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Abstract

We show that a very simple pseudorandom generator fools intersections of k linear threshold
functions (LTFs) and arbitrary functions of k LTFs over n-dimensional Gaussian space. The
two analyses of our PRG (for intersections versus arbitrary functions of LTFs) are quite different
from each other and from previous analyses of PRGs for functions of halfspaces. Our analysis for
arbitrary functions of LTFs establishes bounds on the Wasserstein distance between Gaussian
random vectors with similar covariance matrices, and combines these bounds with a conversion
from Wasserstein distance to “union-of-orthants” distance from [CST14]. Our analysis for in-
tersections of LTFs uses extensions of the classical Sudakov-Fernique type inequalities, which
give bounds on the difference between the expectations of the maxima of two Gaussian random
vectors with similar covariance matrices.

For all values of k, our generator has seed length O(log n) + poly(k) for arbitrary functions
of k LTFs and O(log n) + poly(log k) for intersections of k LTFs. The best previous result, due
to [GOWZ10a], only gave such PRGs for arbitrary functions of k LTFs when k = O(log log n)
and for intersections of k LTFs when k = O( logn

log logn ). Thus our PRG achieves an O(log n) seed
length for values of k that are exponentially larger than previous work could achieve.

By combining our PRG over Gaussian space with an invariance principle for arbitrary func-
tions of LTFs and with a regularity lemma, we obtain a deterministic algorithm that approx-
imately counts satisfying assignments of arbitrary functions of k general LTFs over {0, 1}n in
time poly(n)·2poly(k,1/ε) for all values of k. This algorithm has a poly(n) runtime for k = (log n)c

for some absolute constant c > 0, while the previous best poly(n)-time algorithms could only
handle k = O(log log n). For intersections of LTFs, by combining these tools with a recent PRG
due to [OST18], we obtain a deterministic algorithm that can approximately count satisfying
assignments of intersections of k general LTFs over {0, 1}n in time poly(n) · 2poly(log k,1/ε). This
algorithm has a poly(n) runtime for k = 2(logn)c for some absolute constant c > 0, while the
previous best poly(n)-time algorithms for intersections of k LTFs, due to [GOWZ10a], could
only handle k = O( logn

log logn ).
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1 Introduction

Constructing explicit pseudorandom generators (PRGs) for interesting classes of Boolean-valued
functions is a fundamental problem in complexity theory which has witnessed a rich line of work.
An important class of functions, which have been intensively studied from this perspective, are
linear threshold functions (henceforth referred to as LTFs), i.e. functions of the form f(x) =
sign(

∑n
i=1wixi−θ) for some w ∈ Rn and θ ∈ R. LTFs arise naturally in a variety of areas including

machine learning, social choice theory, circuit complexity and pseudorandomness. Through a very
successful line of work [DGJ+10, MZ13, GKM15], explicit PRGs have been obtained which ε-fool
the class of LTFs over {−1, 1}n with seed length O(log n + log2(1/ε)) [MZ13], or alternately seed
length O(log(n/ε)(log log(n/ε))2) [GKM15]. For LTFs over the Gaussian distribution, [KM15] give
an ε-PRG that fools LTFs with seed length O(log n+ log(1/ε) log log(1/ε))).

Given these successes in designing PRGs to fool a single LTF, a natural next goal is to develop
PRGs for intersections of k LTFs (i.e. polytopes with k facets) or, more generally, for arbitrary
Boolean functions of k LTFs. PRGs for polytopes have direct applications to central problems at the
intersection of derandomization and combinatorial optimization, such as deterministic approximate
volume estimation for polytopes and approximate counting of feasible solutions to 0-1 integer
programs. The standard way to use a PRG for such applications is to run through the list of all
seeds, and hence it is desirable to have seed length as small as possible as a joint function of n and
k. In particular, a seed length of the form O(log n) ·α(k, 1/ε) leads to a running time of nO(α(k,1/ε)),
which even for constant ε is super-polynomial for any super-constant k. In contrast, a seed length
of the form O(log n) + α(k, 1/ε) leads to a running time of poly(n) · 2α(k,1/ε), which can be a fixed
polynomial in n even for various super-constant values of k (depending on the function α).

In this paper we work over Gaussian space, and we give the first PRGs for intersections and
arbitrary functions of k LTFs which have seed length of the form O(log n) +α(k, 1/ε) for all k. For
intersections of LTFs we achieve α(k, 1/ε) = poly(log k, 1/ε), and for arbitrary functions of LTFs
we achieve α(k, 1/ε) = poly(k, 1/ε). Thus for constant ε our seed length is O(log n) for k = 2(logn)c

LTFs (for intersections) and k = (log n)c LTFs (for arbitrary functions), where c > 0 is an absolute
constant. Previously, such an O(log n) seed length was only known for k = O(log(n)/ log logn)
(for intersections) and k = O(log log n) (for arbitrary functions) [GOWZ10a]. Thus, in both cases
our PRGs achieve the (optimal) O(log n) seed length for exponentially larger values of k than was
previously known.

Before stating our results in detail we recall the definition of a PRG over Gaussian space (see
[Kan11a, Kan11b, HKM12, Kan14, KM15, Kan15a]):

Definition 1 (PRGs for Boolean-valued functions over Gaussian space). Let C be a class of func-
tions from Rn to {−1, 1}. Given ε > 0, a function G : {−1, 1}s → Rn is an ε-PRG for class C over
Gaussian space if for every function F ∈ C,

|Pr[F (G(U(s))) = 1]−Pr[F (G(n)) = 1]| ≤ ε,

where G(n) denotes (G1, . . . ,Gn), a random variable distributed according to the standard Gaussian
N (0, 1)n, and U(s) denotes the uniform distribution on {−1, 1}s. The parameter s is called the seed
length of G.

1.1 Our results and comparison to prior work.

Our PRG results. The following are our main PRG theorems:
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Theorem 1 (Fooling arbitrary functions of LTFs). There is an explicit PRG which ε-fools any
Boolean function of k LTFs g(h1, . . . , hk) over N (0, 1)n, for any ε > 0 and any k, with seed length

O (log n+ poly(k, 1/ε)) .

This seed length is not far from the best possible in terms of its dependence on both n and
k, as it is not difficult (see Appendix A) to establish a seed length lower bound for this class of
max{blog nc, k} = Ω(k + log n) for any 1 ≤ k ≤ n.

In the special case when the combining function g is an AND, we get an exponential improvement
in the seed length dependence on k:1

Theorem 2 (Fooling intersections of LTFs). There is an explicit PRG which ε-fools any intersec-
tion of k LTFs over N (0, 1)n, for any ε > 0 and any k, with seed length

O (log n+ poly(log k, 1/ε)) .

Here too the seed length is not far from best possible for a broad range of parameters; we
note that the above-mentioned lower bound of log n even when k = 1 implies a seed length lower
bound of Ω(log n), which is Ω(log n + log k) for any k ≤ poly(n) (the most interesting regime for
Theorem 2).

For arbitrary functions of k LTFs, Theorem 1 is the first result which gives a seed length of
O(log n) for k = (log n)c, and for intersections of k LTFs Theorem 2 is the first result which gives a
seed length of O(log n) for k = 2(logn)c . As mentioned earlier and discussed in more detail below, an
optimal seed length of O(log n) was previously only known [GOWZ10a] for exponentially smaller
values of k in both settings. Below we briefly review prior results on explicit PRGs for these classes,
starting with intersections of LTFs.

