
Hardness Amplification for Non-Commutative Arithmetic Circuits

Marco L. Carmosino∗ Russell Impagliazzo† Shachar Lovett‡ Ivan Mihajlin§

May 11, 2018

Abstract

We show that proving mildly super-linear lower bounds on non-commutative arithmetic circuits
implies exponential lower bounds on non-commutative circuits. That is, non-commutative circuit
complexity is a threshold phenomenon: an apparently weak lower bound actually suffices to show
the strongest lower bounds we could desire.

This is part of a recent line of inquiry into why arithmetic circuit complexity, despite being a
heavily restricted version of Boolean complexity, still cannot prove super-linear lower bounds on
general devices. One can view our work as positive news (it suffices to prove weak lower bounds
to get strong ones) or negative news (it is as hard to prove weak lower bounds as it is to prove
strong ones). We leave it to the reader to determine their own level of optimism.

1 Introduction

Arithmetic circuits are a natural computational model for computing polynomials, which has been
extensively studied in complexity theory. Most of the research is focused on proving lower bounds.
Namely, showing that certain “hard” polynomials (such as the permanent, which is complete for an
arithmetic version of NP [Val79]) require large arithmetic circuits. Despite much research, strong
lower bounds are only known for restricted families of circuits, such as circuits of fixed depth,
multi-linear circuits, or monotone circuits. For general airthmetic circuits, the best lower bound
known is still the classical result of Baur-Strassen [BS83] who showed that to compute Xn

1 + . . .+Xn
n

one needs an arithmetic circuit of size Ω(n log n). We refer to the recent survey [SY+10] and the
references within for details about these many works.

An interesting restriction of the arithmetic model, which is the focus on this paper, is that of
non-commutative polynomials and correspondingly non-commutative circuits. A non-commutative
polynomial over a field F in variables X1, . . . , Xn, is a linear combination of monomials, except
that here monomials are defined as words over the variables. Otherwise put, variables do not
commute, so the order of variables in a monomial is important. Despite this severe restriction,
the non-commutative setting maintains complexity-theoretic structure: the permanent is complete

∗Supported by the Simons Foundation, at Department of Computer Science, University of California San Diego,
La Jolla, CA; marco@ntime.org
†Supported by the Simons Foundation, at Department of Computer Science, University of California San Diego,

La Jolla, CA; russell@cs.ucsd.edu
‡Department of Computer Science, University of California San Diego, La Jolla, CA; slovett@ucsd.edu
§Supported by the Simons Foundation, at Department of Computer Science, University of California San Diego,

La Jolla, CA; imikhail@cs.ucsd.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 95 (2018)

for non-commutative arithmetic NP [HWY10] (VNP), and natural polynomials are complete for
non-commutative arithmetic P [AJR16] (VP). The hope is that it will be easier to prove strong
lower bounds against non-commutative circuits, as various cancellations that occur in standard
(commutative) arithmetic circuits crucially depend on the commutativity of the variables. For
example, the n×n determinant can be computed by a O(n3) arithmetic circuit, but to the best of our
knowledge, there is no non-commutative arithmetic circuit for determinant of size no(n). Moreover
if determinant can be computed by polynomial size non-commutative circuits then V P = V NP
[AS10] 1.

If one restricts attention further to non-commutative formulas, then our understanding is
dramatically better. A fundamental result in this area is a theorem of Nisan [Nis91], who proved
exponential lower bounds on non-commutative formulas. For example, his technique applied to the
n×n permanent (or also the n×n determinant) shows that any non-commutative formula computing
either of them requires size Ω(2n). On the other hand, no lower bounds for non-commutative circuits
are known which are better than these known for standard commutative circuits. This dichotomy
leads to the main problem motivating this paper, posed by [HWY11]:

Why do we have exponential lower bounds for non-commutative formulas, but only
marginally super-linear lower bounds for non-commutative circuits?

The main message of the this paper is that weak lower bounds for non-commutative circuits can be
“amplified” to arbitrarily large polynomial, or even exponential, lower bounds for non-commutative
circuits. One can view this as positive news (it suffices to prove weak lower bounds to get strong
ones) or negative news (it is as hard to prove weak lower bounds as it is to prove strong ones). We
leave it to the reader to make their own choice. Below, we state the formal versions of our main
results.

We recall the standard notation that ω is the best known exponent for matrix multiplication,
where the best known upper bounds on it are ω ≤ 2.374 due to [LG14]. Our first theorem is that
polynomial lower bounds better than Ω(nω/2) for any non-commutative polynomial in n variables of
polynomial degree can be lifted to arbitrary polynomial lower bounds.

Theorem 1.1. Let ε > 0. Assume that there exists an explicit non-commutative polynomial in
n variables of degree poly(n), such that any non-commutative circuit computing it requires size
Ω(nω/2+ε).

Then, for any c > 1, there exists another explicit polynomial in m variables of degree poly(m),
such that any non-commutative circuit computing it requires size Ω(mc).

Some authors [HWY11] had suggested that for non-commutative polynomials number of variables
might be not the best parameter. In contrast with the commutative setting, one can focus on
polynomials with a constant number of variables, using the degree as a measure. The difference
comes from the fact that there are 2d different non-commutative monomials on 2 variables of degree
d versus d+ 1 for the commutative case. For this regime, the best known lower bounds are of the
form Ω(log(d)) where d is the degree. Theorem 1.1 states that if we have good enough lower bound
to start with, we can give a family of polynomials of complexity Ω(d). We will, however, use number
of variables as our measure, as we will be dealing with constant degree polynomials.

1Formally, one needs to define a non-commutative determinant, by inducing some natural order on the variables in
monomials of the standard commutative permanent.

