
Hierarchy Theorems for Testing Properties

in Size-Oblivious Query Complexity

Oded Goldreich∗

May 2, 2019

Abstract

Focusing on property testing tasks that have query complexity that is independent of the
size of the tested object (i.e., depends on the proximity parameter only), we prove the existence
of a rich hierarchy of the corresponding complexity classes. That is, for essentially any function
q : (0, 1] → N, we prove the existence of properties for which ε-testing has query complexity
Θ(q(Θ(ε))). Such results are proved in three standard domains that are often considered in prop-
erty testing: generic functions, adjacency predicates describing (dense) graphs, and incidence
functions describing bounded-degree graphs.

These results complement hierarchy theorems of Goldreich, Krivelevich, Newman, and Rozen-
berg (Computational Complexity, 2012), which refer to the dependence of the query complexity
on the size of the tested object, and focus on the case that the proximity parameter is set to
some small positive constant. We actually combine both flavors and get tight results on the
query complexity of testing when allowing the query complexity to depend on both the size of
the object and the proximity parameter.

Contents

1 Introduction 1
1.1 Our results . 1
1.2 Our techniques . 2
1.3 Organization . 3

2 Properties of Generic Functions 3

3 Graph Properties in the Bounded-Degree Model 6

4 Graph Properties in the Adjacency Matrix Model 14

5 On Query Complexity that Depends on Both Parameters 19

6 Open Problems 20

Bibliography 20

∗Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. Email:
oded.goldreich@weizmann.ac.il. This research was partially supported by the Israel Science Foundation (grants
No. 671/13 and 1146/18).

i

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 98 (2018)

1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see,
e.g., a recent textbook [9]). Loosely speaking, property testing typically refers to sub-linear time
probabilistic algorithms for deciding whether a given object has a predetermined property or is far
from any object having this property. Such algorithms, called testers, obtain local views of the
object by making adequate queries; that is, the object is seen as a function and the testers get
oracle access to this function (and thus may be expected to work in time that is sub-linear in the
length of the object).

Following most work in the area, we focus on the query complexity of property testing, mea-
sured as a function of the size of the object as well as the desired proximity (parameter), denoted
ε. Interestingly, many natural properties can be tested in complexity that only depends on the
proximity parameter; examples include linearity testing [6] and testing various graph properties
in two natural models (e.g., [12, 2] and [14, 5], respectively). Focusing on such properties and on
the known testers, we note that the specific dependency of the query complexity on the proximity
parameter varies from linear in 1/ε (e.g., [6]) to polynomial in 1/ε (e.g., [12, 14]) and to tower-like
(and even larger) functions in 1/ε (e.g., [1, 2]). As for lower bounds, till recently, the only known
super-polynomial lower bounds (of [1, 3]) referred to testing problems for which the corresponding
known upper bounds are tower-like functions, leaving a huge gap between the known lower and
upper bounds.

The foregoing gap has been recently addressed by Gishboliner and Shapira [8], who considered
the special case of one-sided error testers for graph properties in the dense graph model.1 In that
context, they presented a general hierarchy theorem asserting, essentially for any q : (0, 1]→ N, the
existence of graph property of query complexity Θ(q(Θ(ε))). In this paper we present analogous
results for the general definition of property testing, which allows two-sided error probability.

1.1 Our results

The hierarchy theorem is easiest to state and prove in the generic case (treated in Section 2).
Loosely speaking, it asserts that for essentially every function q : (0, 1]→ N, there exists a property
of Boolean functions that is testable using O(q(Ω(ε))) queries but is not testable using o(q(O(ε)))
queries, where ε denotes the proximity parameter.2 In other words, the query complexity of testing
this property is Θ(q(Θ(ε))). In particular, this implies the existence of property testing problems
of complexities such as exp(Θ(1/εc)) for any constant c > 0.

Similar hierarchy theorems are proved also for two standard models of testing graph proper-
ties: the adjacency representation model (a.k.a. the dense graph model of [12]) and the incidence
representation model (a.k.a. the bounded-degree graph model of [14]). These results are rigorously
stated and proved in Sections 3 and 4.

The foregoing results complement hierarchy theorems of Goldreich, Krivelevich, Newman, and
Rozenberg [13], which refer to the dependence of the query complexity on the size of the tested
object, and focus on the case that the proximity parameter is set to some small positive constant.
We can actually combine both flavors and get tight results on the query complexity of testing when
allowing the query complexity to depend quite arbitrarily on both the size of the object and the

1We mention that a weaker hierarchy theorem (for one-sided testers in the dense graph model) was proved more
than a decade ago by Alon and Shapira [4]. Specifically, [4, Thm. 4] asserts that for essentially every function q there
exists a function Q and a graph property that is testable in Q(ε) queries but is not testable in q(ε) queries. We note
that while Q depends only on q, the dependence proved in [4, Thm. 4] is quite weak (i.e., Q is lower bounded by
a non-constant number of compositions of q); hence, the hierarchy obtained by setting qi = Qi−1 for i ∈ N, is very
sparse.

2The lower bounds holds provided the object is large enough (i.e., larger than O(q(ε)/ε)).

1

proximity parameter. These general results are stated in Section 5.

1.2 Our techniques

Following is a very rough sketch of our proof strategy. Our starting point is the hierarchy theorems
of Goldreich, Krivelevich, Newman, and Rozenberg [13], which we re-interpret in concrete (rather
than asymptotic) terms. Essentially, for some universal constant c and every fixed natural numbers
q′ ≤ n′, these theorems state the existence of properties Π′n′,q′ of objects of size n′ for which the
query complexity of testing with proximity 1/c is between q′/c and q′. Furthermore, the upper
bound extends to poly(1/ε) · q′, when testing with proximity parameter ε.

Now, suppose that we want to present a property such that testing it with proximity ε has
complexity between q′ and poly(1/ε) · q′. Then, we define objects of size n that consist of a “base”
object from Π′cε·n,q′ padded to size n ≥ q′/cε (so that q′ ≤ cεn). Next, we reduce testing Π′cεn,q′ with
proximity 1/c to testing the new property with proximity ε (i.e., ε-testing the new property), which
establishes the desired lower bound. Lastly, we construct an ε-tester of the desired complexity by
letting it check that the amount of padding in the object is (1− cε) ·n, and testing the base object
(using the 1/c-tester for Π′cεn,q′). Indeed, this requires using a padding that is easily recognized
(e.g., elements of the base object should be easy to distinguish from elements of the padding). In
such a case, the query complexity of the resulting ε-tester will be q′ +O(1/ε).

The foregoing construction is tailored for a fixed value of the proximity parameter, whereas we
seek properties that exhibit the designated complexity for any value of the proximity parameter.
This is achieved by creating properties that are the union of properties defined as above for a
geometric sequence of values of the proximity parameter. Specifically, when seeking to establish
query complexity q : (0, 1] → N, we use the base properties Π′

c−i·n,q(c−i) for i = 1, ..., logc n. That

is, we take the union of these properties after padding each of them to size n.
Establishing the lower and upper bounds in this case requires more care. Specifically, for the

lower bound, we show that the properties introduced for handling the other values of the proximity
parameter do not interfere with the argument that refers to the value of the proximity parameter
that is of interest to us. For the upper bound, we first determine the size of the base object that
seems to underlie the tested object (rejecting if none fits). Next, we emulate testing the base object,
while capitalizing on the fact that the testers of [13] work for any value of the proximity parameter
rather than only for a fixed constant value.

The proofs for the different testing models differ both in the result of of Goldreich et. al. [13]
that is used as a starting point and in the notion of padding that is used in each case. Things
are easy in the case of properties of generic Boolean functions, where we just use padding by a
special symbol (and later encode the three-valued functions by Boolean ones). In the case of graph
properties, we pad the graphs by a suitable number of easily identified vertices (i.e., vertices of
higher degree).3 Dealing with the padding when establishing the upper bound raises difficulties
in the case of the graph testing models. These difficulties arise from the fact that (unlike in the
case of generic functions) the padding does not appear in fixed locations in the (labeled) graph. In
particular, the amount of padding can only be approximated and so we may need to test a base
graph with a number of vertices that does not fit any c−i · n (but is rather close to one of these
values).

We present two ways of dealing with the latter problem. The simpler way, which yields weaker
results, is to use very good approximations of the number of “padding” vertices. These approxi-
mation are so good that one can neglect the fact that they are not accurate, but obtaining such
approximations has a cost in terms of squaring the query complexity of the tester used in the upper

3Indeed, it is tempting to pad the graphs with isolated vertices, but this raises some technical difficulaties, which
can be solved but are avoided by the less natural choice we use.

2

bound. The alternative way relies on the fact that the testers provided by [13] fit a revised model of
testing graph properties. In this model, which is of independent interest, the tester is given oracle
access to independently sampled vertices of the graph, but is not given the size of the graph (i.e.,
its vertex set) as auxiliary input.4

1.3 Organization

In Section 2 we recall the definition of testing properties of generic functions and prove a hierarchy
theorem for that setting. This section is most detailed one, because the other results are obtained by
mimicking the basic strategy that is presented in Section 2. Later, in Section 3 we prove a hierarchy
theorem for testing graph properties in the bounded-degree graph model, and in Section 4 we obtain
the same for testing in the dense graph model.

In Section 5, we generalize the results of the aforementioned sections so to obtain tight results
on the query complexity of testing when allowing the query complexity to depend quite arbitrarily
on both the size of the object and the proximity parameter.

2 Properties of Generic Functions

In the generic function model, the tester is given oracle access to a function over [n], and the
distance between such functions is defined as the fraction of (the number of) arguments on which
these functions differ. In addition to the input oracle, the tester is explicitly given two parameters:
a size parameter, denoted n, and a proximity parameter, denoted ε.

