1, . . . , Tz+1) from U. Observe that, each time a walk
(T1, . . . , Tz+1) is selected, the number of walks removed from U is at most Bz/r; this is because
each removed walk must contain at least one of T2, . . . , Tz, but, from the above claim, each of these
vertices are contained in at most Bz/(zr) walks. Since we start with more than Bz walks, at least r
walks are picked. These walks are disjoint z-walks starting from S1 and S2, which, due to Claim 23,
is a contradiction. Thus, P(z) is true as desired.

Hence, P(`) is true, which, by definition, implies that GF is ((r`)2(`−1), `)-red/blue-transitive. �

4.1.2 Red/Blue-Transitivity from Uniformity

In Step (3) of our proof, we need to show red/blue-transitivity of the generalized two-level
consistency graph GF ,ζ,ζ ′ . This is encapsulated in the following lemma.

Lemma 25 If every subcollection S̃ ⊆ S of size r is (γ, µ)-uniform, then, for any ζ > 0, ζ ′ > µ + 2ζ/γ
and F = { fS}S∈S , the generalized two-level consistency graph GF ,ζ,ζ ′ is r-red/blue transitive.

The proof of the lemma is quite simple. The key observation is that, if S1 and S2 are joined by a red
edge and T is a common blue-neighbor in the graph GF ,ζ,ζ ′ , then it means that T only hits a small
number (i.e. 2ζn) of the variables on which fS1 and fS2 disagree. In other words, such variables
appear less frequently in common blue-neighbors of S1 and S2. If the common-blue neighbor
set is of size r, this contradicts the fact that the set is (γ, µ)-uniform. This intuition is formalized
below.

Proof of Lemma 25. Suppose for the sake of contradiction that GF ,ζ,ζ ′ is not r-red/blue transitive.
That is, there exist S1, S2 ∈ S that are joined by a red edge such that there are r red-filled 2-walks (i.e.
rbb triangle) from S1 to S2. Suppose that these walks are (S1, T1, S2), (S1, T2, S2), · · · , (S1, Tr, S2).

For every i ∈ [r], since (S1, Ti, S2) is a 2-walk, {S1, Ti} and {S2, Ti} are blue edges. This implies that

disagr( fS1 , fTi), disagr( fS2 , fTi) 6 ζn. (1)

On the other hand, we can lower bound Ei∈[r][disagr( fS1 , fTi) + disagr( fS2 , fTi)] as follows. First,
let let Xdisagr denote the set of all x ∈ S1 ∩ S2 such that fS1(x) 6= fS2(x); since {S1, S2} is a red edge,
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we have |Xdisagr| > ζ ′n. We can rearrange Ei∈[r][disagr( fS1 , fTi) + disagr( fS2 , fTi)] as

E
i∈[r]

[disagr( fS1 , fTi) + disagr( fS2 , fTi)]

= ∑
x∈[n]

(
Pr

i∈[r]
[x ∈ (S1 ∩ Ti) ∧ fS1(x) 6= fTi(x)] + Pr

i∈[r]
[x ∈ (S2 ∩ Ti) ∧ fS2(x) 6= fTi(x)]

)
> ∑

x∈Xdisagr

(
Pr

i∈[r]
[x ∈ Ti ∧ fS1(x) 6= fTi(x)] + Pr

i∈[r]
[x ∈ Ti ∧ fS2(x) 6= fTi(x)]

)
> ∑

x∈Xdisagr

(
Pr

i∈[r]
[x ∈ Ti ∧ ( fS1(x) 6= fTi(x) ∨ fS2(x) 6= fTi(x))]

)
= ∑

x∈Xdisagr

Pr
i∈[r]

[x ∈ Ti] (2)

We remark here that the second inequality comes from union bound, whereas the last equality
follows from the fact that ( fS1(x) 6= fTi(x))∨ ( fS2(x) 6= fTi(x)) is always true when fS1(x) 6= fS2(x).

Recall that {T1, . . . , Tr} ⊆ S is a subcollection of size r and is thus (γ, µ)-uniform. Let X>γ be the
set of all x ∈ [n] that appears in at least γ fraction of Ti’s. The (γ, µ)-uniformity of {T1, . . . , Tr}
implies that |X>γ| > (1− µ)n. From this and from |Xdisagr| > ζ ′n, we can lower bound the right
hand side of (2) further as follows:

∑
x∈Xdisagr

Pr
Ti∈T

[x ∈ Ti] > ∑
x∈Xdisagr∩X>γ

Pr
Ti∈T

[x ∈ Ti] > γ|Xdisagr ∩ X>γ| > γ(ζ ′ − µ)n > 2ζn (3)

where the last inequality comes from our assumption that ζ ′ > µ + 2ζ/γ.

Finally, combining (1), (2) and (3) yields the desired contradiction. �

4.2 Finding Almost Non-Red Subgraph in Red/Blue-Transitive Graph

Recall that in two steps of our proofs, we need to utilize the red/blue transitivity of the (generalized)
two-level consistency graph to find a large subgraph with certain number of non-red pairs:

• Specifically, in Step (2), we would like to show that, for appropriate values of q and `, any
(q, `)-red/blue transitive graph with sufficiently many blue edges must contain a sufficiently
large subgraph whose significant (i.e. 1/`2) fraction of pairs of vertices are non-red.
• Additionally, in Step (4), we need to show that any o(d2/k)-red/blue transitive graph with

sufficiently many blue edges must contain a sufficiently large subgraph such that almost all
pairs of its vertices are non-red.

It turns out that a single lemma stated below suffices for both steps. In particular, the lemma below
returns a subgraph such that roughly 1/(`0

2 ) fraction of pairs of its vertices are non-red. Plugging in
`0 = ` recovers our former objective whereas setting `0 = 2 satisfies the latter.

Lemma 26 For every k0, q0, `0, d0 ∈N such that `0 > 2 and every k0-vertex (q0, `0)-red/blue-transitive
graph G = (V, Er ∪ Eb) such that |Eb| > 2k0d0, there exist subsets of vertices U1, U2 ⊆ V each of size at
least d0 such that |{(u, v) ∈ U1×U2 | {u, v} /∈ Er}| > |U1||U2|(1− q0k0

d`0
0

)/(`0
2 ). Moreover, when `0 = 2,

the previous statement remains true even with an additional requirement that U1 = U2.