2

Our second theorem shows that proving lower bounds better than Ω(nω/2) for any constant degree
non-commutative polynomial in n variables can be lifted to exponential lower bounds. This may
help to explain why no super-linear lower bound for a constant-degree non-commutative polynomial
is currently known. The polynomial that we start with in this case must be explicit, a notion of
uniformity described in section 2.

Theorem 1.2. Let ε > 0. Assume that there exists an explicit non-commutative polynomial in
n variables of constant degree, such that any non-commutative circuit computing it requires size
Ω(nω/2+ε).

Then, for some c > 0, there exists another explicit polynomial in m variables of degree poly(m),
such that any non-commutative circuit computing it requires size exp(mc).

Here is one way to interpret our results, which we find intriguing: proving any super-linear lower
bound Ω(n1+ε) against non-commutative circuits would imply one of two things: (i) an arbitrarily
large polynomial lower bound (or even better) against non-commutative circuits; or (ii) a proof that
ω > 2, namely, a super-linear lower bound for (standard, commutative) matrix multiplication.

1.1 Technique

Our main technical result is a lifting theorem, which allows us to amplify lower bounds against
non-commutative circuits, by reducing the number of variables without hurting the lower bound too
much.

Let f be a non-commutative polynomial over variables X1, . . . , Xn. Fix a constant integer r ≥ 1
and assume that n = mr. Define new variables Yi,j where i = 0, . . . , (r − 1) and j = 0, . . . , (m− 1).
We will encode each Xi as a monomial Y0,a0Y1,a1 . . . Y(r−1),ar−1

, where a0 . . . ar−1 is the encoding of
i in base-m. Let E(f) denote the polynomial obtained by doing this replacement to each variable in
f . Note that E(f) is a polynomial over the rm variables {Yi,j} of degree deg(E(f)) = r deg(f).

Our main technical lemma (lemma 3.2) shows that any non-commutative circuit C which
computes E(f) can be transformed to another non-commutative circuit C ′ which computes f . We
think of this as “decoding” the circuit for the encoding E(f) to a circuit for f . Moreover, the size
of C ′ is not much larger than C. The optimal parameters are achieved by taking r = 3, using fast
matrix multiplication; they give that size(C ′) ≤ size(C) · nω/3.

Otherwise put, if f requires arithmetic circuits of size s, then E(f) requires arithmetic circuits of
size s · n−ω/3. However, E(f) has only marginally higher degree and many fewer variables m = n1/3.
Applying this idea iteratively, we make progress as long as s� nω/2. This implies both of our main
theorems (Theorem 1.1 and Theorem 1.2).

For our generic technique to go through, we need to “massage” non-commutative circuits for
E(f) so that they can be “decoded” into non-commutative circuits for f . Basically, we want all the
gates in the circuit to compute polynomials over {Yi,j} that are encoding of polynomials over {Xi}.
We accomplish that by several rounds of simplification of the structure of the circuit. This can be
seen as an analog to the homogenization process performed on algebraic circuits, except that in our
case, the process is more delicate.

1.2 Related Work

This work parallels that of Hrubeš, Wigderson and Yehudayoff [HWY11]. They showed that if
any explicit degree 4 polynomial has a strong enough super-linear lower bound on width, then this

3

lower bound can be lifted to an exponential circuit lower bound for a non-commutative polynomial.
We refer the reader to the original paper for the formal definition of width. To compare these
results with ours, note that implicit in [HWY11] is the relationship s

n2 ≤ w(P) ≤ O(ns), where
P is any degree 4 polynomial, w is the “width” of this polynomial, and s is the minimal size of a
circuit computing P . Thus, [HWY11] shows that any super-cubic circuit lower bound for an explicit
polynomial of degree 4 implies exponential circuit lower bounds for some explicit polynomial.

We show that one can start from circuit lower bounds of the form n
ω
2 against any constant

degree polynomial and lift to exponential circuit lower bounds. Moreover, even lower bounds against
higher degree polynomials can be lifted.

As in [HWY11], we give new structural properties of non-commutative circuits computing
restricted polynomials. The restrictions of [HWY11] force polynomials to form monomials by
selecting each variable from some sets of variables that always appear in a fixed order of some fixed
length. Our restrictions allow the sets of variables to have a periodic ordering, according to Z/r for
some r. This allows our structures to easily generalize to higher degrees.

An encoding of variables similar to our lifting was used previously in [AJMR17], as a step in
randomized polynomial identity testing for sparse non-commutative circuits. The work of [AJR16]
uses a similar double-indexed “positional” encoding of monomials, to establish a transfer theorem
from “f is complete for a non-commutative algebraic class” to “decoded(f) is complete for a
commutative algebraic class.”

There has been a great deal of recent interest in understanding why it is hard to prove lower
bounds in the arithmetic setting, even though it is more restricted than the Boolean setting. Analogs
of the Natural Proofs barrier of [RR97] have been proposed in [FSV17] and [GKSS17], and an
unconditional barrier for rank-based methods was just shown by [EGdOW17]. Our result is most
similar to the “chasm” family of results [AV08, Koi12, GKKS16]: they show that one “only” needs
to prove depth-3 lower bounds to prove general super-polynomial lower bounds. We show that, in
the non-commutative case, one “only” needs to prove mildly super-linear lower bounds to prove
super-polynomial lower bounds.

Organization. In section 2, we formally define lifting, state the key “circuit decoding” lemma,
and show how the results follow. In section 3, we prove the decoding lemma by giving new structural
results about non-commutative circuits.

