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Abstract

We consider the (`p, `r)-Grothendieck problem, which seeks to maximize the bilinear
form yT Ax for an input matrix A ∈ Rm×n over vectors x, y with ‖x‖p = ‖y‖r = 1.
The problem is equivalent to computing the p → r∗ operator norm of A, where `r∗ is
the dual norm to `r. The case p = r = ∞ corresponds to the classical Grothendieck
problem. Our main result is an algorithm for arbitrary p, r ≥ 2 with approximation
ratio (1 + ε0)/(sinh−1(1) · γp∗ γr∗) for some fixed ε0 ≤ 0.00863. Here γt denotes the
t’th norm of the standard Gaussian. Comparing this with Krivine’s approximation ratio
(π/2)/ sinh−1(1) for the original Grothendieck problem, our guarantee is off from the
best known hardness factor of (γp∗γr∗)

−1 for the problem by a factor similar to Krivine’s
defect (up to the constant (1 + ε0)).

Our approximation follows by bounding the value of the natural vector relaxation
for the problem which is convex when p, r ≥ 2. We give a generalization of random
hyperplane rounding using Hölder-duals of Gaussian projections rather than taking the
sign. We relate the performance of this rounding to certain hypergeometric functions,
which prescribe necessary transformations to the vector solution before the rounding is
applied. Unlike Krivine’s Rounding where the relevant hypergeometric function was
arcsin, we have to study a family of hypergeometric functions. The bulk of our technical
work then involves methods from complex analysis to gain detailed information about
the Taylor series coefficients of the inverses of these hypergeometric functions, which
then dictate our approximation factor.

Our result also implies improved bounds for “factorization through `n
2 ” of operators

from `n
p to `m

q (when p ≥ 2 ≥ q)— such bounds are of significant interest in functional
analysis and our work provides modest supplementary evidence for an intriguing par-
allel between factorizability, and constant-factor approximability.
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1 Introduction

We consider the problem of finding the p→q norm of a given matrix A ∈ Rm×n, which is
defined as

‖A‖p→q := max
x∈Rn\{0}

‖Ax‖q

‖x‖p
.

The quantity ‖A‖p→q is a natural generalization of the well-studied spectral norm (p =
q = 2) and computes the maximum distortion (stretch) of the operator A from the normed
space `n

p to `m
q . The case when p = ∞ and q = 1 is the well known Grothendieck problem

[KN12, Pis12], where the goal is to maximize 〈y, Ax〉 subject to ‖y‖∞, ‖x‖∞ ≤ 1. In fact,
via simple duality arguments, the general problem computing ‖A‖p→q can be seen to be
equivalent to the following variant of the Grothendieck problem

‖A‖p→q = max
‖x‖p≤1
‖y‖q∗≤1

〈y, Ax〉 = ‖AT‖q∗→p∗ ,

where p∗, q∗ denote the dual norms of p and q, satisfying 1/p + 1/p∗ = 1/q + 1/q∗ = 1.
The above quantity is also known as the injective tensor norm of A where A is interpreted
as an element of the space `m

q ⊗ `n
p∗ .

In this work, we consider the case of p ≥ q, where the problem is known to admit good
approximations when 2 ∈ [q, p], and is hard otherwise. Determining the right constants in
these approximations when 2 ∈ [q, p] has been of considerable interest in the analysis and
optimization community.

For the case of ∞→1 norm, Grothendieck’s theorem [Gro56] shows that the integrality
gap of a semidefinite programming (SDP) relaxation is bounded by a constant, and the (un-
known) optimal value is now called the Grothendieck constant KG. Krivine [Kri77] proved
an upper bound of π/(2 ln(1 +

√
2)) = 1.782 . . . on KG, and it was later shown by Braver-

man et al. [BMMN13] that KG is strictly smaller than this bound. The best known lower
bound on KG is about 1.676, due to (an unpublished manuscript of) Reeds [Ree91] (see also
[KO09] for a proof).

A very relevant work of Nestereov [Nes98] proves an upper bound of KG on the approx-
imation factor for p→q norm for any p ≥ 2 ≥ q (although the bound stated there is slightly
weaker - see Section 5.3 for a short proof). A later work of Steinberg [Ste05] also gave an
upper bound of min

{
γp/γq, γq∗/γp∗

}
, where γp denotes pth norm of a standard normal

random variable (i.e., the p-th root of the p-th Gaussian moment).
On the hardness side, Briët, Regev and Saket [BRS15] showed NP-hardness of π/2 for

the ∞→1 norm, strengthening a hardness result of Khot and Naor based on the Unique
Games Conjecture (UGC) [KN08] (for a special case of the Grothendieck problem when the
matrix A is positive semidefinite). Assuming UGC, a hardness result matching Reeds’ lower
bound was proved by Khot and O’Donnell [KO09], and hardness of approximating within
KG was proved by Raghavendra and Steurer [RS09]. In a companion paper [BGG+18], the
authors proved NP-hardness of approximating p→q norm within any factor better than
1/(γp∗ · γq), for any p ≥ 2 ≥ q. Stronger hardness results are known and in particular the
problem admits no constant approximation, for the cases not considered in this paper i.e.,
when p ≤ q or 2 /∈ [q, p]. We refer the interested reader to a detailed discussion in [BGG+18].
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1.1 The Search For Optimal Constants and Optimal Algorithms

The goal of determining the right approximation ratio for these problems is closely related
to the question of finding the optimal (rounding) algorithms. For the Grothendieck problem,
the goal is to find y ∈ Rm and x ∈ Rn with ‖y‖∞, ‖x‖∞ ≤ 1, and one considers the following
semidefinite relaxation:

maximize ∑
i,j

Ai,j · 〈ui , vj〉 s.t.

subject to ‖ui‖2 ≤ 1, ‖vj‖2 ≤ 1 ∀i ∈ [m], j ∈ [n]

ui, vj ∈ Rm+n ∀i ∈ [m], j ∈ [n]

By the bilinear nature of the problem above, it is clear that the optimal x, y can be taken to
have entries in {−1, 1}. A bound on the approximation ratio1 of the above program is then
obtained by designing a good “rounding” algorithm which maps the vectors ui, vj to values
in {−1, 1}. Krivine’s analysis [Kri77] corresponds to a rounding algorithm which considers
a random vector g ∼ N (0, Im+n) and rounds to x, y defined as

yi := sgn
(〈

ϕ(ui), g
〉)

and xj := sgn
(〈

ψ(vj), g
〉)

,

for some appropriately chosen transformations ϕ and ψ. This gives the following upper
bound on the approximation ratio of the above relaxation, and hence on the value of the
Grothendieck constant KG:

KG ≤
1

sinh−1(1)
· π

2
=

1
ln(1 +

√
2)
· π

2
.

Braverman et al. [BMMN13] show that the above bound can be strictly improved (by a
very small amount) using a two dimensional analogue of the above algorithm, where the
value yi is taken to be a function of the two dimensional projection (〈ϕ(ui), g1〉, 〈ϕ(ui), g2〉)
for independent Gaussian vectors g1, g2 ∈ Rm+n (and similarly for x). Naor and Regev
[NR14] show that such schemes are optimal in the sense that it is possible to achieve an
approximation ratio arbitrarily close to the true (but unknown) value of KG by using k-
dimensional projections for a large (constant) k. A similar existential result was also proved
by Raghavendra and Steurer [RS09] who proved that the there exists a (slightly different)
rounding algorithm which can achieve the (unknown) approximation ratio KG.

For the case of arbitrary p ≥ 2 ≥ q, Nesterov [Nes98] considered the convex program
in Fig. 1, denoted as CP(A), generalizing the one above. Note that since q∗ ≥ 2 and p ≥ 2,
the above program is convex in the entries of the Gram matrix of the vectors

{
ui}

i∈[m]
∪{

vj}
j∈[n]. Although the stated bound in [Nes98] is slightly weaker (as it is proved for a

larger class of problems), the approximation ratio of the above relaxation can be shown to be
bounded by KG. By using the Krivine rounding scheme of considering the sign of a random
Gaussian projection (aka random hyperplane rounding) one can show that Krivine’s upper
bound on KG still applies to the above problem.

Motivated by applications to robust optimization, Steinberg [Ste05] considered the dual
of (a variant of) the above relaxation, and obtained an upper bound of min

{
γp/γq, γq∗/γp∗

}
1Since we will be dealing with problems where the optimal solution may not be integral, we will use the

term “approximation ratio” instead of “integrality gap”.
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maximize ∑
i,j

Ai,j · 〈ui , vj〉 =
〈

A, UVT
〉

subject to ∑
i∈[m]

‖ui‖q∗
2 ≤ 1 ∀i ∈ [m]

∑
j∈[n]
‖vj‖p

2 ≤ 1 ∀j ∈ [n]

ui, vj ∈ Rm+n ∀i ∈ [m], j ∈ [n]

ui (resp. vj) is the i-th (resp. j-th) row of U (resp. V)

Figure 1: The relaxation CP(A) for approximating p→q norm of a matrix A ∈ Rm×n.
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Figure 2: A comparison of the bounds for approximating p→p∗ norm obtained from Kriv-
ine’s rounding for KG, Steinberg’s analysis, and our bound.

on the approximation factor. Note that while Steinberg’s bound is better (approaches 1) as
p and q approach 2, it is unbounded when p, q∗ → ∞ (as in the Grothendieck problem).

Based on the inapproximability result of factor 1/(γp∗ · γq) obtained in a companion pa-
per by the authors [BGG+18], it is natural to ask if this is “right form” of the approximation
ratio. Indeed, this ratio is π/2 when p∗ = q = 1, which is the ratio obtained by Krivine’s
rounding scheme, up to a factor of ln(1 +

√
2). We extend Krivine’s result to all p ≥ 2 ≥ q

as below.

Theorem 1.1. There exists a fixed constant ε0 ≤ 0.00863 such that for all p ≥ 2 ≥ q, the approxi-
mation ratio of the convex relaxation CP(A) is upper bounded by

1 + ε0

sinh−1(1)
· 1

γp∗ · γq
=

1 + ε0

ln(1 +
√

2)
· 1

γp∗ · γq
.

Perhaps more interestingly, the above theorem is proved via a generalization of hyper-
plane rounding, which we believe may be of independent interest. Indeed, for a given
collection of vectors w1, . . . , wm considered as rows of a matrix W, Gaussian hyperplane
rounding corresponds to taking the “rounded” solution y to be the

y := argmax
‖y′‖∞≤1

〈
y′, Wg

〉
=
(

sgn
(〈

wi, g
〉))

i∈[m]
.

3



We consider the natural generalization to (say) `r norms, given by

y := argmax
‖y′‖r≤1

〈
y′, Wg

〉
=

(
sgn

(〈
wi, g

〉)
·
∣∣〈wi, g〉

∣∣r∗−1

‖Wg‖r∗−1
r∗

)
i∈[m]

.

We refer to y as the “Hölder dual” of Wg, since the above rounding can be obtained by
viewing Wg as lying in the dual (`r∗) ball, and finding the y for which Hölder’s inequality
is tight. Indeed, in the above language, Nesterov’s rounding corresponds to considering the
`∞ ball (hyperplane rounding). While Steinberg used a somewhat different relaxation, the
rounding there can be obtained by viewing Wg as lying in the primal (`r) ball instead of the
dual one. In case of hyperplane rounding, the analysis is motivated by the identity that for
two unit vectors u and v, we have

E
g
[sgn(〈g, u〉) · sgn(〈g, v〉)] =

2
π
· sin−1(〈u, v〉) .

We prove the appropriate extension of this identity to `r balls (and analyze the functions
arising there) which may also be of interest for other optimization problems over `r balls.