The most directly comparable prior result for intersections of k LTFs is the main result of
[OST18], which gives a PRG for intersections of k LTFs over {−1, 1}n with seed length log(n) ·
poly(log k, 1/ε). (Such a PRG directly implies a PRG for intersections of k LTFs over Gaussian
space with the same seed length via a standard reduction.) The [OST18] PRG builds on a PRG
due to Harsha et al. [HKM12] which has seed length log(n) · poly(log k, 1/ε) for intersections of
sufficiently regular LTFs; the [HKM12] PRG in turn is similar to a PRG construction of Meka
and Zuckerman [MZ13] (for a single LTF) in which the basic idea is to (pseudorandomly) hash the
coordinates into buckets and use `-wise independence for coordinates hashed to the same bucket.
The analysis of the [OST18] PRG combines a range of technical ingredients including an invariance
principle for polytopes that [HKM12] establish, combinatorial PRGs for depth-2 circuits, and new
Littlewood-Offord type theorems for polytopes.

PRGs for intersection of LTFs were also studied by Gopalan, O’Donnell, Wu, and Zuckerman
[GOWZ10a], Diakonikolas, Kane and Nelson [DKN10], and recently by Servedio and Tan [ST17].
These results give PRGs with respect to the uniform distribution on the Boolean cube (in fact,
the PRG in [GOWZ10a] fools arbitrary product distributions). For general k, the seed length of
the PRG in [GOWZ10a] for intersection of k LTFs is O((log n+ k log(k/ε)) · log(k/ε)). This linear
dependence of the seed length on k is far from optimal; for example, if k ≥ n then their result

1We note that a weak form of Theorem 1, with a seed length of O
(
logn+ poly(2k, 1/ε)

)
, follows immediately

from Theorem 2 just by setting its error parameter to be ε/2k and observing that any function of k LTFs is a union of
at most 2k many disjoint intersections of k LTFs. However, this is exponentially worse than we achieve in Theorem 1
above.
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does not yield a non-trivial PRG. For the special case when k/ε is at most poly(log n), [GOWZ10a]
achieves the better seed length of O(log n + k log(k/ε)). Thus, for k = O(log n/ log log n), the
[GOWZ10a] seed length is O(log n).

The work of Diakonikolas et al. [DKN10] achieves a similar polynomial dependence on k in
the seed length of their PRG (more precisely, they achieve seed length O(log n · poly(k, 1/ε)), and
their PRG works also for intersections of k degree-2 polynomial threshold functions). The work
of Servedio and Tan [ST17] achieves seed length with polylogarithmic dependence on k, but only
gives a good bound against intersections of LTFs with small integer weights. In more detail, if
each of the k LTFs in the intersection has all its weights wi being integers in [−t, t], then the PRG
in [ST17] has seed length poly(log n, log k, t, 1/ε). The parameter t for an LTF can in general be
exponential in n (and in fact, for a random LTF, t is exponential in n with high probability), and
hence the [ST17] result is of interest only for intersections of low-weight LTFs.

Turning to arbitrary functions of k LTFs, we observe that (as indicated in the earlier footnote)
any PRG for intersections of k LTFs can be used to fool arbitrary functions of k LTFs by setting its
accuracy parameter to ε/2k. If the seed length of the PRG has an inverse polynomial dependence
on the accuracy parameter (as in our result) then this simple approach does not yield a very good
seed length, but [GOWZ10a] used essentially this approach to obtain a PRG that fools any function
of k LTFs with seed length O((k2 + k log(1/ε) + log n) · (k + log(1/ε))). In the special case when
k ·2k/ε is at most poly(log n), they achieve a better seed length of O(k2 +k log(1/ε) + log n), which
is O(log n) for constant ε and k = O(log log n).

Our results on deterministic approximate counting. By combining our new PRGs with
invariance principles and a (multi-)regularity lemma, we obtain deterministic algorithms which
approximately count the number of satisfying assignments to intersections or arbitrary functions
of k arbitrary LTFs over {−1, 1}n. (Note that such algorithms, unlike PRGs, are non-oblivious,
i.e. they can “inspect” the particular LTFs which comprise the input to the problem.)

Theorem 3 (Deterministic approximate counting for arbitrary functions of k LTFs over {−1, 1}n).
There is a deterministic algorithm which, given as input k LTFs h1, . . . , hk over {−1, 1}n, an explicit
function g : {−1, 1}k → {−1, 1} and an error parameter ε > 0, runs in poly(n) · 2poly(k,1/ε) time
and outputs a value ṽ ∈ [0, 1] such that |ṽ − v| ≤ ε, where v is the fraction of points in {−1, 1}n
that satisfy g(h1, . . . , hk).

For intersections of LTFs, by combining our approach with the [OST18] PRG we can get an
exponentially better runtime dependence on k:

Theorem 4 (Deterministic approximate counting for intersections of k LTFs over {−1, 1}n). There
is a deterministic algorithm which, given as input k LTFs h1, . . . , hk over {−1, 1}n and an error
parameter ε > 0, runs in poly(n) · 2poly(log k,1/ε) time and outputs a value ṽ ∈ [0, 1] such that
|ṽ − v| ≤ ε, where v is the fraction of points in {−1, 1}n that satisfy h1 ∧ · · · ∧ hk.

We are not aware of prior results on deterministic approximate counting for intersections (or
arbitrary functions) of k LTFs which run faster than simply enumerating over the seeds of a PRG.
Thus Theorem 3 gives the first deterministic algorithm that runs in fixed poly(n) runtime even for
k which is polylogarithmic in n; as indicated earlier, given the previous state of the art on PRGs
for arbitrary functions of k LTFs for k = ω(log log n) prior algorithms would have a running time
of at least npoly(k). Similarly, Theorem 4 gives the first deterministic algorithm that runs in fixed
poly(n) runtime even for k = 2(logn)Ω(1)

. The previous state of the art on PRGs for intersection of
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k LTFs for k = ω(log n/ log logn) would have a running time of at least npoly(log k) (such a running
time is obtained simply by enumerating over the seeds of the [OST18] PRG).

A key ingredient in the proof of Theorem 3 is an invariance principle for arbitrary functions of
k LTFs, analogous to the main structural result of [HKM12] which is an invariance principle for
intersections of k LTFs. Such an invariance principle was proved in [GOWZ10a], and we provide an
alternate proof in Appendix C (which is very different from the proofs of the invariance principles
in [HKM12, GOWZ10a]). We believe this could be of independent interest. We elaborate on this,
still at a conceptual level, in Section 3 and give full details in Section 7.

A straightforward approach to Theorem 4 using only the multi-regularity lemma and an invari-
ance principle would have a running time which is exponential in k because the number of leaves
in the decision tree constructed by the multi-regularity lemma is exponential in k. We achieve a
quasi-polynomial dependence on k by exploiting additional structure in the decision tree (specif-
ically, that it is a so-called “junta decision tree” in which the same variable occurs at each node
of any given depth). Intuitively, this makes it possible for us to use the [OST18] PRG on the
space of all variables occurring in the decision tree (to “pseudorandomly sample” leaves of the
decision tree and use only those to construct an accurate estimate of the overall desired proba-
bility). Since the size of this variable space, roughly speaking, is m = Õ(k) (crucially with no
dependence on n), the [OST18] PRG’s seed length in this context (of intersections of k LTFs over
m variables) is log(m) · poly(log k, 1/ε) = poly(log k, 1/ε), which leads to our overall final running
time of poly(n) · 2poly(log k,1/ε).