Definition 2.1 (property testing, the case of Boolean functions): Let Π =
⋃
n∈N Πn, where Πn

contains Boolean functions defined over the domain [n]
def
= {1, ..., n}. A tester for a property Π is a

probabilistic oracle machine T that satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every n ∈ N and
f ∈ Πn (and every ε > 0), it holds that Pr[T f (n, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any f that is ε-far from Π, the tester rejects with probability
at least 2/3; that is, for every ε > 0 and n ∈ N, if f : [n] → {0, 1} is ε-far from Πn,
then Pr[T f (n, ε) = 0] ≥ 2/3, where f is ε-far from Πn if, for every g ∈ Πn, it holds that
|{i ∈ [n] : f(i) 6= g(i)}| > ε · n.

We say that the tester has one-sided error if it accepts each f ∈ Π with probability 1; that is, for
every f ∈ Π and every ε > 0, it holds that Pr[T f (n, ε)=1] = 1.

When ε > 0 is fixed, we refer to the residual oracle machine T (·, ε) by the term ε-tester. We also use
the corresponding term ε-testing Π. Likewise, we may fix n (and possiblly other parameters), and
consider the task of testing Πn (resp., Πn further restricted by the other parameters). We stress
that even when we fix ε and n, we view them as generic.

Definition 2.1 does not specify the query complexity of the tester, and indeed an oracle machine
that queries the entire domain of the function qualifies as a tester (and may indeed have zero
error probability). Needless to say, we are interested in testers that have significantly lower query
complexity. Recall that [12] asserts that in some cases such testers do not exist; that is, there
exist properties that require linear query complexity. Building on this result, Goldreich et. al. [13]
showed the following hierarchy result that refers to Θ(1)-testing:

4This model is an extreme case of a flexible framework that has appeared in our subsequent work [10].

3

Theorem 2.2 ([13, Thm. 2], revised): There exists a universal constant c > 2 such that, for every
q′, n′ ∈ N that satisfy q′ ≤ n′, there exists a property Π′n′,q′ of Boolean functions over [n′] such that
the following holds:

1. There exists an oracle machine that, on input n′, q′ and ε′, uses q′+ c
ε′ queries and constitutes

an ε′-tester of Π′n′,q′ (with one-sided error).

2. For every q′ ≤ n′, any 1/c-tester of Π′n′,q′ requires at least q′/c queries (even when allowing
two-sided error).

The original statement of [13, Thm. 2] uses asymptotic notation and does not specify the dependence
of the upper bound on ε. Nevertheless, the original proof explicitly establishes the result stated
here (i.e., Theorem 2.2). Using Theorem 2.2, we prove our first result.

Theorem 2.3 (hierarchy theorem for size-oblivious query complexity, generic functions model):
For every monotonically non-increasing q : (0, 1] → N, there exists a property Π =

⋃
n∈N Πn,

where Πn is a set of Boolean functions over [n], such that Π is ε-testable (with one-sided error) in
q(Ω(ε)) + O(1/ε) queries, but is not ε-testable in o(min(q(O(ε)), εn)) queries (even when allowing
two-sided error).

The fact that the lower bound may decrease with ε when n is small (e.g., when n < q(ε)/ε) is an
artifact of the proof, which can be avoided (see Remark 2.4). In any case, for sufficiently large
n (e.g., n > q(ε)/ε) we get a lower bound of Ω(q(O(ε))). On the other hand, typically (i.e., for
q(ε) = Ω(1/ε)), the upper bound simplifies to in O(q(Ω(ε))).

Proof: Using the family of properties asserted in Theorem 2.2 (and letting c be the corresponding

universal constant), we let Πn =
⋃
i∈[1+logc n]

Π
(i)
n such that f ∈ Π

(i)
n if there exists f ′ ∈ Π′

c−i·n,q(c−i)

such that f(j) = f ′(j)+1 if j ∈ [c−i ·n] and f(j) = 0 otherwise.5 Hence, the functions in Π
(i)
n range

over {0, 1, 2} and assume the value 0 on points in {c−i · n + 1, ..., n}. Also note that the all-zero

function is in Πn, since it is in Π
(1+logc n)
n .

Claim 2.3.1 (upper bound): The property Πn is ε-testable (with one-sided error) in q(ε/c)+O(1/ε)
queries.

Proof: Assuming that the function f : [n] → {0, 1, 2} is in Πn, the tester tries to determine

i ∈ [1 + logc n] such that f ∈ Π
(i)
n . Actually, letting ` = dlogc(1/ε)e, the tester tries to either find

i ∈ [`] such that f ∈ Π
(i)
n or indicate that no such i exists, which may mean that f ∈ Πn \

⋃
i∈[`] Π

(i)
n

(e.g., indeed, f ∈ Π
(i)
n may hold for some i ∈ {`+ 1, .., logc n+ 1}). In the former case (where such

an i ∈ [`] was found), the tester checks that indeed f ∈ Π
(i)
n , by invoking the tester for Π′

c−i·n,q(c−i)
as well as testing that f assumes the value 0 on {c−i ·n+1, ..., n}. In the latter case (where no such
an i ∈ [`] was found), the tester merely checks that f assumes the value 0 on {c−(`+1) ·n+ 1, ..., n},
which implies that it is ε-close to the all-zero function.6 Specifically, on input n ∈ N and ε > 0,
and oracle access to f : [n]→ {0, 1, 2}, the tester proceeds as follows.

1. For i = 1, ..., `
def
= dlogc(1/ε)e, the tester queries f at the point c−i · n, and lets i∗ be the

smallest i ∈ [`] such that f(c−i · n) ∈ {1, 2}, and i∗ = `+ 1 if no such i exists.

5We assume, for simplicity, that n is a power of c; otherwise, one may replace c−i · n by bc−i · nc. Either way, if

c−i ·n < 1, then Π
(i)
n cosists of the all-zero function. Also, while Π′n′,q′ was defined only for q′ ≤ n′, we let Π′n′,q′ = ∅

if q′ > n′.
6We don’t check that f is the all-zero function in order to avoid a small error probability in case that f ∈ Π

(i)
n for

some i ∈ {`+ 1, ..., logc n}.

4

2. The tester selects uniformly and independently O(1/ε) random points in {c−i∗ · n + 1, .., n},
queries f on each of these points, and rejects if any non-zero answer is obtained.

3. If i∗ ∈ [`], then the tester invokes the (ci
∗ ·ε/2)-tester for Π′

c−i∗ ·n,q(c−i∗), and outputs its verdict.

Specifically, the (ci
∗
ε/2)-tester is invoked while emulating a function f ′ : [c−i

∗ · n] → {0, 1}
defined by f ′(j) = f(j) − 1, where if during the emulation the tester enconters a point on
which f evaluates to 0, then it halts and rejects.

Otherwise (i.e., i∗ = `+ 1), the tester just accepts.

The query complexity of the purported ε-tester is upper-bounded by O(1/ε)+(q(c−`)+2/ε), where
the first term is due to Step 2 (whose complexity dominates the complxity of Step 1), and the second
term is due to the complexity of (ci

∗
ε/2)-testing Π′

c−i∗ ·n,q(c−i∗), when i∗ ∈ [`]. (Recall that the query

complexity of ε′-testing Π′n′,q′ is upper-bounded by q′+ c
ε′ , and that q(c−i

∗
) + c

ci∗ε/2
≤ q(c−`) + 2/ε,

when i∗ ∈ [`].) Using c−` > ε/c, which is due to ` < logc(1/ε) + 1, we derive the claimed query
complexity bound (of O(1/ε) + q(ε/c)).

Next, we verify that in the case that f ∈ Πn the tester always accepts. If f ∈ Π
(i)
n for some

i ∈ [`], then i∗ is set to i (in Step 1), rejection does not happen in Step 2 (since f evaluates
to 0 on {c−i∗ · n + 1, ..., n}), and in Step 3 the tester for Π′

c−i·n,q(c−i) is invokes by providing it

with access to f ′ ∈ Π′
c−i·n,q(c−i) (derived from f), which implies that our tester always accepts. If

f ∈ Πn \
⋃
i∈[`] Π

(i)
n , then i∗ is set to ` + 1 (in Step 1), rejection does not happen in Step 2 (since

f evaluates to 0 on {c−i∗ · n + 1, ..., n}), and in Step 3 the tester accepts (without any farther
checking).

We now turn to the case that f is ε-far from Πn. Suppose that, in Step 1, i∗ is set to `+ 1. In
this case, the tester rejects with high probability, since f is ε-far from the all-zero function (which
is in Πn), whereas [c−(`+1) ·n] contains at most (ε/c) ·n points, which implies that {c−i∗ ·n+1, .., n}
contains more than ε ·n− (ε/c) ·n > εn/2 > ε

2 · (n− c
−i∗ ·n) points on which f evalutes to non-zero.

In this case, the tester rejects with high probability in Step 2.
Hence, we focus on the case that i∗ ∈ [`] and consider two cases. If {c−i∗ · n+ 1, ..., n} contains

εn/2 points on which f evaluates to non-zero, then the tester rejects with high probability in
Step 2. Otherwise (as shown next), the function f ′ (as defined as in Step 3) is (ci

∗
ε/2)-far from

Π′
c−i∗ ·n,q(c−i∗), which cause the tester to reject with probability at least 2/3 in Step 3. Suppose,

towards the contradiction, that f ′ is (ci
∗
ε/2)-close to some g′ ∈ Π′

c−i∗ ·n,q(c−i∗) (and recall that by

the case’s hypothesis {c−i∗ · n + 1, ..., n} contains less than εn/2 points on which f evaluates to

non-zero). Then, we may obtain g ∈ Π
(i∗)
n by defining g(j) = g′(j) + 1 if j ∈ [c−i

∗ · n] and g(j) = 0
otherwise. But this implies that g differs from f on less than (ci

∗
ε/2) · (c−i∗ ·n) + εn/2 = εn points,

which contradicts our hypothesis that f is ε-far from Πn.

Claim 2.3.2 (lower bound): The property Πn is not ε-testable in less than min(q(c2 · ε), εn)/c
queries (even when allowing two-sided error).