1.2 Proof overview

As discussed above, we consider Nesterov’s convex relaxation and generalize the hyper-
plane rounding scheme using “Hölder duals” of the Gaussian projections, instead of taking
the sign. As in the Krivine rounding scheme, this rounding is applied to transformations
of the SDP solutions. The nature of these transformations depends on how the rounding
procedure changes the correlation between two vectors. Let u, v ∈ RN be two unit vectors
with 〈u, v〉 = ρ. Then, for g ∼ N (0, IN), 〈g, u〉 and 〈g, v〉 are ρ-correlated Gaussian random
variables. Hyperplane rounding then gives ±1 valued random variables whose correlation
is given by

E
g1∼ρ g2

[sgn(g1) · sgn(g2)] =
2
π
· sin−1(ρ) .

The transformations ϕ and ψ (to be applied to the vectors u and v) in Krivine’s scheme
are then chosen depending on the Taylor series for the sin function, which is the inverse of
function computed on the correlation. For the case of Hölder-dual rounding, we prove the
following generalization of the above identity

E
g1∼ρ g2

[
sgn(g1) |g1|q−1 · sgn(g2) |g2|p

∗−1
]

= γ
q
q · γ

p∗
p∗ · ρ · 2F1

(
1− q

2
, 1− p∗

2
;

3
2

; ρ2
)

,

where 2F1 denotes a hypergeometric function with the specified parameters. The proof of
the above identity combines simple tools from Hermite analysis with known integral repre-
sentations from the theory of special functions, and may be useful in other applications of
the rounding procedure.

Note that in the Grothendieck case, we have γ
p∗
p∗ = γ

q
q =

√
2/π, and the remaining

part is simply the sin−1 function. In the Krivine rounding scheme, the transformations ϕ
and ψ are chosen to satisfy (2/π) · sin−1 (〈ϕ(u), ψ(v)〉) = c · 〈u, v〉, where the constant c
then governs the approximation ratio. The transformations ϕ(u) and ψ(v) taken to be of the
form ϕ(u) = ⊕∞

i=1ai · u⊗i such that

〈ϕ(u), ψ(v)〉 = c′ · sin (〈u, v〉) and ‖ϕ(u)‖2 = ‖ψ(v)‖ = 1 .

4



If f represents (a normalized version of) the function of ρ occurring in the identity above
(which is sin−1 for hyperplane rounding), then the approximation ratio is governed by the
function h obtained by replacing every Taylor coefficient of f−1 by its absolute value. While
f−1 is simply the sin function (and thus h is the sinh function) in the Grothendieck problem,
no closed-form expressions are available for general p and q.

The task of understanding the approximation ratio thus reduces to the analytic task of
understanding the family of the functions h obtained for different values of p and q. Con-
cretely, the approximation ratio is given by the value 1/(h−1(1) · γq γp∗). At a high level, we
prove bounds on h−1(1) by establishing properties of the Taylor coefficients of the family of
functions f−1, i.e., the family given by{

f−1 | f (ρ) = ρ · 2F1
(
a1, b1 ; 3/2 ; ρ2) , a1, b1 ∈ [0, 1/2]

}
.

While in the cases considered earlier, the functions h are easy to determine in terms of f−1

via succinct formulae [Kri77, Haa81, AN04] or can be truncated after the cubic term [NR14],
neither of these are true for the family of functions we consider. Hypergeometric functions
are a rich and expressive class of functions, capturing many of the special functions appear-
ing in Mathematical Physics and various ensembles of orthogonal polynomials. Due to this
expressive power, the set of inverses is not well understood. In particular, while the coef-
ficients of f are monotone in p and q, this is not true for f−1. Moreover, the rates of decay
of the coefficients may range from inverse polynomial to super-exponential. We analyze the
coefficients of f−1 using complex-analytic methods inspired by (but quite different from)
the work of Haagerup [Haa81] on bounding the complex Grothendieck constant. The key
technical challenge in our work is in arguing systematically about a family of inverse hypergeo-
metric functions which we address by developing methods to estimate the values of a family
of contour integrals.

While our methods only gives a bound of the form h−1(1) ≥ sinh−1(1)/(1 + ε0), we
believe this is an artifact of the analysis and the true bound should indeed be h−1(1) ≥
sinh−1(1).

1.3 Relation to Factorization Theory

Let X, Y be Banach spaces, and let A : X → Y be a continuous linear operator. As before,
the norm ‖A‖X→Y is defined as

‖A‖X→Y := sup
x∈X\{0}

‖Ax‖Y

‖x‖X
.

The operator A is said to be factorize through Hilbert space if the factorization constant of A
defined as

Φ(A) := inf
H

inf
BC=A

‖C‖X→H · ‖B‖H→Y

‖A‖X→Y

is bounded, where the infimum is taken over all Hilbert spaces H and all operators B :
H → Y and C : X → H. The factorization gap for spaces X and Y is then defined as
Φ(X, Y) := supA Φ(A) where the supremum runs over all continuous operators A : X → Y.

The theory of factorization of linear operators is a cornerstone of modern functional
analysis and has also found many applications outside the field (see [Pis86, AK06] for more
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information). An application to theoretical computer science was found by Tropp [Tro09]
who used the Grothendieck factorization [Gro56] to give an algorithmic version of a cele-
brated column subset selection result of Bourgain and Tzafriri [BT87].

As an almost immediate consequence of convex programming duality, our new algorith-
mic results also imply some improved factorization results for `n

p, `m
q (a similar observation

was already made by Tropp [Tro09] in the special case of `n
∞, `m

1 and for a slightly different
relaxation). We first state some classical factorization results, for which we will use T2(X)
and C2(X) to respectively denote the Type-2 and Cotype-2 constants of X. We refer the in-
terested reader to Section 5 for a more detailed description of factorization theory as well as
the relevant functional analysis preliminaries.

The Kwapień-Maurey [Kwa72a, Mau74] theorem states that for any pair of Banach spaces
X and Y

Φ(X, Y) ≤ T2(X) · C2(Y) .

However, Grothendieck’s result [Gro56] shows that a much better bound is possible in a
case where T2(X) is unbounded. In particular,

Φ(`n
∞, `m

1 ) ≤ KG ,

for all m, n ∈ N. Pisier [Pis80] showed that if X or Y satisfies the approximation property
(which is always satisfied by finite-dimensional spaces), then

Φ(X, Y) ≤ (2 · C2(X∗) · C2(Y))
3/2 .

We show that the approximation ratio of Nesterov’s relaxation is in fact an upper bound
on the factorization gap for the spaces `n

p and `m
q . Combined with our upper bound on

the integrality gap, we show an improved bound on the factorization constant, i.e., for any
p ≥ 2 ≥ q and m, n ∈N, we have that for X = `n

p, Y = `m
q

Φ(X, Y) ≤ 1 + ε0

sinh−1(1)
· (C2(X∗) · C2(Y)) ,

where ε0 ≤ 0.00863 as before. This improves on Pisier’s bound for all p ≥ 2 ≥ q, and for
certain ranges of (p, q) it also improves upon KG and the bound of Kwapień-Maurey.

1.4 Approximability and Factorizability

Let (Xn) and (Ym) be sequences of Banach spaces such that Xn is over the vector space Rn

and Ym is over the vector space Rm. We shall say a pair of sequences ((Xn), (Ym)) factorize if
Φ(Xn, Ym) is bounded by a constant independent of m and n. Similarly, we shall say a pair of
families ((Xn), (Ym)) are computationally approximable if there exists a polynomial R(m, n),
such that for every m, n ∈ N, there is an algorithm with runtime R(m, n) approximating
‖A‖Xn→Ym within a constant independent of m and n (given an oracle for computing the
norms of vectors and a separation oracle for the unit balls of the norms). We consider the
natural question of characterizing the families of norms that are approximable and their
connection to factorizability and Cotype.

The pairs (p, q) for which (`n
p, `m

q ) is known (resp. not known) to factorize, are precisely
those pairs (p, q) which are known to be computationally approximable (resp. inapprox-
imable assuming hardness conjectures like P 6= NP and ETH). Moreover the Hilbertian case
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which trivially satisfies factorizability, is also known to be computationally approximable
(with approximation factor 1).

It is tempting to ask whether the set of computationally approximable pairs coincides
with the set of factorizable pairs or the pairs for which X∗n, Ym have bounded (independent
of m, n) Cotype-2 constant. Further yet, is there a connection between the approximation
factor and the factorization constant, or approximation factor and Cotype-2 constants (of X∗n
and Ym)? Our work gives some modest additional evidence towards such conjectures. Such
a result would give credibility to the appealing intuitive idea of the approximation factor
being dependent on the “distance” to a Hilbert space.

1.5 Notation

For a non-negative real number r, we define the r-th Gaussian norm of a standard gaussian
g as γr := (Eg∼N (0,1)[|g|

r])1/r .

Given a vector x, we define the r-norm as ‖x‖r
r = ∑i |xi|r for all r ≥ 1. For any r ≥ 0, we

denote the dual norm by r∗, which satisfies the equality: 1
r +

1
r∗ = 1.

For p ≥ 2 ≥ q ≥ 1, we will use the following notation: a := p∗ − 1 and b := q− 1. We
note that a, b ∈ [0, 1].

For a m × n matrix M (or vector, when n = 1). For an unitary function f , we define
f [M] to be the matrix M with entries defined as ( f [M])i,j = f (Mi,j) for i ∈ [m], j ∈ [n]. For
vectors u, v ∈ R`, we denote by u ◦ v ∈ R` the entry-wise/Hadamard product of u and v.
We denote the concatenation of two vectors u and v by u⊕ v. For a vector u, we use Du to
denote the diagonal matrix with the entries of u forming the diagonal, and for a matrix M
we use diag(M) to denote the vector of diagonal entries.

For a function f (τ) = ∑k≥0 fk · τk defined as a power series, we denote the function
abs ( f ) (τ) := ∑k≥0 | fk| · τk.

2 Analyzing the Approximation Ratio via Rounding

We will show that CP(A) is a good approximation to ‖A‖p→q by using an appropriate gen-
eralization of Krivine’s rounding procedure. Before stating the generalized procedure, we
shall give a more detailed summary of Krivine’s procedure.

2.1 Krivine’s Rounding Procedure

Krivine’s procedure centers around the classical random hyperplane rounding. In this con-
text, we define the random hyperplane rounding procedure on an input pair of matrices
U ∈ Rm×`, V ∈ Rn×` as outputting the vectors sgn[Ug] and sgn[Vg] where g ∈ R` is a
vector with i.i.d. standard Gaussian coordinates ( f [v] denotes entry-wise application of a
scalar function f to a vector v. We use the same convention for matrices.). The so-called
Grothendieck identity states that for vectors u, v ∈ R`,

E [sgn〈g , u〉 · sgn〈g , v〉] = sin−1〈û , v̂〉
π/2

7



where û denotes u/‖u‖2. This implies the following equality which we will call the hyper-
plane rounding identity:

E
[
sgn[Ug](sgn[Vg])T

]
=

sin−1[ÛV̂T]

π/2
. (1)

where for a matrix U, we use Û to denote the matrix obtained by replacing the rows of U
by the corresponding unit (in `2 norm) vectors. Krivine’s main observation is that for any
matrices U, V, there exist matrices ϕ(Û), ψ(V̂) with unit vectors as rows, such that

ϕ(Û)ψ(V̂)T = sin[(π/2) · c · ÛV̂T]

where c = sinh−1(1) · 2/π. Taking Û, V̂ to be the optimal solution to CP(A), it follows that

‖A‖∞→1 ≥
〈

A , E
[
sgn[ϕ(Û) g] (sgn[ψ(V̂) g])T

]〉
= 〈A , c · ÛV̂T〉 = c · CP(A) .