2 Our PRG and a high-level overview of its analysis

We use the same simple PRG construction to obtain both of our PRG results (Theorems 1 and 2);
the two results are obtained by instantiating the parameters in two different ways. We describe
this PRG below with general parameters; the precise parameter settings we use for each class
(intersections versus arbitrary functions of k LTFs) will be made clear in the course of the respective
analyses.

An idealized version of our PRG is as follows:

1. Let G(d) be an N (0, 1)d Gaussian (which we view as a column vector).

2. Let A ∈ Rd×n be a pseudorandom Johnson-Lindenstrauss matrix drawn from the distribution
of pseudorandom d × n JL-matrices given by the work of Kane, Meka and Nelson [KMN11]
(more details on this will be given below).

3. A draw from our generator Gen is Z := ATG(d) (note that this is a vector in Rn).

The actual PRG differs from the above-described idealized version because using finitely many
bits it is not possible to generate a draw from the continuous G(d) distribution with perfect fidelity.
So in Step 1 the actual PRG uses a discrete approximation of each coordinate of G(d) (we explain
precisely what is meant by this in Appendix B); let Ĝ(d) denote the resulting distribution over Rd.
For clarity of exposition, the main analysis in the paper will be carried out for a “perfect” Gaussian
G(d), i.e. we will analyze the idealized PRG and show that it is an O(ε)-PRG for each of our two
classes of interest (intersections and arbitrary functions of k LTFs). Appendix B shows that, for
each of these two classes, if the idealized generator (which uses G(d)) is an O(ε)-PRG, then so is
the actual generator which uses Ĝ(d).
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High level idea of our generator: The Johnson-Lindenstrauss (JL) transform is one of the
most important tools in high-dimensional data analysis. In a nutshell, for any error parameter ε,
the JL transform gives a family D of d × n matrices such that for A ∼ D and any k unit vectors
W 1, . . . ,W k ∈ Rn, with high probability, the following holds: For all 0 ≤ i, j ≤ k, ‖AW i−AW j‖2 =
(1±ε)‖W i−W j‖2 (where W 0 = 0). Crucially, one can obtain this guarantee with d = O(ε−2 log k).

We can reinterpret the guarantee of the JL transform in the following way: Let A ∼ D and
consider the two distributions Z := AT ·G(d) and Z′ = G(n). Let W ∈ Rk×n be the k × n matrix
whose rows are W 1, . . . ,W k. Then, for any ~θ, the distributions X = W ·Z− ~θ and Y = W ·Z′ − ~θ
(i) are both Gaussian distributions over Rk, (ii) have the same mean, and (iii) are such that the
two k × k covariance matrices Cov(X) and Cov(Y) differ pointwise by at most ε. Let us define
the affine function f : Rn → Rk as f(z) = Wz− ~θ. Then, the guarantee of the JL transform is that
Cov(f(Z)) ≈ε Cov(f(Z′)); we may loosely view this guarantee as showing that the generator above
fools the covariance.

The above perspective leads to the insight which motivates our work, which is essentially the
following: since both X and Y are Gaussians, which are completely determined by their means and
covariances, other interesting tests besides the covariance may reasonably be expected to be fooled
by (a pseudorandom version of) the Johnson-Lindenstrauss transform. In this paper we consider
tests of the form h(sign(f(z)1), . . . , sign(f(z)k)), where h may be any function from {−1, 1}k to
{−1, 1} (we will also specialize to the case where h is an AND) and f(z)i denotes the ith coordinate
of f(z). In other words, we are interested in fooling functions (given by h) of k LTFs (given by
sign(f(z)1), . . . , sign(f(z)k)). As we show in this paper, for a suitable choice of d (depending on
whether h is arbitrary or is an AND) our generator can indeed fool all functions of the above form.

Seed length of our PRG. In order to state the seed length of our generator we first need
to identify all of the relevant parameters. In Step 1, for each of our two results we will take
d = O(log(k/δ′)/ε′2) where ε′ is a parameter that will be discussed below; as mentioned above each
coordinate of Ĝ(d) will be a discrete approximation of an N (0, 1) Gaussian. In Step 2, the KMN
distribution over pseudorandom d×n JL-matrices has two additional parameters, which we denote
ε′ and δ′ (see Section 4.2 for details.)

For the first step, as we show in Appendix B, a total of O(d log(kd/ε)) many random bits suffice
to generate a draw from Ĝ(d). For the second step, as we discuss in Section 4.2, a pseudorandom
d × n JL-matrix with parameters ε′, δ′ can be drawn from the KMN distribution using O(log n +
log(1/δ′) · log(log(1/δ′)/ε′)) bits of randomness. So the overall seed length of our PRG is

O(d log(kd/ε)) +O(log n+ log(1/δ′) · log(log(1/δ′)/ε′))

= O

(
log(k/δ′)

ε′2
·
(
log k + log log(k/δ′) + log(1/(ε′ε))

)
+ log n

)
.

As we will see in Section 4.2, we will always take δ′ to be ε, so the seed length of our generator
is

O

(
log(k/ε)

ε′2
·
(
log k + log log(k/ε) + log(1/(ε′ε))

)
+ log n

)
. (1)

We will instantiate the parameter ε′ to one specific value (a function of k and ε) in Section 5 for
arbitrary functions of LTFs, and to another specific value in Section 6 for intersections of LTFs,
thus obtaining the seed lengths claimed in Theorems 1 and 2.

In the rest of this section we give an overview of the analyses of our PRGs. While the same PRG
gives both our results, the analyses are quite different for the two classes we consider (arbitrary
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functions of LTFs and intersections of LTFs). We first sketch the (simpler) analysis for fooling
arbitrary functions of LTFs.

2.1 An outline of our analysis for fooling arbitrary functions of LTFs

We start by recalling some definitions which are useful for our overview. An orthant of Rk is a
subset O ⊂ Rk of the form

O = {x ∈ Rk : sign(xi) = bi, i = 1, . . . , k} for some (b1, . . . , bk) ∈ {−1, 1}k.

Given two random variables X,Y over Rk, the quadratic Wasserstein distance W2(X,Y) between
X and Y is defined to be

W2(X,Y) = inf
(X̂,Ŷ)

(E[‖X̂− Ŷ‖2])1/2,

where the infimum is taken over all couplings (X̂, Ŷ) of X and Y.2

Now we can present our overview. Our goal is to show that our PRG ε-fools every function of
the form g(h1(x), . . . , hk(x)) : Rn → {−1, 1}, where g : {−1, 1}k → {−1, 1} is arbitrary and each
hi : Rn → {−1, 1} is an LTF, relative to the standard Gaussian distribution. This is equivalent
to showing the following: for any unit vectors W 1, . . . ,W k ∈ Rn and any ~θ = (θ1, . . . , θk) ∈ Rk,
taking W to be the k × n matrix whose rows are W 1, . . . ,W k and taking O to be any union of
orthants over Rk, we have∣∣∣∣ Pr

Z←Gen
[WZ− ~θ ∈ O]− Pr

G(n)←N (0,1)n
[WG(n) − ~θ ∈ O]

∣∣∣∣ ≤ ε. (2)

Here is a high-level sketch of why our PRG ensures this.