Proof: Let F
(i)
n denote the set of all function f : [n] → {0, 1, 2} such that f(j) = 0 if and only if

j ∈ {c−i · n + 1, ..., n}, and let Γδ(Π) denote the set of all functions that are δ-far from Π. Then,
for every ε > 0, letting i = blogc(1/cε)c, we observe that an ε-tester for Πn must distinguish Π(i)

from Γε(Π
(i)
n)∩F (i)

N , since Π
(i)
n ⊆ Πn and (as shown below) Γε(Π

(i)
n)∩F (i)

n ⊆ Γε(Πn). But the latter

distinguisher is essentially a ci · ε-tester for Π′
c−i·n,q(c−i), since functions in Π

(i)
n and F

(i)
n differ only

5

on [c−i · n], whereas Π
(i)
n (resp., Γε(Π

(i)
n) ∩ F (i)

n) emulates Π′
c−i·n,q(c−i) (resp., Γci·ε(Π

′
c−i·n,q(c−i))).

7

Recalling that ci · ε ≤ 1/c, we have reduced 1/c-testing Π′
c−i·n,q(c−i) to ε-testing Πn, which means

that the latter task has complexity at least q(c−i)/c ≥ q(c2 · ε)/c, where the last inequality uses
c−i ≤ c2ε.

We now turn to show that Γε(Π
(i)
n) ∩ F (i)

n ⊆ Γε(Πn). Suppose, towards the contradiction, that

f ∈ Γε(Πn) ∩ F (i)
n is ε-close to g ∈ Π

(j)
n for some j ∈ [1 + logc n]. Clearly, j 6= i (since otherwise f

is ε-close to Π
(i)
n). Hence, f ∈ F (i)

n is ε-close to g ∈ F (j)
n , for some j 6= i ∈ N, but we shall show

next that this is impossible. The key observation is that functions in F
(i)
n are at (relative) distance

at least |c−i − c−j | from functions in F
(j)
n , where the distance is due to the mismatch between zero

and non-zero values. But we shall show that in both cases |c−i− c−j | > ε, we contradicts the claim
that f is ε-close to g. Specifically, the case of j > i is impossible, because then the two functions
differ on c−i · n− c−j · n of the non-zeros of f , whereas c−i − c−j > c−i−1 ≥ ε. (Here we use c > 2
as well as i ≤ log(1/cε), which implies c−i−1 ≥ c− logc(1/cε)−1 = ε.) Similarly, j < i implies that the
two functions differ on c−j · n − c−i · n of the non-zeros of g, whereas c−j − c−i > c−i > ε. This
completes the proof.

From tri-valued functions to Boolean ones. The foregoing argument established the theorem, except
that the properties used are of tri-valued functions rather than of Boolean ones. This is easily fixed
by encoding each trit by two bits, which means that distances and query complexity change by
a factor of two. These effects can be covered by increasing some constants by a factor of two (in
comparison to their values in Claims 2.3.1 and 2.3.2).

Remark 2.4 (forcing a lower bound of Ω(1/ε)): As noted above, Theorem 2.3 asserts an unintu-
itive query complexity lower bound (of the form min(q(ε), εn)); that is, this bound decreases with ε
when n is small, whereas we expect the lower bound to be at least Ω(1/ε) (or rather Ω(min(1/ε, n))).
We comment that such an unintuitive behavior can be eliminated by a generic transformation. More
generally, let q,Q : N × (0, 1] → N be monotonically non-increasing and let Πn be a property of
Boolean functions over [n] that is ε-testable in q(n, ε) queries, but is not ε-testable in less than
Q(n, ε) queries. Then, there exists a property of Boolean functions over [3n] that is ε-testable in
O(q(n, ε)) + O(1/ε) queries, but is not ε/3-testable in less than max(Q(n, ε),min(1/ε, n)) queries.
Specifically, for each f ∈ Πn, we introduce the function f ′ : [3n]→ {0, 1} such that f ′(j) = f(j) if
j ∈ [n] and f ′(j) = 0 otherwise. That is, we pad each function by 2n zeros and observe that testing
the new property requires testing the padding, which has query complexity Θ(min(1/ε, n)).

The foregoing construction is adaptable also to the testing models considered in the following
sections.

3 Graph Properties in the Bounded-Degree Model

The bounded-degree graph model refers to a fixed (constant) degree bound, denoted d ≥ 2. An
n-vertex graph G = ([n], E) (of maximum degree d) is represented in this model by a function
g : [n]× [d]→ {0, 1, ..., n} such that g(v, i) = u ∈ [n] if u is the ith neighbor of v and g(v, i) = 0 if v
has less than i neighbors.8 Distance between graphs is measured in terms of their aforementioned
representation; that is, as the fraction of (the number of) different array entries (over dn). Graph

7That is, f ∈ Π
(i)
n is obtained by padding some f ′ ∈ Π′c−i·n,q(c−i), and f ∈ Γε(Π

(i)
n)∩F (i)

n corresponds to a padding

of some f ′ ∈ Γci·ε(Π
′
c−i·n,q(c−i)). In both cases, f(j) = f ′(j) + 1 if j ∈ [c−i · n] and f(j) = 0 otherwise.

8For simplicity, we adopt the standard convention by which the neighbors of v appear in arbitrary order in the

sequence g(v, 1), ..., g(v,deg(v)), where deg(v)
def
= |{i : g(v, i) 6= 0}|.

6

properties are properties that are invariant under renaming of the vertices (i.e., they are actually
properties of the underlying unlabeled graphs).

Recall that [7] proved that, in this model, testing 3-Colorability requires a linear number of
queries (even when allowing two-sided error). Building on this result, Goldreich et. al. [13] showed:

Theorem 3.1 ([13, Thm. 3], revised):9 There exists a universal constant c > 2 such that, for every
d, q′, n′ ∈ N that satisfy d ≥ c and q′ ≤ n′, there exists a graph property Π′d,n′,q′ of n′-vertex graphs
such that the following holds in the bounded-degree graph model with degree bound d:

1. There exists an oracle machine that, on input d, n′, q′ and ε′, makes c · dq′/ε′ queries and
constitutes an ε′-tester of Π′d,n′,q′ (with one-sided error).

2. Any 1/c-tester of Π′d,n′,q′ requires at least q′/c queries (even when allowing two-sided error).

Furthermore, Π′d,n′,q′ is the set of n′-vertex graphs of maximum degree d/2 that are 3-colorable and
consist of connected components of size at most q′.

(Recall that d denotes the degree parameter used in the bound-degree graph model, whereas the
degree of the graphs having the property of interest may be lower. We have set the later value
to d/2 in order to facilitate the presentation in the rest of this section.) Using Theorem 3.1, we
first prove a weak version of the hierarchy theorem that has been eluded to in the abstract and
introduction.

Theorem 3.2 (hierarchy theorem for size-oblivious query complexity, a weak version for the
bounded-degree graph model): For all sufficiently large d ∈ N and every monotonically non-
increasing q : (0, 1]→ N, there exists a graph property Π =

⋃
n∈N Πn, where Πn consists of n-vertex

graphs of degree at most d, such that Π is ε-testable in O(q(Ω(ε))2/ε2) queries, but is not ε-testable
in o(min(q(O(ε)), εn)) queries.

Both the lower and upper bounds refer to two-sided error testers (in the bounded-degree graph
model). A stronger version that asserts an upper bound of O(q(Ω(ε))/ε) + O(1/ε2) queries is
presented later (in Theorem 3.5).

Proof: Following the strategy of the proof of Theorem 2.3, our starting point is the family of
properties asserted in Theorem 3.1, for d = c. We wish to pad the n′-vertex graphs (provided by
Theorem 3.1) to n-vertex graphs such that the added n− n′ vertices are easy to identify. The first
idea that comes to mind is to augment the “(n′-vertex) base graph” by n − n′ isolated vertices,
but this presumes that the base graph has no isolated vertices. One possible solution is to modify
the properties asserted in Theorem 3.1 so that they contain only graphs that contain no isolated
vertices, while showing that the asserted upper and lower bounds still holds. Instead, we choose
the alternative solution of using a different type of padding. Specifically, we augment the n′-vertex
base graph with n−n′

d+1 isolated (d+ 1)-cliques, as detailed next.

For every n ∈ N, we let Πn =
⋃
i∈[logc n] Π

(i)
n such that an n-vertex graph of maximum degree d is

in Π
(i)
n if it consists of a graph in Π′

d,c−i·n,q(c−i), hereafter referred to as the base graph, and (1−c−i)·n
vertices of degree d that reside in isolated (d + 1)-vertex cliques.10 (Actually, to avoid integrality
problems, one may postulate that the vertices of degree d are arranged in connected components
that are each d-regular graphs of size at most 2d (which implies that they have diameter at most 2);

9Again, the original statement of [13, Thm. 3] uses asymptotic notation and does not specify the dependence of the
upper bound on ε. Nevertheless, the original proof explicitly establishes the result stated here. Also, the statement
of [13, Thm. 3] asserts the existence of a constant d, but the argument extends to all sufficiently large d.

10If c−i · n < 1, then Π′d,c−i·n,q(c−i) consists of the d-regular graph than contains only (d+ 1)-cliques.

7

but, for sake of simplicity, we mandate that each of these connected components is of size d + 1
(i.e., is a clique).) We stress that the vertices of the base graph have degree at most d/2, which
makes them easy to distinguish from the “padding” vertices, which have degree d. Hence, we relate
to the latter vertices as high-degree vertices, whereas the vertices of the base graph will be referred
to as low-degree vertices.

Claim 3.2.1 (upper bound): The property Πn is ε-testable in O(q(ε/c)2/ε2) queries.