The proof of Krivine’s observation follows from simulating the Taylor series of a scalar func-
tion using inner products. We will now describe this more concretely.

Observation 2.1 (Krivine). Let f : [−1, 1]→ R be a scalar function satisfying f (ρ) = ∑k≥1 fk ρk

for an absolutely convergent series ( fk). Let abs ( f ) (ρ) := ∑k≥1 | fk| ρk and further for vectors
u, v ∈ R` of `2-length at most 1, let

SL( f , u) := (sgn( f1)
√

f1 · u)⊕ (sgn( f2)
√

f2 · u⊗2)⊕ (sgn( f3)
√

f3 · u⊗3)⊕ · · ·
SR( f , v) := (

√
f1 · v)⊕ (

√
f2 · v⊗2)⊕ (

√
f3 · v⊗3)⊕ · · ·

Then for any U ∈ Rm×`, V ∈ Rn×`, SL( f ,√c f · Û) and SR( f ,√c f · V̂) have `2-unit vectors as
rows, and

SL( f ,
√

c f · Û) SR( f ,
√

c f · V̂)T = f [c f · ÛV̂T]

where SL( f , W) for a matrix W, is applied to row-wise and c f := (abs ( f )−1)(1).

Proof. Using the facts 〈y1 ⊗ y2 , y3 ⊗ y4〉 = 〈y1 , y3〉 · 〈y2 , y4〉 and
〈y1 ⊕ y2 , y3 ⊕ y4〉 = 〈y1 , y3〉+ 〈y2 , y4〉, we have

- 〈SL( f , u) , SR( f , v)〉 = f (〈u , v〉)

- ‖SL( f , u)‖2 =
√

abs ( f ) (‖u‖2
2)

- ‖SR( f , v)‖2 =
√

abs ( f ) (‖v‖2
2)

The claim follows.

Before stating our full rounding procedure, we first discuss a natural generalization
of random hyperplane rounding, and much like in Krivine’s case this will guide the final
procedure.
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2.2 Generalizing Random Hyperplane Rounding – Hölder Dual Rounding

Fix any convex bodies B1 ⊂ Rm and B2 ⊂ Rk. Suppose that we would like a strategy that
for given vectors y ∈ Rm, x ∈ Rn, outputs y ∈ B1, x ∈ B2 so that yT A x = 〈A , y xT〉 is close
to 〈A , y xT〉 for all A. A natural strategy is to take

(y, x) := argmax
(ỹ,x̃)∈B1×B2

〈
ỹ x̃T , y xT

〉
=

(
argmax

ỹ∈B1

〈ỹ , y〉 , argmax
x̃∈B2

〈x̃ , x〉
)

In the special case where B is the unit `p ball, there is a closed form for an optimal solution
to maxx̃∈B〈x̃ , x〉, given by Ψp∗(x)/‖x‖p∗−1

p∗ , where Ψp∗(x) := sgn[x] ◦ |[x]|p∗−1. Note that for
p = ∞, this strategy recovers the random hyperplane rounding procedure. We shall call this
procedure, Gaussian Hölder Dual Rounding or Hölder Dual Rounding for short.

Just like earlier, we will first understand the effect of Hölder Dual Rounding on a solution
pair U, V. For ρ ∈ [−1, 1], let g1 ∼ρ g2 denote ρ-correlated standard Gaussians, i.e., g1 =

ρ g2 +
√

1− ρ2 g3 where (g2, g3) ∼ N (0, I2), and let

f̃a, b(ρ) := E
g1∼ρg2

[
sgn(g1)|g1|b sgn(g2)|g1|a

]
We will work towards a better understanding of f̃a, b(·) in later sections. For now note that
we have for vectors u, v ∈ R`,

E
[
sgn〈g , u〉 |〈g , u〉|b · sgn〈g , v〉 |〈g , v〉|a

]
= ‖u‖b

2 · ‖v‖a
2 · f̃a, b(〈û , v̂ 〉) .

Thus given matrices U, V, we obtain the following generalization of the hyperplane round-
ing identity for Hölder Dual Rounding :

E
[
Ψq([Ug])Ψp∗([Vg])T

]
= D(‖ui‖b

2)i∈[m]
· f̃a, b([ÛV̂T]) · D(‖vj‖a

2)j∈[n]
. (2)

2.3 Generalized Krivine Transformation and the Full Rounding Procedure

We are finally ready to state the generalized version of Krivine’s algorithm. At a high level
the algorithm simply applies Hölder Dual Rounding to a transformed version of the optimal
convex program solution pair U, V. Analogous to Krivine’s algorithm, the transformation
is a type of “inverse” of Eq. (2).

(Inversion 1) Let (U, V) be the optimal solution to CP(A), and let (ui)i∈[m] and (vj)j∈[n] re-
spectively denote the rows of U and V.

(Inversion 2) Let ca,b :=
(

abs
(

f̃−1
a, b

))−1
(1) and let

ϕ(U) := D(‖ui‖1/b
2 )i∈[m]

SL( f̃−1
a, b ,
√

ca,b · Û) ,

ψ(V) := D(‖vj‖1/a
2 )j∈[n]

SR( f̃−1
a, b ,
√

ca,b · V̂) .

(Hölder-Dual 1) Let g ∼ N (0, I) be an infinite dimensional i.i.d. Gaussian vector.

(Hölder-Dual 2) Return y := Ψq(ϕ(U) g)/‖ϕ(U) g‖b
q and x := Ψp∗(ψ(V) g)/‖ψ(V) g‖a

p∗ .
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Remark 2.2. Note that ‖Ψr(x)‖r∗ = ‖x‖r−1
r and so the returned solution pair always lie on the unit

`q∗ and `p spheres respectively.

Remark 2.3. Like in [AN04] the procedure above can be made algorithmic by observing that there
always exist ϕ′(U) ∈ Rm×(m+n) and ψ′(V) ∈ Rm×(m+n), whose rows have the exact same lengths
and pairwise inner products as those of ϕ(U) and ψ(V) above. Moreover they can be computed
without explicitly computing ϕ(U) and ψ(V) by obtaining the Gram decomposition of

M :=

 abs
(

f̃−1
a, b

)
[ca,b · V̂V̂T] f̃−1

a, b ([ca,b · ÛV̂T])

f̃−1
a, b ([ca,b · V̂ÛT]) abs

(
f̃−1
a, b

)
[ca,b · V̂V̂T]

 ,

and normalizing the rows of the decomposition according to the definition of ϕ(·) and ψ(·) above.
The entries of M can be computed in polynomial time with exponentially (in m and n) good accuracy
by implementing the Taylor series of f̃−1

a, b upto poly(m, n) terms (Taylor series inversion can be done
upto k terms in time poly(k)).

Remark 2.4. Note that the 2-norm of the i-th row (resp. j-th row) of ϕ(U) (resp. ψ(V)) is ‖ui‖1/b
2

(resp. ‖vj‖1/a
2 ).

We commence the analysis by defining some convenient normalized functions and we
will also show that ca,b above is well-defined.

2.4 Auxiliary Functions

Let fp, q(ρ) := f̃p, q(ρ)/(γ
p∗
p∗ γ

q
q), h̃a, b := abs

(
f̃−1
a, b

)
, and ha, b := abs

(
f−1
a, b

)
. Also note that

h−1
a, b(ρ) = h̃−1

a, b(ρ)/(γ
p∗
p∗ γ

q
q).

Well Definedness. By Lemma 4.7, f−1
a, b (ρ) and ha, b(ρ) are well defined for ρ ∈ [−1, 1]. By

(M1) in Corollary 3.19, f̃−1
1 = 1 and hence ha, b(1) ≥ 1 and ha, b(−1) ≤ −1. Combining this

with the fact that ha, b(ρ) is continuous and strictly increasing on [−1, 1], implies that h−1
a, b(x)

is well defined on [−1, 1].

We can now proceed with the analysis.

2.5 1/(h−1
p, q(1) · γp∗ γq) Bound on Approximation Factor

For any vector random variable X in a universe Ω, and scalar valued functions f1 : Ω → R

and f2 : Ω→ (0, ∞). Let λ = E[ f1(X)]/E[ f2(X)]. Now we have

max
x∈Ω

f1(x)− λ · f2(x) ≥ E [ f1(X)− λ · f2(X)] = 0

⇒ max
x∈Ω

f1(x)/ f2(x) ≥ λ = E [ f1(X)] /E [ f2(X)] .

Thus we have

‖A‖p→q ≥
E[〈A , Ψq(ϕ(U) g) Ψp∗(ψ(V) g)T〉]

E[‖Ψq(ϕ(U) g)‖q∗ · ‖Ψp∗(ψ(V) g)‖p]
=
〈A , E[Ψq(ϕ(U) g) Ψp∗(ψ(V) g)T]〉

E[‖Ψq(ϕ(U) g)‖q∗ · ‖Ψp∗(ψ(V) g)‖p]
,

which allows us to consider the numerator and denominator separately. We begin by prov-
ing the equality that the above algorithm was designed to satisfy:
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Lemma 2.5. E[Ψq(ϕ(U) g) Ψp∗(ψ(V) g)T] = ca,b · (ŨṼT)

Proof.

E
[
Ψq(ϕ(U) g) Ψp∗(ψ(V) g)T

]
= D(‖ui‖2)i∈[m]

· f̃a, b([SL( f̃−1
a, b ,
√

ca,b · Û) · SR( f̃−1
a, b ,
√

ca,b · V̂)T]) · D(‖vj‖2)j∈[n]

(by Eq. (2) and Remark 2.4)

= D(‖ui‖2)i∈[m]
· f̃a, b([ f̃−1

a, b ([ca,b · ÛV̂T])]) · D(‖vj‖2)j∈[n]

(by Observation 2.1)

= D(‖ui‖2)i∈[m]
· ca,b · ÛV̂T · D(‖vj‖2)j∈[n]

= ca,b ·UVT �

It remains to upper bound the denominator which we do using a straightforward con-
vexity argument.

Lemma 2.6. E[‖ϕ(U) g‖b
q · ‖ψ(V) g‖a

p∗ ] ≤ γa
p∗ γb

q .

Proof.

E
[
‖ϕ(U) g‖b

q · ‖ψ(V) g‖a
p∗

]
≤ E

[
‖ϕ(U) g‖q∗b

q

]
1/q∗ ·E

[
‖ψ(V) g‖pa

p∗

]
1/p

(
1
p
+

1
q∗
≤ 1

)
= E

[
‖ϕ(U) g‖q

q
]1/q∗ ·E

[
‖ψ(V) g‖p∗

p∗

]
1/p

=

[
∑

i∈[m]

E
[
|N (0, ‖ui‖1/b

2 )|q
]]1/q∗

·

 ∑
j∈[n]

E
[
|N (0, ‖vj‖1/a

2 )|p∗
]1/p

(By Remark 2.4)

=

[
∑

i∈[m]

‖ui‖q/b
2

]1/q∗

·

 ∑
j∈[n]
‖vj‖p∗/a

2

1/p

· γq/q∗
q γ

p∗/p
p∗

=

[
∑

i∈[m]

‖ui‖q∗
2

]1/q∗

·

 ∑
j∈[n]
‖vj‖p

2

1/p

· γb
q γa

p∗

= γb
q γa

p∗ (feasibility of U, V)

We are now ready to prove our approximation guarantee.

Lemma 2.7. Consider any 1 ≤ q ≤ 2 ≤ p ≤ ∞. Then,

CP(A)

‖A‖p→q
≤ 1/(γp∗ γq · h−1

a, b(1))

Proof.

