
Lower Bounds for Tolerant Junta and Unateness Testing

via Rejection Sampling of Graphs

Amit Levi∗ Erik Waingarten†

May 2, 2018

Abstract

We introduce a new model for testing graph properties which we call the rejection sampling
model. We show that testing bipartiteness of n-nodes graphs using rejection sampling queries
requires complexity Ω̃(n2). Via reductions from the rejection sampling model, we give three new
lower bounds for tolerant testing of Boolean functions of the form f : {0, 1}n → {0, 1}:

• Tolerant k-junta testing with non-adaptive queries requires Ω̃(k2) queries.

• Tolerant unateness testing requires Ω̃(n) queries.

• Tolerant unateness testing with non-adaptive queries requires Ω̃(n3/2) queries.

Given the Õ(k3/2)-query non-adaptive junta tester of Blais [Bla08], we conclude that non-
adaptive tolerant junta testing requires more queries than non-tolerant junta testing. In ad-
dition, given the Õ(n3/4)-query unateness tester of Chen, Waingarten, and Xie [CWX17b] and

the Õ(n)-query non-adaptive unateness tester of Baleshzar, Chakrabarty, Pallavoor, Raskhod-
nikova, and Seshadhri [BCP+17b], we conclude that tolerant unateness testing requires more
queries than non-tolerant unateness testing, in both adaptive and non-adaptive settings. These
lower bounds provide the first separation between tolerant and non-tolerant testing for a natural
property of Boolean functions.

∗University of Waterloo. Email: amit.levi@uwaterloo.ca.
†Columbia University. Email: eaw@cs.columbia.edu.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 94 (2018)

mailto: amit.levi@uwaterloo.ca
mailto: eaw@cs.columbia.edu

Contents

1 Introduction 1
1.1 Applications to Tolerant Testing: Juntas and Unateness 2
1.2 Related Work . 3
1.3 Techniques and High Level Overview . 5

2 Preliminaries 8

3 The Rejection Sampling Model 8
3.1 The Distributions G1 and G2 . 9

4 Tolerant Junta Testing 9
4.1 High Level Overview . 10
4.2 The Distributions Dyes and Dno . 11
4.3 Reducing from Rejection Sampling . 13

5 Tolerant Unateness Testing 16
5.1 High Level Overview . 16
5.2 The Distributions Dyes and Dno . 19
5.3 Reducing from Rejection Sampling . 25
5.4 Proof of Lemma 5.4 . 25
5.5 Proof of Lemma 5.5 . 26

6 A lower bound for distinguishing G1 and G2 with rejection samples 35
6.1 High Level Overview . 36
6.2 Proof of the Consistency Lemma: Lemma 6.2 . 38
6.3 Proof of the Bad Outcomes Lemma: Lemma 6.4 . 41
6.4 Proof of the Good Outcomes Lemma: Lemma 6.3 . 45

A A Useful Claim 51

B Reducing to the case k = 3
4n 53

1 Introduction

Over the past decades, property testing has emerged as an important line of research in sublinear
time algorithms. The goal is to understand randomized algorithms for approximate decision making,
where the algorithm needs to decide (with high probability) whether a huge object has some property
by making a few queries to the object. Many different types of objects and properties have been
studied from this property testing perspective (see the surveys by Ron [Ron08, Ron10] and the recent
textbook by Goldreich [Gol17] for overviews of contemporary property testing research). This paper
deals with property testing of Boolean functions f : {0, 1}n → {0, 1} and property testing of graphs
with vertex set [n].

In this paper we describe a new model of graph property testing, which we call the rejection sampling
model. For n ∈ N and a subset P of graphs on the vertex set [n], we say a graph G on vertex set
[n] has property P if G ∈ P and say G is ε-far from having property P if all graphs H ∈ P differ
on at least εn2 edges1. The problem of ε-testing P with rejection sampling queries is the following
task:

Given some ε > 0 and access to an unknown graph G = ([n], E), output “accept” with
probability at least 2

3 if G has property P, and output “reject” with probability at least
2
3 if G is ε-far from having property P. The access to G is given by the following oracle
queries: given a query set L ⊆ [n], the oracle samples an edge (i, j) ∼ E uniformly at
random and returns {i, j} ∩ L.

We measure the complexity of algorithms with rejection sampling queries by considering the sizes
of the queries. The complexity of an algorithm making queries L1, . . . , Lt ⊂ [n] is

∑t
i=1 |Li|.

The rejection sampling model allows us to study testers which rely on random sampling of edges,
while providing the flexibility of making lower-cost queries. This type of query access strikes a
delicate balance between simplicity and generality: queries are constrained enough for us to show
high lower bounds, and at the same time, the flexibility of making queries allows us to reduce the
rejection sampling model to Boolean function testing problems. Specifically, we reduce to tolerant
junta testing and tolerant unateness testing (see Subsection 1.1).

Our main result in the rejection sampling model is regarding non-adaptive algorithms. These
algorithms need to fix their queries in advance and are not allowed to depend on answers to previous
queries (in the latter case we say that the algorithm is adaptive). We show a lower bound on the
complexity of testing whether an unknown graph G is bipartite using non-adaptive queries.

Theorem 1. There exists a constant ε > 0 such that any non-adaptive ε-tester for bipartiteness in
the rejection sampling model has cost Ω̃(n2)2.

More specifically, Theorem 1 follows from applying Yao’s principle to the following lemma.

Lemma 1.1. Let G1 be the uniform distribution over the union of two disjoint cliques of size n/2,
and let G2 be the uniform distribution over complete bipartite graphs with each part of size n/2.

1The distance definition can be modified accordingly when one considers bounded degree or sparse graphs.
2We use the notations Õ, Ω̃ to hide polylogarithmic dependencies on the argument, i.e. for expressions of the form

O(f logc f) and Ω(f/ logc f) respectively (for some absolute constant c).

1

Any deterministic non-adaptive algorithm that can distinguish between G1 and G2 with constant
probability using rejection sampling queries, must have complexity Ω̃(n2).

We discuss a number of applications of the rejection sampling model (specifically, of Lemma 1.1) in
the next subsection. In particular, we obtain new lower bounds in the tolerant testing framework
introduced by Parnas, Ron, and Rubinfeld in [PRR06] for two well-studied properties of Boolean
functions (specifically, k-juntas and unateness; see the next subsection for definitions of these prop-
erties). These lower bounds are obtained by a reduction from the rejection sampling model; we
show that too-good-to-be-true Boolean function testers for these properties imply the existence of
rejection sampling algorithms which distinguish G1 and G2 with õ(n2) complexity. Therefore, we
may view the rejection sampling model as a useful abstraction in studying the hard instances of
tolerant testing k-juntas and unateness.

1.1 Applications to Tolerant Testing: Juntas and Unateness

Given n ∈ N and a subset P of n-variable Boolean functions, a Boolean function f : {0, 1}n →
{0, 1} has property P if f ∈ P. The distance between Boolean functions f, g : {0, 1}n → {0, 1}
is dist(f, g) = Prx∼{0,1}n [f(x) 6= g(x)]. The distance of f to the property P is dist(f,P) =
ming∈P dist(f, g). We say that f is ε-close to P if dist(f,P) ≤ ε and f is ε-far from P if dist(f,P) >
ε. The problem of tolerant property testing [PRR06] of P asks for query-efficient randomized
algorithms for the following task:

Given parameters 0 ≤ ε0 < ε1 < 1 and black-box query access to a Boolean function
f : {0, 1}n → {0, 1}, accept with probability at least 2

3 if f is ε0-close to P and reject
with probability at least 2

3 if f is ε1-far from P.

An algorithm which performs the above task is an (ε0, ε1)-tolerant tester for P. A (0, ε1)-tolerant
tester is a standard property tester or a non-tolerant tester. As noted in [PRR06], tolerant testing is
not only a natural generalization, but is also very often the desirable attribute of testing algorithms.
This motivates the high level question: how does the requirement of being tolerant affect the
complexity of testing the properties studied? We make progress on this question by showing query-
complexity separations for two well-studied properties of Boolean functions: k-juntas, and unate
functions.

• (k-junta) A function f : {0, 1}n → {0, 1} is a k-junta if it depends on at most k of its variables,
i.e., there exists k distinct indices i1, . . . ik ∈ [n] and a k-variable function g : {0, 1}k → {0, 1}
where f(x) = g(xi1 , . . . , xik) for all x ∈ {0, 1}n.

• (unateness) A function f : {0, 1}n → {0, 1} is unate if f is either non-increasing or non-
decreasing in every variable. Namely, there exists a string r ∈ {0, 1}n such that the function
f(x⊕ r) is monotone with respect to the bit-wise partial order on {0, 1}n.

The next theorem concerns non-adaptive tolerant testers for k-juntas.

Theorem 2. For any α < 1, there exists constants 0 < ε0 < ε1 < 1 such that for any k = k(n) ≤
αn, any non-adaptive (ε0, ε1)-tolerant k-junta tester must make Ω̃(k2) queries.

2

We give a noteworthy consequences of the Theorem 2. In [Bla08], Blais gave a non-adaptive Õ(k3/2)-
query tester for (non-tolerant) testing of k-juntas, which was shown to be optimal for non-adaptive
algorithms by Chen, Servedio, Tan, Waingarten and Xie in [CST+17]. Combined with Theorem 2,
this shows a polynomial separation in the query complexity of non-adaptive tolerant junta testing
and non-adaptive junta testing.

The next two theorems concern tolerant testers for unateness.

Theorem 3. There exists constants 0 < ε0 < ε1 < 1 such that any (possibly adaptive) (ε0, ε1)-
tolerant unateness tester must make Ω̃(n) queries.

Theorem 4. There exists constant 0 < ε0 < ε1 < 1 such that any non-adaptive (ε0, ε1)-tolerant
unateness tester must make Ω̃(n3/2) queries.

A similar separation in tolerant and non-tolerant testing occurs for the property of unateness as
a consequence of Theorem 3 and Theorem 4. Recently, in [BCP+17b], Baleshzar, Chakrabarty,
Pallavoor, Raskhodnikova, and Seshadhri gave a non-adaptive Õ(n)-query tester for (non-tolerant)
unateness testing, and Chen, Waingarten and Xie [CWX17a] gave an (adaptive) Õ(n3/4)-query
tester for (non-tolerant) unateness testing. We thus, conclude that by Theorem 3 and Theorem 4,
tolerant unateness testing is polynomially harder than (non-tolerant) unateness testing, in both
adaptive and non-adaptive settings.

1.2 Related Work

The properties of k-juntas and unateness have received much attention in property testing research
([FKR+04, CG04, Bla08, Bla09, BGSMdW13, STW15, CST+17, BCE+18] study k-juntas, and
[GGL+00, KS16, CS16, BCP+17b, CWX17a, CWX17b] study unateness). We briefly review the
current state of affairs in (non-tolerant) k-junta testing and unateness testing, and then discuss
tolerant testing of Boolean functions and the rejection sampling model.

Testing k-juntas. The problem of testing k-juntas, introduced by Fischer, Kindler, Ron, Safra,
and Samorodnitsky [FKR+04], is now well understood up to poly-logarithmic factors. Chock-
ler and Gutfreund [CG04] show that any tester for k-juntas requires Ω(k) queries (for a constant
ε1). Blais [Bla09] gave a junta tester that uses O(k log k + k/ε1) queries, matching the bound of
[CG04] up to a factor of O(log k) for constant ε1. When restricted to non-adaptive algorithms,
[FKR+04] gave a non-adaptive tester making Õ(k2/ε1) queries, which was subsequently improved
in [Bla08] to Õ(k3/2)/ε1. In terms of lower bounds, Buhrman, Garcia-Soriano, Matsliah, and de
Wolf [BGSMdW13] gave a Ω(k log k) lower bound for ε = Ω(1), and Servedio, Tan, and Wright
[STW15] gave a lower bound which showed a separation between adaptive and non-adaptive algo-
rithms for ε1 = 1

log k . These results were recently improved in [CST+17] to Ω̃(k3/2/ε1), settling the
non-adaptive query complexity of the problem up to poly-logarithmic factors.

Testing unateness. The problem of testing unateness was introduced alongside the problem
of testing monotonicity in Goldreich, Goldwasser, Lehman, Ron, and Samorodnitsky [GGL+00],
where they gave the first O(n3/2/ε1)-query non-adaptive tester. Khot and Shinkar [KS16] gave the

3

first improvement by giving a Õ(n/ε1)-query adaptive algorithm. A non-adaptive algorithm with
Õ(n/ε1) queries was given in [CC16, BCP+17b]. Recently, [CWX17a, BCP+17a] show that Ω̃(n)
queries are necessary for non-adaptive one-sided testers. Subsequently, [CWX17b] gave an adaptive
algorithm testing unateness with query complexity Õ(n3/4/ε2

1). The current best lower bound for
general adaptive testers appears in [CWX17a], where it was shown that any adaptive two-sided
tester must use Ω̃(n2/3) queries.

Tolerant testing. Once we consider tolerant testing, i.e., the case ε0 > 0, the picture is not
as clear. In the paper introducing tolerant testing, [PRR06] observed that standard algorithms
whose queries are uniform (but not necessarily independent) are inherently tolerant to some extent.
Nevertheless, achieving (ε0, ε1)-tolerant testers for constants 0 < ε0 < ε1, can require applying
different methods and techniques (see e.g, [GR05, PRR06, FN07, ACCL07, KS09, MR09, FR10,
CGR13, BRY14, BMR16, Tel16]).

By applying the observation from [PRR06] to the unateness tester in [BCP+17b], the tester accepts
functions which are O(ε1/n)-close to unate with constant probability. We similarly obtain weak
guarantees for tolerant testing of k-juntas. Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio,
and Wan [DLM+07] observed that one of the (non-adaptive) junta testers from [FKR+04] accepts
functions that are poly(ε1, 1/k)-close to k-juntas. Chakraborty, Fischer, Garcia-Soŕıano, and Mat-
sliah [CFGM12] noted that the analysis of the junta tester of Blais [Bla09] implicitly implies an
exp(k/ε1)-query complexity tolerant tester which accepts functions that are ε1/c-close to some k-
junta (for some constant c > 1) and rejects functions that are ε1-far from every k-junta. Recently,
Blais, Canonne, Eden, Levi and Ron [BCE+18] showed that when required to distinguish between
the cases that f is ε1/10-close to a k-junta, or is ε1-far from a 2k-junta, poly(k, 1/ε1) queries suffice.

For general properties of Boolean functions, tolerant testing could be much harder than standard
testing. Fischer and Fortnow [FF06] used PCPs in order to construct a property of Boolean func-
tions P which is (0, ε1)-testable with a constant number of queries (depending on ε1), but any
(1/4, ε1)-tolerant test for P requires nc queries for some c > 0. While [FF06] presents a strong sepa-
ration between tolerant and non-tolerant testing, the complexity of tolerant testing of many natural
properties remains open. We currently neither have a poly(k, 1

ε1
)-query tester which (ε0, ε1)-tests k-

juntas, nor a poly(n, 1
ε1

)-query tester that (ε0, ε1)-tests unateness or monotonicity when ε0 = Θ(ε1).

Testing graphs with rejection sampling queries. Even though the problem of testing graphs
with rejection sampling queries has not been previously studied, the model shares characteristics
with previous studied frameworks. These include sample-based testing studied by Goldreich, Gold-
wasser, and Ron in [GGR98, GR16], where the oracle receives random samples from the input. One
crucial difference between rejection sampling algorithms (which always query [n]) and sample-based
testers is the fact that rejection sampling algorithms only receive positive examples (in the form of
edges), as opposed to random positions in the adjacency matrix (which may be a negative example
indicated the non-existence of an edge).

The rejection sampling model for graph testing also bears some resemblance to the conditional
sampling framework for distribution testing introduced in Canonne, Ron, and Servedio, as well as
Chakraborty, Fischer, Goldhirsh, and Matsliah [CRS15, CFGM16], where the algorithm specifies a
query set and receives a sample conditioned on it lying in the query set.

4

1.3 Techniques and High Level Overview

We first give an overview of how the lower bound in the rejection sampling model (Lemma 1.1)
implies lower bounds for tolerant testing of k-juntas and unateness, and then we give an overview
of how Lemma 1.1 is proved.

Reducing Boolean Function Testing to Rejection Sampling This work should be consid-
ered alongside some recent works showing lower bounds for testing the properties of monotonicity,
unateness, and juntas in the standard property testing model [BB16, CWX17a, CST+17]. The
lower bounds in [BB16, CWX17a] and [CST+17] may be reinterpreted as following the same gen-
eral paradigm. We discuss this general view next, followed by an overview of this work. At a high
level, one may view the lower bounds from [BB16, CWX17a, CST+17] as proceeding in three steps:

1. First, design a randomized indexing function Γ : {0, 1}n → [N] that partitions the Boolean
cube {0, 1}n into roughly equal parts in a way compatible with the property (either monotonic-
ity, unateness, or junta). We want to ensure that algorithms that make few queries cannot
learn too much about Γ, and that queries falling in the same part are close in Hamming
distance.

2. Second, define two distributions over sub-functions hi : {0, 1}n → {0, 1} for each i ∈ [N].
The hard functions are defined by f(x) = hΓ(x)(x), so that one distribution corresponds to
functions with the property, and the other distribution corresponds to functions far from the
property.

3. Third, show that any testing algorithm for the property is actually solving some algorithmic
task (determined by the distributions of hi) which is hard when queries are close in Hamming
distance.

Belovs and Blais [BB16] used a construction of Talagrand [Tal96], known as the Talagrand function,
to implement a randomized partition in a monotone fashion. The Talagrand function is a randomized
DNF of 2

√
n monotone terms of size

√
n, and one may define Γ : {0, 1}n → [2

√
n] to output the index

of the first term of a Talagrand function which satisfies input x ∈ {0, 1}n. One can show that any
two queries z, z′ ∈ {0, 1}n which are semi-balanced3 with Hamming distance more than Ω̃(n3/4) will
fall in different parts with high probability. The sub-functions hi : {0, 1}n → {0, 1} are then given by
random dictators or random anti-dictators, so the algorithmic task is simple: determine whether the
distribution over functions hi is supported on dictators or anti-dictators when queries in the same
part are at distance at most Õ(n3/4) from each other. An argument in the spirit of the one-sided error
monotonicity lower bound from [FLN+02] gives an Ω(n1/4) lower bound for monotonicity testing.
[CWX17a] further refined the idea by designing improved randomized partitions Γ : {0, 1}n → [N],
which they called two-level Talagrand functions. The improved construction Γ partitions {0, 1}n in
a monotone fashion, but has the property that queries z, z′ ∈ {0, 1}n which are semi-balanced with
Hamming distance Ω̃(n2/3) fall into different parts with high probability, thus bringing the lower
bound to Ω̃(n1/3) using the same algorithmic task as [BB16].