Proof: Wishing to follow the strategy used in the proof of Claim 2.3.1, we note that in the current
setting we cannot directly sample vertices in the base graph (nor can we directly sample the high-

degree vertices used to augment it to an n-vertex graph). Nevertheless, when the graph is in Π
(i)
n ,

we can indirectly sample both sets at an (expected) cost of ci actual samples per each desired
sample of the base graph.11 More importantly, the value of i∗ cannot be determined by accessing
few fixed locations in the graph (like in the proof of Claim 2.3.1). Instead, the value of i∗ is
determined by estimating the density of the low-degree vertices via sampling, which means that
this determination is only approximate and carries an error probability (also in the case that the
graph has the property). Specifically, we set i∗ ∈ [`] such that the estimated density of the low-
degree vertices (in the input graph) is approximately c−i

∗
, and otherwise we use i∗ = ` + 1 (as in

the proof of Claim 2.3.1).12 We highlight two issues here:

• As noted above, since the density is estimated by random sampling, it introduces an error
probability also in the case that the input graph is in Πn, and hence we obtain a two-sided
error tester (although the upper bound of Theorem 3.1 is established using a one-sided error
tester).

• Since the density is only approximated, we may end-up invoking the tester for Π′
d,c−i∗ ·n,q(c−i∗)

on a graph that has approximately but not exactly c−i
∗ · n vertices. This may happen when

testing an input graph not in Πn, and it is relevant when the graph is far from Πn and has

approximately but not exactly n′
def
= c−i

∗ · n low-degree vertices. The problem is that there
is no guarantee as to how the tester for Π′

d,n′,q(c−i∗)
behaves when inspecting an n′′-vertex

graph such that n′′ 6= n′.

Nevertheless, we observe that if n′′ is extremely close to n′ (say, n′′ = (1±O(ci
∗
ε/q(c−i

∗
)))·n′)

and the n-vertex graph is ε-far from Πn (and the high-degree vertices reside in (d+1)-cliques),
then the tester will reject with probability at least 0.6. This is the case since if n′′ = n′ + k

(resp., n′′ = n′ − k), for k ∈ [0.01n′/q∗], then making q∗
def
= O(q(c−i

∗
)/ci

∗
ε) queries to the n′′-

vertex graph G′′ is almost the same as making these queries to an n′-vertex induced subgraph
of G′′ (resp., to an n′-vertex graph that contains G′′ as an induced subgraph), whereas this
n′-vertex graph is ci

∗
ε/2-far from Π′

d,n′,q(c−i∗)
.

For sake of clarity, we spell out the resulting tester. On input an n-vertex graph G and proximity
parameter ε, the tester proceeds as follows (while setting ` = dlogc(1/ε)e):

1. Determining i∗: The tester selects uniformly and independently m = O(1/ε) random vertices,
and obtains a very rough estimate of the number of low-degree vertices (i.e., vertices of degree
at most d/2) in G. If, for some i∗ ∈ [`], the number of low-degree vertices is (1±0.1) ·c−i∗ ·m,
then i∗ is set accordingly; if the number of low-degree vertices seen in this sample is smaller

11Recall that, without loss of generality, testers in this model query about the incidence of either a previously seen
vertex or a randomly selected vertex.

12Recall that ` = dlogc(1/ε)e. Actually, if the estimated density is above ε/2 but is not close to a power of 1/c we
may reject on the spot.

8

than 1.1 · c−(`+1) ·m, then the tester sets i∗ = `+ 1; otherwise (i.e., i∗ was not set so far), the
tester rejects.

2. Testing that the high-degree vertices constitute a proper padding and obtaining a refined es-
timate of the number of low-degree vertices: The tester checks that the vertices that have
degree greater than d/2 are arranged in (d + 1)-cliques and that the number of low-degree
vertices is very close to c−i

∗ · n. Specifically:

(a) The tester selects O(1/ε) random vertices in G and checks that each vertex of degree
greater than d/2 resides in an isolated (d + 1)-clique. If some vertex of degree greater
than d/2 was found not to reside in a (d+ 1)-clique, then the tester rejects. If i∗ = `+ 1
and the tester did not reject, then it accepts.

(b) Letting δ = min(0.1ci
∗
ε, 0.01/q∗)), where q∗

def
= O(q(c−i

∗
)/ci

∗
ε) is the query complexity

of the (ci
∗ · ε/2)-tester for Π′

d,c−i∗ ·n,q(c−i∗), and using a sample of O(ci
∗
/δ2) random

vertices, the tester estimates the number of low-degree vertices (i.e., vertices of degree
at most d/2) up to ±δ · c−i∗ · n (with high probability). If this estimate deviates from
c−i
∗ · n by more than δ · c−i∗ · n, then the tester rejects.

Note that the size of the sample is

O(ci
∗
/δ2) = max(O(ci

∗
/(ci

∗
ε)2), O(ci

∗ · (q(ci∗)/ci∗ε)2))
= max(O(1/ε2), O(q(ci

∗
)2/ci

∗
ε2))

O(q(ci
∗
)2/ε2).

(Indeed, if q(e′) = Ω(ε′), then we obtain an improved upper bound of max(O(1/ε2), O(q(ci
∗
)2/ε)).)

3. Testing the subgraph induced by low-degree vertices: The tester invokes the (ci
∗ · ε/2)-tester

for Π′
d,c−i∗ ·n,q(c−i∗) on the subgraph of G induced by its low-degree vertices, and outputs the

verdict of this tester. Specifically, the (ci
∗
ε/2)-tester is invoked while emulating a graph with

(1± δ) · c−i∗ · n vertices that contains only low-degree vertices. (Recall that we emulate each
vertex selection at an (expected) cost of ci

∗
actual samples, hence the number of queries made

in this step is ci
∗ ·O(q(c−i

∗
)/(ci

∗
ε/2)) = O(q(c−i

∗
)/ε).)

Formally, the tester for Π′
d,c−i∗ ·n,q(c−i∗) expects the labels of the tested graph to reside in

[c−i
∗ ·n], whereas the labels of the vertices of the induced subgraph are in [n]. This discrepancy

is easy to bridge by maintaining a partial injection of [n] to [c−i
∗ · n]. Specifically, a query

regarding the incidence list of a vertex v in [c−i
∗ ·n], is emulated by using the matched vertex

in [n] if v has appeared before (either as a query or as an answer) and by a new random
low-degree vertex of G (obtained by repeated sampling) otherwise.

The query complexity of the purported ε-tester is upper-bounded by O(1/ε) + O(q(ε/c)2/ε2) +
O(q(ε/c)/ε), where the three terms correspond to the three foregoing steps (and the complexity of
each of the last two steps is maximal when i∗ = ` = dlogc(1/ε)e). Indeed, the query complexity is
dominated by the second term, which accounts for the cost of obtaining a good approximation (in
Step 2b).

The analysis of the case that G ∈ Πn proceeds very much as in the proof of Claim 2.3.1,
except that here Steps 1 and 2b carry a small probability of error (also in the case of an input in
Πn). Turning to the case that G is ε-far from Πn, the case of improper padding (i.e., the high-
degree vertices of G are 0.1ε-far from forming a collection of (d+ 1)-cliques) is handled by Step 2a
(analogously to Step 2 in the proof of Claim 2.3.1). More care is required with the remaining case
in which the distance of G from Πn is due to its low-degree vertices. Specifically, we are concerned

9

of the case that G, which is ε-far from Πn, contains n′′ = (1 ± 2δ) · c−i∗ · n low-degree vertices,
whereas n′′ does not necessarily equal c−i

∗ ·n. (The other cases are handeled by Steps 1 and 2b.)13

Letting G′′ denote the subgraph of G induced its low-degree vertices, we consider two cases.

• If n′′ ≥ n′
def
= ci

∗ · n, then any n′-vertex induced subgraph of G′′ is ci
∗ · (ε − 0.3ε)-far from

Π′
d,n′,q(c−i∗)

. This is so because G is (2δ · c−i∗ + 0.1ε)-close to an n-vertex graph that consists

of the latter n′-vertex subgraph and n − n′ high-degree vertices arranged in (d + 1)-cliques,
which implies that G is (ε− 0.3ε)-far from Π(i∗) (since δ · c−i∗ ≤ ε and n′/n = c−i

∗
).

Now, let G′ be an arbitrary n′-vertex induced subgraph of G′′. Then, the probability that
the tester (for Π′

d,n′,q(c−i∗)
) queries G′′ on a vertex that is not in G′ (or obtains such a vertex

as an answer) is at most q∗ · 2δ ≤ 0.02, since q∗
def
= O(q(c−i

∗
)/ci

∗
ε) is the query complexity of

the (ci
∗ · ε/2)-tester for Π′

d,n′,q(c−i∗)
. This implies that, when invoked on G′′, this tester rejects

with probability at least 2/3− 0.02 > 0.6.

• A similar argument holds when n′′ < n′, since in this case any n′-vertex graph that contains
G′′ as an induced subgraph is ci

∗ · (ε− 0.3ε)-far from Π′
d,n′,q(c−i∗)

.

Hence, we obtain the desired tester, which has two-sided error, where the error on inputs in Πn

arises from a mistaken determination of i∗ (which occurs with small probability).

Claim 3.2.2 (lower bound): The property Πn is not ε-testable in less than min(q(c2 · ε), εn)/c
queries (even when allowing two-sided error).

Proof: Claim 3.2.2 follows by a quite straightforward adaptation of the proof of Claim 2.3.2; that
is, for any ε > 0, letting i = blogc(1/cε)c, we reduce 1/c-testing Π′

d,c−i·n,q(c−i) to ε-testing Πn by

emulating answers to the queries issued by the latter tester, which means that we emulate an n-
vertex graph using queries to an n′-vertex graph such that n′ = c−i ·n. Specifically, when 1/c-testing
the n′-vertex graph G′ we invoke the ε-tester on an imaginary n-vertex graph G that consists of G′

and (n − n′)/(d + 1) isolated (d + 1)-cliques. Indeed, we can place the the vertices of G′ at fixed
locations of our choice (e.g., we may just assign these vertices labels in [c−i · n]).