‖A‖p→q ≥
〈A , E[Ψq(ϕ(U) g) Ψp∗(ψ(V) g)T]〉

E[‖Ψq(ϕ(U) g)‖q∗ · ‖Ψp∗(ψ(V) g)‖p]
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=
〈A , E[Ψq(ϕ(U) g) Ψp∗(ψ(V) g)T]〉

E[‖ϕ(U) g‖b
q · ‖ψ(V) g‖a

p∗ ]
(by Remark 2.2)

=
ca,b · 〈A , UVT〉

E[‖ϕ(U) g‖b
q · ‖ψ(V) g‖a

p∗ ]
(by Lemma 2.5)

=
ca,b · CP(A)

E[‖ϕ(U) g‖b
q · ‖ψ(V) g‖a

p∗ ]
(by optimality of U, V)

≥ ca,b · CP(A)

γa
p∗ γb

q
(by Lemma 2.6)

=
h̃−1

a, b(1) · CP(A)

γa
p∗ γb

q

= h−1
a, b(1) · γp∗ γq · CP(A) �

We next begin the primary technical undertaking of this paper, namely proving upper
bounds on h−1

p, q(1).

3 Hypergeometric Representation of fa, b(x)

In this section, we show that fa, b(ρ) can be represented using the Gaussian hypergeometric
function 2F1. The result of this section can be thought of as a generalization of the so-called
Grothendieck identity for hyperplane rounding which simply states that

f0, 0(ρ) =
π

2
· E

g1∼ρ g2
[sgn(g1) sgn(g2)] = sin−1(ρ)

We believe the result of this section and its proof technique to be of independent interest in
analyzing generalizations of hyperplane rounding to convex bodies other than the hyper-
cube.

Recall that f̃a, b(ρ) is defined as follows:

E
g1∼ρ g2

[
sgn(g1)|g1|a sgn(g2)|g1|b

]
where a = p∗ − 1 and b = q− 1. Our starting point is the simple observation that the above
expectation can be viewed as the noise correlation (under the Gaussian measure) of the func-
tions f̃ (a)(τ) := sgn τ · |τ|a and f̃ (b)(τ) := sgn τ · |τ|b. Elementary Hermite analysis then
implies that it suffices to understand the Hermite coefficients of f̃ (a) and f̃ (b) individually,
in order to understand the Taylor coefficients of fa, b. To understand the Hermite coefficients
of f̃ (a) and f̃ (b) individually, we use a generating function approach. More specifically, we
derive an integral representation for the generating function of the (appropriately normal-
ized) Hermite coefficients which fortunately turns out to be closely related to a well studied
special function called the parabolic cylinder function.

Before proceeding, we require some preliminaries.
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3.1 Hermite Analysis Preliminaries

Let γ denote the standard Gaussian probability distribution. For this section (and only for
this section), the (Gaussian) inner product for functions f , h ∈ (R, γ)→ R is defined as

〈 f , h〉 :=
∫

R
f (τ) · h(τ) dγ(τ) = E

τ∼N (0,1)
[ f (τ) · h(τ)] .

Under this inner product there is a complete set of orthonormal polynomials (Hk)k∈N de-
fined below.

Definition 3.1. For a natural number k, then the k-th Hermite polynomial Hk : R→ R

Hk(τ) =
1√
k!
· (−1) k · eτ2/2 · dk

dτk e−τ2/2 .

Any function f satisfying
∫

R
| f (τ)|2 dγ(τ) < ∞ has a Hermite expansion given by f =

∑k≥0 f̂k · Hk where f̂k = 〈 f , Hk〉 .

We have

Fact 3.2. Hk(τ) is an even (resp. odd) function when k is even (resp. odd).

We also have the Plancherel Identity (as Hermite polynomials form an orthonormal ba-
sis):

Fact 3.3. For two real valued functions f and h with Hermite coefficients f̂k and ĥk, respectively, we
have:

〈 f , h〉 = ∑
k≥0

f̂k · ĥk .

The generating function of appropriately normalized Hermite polynomials satisfies the
following identity:

e τλ−λ2/2 = ∑
k≥0

Hk(τ) ·
λk
√

k!
. (3)

Similar to the noise operator in Fourier analysis, we define the corresponding noise
operator Tρ for Hermite analysis:

Definition 3.4. For ρ ∈ [−1, 1] and a real valued function f , we define the function Tρ f as:

(Tρ f )(τ) =
∫

R
f
(

ρ · τ +
√

1− ρ2 · θ
)

dγ(θ) = E
τ′∼ρ τ

[
f (τ′)

]
.

Again similar to the case of Fourier analysis, the Hermite coefficients admit the follow-
ing identity:

Fact 3.5. (̂Tρ f )k = ρk · f̂k .

We recall that the f̃a, b(ρ) = Eg1∼ρ g2 [ f̃ (a)(g1) · f̃ (b)(g2))], where f̃ (c)(τ) := sgn(τ) · |τ|c
for c ∈ {a, b}. As mentioned at the start of the section, we now note that fa, b(ρ) is the
noise correlation of f̃ (a) and f̃ (b). Thus we can relate the Taylor coefficients of fa, b(ρ), to the
Hermite coefficients of f̃ (a) and f̃ (b).
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Claim 3.6 (Coefficients of f̃a, b(ρ)). For ρ ∈ [−1, 1], we have:

f̃a, b(ρ) = ∑
k≥0

ρ2k+1 · f̂ (a)
2k+1 · f̂ (b)

2k+1 ,

where f̂ (a)
i and f̂ (b)

j are the i-th and j-th Hermite coefficients of f̃ (a) and f̃ (b), respectively. Moreover,

f̂ (a)
2k = f̂ (b)

2k = 0 for k ≥ 0.

Proof. We observe that both f̃ (a) and f̃ (b) are odd functions and hence Fact 3.2 implies that
f̂ (a)
2k = f̂ (b)

2k = 0 for all k ≥ 0 – as f̃ (a)(τ) · H2k(τ) is an odd function of τ.

f̃a, b(ρ) = E
g1∼ρ g2

[
f̃ (a)(g1) · f̃ (b)(g2))

]
= E

g1

[
f̃ (a)(g1) · Tρ f̃ (b)(g1)

]
(Definition 3.4)

= 〈 f̃ (a) , Tρ f̃ (b)〉

= ∑
k≥0

f̂ (a)
k · ̂(Tρ f̃ (b))k (Fact 3.3)

= ∑
k≥0

f̂ (a)
2k+1 ·

̂(Tρ f̃ (b))2k+1

= ∑
k≥0

ρ2k+1 · f̂ (a)
2k+1 · f̂ (b)

2k+1 (Fact 3.5) . �

3.2 Hermite Coefficients of f̃ (a) and f̃ (b) via Parabolic Cylinder Functions

In this subsection, we use the generating function of Hermite polynomials to to obtain an
integral representation for the generating function of the (

√
k! normalized) odd Hermite

coefficients of f̃ (a) (and similarly of f̃ (b)) is closely related to a special function called the
parabolic cylinder function. We then use known facts about the relation between parabolic
cylinder functions and confluent hypergeometric functions, to show that the Hermite coef-
ficients of f̃ (c) can be obtained from the Taylor coefficients of a confluent hypergeometric
function.

Before we state and prove the main results of this subsection we need some preliminar-
ies:

3.2.1 Gamma, Hypergeometric and Parabolic Cylinder Function Preliminaries

For a natural number k and a real number τ, we denote the rising factorial as (τ)k := τ ·
(τ + 1) · · · · (τ + k− 1). We now define the following fairly general classes of functions and
we later use them we obtain a Taylor series representation of f̃a, b(τ).

Definition 3.7. The confluent hypergeometric function with parameters α, β, and λ as:

1F1(α ; β ; λ) := ∑
k

(α)k

(β)k
· λk

k!
.

The (Gaussian) hypergeometric function is defined as follows:
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Definition 3.8. The hypergeometric function with parameters w, α, β and λ as:

2F1(w, α ; β ; λ) := ∑
k

(w)k · (α)k

(β)k
· λk

k!
.

Next we define the Γ function:

Definition 3.9. For a real number τ, we define:

Γ(τ) :=
∫ ∞

0
tτ−1 · e−t dt .

The Γ function has the following property:

Fact 3.10 (Duplication Formula).

Γ(2τ)

Γ(τ)
=

Γ(τ + 1/2)
21−2τ

√
π

We also note the relationship between Γ and γr:

Fact 3.11. For r ∈ [0, ∞),

γr
r := E

g∼N (0,1)
[|g|r] =

2r/2
√

π
· Γ
(

1 + r
2

)
.

Proof.

E
g∼N (0,1)

[
|g|r
]
=

√
2√
π
·
∫ ∞

0
|g|r · e−g2/2 dg

=

√
2
π
· 2(r−1)/2 ·

∫ ∞

0

∣∣∣∣g2

2

∣∣∣∣(r−1)/2

· e−g2/2· g dg

=
2r/2
√

π
· Γ
(

1 + r
2

)
�

Next, we record some facts about parabolic cylinder functions:

Fact 3.12 (12.5.1 of [Loz03]). Let U be the function defined as

U(α, λ) :=
eλ2/4

Γ
( 1

2 + α
) ∫ ∞

0
tα−1/2 · e−(t+λ)2/2 dt ,

for all α such that <(α) > − 1
2 . The function U(α,±λ) is a parabolic cylinder function and is a

standard solution to the differential equation: d2w
dλ2 −

(
λ2

4 + α
)

w = 0.

Next we quote the confluent hypergeometric representation of the parabolic cylinder
function U defined above:

15



Fact 3.13 (12.4.1, 12.2.6, 12.2.7, 12.7.12, and 12.7.13 of [Loz03]).

U(α, λ) =

√
π

2α/2+1/4 · Γ
( 3

4 +
α
2

) · eλ2/4 · 1F1

(
−1

2
α +

1
4

;
1
2

; −λ2

2

)
−

√
π

2α/2−1/4 · Γ
( 1

4 +
α
2

) · λ · eλ2/4 · 1F1

(
−α

2
+

3
4

;
3
2

; −λ2

2

)
Combining the previous two facts, we get the following:

Corollary 3.14. For all real α > − 1
2 , we have:

∫ ∞

0
tα−1/2 · e−(t+λ)2/2 dt =

√
π · Γ

( 1
2 + α

)
2α/2+1/4 · Γ

( 3
4 +

α
2

) · 1F1

(
−α

2
+

1
4

;
1
2

; −λ2

2

)
−
√

π · Γ
( 1

2 + α
)

2α/2−1/4 · Γ
( 1

4 +
α
2

) · λ · 1F1

(
−α

2
+

3
4

;
3
2

; −λ2

2

)
.

3.2.2 Generating Function of Hermite Coefficients and its Confluent Hypergeometric
Representation

Using the generating function of (appropriately normalized) Hermite polynomials, we de-
rive an integral representation for the generating function of the (appropriately normalized)
Hermite coefficients of f̃ (a) (and similarly f̃ (b)):

Lemma 3.15. For c ∈ {a, b}, let f̂ (c)
k denote the k-th Hermite coefficient of f̃ (c)(τ) := sgn (τ) ·

|τ|c. Then we have the following identity:

∑
k≥0

λ2k+1√
(2k + 1)!

· f̂ (c)
2k+1 =

1√
2π

∫ ∞

0
τc ·

(
e−(τ−λ)2/2 − e−(τ+λ)2/2

)
dτ .

Proof. We observe that for, f̃ (c) is an odd function and hence Fact 3.2 implies that f̃ (c)(τ) ·
H2k(τ) is an odd function and f̃ (c)(τ) · H2k+1(τ) is an even function. This implies for any
k ≥ 0, that f̂ (c)

2k = 0 and

f̂ (c)
2k+1 =

1√
2π

∫ ∞

−∞
sgn (τ) · τc · H2k+1(τ) · e−τ2/2 dτ =

√
2
π

∫ ∞

0
τc · H2k+1(τ) · e−τ2/2 dτ .