3We will say z ∈ {0, 1}n is semi-balanced if |z| ≈ n
2
±
√
n.

5

Higher lower bounds for unateness are possible because the unateness property allows for reductions
to harder algorithmic tasks. Specifically, [CWX17a] consider the following algorithmic task: there
are two classes of distributions supported on [n]×{+,−}, and the task is to distinguish two classes
with random samples. One class of distributions consists of the uniform distribution µ over [n] ×
{+,−}, the other class of distributions is uniform over the support, but each µ satisfies the property
that each j ∈ [n] has either µ(j,+) = 0 or µ(j,−) = 0. Each sub-function hi is specified by a
random sample of µ, where hi is a dictator in variable j if (j,+) was sampled, and an anti-dictator
in variable j if (j,−) was sampled. The first key observation is that the distance of the functions
f(x) = hΓ(x)(x) from unateness, depends on whether µ comes from the first or second case. The
second key observation is that multiple random samples are required to distinguish the two classes
of distributions.4

For the case of k-juntas, [CST+17] used a simple indexing function Γ : {0, 1}n → [2n/2] that parti-
tions {0, 1}n according to projections on randomly chosen n

2 variables. The second and third step
also follows the above strategy. In their case, they define the SSSQ and SSEQ (for Set-Size-Set-
Queries and Set-Size-Element-Queries) problems as the hard algorithmic task, which give the lower
bounds.

Our lower bounds for tolerant testing follow the same paradigm. For the randomized indexing
function, we use the construction from [CST+17] for the junta lower bound and a Talagrand-based
construction (similar to [CWX17a], but somewhat simpler) for the unateness lower bounds. The
hard algorithmic task we embed is distinguishing between the distributions G1 and G2 with access
to a rejection sampling oracle.

At a high level, our reductions show that the class of functions which are close to k-juntas and
the class of functions which are close to unate have much richer structure than k-juntas and unate
functions. In particular, the distance of the functions drawn from our hard distributions to k-
junta and unateness will depend on a global parameter of an underlying graph used to define
the functions5. Thus, tolerant testing algorithms for k-juntas and unateness must explore the
relationships between different variables to gain some information about the underlying graph. This
lies in stark contrast to the algorithms of [Bla08], [CWX17b], and [BCP+17b] which test k-juntas
(non-adaptively) and unateness, since these three algorithms treat the variables independently.

The distributions and the reductions themselves are quite involved, so we defer a high level overview
of the reductions to those corresponding sections (Sections 4 and 5).

Distinguishing G1 and G2 with Rejection Sampling Queries In order to prove Lemma 1.1,
one needs to rule out any deterministic non-adaptive algorithm which distinguishes between G1

and G2 with rejection sampling queries of complexity õ(n2). In order to keep the discussion at a
high level, we identify three possible “strategies” for determining whether an underlying graph is a
complete bipartite graph, or a union of two disjoint cliques:

4For example, in order to distinguish whether a distribution µ belongs to the first or second class with one-sided
error, an algorithm must observe two samples (j,+) and (j,−) from µ, which would indicate that µ is uniform over
the whole set [n]× {+,−}. In fact, the adaptive algorithm for unateness testing in [CWX17b] can be interpreted as
one based on solving this algorithmic task with a “rejection sampling”-style oracle.

5The relevant graph parameter in k-juntas and unateness will be different. Luckily, both graph parameters will
have gaps in their value depending on the distribution the graphs were drawn from (either G1 or G2). This allows us
to reuse the work of proving Lemma 1.1 to obtain Theorem 2, Theorem 3, and Theorem 4.

6

1. One approach is for the algorithm to sample edges and consider the subgraph obtained from
edges returned by the oracle. For instance, the algorithm may make all rejection sampling
queries to be [n]. These queries are expensive in the rejection sampling model, but they
guarantee that an edge from the graph will be observed. If the algorithm is lucky, and there
exists a triangle in the subgraph observed, the graph must not be bipartite, so it must come
from G2.

2. Another sensible approach is for the algorithm to forget about the structure of the graph,
and simply view the distribution on the edges generated by the randomness in the rejection
sampling oracle as a distribution testing problem. Suppose for simplicity that the algorithm
makes rejection sampling queries [n]. Then, the corresponding distributions supported on
edges from G1 and G2 will be Ω(1)-far from each other, so a distribution testing algorithm can
be used.

3. A third, more subtle, approach is for the algorithm to use the fact that G1 and G2 correspond
to a complete bipartite graph and the union of two cliques, and extract knowledge about the
non-existence of edges when making queries which return either ∅ or a single vertex. More
specifically, an algorithm may query a random subset L ⊂ [n] of size n

2 . The subset L will be
split among the two sides of the graph (in the case of G1 and G2), and when an edge sampled
by the oracle is incident on only one vertex of L, the rejection sampling oracle will return
this one vertex. At this point, the algorithm may extract some information about how L is
divided in the underlying graph, and eventually distinguish between G1 and G2.

The three strategies mentioned above all fail to give õ(n2) rejection sampling algorithms. The
first approach fails because with a budget of õ(n2), rejection sampling algorithms will observe
subgraphs which consist of various trees of size at most log n, thus we will not observe cycles.
The second approach fails since the distributions are supported on Ω(n2) edges, so distribution
testing algorithms will require Ω(n) edges (which costs Ω(n2)) to distinguish between G1 and G2.
Finally, the third approach fails since algorithms will only observe o(n) responses from the oracle
corresponding to lone vertices which will be split roughly evenly among the unknown parts of the
graph, so these observations will not be enough to distinguish between G1 and G2.

Our lower bound rules out the three strategies sketched above when the complexity is õ(n2), and
shows that if the above three strategies do not work (in any possible combination with each other as
well), then no non-adaptive algorithm of complexity õ(n2) will work. The main technical challenge
is to show that the above strategies are the only possible strategies to distinguish G1 and G2. In
Section 6, we give a more detailed, yet still high-level discussion of the proof of Lemma 1.1.

Finally, the analysis of Lemma 1.1 is tight; there is a non-adaptive rejection sampling algorithm
which distinguishes G1 and G2 with complexity Õ(n2). The algorithm (based on the first approach
mentioned above) is simple: make Õ(n) queries L = [n], and if we observe an odd-length cycle, we
output “G1”, otherwise, output “G2”.

7

2 Preliminaries

We use boldfaced letters such as A,M to denote random variables. Given a string x ∈ {0, 1}n and
j ∈ [n], we write x(j) to denote the string obtained from x by flipping the j-th coordinate. An
edge along the j-th direction in {0, 1}n is a pair (x, y) of strings with y = x(j). In addition, for
α ∈ {0, 1} we use the notation x(j→α) to denote the string x where the jth coordinate is set to α.
Given x ∈ {0, 1}n and S ⊆ [n], we use x|S ∈ {0, 1}S to denote the projection of x on S. For a
distribution D we write d ∼ D to denote an element d drawn according to the distribution. We
sometimes write a ≈ b± c to denote b− c ≤ a ≤ b+ c.

Throughout this paper, we extensively use a generalization of Chernoff bounds for negatively cor-
related random variables.

Definition 2.1. Let X1, . . . ,Xn ∈ {0, 1} be random variables. We say that X1, . . . ,Xn are nega-
tively correlated if for all I ⊂ [n] the following hold:

Pr [∀i ∈ I : Xi = 0] ≤
∏
i∈I

Pr [Xi = 0]

Pr [∀i ∈ I : Xi = 1] ≤
∏
i∈I

Pr [Xi = 1] .

Theorem 5 (Theorem 1.16 from [Doe11]). Let X1, . . . ,Xn be negatively correlated binary random
variables. Let a1, . . . , an ∈ [0, 1] and X =

∑n
i=1 aiXi. Then, for δ ∈ [0, 1],

Pr [X ≥ (1 + δ) E [X]] ≤ exp(−δ2 E[X]/2)

Pr [X ≤ (1− δ) E [X]] ≤ exp(−δ2 E[X]/3) .

In addition, some of our proofs will use hyper-geometric random variables. Consider a population
of size N that consists of K objects of a special type. Suppose n objects are picked without
replacement. Let X be a random variable that counts the number of special objects picked in
the sample. Then, we say that X is a hyper-geometric random variable, and we denote X ∼
HG(N,K, n). These hyper-geometric random variables enjoy tight concentration inequities (which
are similar to Chernoff type bounds).

Theorem 6 ([Hoe63]). Let X ∼ HG(N,K, n) and µ = K/N . Then for any t > 0

Pr [X ≤ (µ− t)n] ≤ exp(−2t2n)

Pr [X ≥ (µ+ t)n] ≤ exp(−2t2n) .

3 The Rejection Sampling Model

In this section, we define the rejection sampling model and the distributions over graphs we will use
throughout this work. We define the rejection sampling model tailored to our specific application
of proving Lemma 1.1.

8

Definition 3.1. Consider two distributions, G1 and G2 supported on graphs with vertex set [n]. The
problem of distinguishing G1 and G2 with a rejection sampling oracle aims to distinguish between the
following two cases with a specific kind of query:

• Cases: We have an unknown graph G ∼ G1 or G ∼ G2.

• Rejection Sampling Oracle: Each query is a subset L ⊂ [n]; an oracle samples an edge (j1, j2)
from G uniformly at random, and the oracle returns v = {j1, j2} ∩ L. The complexity of a
query L is given by |L|.

We say a non-adaptive algorithm Alg for this problem is a sequence of query sets L1, . . . , Lq ⊂ [n],
as well as a function Alg : ([n] ∪ ([n]× [n]) ∪ {∅})q → {“G1”, “G2”}. The algorithm sends each query
to the oracle, and for each query Li, the oracle responds vi ∈ [n] ∪ ([n]× [n]) ∪ {∅}, which is either
a single element of [n], an edge in G, or ∅. The algorithm succeeds if:

Pr
G∼G1,
v1,...,vq

[Alg(v1, . . . ,vq) outputs “G1”]− Pr
G∼G2,
v1,...,vq

[Alg(v1, . . . ,vq) outputs “G1”] ≥ 1

3
.

The complexity of Alg is measured by the sum of the complexity of the queries, so we let cost(Alg) =∑q
i=1 |Li|.

While our interest in this work is primarily on lower bounds for the rejection sampling model, an
interesting direction is to explore upper bounds of various natural graph properties with rejection
sampling queries. Our specific applications only require ruling out non-adaptive algorithms, but one
may define adaptive algorithms in the rejection sampling model and study the power of adaptivity
in this setting as well.

3.1 The Distributions G1 and G2

Let G1 and G2 be two distributions supported on graphs with vertex set [n] defined as follows. Let
A ⊂ [n] be a uniform random subset of size n

2 .

G1 =
{
KA ∪KA : A ⊂ [n] random subset size

n

2

}
G2 =

{
KA,A : A ⊂ [n] random subset size

n

2

}
,

where for a subset A, KA is the complete graph on vertices in A and KA,A is the complete bipartite

graph whose sides are A and A.

4 Tolerant Junta Testing

In this section, we will prove that distinguishing the two distributions G1 and G2 using a rejection
sampling oracle reduces to distinguishing two distributions Dyes and Dno over Boolean functions,
where Dyes is supported on functions that are close to k-juntas and Dno is supported on functions
that are far from any k-junta with high probability.

9

4.1 High Level Overview

We start by providing some intuition of how our constructions and reduction implement the plan set
forth in Subsection 1.3 for the property of being a k-junta. We define two distributions supported
on Boolean functions, Dyes and Dno, so that functions in Dyes are ε0-close to being k-juntas and
functions in Dno are ε1-far from being k-juntas (where ε0 and ε1 are appropriately defined constants
and k = 3n

4).

As mentioned in the introduction, our distributions are based on the indexing function used in
[CST+17]. We draw a uniform random subset M ⊂ [n] of size n/2 and our function Γ =
ΓM : {0, 1}n → [2n/2] projects the points onto the variables in M. Thus, it remains to define
the sequence of functions H = (hi : {0, 1}n → {0, 1} : i ∈ [2n/2]).

We will sample a graph G ∼ G1 (in the case of Dyes), and a graph G ∼ G2 (in the case of Dno)
supported on vertices in M. Each function hi : {0, 1}n → {0, 1} is given by first sampling an edge
(j1, j2) ∼ G and letting hi be a parity (or a negated parity) of the variables xj1 and xj2 . Thus, a
function f from Dyes or Dno will have all variables being relevant, however, we will see that functions
in Dyes have a group of n

4 variables which can be eliminated efficiently6.

We think of the sub-functions hi defined with respect to edges from G as implementing a sort of
gadget : the gadget defined with respect to an edge (j1, j2) will have the property that if f eliminates
the variable j1, it will be “encouraged” to eliminate variable j2 as well. In fact, each time an edge
(j1, j2) ∼ G is used to define a sub-function hi, any k-junta g : {0, 1}n → {0, 1} where variable
j1 or j2 is irrelevant will have to change half of the corresponding part indexed by Γ. Intuitively,
a function f ∼ Dyes or Dno (which originally depends on all n variables) wants to eliminate its
dependence of n − k variables in order to become a k-junta. When f picks a variable j ∈ M to
eliminate (since variables in M are too expensive), it must change points in parts where the edge
sampled is incident on j. The key observation is that when f needs to eliminate multiple variables,
if f picks the variables j1 and j2 to eliminate, whenever a part samples the edge (j1, j2), the function
changes the points in one part and eliminates two variables. Thus, f eliminates two variables by
changing the same number of points when there are edges between j1 and j2.

At a high level, the gadgets encourage the function f to remove the dependence of variables within
a group of edges, i.e., the closest k-junta will correspond to a function g which eliminates groups
of variables with edges within each other and few outgoing edges. More specifically, if we wants to
eliminate n

4 variables from f , we must find a bisection of the graph G whose cut value is small; in
the case of G1, one of the cliques will have cut value 0, whereas any bisection of a graph from G2

will have a high cut value, which makes functions in Dyes closer to 3n
4 -juntas than functions in Dno.

The reduction from rejection sampling is straight-forward. We consider all queries which are indexed
to the same part, and if two queries indexed to the same part differ on a variable j, then we the
algorithm “explores” direction j. Each part i ∈ [2n/2] where some query falls in has a corresponding
rejection sampling query Li, which queries the variables explored by the Boolean function testing
algorithm.

6We say that a variable is eliminated if we change the function to remove the dependence of the variable.

10

4.2 The Distributions Dyes and Dno

The goal of this subsection is to define the two distributions Dyes and Dno, supported over Boolean
functions with n variables. Functions f ∈ Dyes will be close to being a k-junta (for k = 3n

4) with
high probability, and functions f ∼ Dno will be far from any k-junta with high probability.

Distribution Dyes A function f from Dyes is generated from a tuple of three random variables,
(M,A,H), and we set f = fM,A,H. The tuple is drawn according to the following randomized
procedure:

1. Sample a uniformly random subset M ⊂ [n] of size m
def
= n

2 . Let N = 2m and ΓM : {0, 1}n →
[N] be the function that maps x ∈ {0, 1}n to a number encoded by x|M ∈ [N].

2. Sample A ⊂M of size n
4 uniformly at random, and consider the graph G defined on vertices

[M] with G = KA ∪KA, i.e., G is a uniformly random graph drawn according to G1.

3. Define a sequence of N functions H = {hi : {0, 1}n → {0, 1} : i ∈ [N]} drawn from a distribu-
tion E(G). For each i ∈ {1, . . . , N/2}, we let hi(x) =

⊕
`∈M x`.

For each i ∈ {N/2 + 1, . . . , N}, we will generate hi independently by sampling an edge
(j1, j2) ∼ G uniformly at random, as well as a uniform random bit r ∼ {0, 1}. We let

hi(x) = xj1 ⊕ xj2 ⊕ r.

4. Using M,A and H, define fM,A,H = hΓM(x)(x) for each x ∈ {0, 1}n.

Distribution Dno A function f drawn from Dno is also generated by first drawing the tuple
(M,A,H) and setting f = fM,A,H. Both M and A are drawn using the same procedure; the only
difference is that the graph G = KA,A, i.e., G is a uniformly random graph drawn according to G2.
Then H ∼ E(G) is sampled from the modified graph G.

We let

k
def
=

3n

4
ε0

def
=

1

8
ε1

def
=

3

16
.

Consider a fixed subset M ⊂ [n] which satisfies |M | = n
2 , and a fixed subset A ⊂M which satisfies

|A| = n
4 . Let G be a graph defined over vertices in M , and for any subsets S1, S2 ⊂M , let

EG(S1, S2) = |{(j1, j2) ∈ G : j1 ∈ S1, j2 ∈ S2}| ,

be the number of edges between sets S1 and S2. Additionally, we let

χ(G) = min

{
EG(S, S) + EG(S, S)

EG(M,M)
: S ⊂M, |S| ≥ n

4

}
(1)

be the minimum fraction of edges adjacent to a set S of size at least n
4 . The following lemma relates

the distance of a function f = fM,A,H where H ∼ E(G) to being a k-junta to χ(G). We then
apply this lemma to the graph in Dyes and Dno to show that functions in Dyes are ε0-close to being
k-juntas, and functions in Dno are ε1-far from being k-juntas.

11

Lemma 4.1. Let G be any graph defined over vertices in A. If f = fM,A,H, where H ∼ E(G), then

1

4
· χ(G)− o(1) ≤ dist(f , k-Junta) ≤ 1

4
· χ(G) + o(1)

with probability at least 1− o(1).

Proof: We first show that dist(f , k-Junta) ≤ 1
4 · χ(G) + o(1). Let S ⊂ M with |S| ≥ n

4
be the subset achieving the minimum in (1), and consider the indicator random variables Xi for
i ∈ {N/2 + 1, . . . , N} defined as:

Xi =

{
1 hi(x) = xj1 ⊕ xj2 ⊕ r with j1 ∈ S or j2 ∈ S
0 otherwise

,

and note that the variables Xi are independent and equal 1 with probability χ(G). Consider the
function g : {0, 1}n → {0, 1} is defined as:

g(x) =

{
hΓM (x)(x) XΓM (x) = 0

0 otherwise
.

Note that the function g is a k-junta, since g only depends on variables in [n] \ S, and |S| ≥ n
4 . In

addition, we have that:

dist(f , k-Junta) ≤ dist(f , g) =
1

2n

N∑
i=N/2+1

2n−m

2
·Xi =

1

2 · 2m
N∑

i=N/2+1

Xi,

and by a Chernoff bound, we obtain the desired upper bound.

For the lower bound, let T ⊂ [n] of size n
4 . We divide the proof into two cases: 1) M ∩ T 6= ∅, and

2) M ∩ T = ∅.