The proof of Lemma 26 below is exactly as sketched earlier in Subsection 2.
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Proof of Lemma 26. We start by preprocessing the graph so that every vertex has blue-degree at least
d0. In particular, as long as there exists a vertex v whose blue-degree is at most d0, we remove v
from G. Let G′ = (V ′, E′r ∪ E′b) be the graph at the end of this process. Note that we remove less
than k0d0 blue edges in total. Since at the beginning |Eb| > 2k0d0, we have |E′b| > k0d0. Observe
also that G′ remains (q0, `0)-red/blue-transitive.

Since V ′ is (q0, `0)-red/blue-transitive, we can bound the number of red-filled `0-walk as follows.

|ŴG′
`0
| = ∑

u,v∈V′
{u,v}∈E′r

|ŴG′
`0
(u, v)| 6 ∑

u,v∈V′
{u,v}∈E′r

q0 6 q0k2
0.

Moreover, notice that |WG′
`0
| > (k0d0) · d`0−1

0 = k0d`0
0 ; this is simply because there are at least k0d0

choices for (v1, v2) (i.e. all blue edges) and, for any (v1, . . . , vi−1), there are at least d0 choices for vi.

Hence, we have |ŴG′
`0
|/|WG′

`0
| 6 q0k0/d`0

0 . This implies that 1− q0k0/d`0
0 6 Pr

(v1,...,v`0+1)∈WG′
`0

[(v1, . . . , v`0+1) /∈

ŴG′
`0
]. This probability can be further rearranged as follows.

Pr
(v1,...,v`0+1)∈WG′

`0

[(v1, . . . , v`0+1) /∈ ŴG′
`0
] = Pr

(v1,...,v`0+1)∈WG′
`0

[∃i, j ∈ [`0 + 1] such that j > i + 1, {vi, vj} /∈ E′r]

(Union Bound) 6 ∑
i,j∈[`0+1]

j>i+1

Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E′r].

Now, note that the number of pairs of i, j ∈ [`0 + 1] such that j > i + 1 is (`0+1
2 )− `0 = (`0

2 ). This
implies that there exists one such i, j such that Pr

(v1,...,v`0+1)∈WG′
`0

[{vi, vj} /∈ E′r] > (1− q0k0

d`0
0

)/(`0
2 ). The

probability Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E′r] can now be bounded as follows.

Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E′r]

= ∑
u,v

Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E′r | vi+1 = u ∧ vj−1 = v] Pr
(v1,...,v`0+1)∈WG′

`0

[vi+1 = u ∧ vj−1 = v]

6

max
u,v

Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E′r | vi+1 = u ∧ vj−1 = v]

∑
u,v

Pr
(v1,...,v`0+1)∈WG′

`0

[vi+1 = u ∧ vj−1 = v]


= max

u,v
Pr

(v1,...,v`0+1)∈WG′
`0

[{vi, vj} /∈ E′r | vi+1 = u ∧ vj−1 = v]

where the summation and maximization is taken over all u, v ∈ V ′ such that Pr
(v1,...,v`0+1)∈WG′

`0

[vi+1 =

u ∧ vj−1 = v] is non-zero. Hence, we can conclude that there exists u∗, v∗ ∈ V ′ such that

Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E′r | vi+1 = u∗ ∧ vj−1 = v∗] > (1− q0k0

d`0
0

)/
(
`0

2

)
.

The expression on the left is exactly |{(u, v) ∈ Nb(u∗) × Nb(v∗) | {u, v} /∈ E′r}|/(|Nb(u∗)| ·
|Nb(v∗)|). From this and from every vertex in G′ has blue-degree at least d0, U1 = Nb(u∗), U2 =
Nb(v∗) are the desired sets. Finally, observe that, when ` = 2, we must have i = 1 and j = 3,
resulting in vi+1 = vj−1; this implies that u∗ = v∗ and we have U1 = U2. �
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4.3 Majority Decoding of an Almost Non-Red Subgraph

In the last step of our proof, we will decode a global function g from a sufficiently large almost non-
red subgraph in the two-level consistency graph GF ,ζ,ζ ′ . Recall that an almost non-red subgraph in
GF ,ζ,ζ ′ simply corresponds to a subcollection S ′ such that, for almost all pairs (S1, S2) ∈ S ′ × S ′,
fS1 is ζ ′-consistent with fS2 . The main result of this subsection is that, given such S ′, we can find a
global function g that approximately agrees with most of the local functions in the subcollection.
This is stated more precisely below.

Lemma 27 LetF = { fS}S∈S ′ be a collection of functions such that agreeζ ′(F ) > 1− κ. Then, the function
g : [n]→ {0, 1} defined by g(x) = Majority S∈S′

x∈S
( fS(x)) satisfies

E
S∈S ′

[disagr(g, fS)] 6 n
√

κ + ζ ′.

Proof. Recall that agreeζ ′(F ) > 1− κ is equivalent to PrS1,S2∈S ′

[
fS1(x)

ζ ′

≈ fS2(x)
]
> 1− κ. Hence,

E
S1,S2∈S ′

[disagr( fS1 , fS2)] 6 Pr
S1,S2∈S ′

[ fS1

ζ ′

6≈ fS2 ] · n + Pr
S1,S2∈S ′

[ fS1

ζ ′

≈ fS2 ] · (ζ ′n) 6 (κ + ζ ′)n. (4)

We can then lower bound the expression on the left hand side as follows.