Thus we have

∑
k≥0

λ2k+1√
(2k + 1)!

· f̂ (c)
2k+1

=

√
2
π
· ∑

k≥0

∫ ∞

0
τc · e−τ2/2 · H2k+1(τ) ·

λ2k+1√
(2k + 1)!

dτ

=

√
2
π
·
∫ ∞

0
τc · e−τ2/2 ∑

k≥0
H2k+1(τ) ·

λ2k+1√
(2k + 1)!

dτ (see below)

=
1√
2π
·
∫ ∞

0
τc · e−τ2/2 ·

(
eτλ−λ2/2 − e−τλ−λ2/2

)
dτ ( by Eq. (3))
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=
1√
2π
·
∫ ∞

0
τc ·

(
e−(τ−λ)2/2 − e−(τ+λ)2/2

)
dτ

where the exchange of summation and integral in the second equality follows by Fubini’s
theorem. We include this routine verification for the sake of completeness. As a consequence
of Fubini’s theorem, if ( fk : R→ R)k is a sequence of functions such that ∑k≥0

∫ ∞
0 | fk| < ∞,

then ∑k≥0
∫ ∞

0 fk =
∫ ∞

0 ∑k≥0 fk . Now for any fixed k, we have

∫ ∞

0
τc · |Hk(x)| dγ(τ) ≤

(∫ ∞

0
τ2c dγ(τ)

)1/2

·
(∫ ∞

0
|Hk(x)|2 dγ(τ)

)1/2

≤ γc
2c < ∞ .

Setting fk(τ) := τc · e−τ2/2 · H2k+1(τ) · λ2k+1/
√
(2k + 1)! , we get that ∑k≥0

∫ ∞
0 | fk| < ∞.

This completes the proof.

Finally using known results about parabolic cylinder functions, we are able to relate
the aforementioned integral representation to a confluent hypergeometric function (whose
Taylor coefficients are known).

Lemma 3.16. For λ ∈ [−1, 1] and real valued c > −1, we have

1√
2π

∫ ∞

0
τc
(

e−(τ−λ)2/2 − e−(τ+λ)2/2
)

dτ = γc+1
c+1 · λ · 1F1

(
1− c

2
;

3
2

; −λ2

2

)
Proof. We prove this by using the Corollary 3.14 with a = c + 1

2 . We note that α > − 1
2 and

1F1
(
·, ·,−λ2/2

)
is an even function of λ. So combining the two, we get:

1√
2π

∫ ∞

0
τc
(

e−(τ−λ)2/2 − e−(τ+λ)2/2
)

dτ

=
2√
2π
·
√

π · Γ (c + 1)
2c/2 · Γ

( c+1
2

) · λ · 1F1

(
− c

2
+

1
2

;
3
2

;−1
2

λ2
)

= 2(1−c)/2 ·
Γ
( c+1

2 + 1
2

)
2−c ·

√
π
· λ · 1F1

(
1− c

2
;

3
2

; −λ2

2

)
(by Fact 3.10)

= γc+1
c+1 · λ · 1F1

(
1− c

2
;

3
2

; −λ2

2

)
(by Fact 3.11) �

3.3 Taylor Coefficients of f̃a, b(x) and Hypergeometric Representation

By Claim 3.6, we are left with understanding the function whose power series is given by
a weighted coefficient-wise product of a certain pair of confluent hypergeometric functions.
This turns out to be precisely the Gaussian hypergeometric function, as we will see below.

Observation 3.17. Let fk := [τk] 1F1(a1, 3/2, τ) and hk := [τk] 1F1(b1, 3/2, τ). Further let
µk := fk · hk · (2k + 1)!/4k. Then for ρ ∈ [−1, 1],

∑
k≥0

µk · ρn = 2F1(a1, b1 ; 3/2 ; ρ) .
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Proof. The claim is equivalent to showing that µk = (a1)k (b1)k/((3/2)k k!). Since we have
fk = (a1)k/((3/2)k k!) and hk = (b1)k/((3/2)k k!), it is sufficient to show that (2k + 1)!/4k =
(3/2)k · k!. Indeed we have,

(2k + 1)! = 2k · k! · 1 · 3 · 5 · · · (2k + 1)

= 4k · k! · 3
2
· 5

2
· · ·
(

3
2
+ k− 1

)
= 4k · k! · (3/2)k . �

We are finally equipped to put everything together.

Theorem 3.18. For any a, b ∈ (−1, ∞) and ρ ∈ [−1, 1], we have

fa, b(ρ) :=
1

γa+1
a+1 · γ

b+1
b+1

· E
g1∼ρ g2

[
sgn(g1)|g1|a sgn(g2)|g1|b

]
= ρ · 2F1

(
1− a

2
,

1− b
2

;
3
2

; ρ2
)

.

It follows that the (2k + 1)-th Taylor coefficient of fa, b(ρ) is

((1− a)/2)k ((1− b)/2)k

((3/2)k k!)
.

Proof. The claim follows by combining Claim 3.6, Lemmas 3.15 and 3.16, and Observa-
tion 3.17.

This hypergeometric representation immediately yields some non-trivial coefficient and
monotonicity properties:

Corollary 3.19. For any a, b ∈ [0, 1], the function fa, b : [−1, 1]→ R satisfies

(M1) [ρ] fa, b(ρ) = 1 and [ρ3] fa, b(ρ) = (1− a)(1− b)/6.

(M2) All Taylor coefficients are non-negative. Thus fa, b(ρ) is increasing on [−1, 1].

(M3) All Taylor coefficients are decreasing in a and in b. Thus for any fixed ρ ∈ [−1, 1], fa, b(ρ) is
decreasing in a and in b.

(M4) Note that fa, b(0) = 0 and by (M1) and (M2), fa, b(1) ≥ 1. By continuity, fa, b([0, 1]) contains
[0, 1]. Combining this with (M3) implies that for any fixed ρ ∈ [0, 1], f−1

a, b (ρ) is increasing in
a and in b.

4 sinh−1(1)/(1 + ε0) Bound on h−1
a, b(1)

In this section we show that p = ∞, q = 1 (the Grothendieck case) is roughly the ex-
tremal case for the value of h−1

a, b(1), i.e., we show that for any 1 ≤ q ≤ 2 ≤ p ≤ ∞,
h−1

a, b(1) ≥ sinh−1(1)/(1 + ε0) (recall that h−1
0, 0(1) = sinh−1(1)). While we were unable to

establish as much, we conjecture that h−1
a, b(1) ≥ sinh−1(1). Section 4.1 details some of the

challenges involved in establishing that sinh−1(1) is the worst case, and presents our ap-
proach to establish an approximate bound, which will be formally proved in Section 4.2.
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4.1 Behavior of The Coefficients of f−1
a, b (z).

Krivine’s upper bound on the real Grothendieck constant, Haagerup’s upper bound [Haa81]
on the complex Grothendieck constant and the work of Naor and Regev [NR14, BdOFV14]
on the optimality of Krivine schemes are all closely related to our work in that each of
the aforementioned papers needs to lower bound (abs

(
f−1))−1(1) for an appropriate odd

function f (the work of Briet et al. [BdOFV14] on the rank-constrained Grothendieck prob-
lem is also a generalization of Krivine’s and Haagerup’s work, however they did not de-
rive a closed form upper bound on (abs

(
f−1))−1(1) in their setting). In Krivine’s setting

f = sin−1 x, implying (abs
(

f−1))−1 = sinh−1 and hence the bound is immediate. In our set-
ting, as well as in [Haa81] and [NR14, BdOFV14], f is given by its Taylor coefficients and is
not known to have a closed form. In [NR14], all coefficients of f−1 subsequent to the third are
negligible and so one doesn’t incur much loss by assuming that abs

(
f−1) (ρ) = c1ρ + c3ρ3.

In [Haa81], the coefficient of ρ in f−1(ρ) is 1 and every subsequent coefficient is negative,
which implies that abs

(
f−1) (ρ) = 2ρ − f−1(ρ). Note that if the odd coefficients of f−1

are alternating in sign like in Krivine’s setting, then abs
(

f−1) (ρ) = −i · f−1(iρ). These
structural properties of the coefficients help their analyses.

In our setting there does not appear to be such a strong relation between (abs
(

f−1)) and
f−1. Consider f (ρ) = fa, a(ρ). For certain a ∈ (0, 1), the sign pattern of the coefficients of f−1

is unlike that of [Haa81] or sin ρ. In fact empirical results suggest that the odd coefficients
of f alternate in sign up to some term K = K(a), and subsequently the coefficients are all
non-positive (where K(a) → ∞ as a → 0), i.e., the sign pattern appears to be interpolating
between that of sin ρ and that of f−1(ρ) in the case of Haagerup [Haa81].

Another source of difficulty is that for a fixed a, the coefficients of f−1 (with and without
magnitude) are not necessarily monotone in k, and moreover for a fixed k, the k-th coefficient
of f−1 is not necessarily monotone in a.

A key part of our approach is noting that certain milder assumptions on the coefficients
are sufficient to show that sinh−1(1) is the worst case. The proof crucially uses the mono-
tonicity of fa, b(ρ) in a and b. The conditions are as follows:

Let f −1
k := [ρk] f−1

a, b (ρ). Then

(C1) f −1
k ≤ 1/k! if k (mod 4) ≡ 1.

(C2) f −1
k ≤ 0 if k (mod 4) ≡ 3.

To be more precise, we were unable to establish that the above conditions hold for all k
(however we conjecture that it is true for all k), and instead use Mathematica to verify it for
the fist few coefficients. We additionally show that the coefficients of f−1

a, b decay exponen-
tially. Combining this exponential decay with a robust version of the previously advertised
claim yields that h−1

a, b(1) ≥ sinh−1(1)/(1 + ε0).
We next proceed to prove the claim that the aforementioned conditions are sufficient to

show that sinh−1(1) is the worst case. We will need the following definition. For an odd
positive integer t, let

herr(t, ρ) := ∑
k≥t
| f −1

k | · ρ
k

Lemma 4.1. If t is an odd integer such that (C1) and (C2) are satisfied for all k < t, and ρ =
sinh−1(1− 2herr(t, δ)) for some δ ≥ ρ, then ha, b(ρ) ≤ 1.
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Proof. We have,

ha, b(ρ)

= ∑
k≥1
| f −1

k | · ρ
k

= − f−1
a, b (ρ) + ∑

k≥1
max{2 f −1

k , 0} · ρk

= − f−1
a, b (ρ) + ∑

1≤k<t
k mod 4≡1

max{2 f −1
k , 0} · ρk + ∑

k≥t
max{2 f −1

k , 0} · ρk (by (C2))

≤ − f−1
a, b (ρ) + ∑

1≤k<t
k mod 4≡1

max{2 f −1
k , 0} · ρk + 2 herr(t, ρ)

≤ − f−1
a, b (ρ) + sin(ρ) + sinh(ρ) + 2 herr(t, ρ) (by (C1))

≤ − f−1
a, b (ρ) + sin(ρ) + 1 + 2(herr(t, ρ)− herr(t, δ)) ( ρ = sinh−1(1− 2herr(t, δ)) )

≤ − f−1
a, b (ρ) + sin(ρ) + 1 (ρ ≤ δ)

≤ − f−1
0, 0(ρ) + sin(ρ) + 1 (Corollary 3.19 : (M4))

= 1 ( f−1
0, 0(ρ) = sin(ρ)) �

Thus we obtain,

Theorem 4.2. For any 1 ≤ q ≤ 2 ≤ p ≤ ∞, let a := p∗ − 1, b = q− 1. Then for any m, n ∈ N

and A ∈ Rm×n, CP(A)/‖A‖p→q ≤ 1/(h−1
a, b(1) · γq γp∗) and moreover

- h−1
1, b(1) = h−1

a, 1(1) = 1.