We handle the first case first, and let j ∈M ∩ T .

• Suppose j is the highest order bit of M , so that ΓM (x(j→0)) ∈ {1, . . . , N/2} and ΓM (x(j→1)) ∈
{N/2 + 1, . . . , N}. For y ∈ {0, 1}M\{j} and α ∈ {0, 1}, let Xy,α = {x ∈ {0, 1}n : x|M\{j} =
y, xj = α}, Xy = Xy,0 ∪Xy,1. For every x ∈ Xy,

f(x) =

{ ⊕
i∈M xi xj = 0

xj1 ⊕ xj2 ⊕ r xj = 1
,

for some j1, j2 ∈ M and r ∈ {0, 1}. Thus, for at least half of all points in x ∈ Xy,0,
f(x) 6= f(x(j)). Therefore, for any function g : {0, 1}n → {0, 1} which does not depend on j,
for each x ∈ Xy,0 where f(x) 6= f(x(j)), either f(x) 6= g(x), or f(x(j)) 6= g(x(j)), thus,

dist(f , g) ≥ 1

2n

∑
y∈{0,1}M\{j}

1

2
· |Xy,0| ≥

1

4
.

• Suppose j is not the highest order bit of M . Then, if ΓM (x) ∈ {1, . . . , N/2}, then ΓM (x(j)) ∈
{1, . . . , N/2}. We note that for each y ∈ {0, 1}M\{j} and x ∈ Xy,0 with ΓM (x) ∈ {1, . . . , 2m−1},
f(x) 6= f(x(i)). Thus again, for any g : {0, 1}n → {0, 1} which does not depend on j,
dist(f , g) ≥ 1

4 , since half of all points x ∈ {0, 1}n satisfy ΓM (x) ∈ {1, . . . , N/2}.

12

Dyes Dno

A A A A

α

β

Figure 1: Example of graphs G from Dyes and Dno. On the left, the graph G is the union of two
cliques of size n

4 , corresponding to Dyes. We note that χ(G) = 1
2 , since if we let S = A (pictured as

the blue set), we see that S contains half of the edges. On the right, the graph G is the complete
bipartite graph with side sizes n

4 , corresponding to Dno. We note that χ(G) = 3
4 : consider any set

S ⊂ M of size at least n
4 pictured in the blue region, and let α = |S ∩ A| and β = |S ∩ A|, where

α+ β ≥ n
4 , so E(S, S) + E(S, S) ≥ (n4)2 − αβ ≥ (n4)2(1− 1

4).

Therefore, we may assume that T ⊂ M . Again, consider the indicator random variables Xi for
i ∈ {N/2 + 1, . . . , N} given by

Xi =

{
1 hi(x) = xj1 ⊕ xj2 ⊕ r with j1 ∈ T or j2 ∈ T
0 otherwise

,

and by the definition of χ(G), we have that Xi = 1 with probability at least χ(G). Suppose
x ∈ {0, 1}n with ΓM (x) = i and Xi = 1 with hi(x) = xj1⊕xj2⊕r with j1 ∈ T , then f(x) 6= f(x(j1)),
which means that any function g : {0, 1}n → {0, 1} which does not depend on variables in T , either
g(x) 6= f(x) or g(x(j1)) 6= f(x(j1)), thus, for all such functions g,

dist(f , g) ≥ 1

4 · 2m−1

N∑
i=N/2+1

Xi ≥
1

4
· χ(G)− 1

n

with probability 1 − exp
(
−Ω(N

n2)
)

by a Chernoff bound. Thus, we union bound over at most

2n/2 possible subsets T ⊂ M with |T | ≥ n
4 to conclude that dist(f , k-Junta) ≥ 1

4 · χ(G) − 1
n with

probability 1− o(1).

Corollary 4.2. We have that f ∼ Dyes has dist(f , k-Junta) ≤ ε0 + o(1) with probability 1− o(1),
and that f ∼ Dno has dist(f , k-Junta) ≥ ε1 − o(1) with probability 1− o(1).

Proof: For the upper bound in Dyes, when G = KA ∪ KA, we have χ(G) ≤ 1
2 . For the lower

bound in Dno, when G = KA,A, χ(G) ≥ 3
4 (see Figure 4.2).

4.3 Reducing from Rejection Sampling

In this subsection, we will prove that distinguishing the two distributions G1 and G2 using rejection
sampling oracle reduces to distinguishing the two distributions Dyes and Dno.

13

Lemma 4.3. Suppose there exists a deterministic non-adaptive algorithm Alg making q queries to
Boolean functions f : {0, 1}2n → {0, 1}. Then, there exists a deterministic non-adaptive algorithm
Alg′ making rejection sampling queries to an n-vertex graph such that:

Pr
f∼Dyes

[Alg(f) “accepts”] = Pr
G∼G1

[Alg′(G) outputs “G1”], and

Pr
f∼Dno

[Alg(f) “accepts”] = Pr
G∼G2

[Alg′(G) outputs “G1”].

and has cost(Alg′) = O(q log n) with probability 1− o(1) over the randomness in Alg′.

Proof: Consider an algorithm Alg making q queries to a Boolean function f = fM,A,H : {0, 1}2n →
{0, 1} (sampled from either Dyes or Dno). First, note that M and A is distributed in the same way
in Dyes and Dno. Therefore, a rejection sampling algorithm may generate M and A and utilize its
randomness from the rejection sampling oracle to simulate H.

Specifically, given the queries z1, . . . , z1 ∈ {0, 1}2n of Alg, we will partition them into sets Q1, . . . ,Qt,
such that for all z, z′ ∈ Qi, we have that z|M = z′|M. Given the above partition, we define our
queries to the rejection sampling oracle L1, . . . ,Lt ⊂M such that for every i ∈ [t] we let

Li
def
= {j ∈M : ∃z, z′ ∈ Qi, (z)j 6= (z′)j} .

Since |M| = n, we may associate each element of M with an integer in [n] and view the graphs in
G1 and G2 as having vertex set M. In short, we let Li is the set of indices with two queries in Qi

disagreeing in that index. Next, we claim that the cost of Alg′ is at most O(q log n) with probability
1− o(1).

Consider the bad event which occurs if there exist two queries z, z′ ∈ {0, 1}2n such that z|M = z′|M
and ‖z− z′‖ > 100 log(2n). Note that for any two queries z, z′ such that ‖z− z′‖ > 100 log(2n), the
probability that z|M = z′|M over the choice of M is at most 2−100 log(2n) � 1

q2
, and thus we may

use a union bound over all pairs of queries to get that the bad event occurs with probability o(1).
Therefore, we get that for any i ∈ [t] and two queries z, z′ ∈ Qi we have that ‖z− z′‖ ≤ 100 log(2n)
with probability 1− o(1), which implies that the cost of Alg′ is O(q log n) with probability 1− o(1).

Now, given the responses to the queries L1, . . . ,Lt ⊂ [M], as well as the values of M,A, we will
be able to simulate all the randomness in the construction of the two distributions Dyes and Dno.
More formally, Alg′ works in the following way.

1. Alg′ makes set queries L1, . . . ,Lt.

2. Once Alg′ receives the responses v1, . . . ,vt ∈M∪
(
M×M

)
∪{∅} from the oracle, it will gener-

ate a Boolean string (r1, . . . , rq) ∈ {0, 1}q which is distributed exactly as (fM,A,H(z1), . . . , fM,A,H(zq)),
where fM,A,H ∼ Dyes if G ∼ G1 and fM,A,H ∼ Dno if G ∼ G2.

3. Then if Alg(r1, . . . , rq) outputs “accept”, then Alg′ should output “G1”, if Alg(r1, . . . , rq)
outputs “reject”, then Alg′ should output “G2”.

Next, we will describe how to generate (r1, . . . , rq) ∈ {0, 1}q. We start with setting some notations.
For i ∈ [t], we denote Qi = {zi1, . . . , zi|Qi|} and ri1, . . . , r

i
|Qi|.

14

We aim to show that the random variables (fM,A,H(zi`) : ` ∈ [|Qi|], i ∈ [t]) when fM,A,H ∼ Dyes is
distributed exactly the same as (ri` : ` ∈ [|Qi|], i ∈ [t]) when G ∼ G1 and v1, . . . ,vt are sampled by
the oracle (the complement case where fM,A,H ∼ Dno and G ∼ G2 is similar).

We will proceed in t stages, each in stage i ∈ [t], we will set the values of ri1, . . . , r
i
|Qi| which will

correspond to fM,A,H(zi1), . . . , fM,A,H(zi|Qi|).

If Qi contains strings z such that ΓM(z) ∈ {1, . . . , 2n−1} then we let ri1, . . . , r
i
|Qi| be given by

ri` =
⊕

j∈M(zi`)j for ` ∈ [|Qi|]. Otherwise ΓM(z) ∈ {2n−1 + 1, . . . , 2n}, the algorithm will use the

response vi to generate the values ri1, . . . , r
i
|Qi|: Alg′ samples a random bit ri ∼ {0, 1} uniformly

and generates ri1, . . . , r
i
|Qi| according to three cases, corresponding to the three cases vi can be in:

• If vi = ∅, then ri1 = · · · = ri|Qi| = ri.

• If vi = {j} ⊂M, for each ` ∈ [|Qi|], ri` = ri if (zi`)j = 0, and ri` = 1− ri if (zi`)j = 1.

• If vi = {j1, j2} ⊂ M, for each ` ∈ [|Qi|], ri` = ri if (zi`)j1 ⊕ (zi`)j2 = 0, and ri` = 1 − ri if
(zi`)j1 ⊕ (zi`)j2 = 1.

We conclude with the following claim which is immediate from the definition of Dyes, Dno, G1 and
G2, and the corresponding proof simply unravels the definitions of these distributions.

Claim 4.4. If G ∼ G1, then (r1, . . . , rq) is distributed exactly as (fM,A,H(z1), . . . , fM,A,H(zq)) when
fM,A,H ∼ Dyes, and if G ∼ G2, then (r1, . . . , rq) is distributed exactly as (fM,A,H(z1), . . . , fM,A,H(zq))
when fM,A,H ∼ Dno.

Proof: We give the formal proof for Dyes and G1, as the case with Dno and G2 is the same
argumentation. Recall from the definition of Dyes, that M and A are uniform random sets of size n
and n

2 respectively. Conditioned on M and A, each sub-function hi is picked independently. Thus,
we have

Pr
fM,A,H∼Dyes

[
∀i ∈ [t],∀` ∈ [|Qi|], fM,A,H(zi`) = yi`

]
=

(
2n

n

)−1(n

n/2

)−1 ∑
M⊂[2n]

∑
A⊂M

t∏
i=1

Pr
hi

[
∀` ∈ [|Qi|],hi(zi`) = yi` |M = M,A = A

]
.

We now turn to the graph problem. Recall from the definition of G ∼ G1, that conditioned on
M and A, the responses of the oracle, v1, . . . ,vt are independent, and r1, . . . , rt are independent.
Thus, we may write:

Pr
M,A,v1,...,vt

r1,...,rt

[
∀j ∈ [q], ∀` ∈ [|Qi|], ri` = yi`

]
=

(
2n

n

)−1(n

n/2

)−1∑
M

∑
A

t∏
i=1

Pr
vi,ri

[
∀` ∈ [|Qi|], ri` = yi`

]
.

Therefore, it suffices to show that for any M ⊂ [2n] of size n, A ⊂ M of size n
2 and any i ∈ [t],

the random variable (hi(z
i
`) : ` ∈ [|Qi|]) with hi from Dyes with sets M and A is distributed as

(ri1, . . . , r
i
|Qi|) with oracle response vi and bit ri.

15

Let (j1, j2) be a uniform random edge from KA∪KA, and we let hi : {0, 1}2n → {0, 1} be given by:

hi(x) =

{
xj1 ⊕ xj2 with probability 1

2
¬xj1 ⊕ xj2 with probability 1

2

Assume that vi = Li ∩ {j1, j2} = ∅. Then hi(z
i
1) = · · · = hi(z

i
|Qi|) is given by a uniform random

bit. Similarly, given these values of vi = ∅, ri1 = · · · = ri|Qi| is also given by a uniform random bit.

Now, assume that Li ∩ {j1, j2} = {j}. Then, for any two queries z, z′ ∈ Qi such that (z)j 6= (z′)j
we must have that hi(z) 6= hi(z

′), but after this condition is set, the value of any particular hi(z) is
a uniform random bit. Likewise, these constraints are set by the procedure generating ri1, . . . , r

i
|Qi|,

and each ri` is a uniform random bit.

Finally, assume that Li ∩ {j1, j2} = {j1, j2}. Then, for any two queries z, z′ ∈ Qi such that
(z)j1 ⊕ (z)j2 6= (z′)j1 ⊕ (z′)j2 we have that hi(z) 6= hi(z

′), and each value of hi(z) is a uniform
random bit. Finally, these constraints are also set forth in the definition of ri1, . . . , r

i
|Qi|.

Therefore, we conclude with the following corollary.

Corollary 4.5. Suppose Alg is a deterministic non-adaptive algorithm which distinguishes Dyes

and Dno supported on Boolean functions of 2n variables with query complexity q, then there exists a
non-adaptive algorithm Alg′ for distinguishing between G1 and G2 supported on graphs with n vertices
such that with probability 1− o(1) over the randomness of Alg′ it holds that cost(Alg′) = O(q log n).

Proof: We have:

Pr
G∼G1

[Alg′(G) outputs “G1”]− Pr
G∼G2

[Alg′(G) outputs “G1”]

= Pr
fM,A,H∼Dyes

[Alg(f) “accepts”]− Pr
fM,A,H∼Dno

[Alg(f) “accepts”] ≥ 1

3
− o(1).

We also have that with probability at least 1 − o(1), for each i ∈ [t], if Qi = {zi1, . . . , zi|Qi|}, then

|Li| ≤
∑|Qi|

j=2 ‖zi1 − zij‖1 ≤ |Qi| · 100 log(2n). Therefore, cost(Alg′) =
∑t

i=1 |Li| = O(q log n) with
probability at least 1− o(1).

5 Tolerant Unateness Testing

In this section, we show how to reduce distinguishing distributions G1 and G2 to distinguishing
between Boolean functions which are close to unate and Boolean functions which are far from
unate. We start with a high level overview of the constructions and reduction, and then proceed to
give formal definitions and the reductions for adaptive and non-adaptive tolerant testing.

5.1 High Level Overview

We now describe how our constructions and reduction implement the plan set forth in Subsection 1.3
for the property of unateness. Similarly to Section 4, we define two distributions Dyes and Dno

16

supported on Boolean functions, so that functions in Dyes are ε0-close to being unate, and functions
in Dno are ε1-far from being unate (where ε0 and ε1 are appropriately defined constants).

We will use a randomized indexing function Γ : {0, 1}n → [N] based on the Talagrand-style con-
structions from [BB16, CWX17a] to partition {0, 1}n in a unate fashion. Again, we will then use
a graph G ∼ G1 or G2 to define the sequence of sub-function H = (hi : {0, 1}n → {0, 1} : i ∈ [N]).
The sub-functions hi will be given by a parity (or negated parity) of three variables: two variables
will correspond to the end points of an edge sampled (j1, j2) ∼ G, the third variable will be one
of two pre-specified variables, which we call m1 and m2. Consider for simplicity the case when
hi(x) = xj1 ⊕ xj2 ⊕ xm1 , and assume that we require that variable m1 is non-decreasing.

Similarly to Section 4, the functions hi are thought of as gadgets. We will have that if hi is defined
with respect to an edge (j1, j2) and m1, then the function f will be “encouraged” to make variables
j1 and j2 have opposite directions, i.e., either j1 is non-increasing and j2 is non-decreasing, or j1 is
non-decreasing and j2 is non-increasing. In order to see why the three variable parity implements
this gadget, we turn our attention to Figure 5.1 and Figure 5.1.

Intuitively, the function f needs to change some of its inputs to be unate, and it must choose whether
the variables j1 and j2 will be monotone (non-decreasing) or anti-monotone (non-increasing). Sup-
pose f decides that the variable j1 should be monotone and j2 be anti-monotone, and m1 will
always be monotone (since it will be too expensive to make it anti-monotone). Then, when
hi(x) = xj1 ⊕ xj2 ⊕ xm1 , hi will have some violating edges, i.e., edges in direction j1 which are
decreasing, or edges in direction j2 which are increasing, or edges in direction m1 which are decreas-
ing (see Figure 5.1, where these violating edges are marked in red). In this case, there exists a way
that f may change 1

4 -th fraction of the points and remove all violating edges (again, this procedure
is shown in Figure 5.1).

In contrast, suppose that f decides that the variables j1 and j2 both should be monotone. Then,
when hi(x) = xj1 ⊕ xj2 ⊕ xm1 , the violating edges (shown in Figure 5.1) form vertex-disjoint cycles
of length 6 in {0, 1}n, thus, the function f will have to change 3

8 -th fraction of the points in order
to remove all violating edges. In other words, when there is an edge (j1, j2) sampled in hi, the
function f is “encouraged” to make j1 and j2 have opposite directions, and “discouraged” to make
j1 and j2 have the same direction. The other cases are presented in Figures 5.2, 5.2, and 5.2.

In order for f to become unate, it must first choose whether each variable will be monotone or
anti-monotone. f will choose all variables in M to be monotone, the variable m1 to be monotone,
and m2 to be anti-monotone, but will have to make a choice for each variable in M, corresponding to
each vertex of the graph G. As discussed above, for each edge (j1, j2) in the graph, f is encouraged
to make these orientations opposite from each other, so f will want to look for the maximum cut
on the graph, whose value will be different in G1 and G2.

Similarly to the case in Section 4, the reduction will follow by defining the rejection sampling queries
Li corresponding to variables explored in sub-function hi. The unate indexing functions Γ are not as
strong as the indexing functions from the Section 4, so for each query in the Boolean function testing
algorithm, our reduction will lose some cost in the rejection sampling algorithm. In particular, the
adaptive reduction loses n cost for each Boolean function query, since adaptive algorithms can
efficiently explore variables with a binary search; this gives the Ω̃(n) lower bound for tolerant
unateness testing. The non-adaptive reduction loses O(

√
n log n) cost for each Boolean function

17

j1
+

j2
−

m1

+

−→

j1
+

j2
−

m1

+

Figure 2: Example of a function hi : {0, 1}n → {0, 1} with hi(x) = xj1 ⊕ xj2 ⊕ xm1 with variable
j1 (which ought to be monotone), j2 (which ought to be anti-monotone), and m1 (which is always
monotone). The image on the left-hand side represents hi, and the red edges correspond to violating
edges for variables j1, j2 and m1. In other words, the red edges correspond to anti-monotone edges
in variables j1, monotone edges in variables j2, and anti-monotone edges in direction m1. On the
right-hand side, we show how such a function can being “fixed” into a function h′i : {0, 1}n → {0, 1}
by changing 1

4 -fraction of the points.

j1
+

j2
+

m1

+

−→

j1
+

j2
+

m1

+

Figure 3: Example of a function hi : {0, 1}n → {0, 1} with hi(x) = xj1 ⊕ xj2 ⊕ xm1 with variables
j1 and j2 (which ought to be monotone), and m1 (which ought to be monotone). On the left side,
we indicate the violating edges with red arrows, and note that the functions in the left and right
differ by 3

8 -fraction of the points. We also note that any function h′i : {0, 1}n → {0, 1} which has j1,
j2 and m1 monotone must differ from hi on at least 3

8 -fraction of the points because the violating
edges of hi form a cycle of length 6.