The crucial fact is that, as in the proof of Claim 2.3.2, the elements of the base object are
different from those used in the padding; specifically, here, the vertices of the base graph have low
degree whereas the vertices used in the padding have high degree. Again, the key observation is

that, for any j ∈ [1 + logc n] \ {i}, graphs in Π
(i)
n are relatively far from graphs in Π

(j)
n ; that is,

the relative distance is at least |c−i − c−j |/2 > ε, where the factor of two is due to the fact that
changing a high-degree vertex into a low-degree vertex (or vice versa) requires modifying at least
half of its incidences.14

Combining 3.5.1 and 3.2.2, the theorem follows.

A tighter hierarchy theorem. The quadratic gap between the upper and lower bounds in
Theorem 3.2 is due to the way we coped with the problem of invoking a tester for n′-vertex
graphs on an n′′-vertex graph, where n′′ ≈ n′ (alas n′′ 6= n′). Specifically, we used a very good
approximation of the number of low-degree vertices in the input n-vertex graph, denoted n′′, and
invoked the tester only if n′′ is very close to n′ (while rejecting the graph otherwise). This was

13Assuming that G is ε-far from Πn and that (almost all) its high degree vertices reside in (d+ 1)-cliques, the other
(two) cases are the case that the number of low-degree vertices is at least 1.2 · c−(`+1)n but is not in

⋃
i∈[`]{(1± 0.2) ·

c−in}, and the case that the number of low-degree vertices is not (1± 2δ) · c−i
∗
· n (where i∗ is as step in Step 1). In

the first case Step 1 rejects (w.h.p.), whereas in the second case Step 2b rejects (w.h.p.).
14The inequality |c−i − c−j |/2 > ε uses |c−i − c−j |/2 > c−i−1 > ε, which in turn uses c > 3 and i ≤ logc(1/cε).

10

obtained by approximating n′′ such that the relative deviation is smaller that the reciprocal of the
query complexity of the tester. Unfortuantely, such a good approximation had a high cost (i.e.,
quadratic in the query complexity of the given tester).

Fortunately, the tester provided by the proof of Theorem 3.1 is actually oblivious of the number
of vertices in the tested graph, denoted n′. It only uses this number in order to sample the vertex
set, which is identified with [n′]. (The same holds for many other known testers.) Hence, we
may provide this tester with a device that samples the vertex set rather than with the size of this
set, and subsequently avoid the need to obtain a very good approximation of the number of low-
degree vertices in our input graph. This leads to the following definition (which was subsequently
generalized in different ways in [10, Sec. 2] and [11, Sec. 3]).

Definition 3.3 (property testing in the bounded-degree graph model, revised): For a fixed d ∈ N,
let Π be a property of graphs of maximum degree d such that each graph is represented by an
incidence function of the form g : V × [d]→ V ∪{0}, where V is an arbitrary subset of N. A tester
for the graph property Π is a probabilistic oracle machine T that is given access to two oracles, an
incidence function g : V × [d] → V ∪ {0} and a device denoted Samp(g) that samples uniformly in
V (equiv., in the domain of g), and satisfies the following two conditions:

1. The tester accepts each g ∈ Π with probability at least 2/3; that is, for every g ∈ Π (and every
ε > 0), it holds that Pr[T g,Samp(g)(ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any g that is ε-far from Π, the tester rejects with probability
at least 2/3; that is, for every ε > 0 and g : V × [d]→ V ∪ {0} that is ε-far from ΠV , it holds
that Pr[T g,Samp(g)(ε)=0] ≥ 2/3, where ΠV consists of the graphs in Π that have vertex-set V .

(As usual, g : V × [d] → V ∪ {0} is ε-far from ΠV if, for every g′ ∈ ΠV , it holds that
|{(v, i) ∈ V × [d] : g(v, i) 6= g′(v, i)}| > ε · d|V |.)

The notions of one-sided error tester and ε-tester are defined analogously.

It turns out that the upper bound established in [13, Thm. 3] (restated in Theorem 3.1) holds
also in the model of Definition 3.3. This is the case since the corresponding tester takes a sample
of vertices15 and explores the connected component in which each of these vertices resides, while
suspending the exploration once a predetermined number of vertices is encountered (where this
predtermined number is q′ + 1). Hence, we have:

Proposition 3.4 ([13, Thm. 3], further revised): Let c and the Π′d,n′,q′’s be as in Theorem 3.1.
Then, there exists an oracle machine that, on input d, q′ and ε′, makes c · dq′/ε′ queries and consti-
tutes an ε′-tester of

⋃
n′∈N Π′d,n′,q′ (in the sense of Definition 3.3).

Using Proposition 3.4, we prove the following.

Theorem 3.5 (hierarchy theorem for size-oblivious query complexity, actual version for the bounded-
degree graph model): For all sufficiently large d ∈ N and every monotonically non-increasing
q : (0, 1]→ N, there exists a graph property Π =

⋃
n∈N Πn, where Πn consists of n-vertex graphs of

degree at most d, such that Π is ε-testable in O(q(Ω(ε))/ε) + O(1/ε2) queries, but is not ε-testable
in o(min(q(O(ε)), εn)) queries.

15Actually, this ε′-tester repeats a basic test for O(1/ε′), where the basic test calls for sampling a single vertex and
exploring its connected component.

11

Both the lower and upper bounds refer to two-sided error testers (in the bounded-degree graph
model).

Proof: We follow the proof of Theorem 3.2, while modifying the emulation performed there towards
establishing the stronger upper bound. Specifically, we shall use less accurate approximation of the
number of low-degree vertices and rely on Proposition 3.4. In particular, we use the same graph
properties Π′

d,c−i·n,q(c−i) and Πn (as in the proof of Theorem 3.2), while recalling that, for each

i ∈ N, the corresponding
⋃
n′∈N Π′

d,n′,q(c−i) can be tested in the model of Definition 3.3. We thus

focus on replacing Claim 3.2.1 by the stronger upper bound provided by the following claim.

Claim 3.5.1 (upper bound): The property Πn is ε-testable in O(q(ε/c)/ε) +O(1/ε2) queries.

Proof: We follow the strategy of the proof of Claim 3.2.1, while using less accurate approximation
for the number of low-degree vertices and relying on Proposition 3.4. Specifically, we approxi-
mate the said number up to an additive deviation of 0.1ε · n, and invoke the (ci

∗ · ε/2)-tester for⋃
n′∈N Π′

d,n′,q(c−i∗)
on the subgraph induced by the low-degree vertices. For sake of clarity, we spell

out the derived tester (as operating on input an n-vertex graph G and proximity parameter ε).

1. The tester selects uniformly and independently m = O(1/ε2) random vertices, and obtains
a rough estimate of the number of low-degree vertices in G; specifically, the density of low-
degree vertices is estimated within an additive deviation of ±0.1ε. If, for some i∗ ∈ [logc(1/ε)],
the number of low-degree vertices seen is (c−i

∗ ± 0.1ε) ·m, then i∗ is set accordingly; if the
number of low-degree vertices is smaller than 1.1 · c−(`+1) ·m, then the tester sets i∗ = `+ 1;
otherwise (i.e., i∗ was not set so far), the tester rejects.

(This step replaces Steps 1 and 2b in the proof of Claim 3.2.1.)16

In addition (as in Step 2a in the proof of Claim 3.2.1), the tester selects O(1/ε) random
vertices and checks whether each vertex of degree greater than d/2 resides in a (d+ 1)-clique.
If this check fails, then the tester rejects. If this check passes and i∗ = `+ 1, then the tester
accepts.

2. The tester invokes the (ci
∗ · ε/2)-tester for

⋃
n′∈N Π′

d,n′,q(c−i∗)
on the subgraph of G induced

by its low-degree vertices, and outputs the verdict of this tester.

(Indeed, this step replaces the last step in the proof of Claim 3.2.1. The point is that we
invoke the tester for

⋃
n′∈N Π′

n′,q(c−i∗)
while emulating a sampling oracle to the said subgraph,

denoted G′′, but without providing the approximate size of G′′. In contrast, in the proof of
Claim 3.2.1, we invoked a tester for Π′

c−i∗ ·n,q(c−i∗) on G′′, while relying on the hypothesis that

the size of G′′ is c−i
∗ · n±Θ(ε/q(c−i

∗
) · n.)

The query complexity of the purported ε-tester is upper-bounded by O(1/ε2) +O(q(ε/c)/ε), where
the second term is due to the complexity of emulating the (ci

∗
ε/2)-testing

⋃
n′∈N Π′

d,n′,q(c−i∗)
, which

is ci
∗ ·O(q(c−i

∗
)/(ci

∗
ε/2)). We note that, unlike in the proof of Claim 3.2.1, the approximation to

the number of low-degree vertices (obtained in Step 1) is not used in the analysis of Step 2 (but
it is rather used in order to assert that G is closed to a graph that has ci

∗ · n low-degree vertices).
Hence, we obtain the desired tester, which has two-sided error, where the error on inputs in Πn

arises from a possibly mistaken determination of i∗ (which occurs with small probability).

Noting that Claim 3.2.2 remains intact, the theorem follows.

16In contrast, in the proof of Claim 3.2.1, the approximation (in Step 2b) was aimed at an additive deviation of
±Θ(ε/q(c−i

∗
)), which is typically much smaller.

12

An alternative construction. We present an alternative proof of Theorem 3.5, which actually
yields a stronger result. Most importantly, the upper bound is established using a tester of one-
sided error probability, while the lower bound still holds for general testers (having two-sided error
probability). (In addition, we eliminated the additive O(1/ε2) term in the upper bound, which is
quite insignificant, since typically q(ε) = Ω(1/ε).)

Theorem 3.6 (a stronger version of Theorem 3.5): For all sufficiently large d ∈ N and every
monotonically non-increasing q : (0, 1] → N, there exists a graph property Π =

⋃
n∈N Πn, where

Πn consists of n-vertex graphs of degree at most d, such that Π is ε-testable with one-sided error
in O(q(Ω(ε))/ε) queries, but is not ε-testable in o(min(q(O(ε)), εn)) queries (even when allowing
two-sided error).