2 Preliminaries

Polynomials and Circuits. Let X = {x1, . . . , xn} be a set of variables and let F be a field.
We denote by F〈X〉 the set of non-commutative polynomials over X with coefficients in F. These
polynomials sum over monomials that are words over X, because multiplication of variables does
not commute. We define circuits computing polynomials from F〈X〉 in the natural way: as directed
acyclic graphs with internal nodes (gates) labeled by +,× and leaves labeled by x ∈ X or field
elements. Each +,× gate has two children, and each × gate has distinguished left and right children.
Denote by AC(f) the arithmetic complexity of a non-commutative polynomial f , as the minimal
number of gates in a non-commutative circuit computing f .

Explicitness. It is easy to prove that some polynomials require exponential size circuits. So we
restrict ourselves to the set of explicit polynomials. A polynomial f is explicit if and only if each of

4

its coefficients can be computed in polynomial time in the description length of a monomial. Thus,
the coefficients of an explicit constant degree polynomial can be computed in polylogarithmic time.

3 Lifting Polynomials

We define polynomial lifting and give basic properties. Unless otherwise stated, all our polynomials
and circuits are non-commutative. We consider both singly-indexed variables X = {xi} and doubly-
indexed variables Y = {yi,j}. To ease work over Y , define sets Yi as {yi,j}j∈N, the sets of all y
variables with first index i. We use the notation F〈X〉 = F〈x1, . . . , xn〉 to denote non-commutative
polynomials over the X variables, and analogously for polynomials over the Y variables.

Lifting takes a polynomial over the X variables to a polynomial over the Y variables. Starting
with f ∈ F〈x1, . . . , xn〉, we replace each xi by a product of y variables that encodes i in base n1/r,
rounding up to ensure that n1/r is an integer. To simplify notations, we will always assume that
n = mr for some integer m, so no rounding will be necessary. Since the y variables do not commute,
the resulting polynomial can easily be mapped back to f by reading “sub-words” of monomials
base n1/r to recover which xi a string of y variables represents. To formalize this below, we use
digit(t, i, j) to refer to the jth digit of the base-t representation of i.

Definition 3.1 (Lifting). Let f ∈ F〈X〉. Define Lr(f) ∈ F〈Y 〉 by applying the following map to
each variable of f :

xi →
(r−1)∏
j=0

yj,`j where `j = digit(n1/r, i, j)

This means that Lr(f) will be over rn1/r variables (y0,1, . . . , yr−1,n1/r). If the degree of f is d,
then the degree of Lr(f) is dr. So lifting shrinks the number of variables while increasing the degree.

Lifting preserves explicitness. Suppose we want to compute a coefficient of Lr(f). Let’s assume
there is an algorithm that takes a description of a monomial of f and outputs the coefficient on it
in time t. Then one can use the same algorithm to compute coefficients of Lr(f), as the description
of a monomial and it’s lifted version is exactly the same.

Our main technical lemma, proved in Section 4, efficiently converts a circuit for the lifted
polynomial L3(f) into a circuit for f . Setting r = 3 is easiest to present, and gives the best
qualitative bounds that we know how to achieve with this technique. So we continue with this
choice of r below.

Lemma 3.2 (Circuit Decoding). If there exists an arithmetic circuit of size s computing L3(f),
then there exists a circuit of size O(nω/3s) computing f .

The lifting operation can be iterated. Take a polynomial Lr(f) ∈ F〈Y 〉 and re-number the Y
variables lexicographically to obtain new singly-indexed X variables, and lift the resulting polynomial
again. The result of repeating this process k times on a polynomial f is denoted Lkr (f). Using the
circuit-decoding Lemma 3.2 we have the following lower-bound amplification for iterated lifting.

Lemma 3.3 (Iterated Lifting Amplifies Hardness). Let k ≤ γ log(n) be a positive integer, where

γ > 0 is a sufficiently small positive constant. Suppose f is a polynomial on N = 33/2(31/2n)3k

variables of degree d. Then Lk3(f) is a polynomial on 9n variables of degree 3kd and the following
holds:

AC(Lk3(f)) ≥ AC(f)

Nω/2

5

If we have a small circuit for Lk3(f) then by applying Lemma 3.2 iteratively k times we will
end up with a small circuit for f . We require N to be in a particular form to avoid dealing with
rounding. The calculations appear below.

Proof of Lemma 3.3. Let Nk denote the number of variables of Lk3(f), where one can verify that

N0 = N and Ni+1 = 3N
1
3
i . Our choice for N guarantees that Ni is an integer for all i = 0, . . . , k.

Using Lemma 3.2 we get

AC(Li+1
3 (f)) ≥ αAC(Li)

N
ω/3
i

,

where α > 0 is some absolute constant. Folding the recursion gives

AC(Lk3(f)) ≥ αkAC(f)
k−1∏
i=0

N
−ω/3
i

We will need to use an explicit expression for Ni = 33/2(3−3/2N)
1

3i .

AC(Lk3(f)) ≥ αkAC(f)(
k−1∏
i=0

33/2(3−3/2N)
1

3i)−ω/3

= αkAC(f)(3
3
4

(2k−3+31−k)N
3
2

(1−3−k))−ω/3

So:

AC(Lk3(f)) ≥ AC(f)

Nω/2

(α
3k
ω N

3k−1

2

3
3
4

(−3+31−k+2k)

)ω/3
If we recall that k ≤ γ log(n) and choose γ small enough we can ensure that:

α−
3k
ω 3

3
4

(−3+31−k+2k) < N
3
2

3−k

As left hand side is 2θ(k) and right hand side is nθ(1). This immediately implies:

AC(Lk3(f)) ≥ AC(f)

Nω/2

3.1 Amplifying Lower Bounds via Lifting

Theorem 1.1 (amplification to any fixed polynomial hardness) is straightforward, by taking k to be
some large constant in Lemma 3.3 above:

Proof of Theorem 1.1. Let P = {Pn} be a family of explicit polynomials, where Pn is a polynomial
on n variables, such that ∃α, ε > 0 such that ∀n : Pn is not computable by arithmetic circuits of
size αn

ω
2

+ε. We will define family of polynomials Q = {Qn} to be lifted version of P , where again

Qn is a polynomial on n variables. Formally, Q9n = Lk3(PN), where N = N(n) = 33/2(3
1
2n)3k . It is

6

easy to verify that N is always an integer. For general n define Qn = Q9bn/9c by adding dummy
variables. By Lemma 3.3:

AC(Qn) ≥ AC(PN)

N
ω
2

≥ αN ε ≥ α33/2ε(31/2n)ε3
k

= nΩ(3k)

For any c > 0 we can take k to be sufficiently large constant and have AC(Qn) > nc. Furthermore,
note that deg(Q9n) = 3k deg(PN). So if deg(PN) = O(Na) is polynomial in N , then deg(Qn) =

O(3kna3k). In particular, for any fixed k, deg(Qn) = poly(n) as claimed. Also Q is explicit as it is a
lifted version of P .

Proof of Theorem 1.2. The proof is identical to the proof of Theorem 1.1, except that we take
k = γ log n. Note that as we assume here that Pn all have a constant degree, then Qn will have
degree poly(n) as claimed. As P is an explicit polynomial, Q is also explicit polynomial.

4 Structuring Circuits

In this section we obtain a normal form for non-commutative circuits computing certain restricted
types of polynomials. The idea is similar to homogenization: we classify monomials into “types”
and efficiently re-write the circuit in terms of operations on those types. The proofs share a common
structure: we define an operator that splits polynomials into well-typed monomials. We then pass
this operator through the circuit C layer-by-layer, starting from the output gate. Each time we
advance the operator-layer through C, we maintain:

(i) The polynomial computed by C does not change;

(ii) All gates above the operator-layer compute restricted polynomials;

(iii) Not too much additional hardware is introduced;

(iv) At leaf nodes, operators can be eliminated from C.

This process is like a glacial movement during the ice age. An operator slides over the circuit
and then disappears, drastically changing the landscape behind it.

4.1 Monomial & Circuit Types

For non-commutative polynomials, monomials are just words over the variables. So all of our
monomial types will be constraints on the ordering of variables, referring to the “place” part of a Y
variable.

Definition 4.1 (Structured Monomials in Y). For fixed r ∈ N, we define the following subsets of
all monomials over double-indexed variables Y.

r-pinned, M̃r
i,j : monomials m that start with y ∈ Yi, end with y′ ∈ Yj, and obey Z/r ordering.

That is, after each y ∈ Yk appearing in m the next variable is always some y′ ∈ Y(k+1) mod r.

r-aligned, M̃r : any m ∈ M̃r
0,(r−1).

7

We do not bound the lengths of pinned or aligned monomials. The counter k indexing sets
of variables Yk may circle around Z/r many times in going from i to j. We classify circuits and
polynomials in the obvious way based on these sets of monomials.

Definition 4.2 (Structured Polynomials in Y). A polynomial p ∈ F〈Y 〉 is r-pinned if ∃i, j such

that every monomial of p is in M̃r
i,j, or r-aligned if every monomial of p is in M̃r.

When r is clear from the context, we shorthand M̃i,j = M̃r
i,j and M̃ = M̃r.

Definition 4.3 (Structured Circuits in Y). A circuit C is r-pinned if every gate of C computes
an r-pinned polynomial. Note that each gate could have different start and end indices i, j. C is
r-aligned if every gate of C computes an r-aligned polynomial. An r-aligned circuit has r-aligned
monomials as inputs, not single variables.

Recall that our goal in this section is to build a circuit for f from a circuit for Lr(f). If we have
an r-aligned circuit of size s for Lr(f), this is straightforward. The bottom layer of an r-aligned
circuit is a set of monomials, not variables. Since these monomials are r-aligned, each one uniquely
represents a sequence of natural numbers in base n1/r. Simply replace each encoded number i with
xi and take their product. After this substitution, we have a circuit that computes f of size O(s).

If some general circuit C computes an aligned polynomial f , we can obtain an aligned circuit
C ′ for f of only slightly larger size. This construction proceeds in two stages: from general circuits
to pinned circuits (lemma 4.4), then from pinned circuits to aligned circuits (lemmas 4.5 and 4.6).

The circuit decoding for lifted polynomials of Lemma 3.2 is then immediate, because L(f) is
always an aligned polynomial. We give two constructions: the first is elementary but inefficient, the
second uses fast matrix multiplication to optimize storage of “type information” about polynomials.
The first stage, from general to pinned circuits, is common to both proofs.

4.2 Operators on Polynomials

To efficiently store polynomials, we will sometimes need to “trim off” extraneous variables from the
ends of each monomial. So we give two new operators on polynomials, ÷L and ÷R, that “divide what
they can and discard the remainder.” These operators act on the left and right of f , respectively.
Formally, ÷L and ÷R are defined in terms of two possible decompositions of a polynomial f :

• Right division: Let f = Q× σ +R where Q× σ sums over monomials of f ending with σ.
Define: f ÷R σ = Q.

• Left division: Let f = τ ×Q′ +R where τ ×Q′ sums over monomials of f starting with τ .
Define: τ ÷L f = Q′.

Because our polynomials are non-commutative, these decompositions are unique. Notice that in
left-division ÷L, the monomial τ is not the object being operated on; it appears on the left to
denote which side of the monomials of f is altered by the operation. Immediately, we have:

p× q =
∑
a∈Y

(p÷R a)× (a× q) =
∑
a∈Y

(p× a)× (a÷L q)

Finally, we denote by M the set of all possible monomials, and by coeff(f,m) the coefficient of f
on monomial m. When expanding polynomials as sums over monomials, we write the monomial m
as xm or ym, like so:

f(Y) =
∑
m∈M

coeff(f,m)× ym

8

4.3 Aligning Circuits

We begin the alignment process by taking a general circuit for a pinned polynomial, and constructing
a pinned circuit. The is similar to homogenization using the more complex set of monomial types
introduced above.