(1) A (pseudorandom) JL projection of the k unit vectors W 1, . . . ,W k ∈ Rn results in much
lower-dimensional vectors V 1, . . . , V k ∈ Rd, where d = Θ(log(k)/ε′2), which approximately
preserve pairwise distances. Let us write ΣW (ΣV respectively) to denote the k×k covariance
matrix of the k-dimensional Gaussian random variable WG(n) − ~θ (VG(d) − ~θ respectively,
where G(d) is distributed according to N (0, 1)d). As we will see in Section 4.1, we have that
ΣW and ΣV are entrywise close to each other (see Observation 5 for details).

(2) The entrywise closeness of ΣW and ΣV implies that the quadratic Wasserstein distance
W2(WG(n) − ~θ, VG(d) − ~θ) is small; more precisely, we get that

W2(WG(n) − ~θ, VG(d) − ~θ) ≤ τ, where τ = O(k
7
8 · (ε′)1/4). (3)

(See Proposition 5.1 in Section 5.2 for details.)

(3) As the main step of our analysis, using an adaptation of an argument from [CST14], in
Section 5.3 we use (3) to infer that for every union of orthants O, we have∣∣∣∣∣ Pr

G(n)←N (0,1)n
[WG(n) − ~θ ∈ O]− Pr

G(d)←N (0,1)d
[VG(d) − ~θ ∈ O]

∣∣∣∣∣ ≤ O(k2/3τ2/3) = ε. (4)

This concludes the analysis since the inequality (4) is exactly the same as (2). This is because
for each j we have V j = W jAT where A is the (pseudorandom) projection matrix.

2By the Kantorovich-Rubinstein duality theorem, there is an equivalent formulationW2(X,Y) in terms of Lipschitz
test functions, but we will not need this alternative formulation.
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2.2 An outline of our analysis for fooling intersections of LTFs

At a high level, our analysis for fooling intersections of LTFs exploits the rich and influential line
of work on analyzing supremum (maximum) of Gaussian processes [LS70, Fer75, Tal96]. We recall
that a Gaussian process is a set of jointly normal random variables (the set may be infinite, though
we will only concerned with the finite case where it has cardinality k). To see the relationship
between the maximum of a Gaussian process and an intersection of LTFs, let W 1, . . . ,W k ∈ Rn be
unit vectors and ~θ ∈ Rk. Define the LTF hi(z) = sign(W iz − θi) and consider the k-face polytope
h1(z)∧. . .∧hk(z). Showing that our PRG ε-fools this k-face polytope (i.e., the function h1∧. . .∧hk)
relative to the standard Gaussian distribution is equivalent to showing the following: Taking W to
be the k × n matrix whose rows are W 1, . . . ,W k,∣∣∣∣ Pr

Z←Gen
[WZ ≤ ~θ ]− Pr

G←N (0,1)n
[WG ≤ ~θ ]

∣∣∣∣ ≤ ε. (5)

Note that WZ ≤ ~θ if and only if maxj∈[k]((WZ)j − θj) ≤ 0. Likewise, WG ≤ ~θ if and only if
maxj∈[k]((WG)j − θj) ≤ 0.

Both {(WZ)j−θj}1≤j≤k and {(WG)j−θj}1≤j≤k are Gaussian processes, and we are interested
in comparing the maxima of these two processes. If we were interested in comparing just the
expectations of the maxima, i.e., E[maxj∈[k]((WZ)j − θj)] versus E[maxj∈[k]((WG)j − θj)], then
the classical Sudakov-Fernique inequality [Fer75, Sud79] provides a tool to compare (and prove the
closeness of) these two quantities. Indeed, Meka [Mek15] used this as a starting point in his work
on a deterministic algorithm for estimating the supremum of a Gaussian process. We are interested
in a somewhat more delicate quantity, and so we will use a generalization of a recent result of
Chernozhukov et al. [CCK15] which itself extends the Sudakov-Fernique inequality.

Now we turn from the above conceptual overview to a more detailed sketch of our analysis. Let
the vectors V 1, . . . , V k and the covariance matrix ΣV be defined in the previous subsection.

(1′) The first step of the argument is identical to Step 1 in the previous subsection: the covariance
matrices ΣW and ΣV are entrywise close to each other.

(2′) Next, we use the entrywise closeness of ΣW and ΣV to show that for any sufficiently smooth
function g, we have that∣∣∣∣E[g(max

j∈[k]
(W j ·G(n) − θj))]−E[g(max

j∈[k]
(V j ·G(d) − θj))]

∣∣∣∣ is small. (6)

is small. This is via an extension (to non-centered Gaussians) of Theorem 1 of [CCK15], which
in turn is a generalization of Chatterjee’s quantitative Fernique-Sudakov bound [Cha05].3 We
carry out this step in Section 6.2.

(3′) Using a result of [HKM12] (which follows almost directly from an influential work of Nazarov
[Naz03]), we have that the real-valued random variable

max
j∈[k]

(W j ·G(n) − θj),

which is a max of non-centered Gaussians, has good anticoncentration, meaning that it does
not put very much mass in any small interval. See Section 6.3 for more details.

3Chatterjee’s original argument in [Cha05] bounds the difference in the expectations of maxj∈[k] (W j ·G(n) − θj)
and maxj∈[k] (V j ·G(n) − θj), corresponding to the identity function g(x) = x.
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(4′) We specialize (6) to the case where g is a smooth approximator of the sign function. For
a particular such g, combining (6) with the anticoncentration of maxj∈[k] (W j ·G(n) − θj)
mentioned above, we can pass from g, which is a smooth approximator of sign(·), to the actual
sign(·) function, and thereby show that∣∣∣∣Pr[sign(max

j∈[k]
(W j ·G(n) − θj)) = 1]−Pr[sign(max

j∈[k]
(V j ·G(d) − θj)) = 1]

∣∣∣∣ (7)

is small. We give this argument in Section 6.4.

(5′) Having (7) be small is exactly the same as having the LHS of (5) is small, since for each j
we have V j = W jAT where A is the (pseudorandom) projection matrix from Step 1 of our
PRG. See Section 6.5 for more details.

3 The idea of our deterministic approximate counting results

In this section, we give an overview of our approximate counting algorithms for intersections and
arbitrary functions of LTFs. We begin with the description for arbitrary functions as it relies
on (extensions of) relatively well known tools from the literature such as regularity lemmas and
invariance principles. In particular, we follow the (by now standard) paradigm of reducing the
counting problem over the discrete cube to the Gaussian case by applying an appropriate regularity
lemma; the proof of correctness relies on an invariance principle for arbitrary functions of LTFs.
Once in the Gaussian case, we apply Theorem 2 which allows us to do counting over Gaussian
space. This is explained in more detail in Section 3.1.

We then move on to the case of intersections of LTFs, which is somewhat more subtle. Similar
to the first case, we also use a regularity lemma to reduce the Boolean case to the Gaussian case.
However, instead of a naive approach of traversing all the root-to-leaf paths in the decision tree
(constructed by the regularity lemma), we use the PRG construction of [OST18] to traverse only a
small subset of the leaves. More details are given in Section 3.2.