- h−1
a, b(1) ≥ sinh−1(1)/(1 + ε0) where ε0 = 0.00863.

Proof. The first inequality follows from Lemma 2.7. As for the next item, If p = 2 or q = 2
(i.e., a = 1 or b = 1) we are trivially done since h−1

a, b(ρ) = ρ in that case (since for k ≥
1, (0)k = 0). So we may assume that a, b ∈ [0, 1).

We are left with proving the final part of the claim. Now using Mathematica we verify
(exactly)2 that (C1) and (C2) are true for k ≤ 29. Now let δ = sinh−1(0.974203). Then by
Lemma 4.7 (which states that f −1

k decays exponentially and will be proven in the subsequent
section),

herr(31, δ) := ∑
k≥31
| f −1

k | · d
k ≤ 6.1831

31
· δ31

1− δ2 ≤ 0.0128991 . . . .

Now by Lemma 4.1 we know h−1
a, b(1) ≥ sinh−1(1− 2herr(31, δ)). Thus,

h−1
a, b(1) ≥ sinh−1(0.974202) ≥ sinh−1(1)/(1 + ε0) for ε0 = 0.00863, which completes the

proof.

4.2 Bounding Inverse Coefficients

In this section we prove that f −1
k decays as 1/ck for some c = c(a, b) > 1, proving Lemma 4.7.

Throughout this section we assume 1 ≤ p∗, q < 2, and a = p∗ − 1, b = q − 1 (i.e.,

2 We generated f −1
k as a polynomial in a and b and maximized it over a, b ∈ [0, 1] using the Mathematica

“Maximize” function which is exact for polynomials.
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a, b ∈ [0, 1)). Via the power series representation, fa, b(z) can be analytically continued to
the unit complex disk. Let f−1

a, b (z) be the inverse of fa, b(z) and recall f −1
k denotes its k-th

Taylor coefficient.
We begin by stating a standard identity from complex analysis that provides a conve-

nient contour integral representation of the Taylor coefficients of the inverse of a function.
We include a proof for completeness.

Lemma 4.3 (Inversion Formula). There exists δ > 0, such that for any odd k,

f −1
k =

2
πk
=
(∫

C+
δ

fa, b(z)−k dz
)

(4)

where C+
δ denotes the first quadrant quarter circle of radius δ with counter-clockwise orientation.

Proof. Via the power series representation, fa, b(z) can be analytically continued to the unit
complex disk. Thus by inverse function theorem for holomorphic functions, there exists
δ0 ∈ (0, 1] such that fa, b(z) has an analytic inverse in the open disk |z| < δ0. So for δ ∈ (0, δ0),
fa, b(Cδ) is a simple closed curve with winding number 1 (where Cδ is the complex circle of
radius δ with the usual counter-clockwise orientation). Thus by Cauchy’s integral formula
we have

f −1
k =

1
2πi

∫
fa, b(Cδ)

f−1
a, b (w)

w k dw =
1

2πi

∫
Cδ

z · f ′a, b(z)
fa, b(z)k+1 dz

where the second equality follows from substituting w = fa, b(z).
Now by Fact 4.5, z/ fa, b(z)k is holomorphic on the open set |z| ∈ (0, 1), which contains

Cδ. Hence by the fundamental theorem of contour integration we have

∫
Cδ

d
dz

(
z

fa, b(z)k

)
dz = 0 ⇒

∫
Cδ

z · f ′a, b(z)
fa, b(z)k+1 dz =

1
k

∫
Cδ

1
fa, b(z)k dz

So we get,

f −1
k =

1
2πik

∫
Cδ

fa, b(z)−k dz =
1

2πk
=
(∫

Cδ

fa, b(z)−k dz
)

where the second equality follows since f −1
k is purely real. Lastly, we complete the proof of

the claim by using the fact that for odd k, fa, b(z)−k is odd and that fa, b(z) = fa, b(z).

We next state a standard bound on the magnitude of a contour integral that we will use
in our analysis.

Fact 4.4 (ML-inequality). If f is a complex valued continuous function on a contour Γ and | f (z)|
is bounded by M for every z ∈ Γ, then ∣∣∣∣∫Γ

f (z)
∣∣∣∣ ≤ M · `(Γ)

where `(Γ) is the length of Γ.

Unfortunately the integrand in Eq. (4) can be very large for small δ, and we cannot use
the ML-inequality as is. To fix this, we modify the contour of integration (using Cauchy’s
integral theorem) so that the imaginary part of the integral vanishes when restricted to the
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sections close to the origin, and the integrand is small in magnitude on the sections far
from the origin (thus allowing us to use the ML-inequality). To do this we will need some
preliminaries.

fa, b(z) is defined on the closed complex unit disk. The domain is analytically extended
to the region C \ ((−∞,−1) ∪ (1, ∞)), using the Euler-type integral representation of the
hypergeometric function.

f+a, b(z) := B
(

1− b
2

, 1 +
b
2

)−1

· I(z)

where B(τ1, τ2) is the beta function and

I(z) := z
∫ 1

0

(1− t)b/2 dt
t(1+b)/2 · (1− z2t)(1−a)/2

.

Fact 4.5. For any a1 > 0, 2F1(a1, b1, c1, z) has no non-zero roots in the region C \ (1, ∞). This
implies that if p∗ < 2, f+a, b(z) has no non-zero roots in the region C \ ((−∞,−1) ∪ (1, ∞)).

We are now equipped to expand the contour. Our choice of contour is inspired by that of
Haagerup [Haa81] which he used in deriving an upper bound on the complex Grothendieck
constant. The contour we choose has some differences for technical reasons related to the re-
gion to which hypergeometric functions can be analytically extended. The analysis is quite
different from that of Haagerup since the functions in consideration behave differently. In
fact the inverse function Haagerup considers has polynomially decaying coefficients while
the class of inverse functions we consider have coefficients that have decay between expo-
nential and factorial.

Observation 4.6 (Expanding Contour). For any α ≥ 1 and ε > 0, let P(α, ε) be the four-part
curve (see Fig. 3) given by

- the line segment δ → (1− ε),

- the line segment (1− ε) → (
√

α− ε + i
√

ε) (henceforth referred to as Lα,ε),

- the arc along C+
α starting at (

√
α− ε + i

√
ε) and ending at iα (henceforth referred to as C+

α,ε),

- the line segment iα → iδ.

By Cauchy’s integral theorem, combining Lemma 4.3 with Fact 4.5 yields that for odd k,

f −1
k =

2
πk
=
(∫

P(α,ε)
f+a, b(z)

−k dz
)

We will next see that the imaginary part of our contour integral vanishes on section
of P(α, ε). Applying ML-inequality to the remainder of the contour, combined with lower
bounds on | f+a, b(z)| (proved below the fold in Section 4.2.1), allows us to derive an expo-
nentially decaying upper bound on | f −1

k |.

Lemma 4.7. For any 1 ≤ p∗, q < 2, there exists ε > 0 such that

| f −1
k | ≤

6.1831
k(1 + ε)k .
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Figure 3: The Contour P(α, ε)

δ 1 α

δ

1

α

Lα,ε

C+
α,ε

Proof. For a contour P, we define V(P) as

V(P) :=
2

πk
=
(∫

P
f+a, b(z)

−k dz
)

As is evident from the integral representation, f+a, b(z) is purely imaginary if z is purely imag-
inary, and as is evident from the power series, fa, b(z) is purely real if z lies on the real interval
[−1, 1]. This implies that V(δ→ (1− ε)) = V(iα→ iδ) = 0.

Now combining Fact 4.4 (ML-inequality) with Lemma 4.9 and Lemma 4.12 (which state
that the integrand is small in magnitude over C+

6,ε and L6,ε respectively), we get that for
sufficiently small ε > 0,

|V(P(6, ε))| ≤ |V(C+
6,ε)|+ |V(L6,ε)|

≤ 2
πk
· 3π/2
(1 + ε)k +

2
πk
· 6− 1 + O(

√
ε)

(1 + ε)k

≤ 6.1831
k(1 + ε)k . (taking ε sufficiently small) �

4.2.1 Lower bounds on | f+a, b(z)| Over C+
α,ε and Lα,ε

In this section we show that for sufficiently small ε, | f+a, b(z)| > 1 over Lα,ε (regardless of the
value of α, Lemma 4.12), and over C+

α,ε when α is a sufficiently large constant (Lemma 4.9).
We will first show the claim for C+

α,ε by relating | f+a, b(z)| to |z|. While the asymptotic
behavior of hypergeometric functions for |z| → ∞ has been extensively studied (see for
instance [Loz03]), it appears that our desired estimates aren’t immediate consequences of
prior work for two reasons. Firstly, we require relatively precise estimates for moderately
large but constant |z|. Secondly, due to the expressive power of hypergeometric functions,
the estimates we derive can only be true for hypergeometric functions parameterized in a
specific range. Indeed, our proof crucially uses the fact that a, b ∈ [0, 1). Our approach is to
use the Euler-type integral representation of f+a, b(z) which as a reminder to the reader is as
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follows:

f+a, b(z) := B
(

1− b
2

, 1 +
b
2

)−1

· I(z)

where B(x, y) is the beta function and

I(z) := z
∫ 1

0

(1− t)b/2 dt
t(1+b)/2 · (1− z2t)(1−a)/2

.

We start by making the simple observation that the integrand of I(z) is always in the positive
complex quadrant — an observation that will come in handy multiple times in this section,
in dismissing the possibility of cancellations. This is the part of our proof that makes the
most crucial use of the assumption that 0 ≤ a < 1 (equivalently 1 ≤ p∗ < 2).

Observation 4.8. Let z = reiθ be such that either one of the following two cases is satisfied:

(A) r < 1 and θ = 0.

(B) θ ∈ (0, π/2].

Then for any 0 ≤ a ≤ 1 and any t ∈ R+,

arg
(

z
(1− tz2)(1−a)/2

)
∈ [0, π/2]

Proof. The claim is clearly true when θ = 0 and r < 1. It is also clearly true when θ = π/2.
Thus we may assume θ ∈ (0, π/2).

arg(z) ∈ (0, π/2) ⇒ arg(−tz2) ∈ (−π, 0) ⇒ =(−tz2) < 0

⇒ =(1− tz2) < 0 ⇒ arg(1− tz2) ∈ (−π, 0)

Moreover since arg(−tz2) = 2θ − π ∈ (−π, 0), we have arg(1− tz2) > 2θ − π. Thus we
have,

arg(1− tz2) ∈ (2θ − π, 0) ⇒ arg
(
(1− tz2)(1−a)/2

)
∈ ((1− a)(θ − π/2), 0)

⇒ arg
(

1/(1− tz2)(1−a)/2
)
∈ (0, (1− a)(π/2− θ))

⇒ arg
(

z/(1− tz2)(1−a)/2
)
∈ (0, (1− a)(π/2− θ) + θ) ⊆ (0, π/2) �

We now show | f+a, b(z)| is large over C+
α,ε. The main idea is to move from a complex

integral to a real integral with little loss, and then estimate the real integral. To do this, we
use Observation 4.8 to argue that the magnitude of I(z) is within

√
2 of the integral of the

magnitude of the integrand.

Lemma 4.9 ( | f+a, b(z)| is large over C+
α,ε ). Assume a, b ∈ [0, 1) and consider any z ∈ C with

|z| ≥ 6. Then | f+a, b(z)| > 1.

Proof. We start with a useful substitution.