E
S1,S2∈S ′

[disagr( fS1 , fS2)] = ∑
x∈[n]

Pr
S1,S2∈S ′

[x ∈ S1 ∧ x ∈ S2 ∧ fS1(x) 6= fS2(x)]

> ∑
x∈[n]

Pr
S1,S2∈S ′

[x ∈ S1 ∧ x ∈ S2 ∧ fS1(x) 6= g(x) ∧ fS2(x) = g(x)]

= ∑
x∈[n]

Pr
S1∈S ′

[x ∈ S1 ∧ fS1(x) 6= g(x)] Pr
S2∈S ′

[x ∈ S2 ∧ fS2(x) = g(x)]

(Since g(x) = Majority
S∈S′
x∈S

( fS(x))) > ∑
x∈[n]

Pr
S1∈S ′

[x ∈ S1 ∧ fS1(x) 6= g(x)] Pr
S2∈S ′

[x ∈ S2 ∧ fS2(x) 6= g(x)]

= ∑
x∈[n]

(
Pr

S∈S ′
[x ∈ S ∧ fS(x) 6= g(x)]

)2

(Power Mean Inequality) >
1
n

(
∑

x∈[n]
Pr

S∈S ′
[x ∈ S ∧ fS(x) 6= g(x)]

)2

=
1
n

(
E

S∈S ′
[disagr(g, fS)]

)2

. (5)

Combining (4) and (5) gives the desired bound. �

4.4 Putting Things Together: Proof of Theorem 21

Finally, we put all five steps together as outlined at the beginning of this section. This is formalized
below. Note that Theorem 21 follows from the theorem below simply by Markov inequality.

Theorem 28 For any 0 < η, ζ, γ, µ < 1 and r, `, k, h, n, d ∈ N such that ` > 2, let S be any collection
of k subsets of [n] such that S is (r, `, ζ)-intersection disperser and every subcollection S̃ ⊆ S of size h is
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(γ, µ)-uniform, and let F = { fS}S∈S be any collection of functions. If δ , agree(F ) > 10+64(r`)2k1/`

k , then
there exists a subcollection S ′ ⊆ S of size at least δk

128`2 and a function g : [n]→ {0, 1} such that

E
S∈S ′

[disagr(g, fS)] 6 n

√
65536h`6

δk
+ µ + 2ζ/γ.

Proof. Observe that agree(F ) directly corresponds to the number of blue edges |EF ,ζ
b | in the two-

level consistency graph GF ,ζ . In particular, agree(F ) = δ means that the number of blue edges is
(δk2− k)/2. Since S is a (r, `, ζ)-intersection disperser, Lemma 22 implies that GF ,ζ is ((r`)2(`−1), `)-

red/blue-transitive. Let d = b |E
F ,ζ |
2k c = b

δk−1
4 c; since δ > 10+64(r`)2k1/`

k , we have d > (r`)2k1/`.

Applying Lemma 26 with G = GF ,ζ , k0 = k, `0 = `, q0 = (r`)2(`−1) and d0 = d, we can conclude
that there exist subsets U1, U2 ⊆ VF ,ζ each of size at least d such that

|{(u, v) ∈ U1 ×U2 | {u, v} /∈ EF ,ζ
r }|

|U1||U2|
>

1− (r`)2(`−1)k/d`

(`2)
>

1
`2

where the last inequality follows from our aforementioned lower bound on d and from ` > 2.

Next, observe that, if we let U′1 and U′2 be random subsets of U1, U2 of size d, then we have

E
U′1,U′2

[
|{(u′, v′) ∈ U′1 ×U′2 | {u′, v′} /∈ EF ,ζ

r }
d2

]
=
|{(u, v) ∈ U1 ×U2 | {u, v} /∈ EF ,ζ

r }|
|U1||U2|

.

As a result, there exists Ũ1, Ũ2 each of size exactly d such that

|{(ũ, ṽ) ∈ Ũ1 × Ũ2 | {ũ, ṽ} /∈ EF ,ζ
r }|

d2 >
1
`2 . (6)

Now, let Ũ = Ũ1 ∪ Ũ2. (6) implies that the number of {ũ, ṽ} ⊆ Ũ such that {ũ, ṽ} /∈ EF ,ζ
r is at least

d2/(2`2)− d where the factor of 2 comes from the fact that each pair {ũ, ṽ} is double counted in
the left hand side of (6) and the subtraction of d comes from the fact that the left hand side of (6)
also count the case where ũ = ṽ.

Now, let F̃ = { fS}S∈Ũ , ζ ′ = µ + 2ζ/γ and consider the two-level consistency graph GF̃ ,ζ,ζ ′ .
Observe that {ũ, ṽ} is a blue edge in this new graph GF̃ ,ζ,ζ ′ if and only if it is not a red edge in the
original graph GF ,ζ . Hence, the bound derived in the previous paragraph implies that

|EF̃ ,ζ,ζ ′

b | > d2

2`2 − d.

Let d′ = |EF̃ ,ζ,ζ ′

b |/(2|Ũ|) > |EF̃ ,ζ,ζ ′

b |/(4d) = d/(8`2)− 1/4. Recall that d = b(δk − 1)/4c; from
δ > (10 + 64(r`)2)/k, we have d > 8`2 and d > δk/8. Hence, we have d′ > d/(16`2) > δk/(128`2).

Furthermore, by Lemma 25 and from our assumption that every subcollection of S of size h is (γ, µ)-
uniform, the graph GF ,ζ,ζ ′ is h-red/blue transitive. Applying Lemma 26 with G = GF ,ζ,ζ ′ , k0 =
|Ũ| 6 2d, `0 = 2, q0 = h and d0 = d′, there must be a set U′ ⊆ Ũ of size at least d′ such that

|{(u′, v′) ∈ U′ ×U′ | {u′, v′} /∈ EF ,ζ,ζ ′
r }|

|U′|2 > 1− 2hd
(d′)2 > 1− 512h`4

d
> 1− 65536h`6

δk
(7)
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where the last two inequalities follow from d′ > d/(16`2) and d′ > δk/(128`2) respectively.

Let F ′ = { fS}S∈U′ . Observe that the expression on the left hand side of (7) is simply agreeζ ′(F ′).
Hence, by Lemma 27, there exists a function g : [n]→ {0, 1} such that

E
S∈U′

[disagr(g, fS)] 6 n

√
65536h`6

δk
+ ζ ′ = n

√
65536h`6

δk
+ µ + 2ζ/γ.