Proof Sketch: Using the same graph properties Π′
d,c−i·n,q(c−i) (as in the proof of Theorems 3.2

and 3.5), we describe a different construction of Π. Specifically, for n′ = c−i ·n, rather than padding
the n′-vertex base graph with n−n′ vertices of high degree that reside in (d+ 1)-cliques, we pad it
with (d−1)-ary trees of height logd−1((n−n′)/n′), and connect the root of each of these n′ trees to
a different vertex of the base graph. Actually, to facilitate the argument, we also connect all pairs
of leaves that share the same parent node, forming (d− 1)-cliques, as detailed next.

For every n ∈ N, we let Πn =
⋃
i∈[logc n] Π

(i)
n such that an n-vertex graph of maximum degree d

is in Π
(i)
n if it consists of a (base) graph in Π′

d,c−i·n,q(c−i), and (1− c−i) ·n vertices of degree at least

d− 1 that are connected as follows.

• The high-degree vertices reside in c−i · n trees, each being a (d − 1)-ary tree of size ci − 1.
Hence, each tree has depth logd−1(c

i − 1).

• The root of each tree is connected (by an edge) to a different vertex of the base graph.

• Leaves that are siblings in the tree are connected by additional edges, forming a (d − 1)-
clique. In other word, if v is the parent of leaves w1, ..., wd−1, then the graph induced by
{v, w1, ..., wd−1} is a d-clique.

Hence, each vertex of the base graph has degree at most (d/2) + 1, each internal node of the
foregoing (d − 1)-ary trees has degree d, and each leave of each tree has degree d − 1. Hence, the
gap between the degrees of vertices of the base graph (a.k.a low-degree vertices) and the padded
vertices (a.k.a high-degree vertices) is maintained (assuming, w.l.o.g., that (d/2) + 1 < d− 1).

The crucial fact about this construction is that it allows for an efficient determination of i∗ ∈
[` + 1], where (as before) ` = dlogc(1/ε)e. Specifically, given access to a graph G ∈ Π

(i)
n , for an

unknown i ∈ [`], we can determine the value of i by making O(d · ci) queries. This can be done
by selecting an arbitrary vertex in the graph and exploring its neighborhood by a search to depth

h = logd−1 c
i. The point is that, assuming the graph is in Π

(i)
n , a search of depth h suffices for

exploring the tree to which the start vertex belongs (or the tree that is connected to it, in case it
resides in the base graph). Actually, we select a single vertex in the graph, and conduct a search
of depth h = logd−1 c

` ≤ logd−1(c/ε) starting at it, setting i∗ = i if we observed a (d− 1)-ary tree
of depth logd−1(c

i − 1) with a clique among its silbling leaves, and setting i∗ = `+ 1 otherwise.17

Once i∗ is determined, we use a random sample of O(c−i
∗
/ε) vertices to test that all low-degree

vertices are connected to (d− 1)-ary trees of depth logd−1(c
i∗ − 1) (with cliques connecting sibling

leaves). This is done by conducting a search of depth logd−1(c
i∗ − 1) from each of thec sampled

vertices. Hence, we use a one-sided error test of the “properness” of the padding. Note that the
complexity of this “padding test” is O(c−i

∗
/ε) ·O(ci

∗
) = O(1/ε).

17Indeed, if such trees were observed for different values of i ∈ [`], then we can reject on the spot.

13

The foregoing one-sided error padding test, which indirectly also tests that density of the set
of low-degree vertices equals c−i

∗
, replaces the probabilistic estimation of the density of this set as

well as the setting of i∗ itself (as conducted in the proofs of Claims 3.2.1 and 3.5.1, and leading
to the two-sided error probability there). (As before, if i = ` + 1 and the padding test passed,
then we accept.) Lastly, if i ∈ [`], then we test the base graph as in the proof of Claim 3.5.1,
and rely on the fact that this tester has one-sided error. As before, this test has query complexity
ci
∗ ·O(q(c−i

∗
)/ci

∗
ε) = O(q(ε/c)/ε).

Having concluded that (the redefine property) Π can be ε-tested with one-sided error and
O(q(ε/c)/ε) queries, we note that the lower bound asserted in Claim 3.2.2 hold also for the redefined
property Π. This is the case since the proof is quite oblivious of the specific form of padding used,
as long as the degrees of the padded vertices are far from the degrees of the vertices of the base
graph.

4 Graph Properties in the Adjacency Matrix Model

In the adjacency matrix model (a.k.a the dense graph model), an n-vertex graph G = ([n], E) is
represented by the Boolean function g : [n] × [n] → {0, 1} such that g(u, v) = 1 if and only if u
and v are adjacent in G (i.e., {u, v} ∈ E). Distance between graphs is measured in terms of their
aforementioned representation; that is, as the fraction of (the number of) different matrix entries
(over n2). Again, we focus on graph properties (i.e., properties of labeled graphs that are invariant
under renaming of the vertices).

Recall that [12] proved that, in this model, there exist graph properties for which testing
requires a quadratic (in the number of vertices) query complexity (even when allowing two-sided
error). Building on this result, Goldreich et. al. [13] showed:

Theorem 4.1 ([13, Thm. 4], revised):18 There exists a universal constant c > 5 and a fixed

quadratic polynomial p such that, for every q′, n′ ∈ N that satisfy q′ ≤
(
n′

2

)
, there exists a graph

property Π′n′,q′ of n′-vertex graphs such that the following holds in the dense graph model:

1. There exists an algorithm that, on input n′, q′ and ε′, makes p(1/ε′) ·q′ queries and constitutes
an ε′-tester of Π′n′,q′.

2. For every q′ ≤ n′, any 1/c-tester of Π′n′,q′ requires at least q′/c queries.

Both the lower and upper bounds refer to two-sided error testers. As in Section 3, using Theo-
rem 4.1, we first prove a weak version of the hierarchy theorem that has been eluded to in the
abstract and introduction.

Theorem 4.2 (hierarchy theorem for size-oblivious query complexity, a weak version for the dense
graph model): For every q : (0, 1] → N that is monotonically non-increasing, there exists a graph
property Π =

⋃
n∈N Πn, where Πn consists of n-vertex graphs, that is ε-testable in O(q(Ω(ε))/ε2)2

queries, but is not ε-testable in o(min(q(O(ε)), εn2)) queries.

Both the lower and upper bounds refer to two-sided error testers in the dense graph model. A
stronger version that asserts an upper bound of O(q(Ω(ε))/ε2) queries is presented later (in Theo-
rem 4.5).

18Again, the original statement of [13, Thm. 4] uses asymptotic notation and does not specify the dependence of the
upper bound on ε. Nevertheless, the original proof explicitly establishes the result stated here. We comment that [13,
Thm. 6] provides a stronger result in which the upper bound holds for one-sided error tester, but our technique
introduces an error probability also in case the graph has the property. We postulated that c > 5 (rather than c > 2)
in order to simplify the rest of the exposition, while noting that one can always increase c.

14

Proof: Following the strategy of the proof of Theorem 3.2, our starting point is the family of
properties asserted in Theorem 4.1. Again, we avoid the temptation to pad the base n′-vertex
graph by n−n′ isolated vertices. Instead, we use a single (n−n′)-clique as the padding. Note that
here, unlike in the proof of Theorem 3.2, the description of the (n′-vertex) base graph occupies an
(n′/n)2 fraction of the description of the n-vertex graph (rather than an (n′/n) fraction of it).

Specifically, we let Πn =
⋃
i∈[logc n] Π

(i)
n such that an n-vertex graph is in Π

(i)
n if it consists of

a (1 − c−i) · n-vertex clique and graph in Π′
c−i·n,q(c−2i)

, which is called the base graph. Note that

each graph in Π
(i)
n is c−2i-close to graph that consists of an (1 − c−i) · n-vertex clique and c−i · n

isolated vertices (whereas in the proofs of Theorems 2.3 and 3.2 the corresponding relative distance
was c−i).

We shall use the fact that the vertices of the base graph have low degree (i.e., degree smaller than
n/c < 0.2n), whereas the remaining vertices have high degree (i.e., degree at least n− (n/c)− 1 >
0.8n).19 It is tempting to say that these two cases can be easily distinguished, but we warn that the
distinguishing procedure is randomized (i.e., it relies on sampling additional vertices and checking
whether they are adjacent to the tested vertex). We shall address this issue shortly.

Claim 4.2.1 (upper bound): The property Πn is ε-testable in O(q(ε/c2)2/ε4) queries.

Proof: As in the proof of Claim 3.2.1, we wish to follow the strategy used in the proof of Claim 2.3.1.
As noted above, one crucial difference is in the way we identify the vertices of the base graph (of a

graph in Π
(i)
n), which are chracterized by their low degree. Here, unlike in the proof of Claim 3.2.1,

we cannot identify these vertices by few deterministicly determined queries, but rather rely on
random sampling. The straighforward way amounts to samplying several random vertices and
asserting that the tested vertex is of low degree if it neighbors less than half of them, but a
characterization of the vertices according to their degrees requires fixing the sample.20 We prefer
an alterantive way that consists of finding one high degree vertex (by sampling), and characterizing
all other vertices in the graph according to whether or not they neighbor this vertex. (Indeed,
vertices in the base graph do not neighbor any high degree vertex, whereas all other vertices of the
large clique do neighbor such a vertex.)

Another difference between the proofs of Claims 2.3.1 and 3.2.1 and the current proof is that
here we set ` = d0.5 logc(1/ε)e, rather than ` = dlogc(1/ε)e as in the previous proofs. (Likewise, we
invoke the c−2i

∗
ε/2-tester (rather than a c−i

∗
ε/2-tester).)

Again, the determination of i∗ is done by sampling (see above), while here we rely on the fact

that if G ∈ Π
(i)
n then the vertices in its base graph do not neighbor any high degree vertex, whereas

all high degree vertices neighbor each other (since they reside in an (n − c−i
∗
n)-vertex clique).