18

query since queries falling in the same part may be Ω(
√
n) away from each other (the same scenario

occurs in the non-adaptive monotonicity lower bound of [CWX17a]). The non-adaptive reduction
is more complicated than the adaptive reduction since it is not exactly a black-box reduction (we
require a lemma from Section 6). This gives the Ω̃(n3/2) lower bound for non-adaptive tolerant
unateness testing.

5.2 The Distributions Dyes and Dno

We now turn to describing a pair of distributions Dyes and Dno supported on Boolean functions
f : {0, 1}n → {0, 1}. These distributions will have the property that for some constants ε0 and ε1

with 0 < ε0 < ε1,

Pr
f∼Dyes

[dist(f ,Unate) ≤ ε0] = 1− o(1) and Pr
f∼Dno

[dist(f ,Unate) ≥ ε1] = 1− o(1).

We first define a function f ∼ Dno, where we fix the parameter:

N = 2
√
n.

1. Sample some set M ⊂ [n] of size |M| = n
2 uniformly at random and let m1,m2 ∼M be two

distinct indices.

2. We let T ∼ E(M\{m1,m2}) (which we describe next). T is a sequence of terms (Ti : i ∈ [N])
which is used to defined a multiplexer map ΓT : {0, 1}n → [N] ∪ {0∗, 1∗}.

3. We sample A ⊂M of size |A| = n
2 and define a graph as:

G = KA ∪KA.

4. We now define the distribution over sub-functions H = (hi : i ∈ [N]) ∼ H(m1,m2,G). For
each function hi : {0, 1}n → {0, 1}, we generate hi independently:

• When i ≤ 3N/4, we sample j ∼ {m1,m2} and we let:

hi(x) =

{
xj j = m1

¬xj j = m2
.

• Otherwise, if i > 3N/4, we sample an edge (j1, j2) ∼ G and an index j3 ∼ {m1,m2}
we let:

hi(x) =

{
xj1 ⊕ xj2 ⊕ xj3 j3 = m1

¬xj1 ⊕ xj2 ⊕ xj3 j3 = m2
.

The function f : {0, 1}n → {0, 1} is given by f(x) = fT,A,H(x) where:

fT,A,H(x) =

1 |x|M| > n

4 +
√
n

0 |x|M| < n
4 −
√
n

1 ΓT(x) = 1∗

0 ΓT(x) = 0∗

hΓT(x)(x) otherwise

. (2)

19

We now turn to define the distribution E(M) supported on terms T, as well as the multiplexer map
ΓT : {0, 1}n → [N]. As mentioned above, T ∼ E(M) will be a sequence of N terms (Ti : i ∈ [N]),
where each Ti is given by a DNF term:

Ti(x) =
∧
j∈Ti

xj ,

where the set Ti ⊂ M is a uniformly random
√
n-element subset. Given the sequence of terms T,

we let:

ΓT(x) =

0∗ ∀i ∈ [N],Ti(x) = 0
1∗ ∃i1 6= i2 ∈ [N],Ti1(x) = Ti2(x) = 1
i Ti(x) = 1 for a unique i ∈ [N]

.

It remains to define the distribution Dyes supported on Boolean functions. The function f ∼ Dyes

will be defined almost exactly the same. We still have f = fT,A,H as defined above, however, the
graph G will be different. In particular, we will let:

G = KA,A.

Fix any set M ⊂ [n] of size n
2 and let m1,m2 ∈M be two distinct indices and M ′ = M \ {m1,m2}.

For any T ∼ E(M ′), let X ⊂ {0, 1}n be the subset of points indexed to some subfunction hi:

X
def
=
{
x ∈ {0, 1}n : |x|M | ∈ [n/4−

√
n, n/4 +

√
n] and ΓT (x) ∈ [N]

}
,

and define γ ∈ (0, 1) be the parameter:

γ
def
= E

T∼E(M ′)

[
|X|
2n

]
.

Claim 5.1. With probability at least 1− exp
(
−Ω(N/n2)

)
over the draw T ∼ E(M) the set X has

size |X| = 2nγ(1± 1
n), where γ = Ω(1).

Proof: Note that:

E
T∼E(M)

[|X|] =
∑

x∈{0,1}n:

n/4−
√
n≤|x|M |≤n/4+

√
n

Pr
T∼E(M)

[x ∈ X] .

Fix x ∈ {0, 1}n such that n/4−
√
n ≤ |x|M | ≤ n/4 +

√
n. We can view the probability on the right

hand side as a sequence of N disjoint events. Every event j ∈ [N] correspond to the case where x
satisfies the unique term Tj . The probability of each such event is:

Pr
T∼E(M)

[ΓT(x) = i] ≥

 1

(n/2− 2)
√
n

√
n−1∏
k=0

(|x|M | − k − 2)

 ·(1−
(|x|M |
n/2− 2

)√n)N−1

≥
(
n/4− 2

√
n

n/2

)√n
·

(
1−

(
n/4 +

√
n

n/2− 2

)√n)N−1

= Ω(1/N).

20

Therefore, the probability that x ∈ X is at least Ω(1). Summing up all the x with |x|M | ≈ n
4 ±
√
n

gives ET∼E(M)[|X|] = Ω(2n), so γ = Ω(1). In order to show that the random variable |X| is
concentrated around the mean, let Ω be the space of all possible

√
n-sized terms with variables in

M \ {m1,m2}, and let c : ΩN → Z
≥0 be the function on the independent terms which computes the

size of X:
c(T1, . . . ,TN) = |X|.

For every j ∈ [N] and T1, . . . , TN , T
′
j ∈ Ω

∣∣c(T1, . . . , T
′
j , . . . , TN)− c(T1, . . . , Tj , . . . , TN)

∣∣ ≤ 2n

N
,

so by McDiarmid’s inequality:

Pr
T∼E(M)

[||X| − γ2n| ≥ 2n/n] ≤ exp

(
− Ω(22n/n2)∑N

i=1 22n/N2

)
= exp

(
−Ω(N/n2)

)
.

In addition, let Xi ⊂ X be the subset of points x ∈ X with ΓT (x) = i, and note that the subsets
X1, . . . , XN partition X, where each |Xi| ≤ 2n−

√
n. With a similar argument as Claim 5.1, we

conclude that with probability 1− o(1) over the draw of T ∼ E(M), we have:

3N/4∑
i=1

|Xi| = 2n · 3γ

4

(
1± 1

n

)
and

N∑
i=3N/4+1

|Xi| = 2n · γ
4

(
1± 1

n

)
. (3)

Thus, we only consider functions f ∼ Dyes (or ∼ Dno) where the sets M , and T satisfy (3).

We consider any set A ⊂M of size n
4 . Now, consider any graph G defined over vertices in M , and

we let:

χ(G) = min

{
EG(S, S) + EG(S, S)

EG(M,M)
: S ⊂M

}
.

In other words, we note that χ(G) is one minus the fractional value of the maximum cut, and the
value of χ(G) is minimized for the set S achieving the maximum cut of G. The following lemma
relates the distance to unateness of a function f = fT,A,H with H ∼ H(m1,m2, G), where G is an
underlying graph defined on vertices in M .

Lemma 5.2. Let G be any graph defined over vertices in M . If f = fT,A,H where H ∼ H(m1,m2, G),
then

γ

16

(
1 +

1

2
· χ(G)

)
− o(1) ≤ dist(f ,Unate) ≤ γ

16

(
1 +

1

2
· χ(G)

)
+ o(1).

with probability 1− o(1).

Proof: We first show that dist(f ,Unate) ≤ γ
16

(
1 + 1

2 · χ(G)
)
+o(1) with high probability. Consider

the set S ⊂M which achieves the minimum of χ(G), i.e.,

χ(G) =
E(S, S) + E(S, S)

E(M,M)
,

21

and let g : {0, 1}n → {0, 1} be the unate function which makes variables in M monotone, m1

monotone, m2 anti-monotone, S monotone, and M \ S anti-monotone. We defined g as follows:

g(x) =

1 |x|M | > n

4 +
√
n

0 |x|M | < n
4 −
√
n

1 ΓT (x) = 1∗

0 ΓT (x) = 0∗

h′ΓT (x)(x) otherwise

,

where we define h′i : {0, 1}n → {0, 1} as a Boolean function which depends on hi. In particular, if
i ≤ 3N/4, we let h′i = hi. Otherwise, suppose hi is defined with respect to (j1, j2, j3). There are
two cases:

• (Directions of j1 and j2 disagree) If j1 ∈ S and j2 /∈ S, or j1 /∈ S and j2 ∈ S, then we let h′i be
the function on variables xj1 , xj2 and xj3 with dist(hi,h

′
i) = 1

4 (see Figure 5.1 for an example
with j3 = m1 which needs to be monotone, j1 ∈ S and j2 ∈ S; Figure 5.2 and Figure 5.2 give
the symmetric constructions when j1 and j2 are flipped, and when variable m2 is used instead
of m1, respectively).

• (Directions of j1 and j2 agree) If j1 ∈ S and j2 ∈ S, or j1 /∈ S and j2 /∈ S, then we let h′i be
the function on variables xj1 , xj2 and xj3 with dist(hi,h

′
i) = 3

8 (see Figure 5.1 for an example
with j3 = m1 which needs to be monotone, j1 ∈ S and j2 ∈ S; Figure 5.2 gives the violating
edges of the symmetric examples when variable m2 is used, and either both j1 and j2 are
monotone, or both anti-monotone).

Therefore, we define the indicator random variable Ci for each i ∈ {3N/4 + 1, . . . , N} by

Ci =

{
1 (j1, j2) from hi is not cut by S
0 otherwise

,

and we note that all Ci are independent and PrH[Ci] = χ(G). By the two cases displayed above,
we have that:

dist(f , g) =
1

2n

N∑
i=3N/4+1

|Xi|
(

1

4
+ Ci ·

1

8

)
≤ γ

16

(
1 +

1

2
· χ(G)

)
+ o(1/n),

with probability at least 1− exp
(
−Ω(N/n2)

)
over the draw of all Ci.

For the lower bound, consider any function g : {0, 1}n → {0, 1} which is unate. Suppose variable
xm1 is anti-monotone in g, then let Ci for i ∈ [3N/4] be the indicator random variable

Ci =

{
1 hi(x) = xm1

0 hi(x) = ¬xm2

.

We note that if Ci = 1, then f and g differ on at least |Xi|/2 from Xi. Thus, we have dist(f , g) ≥
3γ
8

(
1− 1

n

)
− o(1) with high probability over the draw of Ci. Likewise, we may say that if xm2 is

monotone, then dist(f , g) ≥ 3γ
8

(
1− 1

n

)
−o(1). Thus, we may consider functions g : {0, 1}n → {0, 1}

with xm1 being monotone and xm2 being anti-monotone. In this case, consider a set S ⊂ M , then

22

j1
−

j2
+

m1

+

−→

j1
−

j2
+

m1

+

Figure 4: Similarly to Figure 5.1, this is an example of a function hi : {0, 1}n → {0, 1} with
hi(x) = xj1 ⊕ xj2 ⊕ xm1 variables j1 (which ought to be anti-monotone), j2 (which ought to be
monotone), and m1 (which is always monotone) being “fixed” into a function h′i : {0, 1}n → {0, 1}
defined on the right-hand side.

if g is any unate function with variables in S being monotone and variables in M \ S being anti-
monotone, then we note that for each i ∈ {3N/4 + 1, . . . , N}, if hi sampled an edge (j1, j2) which
is cut by S, then Xi must differ on 1

4th of the points in Xi (see Figure 5.1 for an example of the
violating edges if j1 and j2 are oriented in opposite directions). On the other hand, if (j1, j2) is not
cut by S, then Xi must differ on 3

8ths of the points in Xi (see Figure 5.1 to see how the violating
edges require 3

8ths of the points being different). Thus, if we let the indicator random variable Ci

be

Ci =

{
1 (j1, j2) from hi is not cut by S
0 otherwise

,

we may write:

dist(f , g) ≥ 1

2n

N∑
i=3N/4+1

|Xi|
(

1

4
+

1

8
·Ci

)
≥ γ

16

(
1 +

1

2
· χ(G)

)
+O(1/n),

with probability 1− exp
(
−Ω(N/n2)

)
over the draw of Ci, since Pr[Ci = 1] ≥ χ(G). Thus, we may

union bound over all 2n/2 subsets S ⊂M to conclude the claim.

We consider the constants

ε0 =
γ

16
and ε1 =

5γ

64
.

Corollary 5.3. We have that f ∼ Dyes has dist(f ,Unate) ≤ ε0 + o(1) with high probability, and
f ∼ Dno has dist(f ,Unate) ≥ ε1 − o(1) with high probability.

Proof: We simply note that when G = KA,A (as is the case in Dyes), we have χ(G) = 0, and

when G = KA ∪KA, we have χ(G)→ 1
2 as n→∞.

23

j1
−

j2
+

m2

−

−→

j1
−

j2
+

m2

−

Figure 5: Similarly to Figure 5.1, this is an example of a function hi : {0, 1}n → {0, 1} with hi(x) =
¬xj1 ⊕xj2 ⊕xm2 variables j1 (which ought to be anti-monotone), j2 (which ought to be monotone),
and m2 (which is always anti-monotone) being “fixed” into a function h′i : {0, 1}n → {0, 1} defined
on the right-hand side.

j1
+

j2
+

m2

−

j1
−

j2
−

m2

−

Figure 6: Examples of functions hi : {0, 1}n → {0, 1} with orientations on the variables and violating
edges. On the left-hand side, hi(x) = ¬xj1 ⊕ xj2 ⊕ xm2 with variables j1 and j2 (which ought
to be monotone), and m2 (which is always anti-monotone). On the right-hand side, hi(x) =
¬xj1 ⊕ xj2 ⊕ xm2 with variables j1 and j2 (which ought to be anti-monotone), and m2 (which is
always anti-monotone). We note that the violating edges form a cycle of length 6, so any unate
function whose orientations on j1 and j2 are as indicated (both monotone on the left-hand side, and
both anti-monotone on the right-hand side) must disagree on a 3

8 -fraction of the points.

24

5.3 Reducing from Rejection Sampling

The goal of this section is to prove the following two lemmas.

Lemma 5.4. Suppose there exists a deterministic algorithm Alg making q queries to Boolean func-
tions f : {0, 1}2n → {0, 1}. Then, there exists a deterministic non-adaptive algorithm Alg′ making
rejection sampling queries to an n-vertex graph with cost(Alg′) = qn such that:

Pr
f∼Dyes

[Alg(f) “accepts”] = Pr
G∼G2

[Alg′(G) outputs “G2”], and

Pr
f∼Dno

[Alg(f) “accepts”] = Pr
G∼G1

[Alg′(G) outputs “G2”].

Lemma 5.5. Suppose there exists a deterministic non-adaptive algorithm Alg making q queries

to Boolean functions f : {0, 1}2n → {0, 1} where q ≤ n3/2

log8 n
. Then, there exists a deterministic

non-adaptive algorithm Alg′ making rejection sampling queries to an n-vertex graph such that:

Pr
f∼Dyes

[Alg(f) “accepts”] ≈ Pr
G∼G2

[Alg′(G) outputs “G2”]± o(1), and

Pr
f∼Dno

[Alg(f) “accepts”] ≈ Pr
G∼G1

[Alg′(G) outputs “G2”]± o(1).

and has cost(Alg′) ≤ q
√
n log n with probability 1− o(1) over the randomness in Alg′.

Combining Lemma 5.4 with Theorem 1, we conclude Theorem 3, and combining Lemma 5.5 with
Theorem 1, we conclude Theorem 4.

5.4 Proof of Lemma 5.4

Consider an algorithm Alg making q queries to a Boolean function which receives access to a Boolean
function f = fT,A,H : {0, 1}2n → {0, 1} (sampled from either Dyes or Dno).

Since the values of M,m1,m2 and T are distributed in the same way in Dyes and Dno, a rejection
sampling algorithm may generate M,m1,m2 and T, and utilize the randomness from rejection
sampling to output values of H. In particular, for each query in Alg, we will query the set [n] in the
rejection sampling algorithm. Then, given the edges sampled, as well as the values of M, m1, m2

and T, we will be able to simulate all the randomness in the construction of Dyes and Dno. We give
a formal description of a rejection sampling algorithm Alg′ which assumes access to an algorithm
Alg testing Boolean functions.

1. We first sample M ⊂ [2n] of size n, and let m1,m2 ∼ M be two distinct indices. Sample
T ∼ E(M \ {m1,m2}). We may now view the hidden graph G (from rejection sampling) as
a graph on vertex set M.

2. For each t ∈ [q], perform the query Lt = M, which returns (j
(t)
1 , j

(t)
2) ∈ G, we sample

j
(t)
3 ∼ {m1,m2} and j(t) ∼ {m1,m2}. Intuitively, the values of (j

(t)
1 , j

(t)
2 , j

(t)
3) will generate

the t-th accessed subfunction hi with ΓT(x) > 3N/4, and j(t) will generate the t-th accessed
subfunction hi with ΓT(x) ≤ 3N/4.

25

3. We simulate Alg by maintaining two q-tuples p1, p2 ∈ ({0}∪ [N])q, which is initially p1 = p2 =
(0, 0, . . . 0) which will record the indices of the subfunctions accessed. We proceed as follows,
where we assume that Alg makes the query z ∈ {0, 1}2n:

• Suppose |z|M| > n
2 +
√

2n, |z|M| < n
2 −
√

2n, ΓT(z) = 1∗, or ΓT(z) = 0∗, report to Alg
the appropriate value of f(x).

• Otherwise, consider ΓT(z) = i ∈ [N].

– Suppose i ≤ 3N
4 and (p1)t = i (if (p1)t 6= i for all t, then find the first t ∈ [q] with

(p1)t = 0 and write (p1)t = i). In this case, report zj(t) if j(t) = m1 and ¬zj(t) if

j(t) = m2.