Lemma 4.4 (General to Pinned Circuits). Let C be a general arithmetic circuit of size s computing
an r-pinned polynomial f(Y). Then there exists an r-pinned arithmetic circuit C ′ of size r3s
computing f .

Proof of Lemma 4.4. Define ∆i,j to transform f(Y) into a r-pinned polynomial, by discarding any

coefficients on monomials outside M̃i,j :

∆i,j(p) =
∑

m∈M̃i,j

coeff(p,m)× ym

Let go be the output gate of C. By assumption, go computes an r-pinned polynomial. From the
definition, ∃i, j such that ∆i,j(go) = go. This is our base case. Inductively, let g ∈ C be such that
∃i, j so ∆i,j(g) = g. We reason by cases on the type of g.

If g = u+ v:

∆i,j(u+ v) = ∆i,j

(∑
m∈M

(coeff(m,u) + coeff(m, v))ym

)
expand u+ v

=
∑

m∈M̃i,j

(coeff(m,u) + coeff(m, v))ym definition of ∆

=
∑

m∈M̃i,j

coeff(m,u)ym +
∑

m∈M̃i,j

coeff(m, v)ym split the sum

= ∆i,j(u) + ∆i,j(v) definition of ∆

If g = u× v:

∆i,j(u× v) = ∆i,j

 ∑
m`∈M

coeff(m`, u)ym` ×
∑

mr∈M
coeff(mr, v)ymr

 unroll

= ∆i,j

 ∑
m`∈M
mr∈M

coeff(m`, u)ym` coeff(mr, v)ymr

 distribute

= ∆i,j

 ∑
m`∈M
mr∈M

coeff(m`, u) coeff(mr, v)ym`mr

 commute in F

=
∑

m`,mr∈M
st. m`mr∈M̃i,j

coeff(m`, u) coeff(mr, v)ym`mr definition of ∆

9

Because m`mr is pinned, we know (1) that m` begins with some y ∈ Yi and mr ends with some
y′ ∈ Yj and (2) that the transition from m` to mr must respect ordering in Z/r. Formally, we know
that ∃t such that m` ∈ Yi . . . Yt and mr ∈ Y(t+1) mod r . . . Yj . So let’s split the above summation on
this index, which is bounded by r because we assumed the polynomial is r-pinned. To ease legibility
below, all indexing arithmetic for monomial sets M̃ and for the operator ∆ is implicitly carried out
in Z/r.

g =
∑
t∈Z/r

∑
m`∈M̃i,t

mr∈M̃t+1,j

coeff(m`, u) coeff(mr, v)ym`mr

=
∑
t∈Z/r

 ∑
m`∈M̃i,t

coeff(m`, u)ym`

 ∑
mr∈M̃(t+1),j

coeff(mr, v)ymr

 distribute

=
∑
t∈Z/r

∆i,t(u)×∆t+1,j(v) definition of ∆

The circuit C ′ contains, for every gate g in C, the r2 gates computing ∆i,j(g) for all i, j ∈ Z/r.
Addition gates do not require additional gates; multiplication gates require an addition a factor of r
more gates to compute. So in total if C has s gates then C ′ has at most r3s gates.

The pinning lemma proved above enforces an ordering on variables that respects Z/r. But for
circuit decoding, monomials that are aligned and thus represent complete numbers are required.

We partition pinned monomials into a prefix, body and suffix. The body of a monomial is the
substring between the first variable from Y0 and the last variable from Y(r−1) (it can be empty). By
definition, the length of the body is a multiple of r. This means that the body uniquely represents
a string of natural numbers, which can easily be mapped back to x-variables.

Then the prefix of a monomial is everything to the left of the body, and the suffix is everything
to the right of the body. We also need to consider monomials of small length, for which the body
is undefined. These parts of a monomial do not yet represent even a single natural number. But,
because the circuit computes an aligned polynomial, we know that these monomials will eventually
becomes part of the body via subsequent multiplication operations.

4.3.1 Simple Circuit Alignment

The construction below anticipates and brute-forces these possible “completions” of non-body
monomials at each gate of the circuit.

Lemma 4.5 (Pinned to Aligned Circuits, Simply). Let C be an r-pinned arithmetic circuit of size
s computing an r-aligned polynomial f(Y). Then there exists a r-aligned arithmetic circuit C ′ of
size O(sn3r−2) computing f . If C was a monotone circuit, then C ′ is also monotone.

Proof. First, we define the undesirable sets of monomials. These monomials are all possible

10

obstructions to alignment that must be computed in terms of aligned polynomials.

Incomplete : I = {ρ | ρ ∈M of length < r}

Prefix : P =
(
∪r−1
i=1M̃i,(r−1)

)
∩ I

Suffix : S =
(
∪r−2
i=0M̃0,i

)
∩ I

We use these monomial sets to separate the body of a monomial from the prefix and suffix, which
are not perfectly aligned:

Wσ,τ = {(w,m) | w = σmτ where m ∈ M̃, σ ∈ Prefix, and τ ∈ Suffix}

We want all the polynomials computed by C ′ to be aligned, so we can only have monomials with
empty prefix, suffix, and incomplete monomial sets at each gate. But we need the coefficients
associated with these “flawed” polynomials to compute with. This suggests an operator Γ that will
take only parts of the polynomial with a particular suffix and prefix, multiplying the coefficient on
σmτ by the monomial m only, where m is a body monomial. We will also need to recover coefficients
on incomplete monomials, so we let a unary Γ extract specific coefficients: Γρ(f) = coeff(ρ, f). We
could also use the “division” operators above to express Γ:

Γσ,τ (f) =
∑

(w,m)∈Wσ,τ

coeff(w, f)× ym

= σ ÷L f ÷R τ

If a polynomial f is aligned, then Γ1,1(f) = f and all other operators are 0. That means that if go
is the output gate of the original circuit C, then Γ1,1(go) = go. Inductively, let C be the pinned
circuit computing an aligned polynomial f and suppose g ∈ C. We are going to show how to push
Γ operators one level deeper into the circuit, reasoning by cases on the form of f .