Hence, as in the proof of Claim 3.2.1, the determination of i∗ carries an error probability (also in
the case that the graph has the property).

Specifically, we set i∗ ∈ [`] such that the estimated density of the base graph (defined as the
subgraph induced by the vertices that do not neighbor the selected high degree vertex) is approx-
imately c−i

∗
, and set i∗ = ` + 1 if the estimated density is below 1.1 · c−(`+1). Like in the proof

of Claim 3.2.1, we approximate the size of the base graph up-to ±min(0.1ε, 0.01c−i
∗
/q∗) · n, where

q∗ = p(2/c2i
∗
ε)·q(c−2i∗) is the query complexity of the c−2i

∗
ε/2-tester of Π′

c−i∗ ·n,q(c−2i∗)
, and the com-

plexity of obtaining this approximation (i.e., maxi∗∈[`]{O(c−6i
∗ · q(c−2i∗)2/ε4)} = O(q(ε/c2)2/ε4))21

19Indeed, in the case of graphs in Π
(i)
n , the vertices of the base graph have degree smaller than n/ci, whereas the

remaining vertices have degree n− (n/ci)− 1.
20That is, a fixed partition of the vertices to high and low degree ones is obtained when fixing the coins used for

the corresponding sampling process.
21The complexity of obtaining this approximation is upper-bounded by

max(O(1/ε2), O(max
i∗∈[`]

{O(ci
∗
· p(2/c2i

∗
ε) · q(c−2i∗))2}))

15

dominates the complexity of the entire tester. This very good approximation allows to invoke the
c−2i

∗
ε/2-tester of Π′

c−i∗ ·n,q(c−2i∗)
on the subgraph of G induced by vertices that do not neighbor the

selected high degree vertex, although the number of such vertices may slightly deviate from c−i
∗ ·n

(where the deviation is upper-bounded by 0.01 · c−i∗n/q∗).
Lastly, as in the proof of Claim 3.2.1, we cannot directly sample vertices in the base graph

(nor can we directly sample the vertices of the large clique used to augment the base graph to an
n-vertex graph), but we can indirectly sample both sets at the (expected) cost of ci

∗
actual samples

per each desired sample (of the base graph). For sake of clarity, we spell out the derived tester. On
input an n-vertex graph G and proximity parameter ε, the tester proceeds as follows (while setting
` = d0.5 logc(1/ε)e):

1. Determining i∗: The tester finds a vertex, denoted s, that seems to have degree at least
n/2, by sampling O(1) random vertices and very roughly approximating their degree (by
considering their adjacency relation to O(1) random vertices).

Letting B denote the set of vertices that do not neighbor s in G, the tester obtains a rough
estimate of the size of B; specifically, using a sample of m = O(1/ε2) random vertices, with
high probability, the relative deviation error is smaller than 0.1ε. If, for some i∗ ∈ [`], the
number of sampled vertices in B is (1±0.1) · c−i∗ ·m, then i∗ is set accordingly; if the number
of sampled vertices in B is smaller than 1.1 · c−(`+1) · m, then the tester sets i∗ = ` + 1;
otherwise (i.e., if i∗ was not set), the tester rejects.

2. Testing the subgraph induced by [n] \ B and obtaining a refined estimate of |B|: The tester
checks that the subgraph induced by [n] \B is a clique and that |B| is very close to c−i

∗ · n.
Specifically:

(a) The tester selects O(1/ε) random vertices in G and checks that the vertices that neighbor
s are adjacent to one another. If two vertices that neighbor s were found not to be
adjacent, then the tester rejects.

(b) Letting δ = min(0.1ci
∗
ε, 0.01/p(2/ci

∗
ε)·q(c−2i∗)) and using a sample of O(ci

∗
/δ2) random

vertices, the tester estimates the size of B up to ±δ · c−i∗ · n (with high probability). If
this estimate deviates from c−i

∗ · n by more than δ · c−i∗ · n, then the tester rejects.

(Note that O(ci
∗
/δ2) = O(q(c2i

∗
)2/ε4)).)

3. Testing the subgraph induced by B: The tester invokes the (c2i
∗ · ε/2)-tester for Π′

c−i∗ ·n,q(c−2i∗)

on the subgraph of G induced by B, and outputs the verdict of this tester. Specifically, the
(c2i

∗
ε/2)-tester is invoked while emulating a graph with (1± δ) · c−i∗ ·n vertices. (Recall that

we emulate each vertex selection at an (expected) cost of ci
∗

actual samples.)22

(The complexity of this emulation is ci
∗ ·O(q(c−2i

∗
)/(c2i

∗ · ε)2) = O(q(c−2i
∗
)/ε2).)

The analysis of the foregoing tester mimics the analysis of the tester presented in the proof of
Claim 3.2.1. The claim follows, while using q(c−2`) ≤ q(ε/c2), which holds since ` < 0.5 logc(1/ε)+1.

= max(O(1/ε2), O(max
i∗∈[`]

{O(c−6i∗ · q(c−2i∗))2/ε4})),

since p(m) = O(m2).
22As in the proof of Claim 3.2.1, the tester for Π′

c−i∗ ·n,q(c−2i∗) expects the labels of the tested graph to reside in

[c−i
∗
· n], whereas the labels of the vertices of the induced subgraph are in [n]. Again, this discrepancy is easy to

bridge by maintaining a partial injection of [n] to [c−i
∗
· n].

16

Claim 4.2.2 (lower bound): The property Πn is not ε-testable in less than min(q(c3 · ε), εn2)/c
queries (even when allowing two-sided error).

The proof of Claim 4.2.2 mimics the proofs of Claims 2.3.2 and 3.2.2, except that here i is set such
that c−2i ∈ [cε, c3ε] (i.e., i = b0.5 logc(1/cε)c). The theorem follows.

A tighter hierarchy theorem. As in the proof of Theorem 3.2, the quadratic gap between the
upper and lower bounds in Theorem 4.2 is due to the way we coped with the problem of invoking
a tester for n′-vertex graphs on an n′′-vertex graph, where n′′ ≈ n′ (alas n′′ 6= n′). Specifically,
we used a very good approximation of the number of “high degree” vertices in the input n-vertex
graph, but such a good approximation had a high cost (i.e., quadratic in the query complexity of
the given tester).

Fortunately, the tester provided by the proof of Theorem 4.1 is actually oblivious of the number
of vertices in the tested graph, denoted n′. Like in the case of Theorem 3.1, the tester only uses
n′ to sample the vertex set, which is identified with [n′]. Hence, we may provide this tester with
a device that samples the vertex set rather than with the size of this set, and avoid the need to
obtain a very good approximation of the number of low-degree vertices in our input graph. This
leads to the following definition (which was subsequently generalized in different ways in [10, Sec. 1]
and [11, Sec. 2]).

Definition 4.3 (property testing in the dense graph model, revised): Let Π be a property of graphs
such that each graph is represented by an adjacency predicate of the form g : V ×V → {0, 1}, where
V is an arbitrary subset of N. A tester for the graph property Π is a probabilistic oracle machine T
that is given access to two oracles, an adjacency predicate g : V × V → {0, 1} and a device denoted
Samp(g) that samples uniformly in the domain of g (i.e., V × V), and satisfies the following two
conditions:

1. The tester accepts each g ∈ Π with probability at least 2/3; that is, for every g ∈ Π (and every
ε > 0), it holds that Pr[T g,Samp(g)(ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any g that is ε-far from Π, the tester rejects with probability
at least 2/3; that is, for every ε > 0 and g : V × V → {0, 1} that is ε-far from ΠV , it holds
that Pr[T g,Samp(g)(ε)=0] ≥ 2/3, where ΠV consists of the graphs in Π that have vertex-set V .

(As usual, g : V × V × {0, 1} is ε-far from ΠV if, for every g′ ∈ ΠV , it holds that |{(u, v) ∈
V × V : g(u, v) 6= g′(u, v)}| > ε · |V |2.)

The notion of ε-tester is defined analogously.

It turns out that the upper bound established in [13, Thm. 4] (restated in Theorem 4.1) holds also
in the model of Definition 4.3. This is the case since the corresponding tester (presented as [13,
Alg. 4.5]) takes a sample of vertices, queries some of the corresponding vertex pairs, and decides
based on some statistics of the sample (obliviously of the size of the tested graph).23 Hence, we
have:

23Specifically, for s =
√
q′, using a sample of O(1/ε′)2 · s vertices in the input graph G, the tester first clusters

the vertices in the sample according to their adjacency to O(log s) “signature vertices” (i.e., the O(log s)-bit long
string descibing the adjacency values); it continues if and only if exactly s clusters were found and these clusters
are of approximately the same size (otherwise it rejects). It next selects (arbitrarily) a representative vertex in each
cluster, and checks (making

(
s
2

)
queries) that the subgraph induced by these representatives satisfies the “underlying

property” (used to construct the property being tested, which is a “balanced blow-up” of the former). In addition,
the tester check that random vertex pairs (in G) fit the adjacency relation of the representatives of the clusters to
which they belong (per their own adjacency pattern). All operations are performed without reference to the number
of vertices in G. (We stress that s is determined by q′ only.)

17

Proposition 4.4 ([13, Thm. 3], further revised): Let p and the Π′n′,q′’s be as in Theorem 4.1. Then,
there exists an oracle machine that, on input q′ and ε′, makes p(1/ε′) · q′ queries and constitutes an
ε′-tester of

⋃
n′∈N Π′n′,q′ (in the sense of Definition 4.3).

Using Proposition 4.4, we prove the following.

Theorem 4.5 (hierarchy theorem for size-oblivious query complexity, actual version for the dense
graph model): For every q : (0, 1] → N that is monotonically non-increasing, there exists a graph
property Π =

⋃
n∈N Πn, where Πn consists of n-vertex graphs, that is ε-testable in O(q(Ω(ε))/ε2)

queries, but is not ε-testable in o(min(q(O(ε)), εn2)) queries.