In other words, U′ is the desired subcollection, which completes our proof. �

5 Soundness Analysis of the Reduction
We will next use our agreement theorem to analyze the soundness of our reduction. The soundness
of our reduction can be stated more precisely as follows:

Theorem 29 For any ∆ ∈N, let Φ be any 3-CNF formula with variable set X and clause set C such that
each variable appears in at most ∆ clauses. Moreover, for any 0 < η, ζ, γ, µ < 1 and r, `, k, h, d ∈N such
that ` > 2, let T be any collection of k subsets of C such that T is (r, `, ζ)-intersection disperser and every
subcollection T̃ ⊆ T of size h is (γ, µ)-uniform. If val(Φ) < 1− µ− (3∆/γ)

√
4∆µ + 6∆ζ/γ, then

val(ΓΦ,T ) <
10 + 64(r`)2k1/` + 65536h`2/µ

k
.

Again, we will prove the contrapositive that if val(ΓΦ,T ) is large, then val(Φ) is also large. Recall
that val(ΓΦ,T ) being large implies that there exists a labeling σ = {σT}T∈T with high agreement
probability. We would like to apply our agreement testing theorem. Note however that Theorem 28
only applies when the subsets of variables are “well-behaved” (i.e. satisfies uniformity and is an
intersection disperser). However, in our construction, the subset of variables are not random,
rather they are variable set of random subsets of clauses. Hence, we will first need to translate the
“well-behavedness” from subsets of clauses to their corresponding variable sets; this is shown in
Section 5.1. Once this is in place, we can apply Theorem 28, which gives us a global assignment that
approximately agrees with many σT’s. We show in Section 5.2 that such assignment satisfies most
of the constraint, which implies that val(Φ) must be large as desired. The full proof of Theorem 29
can then be found in Section 5.3.

5.1 Well-Behave Subsets of Clauses vs Well-Behave Subsets of Variables

For convenient, let us define an additional notation:

Definition 30 Let Φ be any 3-CNF formula and T be any subset of clauses of Φ. We use SΦ,T to denote
the collection {var(T)}T∈T of subsets of variables.

Note that the subsets in SΦ,T are indeed the variable sets of our labeling σ = {σT}T∈T . Moreover, it
is rather straightforward to see that both uniformity and intersection disperser conditions translate
from T to SΦ,T with little loss in parameters, provided that each variable appears in bounded
number of clauses. These observations are formalized and proved below.

Lemma 31 Suppose that every variable in Φ appears in at least one and at most ∆ clauses. If T is
(γ, µ)-uniform, then SΦ,T is (γ, 3∆µ)-uniform.

Proof. First, observe that, since each variable appears in at most ∆ clauses, we have n > m/∆. Now,
let C>γ = {C ∈ C | PrT∈T [C ∈ T] > γ} and X>γ = {x ∈ X | PrS∈SΦ,T [x ∈ S] > γ}. Recall that
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(γ, µ)-uniformity of T implies that |C>γ| > (1− µ)m. Observe that any x ∈ var(C>γ) must also be
contained in X>γ. Since every variable appears in at least one clauses, we have that every variable
x /∈ X>γ must be in var(C \ C>γ). As a result, |X \ X>γ| 6 3µm. From this and from n > m/∆, we
arrive at the desired conclusion. �

Lemma 32 Suppose that every variable in Φ appears in at least one and at most ∆ clauses. If T is an
(r, `, η)-intersection disperser, then SΦ,T is (r, `, 3∆η)-uniform.

Proof. Consider any r disjoint subcollections S1 = {S1,1, . . . , S1,p1}, · · · ,S r = {Sr,1, . . . , Sr,pr} ⊆
SΦ,T each of size at most `. From our definition of SΦ,T , there is an r disjoint subcollections
T 1 = {T1,1, . . . , T1,p1}, . . . , T r = {Tr,1, . . . , Tr,pr} ⊆ T such that Si,j = var(Ti,j) for all i ∈ [r] and
j ∈ [pi]. Observe that

r⋃
i=1

( ⋂
S∈S i

S

)
⊇ var

(
r⋃

i=1

( ⋂
T∈T i

T

))
.

Moreover, since T is an (r, `, η)-intersection disperser, we have |⋃r
i=1 (

⋂
T∈T i T) | > (1− η)m. As

a result, since each variable appears in at least one clause, we indeed have |⋃r
i=1 (

⋂
S∈S i S) | >

n− 3ηm > (1− 3∆η)n as desired. �

5.2 Global Function with Many Agreements is a Good Assignment

In this subsection, we show that any global assignment that are approximately consistent with a
collection of labels {σT}T∈T ∗ must satisfy most of the constraints, assuming that T ∗ is sufficiently
uniform, which is stated more precisely below.

Lemma 33 Let T ∗ be any (γ, µ)-uniform collection of subsets of clauses and σ be any labeling of T ∗. If
there exists ψ : X→ {0, 1} such that ET∈T ∗ [disagr(ψ, σT)] 6 νn, then val(ψ) > 1− µ− 3 ν∆/γ.

The key to proving that ψ violates few clauses is that, if a clause C is violated, then, for each T ∈ T ∗
that contains T, σT and ψ must disagree on at least one of var(C) because σT satisfies C but ψ
violates it. Hence, if C appears often in T , then it contributes to many disagreements between σT
and ψ; the uniformity condition helps us ensure that most C indeed appear often in T . Comparing
this lower bound against the assumed upper bound on the expected disagreements gives us the
desired result. This intuition is formalized below.

Proof. Let C>γ denote the set of all clauses that appear in at least γ fraction of T ∈ T ∗, i.e.,
C>γ = {C ∈ C | PrT∈T ∗ [C ∈ T] > γ}. Since T ∗ is (γ, µ)-uniform, we have |C>γ| > (1− µ)m.