Suppose g = u+ v. Addition does not change the collection of monomials except by cancellation,
so we have the following easy identities, which follow from the same kind of monomial partitioning
used to prove the pinning Lemma 4.4 above:

∀a, b : Γa,b(g) = Γa,b(u) + Γa,b(v)

∀c : Γc(g) = Γc(u) + Γc(v)

Now suppose g = u × v. First consider how some incomplete monomial c could have a nonzero
coefficient in g; it would have to be the case that two incomplete monomials of u and v were
multiplied together to form c. Therefore:

∀c, Γc(g) =
∑

{d,e∈I | de=c}

Γd(u)Γe(v).

Similarly, we reason by cases on how the monomials of Γa,b(g) could have been formed by multiplying
the monomials of u and v:

11

Γa,b(g) =
∑

{c∈S, d∈P : |cd|=r}

Γa,c(u)ycdΓd,b(v) // suffix(u) × prefix(v) becomes aligned

+
∑

{c∈S, d∈I : cd=b}

Γa,c(u)Γd(v) // suffix(u) × incomplete(v) becomes b

+
∑

{c∈I, d∈P : cd=a}

Γc(u)Γd,b(v) // incomplete(u) × prefix(v) becomes a

The above formula completely enumerates how the polynomials u and v could multiply to
produce coefficients on monomials with prefix and suffix a, b in g, in terms of Γ applied to u and v.
Thus we have successfully expressed Γa,b(g) in terms of earlier gates.

Using the formulas above we can push the Γ-operators down one level. Clearly, all gates above
the operator level compute aligned polynomials: we are keeping track of undesirable monomials in
the labels on gates. Finally, observe that all the operators applied to a single variable or constant
are constants. This means we can replace every operator applied to the input of the circuit by a
constant. So after pushing the operators down to the leaves we get an aligned circuit that computes
Γ1,1(go) = f .

All that remains is to estimate the size of the resulting circuit. Each addition gate of the old
circuit was substituted with a circuit of size n2r−2. Each multiplication gate of the old circuit was
substituted with a circuit of size n3r−2. So the size of our aligned circuit computing f is at most
O(sn3r−2).

4.3.2 Efficient Circuit Alignment

We can get smaller aligned circuits using a more sophisticated technique. Notice that the construction
above enumerates all possible “completions” of non-aligned polynomials to aligned polynomials at
each level. We assigned a gate to each such completion, which fails to exploit the fact that it is not
possible to obtain non-aligned polynomials by arithmetic operations on aligned polynomials. The
construction below does take advantage of these restrictions to do much less brute-force enumeration
of intermediate non-aligned polynomials, by implicitly representing future completions at each gate.
We use matrix multiplication to organize this more efficient combination of polynomial types, which
is why ω appears in the complexity of the resulting circuit.

We restrict our attention from now on to r = 3. It will simplify the proof and it turns out that
it gives almost optimal results.

Lemma 4.6 (Pinned to Aligned Circuits, Efficiently). If there exists a 3-pinned arithmetic circuit
C of size s computing a 3-aligned polynomial f(Y), then there exists a 3-aligned circuit of size
O(snω) computing f(Y).

The high level idea of the proof of Lemma 4.6 is as follows. Let fM denote a matrix of size n×n
that has f as it’s [1, 1] entry and 0 elsewhere. One can measure the arithmetic circuit complexity
of fM in a model where matrices are on the wires of the circuit instead of scalars. We use this
observation to prove the above lemma in two steps:

1. Convert the circuit for f into a circuit for fM over the ring of matrices. (Lemma 4.8)

12

2. Convert the circuit for fM back into a circuit for f by replacing each gate with circuits for
matrix addition and matrix multiplication. The resulting circuit is aligned, and has hardware
proportional to the original number of gates times the cost of matrix multiplication.

The key step is converting a circuit for f into a circuit for fM . As before, we introduce a
mapping Φ to transform the original circuit layer-by-layer. This time, however, it is not an operator
on polynomials: it maps polynomials to matrices. By propagating this Φ through C, we obtain a
circuit for fM . Lemma 4.7 below states the properties of Φ. We give the full proof of correctness for
our efficient construction of aligned circuits (Lemma 4.6) at the end of this section, because it is
straightforward once we have Φ.

Lemma 4.7 (Polynomial to Matrix). There exists a map Φ that takes a polynomial on 3n variables
to an n× n matrix with polynomial entries satisfying the following conditions:

(i) For all 3-pinned polynomials g all entries of Φ(g) are aligned polynomials.

(ii) If g is a 3-aligned polynomial, then Φ(g)[1, 1] = g and all other entries of Φ(g) are zero.

(iii) If g is a variable or a constant, then the degree of each entry of Φ(g) is at most 3.