I(z) = z
∫ 1

0

(1− t)b/2 dt
t(1+b)/2 · (1− z2t)(1−a)/2
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= rbeiθ
∫ r2

0

(1− s/r2)b/2 ds
s(1+b)/2 · (1− e2iθs)(1−a)/2

(Subst. s = r2t, where z = reiθ)

= rb
∫ r2

0

wa(s, θ) · (1− s/r2)b/2 ds
s1+(b−a)/2

where

wa(s, θ) :=
eiθ

(1/s− e2iθ)(1−a)/2
.

We next exploit the observation that the integrand is always in the positive complex
quadrant by showing that |I(z)| is at most a factor of

√
2 away from the integral obtained by

replacing the integrand with its magnitude.

|I(z)|

=
√
<(I(z))2 +=(I(z))2

≥ (|<(I(z))|+ |=(I(z))|)/
√

2 (Cauchy-Schwarz)

= (<(I(z)) +=(I(z)))/
√

2 (by Observation 4.8)

=
rb
√

2

∫ r2

0
(<(wa(s, θ)) +=(wa(s, θ))) · (1− s/r2)b/2 ds

s1+(b−a)/2

=
rb
√

2

∫ r2

0
(|<(wa(s, θ))|+ |=(wa(s, θ))|) · (1− s/r2)b/2 ds

s1+(b−a)/2
(by Observation 4.8)

≥ rb
√

2

∫ r2

0
|wa(s, θ)| · (1− s/r2)b/2 ds

s1+(b−a)/2
(‖v‖1 ≥ ‖v‖2)

≥ rb
√

2

∫ r2

0

1
(1 + 1/s)(1−a)/2

· (1− s/r2)b/2 ds
s1+(b−a)/2

We now break the integral into two parts and analyze them separately. We start by analyzing
the part that’s large when b→ 0.

rb
√

2

∫ r2

1

1
(1 + 1/s)(1−a)/2

· (1− s/r2)b/2 ds
s1+(b−a)/2

≥ rb

2

∫ r2

1

(1− s/r2)b/2 ds
s1+(b−a)/2

≥ rb

2

∫ r2/2

1

(1− s/r2)b/2 ds
s1+(b−a)/2

≥ rb

2
√

2

∫ r2/2

1

ds
s1+(b−a)/2

(since s ≤ r2/2)

≥ rb ·min{1, ra−b}
2
√

2

∫ r2/2

1

ds
s

=
min{ra, rb} · log(r2/2)

2
√

2

≥ log(r/
√

2)√
2
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We now analyze the part that’s large when b→ 1.

rb
√

2

∫ 1

0

1
(1 + 1/s)(1−a)/2

· (1− s/r2)b/2 ds
s1+(b−a)/2

=
rb
√

2

∫ 1

0

(1− s/r2)b/2

(1 + s)(1−a)/2
· ds

s(1+b)/2

≥ rb ·
√

1− 1/r2

2

∫ 1

0

ds
s(1+b)/2

(since s ≤ 1)

=
rb ·
√

1− 1/r2

1− b

Combining the two estimates above yields that if r >
√

2,

| f+a, b(z)| ≥ B
(

1− b
2

, 1 +
b
2

)−1

·
(

log(r/
√

2)√
2

+
rb ·
√

1− 1/r2

1− b

)

Lastly, the proof follows by using the following estimate:

Fact 4.10. Via Mathematica, for 0 ≤ b < 1 we have

B
(

1− b
2

, 1 +
b
2

)−1

·
(

log(6/
√

2)√
2

+
6b ·
√

1− 1/62

1− b

)
≥ 1.003

Remark 4.11. The preceding proof can be used to derive the precise asymptotic behavior of | f+a, b(z)|
in r. Specifically, it grows as ra log r if a = b and as r max{a,b} if a 6= b.

We now show that | f+a, b(z)| > 1 over Lα,ε. To do this, it is insufficient to assume that
|z| ≥ 1 since there exist points z (for instance z = i) of unit length such that | f+a, b(z)| < 1. To
show the claim, we observe that | f+a, b(z)| is large when z is close to the real line and use the
fact that Lα,ε is close to the real line. Formally, we show that if z is of length at least 1 and is
sufficiently close to the real line, | f+a, b(z)| is close to f+a, b(1). Lastly, we use the power series
representation of the hypergeometric function to obtain a sufficiently accurate lower bound
on f+a, b(1).

Lemma 4.12 ( | f+a, b(z)| is large over Lα,ε ). Assume a, b ∈ [0, 1) and consider any γ ≥ 1− ε1.
Let ε2 :=

√
ε1 and z := γ(1 + iε1). Then for ε1 > 0 sufficiently small, | f+a, b(z)| > 1.

Proof. Below the fold we will show

|I(z)| ≥ (1−O(
√

ε1))
∫ 1−ε2

0

(1− s)b/2 ds
s(1+b)/2 · (1− s)(1−a)/2

(5)

But we know (LHS, RHS refer to Eq. (5))

B
(

1− b
2

, 1 +
b
2

)−1

· LHS = f+a, b(z) and
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B
(

1− b
2

, 1 +
b
2

)−1

· RHS → fa, b(1) as ε1 → 0

Also by Corollary 3.19 : (M1), (M2), fa, b(1) ≥ 1 + (1 − a)(1 − b)/6 > 1. Thus for ε1
sufficiently small, we must have | f+a, b(z)| > 1.

We now show Eq. (5), by comparing integrands point-wise. To do this, we will assume
the following closeness estimate that we will prove below the fold:

<
(

1 + iε1

(1− s(1 + iε1)2)(1−a)/2

)
=

1−O(ε2)

(1− s)(1−a)/2
. (6)

We will also need the following inequality. Since γ ≥ 1− ε1 = 1− ε2
2, for any 0 ≤ s ≤ 1− ε2,

we have
(1− s/γ2)b/2 ≥ (1−O(ε2)) · (1− s)b/2. (7)

Given, these estimates, we can complete the proof of Eq. (5) as follows:

<(I(z))

= <
(

z
∫ 1

0

(1− t)b/2 dt
t(1+b)/2 · (1− tz2)(1−a)/2

)
= <

(
γb(1 + iε1)

∫ γ2

0

(1− s/γ2)b/2 ds
s(1+b)/2 · (1− s(1 + iε1)2)(1−a)/2

)
(subst. s← γ2t)

≥ <
(

γb(1 + iε1)
∫ 1−ε2

0

(1− s/γ2)b/2 ds
s(1+b)/2 · (1− s(1 + iε1)2)(1−a)/2

)
(by Observation 4.8)

= γb
∫ 1−ε2

0
<
(

1 + iε1

(1− s(1 + iε1)2)(1−a)/2

)
(1− s/γ2)b/2 ds

s(1+b)/2

≥ (1−O(ε2)) · γb
∫ 1−ε2

0

(1− s/γ2)b/2 ds
s(1+b)/2 · (1− s)(1−a)/2

(by Eq. (6))

≥ (1−O(ε2))
∫ 1−ε2

0

(1− s)b/2 ds
s(1+b)/2 · (1− s)(1−a)/2

(by Eq. (7), γ ≥ 1− ε1)

It remains to establish Eq. (6), which we will do by considering the numerator and
reciprocal of the denominator separately and subsequently using the fact that <(z1z2) =
<(z1)<(z2)−=(z1)=(z2). In doing this, we need to show that the respective real parts are
large and respective imaginary parts are small for which the following simple facts will
come in handy.

Fact 4.13. Let z = reiθ be such that <z ≥ 0 (i.e. −π/2 ≤ θ ≤ π/2). Then for any 0 ≤ α ≤ 1,

<(1/zα) = cos(−αθ)/rα = cos(αθ)/rα ≥ cos(θ)/rα = <(z)/r1+α

Fact 4.14. Let z = re−iθ be such that<z ≥ 0,=z ≤ 0 (i.e. 0 ≤ θ ≤ π/2). Then for any 0 ≤ α ≤ 1,

=(1/zα) = sin(αθ)/rα ≤ sin(θ)/rα = −=(z)/r1+α

We are now ready to prove the claimed properties of the reciprocal of the denominator
from Eq. (6). For any 0 ≤ s ≤ 1− ε2 we have,

<
(

1
(1− s(1 + iε1)2)(1−a)/2

)
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= <
(

1
(1− s + sε2

1 − 2isε1)(1−a)/2

)

=
1

(1− s)(1−a)/2
· <
(

1
(1 + sε2

1/(1− s)− 2iε1/(1− s))(1−a)/2

)

≥ 1
(1− s)(1−a)/2 · (1 + O(ε2

1/ε2
2))

(3−a)/4
(by Fact 4.13, and 1− s ≥ ε2)

=
1−O(ε2

1/ε2
2)

(1− s)(1−a)/2

=
1−O(ε2)

(1− s)(1−a)/2
(8)

Similarly,

=
(

1
(1− s + sε2

1 − 2isε1)(1−a)/2

)

=
1

(1− s)(1−a)/2
· =
(

1
(1 + sε2

1/(1− s)− 2iε1/(1− s))(1−a)/2

)

≤ 2ε1

(1− s)(1−a)/2
(by Fact 4.14) (9)

Combining Eq. (8) and Eq. (9) with the fact that <(z1z2) = <(z1)<(z2)−=(z1)=(z2) yields,

<
(

1 + iε1

(1− s(1 + iε1)2)(1−a)/2

)
=

1−O(ε2)

(1− s)(1−a)/2
.

This completes the proof.

4.2.2 Challenges of Proving (C1) and (C2) for all k

For certain values of a and b, the inequalities in (C1) and (C2) leave very little room for error.
In particular, when a = b = 0, (C1) holds at equality and (C2) has 1/k! additive slack. In
this special case, it would mean that one cannot analyze the contour integral (for the k-th
coefficient of f−1

a, b (ρ)) by using ML-inequality on any section of the contour that is within
a distance of exp(k) from the origin. Analytic approaches would require extremely precise
estimates on the value of the contour integral on parts close to the origin. Other challenges
to naive approaches come from the lack of monotonicity properties for f −1

k (both in k and in
a, b - see Section 4.1)

5 Factorization of Linear Operators

Let X, Y, E be Banach spaces and let A : X → Y be a continuous linear operator. We
say that A factorizes through E if there exist continuous operators C : X → E and B :
E → Y such that A = BC. Factorization theory has been a major topic of study in func-
tional analysis, going as far back as Grothendieck’s famous “Resume” [Gro56]. It has many
striking applications, like the isomorphic characterization of Hilbert spaces and Lp spaces
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due to Kwapień [Kwa72a, Kwa72b], connections to type and cotype through the work of
Kwapień [Kwa72a], Rosenthal [Ros73], Maurey [Mau74] and Pisier [Pis80], connections to
Sidon sets through the work of Pisier [Pis86], characterization of weakly compact operators
due to Davis et al. [DFJP74], connections to the theory of p-summing operators through the
work of Grothendieck [Gro56], Pietsch [Pie67] and Lindenstrauss and Pelczynski [LP68].

Let Φ(A) denote

Φ(A) := inf
H

inf
BC=A

‖C‖X→H · ‖B‖H→Y

‖A‖X→Y

where the infimum runs over all Hilbert spaces H. We say A factorizes through a Hilbert
space if Φ(A) < ∞. Further, let

Φ(X, Y) := sup
A

Φ(A)

where the supremum runs over continuous operators A : X → Y. As a quick example of
the power of factorization theorems, observe that if I : X → X is the identity operator on a
Banach space X and Φ(I) < ∞, then X is isomorphic to a Hilbert space and moreover the
distortion (Banach-Mazur distance) is at most Φ(I) (i.e., there exists an invertible operator
T : X → H for some Hilbert space H such that ‖T‖X→H · ‖T−1‖H→X ≤ Φ(I)). In fact (as
observed by Maurey), Kwapień gave an isomorphic characterization of Hilbert spaces by
proving a factorization theorem.