3.1 Deterministic approximate counting for arbitrary functions of k LTFs via
an invariance principle and a multiregularity lemma

A regular LTF is an LTF sign(
∑n

i=1wixi − θ) in which, intuitively, no individual weight wi has
large magnitude compared to the overall magnitude of the weights (see Section 7.1 for a precise
definition). The main structural result of [HKM12] is an invariance principle for intersections of
LTFs: roughly speaking, this states that if F0 = h1 ∧ · · · ∧ hk is an intersection of k LTFs all of
which are sufficiently regular, then the expected values of F0(U(n)) (where the input is uniform over
{−1, 1}n) and of F0(G(n)) (where the input is a standard N (0, 1)n Gaussian) are close. A notable
aspect of the [HKM12] invariance principle is that its error bound has only a poly-logarithmic
dependence on k (see Theorem 14 in Section 7.3 for a precise statement).

Now, consider any F = g(h1, · · · , hk) (where g : {−1, 1}k → {−1, 1} is arbitrary). A naive
approach based on just using the [HKM12] invariance principle 2k times together with a union
bound would give an invariance principle for arbitrary functions of k LTFs with an error bound
that depends exponentially on k. Instead, we use an analogue of the [HKM12] invariance principle
which goes beyond intersections of LTFs and works for arbitrary functions of k LTFs. The work of
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Gopalan et al. [GOWZ10a] gives an invariance principle for arbitrary functions of k LTFs that has
a polynomial dependence on k in the error bound. We provide an alternate proof of this invariance
principle for arbitrary functions of k LTFs. This polynomial dependence on k is crucial for obtaining
a final overall running time for counting satisfying assignments with a singly exponential dependence
on k, rather than a doubly exponential dependence which would follow from the naive approach.

As we explain in Section 7.2, the proof of our invariance principle is completely different from
the proofs of of [HKM12], [GOWZ10a]; we feel that our new proof of the invariance principle,
Theorem 12, may be of independent interest. The [HKM12] and [GOWZ10a] invariance principles
are proved using a Lindeberg-type “replacement” argument; key ingredients are an analysis of
hashing n coordinates into buckets and bounds on the derivatives of particular “smooth mollifiers”
for functions of LTFs. Our proof of Theorem 12 uses none of these ingredients; instead, its main
components are (a) a CLT for Wasserstein distance due to Valiant and Valiant [VV11], and (b) a
conversion from Wasserstein distance to “union-of-orthants” distance. (Indeed, the ideas underlying
the proof of Theorem 12 are very similar to the ideas underlying our PRG for arbitrary functions
of k LTFs; this is analogous, at a high level, to how the proof of the [HKM12] invariance principle
is closely related to the analysis of the [HKM12] PRG for intersections of regular LTFs.)

Using the invariance principle for deterministic approximate counting. By combining the
invariance principle for arbitrary functions of LTFs with our PRG, which shows that a random vari-
able Z← Gen is such that the expectation of F (Z) is close to that of F (G(n)), it is straightforward
to obtain a deterministic approximate counting algorithm for arbitrary functions of k regular LTFs
over {−1, 1}n simply by enumerating over all the seeds of our PRG. This algorithm has running
time poly(n) · 2poly(k,1/ε).) To obtain a deterministic approximate counting algorithm for arbitrary
functions of k general LTFs over {−1, 1}n, we combine the above algorithm with the deterministic
algorithmic version of the multi-regularity lemma of [GOWZ10a]. Briefly, this is a deterministic
algorithm which builds a decision tree of depth roughly k, with the property that at almost every
leaf ρ of the decision tree, either the restriction of g(h1, · · · , hk) according to ρ is very close to a
constant function −1 or 1, or else each restricted LTF h1 � ρ, . . . hk � ρ is regular (and hence the
deterministic approximate counting algorithm for arbitrary functions of regular LTFs can be used).
We note that the total number of leaves in this decision tree is exponential in k. By running the
approximate counting algorithm for functions of k-regular LTFs at each of the leaves, it is possible
to approximate the overall number of satisfying assignments. We give the details of this (fairly
standard) approach in Section 7.2.

3.2 Deterministic approximate counting for intersections of k LTFs

Let F = h1∧· · ·∧hk. Recall that the invariance principle of [HKM12] shows that if all the LTFs are
sufficiently regular, then the expected values of F0(U(n)) and of F0(G(n)) are close, where crucially
the error bound only has a polylogarithmic dependence on k. By combining this with our PRG, it
is straightforward to obtain a deterministic approximate counting algorithm for intersections of k
regular LTFs over {−1, 1}n simply by enumerating over all the seeds of our PRG – the resulting
running time is poly(n) · 2poly(log k,1/ε). For intersections of general halfspaces, one can apply the
multi-regularity lemma of [GOWZ10b] to reduce to the case of intersection of regular halfspaces. A
naive application of this (similar to the previous subsection) will result in a running time exponential
in k – this is because there are 2k leaves in the resulting decision tree and running the algorithm
for each of the leaves separately will result in an exponential in k overhead.
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To instead get a 2poly(log k) overhead, we crucially rely on two facts: (i) the decision tree con-
structed by the regularity lemma is non-adaptive, i.e., all nodes at the same level are labeled by
the same variable. Further, if the set of internal variables is denoted by S, then this set can be
enumerated in time poly(S). (ii) For any fixing of the set of variables in S, the computation of the
decision tree can be represented as an intersection of k halfspaces. Glossing over some subtleties,
this suggests that instead of doing approximate counting for all the leaves in the decision tree, one
can just perform this computation on a subset of the leaves given by the output of a PRG. In
particular, we use the PRG due to [OST18] to select the subset. While the PRG in [OST18] has
a (log n) · poly(log k) seed length (where n is the ambient dimension), in this application ‘n’ is set
to |S| which has polynomial dependence on k (for constant error ε > 0). Putting this together, we
obtain a deterministic algorithm for counting intersection of k arbitrary halfspaces with running
time poly(n) · 2poly(log k,1/ε). The full details are given in Section 7.3.

4 Notation and setup

We write W ∈ Rk×n to denote the matrix whose j-th row is the weight vector of the j-th LTF in a
function of k LTFs. We assume that each such LTF has been normalized so that its weight vector
has norm 1. For j ∈ [k] (indexing one of the LTFs) we write W j = (W j

1 , . . . ,W
j
n) to denote the

j-th row of W , so ‖W j‖ = 1 for all j. Thus an arbitrary function of k LTFs is g(h1, . . . , hk), where
g : {−1, 1}k → {−1, 1} and

hj(x) = sign(W j · x− θj) where W j = (W j
1 , . . . ,W

j
n) ∈ Rn has ‖W j‖ = 1

(we take −1 to represent True and 1 to represent False throughout), and an intersection of k LTFs
is a function h1(x) ∧ · · · ∧ hk(x).

Throughout this paper we will use notation like ~θ to denote vectors in Rk, i.e. ~θ = (θ1, . . . , θk) ∈
Rk. We write G or simply G(n) to denote (G1, . . . ,Gn), a random variable distributed according
to N (0, 1)n (so each of G1, . . . ,Gn is an i.i.d. N (0, 1) Gaussian).

4.1 Entrywise closeness of the original covariance matrix and the pseudorandomly-
projected covariance matrix

As above let W ∈ Rk×n have j-th row W j with ‖W j‖ = 1 for all j ∈ [k]. For convenience we also
define W 0 ∈ Rn to be the all-0 vector.

Let d = O(log(k/δ′)/ε′2) (where ε′ will be taken to be at most 1) and let V ∈ Rk×d satisfy the
following:

For all 0 ≤ i, j ≤ k we have ‖W i −W j‖ ≤ ‖V i − V j‖ ≤ (1 + ε′)‖W i −W j‖ (8)

where we take V 0 = (0, . . . , 0) ∈ Rd. (As we will see in the next subsection, V 1, . . . , V k should
be thought of as the vectors we get by doing a pseudorandom JL-projection of W 1, . . . ,W k to d
dimensions.)