(iv) For all 3-pinned polynomials g, u, v, and arithmetic +,× over the ring of matrices:

g = u+ v ⇒ Φ(g) = Φ(u) + Φ(v)

g = u× v ⇒ Φ(g) = Φ(u)× Φ(v)

One new trick that we are going to use is that we will sometimes not store the suffix or prefix of
the monomial if it is too long. Instead we will store what it can become after we complete it to an
aligned monomial. For example, consider the following polynomial: y0,iy2,j + y1,i′y2,j′ . Instead of
memorizing it this way, one can remember that it will become y0,iy2,jy3,k + y1,i′y2,j′y3,k after we
multiply it by y3,k. By contrast, the simple alignment procedure stores these completions on both
sides of the multiplication, duplicating information and wasting gates.

Proof of Lemma 4.7. We need only define the operator Φ for 3-pinned polynomials. Every 3-pinned
polynomial g(Y) is one of 9 types (a, b) ∈ {0, 1, 2} × {0, 1, 2}, based on which Y -variables start and
end all the monomials of f . Denote by Fa,b〈Y 〉 the set of 3-pinned polynomials of type (a, b). Each
entry [i, j] of the matrix Φ(g) will be an arithmetic expression in terms of g that depends on the
“pinning type” of g and the indices [i, j]. Below, we define functions λ and ρ which select how to
transform g from the left and the right, respectively, in terms of pinning type of g and index of Φ(g).
We use below the notation δ(i) = 1 if i = 1 and δ(i) = 0 otherwise.

For g ∈ Fa,b〈Y 〉 define Φ(g)[i, j] = λ(a, i) g ρ(b, j) where:

λ(a, i) =

δ(i)× if a = 0,

y0,i× if a = 1,

y2,i÷L if a = 2

and ρ(b, j) =

×δ(j) if b = 2,

×y2,j if b = 1,

÷Ry0,j if b = 0

13

We expand the definition of Φ concretely below. This matrix is the outer product of the λ and
ρ operation selection functions “around” g.

Φ(g)[i, j]← entry (a, b) of

 δ(i)× g ÷R y0,j δ(i)× g × y2,j δ(i)× g × δ(j)
y0,i × g ÷R y0,j y0,i × g × y2,j y0,i × g × δ(j)
y2,i ÷L g ÷R y0,j y2,i ÷L g × y2,j y2,i ÷L g × δ(j)

Inspecting the expansion above, properties (i), (ii), and (iii) claimed for Φ are clear. It remains to
show property (iv): that Φ maps arithmetic over 3-pinned polynomials to arithmetic over the ring
of matrices. Reasoning from the definitions of Φ and the division operators we have the following:

∀c, d ∈ {0, 1, 2} such that d = (c+ 1) mod 3 : p× q =
∑
i∈[n]

p ρ(c, i) × λ(d, i) q

If g, u, v are 3-pinned polynomials then, by additivity of the matrix ring, g = u + v ⇒ Φ(f) =
Φ(u)+Φ(v). We also need g = u×v ⇒ Φ(f) = Φ(u)×Φ(v) which we prove directly. Let a, b, c ∈ Z/3
be such that u ∈ Fa,b〈Y 〉 and v ∈ Fb+1,c〈Y 〉. These numbers must exist, since u and v multiply to
give the 3-pinned polynomial g ∈ Fa,c〈Y 〉. So

(Φ(u)× Φ(v))[i, j] =
∑
k

Φ(u)[i, k]Φ(v)[k, j]

= λ(a, i)

(∑
k

u ρ(b, k) λ(b+ 1, k) v

)
ρ(c, j)

= λ(a, i) u× v ρ(c, j)

= λ(a, i) g ρ(c, j) = Φ(g)[i, j]

The key observation for the derivation above is that ρ(b, k)λ(b+ 1, k) “cancels out” for any b ∈ Z/3.
This is what saves hardware compared to the simple construction: there is no “garbage” in the
middle of the representation to enumerate over.

We can now push Φ “down” through a pinned circuit to obtain an aligned circuit. We first need
the following lemma, to convert a circuit for f into a circuit for fM over the ring of matrices.

Lemma 4.8 (Pinned Circuit to Matrix Circuit). If there exists a 3-pinned arithmetic circuit of
size s that computes a 3-pinned polynomial f , then there exists a circuit of size O(s) that computes
fM . This circuit uses matrix addition and multiplication as gates, and has matrices with aligned
monomials of degree at most 3 in entries as inputs.

Proof. Suppose that we are given a 3-pinned circuit C for 3-aligned polynomial f . Then, as
Φ(f) = fM we can apply the operator Φ to the output of C and get a circuit for fM . Recall the
properties of Φ guaranteed in Lemma 4.7. We use property (iv) to push Φ down one level of C. We
will measure the size of this circuit as the number of gates that perform arithmetic operations, both
over polynomials and matrices, which is the same as counting all except Φ-gates. It is easy to see
that when we apply rule (iv) we are not increasing size of the circuit measured this way.

Eventually we will sink all the Φ-gates to the very bottom. We will have a circuit with only
matrix addition, matrix multiplication and Φ gates, and the last are only applied to the inputs. By
property (iii) we know that Φ applied to the input computes a matrix whose entries are aligned

14

polynomials of degree at most 3. That means that we can just claim the outputs of Φ as our new
inputs – we are allowed to have matrices with degree 3 aligned polynomials as inputs in the model
of matrix circuits. This removes all the Φ from C, and the only types of gates left are matrix
multiplication and addition. Then our measure of size is now the same as the number of gates, so
we have a new matrix circuit with size exactly matching that of C.

Note that it is impossible to obtain non-aligned polynomials by arithmetic operations on aligned
polynomials. Therefore, all matrices computed by the gates in such a circuit would have aligned
polynomials in all entries. We conclude by mapping pinned circuits to aligned circuits, efficiently.