– If i > 3N
4 and (p2)t = i (again, if (p2)t 6= i for all t, then find the first t ∈ [q] with

(p2)t = 0 and write (p2)t = i). In this case, we report ¬z
j
(t)
1

⊕z
j
(t)
2

⊕z
j
(t)
3

if j
(t)
3 = m1

and z
j
(t)
1

⊕ z
j
(t)
2

⊕ z
j
(t)
3

if j
(t)
3 = m2.

4. If Alg outputs “accept”, then Alg′ outputs “G2”, if Alg outputs “reject”, then Alg′ outputs
“G1”.

Clearly, cost(Alg′) = qn. In addition, we may view Alg′(G) as generating the necessary randomness
for answering queries f(x) on the go, where G will determine whether f ∼ Dyes or f ∼ Dno. When
G = KA,A (in the case G ∼ G2, the resulting function f is distributed as a function drawn from
Dyes; when G = KA∪KA (in the case G ∼ G1), the resulting function f is distributed as a function
drawn from Dno. Therefore, by the principle of deferred decisions, we have that Alg′(G) perfectly
simulates queries to a Boolean function f ∼ Dyes (if G ∼ G2) or f ∼ Dno (if G ∼ G1). We conclude
that

Pr
G∼G1

[Alg′(G) outputs “G2”] = Pr
f∼Dyes

[Alg(f) “accepts”], and

Pr
G∼G2

[Alg′(G) outputs “G2”] = Pr
f∼Dno

[Alg(f) “accepts”].

Remark 7. A close inspection of the proof of Lemma 5.4 reveals that the rejection sampling algo-
rithm distinguishing G1 and G2 always makes queries Li = [n]. This makes the lower bound simpler,
as we can focus on proving lower bounds against algorithms which receive random edge samples.

5.5 Proof of Lemma 5.5

Similarly to the proof of Lemma 5.4, we will proceed by generating the necessary randomness to
generate the functions f from Dyes or from Dno. However, unlike Lemma 5.4, this will not be a
black box reduction, since we will not be able to simulate f exactly.

Consider a deterministic non-adaptive algorithm Alg which makes queries to a Boolean function
f : {0, 1}2n → {0, 1} sampled from Dyes or Dno and outputs “accept” if Alg believes f was sampled
from Dyes, and outputs “reject” if Alg believes f was sampled from Dno. Since Alg is non-adaptive
and deterministic, all queries are determined, so consider the queries z1, . . . , zq ∈ {0, 1}2n, and let
Alg : {0, 1}q → {“accept”, “reject”} be a function.

26

We will now define a non-adaptive algorithm Alg′ which makes rejection sampling queries to an
unknown graph G on n vertices sampled from G1 or from G2. The algorithm Alg′ proceeds as
follows:

1. Using some randomness and answers from rejection sampling queries to an unknown graph
G, we generate a sequence of r bits (r1, . . . , rq) satisfying the following two conditions (we
give the procedure to generate these random bits after)7:

• If G ∼ G1, then (r1, . . . , rq) will be roughly distributed as (f(z1), . . . ,f(zq)) where f is
a Boolean function f ∼ Dno.

• If G ∼ G2, then (r1, . . . , rq) will be roughly distributed as a (f(z1), . . . ,f(zq)) where f
is a Boolean function f ∼ Dyes.

2. Finally, if Alg(r1, . . . , rq) outputs “accept”, then Alg′ outputs “G2”, and if Alg(r1, . . . , rq)
outputs “reject”, then Alg′ outputs “G1”.

In order to formalize the notion of “roughly distributed as” from above, let Vyes and Vno be the
distributions supported on {0, 1}q given by:

r ∼ Vyes where ∀i ∈ [q], ri = f(zi), and f ∼ Dyes.

r ∼ Vno where ∀i ∈ [q], ri = f(zi), and f ∼ Dno.

Now, given the algorithm Alg′, we let Uyes,Uno be the distributions supported in {0, 1}q given by:

r ∼ Uyes where Alg′(G) outputs (r1, . . . , rq) when G ∼ G2

r ∼ Uno where Alg′(G) outputs (r1, . . . , rq) when G ∼ G1

The following lemma is a simple consequence will allow us to conclude Lemma 5.5.

Lemma 5.6. Suppose Vyes,Vno,Uyes and Uno satisfy:

dTV (Vyes,Uyes) = o(1) and dTV (Vno,Uno) = o(1).

Then, we have that:

Pr
G∼G1

[Alg′(G) outputs “G1”] ≈ Pr
f∼Dno

[Alg(f) “rejects”]± o(1).

Pr
G∼G2

[Alg′(G) outputs “G2”] ≈ Pr
f∼Dyes

[Alg(f) “accepts”]± o(1).

Proof: We show the first inequality in the conclusion, as the argument is the same for the second
inequality. Consider the set R = {r ∈ {0, 1}q : Alg(r) = “reject”}. Then, we have:

Pr
f∼Dno

[Alg(f) “rejects”] = Pr
r∼Vno

[r ∈ R]

≈ Pr
r∼Uno

[r ∈ R]± o(1)

≈ Pr
G∼G1

[Alg′(G) outputs “accept”]± o(1).

7With a slight abuse of notation, we let Alg′(G) correspond to to the output (r1, . . . , rq) that Alg′ produces with
rejection sampling access to graph G.

27

Given Lemma 5.6, it remains to describe the randomized procedure Alg′ which given rejection
sampling access to an unknown n-vertex graph G from G1 or G2 outputs a bit-string of length q
such that:

dTV (Vyes,Uyes) = o(1) and dTV (Vno,Uno) = o(1).

The procedure will work as follows:

1. First, sample a random subset M ⊂ [2n] of size n, and let m1,m2 ∼M be two distinct random
indices, and let T ∼ E(M\{m1,m2}). This defines an indexing function8 ΓT : {0, 1}2n → [N].
We may view the unknown graph G as being defined over vertices in M 9.

2. We now consider partitioning the queries z1, . . . , zq ∈ {0, 1}2n into at most t+4 sets (where we

will have t ≤ q) Q
(+)
M ,Q

(−)
M ,Q

(0)
∗ ,Q∗(1) and Q`1 , . . . ,Q`t non-empty sets where `1, . . . , `t ⊂

[N]:

Q
(−)
M =

{
zi : |(zi)|M| <

n

2
−
√

2n
}
,

Q
(+)
M =

{
zi : |(zi)|M| >

n

2
+
√

2n
}
,

Q
(0)
∗ =

{
zi : ΓT(zi) = 0∗ ∧ zi /∈ Q

(−)
M ∪Q

(+)
M

}
,

Q
(1)
∗ =

{
zi : ΓT(zi) = 1∗ ∧ zi /∈ Q

(−)
M ∪Q

(+)
M

}
,

Q` =
{
zi : ΓT(zi) = ` ∧ zi /∈ Q

(−)
M ∪Q

(+)
M

}
.

3. If zi ∈ Q
(−)
M , we let ri = 0, if zi ∈ Q

(+)
M , we let ri = 1. If zi ∈ Q

(0)
∗ , we let ri = 0, and

if zi ∈ Q
(1)
∗ , we let ri = 1. We may thus only consider the queries in Q`1 , . . . ,Q`t , and for

simplicity in the notation, we re-index the queries to let:

Q`i =
{
z

(i)
1 , z

(i)
2 , . . . , z

(i)
|Q`i
|

}
for each i ∈ [t], and the corresponding bits r

(i)
1 , r

(i)
2 , . . . , r

(i)
|Q`i
|.

4. We thus consider each i ∈ [t] and independently set the values of r
(i)
1 , . . . , r

(i)
|Q`i
| as follows:

(a) If `i ≤ 3N/4, sample some j ∼ {m1,m2}, and for every α ∈ [|Q`i |], let:

r(i)
α =

{
(z

(i)
α)j j = m1

¬(z
(i)
α)j j = m2

.

(b) Otherwise, if `i > 3N/4, consider the following sets

Li =
{
k ∈M : ∃α, β ∈ [|Q`i |], (z

(i)
α)k 6= (z

(i)
β)k

}
,

8Note that now, N = 2
√
2n since we are considering Boolean functions with 2n variables.

9We may assume this by picking an arbitrary mapping of the indices in M to [n].

28

and,

L
(0)
i =

{
k ∈M \ Li : z ∈ Q`i , zk = 0

}
L

(1)
i =

{
k ∈M \ Li : z ∈ Q`i , zk = 1

}
.

We make the query Li if |Li| ≤ n
logn and M otherwise to the rejection sampling oracle

and obtain a response v ∈ (M×M)∪M∪{∅}. In addition, sample j3 ∼ {m1,m2}. We
now consider three cases:

i. If v = (j1, j2) ∈M×M is an edge, then for each α ∈ [|Q`i |], we let:

r(i)
α =

{
(z

(i)
α)j1 ⊕ (z

(i)
α)j2 ⊕ (z

(i)
α)j3 j3 = m1

¬(z
(i)
α)j1 ⊕ (z

(i)
α)j2 ⊕ (z

(i)
α)j3 j3 = m2

.

ii. If v = j2 ∈ M is a lone vertex, then let w = ¬(z
(i)
1)j2 and pv(L

(w)
i) =

|L(w)
i |
|Li|

, we

sample b ∼ Ber(pv(L
(w)
i)) and for each α ∈ [|Q`i |], we let:

r(i)
α ⊕ (z(i)

α)j2 ⊕ (z(i)
α)j3 =

{
b⊕ (z

(i)
1)j2 j3 = m1

¬b⊕ (z
(i)
1)j2 j3 = m2

.

iii. Lastly, if v = ∅ is the empty set, then let p∅(Li) =
2|L(0)

i ||L
(1)
i |

|Li|2
and sample b ∼

Ber(p(Li)) and for each α ∈ [|Q`i |], we let:

r(i)
α ⊕ (z(i)

α)j3 =

{
b j3 = m1

¬b j3 = m2
.

Remark 8. The procedure described above does not exactly simulate queries to a f ∼ Dyes or Dno

(in the case of G ∼ G2 or G ∼ G1, respectively) as in the reductions of Lemma 5.4 and Lemma 4.3).
Let us briefly explain why this happens by giving an illuminating example. Consider a one-query
algorithm which makes query z ∈ {0, 1}n and suppose |zM| ≈ n

2 ±
√

2n and ΓT(z) = i > 3N
4 with

zm1 = 0 and zm2 = 1. Then, the value f(z) = hi(z) will be 0 if zj1 = zj2, and 1 if zj1 6= zj2, where
(j1, j2) ∼ G is the edge sampled for subfunction hi.

We note that this probability is slightly different for G ∼ G1 and G ∼ G2 and depends on how A
partitions the 0-variables and 1-variables of z. Despite this difference, Alg′ always observes ∅ from
the rejection sampling oracle, so the output bit r ∈ {0, 1} which Alg′ produces will not simulate f(z)
exactly. The bulk of the argument shows that Alg′ can sample a random bit whose distribution is
close to f(z) in total variation distance, so that Alg cannot exploit the fact that the simulation is
not exact.

We first note the following lemma.

Lemma 5.7. With probability 1−o(1) over the draw of M ⊂ [n], m1,m2 and T ∼ E(M\{m1,m2}),
we have that for all i ∈ [t],

|Li| ≤ |Q`i | · 90
√
n log n.

29

Proof: We will prove this by showing that for any two z, z′ ∈ Q`i , ‖z − z′‖1 ≤ 90
√
n log n with

probability 1− 1
n10 , so that we may union bound over all possible pairs. More specifically, consider

two queries z, z′ ∈ {0, 1}2n which differ by more than 90
√
n log n indices. Note that the distribution

of the random variable ‖(z − z′)|M‖1 ∼ HG(2n, |z − z′|, n). Then using Theorem 6 we have that
with probability at least 1− 1

n10 over the draw of M, ‖z|M − z′|M‖1 ≥ 30
√
n log n.

Next, if |z|M| ≈ n
2 ±
√

2n and |z′|M| ≈
n
2 ±
√

2n (if either of these conditions do not hold, then we

know the strings are not in Q`i for any i), then there exists a set P ⊂ M with |P| = 15
√
n log n

such that for all k ∈ P, zk = 1 and z′k = 0. Thus, we have that:

Pr
T

[∃i ∈ [t], z, z′ ∈ Q`i] ≤ Pr
T

[z′ ∈ Q`i | z ∈ Q`i] ≤ Pr
T`i

[T`i ∩P = ∅] ≤
(

1− 15 log n√
n

)√n
� 1

n10
.

So we may union bound over all pairs of queries to conclude that if z, z′ ∈ Q`i , then ‖z − z′‖1 ≤
90
√
n log n with high probability, which gives the desired claim.

Thus, given Lemma 5.7 as well as the fact that we query [n] when |Li| ≥ n
logn , we conclude that if

Alg makes q queries, then Alg′ has complexity at most q · O(
√
n log2 n) in the rejection sampling

model.

Lemma 5.8. If q ≤ n3/2

log8 n
, then with probability 1− o(1) over the draw of M ⊂ [n],m1,m2, T, and

A ⊂M, we have that for every i ∈ [t] where |Li| ≤ n
logn , the sets |L(0)

i |, |L
(1)
i | satisfy the following

|L(0)
i |, |L

(1)
i | = Ω(n) ,

∣∣∣A ∩ L
(0)
i

∣∣∣ ≈
∣∣∣L(0)

i

∣∣∣
2
±
√
n log n and

∣∣∣A ∩ L
(1)
i

∣∣∣ ≈
∣∣∣L(1)

i

∣∣∣
2
±
√
n log n.

Proof: We first claim that with probability 1−o(1) over the choice of M, all the queries z ∈ {0, 1}2n
that are mapped to some Q`i are such that |z| ≈ n ± 50

√
2n log n. Assume z ∈ {0, 1}2n is such

that |z| > n + 50
√

2n log n, and consider the random variable |z|M|. Note that the distribution of
|z|M| is hyper-geometric with parameters (2n, |z|, n). By using Theorem 6 on the tail bounds for
hyper-geometric random variable, we get that for any t > 0

Pr
M

[
|z|M| <

(
|z|
2n
− t
)
n

]
≤ e−2t2n .

By choosing t = 50 logn√
2n
−
√

2√
n

, and considering the complement event, we have that

Pr
M

[
|z|M| ≥

|z|
2
− 50

√
n log n√

2
+
√

2n

]
≥ 1− 1

n50
.

Combining this with the fact that |z| > n + 50
√

2n log n, we get that the probability that |z|M| >
n/2 +

√
2n is at least 1− 1/n50.

Similarly, we get that when |z| < n − 50
√

2n log n , we have that with probability 1 − 1/n50 over
the choice of M, |z|M| < n/2−

√
2n. By using a union bound on the number of queries we get that

30

with probability 1− o(1) over the choice of M, all the queries z ∈ {0, 1}2n that are mapped to some
Q`i are such that |z| ≈ n± 50

√
2n log n.

We henceforth condition on such M = M . Consider any T ∼ E(M) and all the indices i ∈ [t] such
that |Li| ≤ n

logn . By definition, if z ∈ {0, 1}2n is mapped to some Q`i , then |z|M | ≈ n/2 ±
√

2n,

which implies that |z|M | ≈ n/2 ± 49
√

2n log n. Therefore, by the fact that all queries in Q`i must

agree on all of the coordinates in Li, we can conclude that |L(0)
i | and |L(1)

i | are Ω(n).

Next, consider the random variable |A ∩ L(1)
i |, and note that its distribution is hyper-geometric

with parameters (n, |L(1)
i |, n/2). By using tail bounds for hyper-geometric random variable, we get

that with probability at least 1− o(1) over the choice of A

|A ∩ L(1)
i | ≈

|L(1)
i |
2
±
√
n log n .

Using the same argument, we also get that with probability 1− o(1) over the choice of A we have
that

|A ∩ L(0)
i | ≈

|L(0)
i |
2
±
√
n log n .

By applying a union bound over all indices i ∈ [t] the lemma follows.

Lemma 5.9. If cost(Alg′) ≤ n2

log6 n
which occurs with high probability over M, with probability

1 − o(1) over the draw of v in Step 4(b), there are at most n
log4 n

responses v ∈M which are lone

vertices of case (ii).

As discussed earlier, the proof of the above lemma is given in the lower bound for distinguishing G1

and G2 in Section 6 (Lemma 6.14). We assume its correctness for the rest of this section.

We note that since M,m1,m2 and T are distributed in the same way in f ∼ Dyes and in
Step 1 of Alg, we may consider the distribution Vyes(M,m1,m2, T) denoting Vyes conditioned
on M = M,m1 = m1,m2 = m2 and T = T , and we analogously define Uyes(M,m1,m2, T),
Vno(M,m1,m2, T) and Uno(M,m1,m2, T). In addition, we may denote the event EA to denote
the event that the hidden subset A sampled in f or in the graph G satisfies the conditions of
Lemma 5.8, and the event EV to be the event that there are at most n

log4 n
responses which are lone

vertices from Lemma 5.9. We thus consider a fixed set M,m1,m2, and T satisfying the following
conditions of Lemma 5.7 and consider the distribution V ′yes to be the distribution given by sampling
r ∼ Vyes(M,m1,m2, T) conditioned on events EA and EV . We analogously define V ′no, U ′yes and U ′no.
We note it suffices to show dTV (V ′yes,U ′yes) = o(1) and dTV (V ′no,U ′no) = o(1).

We now note that conditioned on M,m1,m2 and T , the sets Q
(+)
M ,Q

(−)
M ,Q

(1)
∗ and Q

(0)
∗ , as well

as all Q`1 , . . . ,Q`t are no longer random. Furthermore, when z ∈ Q
(+)
M ∪ Q

(−)
M ∪ Q

(1)
∗ ∪ Q

(0)
∗ the

values of fT,A,H(z) from Dyes (and from Dno) are fixed to their corresponding values according to
(2), which match their settings in U ′yes and U ′no. Likewise, when z ∈ Q`i with `i ≤ 3N

4 , fT,A,H(z)
is determined by a dictator or anti-dictator in {m1,m2}; by the principle of deferred decisions, the

values of fT,A,H(z) can be simulated exactly. Therefore, it remains to consider the values of r
(i)
α

31

corresponding to fT,A,H(z
(i)
α) for each i ∈ [t], where `i >

3N
4 , so for simplicity, assume that every

`i >
3N
4 .