We will consider the two k-dimensional Gaussian random vectors WG(n) and VG(d). The
covariance matrix of WG(n), which we denote ΣW , is the k × k matrix WTW which has σWij :=

W i ·W j as its (i, j) entry, and similarly the covariance matrix ΣV of VG(d) has σVij := V i · V j as
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its (i, j) entry. We define

∆ := max
1≤i,j≤k

|σWij − σVij | = max
1≤i,j≤k

|W i ·W j − V i · V j |, (9)

the maximum entry-wise difference between the two covariance matrices. The following simple
observation upper bounds ∆:

Observation 5. If W 0, . . . ,W k ∈ Rn, V 0, . . . , V k ∈ Rd satisfy (8), then ∆ ≤ 9ε′.

Proof. Taking i = 0, (8) implies that each V j , j ∈ [k], has ‖V j‖ ∈ [1, 1 + ε′]. Now fix any i, j ∈ [k].
We have

‖W i −W j‖2 = W i ·W i − 2W i ·W j +W j ·W j = 2− 2W i ·W j

and similarly (using the fact that each ‖V `‖2 ≤ (1 + ε′)2)

‖V i − V j‖2 = V i · V i − 2V i · V j + V j · V j = 2 + 2γ − 2V i · V j

for some 0 ≤ γ ∈ 2ε′ + ε′2 ≤ 3ε′. Hence

2γ + 2W i ·W j − 2V i · V j = ‖V i − V j‖2 − ‖W i −W j‖2,

which implies

|W i ·W j − V i · V j | ≤ γ +
1

2

(
‖V i − V j‖2 − ‖W i −W j‖2

)
≤ 3ε′ +

1

2

((
(1 + ε′)‖W i −W j‖

)2 − ‖W i −W j‖2
)

= 3ε′ +
1

2

(
(2ε′ + ε′2)‖W i −W j‖2

)
≤ 3ε′ + 2(2ε′ + ε′2) ≤ 9ε′,

where for the penultimate inequality we used ‖W i − W j‖2 ≤ 4 and ε′2 ≤ ε′ which holds since
0 < ε′ < 1.

4.2 Formalizing step (1) of the intuitive sketch: Getting d-dimensional vectors
V 1, . . . , V k via pseudorandom projection

Recall that Steps 1 and 1′ of the analysis are identical for arbitrary functions of LTFs (in Section 2.1)
and for intersections of LTFs (in Section 2.2). We give the details of this step here.

We use the following derandomized JL lemma given by Kane, Meka, and Nelson [KMN11]:

Theorem 6 (Derandomized Johnson-Lindenstrauss [KMN11]). Let 0 ≤ ε′, δ′ < 1/2 and let δ′′ =
δ′/k2. There is a distribution D over random matrices A ∈ Rd×n, d = O(log(k/δ′)/ε′2), such that
(i) a draw of A← D can be generated using O(log n+ log(1/δ′′) · log((log(1/δ′′))/ε′)) bits, and (ii)
the following holds: Fix unit vectors W 1, . . . ,W k ∈ Rn. Then

Pr
A←D

[
‖W i −W j‖ ≤ ‖W iAT −W jAT‖ ≤ (1 + ε′)‖W i −W j‖ for all i, j ∈ [k]

]
≥ 1− δ′. (10)

Let Vj = W jAT where A← D. By Theorem 6, except with failure probability at most δ′, (8)
is satisfied. We will always take δ′ = ε, and so this δ′ failure probability just gets absorbed into
the overall O(ε) error bound of the PRG. Fix V 1, . . . , V k to be any such outcome of V1, . . . ,Vk;
in the rest of the argument we will work with this V 1, . . . , V k. Note that by Observation 5 we have
that ∆, which is defined in terms of this V 1, . . . , V k, satisfies ∆ ≤ 9ε′.
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5 Fooling arbitrary functions of LTFs: Proof of Theorem 1

5.1 Parameter settings

As will be seen in the analysis below, in order for the overall PRG to O(ε)-fool arbitrary functions

of k LTFs, we take ε′ = ε6

k15/2 . Recalling that δ′ = ε, by (1) the overall seed length (as a function of

n, k and ε) is O(log n) + Õ(k
15

ε12 ), as claimed in Theorem 1. In the rest of this section we establish
correctness of the PRG.

5.2 Formalizing step (2) of the intuitive sketch: Upper bounding the quadratic
Wasserstein distance

Recall that the quadratic Wasserstein distance between random variables X,Y in Rk is defined to
be

W2(X,Y) = inf
(X̂,Ŷ)

(E[‖X̂− Ŷ‖2])1/2, (11)

where the infimum is taken over all couplings (X̂, Ŷ) of X and Y.

Proposition 5.1. Let W 1, . . . ,W k be unit vectors in Rn, V 1, . . . , V k be vectors in Rd satisfying
(8) and let ~θ ∈ Rk. Then we have

W2(WG(n) − ~θ, VG(d) − ~θ) ≤ τ, where τ = O(k
7
8 · (ε′)1/4). (12)

Proof. Observe that WG(n) − ~θ and VG(d) − ~θ have the same mean. For this case, Proposition 7
of Givens and Shortt [GS84] shows that

W2
2 (WG(n) − ~θ, VG(d) − ~θ) = Tr(ΣW + ΣV − 2((ΣW )1/2ΣV (ΣW )1/2)1/2). (13)

Here ΣW and ΣV are the covariance matrices of the distribution WG(n)− ~θ and VG(d)− ~θ respec-
tively4. To bound the expression on the right hand side, first observe that∣∣Tr(ΣW + ΣV )− 2Tr(ΣW )

∣∣ ≤ ∣∣Tr(ΣW − ΣV )
∣∣ ≤ 9k · ε′. (14)

The last inequality uses Observation 5. To proceed further, we recall the following very useful fact
from Bhatia [Bha13] (Theorem X.1.3)

Fact 5.2. Let ‖ · ‖ be any unitarily invariant matrix norm. For psd matrices A and B, we have
the following

‖ |A
1
2 −B

1
2 | ‖ ≤ ‖

√
|A−B|‖,

where |X| denotes the psd matrix
√
X∗X.

For any symmetric matrix X, let ‖X‖tr denotes its trace norm, i.e., the sum of the singular
values of X. Note that the trace-norm is unitarily invariant. With this, we now have∣∣2Tr(ΣW − ((ΣW )1/2ΣV (ΣW )1/2)1/2)

∣∣ ≤ 2‖ΣW − ((ΣW )1/2ΣV (ΣW )1/2)1/2‖tr

≤ 2‖
√
|(ΣW )2 − (ΣW )1/2ΣV (ΣW )1/2|‖tr

= 2‖
√
|(ΣW )1/2(ΣW − ΣV )(ΣW )1/2|‖tr (15)

4[GS84] states their theorem for non-singular ΣV and ΣW . However, we can always perturb our Gaussians
infinitesimally, apply (13) and then take a limit.
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In the above, the first inequality uses the fact that for any symmetric matrix X, |Tr(X)| ≤ ‖X‖tr
and the second inequality follows from Fact 5.2. We now recall the following fact:

Fact 5.3. For any symmetric X ∈ Rk×k,

‖
√
|X|‖tr ≤

√
k ·
√
‖X‖tr.