Proof of Lemma 4.6. Take a circuit for f , and construct a circuit for fM , using Lemma 4.8. Re-
place each matrix with n2 gates each representing one entry. Replace each matrix addition and
multiplication gate with a circuit on 2n2 inputs that perform the same operations. This will leave
us with a circuit of size O(snω) over aligned monomials of degree at most 3 as inputs.

A Infinitely often vs almost everywhere hardness

In this section we carry out our hardness amplification for polynomials that are sometimes hard, as
opposed to hard everywhere. In the proof of 1.1 we used the assumption that:

∃α, ε > 0 such that ∀n : Pn is not computable by arithmetic circuits of size αnc+ε

A more natural way to say that some polynomial P requires circuits of size larger then nc would be:

P 6∈ ASize[nc],

where ASize[f(n)] is set of all sequences of polynomials that can be computed by circuits of size
O(f(n)). The difference between these two definitions is that the first means that the polynomial
is not computable by small circuits everywhere, and the second means that the polynomial is not
computable by small circuits for infinitely many n. While in the proof of Theorem 1.1 we used the
first definition, we actually only needed that the polynomial is hard on infinitely many points of the
form 3−3/2(3

1
2n)3k for some n and fixed k. This motivates the notion of infinitely often hardness on

a subset, described below:

Definition A.1. ASize[f(n)] is set of all sequences of polynomials that can be computed by circuits
of size O(f(n))

Now we will tweak this definition to describe hardness on subset of integers:

Definition A.2. Let S be a infinite size subset of natural numbers. ASizeS [f(n)] is set of all
sequences of polynomials that can be computed by circuits of size O(f(n)) for all n ∈ S.

Lemma A.3. Let A be a subset of even natural numbers, such that logAn+1

logAn
= 1 + o(1), where An

is n-th smallest element of A is ≤ 2n
γ

for some γ and P is an explicit sequence of polynomials that
is i.o. nc hard for some c. Then for every ε > 0 there is an explicit sequence of polynomials Q, such
that Q is i.o. nc−ε hard on A.

15

Proof. We construct Q as by setting:

Q2n+1 = Q2n =
n∑
k=1

xn+kPi(x1, x2, . . . , xk)

It is easy to see that Q2n(x1, x2 . . . , xn, 0, 0, . . . , 0, 1, 0, . . . , 0) = Pk(x1, . . . xk) if 1 is set in the
n+ k-th position. This means that:

∀n : AC(Q2n+1) = AC(Q2n) ≥ maxk∈[n]AC(Pk)

Then suppose that AC(Pn) > αnc and let i be the smallest number, such that Ai is bigger than 2n.

Then AC(QAi) > AC(Pn). This implies that AC(QAi) > αnc > αAci−1 > αA
c
logAi−1
logAi

i > αA
c−o(1)
i .

This means that for any ε > 0 there would be infinitely many n ∈ A, such that AC(Qn) > αnc−ε

Now we just need to observe that the set A = {x|∃n : x = 3−3/2(3
1
2n)3k} satisfies the property

logAn+1

logAn
= 1 + o(1). It is true even if we allow k to be a monotone function of n if k = O(log(n)),

which covers all the range of parameters that we are currently using.

References

[AJMR17] Vikraman Arvind, Pushkar S. Joglekar, Partha Mukhopadhyay, and S. Raja. Random-
ized polynomial time identity testing for noncommutative circuits. In Hamed Hatami,
Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 831–841. ACM, 2017.

[AJR16] Vikraman Arvind, Pushkar S. Joglekar, and S. Raja. Noncommutative valiant’s classes:
Structure and complete problems. TOCT, 9(1):3:1–3:29, 2016.

[AS10] Vikraman Arvind and Srikanth Srinivasan. On the hardness of the noncommutative
determinant. In Proceedings of the forty-second ACM symposium on Theory of
computing, pages 677–686. ACM, 2010.

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October
25-28, 2008, Philadelphia, PA, USA, pages 67–75. IEEE Computer Society, 2008.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical
computer science, 22(3):317–330, 1983.

[EGdOW17] Klim Efremenko, Ankit Garg, Rafael Mendes de Oliveira, and Avi Wigderson. Barriers
for rank methods in arithmetic complexity. Electronic Colloquium on Computational
Complexity (ECCC), 24:27, 2017.

[FSV17] Michael A. Forbes, Amir Shpilka, and Ben Lee Volk. Succinct hitting sets and barriers
to proving algebraic circuits lower bounds. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on

16

Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages
653–664. ACM, 2017.

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic
circuits: A chasm at depth 3. SIAM J. Comput., 45(3):1064–1079, 2016.

[GKSS17] Joshua A. Grochow, Mrinal Kumar, Michael E. Saks, and Shubhangi Saraf. Towards an
algebraic natural proofs barrier via polynomial identity testing. Electronic Colloquium
on Computational Complexity (ECCC), 24:9, 2017.

[HWY10] Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Relationless completeness and
separations. Electronic Colloquium on Computational Complexity (ECCC), 17:40,
2010.

[HWY11] Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits and the
sum-of-squares problem. Journal of the American Mathematical Society, 24(3):871–898,
2011.

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor.
Comput. Sci., 448:56–65, 2012.

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings
of the 39th international symposium on symbolic and algebraic computation, pages
296–303. ACM, 2014.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the
twenty-third annual ACM symposium on Theory of computing, pages 410–418. ACM,
1991.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997.

[SY+10] Amir Shpilka, Amir Yehudayoff, et al. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends R© in Theoretical Computer Science,
5(3–4):207–388, 2010.

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Michael J. Fischer, Richard A.
DeMillo, Nancy A. Lynch, Walter A. Burkhard, and Alfred V. Aho, editors, Proceedings
of the 11h Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979,
Atlanta, Georgia, USA, pages 249–261. ACM, 1979.

17

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