Consider a function v : [t] → {“edge”, “lone vertex”, “empty set”} which indicates whether the re-
sponse of the ith rejection sampling query sampled in Step 4(b) falls into case (i) (when vi is an
edge), or case (ii) (when vi is a lone vertex), or case (iii) (when vi is ∅). In other words,

v(i) =

“edge” vi ∈M×M

“lone vertex” vi ∈M
“empty set” vi = ∅

We thus consider one fixed function v : [t]→ {“edge”, “lone vertex”, “empty set”} and condition on
the fact that v specifies the three cases of Step 4(b) (in the case of Uyes and Uno) and whether the
edge sampled (j1, j2) ∼ G in the fourth step of generating Dyes and Dno for h`i either intersects Li
fully (in the case of an edge), or partially (in the case of a lone vertex), or it does not intersect at
all (in the case of the empty set). Thus, again, we may consider the distributions conditioned on
the edges sampled are specified correctly by v.

The following three lemmas give the distribution of r
(i)
1 ∼ V ′yes and r

(i)
1 ∼ V ′no in the cases when

vi is an edge, or a lone vertex, or the empty set. We note that the three lemmas indicate how to

generate the bits r
(i)
α in Step 4(b) of Alg′.

Lemma 5.10. For every i ∈ [t] with v(i) = “edge”, we have that every α ∈ [|Q`i |] has r
(i)
α generated

from Alg′ is distributed exactly as f(z
(i)
α).

Proof: This simply follows from the principle of deferred decisions, since Alg′ generates all the
necessary randomness to simulate a query to a function f ∼ Dyes or f ∼ Dno which indexes to the
sub-function h`i .

Lemma 5.11. For every i ∈ [t] with v(i) = “empty set”, there exists |γyes|, |γno| = O(log2 n
n) such

that for r ∼ V ′yes satisfies

r
(i)
1 ⊕ (z

(i)
1)j3 ∼

{
Ber

(
p∅(Li) + γyes

)
j3 = m1

Ber(1− p∅(Li)− γyes) j3 = m2
,

and r ∼ V ′no satisfies

r
(i)
1 ⊕ (z

(i)
1)j3 ∼

{
Ber

(
p∅(Li) + γno

)
j3 = m1

Ber
(
1− p∅(Li)− γno

)
j3 = m2

.

Proof: We recall that h`i is determined by (j1, j2) ∼ G and j3 ∼ {m1,m2} in the fourth step

of generating f ∼ Dyes or Dno. Consider the case when j3 = m1, and the case when (z
(i)
1)m1 = 0

(since the case (z
(i)
1)m1 = 1 is symmetric, except we flip the answer).

Recall that we condition on the fact that the edge (j1, j2) ∼ G satisfies Li ∩ {j1, j2} = ∅, as well

32

as the conclusions from Lemma 5.8, so we may write:

Pr
r∼Vyes

[
r

(i)
1 = 1 | v(i) = “empty set”

]
= Pr

G∼Dno
(j1,j2)

[(
j1 ∈ A ∩ L

(0)
i ∧ j2 ∈ A ∩ L

(1)
i

)
∨
(
j1 ∈ A ∩ L

(1)
i ∧ j2 ∈ A ∩ L

(0)
i

)
| v(i) = “empty set”

]
,

=
1

|A ∩ Li| · |A ∩ Li|
·
(
|A ∩ L

(0)
i | · |A ∩ L

(1)
i |+ |A ∩ L

(1)
i | · |A ∩ L

(0)
i |
)

(4)

since the value of f(z
(i)
1) in the case of j3 = m1 will be a parity of the end points, so this parity

will be 1 when the values of the variables j1 and j2 under z
(i)
1 disagree. In order to see this, we

recall that G is the complete bipartite graph (in the case when r ∼ Vyes) with sides A and A, so

the edge (j1, j2) ∈ A×A must have (z
(i)
1)j1 6= (z

(i)
1)j2 , and j1, j2 ∈ Li.

Since v(i) = “empty set”, we note that |Li| ≤ n
logn , so |Li| = Ω(n). In addition, by Lemma 5.8, let:

|A ∩ L
(0)
i | =

|L(0)
i |
2

+ ξ0 and |A ∩ L
(1)
i | =

|L(1)
i |
2

+ ξ1, (5)

where |ξ0|, |ξ1| ≤
√
n log n, which in turn, implies:

|A ∩ L
(0)
i | =

|L(0)
i |
2
− ξ0 and |A ∩ L

(1)
i | =

|L(1)
i |
2
− ξ1. (6)

Therefore, combining (4) with (5) and (6),

Pr
r∼Vyes

[
r

(i)
1 = 1 | v(i) = “empty set”

]
=

1(
|Li|

2 + ξ0 + ξ1

)(
|Li|

2 − ξ0 − ξ1

) ((|L(0)
i |
2

+ ξ0

)(
|L(1)
i |
2
− ξ1

)
+

(
|L(1)
i |
2

+ ξ1

)(
|L(0)
i |
2
− ξ0

))

=
2|L(0)

i | · |L
(1)
i | − 8ξ0ξ1

|Li|2 − 4ξ2
0 − 4ξ2

1 − 8ξ0ξ1

=
2|L(0)

i | · |L
(1)
i |

|Li|2
+ γyes,

where |γyes| ≤ O(log2 n
n), since |Li|, |L

(0)
i |, |L

(1)
i | = Ω(n).

The case when r ∼ Vno is analogous, except that now the underlying graph is the union of two

33

cliques at A and A, so:

Pr
r∼Vno

[
r

(i)
1 = 1 | v(i) = “empty set”

]
= Pr

G∼G1
(j1,j2)

[(
j1 ∈ A ∩ L

(0)
i ∧ j2 ∈ A ∩ L

(1)
i

)
∨
(
j1 ∈ A ∩ L

(0)
i ∧ j2 ∈ A ∩ L

(1)
i

)
| v(i) = “empty set”

]
,

=
1(|A∩Li|

2

)
+
(|A∩Li|

2

) · (|A ∩ L
(0)
i | · |A ∩ L

(1)
i |+ |A ∩ L

(0)
i | · |A ∩ L

(1)
i |
)

=
1(|Li|

2
+ξ0+ξ1

2

)
+
(|Li|

2
−ξ0−ξ1

2

)
((
|L(0)
i |
2

+ ξ0

)(
|L(1)
i |
2

+ ξ1

)
+

(
|L(0)
i |
2
− ξ0

)(
|L(1)
i |
2
− ξ1

))

=
2|L(0)

i | · |L
(1)
i |

|Li|2
+ γno,

were again, |γno| ≤ O(log2 n
n).

Lemma 5.12. For every i ∈ [t] with v(i) = “lone vertex”, let j2 ∈ M be the lone vertex observed

and let w = ¬(z
(i)
1)j2. There exists |γ′yes|, |γ′no| ≤ O(logn√

n
) such that for r ∼ V ′yes satisfies

r
(i)
1 ⊕ (z

(i)
1)j3 ∼

{
Ber(pv(L

(w)
i) + γ′yes) j3 = m1

Ber(1− pv(L
(w)
i)− γ′yes) j3 = m2

,

and r ∼ V ′no satisfies

r
(i)
1 ⊕ (z

(i)
1)j3 ∼

{
Ber(pv(L

(w)
i) + γ′no) j3 = m1

Ber(1− pv(L
(w)
i)− γ′no) j3 = m2

.

Proof: We follow a similar strategy to Lemma 5.11, where we know that we sample an edge
(j1, j2) ∼ G whose value of j2 ∈ Li, and j1 /∈ Li. Consider for simplicity the case when G is a

complete bipartite graph with sides A and A, and j3 = m1 and (z
(i)
1)m1 = 0.

Similarly to (4), we have that in order for r
(i)
1 = 1, we must have (z

(i)
1)j1 6= (z

(i)
1)j2 . Suppose that

j2 ∈ A and w = ¬(z
(i)
1)j2 , then in order for r

(i)
1 = 1, j1 must have been sampled from A ∩ L

(w)
i .

Using Lemma 5.8, we have that there exists |ξ0|, |ξ1| ≤
√
n log n so:

Pr
r∼V ′yes

[r
(i)
1 = 1 | v(i) = “lone vertex”] =

|A ∩ L
(w)
i |

|A ∩ L|
=
|L(w)
i |/2− ξw

|Li|/2− ξ0 − ξ1

≈ |L
(w)
i |
|Li|

±O(logn√
n

),

where we used the fact that |Li|, |L(w)
i | = Ω(n). If j2 ∈ A, then

Pr
r∼V ′yes

[r
(i)
1 = 1 | v(i) = “lone vertex”] =

|A ∩ L
(w)
i |

|A ∩ L|
=
|L(w)
i |/2 + ξw

|Li|/2 + ξ0 + ξ1

≈ |L
(w)
i |
|Li|

±O(logn√
n

).

In both cases, we have that r
(i)
1 ∼ Ber(pv(L

(w)
i) ± O(logn√

n
)), and when we have (z

(i)
1)m1 = 1, we

simply flip the answer. Likewise, when j3 = m2, we flip the answer once more.

34

In the case of G being the union of two cliques at A and A, when j3 = m1 and (z
(i)
1)m1 = 0, we

have that when j2 ∈ A,

Pr
r∼V ′no

[r
(i)
1 = 1 | v(i) = “lone vertex”] =

|A ∩ L
(w)
i |

|A ∩ L|
=
|L(w)
i |/2 + ξw

|Li|/2 + ξ0 + ξ1

≈ |L
(w)
i |
|Li|

±O(logn√
n

),

and when j2 ∈ A,

Pr
r∼V ′no

[r
(i)
1 = 1 | v(i) = “lone vertex”] =

|A ∩ L
(w)
i |

|A ∩ L|
=
|L(w)
i |/2− ξw

|Li|/2− ξ0 − ξ1

≈ |L
(w)
i |
|Li|

±O(logn√
n

),

so we obtain the analogous conclusion.

We note that after defining r
(i)
1 in the cases with v(i) = “empty set”, we have that all values r

(i)
α

are determined by flipping the answer when (z
(i)
α)j3 6= (z

(i)
1)j3 . Likewise, after defining r

(i)
1 in the

cases with v(i) = “lone vertex”, we have that all values r
(i)
α are determined by flipping the answer

when (z
(i)
α)j3 6= (z

(i)
1)j3 and when (z

(i)
α)j2 6= (z

(i)
1)j2 .

Finally, consider the indices i ∈ [t] of responses r
(i)
α with v(i) = “empty set”, and call these E. We

have that for all i ∈ E, U ′yes and U ′no outputs bits which equal 1 with probability τi where τi = Ω(1),

and V ′yes and V ′no outputs bits which equal 1 with probability τi ±O(log2 n
n). Since these groups are

independent and there at at most q � n1.5 groups, we have that the bits (r
(i)
1)i∈E ∼ U ′yes (and also

U ′no) satisfy:

(r
(i)
1)i∈E ∼

∏
i∈E

Ber(τi),

and for each i ∈ E, there exists γi,yes and γi,no with |γi,yes|, |γi,no| = O(log2 n
n) such that (r

(i)
1)i∈E ∼

V ′yes satisfies

(r
(i)
1)i∈E ∼

∏
i∈E

Ber(τi + γi,yes),

and if (r
(i)
1)i∈E ∼ V ′no satisfies

(r
(i)
1)i∈E ∼

∏
i∈E

Ber(τi + γi,no).

Thus, by [Roo01], we have that the distance in total variation between these two distributions is at
most o(1).

Similarly, we consider the indices i ∈ [t] with v(i) = “lone vertex”, and call these V . By Lemma 5.9,
we have that |V | ≤ n

log4 n
with probability 1− o(1) if the cost of the rejection sampling algorithm is

less than n2

log6 n
. So similarly to the case with the groups in E, these can only incur at most o(1) in

distance in total variation.

6 A lower bound for distinguishing G1 and G2 with rejection sam-
ples

In this section, we derive a lower bound for distinguishing G1 and G2 with rejection samples.

35

Lemma 6.1. Any deterministic non-adaptive algorithm Alg with cost(Alg) ≤ n2

log6 n
, has:

Pr
G∼G1

[Alg outputs “G1”] ≤ (1 + o(1)) Pr
G∼G2

[Alg outputs “G1”] + o(1).

We assume Alg is a deterministic non-adaptive algorithm with cost(Alg) ≤ n2

log6 n
. Alg makes queries

L1, . . . , Lt ⊂ [n] and the oracle returns v1, . . . ,vt, some of which are edges, some are lone vertices,
and some are ∅. Let Go ⊂ G be the graph observed by the algorithm by considering all edges in
v1, . . . ,vt. We let |Go| be the number of edges.

Before going on to prove the lower bound, we use the following simplification. First, we assume
that any algorithm Alg has all its queries L1, . . . , Lt satisfying that either |Li| ≤ n

logn , or Li = [n].

Thus, it suffices to show for this restricted class of algorithms, the cost must be at least n2

log5 n
.

6.1 High Level Overview

In this subsection, we will give a high level overview of the proof of Lemma 6.1.

The idea is that we will argue outcome-by-outcome; i.e., we consider the possible ways the algorithm
can act, which depends on the responses to the queries the algorithm gets. Consider some responses
v1, . . . , vt ∈ [n]∪ ([n]× [n])∪{∅}, where each vi may be either a lone vertex, an edge, or ∅. Suppose
that upon observing this outcome, the algorithm outputs “G1”. There will be two cases:

• The first case is when the probability of observing this outcome from G2 is not too much lower
than the probability of observing this outcome from G1. In these outcomes, we will not get
too much advantage in distinguishing G1 and G2.

• The other case is when the probability of observing this outcome from G2 is substantially lower
than the probability of observing this outcome from G1. These cases do help us distinguish
between G1 and G2; thus, we will want to show that collectively, the probability that we
observe these outcomes from G1 is o(1).

We will be able to characterize the outcomes which fall into the first case and the second case by
considering a sequence of events. In particular we define five events which depend on v1, . . . , vt, as
well as the random choice of A. Consider the outcome v1, . . . , vt which together form components
C1, . . . , Cα. The events are the following10:

1. ET (Observe small trees): this is the event where the values of v1, . . . , vt form components
C1, . . . , Cα which are all trees of size at most log n.

2. EF (Observe few non-empty responses): this is the event where the values of v1, . . . , vt have
at most n

log4 n
non-∅ responses. This event implies that the total number of vertices in the

responses v1, . . . , vt is at most n
log4 n

.

10We note that the first two event are not random and depends on the values v1, . . . , vt, and the rest are random
variables depending on the partition A and the oracle responses v1, . . . ,vt.

36

3. EC,yes and EC,no (Consistency condition of the components observed): these are the events
where A ⊂ [n] partitions the components C1, . . . , Cα in a manner consistent with G1 in EC,yes

or G2 in EC,no. See Definition 6.5 for a formal definition of this event. These events are random
variables that depend only on A. It will become clear that in order to observe the outcome
v1, . . . , vt in G1, event EC,yes must be triggered, and in G2, event EC,no must be triggered. See
Figure 7 for an illustration.

A A A A

C1

C3

C2

C4

C1

C2

C3

C4

Figure 7: A consistently partition of the components C1, C2, C3 and C4 according to G1 (on the
left) and G2 (on the right).

4. EO (Observe specific responses) : this event is over the randomness in A, as well as the
randomness in the responses of the oracle v1, . . . ,vt. The event is triggered when the responses
of the oracle are exactly those dictated by v1, . . . , vt; i.e., for all i ∈ [t], vi = vi.

5. EB (Balanced lone vertices condition) : this event is over the randomness in A, as well as the
responses v1, . . . ,vt. The event occurs when a particular quantity which depends on A and
v1, . . . ,vt is bounded by some predetermined value. See Definition 6.15 for a formal definition.

Having defined these events, the lower bound follows by the following three lemmas. The first
lemma says that for any outcomes satisfying ET and EF , the probability over A of being consistent
in G1 cannot be much higher than in G2. The second lemma says that the outcomes satisfying the
events described above do not help in distinguishing G1 and G2. The third lemma says that good
outcomes occur with high probability over G1.

Lemma 6.2 (Consistency Lemma). Consider a fixed v1, . . . , vt ∈ [n] ∪ ([n]× [n]) ∪ {∅} forming
components C1, . . . , Cα where events ET and EF are satisfied. Then, we have:

Pr
G∼G1
v1,...,vt

[EC,yes] ≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EC,no].

Lemma 6.3 (Good Outcomes Lemma). Consider a fixed v1, . . . , vt ∈ [n]∪ ([n]× [n])∪{∅} forming
components C1, . . . , Cα where events ET and EF are satisfied. Then, we have:

Pr
G∼G1
v1,...,vt

[EO ∧ EB | EC,yes] ≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EO | EC,no].

37

Lemma 6.4 (Bad Outcomes Lemma). We have that:

Pr
G∼G1
v1,...,vt

[¬ET ∨ ¬EF ∨ ¬EB] = o(1).

Assuming the above three lemmas, we may prove Lemma 6.1.

Proof: Let Λ be the set of outcomes of the algorithm which output “G1.” Each outcome is a
collection of responses v1, . . . , vt. We let

ΛG = {` ∈ Λ : responses v1, . . . , vt satisfy ET ∧ EF },

and EO,` be the event that responses v1, . . . ,vt result in outcome `. We have:

Pr
G∼G1
v1,...,vt

[Alg outputs “G1”] ≤
∑
`∈ΛG

Pr
G∼G1
v1,...,vt

[` is observed by Alg | EC,yes] Pr
G∼G1
v1,...,vt

[EC,yes] + Pr
G∼G1
v1,...,vt

[¬ET ∨ ¬EF]

≤
∑
`∈ΛG

Pr
G∼G1
v1,...,vt

[EO,` ∧ EB | EC,yes] Pr
G∼G1
v1,...,vt

[EC,yes] + Pr
G∼G1
v1,...,vt

[¬ET ∨ ¬EF ∨ ¬EB]

≤ (1 + o(1))
∑
`∈ΛG

Pr
G∼G2
v1,...,vt

[EO,` | EC,no] Pr
G∼G2
v1,...,vt

[EC,no] + o(1)

≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[Alg outputs “G1”] + o(1),

where we used Lemma 6.2, Lemma 6.3, and Lemma 6.4 from the second to third line.

6.2 Proof of the Consistency Lemma: Lemma 6.2

We now turn to proving Lemma 6.2. We first give the formal definitions of events EC,yes and EC,no.
Next, we set up some definitions necessary for the proof and give two claims which imply the lemma.
For the remainder of the section, we consider fixing the responses v1, . . . , vt ∈ [n]∪ ([n]× [n])∪{∅}.
We assume the responses form the components C1, . . . , Cα which satisfy events ET and EF . For each
i ∈ [α], let ui be the minimum vertex in Ci with respect to the natural ordering of [n], and consider
rooting the trees Ci at ui, forming a layered tree with at most log n layers. Namely, ui will be in
the first layer, all its neighbors in Ci will be in the second layer, and so on. We let Ci(even) be the
set of vertices in even layers, and Ci(odd) be the set of vertices in odd layers.