Proof. If σ1, . . . , σk denotes the singular values of X, then the left hand side is
∑k

j=1
√
σj and

the right hand side is
√
k ·
√
σ1 + . . .+ σk, so the inequality is a consequence of the AM-GM

inequality.

Applying Fact 5.3 to (15), we have that∣∣2Tr(ΣW − ((ΣW )1/2ΣV (ΣW )1/2)1/2)
∣∣ ≤ 2

√
k
√
‖|(ΣW )1/2(ΣW − ΣV )(ΣW )1/2|‖tr.

= 2
√
k
√
‖(ΣW )1/2(ΣW − ΣV )(ΣW )1/2‖tr. (16)

The second equality simply uses that for symmetric X, ‖|X|‖tr = ‖X‖tr. Next, we recall the
following useful inequality for unitarily invariant norms (see [Bha13], p.94).

Fact 5.4. Let A,B,C be symmetric matrices and let ‖ · ‖ be any unitarily invariant norm. Then,
‖ABC‖ ≤ ‖A‖2 · ‖B‖ · ‖C‖2.

Applying Fact 5.4 to the right hand side of (16), we obtain∣∣2Tr(ΣW − ((ΣW )1/2ΣV (ΣW )1/2)1/2)
∣∣ ≤ 2

√
k
√
‖(ΣW )1/2‖2‖ΣW − ΣV ‖tr‖(ΣW )1/2‖2.

= 2
√
k‖(ΣW )1/2‖2 ·

√
‖ΣW − ΣV ‖tr. (17)

Now, ΣW is a matrix in which each entry W i ·W j is upper bounded by 1 in absolute value. Thus,
‖ΣW ‖2 ≤ k. This immediately implies that ‖(ΣW )1/2‖2 ≤

√
k. Similarly,

‖ΣW − ΣV ‖tr ≤
√
k · ‖ΣW − ΣV ‖F ≤ 9

√
k · k · ε′ = 9ε′ · k3/2.

Here the last inequality is again using Observation 5. Combining this with (17), we have∣∣2Tr(ΣW − ((ΣW )1/2ΣV (ΣW )1/2)1/2)
∣∣ ≤ 6k

7
4 ·
√
ε′.

Combining the above equation with (14) and (13) (and using triangle inequality), we get that

W2
2 (WG(n) − ~θ, VG(d) − ~θ) ≤ 9kε′ + 2k

7
4 ·
√
ε′.

This immediately yields the proposition.
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5.3 Formalizing step (3) of the intuitive sketch: Upper bounding the “union-
of-orthants distance”

The following definition will be convenient: Given two random variables X,Y over Rk, the union-
of-orthants distance between X and Y is defined to be

dUO(X,Y) := max
O
|Pr[X ∈ O]−Pr[Y ∈ O]| , (18)

where the max is taken over all 22k possible unions of orthants O in Rk. This definition aligns well
with arbitrary functions of k LTFs g(h1, . . . , hk) because of the following easy observation:

Observation 7. For any g : {−1, 1}k → {−1, 1} and any random variables X,Y over Rk, we have

|Pr[g(sign(X1), . . . , sign(Xk)) = 1]−Pr[g(sign(Y1), . . . , sign(Yk)) = 1]| ≤ dUO(X,Y).

Lemma 5.5. Let W 1, . . . ,W k be unit vectors in Rn, V 1, . . . , V k be vectors in Rd satisfying (8)
and let ~θ ∈ Rk. Then we have

dUO(WG(n) − ~θ, VG(d) − ~θ) ≤ O(k2/3τ2/3), (19)

where τ is as defined in Proposition 5.1.

The argument here is similar to the proof of Theorem 5 in [CST14]. That result used a CLT
due to Valiant and Valiant (which gave an upper bound on the L1 (as opposed to quadratic,
i.e. W2) transportation distance between a certain sum of vector-valued random variables and a
Gaussian distribution) to obtain an upper bound on union-of-orthants distance between those two
distributions. We briefly explain the main idea (which is quite simple) behind the argument in our
setting.

We consider an optimal coupling of the random variables X = WG(n) − ~θ and Y = VG(d) − ~θ
which achieves the minimal quadratic transportation distance as in (11). Since by Proposition 5.1
the quadratic transportation costW2(X,Y) of transforming X to Y is “small”, the optimal coupling
cannot move a “non-small” amount of mass by a distance that is not “small.” Assume (contrary to
our desired conclusion) that the union-of-orthants distance between X and Y is not small, and fix a
union of orthants O that achieves the max in (18). Without loss of generality we may suppose that
X puts more mass on O than Y (and this difference is large by the above assumption). Gaussian
anticoncentration tells us that X can only have a small amount of mass overall that is close to
orthant boundaries, and hence X can have only a small amount of such mass in O. This means
that a non-small amount of mass from X must be moved a non-small distance (since it must go
from being within O and not close to any orthant boundary, to being outside of O) in order to
transform X to Y; but this contradicts the premise that W2(X,Y) is small.

We now proceed to the formal argument.

Proof of Lemma 5.5. As above let X = WG(n) − ~θ and Y = VG(d) − ~θ. By Proposition 5.1 we
have that W2(X,Y) ≤ τ. We define

Br :=
{
x ∈ Rk : |xi| ≤ r for some i ∈ [k]

}
to be the region of all points in Rk whose L∞-distance from any orthant boundary point is at most
r. With foresight we choose r = τ2/3/k1/3 (the rationale for this choice will be evident toward the
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end of the proof). We partition O into Obd := O∩Br (the points in O that lie close to the orthant
boundaries) and Oin := O \ Br (the points in O that lie far away from the orthant boundaries).
We have∣∣Pr[X ∈ O]−Pr[Y ∈ O]

∣∣ =
∣∣(Pr[X ∈ Oin] + Pr[X ∈ Obd])− (Pr[Y ∈ Oin] + Pr[Y ∈ Obd])

∣∣
≤

∣∣Pr[X ∈ O∈]−Pr[Y ∈ O∈]
∣∣︸ ︷︷ ︸

=Ξ

+ Pr[X ∈ Obd] + Pr[Y ∈ Obd]︸ ︷︷ ︸
=Γ

.

We bound the quantities Ξ and Γ separately.
For Γ, we have that

Γ ≤
k∑
i=1

Pr
[
Xi ∈ [−r, r]

]
+ Pr

[
Yi ∈ [−r, r]

]
≤ O(kr), (20)

where we used the fact that each coordinate Xi of X is a one-dimensional Gaussian with variance
‖W i‖2 = 1 and each coordinate Yi of Y is a one-dimensional Gaussian with variance 1 ≤ ‖V i‖2 ≤
(1 + ε′)2 = O(1).