Since each variable x appears in at most ∆ clauses, we can obtain the following bound:

E
T∈T ∗

[disagr(ψ, σT)] = ∑
x∈X

Pr
T∈T ∗

[x ∈ var(T) ∧ σT(x) 6= ψ(x)]

>
1
∆ ∑

C∈C>γ

∑
x∈var(C)

Pr
T∈T ∗

[x ∈ var(T) ∧ σT(x) 6= ψ(x)]

>
1
∆ ∑

C∈C>γ

∑
x∈var(C)

Pr
T∈T ∗

[C ∈ T ∧ σT(x) 6= ψ(x)]

(Union Bound) >
1
∆ ∑

C∈C>γ

Pr
T∈T ∗

C ∈ T ∧

 ∨
x∈var(C)

σT(x) 6= ψ(x)
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>
γ

∆ ∑
C∈C>γ

Pr
T∈T ∗

 ∨
x∈var(C)

σT(x) 6= ψ(x)

∣∣∣∣∣∣ C ∈ T

 (8)

Note here that we use the fact that each variable appears in at most ∆ clauses in the first inequality
and that the last inequality follows from the fact that each C ∈ C>γ appears in at least γ fraction of
T ∈ T ∗. The rest of the inequalities are trivial.

Let CUNSAT denote the set of clauses violated by ψ. Observe that, for any C ∈ CUNSAT and any
T ∈ T ∗ such that C ∈ T, σT must disagree with ψ on at least one of x ∈ var(C); this is simply
because C is satisfied by σT but violated by ψ. In other words, for every C ∈ CUNSAT, we have

Pr
T∈T ∗

 ∨
x∈var(C)

σT(x) 6= ψ(x)

∣∣∣∣∣∣ C ∈ T

 = 1. (9)

(8), (9) and the assumption that ET∈T ∗ [disagr(ψ, σT)] 6 νn imply that

ν∆n/γ > |C>γ ∩ CUNSAT|.

Since C>γ > m(1− µ) and n 6 3m (from every variable appears in at least one clause), we can
conclude that |CUNSAT| 6 µm + 3ν∆m/γ. As a result, val(ψ) > 1− µ− 3ν∆/γ as desired. �

5.3 Putting Things Together: Proof of Theorem 29

Proof of Theorem 29. We may assume w.l.o.g. that each variable appears in at least one clause.

We will prove the theorem by contrapositive. Suppose that val(ΓΦ,T ) >
10+64(r`)2k1/`+65536h`2/µ

k .

This means that there exists a labeling σ = {σT}T∈T such that val(σ) > 10+64(r`)2k1/`+65536h`2/µ
k ; this

also means that, if we view σ as a collection of functions F = { fS}S∈SΦ,T where fvar(T) = σT, then

agree(F ) > 10+64(r`)2k1/`+65536h`2/µ
k . Let δ = agree(F ).

Furthermore, Lemmas 32 and 31 imply that SΦ,T is an (r, `, 3∆ζ)-intersection disperser and every
subcollection of SΦ,T of size h is (γ, 3∆µ)-uniform respectively. This enables us to apply Theorem 28
on F , which yields a subcollection S ′ ⊆ SΦ,T of size at least δk

128`2 > h and g : X→ {0, 1} such that

E
S∈S ′

[disagr(g, fS)] 6 n

√
65536h`6

δk
+ 3∆µ + 6∆ζ/γ 6 n

√
4∆µ + 6∆ζ/γ

where the second inequality follows from δk > 65536h`2/µ.

Let S∗ be the subcollection of S ′ of size h that minimizes ES∈S∗ [disagr(g, fS)]. Observe that
ES∈S∗ [disagr(g, fS)] 6 ES∈S ′ [disagr(g, fS)] 6 n

√
4∆µ + 6∆ζ/γ. This is equivalent to saying that

there exists a subcollection T ∗ ⊆ T of size h such that ET∈T ∗ [disagr(g, σT)] 6 n
√

4∆µ + 6∆ζ/γ.

Since every subcollection of T of size h is (γ, µ)-uniform, we can apply Lemma 33 to infer that
val(Φ) > 1− µ− (3∆/γ)

√
4∆µ + 6∆ζ/γ as desired. �
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6 Proof of Inapproximability Results of 2-CSPs
The inapproximability results for 2-CSPs can be shown simply by plugging in appropriate parame-
ters to Theorem 29. More specifically, for ETH-hardness, since there is a polylogm loss in the PCP
Theorem (Theorem 6), we need to select our α = 1/polylogm so that the size (and running time) of
the reduction is 2o(m). Now, observe that the parameter r in Theorem 29 for the intersection dis-
perser property grows with (1/α)` (see Lemma 20). Since the soundness guarantee in Theorem 29
is of the form kO(1/`)(r`)O(1)/k = kO(1/`)(1/α)O(`)/k, it is minimized when ` is roughly

√
log k,

which yields the soundness of 2(log k)1/2+o(1)
/k. Other parameters are chosen accordingly.

Proof of Theorem 1. Let c, ε, ∆ be constants from Theorem 6.

For any 3-CNF formula Φ̃ with m clauses, let us first apply the nearly-linear size PCP from
Theorem 6 to produce a 3-CNF formula Φ with m′ = O(m logc m) clauses. Let us also define the
following parameters:

• α = 1
(log m)c+1 ,

• γ = α
2 = 1

2(log m)c+1 ,

• µ = ε2γ2

288∆3 = Θε,∆

(
1

(log m)2c+2

)
,

• ζ = ε2γ3

432∆3 = Θε,∆

(
1

(log m)3c+3

)
,

• ` = (log m)1/4,
• r = d ln(2/ζ)

α`
e = 2Θε,∆,c((log m)1/4 log log m),

• h = d8 ln(2/µ)/αe = Θε,∆,c((log m)c+1),

• k = 2`
2
= 2
√

log m.

We then use Lemma 20 with the above parameters α, µ, ζ, k, ` to construct a collection S of subsets
of clauses of Φ such that the following conditions hold.

• Every subset in S has size at most 2αm′ = o(m).
• S is a (r, `, ζ)-disperser.
• Any subcollection S̃ ⊆ S of size h is (α/2, µ)-uniform.