Definition 6.5. We let EC,yes be the event that A ⊂ [n] is consistent with the observations v1, . . . , vt
when G = KA∪KA, and EC,no be the event that A ⊂ [n] is consistent with the observations v1, . . . , vt
when G = KA,A. In other words,

• In EC,yes: for all i ∈ [α], either Ci ⊂ A or Ci ⊂ A.

• In EC,no: for all i ∈ [α], either Ci(odd) ⊂ A and Ci(even) ⊂ A, or Ci(odd) ⊂ A and
Ci(even) ⊂ A.

38

For each i ∈ [α], let Yi be the indicator random variable for ui ∈ A. Let:

WA,yes =
α∑
i=1

Yi · |Ci| WA,no =
α∑
i=1

(Yi · |Ci(odd)|+ (1−Yi) · |Ci(even)|) V =
α∑
i=1

|Ci|.

Definition 6.6. We let EW be the event where:

V

2
−
√
V log n ≤WA,no ≤

V

2
+
√
V log n.

Lemma 6.2 follows from the next two claims.

Claim 6.7. For v1, . . . , vt satisfying events ET and EF , we have:

Pr
G∼G1
v1,...,vt

[EC,yes ∧ EW] ≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EC,no].

Claim 6.8. For v1, . . . , vt satisfying events ET and EF , we have:

Pr
G∼G1
v1,...,vt

[¬EW | EC,yes] = o(1).

Given Claim 6.7 and Claim 6.8, we proceed to proving Lemma 6.2.

Proof of Lemma 6.2: We simply compute the respective probabilities.

Pr
G∼G1
v1,...,vt

[EC,yes] = Pr
G∼G1
v1,...,vt

[EC,yes ∧ EW] + Pr
G∼G1
v1,...,vt

[¬EW | EC,yes] Pr
G∼G1
v1,...,vt

[EC,yes]

≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EC,no] + o(1) Pr
G∼G1
v1,...,vt

[EC,yes], (7)

Where we applied both Claim 6.7 and Claim 6.8 in Line (7). Finally, this implies:

(1− o(1)) Pr
G∼G1
v1,...,vt

[EC,yes] ≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EC,no],

which finishes the proof.

We now proceed to proving Claim 6.7, followed by the proof of Claim 6.8.

Proof of Claim 6.7: Note that V ≤ n
log4 n

since event EF is satisfied. Let y ∈ {0, 1}α be an

assignment of u1, . . . , uα to A; more formally, for a fixed y ∈ {0, 1}α, we let Ey be the event that
for each i ∈ [α], ui ∈ A if yi = 1, and ui ∈ A if yi = 0. Additionally, let

YG = {y ∈ {0, 1}α : if A satisfies Ey, then EW is satisfied}.

Then,

Pr
G∼G1
v1,...,vt

[EC,yes ∧ EW] =
∑
y∈YG

Pr
G∼G1
v1,...,vt

[EC,yes ∧ Ey].

39

It suffices to show that for y ∈ YG:

Pr
G∼G1
v1,...,vt

[EC,yes ∧ Ey] ≤ (1 + o(1)) Pr
G∼G2
v1,...,vt

[EC,no ∧ Ey].

Note that if A satisfies Ey and EC,yes is satisfied, there is precisely one choice for assigning each
vertex in C1, . . . , Cα to A or A. Likewise, if A satisfied Ey and EC,no, there is precisely one choice
for assigning each vertex in C1, . . . , Cα to A or A. The remaining vertices may be placed in A or
A so the resulting set A contains half of all vertices, therefore, we have:

Pr
G∼G1
v1,...,vt

[EC,yes ∧ Ey] ≤

(n−V
n
2
−V

2

)(
n
n/2

) Pr
G∼G2
v1,...,vt

[EC,no ∧ Ey] ≥

(n−V
n
2
−V

2
−
√
V logn

)(
n
n/2

) .

Taking the ratio, we have:

Pr[EC,yes ∧ Ey]
Pr[EC,no ∧ Ey]

≤

(n−V
n
2
−V

2

)(
n
n/2

) · (
n
n/2

)(n−V
n
2
−V

2
−
√
V logn

) ≤ (n
2 −

V
2 +
√
V log n

n
2 −

V
2 −
√
V log n

)√V logn

≤
(

1 +O

(
1√

n log n

))√n/ logn

= 1 + o(1).

Proof of Claim 6.8: We let:

W
(O)
A,no =

α∑
i=1

Yi · |Ci(odd)| and W
(E)
A,no =

α∑
i=1

(1−Yi) · |Ci(even)|.

where W
(O)
A,no + W

(E)
A,no = WA,no specifies the number of vertices in ∪i∈[α]Ci assigned to A. Condi-

tioning on event EC,yes, A and A can be interchanged, so

Pr
G∼G1
v1,...,vt

[Yi = 1 | EC,yes] = Pr
G∼G1
v1,...,vt

[Yi = 0 | EC,yes] =
1

2
.

So,

E
G∼G1
v1,...,vt

[WO
A,no | EC,yes] =

1

2

∑
i∈[α]

|Ci(odd)| and E
G∼G1
v1,...,vt

[WE
A,no | EC,yes] =

1

2

∑
i∈[α]

|Ci(even)|.

Additionally, for any set of indices I ⊂ [α],

Pr
G∼G1
v1,...,vt

[∀i ∈ I,Yi = 1 | EC,yes] ≤
1

2|I|
and Pr

G∼G1
v1,...,vt

[∀i ∈ I,Yi = 0 | EC,no] ≤ 1

2|I|
,

which implies that the variables Yi, as well as the variables in 1 − Yi are negatively correlated.
We may apply Chernoff bounds (for negatively correlated variables) to obtain deviation bounds for

W
(O)
A,no and W

(E)
A,no. Then, a union bound gives the desired result for WA,no.

40

6.3 Proof of the Bad Outcomes Lemma: Lemma 6.4

In this section, we give a proof of Lemma 6.4, which says that the probability over G ∼ G1 and
v1, . . . ,vt of not satisfying events ET , EF , as well as EB is o(1). In order to prove this, we will show
that individually, the probability of not satisfying each event is o(1) and conclude with a union
bound.

6.3.1 ET : components observed are small trees

The goal of this section is to show that with high probability, the algorithm only sees edges which
form various components of small trees.

Definition 6.9. We let ET be the event that observed responses v1, . . . ,vt generate components
C1, . . . ,Cα which are all trees of size less than log n.

Lemma 6.10. We have that:
Pr

G∼G1
v1,...,vt

[ET] ≥ 1− o(1).

We prove the above lemma by showing the following two claims.

Claim 6.11. With probability 1− o(1) over the draw of G ∼ G1 and the draw of v1, . . . ,vt, Go has
no cycles.

Proof: Recall that L1, . . . , Lt are the set queries made, and let E◦,` be the event that Go has a
cycle of length `. We have:

Pr
G∼G1
v1,...,vt

[E◦,`] ≤
∑
S⊂[t]

S={i1,...,i`}

Pr
G∼G1
v1,...,vt

[vi1 , . . . ,vi` form cycle]

≤
∑
S⊂[t]

S={i1,...,i`}

∑
U⊂[n]

U={u1,...,u`}
uj∈Lij

∩Lij+1

Pr
G∼G1
v1,...,vt

[∀j ∈ [`],vij = (uj , uj+1)], (8)

where we think j + 1 = 1 when j = `. The above restriction of uj ∈ Lij ∩Lij+1 is necessary if edges
vij and vij+1 will be the edges of the cycle incident on node uj . Additionally, we may upper bound

(8) by disregarding the effect of the partition A and A; in fact, the presence of A and A make it
harder to achieve a cycle, since if uj ∈ A and uj+1 ∈ A, the probability of vij = (uj , uj+1) is 0. For
any S = {i1, . . . , i`}, once we fix a set U = {u1, . . . , u`} where uj ∈ Lij ∩ Lij+1,

Pr
G∼G1
v1,...,vt

[∀j ∈ [`],vij = (uj , uj+1)] ≤

(
1

2
(
n/2
2

))` .

41

Thus, we have:

Pr
G∼G1
v1,...,vt

[E◦,`] ≤
∑
S⊂[t]

S={i1,...,i`}

∏̀
j=1

|Lij ∩ Lij+1 |

(1

2
(n

2
2

))`

≤
(

1

Ω(n)

)2` ∑
S⊂[t]

S={i1,...,i`}

∏̀
j=1

|Lij |

≤
(

1

Ω(n)

)2`
(

t∑
i=1

|Li|

)`(
1

t

)`(t
`

)
≤
(
O

(
1

log5 n

))`
.

where we used the fact that
∑

S

∏`
j=1 |Lij | is the elementary symmetric polynomial of degree `, and∑t

i=1 |Li| ≤
n2

log5 n
. Thus, we obtain:

Pr
G∼G1
v1,...,vt

[Go contains a cycle] ≤
t∑

`=1

(
O

(
1

log5 n

))`
= o(1).

Claim 6.12. With probability 1−o(1) over the draw of G ∼ G1 and the draw of v1, . . . ,vt, we have
Go has all components of size at most log n.

Proof: This proof is very similar to the one above. Let ET,` be the event there exists a tree of
` edges. We note that there are at most exp(O(`)) rooted trees of ` edges and ` + 1 vertices. We
consider first picking a rooted tree, and we pick an arbitrary vertex to be the root of the tree. We
then pick the ` edges of the tree to some responses, vi1 , . . . ,vi` . We select the vertex on query of
the edge going away from the root; this leaves the root, which we choose arbitrarily from [n].

So we have:

Pr
G∼G1
v1,...,vt

[ET,`] ≤ exp(O(`))
∑
S⊂[t]

S={i1,...,i`}

n ∏̀
j=1

|Lij |

(1

2
(
n/2
2

))`

≤ n ·
(
O

(
1

log5 n

))`
=

(
O

(
1

log5 n

))`
,

when ` ≥ log n. Thus, we sum over all ` ≥ log to get that there exists a tree of size log n or greater
with probability o(1).

6.3.2 EF : few vertices are observed

The goal of this section is to show that the algorithm does not observe too many vertices from the
responses v1, . . .vt with high probability.

42

Definition 6.13. We let EF be the event that the responses v1, . . . ,vt contain at most n
log4 n

values

which are not ∅.

Lemma 6.14. We have:

Pr
G∼G1
v1,...,vt

[EF] ≥ 1− o(1) and Pr
G∼G2
v1,...,vt

[EF] ≥ 1− o(1).

In other words, any rejection sampling algorithm with cost less than n2

log6 n
will observe at most n

log4 n

non-∅ responses in both G1 and G2 with high probability.

Proof: Simply note that for a query Li, and any G ∈ G1, the probability of observing a response

which is not ∅ is at most
|Li| · n2
2
(
n/2
2

) = O(|Li|/n) (in the case of G1, and
|Li|·n2
n2/4

in the case of G2).

Therefore, the expected number of responses which are not ∅ is at most O(n/ log5 n), and via a
Markov bound, we have the desired result.

6.3.3 EB: vertices observed do not prefer any side too much

We now formally define the event EB, and prove the event occurs with high probability over the
draw of G ∼ G1 and v1, . . . ,vt.

Definition 6.15. Let VL ⊂ [t] be the random variable corresponding to the set of indices of re-
sponses v1, . . . ,vt which correspond to observing lone vertices, and for i ∈ VL, we let yi be the
indicator random variable for vi ∈ A. Let EB be the event where:

B =
∑
i∈VL

(−1)yi
(
|Li ∩A| − |Li ∩A|

)
= O

(
n

log n

)
.

We start by giving some intuition. Fix some query Li such that |Li| ≤ n
logn . By using Chernoff

bound we have that ||Li ∩A| − |Li ∩A|| = O(
√
|Li| log n) with high probability. Now assume that

every query we make is skewed toward A. This bad event will create a gap in the probabilities to see
a lone vertex between the two distributions, and the algorithm might use it in order to distinguish
G1 and G2. Hence, we would like to claim that collectively the probability of observing such bad
events is extremely small. More precise details follows.

Definition 6.16. Let EQ be the event that all queries L1, . . . , Lt satisfy:∣∣|Li ∩A| − |Li ∩A|
∣∣ = O

(√
|Li| log n

)
.

Claim 6.17. We have:
Pr

G∼G1
[EQ] ≥ 1− o(1).

Proof: This simply follows from a union bound over 2t applications of the Chernoff bound for
negatively correlated random variables. In particular, for all k ∈ [n], let Yk be the indicator random
variable for k ∈ A. Then we note that for each i ∈ [t],

|Li ∩A| =
∑
k∈Li

Yk and |Li ∩A| =
∑
k∈Li

(1−Yk).

43

In a similar way to the proof of Claim 6.8, we note that all Yk are negatively correlated, and all
(1−Yi) are negatively correlated, thus, we have that with probability at least 1− n−10,

|Li ∩A| ≤ |Li|
2

+
√
|Li| log n and |Li ∩A| ≤ |Li|

2
+
√
|Li| log n.

Thus, we may union bound over all 2t events, for the desired result.

Lemma 6.18. We have that:
Pr

G∼G1
v1,...,vt

[¬EB ∧ EF] = o(1).

Proof: We first note that because of Claim 6.17, we have:

Pr
G∼G1
v1,...,vt

[¬EB ∧ EF] =
∑
A⊂[n]

EQ satisfied

Pr
G∼G1
v1,...,vt

[A = A] Pr
G∼G1
v1,...,vt

[¬EB ∧ EF | A = A] + o(1).

So consider a fixed set A ⊂ [n] which satisfies event EQ. Additionally, we have:

Pr
G∼G1
v1,...,vt

[¬EB ∧ EF | A = A] =
∑
VL⊂[t]

|VL|≤ n
log4 n

Pr
G∼G1
v1,...,vt

[VL = VL | A = A] Pr
G∼G1
v1,...,vt

[¬EB | A = A,VL = VL]

Thus, it suffices to prove that for all A ⊂ [n] which satisfy EQ and VL ⊂ [t] of size at most n
log4 n

,

Pr[¬EB | A = A,VL = VL] = o(1). In fact, once we condition on A = A and VL = VL, we have:

B =
∑
i∈VL

(−1)yi
(
|Li ∩A| − |Li ∩A|

)
,

which is a sum of independent random variables. Additionally, since yi is the indicator random
variable for vi ∈ A conditioned on vi being a lone vertex, we have each yi is independent and is 1
with probability pi, where:

pi =
|Li ∩A|

(
n
2 − |Li ∩A|

)
|Li| · n2 − |Li ∩A|2 − |Li ∩A|2

=
1

2
±O

(
log n√
n

)
.

Thus, we have:

E
G∼G1
v1,...,vt

[B | A = A,VL = VL] = |VL| ·O(log2 n) = O

(
n

log2 n

)
.

Additionally, each variable can contribute O(
√
|Li| log n) to the sum, so via a standard Chernoff

bound, noting the fact that
∑

i∈VL |Li| log2 n ≤ n2

log3 n
, we have that EB is satisfied with high

probability.

44

6.4 Proof of the Good Outcomes Lemma: Lemma 6.3

We may divide v1, . . . , vt into three sets: 1) VE contain the indices i ∈ [t] whose responses vi which
are edges, 2) VL contain the indices i ∈ [t] whose responses vi are vertices, and 3) VT contain the
indices i ∈ [t] whose responses vi are ∅. We let:

Pr
G∼G1
v1,...,vt

[EO ∧ EB | EC,yes] = Y Pr
G∼G2
v1,...,vt

[EO | EC,no] = N .

We note that for a fixed A the values of vi are independent. Therefore, we may write:

Y = E
A

[YE · YL · YT · EB | EC,yes] N = E
A

[NE · NL · NT | EC,no]

YE =
∏
i∈VE

Pr
vi

[vi = vi | Y (A)] NE =
∏
i∈VE

Pr
vi

[vi = vi | N(A)]

YL =
∏
i∈VL

Pr
vi

[vi = vi | Y (A)] NL =
∏
i∈VL

Pr
vi

[vi = vi | N(A)]

YT =
∏
i∈VT

Pr
vi

[vi = ∅ | Y (A)] NT =
∏
i∈VT

Pr
vi

[vi = ∅ | N(A)]

where we slightly abused notation to let Prvi [vi = vi | Y (A)] denote the probability that the
sampled response vi is vi conditioned on the graph G being from G1 with partition A; i.e., G =
KA ∪KA. Likewise, Prvi [vi = vi | N(A)] denotes the probability that the sampled response vi is
vi conditioned on the graph G being from G2 with partition A; i.e., G = KA,A. We now simply go
through the three products in to show each is at most 1 +o(1). We shall prove the following claims:

Claim 6.19. For any A for which EC,yes occurs, we have YE ≤ (1 + o(1))NE.

Proof: Note that for any choice of A for which EC,yes occurs, since the vi’s are specific edges:

Pr
vi

[vi = vi | Y (A)] =
1

2
(
n/2
2

)
and for any choice of A for which EC,no occurs,

Pr
vi

[vi = vi | N(A)] =
1

(n/2)2
.

Thus,
Prvi [vi = vi | Y (A)]

Prvi [vi = vi | N(A)]
=
n2

4
· 4

n2 − 2n
= 1 +O

(
1

n

)
,

and since |VE | ≤ n
log4 n

, we get that
YE
NE

= 1 + o(1).

Claim 6.20. For any A for which EC,yes occurs, we have YT ≤ NT .

Proof: Here, we have that for any set A which satisfies EC,yes, we have

Pr
vi

[vi = ∅ | Y (A)] =
2
(
n/2
2

)
− |Li|n2

2
(
n/2
2

) = 1− 2|Li|
n− 2

45

and similarly, for any set A which satisfies EC,no, we have

Pr
vi

[vi = ∅ | N(A)] =
(n/2)2 − |Li|n2 + |A ∩ Li||A ∩ Li|

(n/2)2
≥ 1− 2|Li|

n
.

Which finishes the proof.

Thus, by Claims 6.19 and 6.20 we have:

EA [YE · YL · YT · EB | EC,yes]

EA [NE · NL · NT | EC,no]
≤ (1 + o(1))

EA[YL · EB | EC,yes]

EA[NL | EC,no]
.

Therefore, it suffices to prove the following:

EA[YL · EB | EC,yes]

EA[NL | EC,no]
≤ 1 + o(1).