In this section we will show that our approximation results imply improved bounds
on Φ(`n

p, `m
q ) for certain values of p and q. Before doing so, we first summarize prior work

which will require the definitions of type and cotype:

Definition 5.1. The Type-2 constant of a Banach space X, denoted by T2(X), is the smallest constant
C such that for every finite sequence of vectors {xi} in X,

E

[
‖∑

i
ε i · xi‖

]
≤ C ·

√
∑

i
‖xi‖2

where ε i is an independent Rademacher random variable. We say X is of Type-2 if T2(X) < ∞.

Definition 5.2. The Cotype-2 constant of a Banach space X, denoted by C2(X), is the smallest
constant C such that for every finite sequence of vectors {xi} in X,

E

[
‖∑

i
ε i · xi‖

]
≥ 1

C
·
√

∑
i
‖xi‖2

where ε i is an independent Rademacher random variable. We say X is of Cotype-2 if C2(X) < ∞.

Remark 5.3.

- It is known that C2(X∗) ≤ T2(X).

- It is known that for p ≥ 2, we have T2(`n
p) = γp (while C2(`n

p) → ∞ as n → ∞) and for
q ≤ 2, C2(`n

q ) = 1/γq (while T2(`n
q )→ ∞ as n→ ∞).

We say X is Type-2 (resp. Cotype-2) if T2(X) < ∞ (resp. C2(X) < ∞). T2(X) and C2(X) can
be regarded as measures of the “closeness” of X to a Hilbert space. Some notable manifes-
tations of this correspondence are:
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- T2(X) = C2(X) = 1 if and only if X is isometric to a Hilbert space.

- Kwapień [Kwa72a]: X is of Type-2 and Cotype-2 if and only if it is isomorphic to a
Hilbert space.

- Figiel, Lindenstrauss and Milman [FLM77]: If X is a Banach space of Cotype-2, then
any n-dimensional subspace of X has an m = Ω(n)-dimensional subspace with Banach-
Mazur distance at most 2 from `m

2 .

Maurey observed that a more general factorization result underlies Kwapień’s work:

Theorem 5.4 (Kwapień-Maurey). Let X be a Banach space of Type-2 and Y be a Banach space of
Cotype-2. Then any operator T : X → Y factorizes through a Hilbert space. Moreover Φ(X, Y) ≤
T2(X)C2(Y).

Surprisingly Grothendieck’s work which predates the work of Kwapień and Maurey,
established that Φ(`n

∞, `m
1 ) ≤ KG for all m, n ∈ N, which is not implied by the above the-

orem since T2(`n
∞) → ∞ as n → ∞. Pisier [Pis80] unified the above results for the case of

approximable operators by proving the following:

Theorem 5.5 (Pisier). Let X, Y be Banach spaces such that X∗, Y are of Cotype-2. Then any ap-
proximable operator T : X → Y factorizes through a Hilbert space. Moreover
Φ(T) ≤ (2 C2(X∗)C2(Y))3/2.

In the next section we show that for any p∗, q ∈ [1, 2], any m, n ∈N

Φ(`n
p, `m

q ) ≤
1 + ε0

sinh−1(1)
· C2(`

n
p∗) · C2(`

m
q )

which improves upon Pisier’s bound and for certain ranges of (p, q), improves upon KG as
well as the bound of Kwapień-Maurey.

5.1 Integrality Gap Implies Factorization Upper Bound

Known upper bounds on Φ(X, Y) involve Hahn-Banach separation arguments. In this sec-
tion we see that for a special class of Banach spaces admitting a convex programming relax-
ation, Φ(X, Y) is bounded by the integrality gap of the relaxation as an immediate conse-
quence of Convex programming duality (which of course uses a separation argument under
the hood). A very similar observation had already been made by Tropp [Tro09] in the special
case of X = `n

∞, Y = `m
1 with a slightly different convex program.

We start by restating the relaxation in a more general setup, and stating its dual. To this
end, let FX,⊂ Rn, FY ⊂ Rm be convex sets. Also let

√
FX := {x | [x]2 ∈ FX}

√
FY := {y | [y]2 ∈ FY} .

Given an input matrix A ∈ Rm×n, we shall give a convex programming relaxation for the
following problem:

sup
x∈
√
FX , y∈

√
FY

yT A x
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The relaxation CP(A) (due to Nesterov et al. [NWY00]) is as follows:

maximize
1
2
·
〈[

0 A
AT 0

]
,
[

Y W

WT X

]〉
s.t.

diag(X) ∈ FX, diag(Y) ∈ FY[
Y W

WT X

]
� 0, Y ∈ Sm×m, X ∈ Sn×n, W ∈ Rm×n

For a vector s, let Ds denote the diagonal matrix with s as diagonal entries. Let

ξB(s) := sup
x∈B
|〈x , s〉| .

The dual program DP(A) is as follows:

minimize (ξFY(s) + ξFX (t))/2 s.t.[
Ds −A
−AT Dt

]
� 0, s ∈ Rm, t ∈ Rn .

Strong duality is satisfied, i.e. DP(A) = CP(A), and a proof can be found in Theorem 13.2.3
of [NWY00]. Assume

√
FX and

√
FY are convex and let ‖·‖√FX

and ‖·‖√FY
respectively

denote the norms they induce. For Banach spaces X over Rn, Y over Rm and an operator
A : X → Y, we define

Φ3(A) := inf
D1BD2=A

‖D2‖X→2 · ‖B‖2→2 · ‖D1‖2→Y

‖A‖X→Y
Φ3(X, Y) := sup

A:X→Y
Φ3(A)

where the infimum runs over diagonal matrices D1, D2 and B ∈ Rm×n. Clearly, Φ(A) ≤
Φ3(A) and therefore Φ(X, Y) ≤ Φ3(X, Y).

Henceforth we fix X and Y to be the Banach spaces (Rn, ‖·‖√FX
) and (Rm, ‖·‖√F ∗Y )

respectively. As was the approach of Grothendieck, we give an upper bound on Φ(X, Y) by
giving an upper bound on Φ3(X, Y). We do this by showing

Lemma 5.6. For any A : X → Y, Φ3(A) ≤ DP(A)/‖A‖√FX→
√
F ∗Y

.

Proof. Consider an optimal solution to DP(A). We will show

inf
D1BD2=A

‖D2‖X→2 · ‖B‖2→2 · ‖D1‖2→Y ≤ DP(A)

by taking D1 := D1/2
s , D2 := D1/2

t and B :=
(

D1/2
s
)† A

(
D1/2

t

)†
(where for a diagonal

matrix D, D† only inverts the non-zero diagonal entries and zero-entries remain the same).
Note that si = 0 (resp. ti = 0) implies the i-th row (resp. i-th column) of A is all zeroes, since
otherwise one can find a 2× 2 principal submatrix (of the block matrix in the relaxation) that
is not PSD. This implies that D1BD2 = A.

It remains to show that ‖D2‖X→2 · ‖B‖2→2 · ‖D1‖2→Y ≤ DP(A). Now we have,

‖D1/2
t ‖X→2 = sup

x∈
√
FX

‖D1/2
t x‖2 = sup

x∈
√
FX

√
〈t , [x]2〉 ≤ sup

x1∈FX

√
|〈t , x1〉| =

√
ξFX (t) .
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Similarly, since ‖D1‖2→Y = ‖D1‖Y∗→2 we have

‖D1‖Y∗→2 ≤
√

ξFY(s) .

Thus it suffices to show ‖B‖2→2 ≤ 1 since

‖D2‖X→2 · ‖D1‖2→Y ≤
√

ξFX (s) · ξFY(t) ≤ (ξFY(s) + ξFX (t))/2 = DP(A) .

We have, [
Ds −A
−AT Dt

]
� 0

⇒

 (D1/2
s
)†

0

0
(

D1/2
t

)†

 [ Ds −A
−AT Dt

]  (D1/2
s
)†

0

0
(

D1/2
t

)†

 � 0

⇒
[

Ds −B
−BT Dt

]
� 0 for some s ∈ {0, 1}m, t ∈ {0, 1}n

⇒
[

I −B
−BT I

]
� 0

⇒ ‖B‖2→2 ≤ 1 �

5.2 Improved Factorization Bounds for Certain `n
p, `m

q

Let 1 ≤ q ≤ 2 ≤ p ≤ ∞. Then taking FX to be the `n
p/2 unit ball and FY to be the `m

q∗/2 unit

ball, we have
√
FX and

√
FY are respectively the unit balls in `n

p and `m
q∗ . Therefore X and

Y as defined above are the spaces `n
p and `m

q respectively. Hence we obtain

Theorem 5.7 (`n
p → `m

q factorization). If 1 ≤ q ≤ 2 ≤ p ≤ ∞, then for any m, n ∈ N and
ε0 = 0.00863,

Φ(`n
p, `m

q ) ≤
1 + ε0

sinh−1(1) · γp∗ γq
=

1 + ε0

sinh−1(1)
· C2(`

n
p∗) · C2(`

m
q )

.

This improves upon Pisier’s bound and for a certain range of (p, q), improves upon KG as
well as the bound of Kwapień-Maurey.

On a slightly unrelated note, straightforward observations imply that the integrality gap
of CP(A) for any pair of convex sets FX,FY is KG (Grothendieck’s constant). This provides
a class of Banach space pairs for which KG is an upper bound on the factorization constant,
and it would be interesting to get a better understanding of how this class compares to that
of Pisier. We include a proof of this in the next section.

5.3 KG Bound on Approximation Ratio

In this subsection, we prove that for any pair of convex sets FX and FY such that
√
FX and√

FY are convex, the approximation ratio is bounded by KG. As in the previous section, we
fix X and Y to be the Banach spaces (Rn, ‖·‖√FX

) and (Rm, ‖·‖√F ∗Y ) respectively.
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Lemma 5.8. For any A : X → Y, CP(A)/‖A‖X→Y ≤ KG.

Proof. Let B := 1
2

[
0 A

AT 0

]
. The main intuition of the proof is to decompose x ∈

√
FX

as x = |[x]| ◦ sgn [x] (where ◦ denotes Hadamard/entry-wise multiplication), and then use
Grothendieck’s inequality on sgn [x] and sgn [y]. Another simple observation is that for any
convex set F , the feasible set we optimize over is invariant under factoring out the magnitudes
of the diagonal entries. In other words,

{Dd Σ Dd : d ∈
√
F ∩Rn

≥0, Σ � 0, diag(Σ) = 1}
={X : diag(X) ∈ F , X � 0} (10)

We will apply the above fact for F = FX ⊕ FY. Let
√
F+

X denote
√
FX ∩Rn

≥0 (analogous

for
√
F+

Y ). Now simple algebraic manipulations yield

‖A‖X→Y

= max
x∈
√
FX , y∈

√
FY

(y⊕ x)TB(y⊕ x)

= max
dx∈
√
F+

X , σx∈{±1}n,
dy∈
√
F+

Y , σy∈{±1}m

((dy ◦ σy)⊕ (dx ◦ σx))
T B ((dy ◦ σy)⊕ (dx ◦ σx))

= max
dx∈
√
F+

X , σx∈{±1}n,
dy∈
√
F+

Y , σy∈{±1}m

(σy ⊕ σx)
T(Ddy⊕dx B Ddy⊕dx)(σy ⊕ σx)

≥ (1/KG) · max
dx∈
√
F+

X , dy∈
√
F+

Y ,
Σ: diag(Σ)=1, Σ�0

〈
Σ , Ddy⊕dx B Ddy⊕dx

〉
(Grothendieck)

= (1/KG) · max
dx∈
√
F+

X , dy∈
√
F+

Y ,
Σ: diag(Σ)=1, Σ�0

〈
Ddy⊕dx Σ Ddy⊕dx , B

〉
= (1/KG) · CP(A) (by Eq. (10)). �
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