Note that, for our choices of parameter, the parameter m0 of Lemma 20 is 2Oε,∆,c((log m)1/4 log log m) =
2o(log m). This means that, for sufficiently large m, we indeed have m′ > m > m0 and the running
time needed to produce S is poly(m)2O(m0k2) = 2o(m). Note that we assume without loss of
generality here that m′ > m; if this is not the case, we can simply copy the formula Φ dm/m′e times
using new variables each time, which does not change the value of the formula.

We now consider the 2-CSP instance ΓΦ,S . Observe that the running time used to create ΓΦ,S (and
hence also the size of ΓΦ,S ) is no more than poly(k) · 2o(αm′) = 2o(m). Moreover, if val(Φ̃) = 1, then
val(Φ) = 1 and it is easy to see that val(ΓΦ,S ) = 1 as well.

On the other hand, if val(Φ̃) < 1, then val(Φ) < 1− ε. Due to our choice of parameters, we can
apply Theorem 29, which implies that

val(ΓΦ,S ) <
O((r`)2k1/` + h`2/µ)

k
= 2Oε,∆,c((log m)1/4 log log m)/k = 2Oε,∆,c(

√
log k log log k)/k.

For sufficiently large m (depending only on c, ε, ∆, ρ), this term is at most 2(log k)1/2+ρ
/k. Hence, if
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there exists a polynomial time that can distinguish the two cases in the theorem statement, we can
run this algorithm on ΓΦ,S to decide whether Φ̃ is satisfiable in 2o(m) time, contradicting ETH. �

For Gap-ETH-hardness, we do not incur a loss of polylogm from the PCP Theorem anymore. Thus,
it suffices to chose α to be any function that converges to zero as k goes to ∞ (e.g. α = 1/ log log k),
and k can now be independent of m. The rest of the analysis remains unchanged.

Proof of Theorem 2. Let δ, ε, ∆ be the constants from Theorem 2. For any positive integer k, define
the parameters as follows:

• α = 1
log log k ,

• γ = α
2 = 1

2(log log k) ,

• µ = ε2γ2

288∆3 = Θε,∆

(
1

(log log k)2

)
,

• ζ = ε2γ3

432∆3 = Θε,∆

(
1

(log log k)3

)
,

• ` =
√

log k,

• r = d ln(2/ζ)
α`
e = 2Θε,∆,c(

√
log k log log log k),

• h = d8 ln(2/µ)/αe = Θε,∆,c(log log k).

Consider any 3-CNF formula Φ with m clauses such that each variable appears in at most ∆ clauses.
We then use Lemma 20 with the above parameters α, µ, η, k, ` to construct a collection S of subsets
of clauses of Φ such that the following conditions hold.

• Every subset in S has size at most 2αm.
• S is a (r, `, η)-disperser.
• Any subcollection S̃ ⊆ S of size h is (α/2, µ)-uniform.

Note that, for our choices of parameter, the parameter m0 of Lemma 20 is a function of k. This
means that, for sufficiently large m (which depends on k), we indeed have m > m0 and the running
time needed to produce S is poly(m)2O(m0k2) = Ok(poly(m)).

We now consider the 2-CSP instance ΓΦ,S . Observe that the running time used to create ΓΦ,S
(and hence also the size of ΓΦ,S ) is no more than poly(k) · 2O(αm) = 2O(m/ log log k). Moreover, if
val(Φ) = 1, it is easy to see that val(ΓΦ,S ) = 1 as well.

Suppose that val(Φ) < 1− ε. Due to our choice of parameters, we can apply Theorem 29, which
implies that

val(ΓΦ,S ) <
O(k1/`(r`)2) + h`2/µ

k
= 2Oε,∆(log log k/

√
log k)/k.

For sufficiently large k (depending on ε, ∆, ρ), this term is at most 2(log k)1/2+ρ
/k.

If there exists a g(k) · (nk)D-time algorithm that can distinguish the two cases in the theorem
statement for some constant D, then pick sufficiently large k such that the time needed to produce
ΓΦ,S is O(2δm) and its size is at most 2δm/D, and that val(ΓΦ,S ) < 21/(log k)1/2+ρ

/k whenever val(Φ) <
1− ε. When we run this algorithm on ΓΦ,S for such k, the algorithm can distinguish between
val(Φ) = 1 and val(Φ) < 1− ε in O(2δm) time, which contradicts Gap-ETH. �
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7 Inapproximability of Directed Steiner Network
We now move on to prove hardness of approximation of DSN by simply plugging in the our main
theorems to known reductions from 2-CSPs to DSN. The properties of the reduction are stated in
the lemma below. Note that, while the reduction is attributed to Dodis and Khanna [DK99], the
lemma below is extracted from [CFM17] since, in [DK99], the full description and its properties are
left out due to space constraint.

Lemma 34 ([CFM17, Lemma 27]) There exists a polynomial time reduction that, given a 2-CSP in-
stance10 Γ with the constraint graph being a complete graph on k variables, produces an edge-weighted
directed graph G = (V, E) and a set of demand pairs D = {(s1, t1), . . . , (sk′ , tk′)} such that

• (Completeness) If val(Γ) = 1, then there exists a subgraph H of cost 1 that satisfies all demands.
• (Soundness) If val(Γ) < γ, every subgraph satisfying all demand pairs has cost more than

√
2/γ.

• (Parameter Dependency) k′ = k2 − k.

Note that the exponent 1/4 in the hardness of approximating DSN comes from two places: we lose
a square factor in the parameter (i.e. k′ = Θ(k2)) and another square factor in the gap.

Proof of Corollary 3. Suppose for the sake of contradiction that, for some constant ρ′ > 0, there exists
a polynomial time 2(log k′)1/2+ρ′

/(k′)1/4-approximation algorithm where k′ is the number of demand
pairs; let us call this algorithm A. Moreover, let ρ be any constant smaller than ρ′.