Suppose A ⊂ [n] satisfies EC,yes, then if vi is a vertex response at query Li. We have:

Pr
vi

[vi = vi | Y (A)] =
2

n− 2

(
1− |Li|

n
+ (−1)Yi

(
|Li ∩A| − |Li ∩A|

n

))
=

2

n− 2

(
1− |Li|

n

)
(1 + Zi) ,

where:

Zi = ci(−1)Yi

(
|Li ∩A| − |Li ∩A|

n

)
,

where ci =
1

1− |Li|/n
≤ 1 + o(1), since |Li| � n

logn , and Yi is the indicator random variable for

vi ∈ A. Thus, we may simplify:

E
A

[YL · EB | EC,yes] =

(
2

n− 2

)|VL|(
1− |Li|

n

)|VL|
E
A

EB ∏
i∈VL

(1 + Zi) | EC,yes

 .
Similarly, suppose A ⊂ [n] satisfies EC,no, then if vi is a vertex response at query Li, we have:

Pr
vi

[vi = vi | N(A)] =
2

n

(
1− |Li|

n

)
(1 + Si) ,

where we let Si be the random variable:

Si = ci(−1)Yi

(
|Li ∩A| − |Li ∩A|

n

)
,

Therefore, we have:

E
A

[NL | EC,no] =

(
2

n

)|VL|(
1− |Li|

n

)|VL|
E
A

∏
i∈VL

(1 + Si) | EC,no

 .
We note that since |VL| ≤ n

log4 n
, we finish off the proof with the following two claims.

46

Claim 6.21.

E
A

EB ∏
i∈VL

(1 + Zi) | EC,yes

 ≤ 1 + o(1).

Claim 6.22.

E
A

∏
i∈VL

(1 + Si) | EC,no

 ≥ 1− o(1)

Proof of Claim 6.21:

E
A

EB ∏
i∈VL

(1 + Zi) | EC,yes

 ≤ E
A

[
EB · e

∑
i∈VL

Zi | EC,yes

]
≤ e

1
logn = 1 + o(1).

Where the last inequality follows from the fact that EB occurs.

Proof of Claim 6.22: Recall that

Si = ci(−1)Yi

(
|Li ∩A| − |Li ∩A|

n

)
,

therefore, by Chernoff bound (for negative correlations) we have that with probability at least

1− 1
n10 , |Si| ≤ O

(
logn√
n

)
. We let S′i be the random variable which is equal to Si when |Si| ≤ O(logn√

n
)

and −2n otherwise. Via a very similar analysis to Claim A.1 from [CWX17a], we have:

E
A

∏
i∈VL

(1 + Si) | EC,no

 ≥ (1− o(1))

1 +
∑
i∈VL

E
A

[S′i | EC,no]

 .

We now evaluate each EA[S′i | EC,no] for i ∈ VL individually. We have:

E
A

[S′i | EC,no] ≥ E
A

[Si | EC,no] + (−2n− ci) Pr
A

[
|Si| > O

(
log n√
n

)
| EC,no

]
≥ E

A
[Si | EC,no]−O

(
1

n9

)
.

Assume that vi is in component Cj , and note that since A and A are inter-changeable,

Pr
A

[vi ∈ A | EC,no] = Pr
A

[vi ∈ A | EC,no] =
1

2
.

Now we have that,

E
A

[Si | EA,no] ≥ ci
n

∑
k∈Li\Cj

E
A

[
(−1)Yi(−1)Yk | EC,no

]
−O

(
log n

n

)

=
ci
n

∑
k∈Li\Cj

(
2 Pr

A
[Yk = 1 | Yi = 1;EC,no]− 1

)
−O

(
log n

n

)
,

47

where we used the fact that |Ci| ≤ log n, as well as the fact that A and A are interchangeable. Since
|VL| ≤ n

log4 n
and |Li| ≤ n

logn for each i ∈ VL (otherwise, we would have observed an edge), it suffices

to prove that PrA[Yk = 1 | Yi = 1;EC,no] ≥ 1
2 −

log4 n
n . This is indeed true, since

∑α
i=1 |Ci| ≤

n
log4 n

and |Ci| ≤ log n (see Lemma A.1).

Putting everything together, we have:

EA[YL · EB · EQ | EC,yes]

EA[NL | EC,no]
≤
(

n

n− 2

)|VL| 1 + o(1)

1− o(1)
≤ 1 + o(1).

Acknowledgments

We thank Eric Blais, Rocco Servedio and Xi Chen for countless discussions and suggestions. We also
thank Clément Canonne, Nathan Harms, Dor Minzer and Sofya Raskhodnikova for useful comments
on an earlier version of this manuscript. This work is supported in part by the NSF Graduate
Research Fellowship under Grant No. DGE-16-44869, CCF-1703925, CCF-1563155, CCF-1420349
and the David R. Cheriton Graduate Scholarship.

References

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the
distance to a monotone function. Random Structures and Algorithms,
31(3):371–383, 2007.

[BB16] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing
monotonicity. In Proceedings of the 48th ACM Symposium on the Theory of
Computing (STOC ’2016), pages 1021–1032, 2016.

[BCE+18] Eric Blais, Clément L Canonne, Talya Eden, Amit Levi, and Dana Ron. In
Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms
(SODA ’2018), pages 2113–2132. SIAM, 2018.

[BCP+17a] Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya
Raskhodnikova, and C. Seshadhri. A lower bound for nonadaptive, one-sided error
testing of unateness of boolean functions over the hypercube. arXiv preprint
arXiv:1706.00053, 2017.

[BCP+17b] Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya
Raskhodnikova, and C. Seshadhri. Optimal unateness testers for real-values
functions: Adaptivity helps. In Proceedings of the 44th International Colloquium
on Automata, Languages and Programming (ICALP ’2017), 2017.

[BGSMdW13] Harry Buhrman, David Garcıa-Soriano, Arie Matsliah, and Ronald de Wolf. The
non-adaptive query complexity of testing k-parities. Chicago Journal of Theoretical
Computer Science, 6:1–11, 2013.

48

[Bla08] Eric Blais. Improved bounds for testing juntas. In Approximation, Randomization
and Combinatorial Optimization. Algorithms and Techniques, pages 317–330.
Springer, 2008.

[Bla09] Eric Blais. Testing juntas nearly optimally. In Proceedings of the 41st ACM
Symposium on the Theory of Computing (STOC ’2009), pages 151–158, 2009.

[BMR16] Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Tolerant testers
of image properties. In Proceedings of the 43th International Colloquium on
Automata, Languages and Programming (ICALP ’2016), pages 90:1–90:14, 2016.

[BRY14] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In
Proceedings of the 46th ACM Symposium on the Theory of Computing
(STOC ’2014), 2014.

[CC16] Deeparnab Chakrabarty and Seshadhri Comandur. An o(n) monotonicity tester for
boolean functions over the hypercube. SIAM Journal on Computing,
45(2):461–472, 2016.

[CFGM12] Sourav Chakraborty, Eldar Fischer, David Garćıa-Soriano, and Arie Matsliah.
Junto-symmetric functions, hypergraph isomorphism and crunching. In Proceedings
of the 27th Conference on Computational Complexity (CCC ’2012), pages 148–158.
IEEE, 2012.

[CFGM16] Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the
power of conditional samples in distribution testing. SIAM Journal on Computing,
45(4):1261–1296, 2016.

[CG04] Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Information
Processing Letters, pages 301–305, 2004.

[CGR13] Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and
tolerant testers for connectivity and diameter. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 411–424.
Springer, 2013.

[CRS15] Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing probability
distributions using conditional samples. SIAM Journal on Computing,
44(3):540–616, 2015.

[CS16] Deeparnab Chakrabarty and C. Seshadhri. A Õ(n) non-adaptive tester for
unateness. arXiv preprint arXiv:1608.06980, 2016.

[CST+17] Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie.
Settling the query complexity of non-adaptive junta testing. In Proceedings of the
32nd Conference on Computational Complexity (CCC ’2017), 2017.

[CWX17a] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand functions: new lower
bounds for testing monotonicity and unateness. In Proceedings of the 49th ACM
Symposium on the Theory of Computing (STOC ’2017), 2017.

49

[CWX17b] Xi Chen, Erik Waingarten, and Jinyu Xie. Boolean unateness testing with Õ(n3/4)
adaptive queries. In Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’2017), 2017.

[DLM+07] Ilias Diakonikolas, Homin K Lee, Kevin Matulef, Krzysztof Onak, Ronitt
Rubinfeld, Rocco A Servedio, and Andrew Wan. Testing for concise
representations. In Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’2007), pages 549–558. IEEE, 2007.

[Doe11] Benjamin Doerr. Analyzing randomized search heuristics: Tools from probability
theory. Theory of randomized search heuristics, 1:1–20, 2011.

[FF06] Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for boolean
properties. Theory of Computing, 2(9):173?–183, 2006.

[FKR+04] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky.
Testing juntas. Journal of Computer and System Sciences, 68(4):753–787, 2004.

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt
Rubinfeld, and Alex Samorodnitsky. Monotonicity testing over general poset
domains. In Proceedings of the 34th ACM Symposium on the Theory of Computing
(STOC ’2002), pages 474–483, 2002.

[FN07] Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties.
SIAM Journal on Computing, 37(2):482–501, 2007.

[FR10] Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high
dimensions. ACM Transactions on Algorithms, 6(3):52, 2010.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex
Samordinsky. Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its
connection to learning and approximation. Journal of the ACM, 45(4):653–750,
1998.

[Gol17] Oded Goldreich. Introduction to property testing. Cambridge University Press,
2017.

[GR05] Venkatesan Guruswami and Atri Rudra. Tolerant locally testable codes. In
Approximation, Randomization and Combinatorial Optimization. Algorithms and
Techniques, pages 306–317. Springer, 2005.

[GR16] Oded Goldreich and Dana Ron. On sample-based testers. ACM Transactions on
Computation Theory, 8(2), 2016.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58(301):13–30, 1963.

[KS09] Swastik Kopparty and Shubhangi Saraf. Tolerant linearity testing and locally
testable codes. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 601–614. Springer, 2009.

50

[KS16] Subhash Khot and Igor Shinkar. An Õ(n) queries adaptive tester for unateness. In
Approximation, Randomization and Combinatorial Optimization. Algorithms and
Techniques, pages 37:1–37:7, 2016.

[MR09] Sharon Marko and Dana Ron. Approximating the distance to properties in
bounded-degree and general sparse graphs. ACM Transactions on Algorithms,
5(2):22, 2009.

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and
distance approximation. Journal of Computer and System Sciences,
72(6):1012–1042, 2006.

[Ron08] Dana Ron. Property testing: A learning theory perspective. Foundations and
Trends R© in Machine Learning, 1(3):307–402, 2008.

[Ron10] Dana Ron. Algorithmic and analysis techniques in property testing. Foundations
and Trends R© in Theoretical Computer Science, 5(2):73–205, 2010.

[Roo01] Bero Roos. Binomial approximation to the poisson binomial distribution: The
krawtchouk expansion. Theory of Probability & Its Applications, 45(2):258–272,
2001.

[STW15] Rocco A Servedio, Li-Yang Tan, and John Wright. Adaptivity helps for testing
juntas. In Proceedings of the 30th Conference on Computational Complexity
(CCC ’2015), pages 264–279, 2015.

[Tal96] Michel Talagrand. How much are increasing sets positively correlated?
Combinatorica, 16(2):243–258, 1996.

[Tel16] Roei Tell. A note on tolerant testing with one-sided error. In Electronic
Colloquium on Computational Complexity (ECCC), volume 23, page 32, 2016.

A A Useful Claim

Consider any set of trees C1, . . . , Cα ⊂ [n] with roots u1, . . . , uα satisfying the following conditions:

• Each |Ci| ≤ log n for i ∈ [α],

• We have
∑α

i=1 |Ci| ≤
n

log4 n
.

Recall that EC,no is the event that the components C1, . . . , Cα is consistent with the partition
A ⊂ [n]. More formally, for each i ∈ [α], we consider layering the tree Ci with root ui. We let
|Ci(odd)| be the odd layers and |Ci(even)| be the even layers. Then, we have event EC,no is satisfied
if for each i ∈ [α], either Ci(odd) ⊂ A and Ci(even) ⊂ A or Ci(even) ⊂ A and Ci(odd) ⊂ A.

The following lemma is the last necessary step of Claim 6.22.

51

Lemma A.1. Then, for any two indices j, k, which do not lie in the same component, we have:

Pr
A

[k ∈ A | j ∈ A,EC,no] ≥ 1

2
− log4 n

n
.

Proof: The proof is very straight-forward, we simply count the number of possible partitions
A for which j ∈ A and are consistent with C1, . . . , Cα and divide by the total number of such
partitions. For simplicity, assume that j lies in C1(odd) and k lies in C2(odd); the other cases,
when j ∈ C1(even) or k ∈ C2(even) follow from very similar arguments.

We let X be the number of partitions A ⊂ [n] of size n
2 which trigger event EC,no and have

C1(odd) ⊂ A and C2(odd) ⊂ A. In order to count these, we first choose which roots u3, . . . , uα
will be included in A, and then we pick from the remaining vertices to include in A. For a subset
S ⊂ {3, . . . , α}, we define the quantities:

• Q =
∑α

i=3 |Ci| is the total vertices assigned from components.

• SA =
∑

i∈S |Ci(odd)| +
∑

i∈[α]\S |Ci(even)| is the total vertices assigned from components to
A if we included the roots of components in S in A.

• SA = Q− SA.

Note that for all subsets S ⊂ {3, . . . , α}, we have SA ≤ n
log4 n

.

Then we have:

X =

α−2∑
`=0

∑
S⊂[3;α]
|S|=`

(
n−Q− |C1| − |C2|

n
2 − SA − |C1(odd)| − |C2(odd)|

)
.

Let Y be the number of partitions A ⊂ [n] of size n
2 which trigger event EC,no and have C1(odd) ⊂ A

and C2(even) ⊂ A. Similarly, we have:

Y =
α−2∑
`=0

∑
S⊂[3;α]
|S|=`

(
n−Q− |C1| − |C2|

n
2 − SA − |C1(odd)| − |C2(even)|

)
.

For a particular fixed S ⊂ [3;α] of size `, we consider the ratio of the summand in X and in Y :(
n−Q− |C1| − |C2|

n
2 − SA − |C1(odd)| − |C2(odd)|

)
(

n−Q− |C1| − |C2|
n
2 − SA − |C1(odd)| − |C2(even)|

) =

(
n
2 − SA − |C1(odd)| − |C2(even)|

)
!(

n
2 − SA − |C1(odd)| − |C2(odd)|

)
!

×
(
n
2 − SA − |C1(even)| − |C2(odd)|

)
!(

n
2 − SA − |C1(even)| − |C2(even)|

)
!

=

(
1±O

(
log n

n

))logn(
1±O

(
log n

n

))logn

= 1±O
(

log2 n

n

)
,

52

where we used the fact that |C2(even)|, |C2(odd)| ≤ log n, and n
2 − SA − |C1(odd)| = Ω(n) and

n
2 − SA − |C1(odd)| = Ω(n). Thus, we have:

X

Y
= 1±O

(
log2 n

n

)
,

and since:

Pr
A

[k ∈ A | j ∈ A,EC,no] =
X

X + Y
,

we get the desired claim.

B Reducing to the case k = 3
4n

Claim B.1. For ε < 1
2 , let f : {0, 1}n → {0, 1} have dist(f, k-Junta) = ε < 1

2 . Then, g : {0, 1}n ×
{0, 1} → {0, 1} given by g(x, y) = f(x)⊕ y has dist(g, (k + 1)-Junta) = ε.

Proof: For the upper bound, suppose h : {0, 1}n → {0, 1} had dist(f, h) = ε. Then, we have
that h′ : {0, 1}n × {0, 1} → {0, 1} given by h′(x, y) = h(x) ⊕ y has dist(h′, g) = ε. Thus, we have
dist(g, (k + 1)-Junta) ≤ dist(f, k-Junta).

For the lower bound, suppose for the sake of contradiction that h′ : {0, 1}n × {0, 1} → {0, 1} is a
(k + 1)-junta with dist(g, h′) = dist(g, (k + 1)-Junta) < dist(f, k-Junta). We note that since ε < 1

2 ,
the last variable must be influential in h′. Then, consider the functions h0, h1 : {0, 1}n → {0, 1}
given by h0(x) = h′(x, 0) and h1(x) = h(x, 1). Since y is influential in h′, h0 and h1 are both
k-juntas, and therefore

dist(h′, g) =
dist(h0, f) + dist(h1,¬f)

2
≥ dist(f, k-Junta),

which is a contradiction.

Claim B.2. Let f : {0, 1}n → {0, 1} have dist(f, k-Junta) = ε. Then g : {0, 1}n × {0, 1} → {0, 1}
given by g(x, y) = f(x) has dist(g, k-Junta) = ε.

Proof: For the upper bound, we have that if h : {0, 1}n → {0, 1} has dist(f, h) = ε, then
if h′ : {0, 1}n × {0, 1} → {0, 1} is given by h(x, y) = h(x), then dist(h′, g) = ε. Thus, we have
dist(g, (k + 1)-Junta) ≤ dist(f, k-Junta).

For the lower bound, suppose for the sake of contradiction that h′ : {0, 1}n × {0, 1} → {0, 1} is a k-
junta with dist(g, h′) = dist(g, k-Junta) < dist(f, k-Junta). Then, similarly to above, the functions
h0, h1 : {0, 1}n → {0, 1} given by h0(x) = h′(x, 0) and h1(x) = h′(x, 1) are k-juntas with

dist(g, k-Junta) = dist(g, h′) =
dist(f, h0) + dist(f, h1)

2
≥ ε,

which is a contradiction.

Lemma B.3. For 0 < ε0 < ε1 <
1
2 , let B be a non-adaptive (ε0, ε1)-tolerant k-junta tester for

n(k) variable functions making q(k) queries, where k ≤ αn(k). Then, there exists a non-adaptive
(ε0, ε1)-tolerant 3n

4 -junta tester making q(O(n)) queries.

53

Proof: We give an algorithm which on input f : {0, 1}n → {0, 1}, determines whether f is ε0-close
from being a 3n

4 -junta or is ε1-far from being a 3n
4 -junta. The algorithm works as follows: on input

f : {0, 1}n → {0, 1}, we let g : {0, 1}n × {0, 1}n′ → {0, 1} be given by:

g(x, y) = f(x)⊕
n′⊕
j=1

yj ,

where n′ = max{ (4α−3)n
4(1−α) , 0}. Note that if we let m = n + n′ (the number of variables in g), by

Claim B.1, if f is ε0-close from being a 3n
4 -junta, then g is ε0-close to being an αm-junta, and if f

is ε1-far from being a 3n
4 -junta, then g is ε1-far from being an αm-junta. Finally, we run the tester

B with k = αm on f , where we add n(k)−m dummy variables.

The query complexity is given by q(O(n)), since k = O(n) when α < 1 is a constant.

54

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