Both the lower and upper bounds refer to two-sided error testers in the dense graph model.

Proof: We follow the proof of Theorem 4.2, while modifying the emulation performed towards
establishing the upper bound. (The modification is analogous to the modification of the proof
of Theorem 3.2 employed when proving Theorem 3.5.) Specifically, we shall use less accurate
approximation of the number of “low degree” vertices and rely on Proposition 4.4. In particular, we
use the same graph properties Π′

c−i·n,q(c−2i)
and Πn (as in the proof of Theorem 4.2), while observing

that the
⋃
n′∈N Π′

n′,q(c−2i)
’s while recalling that, for each i ∈ N, the corresponding

⋃
n′∈N Π′

n′,q(c−i)

can be tested in the model of Definition 4.3. We thus focus on replacing Claim 4.2.1 by the stronger
upper bound provided by the following claim.

Claim 4.5.1 (upper bound): The property Πn is ε-testable in O(q(ε/c)/ε2) queries.

Proof: We follow the strategy of the proof of Claim 4.2.1, while using less accurate approxi-
mation for the number of “low degree” vertices and rely on Proposition 4.4. Specifically, we
approximate the said number up to an additive deviation of 0.1ε · n, and invoke the (c2i

∗ · ε/2)-
tester for

⋃
n′∈N Π′

n′,q(c−2i∗)
on the subgraph induced by the “low degree” vertices (or rather by

the non-neighbors of the selected high-degree vertex). For sake of clarity, we spell out the de-
rived tester (as operating on input an n-vertex graph G and proximity parameter ε, while letting
` = d0.5 logc(1/ε)e).

1. Determining s, B and i∗ is done exactly as in Step 1 of the tester presented in the proof of
Claim 4.2.1.

2. The tester checks that the subgraph induced by [n] \B is a clique. This is done exactly as in
Step 2a of the tester presented in the proof of Claim 4.2.1.

(Indeed, we avoid Step 2b in the foregoing tester.)

3. Testing the subgraph induced by B: The tester invokes the (c2i
∗ ·ε/2)-tester for ∪n′∈NΠ′

n′,q(c−2i∗)

on the subgraph of G induced by B, and outputs the verdict of this tester.

(Indeed, this step replaces the last step of the tester presented in the proof of Claim 3.2.1. The
point is that we invoke the tester for

⋃
n′∈N Π′

n′,q(c−2i∗)
while emulating a sampling oracle to

the said subgraph, but without providing the approximate size of this subgraph. In contrast,
in the proof of Claim 3.2.1, we invoked a tester for Π′

c−i∗ ·n,q(c−2i∗)
on this subgraph, while

relying on the hypothesis that its size was (1±0.01/q∗)·c−i∗ ·n, where q∗ = p(2/c2i
∗
ε)·q(c−2i∗).)

The query complexity of the purported ε-tester is upper-bounded by O(1/ε2)+O(q(ε/c)/ε2), where
the second term is due to the complexity of emulating the (c2i

∗
ε/2)-testing

⋃
n′∈N Π′

n′,q(c−2i∗)
, which

is ci
∗ · O(q(c−i

∗
)/(c2i

∗
ε/2)2). We note that, unlike in the proof of Claim 3.2.1, the approximation

18

to the number of “low degree” vertices (obtained in Step 1) is not used in the analysis of Step 3
(but it is rather used in order to assert that G is closed to a graph that has ci

∗ · n “low degree”
isolated vertices). Hence, we obtain the desired tester, which has two-sided error, where the error
on inputs in Πn arises from a mistaken determination of i∗ (which occurs with small probability).

Noting that Claim 3.2.2 remains intact, the theorem follows.

5 On Query Complexity that Depends on Both Parameters

As stated in the introduction, the results presented in Sections 2–4 complement hierachy theorems
of Goldreich, Krivelevich, Newman, and Rozenberg [13]. While our results refer to query complexity
that depends only on the proximity parameter, the results in [13] refer to the dependence of the
query complexity on the size of the tested object (and focus on the case that the proximity parameter
is set to some small positive constant). We can actually combine both flavors and get quite tight
results on the query complexity of testing when allowing the query complexity to depend quite
arbitrarily on both the size of the object and the proximity parameter. The proof are identical to
those presented in Sections 2–4, except that the parameter q′ will be determine as a function of the
desired query complexity, which is now a function of both parameters.

Properties of generic functions. Generalizing the proof of Theorem 2.3, we obtain the follow-
ing

Theorem 5.1 (Theorem 2.3, generalized): For every q : N × (0, 1] → N that is monotonically
non-decreasing in the first parameter and monotonically non-increasing in the second parameter,
there exists a property Πn of Boolean functions over [n] that is ε-testable (with one-sided error)
in q(n,Ω(ε)) + O(1/ε) queries, but is not ε-testable in o(min(q(n,O(ε)), εn)) queries (even when
allowing two-sided error).

Recall that by Remark 2.4, we may obtain a property of Boolean functions over [3n] that is ε-testable
in O(q(n,Ω(ε))) + O(1/ε) queries, but is not ε-testable in o(max(min(q(n,O(ε)), εn),min(1/ε, n)))
queries. Note that when ε > 1/

√
n, the lower bound simplifies to Ω(min(q(n,O(ε)), εn)).

Proof Sketch: As stated above, we proceed as in the proof of Theorem 2.3, except that we place

f in Π
(i)
n if there exists f ′ ∈ Π′

c−i·n,q(n,c−i) such that f(j) = f ′(j) + 1 if j ∈ [c−i · n] and f(j) = 0

otherwise. (Here, letting Π′n′,q′ = ∅ if q′ > n′ means that Π
(i)
n = ∅ if q(n, c−i) > c−in.) The rest of

the arguement proceeds exactly as in the case of Theorem 2.3.

Graph properties in the bounded-degree model. Generalizing the proof of Theorem 3.5,
we obtain the following

Theorem 5.2 (Theorem 3.5, generalized): For all sufficiently large d ∈ N and every q : N×(0, 1]→
N that is monotonically non-decreasing in the first parameter and monotonically non-increasing in
the second parameter, there exists a graph property Πn of n-vertex graphs of degree at most d that
is ε-testable in O(q(n,Ω(ε))/ε) + O(1/ε2) queries, but is not ε-testable in o(min(q(n,O(ε)), εn))
queries.

Both the lower and upper bounds refer to two-sided error testers (in the bounded-degree graph
model). Generalizing Theorem 3.6, we can show ε-testability with one-sided error usingO(q(Ω(ε))/ε)
queries, while maintained the Ω(min(q(O(ε)), εn)) lower bound for general ε-testers (of two-sided
error).

19

Graph properties in the adjacency matrix model. Generalizing the proof of Theorem 4.5,
we obtain the following

Theorem 5.3 (Theorem 4.5, generalized): For every q : N × (0, 1] → N that is monotonically
non-decreasing in the first parameter and monotonically non-increasing in the second parameter,
there exists a graph property Πn of n-vertex graphs that is ε-testable in Õ(q(n,Ω(ε))/ε2) queries,
but is not ε-testable in o(min(q(n,O(ε)), εn2)) queries.

Both the lower and upper bounds refer to two-sided error testers in the dense graph model.

6 Open Problems

While our query complexity bounds for the generic model are of the form Θ(q(n,Θ(ε))), in the two
graph testing models we have a slackness of the form εc, where c ∈ {1, 2} depending on the model.
This is most significant in the case of q(n, ε) = poly(1/ε), and a well-defined open problem is to get
rid of this slackness.

Another problem left open refers to the dense graph model and consists of obtaining a hierarchy
theorem in which the upper bound is established via one-sided error testers, whereas the lower
bound holds also for general testers (with two-sided error). Note that such results were obtained
for the other two models (see Theorems 2.3 and 3.6, resp.).

A much more vague open problem is to avoid the unnatural flavor of the properties used in
establishing our results (as well as those of [13]). One cannot expect natural problems for arbitrary
complexity bounds (i.e., for results stated for essentially any function q), but one may ask for it in
cases such as q(n, ε) = exp(1/ε) and q(n, ε) = ε−3. For sake of concreteness, we adopt the definition
of Noam Livne for natural problems saying that a problem is natural, beyond its use in a specific
context, if it was considered before in a different context.

References

[1] N. Alon. Testing subgraphs of large graphs. Random Structures and Algorithms, Vol. 21,
pages 359–370, 2002.

[2] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Characterization of
the Testable Graph Properties: It’s All About Regularity. In 38th STOC, pages 251–260,
2006.

[3] N. Alon and A. Shapira. Testing subgraphs in directed graphs. JCSS, Vol. 69, pages
354–482, 2004.

[4] N. Alon and A. Shapira. Every Monotone Graph Property is Testable. SIAM Journal on
Computing, Vol. 38, pages 505–522, 2008.

[5] I. Benjamini, O. Schramm, and A. Shapira. Every Minor-Closed Property of Sparse
Graphs is Testable. In 40th STOC, pages 393–402, 2008.

[6] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Nu-
merical Problems. JCSS, Vol. 47, No. 3, pages 549–595, 1993.

[7] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability in
bounded-degree graphs. In 43rd FOCS, pages 93–102, 2002.

20

[8] L. Gishboliner and A. Shapira. A Generalized Turan Problem and its Applications. ECCC,
TR18-007, 2018.

[9] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[10] O. Goldreich. Flexible models for testing graph properties. ECCC, TR18-104, 2018.

[11] O. Goldreich. Testing Graphs in Vertex-Distribution-Free Models. ECCC, TR18-171,
2018.

[12] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, pages 653–750, July 1998.

[13] O. Goldreich, M. Krivelevich, I. Newman, and E. Rozenberg. Hierarchy Theorems for
Property Testing. Computational Complexity, Vol. 21 (1), pages 129–192, 2012.

[14] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
Vol. 32 (2), pages 302–343, 2002.

[15] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2), pages 252–271, 1996.

21

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