Given a 2-CSP instance Γ with complete constraint graph on k variables, we invoke Lemma 34
to produce a DSN instance (G, D) where |D| = k′ = k2 − k. From the completeness of the
construction, we have that, if val(Γ) = 1, then the optimum of (G, D) is also 1. On the other hand,
if val(Γ) < 2(log k)1/2+ρ

/k, then the optimum of (G,D) must be more than
√

2k/2(log k)1/2+ρ , which
is at least (k′)1/4/2(log k′)1/2+ρ′

when k is sufficiently large. Hence, by running algorithm A, we can
distinguish these two cases of Γ in polynomial time. From Theorem 1, this contradicts ETH. �

Proof of Corollary 4. Suppose for the sake of contradiction that, for some constant ρ′ > 0 and for
some function g, there exists a g(k′) · (nk′)O(1)-time 2(log k′)1/2+ρ′

/(k′)1/4-approximation algorithm
where k′ is the number of demand pairs; let us call this algorithm A. Moreover, let ρ be any constant
smaller than ρ′.

Given a 2-CSP instance Γ with complete constraint graph on k variables, we invoke Lemma 34 to
produce a DSN instance (G, D) where |D| = k′ = k2− k. From the completeness of the construction,
if val(Γ) = 1, then the optimum of (G, D) is also 1. On the other hand, if val(Γ) < 2(log k)1/2+ρ

/k,
then the optimum of (G,D) must be more than

√
2k/2(log k)1/2+ρ , which is at least (k′)1/4/2(log k′)1/2+ρ′

when k is sufficiently large. Hence, by running algorithm A, we can distinguish these two cases of
Γ in time t(k) · |Γ|O(1) where t(k) = g(k2 − k). From Theorem 2, this contradicts Gap-ETH. �

8 Conclusion and Discussions

In this work, we show that 2-CSP is ETH-hard to approximate to within a factor of k1−o(1) where
k denotes the number of variables. This ratio is nearly optimal since a trivial algorithm yields an
O(k)-approximation for the problem. Under Gap-ETH, we strengthen our result by improving the

10Lemma 27 of [CFM17] states this reduction in terms of Maximum Colored Subgraph Isomorphism. However, it is
easy to see that the reduction also works with 2-CSPs as well.

28



lower order term in the inapproximability factor and ruling out not only polynomial time algorithm
but FPT algorithms parameterized by k. Due to a known reduction, our results also imply k1/4−o(1)

hardness of approximating DSN where k denotes the number of demand pairs.

Of course the polynomial sliding scale conjecture still remains open after our work and, as touched
upon in the introduction, resolving the conjecture will help advance our understanding of ap-
proximability of many problems. Even without fully resolving the conjecture, it may still be good
to further study the interaction between the number of variables k and the alphabet size n. For
instance, while we show the inapproximability result with ratio almost linear in k, the dependency

between n and k is quite bad; in particular, in our ETH-hardness reduction, n is 22(log k)d
for some

constant d > 0. Would it be possible to improve this dependency (say, to n = kpolylogk)?

On the other hand, as explained earlier, k must be independent of n in the parameterized setting
and hence our question above does not apply to this regime. However, one intriguing question
in this area is whether a parameterized hardness of approximation for 2-CSPs can be proved
under any assumption weaker than Gap-ETH (e.g. ETH). This is not known even for a constant
inapproximability factor. In fact, it is not hard to see that inapproximability of parameterized 2-CSPs
implies inapproximability of parameterized clique; the latter is a well-studied problem that has so
far resisted attempts at proving inapproximability from any assumption except Gap-ETH [CHK13,
HKK13, KS16]. Note that this is in contrast to some other parameterized problems, such as
dominating set, for which W[1]-hardness of approximation is known [CL16, KLM18]11.

Another interesting research direction is to try to prove similar hardness results for other problems.
For example, Densest k-Subgraph (DkS) is one such candidate problem; similar to 2-CSPs with k
variables, the problem can be approximated trivially to within O(k)-factor and no polynomial time
(or even FPT time parameterized by k) k1−ε-approximation algorithm is known for the problem for
any ε > 0. Hence, it may be possible to prove ETH-hardness of factor k1−o(1) for DkS as well.
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A Constructing Well-Behaved Sets
The main goal of this section is to prove Lemma 20. We divide this section into two parts. In the
first part (A.1), we use probabilistic argument to show that a collection of random subsets satisfied
properties as required in Lemma 20. Then, in the section part (A.2), we show how to construct these
subsets deterministically in subexponential time, which is required if a deterministic reduction
from 3-SAT to 2-CSP is sought.

A.1 Random Sets Behave Well

For any universe U and any 0 < α < 1, let DU ,α denote the distribution on subsets of U where
S ∼ DU ,α is generated by including each element u ∈ U independently with probability α.

The main lemma of this section is the following, which implies the existential part of
Lemma 20.

Lemma 35 For any 0 < α, µ, η < 1 and any m, k, ` ∈ N, let S1, . . . , Sk be subsets of an m-
element universe U drawn independently at random from DU ,α. Then, with probability at least
1− 2log k(d8 ln(2/µ)/αe)−µ2m/16 − 2`dln(2/η)/α`e log(2k)−ηm/6 − 2−αm/3, the following properties hold:

• (Size) Every subset has size at most 2αm.
• (Intersection Disperser) the collection S = {S1, . . . , Sk} is a (dln(2/η)/α`e, `, η)-disperser.
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• (Uniformity) Any subcollection S̃ ⊆ S of size d8 ln(2/µ)/αe is (α/2, µ)-uniform.

By union bound, the above lemma is an immediate implication of Lemmas 36, 37 and 38, which are
stated and proved below. All proofs consist only of straightforward probabilistic arguments.

Lemma 36 For any 0 < α, µ < 1 and any m, k ∈N, let S1, . . . , Sk be subsets of an m-element universe U
drawn independently at random from DU ,α. Then, for every subcollection S̃ ⊆ S of size d8 ln(2/µ)/αe, S̃
is (α/2, µ)-uniform with probability at least 1− 2log k(d8 ln(2/µ)/αe)−µ2m/16.

Proof. Consider any subcollection S̃ = {Sj1 , . . . , Sjh} where h = d8 ln(2/µ)/αe. We will calculate
the probability that S̃ is (α/2, µ)-uniform and use union bound over all such S̃ ’s to derived the
desired result.

Recall that, for each u ∈ U , u is included independently in each set Sji with probability α. Hence,
we can apply Chernoff bound to lower bound the probability that u is included in less than α/2
fraction of the subsets in S̃ ; in particular, this yields the following inequality.

Pr
[
|{S ∈ S̃ | u ∈ S}| > (α/2)|S̃ |

]
> 1− e−α|S̃ |/8 > 1− µ/2 (10)

where the second inequality comes from |S̃ | = h > 8 ln(2/µ)/α.

Now, note again that the event |{S ∈ S̃ | u ∈ S}| > (α/2)|S̃ | is independent for each u ∈ U . Hence,
we can again apply Chernoff bound to lower bound the probability that this event occurs for at
least (1− µ) fraction of u ∈ U , which gives the following bound:

Pr
[
|{u ∈ U | {S ∈ S̃ | u ∈ S}| > (α/2)|S̃ |}| > (1− µ)m

]
> 1− e(−µ2(1−µ/2)m)/8 > 1− e−µ2m/16.

In other words, for each subcollection S of size at least 8 ln(2/µ)/α, S is not (α/2, µ)-uniform
with probability at most e−µ2m/16. Since there are no more than kh such subcollection, union
bound implies that the probability that every subcollection of size h is (α/2, µ)-uniform is at least
1− khe−µ2m/16 > 1− 2h log k−µ2m/16. �

Lemma 37 For any 0 < α, η < 1 and any m, k, ` ∈ N, let r = dln(2/η)/α`e and let S1, . . . , Sk be
subsets of an m-element universe U drawn independently at random from DU ,α. Then, the collection
S = {S1, . . . , Sk} is (r, `, η)-intersection disperser with probability at least 1− 2`r log(2k)−ηm/6.

Proof. Consider any disjoint subcollections S1 = {Sj1,1 , . . . , Sj1,h1
}, . . . ,S r = {Sjr,1 , . . . , Sjr,hr

} where
h1, . . . , hr 6 `. We will compute the probability that |

⋃r
i=1 (

⋂
S∈S i S)| > (1− η)m and then use

union bound over all choices of S1, . . . ,S r.

Let us consider an element u ∈ U . For each subcollection S i, since u is included in each of
Sji,1 , . . . , Sji,hi

independently with probability α, Pr [u ∈ ⋂S∈S i S] = αhi > α`. Since the subcollections
are disjoint, the event u /∈ ⋂S∈S i S is independent for different S i. Hence, we have

Pr

[
u /∈

r⋃
i=1

( ⋂
S∈S i

S

)]
=

r

∏
i=1

Pr

[
u /∈

⋂
S∈S i

S

]
6 (1− α`)r 6 e−α`r 6 η/2 (11)

where the last inequality comes from r > ln(2/η)/α`.

34



For different u ∈ U , the event u /∈ ⋃r
i=1 (

⋂
S∈S i S) is independent. Applying the Chernoff bound,

we have

Pr

[∣∣∣∣∣ r⋃
i=1

( ⋂
S∈S i

S

)∣∣∣∣∣ < (1− η)m

]
6 e−ηm/6.

Finally, note that the number of different subcollections S1, . . . ,Sr (i.e. {j1,1, . . . , j1,h1}, . . . , {jr,1, . . . , jr,hr})
is at most (2k)`r; this is because there are at most (k

0) + (k
1) + · · ·+ (k

`) 6 (`+ 1)k` 6 (2k)` choices
of Si for each i ∈ [r]. As a result, by union bound, the probability that |

⋃r
i=1 (

⋂
S∈S i S)| < (1− η)m

is at most (2k)`r · e−ηm/6 > 2`r log(2k)−ηm/6 as desired. �

Lemma 38 For any 0 < α < 1 and any m ∈N, let S1, . . . , Sk be subsets of an m-element universe U drawn
independently at random from DU ,α. Then, |S1|, . . . , |Sk| 6 2αm with probability at least 1− 2log k−αm/3.

Proof. For each i ∈ [k], since each u ∈ U is included in Si independently w.p. α, Chernoff bound
implies that Pr[|Si| > 2αm] 6 2−αm/3. By union bound over all i ∈ [k], we get the desired bound. �

A.2 A Deterministic Construction

Proof of Lemma 20. The existence follows immediately from Lemma 35. Now, one way to construct
S is to just enumerate over all choices of S1, . . . , Sk. However, this is rather slow as there can be as
many as 2m choices of Si, i.e., the running time can be as high as poly(m)2km. (Saving can be made
by consider only Si’s of size at most 2αm, but the running time here is still (at least) poly(m)2αkm.)
We would like to get rid of the dependency of m from the exponent. We do so quite easily by
dividing U into parts of size roughly m0, finding well-behaved subsets for each part and put them
together. More precisely, let us consider the following algorithm.

(a) Partition U into U1 ∪ · · · ∪ Ubm/m0c where each Ui has size between m0 and 2m0 (inclusive).
(b) From Lemma 35, for each i ∈ [bm/m0c] there exists a collection Si of k subsets of Ui such that

• Every subset has size at most 2α|Ui|.
• Si is a (dln(2/η)/α`e, `, η)-disperser (with respect to Ui).
• Any subcollection S̃ ⊆ Si of size d8 ln(2/µ)/αe is (α/2, µ)-uniform (with respect to Ui).

Since Ui is of size O(m0), we can enumerate all possible collections of k subsets of Ui and
check whether it satisfies the three properties above to find such a collection Si. There are
2O(km0) collections to enumerate over. For each collection it takes at most poly(m0)2O(k2) time
to determine whether it is a desired intersection disperser because there are no more than
(k + 1)2k = 2O(k2) different disjoint subcollections of k sets. Moreover, we can check the
uniformity in poly(m0)2O(k) time. In total, this process takes time at most poly(m0)2O(m0k2).

(c) Suppose that Si = {Si,1, . . . , Si,k} for every i ∈ [bm/m0c]. We finally take S =

{⋃bm/m0c
i=1 Si,1, . . . ,

⋃bm/m0c
i=1 Si,k}

It is not hard to see that S satisfies the desired properties and that the algorithm runs in
poly(m)2O(m0k2) time as desired. �
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