For Ξ, let us assume without loss of generality (a symmetrical argument works in the other
case) that Pr[X ∈ Oin] ≥ Pr[Y ∈ Oin], so Ξ = Pr[X ∈ Oin]−Pr[Y ∈ Oin]. Let D be any coupling
of X and Y that achieves

E
(X̂,Ŷ)∼D

[‖X̂− Ŷ‖2]1/2 = 2τ,

so D is the joint distribution of a pair (U,V) of Rk-valued random variables with marginals
distributed according to X and Y respectively. Since∫

Oin

∫
Rk

D(u, v) dv du = Pr[X ∈ Oin]

and ∫
Oin

∫
Oin

D(u, v) dv du ≤
∫
Rk

∫
Oin

D(u, v) dv du = Pr[Y ∈ Oin],

it follows that∫
Oin

∫
Rk\Oin

D(u, v) dv du =

∫
Oin

∫
Rk

D(u, v) dv du−
∫
Oin

∫
Oin

D(u, v) dv du ≥ Ξ. (21)

Next we define the quantities

Ξnear(D) :=

∫
Oin

∫
Obd

D(u, v) dv du

(in words, this is the probability that U lies “well inside” O and V lies “close to the boundary” in
O), and

Ξfar(D) :=

∫
Oin

∫
Rk\O

D(u, v) dv du

(in words, this is the probability that U lies “well inside” O and V lies outside O). Note that
Ξnear(D) and Ξfar(D) sum to the quantity on the left-hand side of (21), and so Ξnear(D)+Ξfar(D) ≥
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Ξ. (In words, since X places Ξ more mass on Oin than Y does, any scheme D of moving the mass
of X to obtain Y must move at least Ξ amount from within Oin to outside it. Ξnear(D) is the
amount moved from within Oin to O’s boundary Obd, and Ξfar(D) is the rest, moved from within
Oin to locations entirely out of O.) Since ‖u− v‖2 ≥ r2 for any pair of points u ∈ Oin and y /∈ O,
it follows that

(2τ)2 = E
(U,V)∼D

[‖U−V‖2] ≥ r2 · Ξfar(D).

We consider two cases, depending on the relative magnitudes of Ξnear(D) and Ξfar(D). If
Ξfar(D) ≥ Ξnear(D), then we have

r2 · Ξ

2
≤ r2 · Ξfar(D) ≤ 4τ2,

and hence Ξ ≤ 8τ2/r2, which along with our upper bound on Γ given by (20) completes the proof.
If on the other hand Ξnear(D) > Ξfar(D), then

Ξ

2
≤ Ξnear(D) ≤

∫
Rk

∫
Obd

D(u, v) dv du = Pr[Y ∈ Obd] ≤ Γ,

and again our upper bound on Γ completes the proof.

Observing that by our setting of parameters we have that k2/3τ2/3 = O(ε), we get that

dUO(WG(n) − ~θ, VG(d) − ~θ) ≤ O(ε)

provided that W 1, . . . ,W k, V 1, . . . , V k satisfy (8). Recalling from Section 4.2 that all but a δ′ = ε
fraction of outcomes V 1, . . . , V k of Vj = W jAT satisfy (8), we have

dUO(WG(n) − ~θ,WATG(d) − ~θ) ≤ O(ε),

and recalling that a draw Z from our generator Gen is Z = ATG(d), this is equivalent to

dUO(WG(n) − ~θ,WZ− ~θ) ≤ O(ε),

and the proof of Theorem 1 is complete.

6 Fooling intersections of LTFs: Proof of Theorem 2

6.1 Parameter settings, notation and terminology

As we will see in the analysis given below, in order for the overall PRG to ε-fool k-facet Gaussian
polytopes it suffices to take ε′ = O(ε3/ log2 k) and δ′ = ε′/k2, so by (1) the overall seed length (as

a function of n, k and ε) is O(log n) + Õ( log6 k
ε6

) as claimed in Theorem 2.

The following notation will be useful: For 0 < λ, k ≥ 1, and ~θ = (θ1, . . . , θk) ∈ Rk, we define

Strip
λ,k,~θ

= {x ∈ Rk : some j ∈ [k] has xj ∈ (θj , θj + λ) and every j ∈ [k] has xj < θj + λ}.

We recall that the Kolmorogov distance between two real-valued random variables S and T is
defined to be

dK(S,T) = sup
θ∈R

∣∣Pr[S ≤ θ]−Pr[T ≤ θ]
∣∣.

For f : Rk → R a smooth function we write ∂jf(z) to denote ∂f
∂zj

(z) and write ∂i∂jf(z) to

denote ∂2f
∂zi∂zj

(z).
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6.2 Formalizing step (2′) of the intuitive sketch: Fooling smooth test functions
of max of non-centered Gaussians

A crucial ingredient in executing step (2′) of our analysis is the the following “soft-max” function
which is used in [Cha05, CCK15] and many other works. The soft-max function Fβ : Rk → R is
defined as

Fβ(x1, . . . , xk) =
1

β
· ln

(
k∑
i=1

eβxi

)
.

For conciseness let us write eβ to denote β−1 ln k. We record some useful facts about the soft-max
function:

Fact 6.1. For any vector v ∈ Rk, and any parameter β > 0,

0 ≤ Fβ(v)−max
i∈[k]

vi ≤ eβ.

Fact 6.2 (Lemma 3 of [CCK15]). For every 1 ≤ i, j ≤ k, we have

∂iFβ(z) = πi(z), ∂i∂jFβ(z) = βwij(z),

where

πi(z) :=
eβzi∑k
`=1 e

βz`
, wij(z) := 1[i = j]πi(z)− πi(z)πj(z).

Furthermore, we have

πj(z) ≥ 0,
k∑
j=1

πj(z) = 1,
k∑
i=1

k∑
j=1

|wij(z)| ≤ 2.

Fact 6.3 (Lemma 4 of [CCK15]). Let m(z) = g(Fβ(z)) where g ∈ C2(R). Then for every 1 ≤
i, j ≤ k, we have

∂i∂jm(z) = (g′′(Fβ(z))πi(z)πj(z) + βg′(Fβ(z))wij(z),

where πi and wij are defined as in Fact 6.2 above.

Fact 6.1 follows almost directly from the definition of Fβ. Facts 6.2 and 6.3 can be routinely
verified by calculus.

The following is the main result of this section (cf. (6)):

Theorem 8 (Fooling smooth test functions of max of non-centered Gaussians). Let W 1, . . . ,W k

be unit vectors in Rn, V 1, . . . , V k be vectors in Rd satisfying (8) and let ~θ ∈ Rk. Fix any function
g ∈ C2(R), g : R→ [−1, 1] such that ‖g′‖∞ := supx∈R |g′(x)| <∞ and ‖g′′‖∞ := supx∈R |g′′(x)| <
∞. Then for any β > 0, we have∣∣∣E[g(Fβ(W 1 ·G(n) − θ1, . . . ,W

k ·G(n) − θk))]−

E[g(Fβ(V 1 ·G(d) − θ1, . . . , V
k ·G(d) − θk))]

∣∣∣ ≤ O(‖g′′‖∞ε′ + ‖g′‖∞ε′β).

Further,∣∣∣∣E[g(max
j∈[k]

(W j ·G(n) − θj))]−E[g(max
j∈[k]

(V j ·G(d) − θj))]
∣∣∣∣ ≤ O(‖g′′‖∞ε′ + ‖g′‖∞

√
ε′ ln k).

17



We use the rest of this subsection to prove Theorem 8. The proof extends the proofs of similar
results in [Cha05, CCK15] to the case of non-centered Gaussians.

For ease of presentation, for i ∈ [k] define the non-centered Gaussian random variables Xi :=
W i ·G(n) − θi and Yi := V i ·G(d) − θi. We may suppose, without loss of generality, that X =
(X1, . . . ,Xk) and Y = (Y1, . . . ,Yk) are defined over the same probability space and that X and
Y are independent of each other. Our goal is to bound the magnitude of the difference

E[g(Fβ(X1, . . . ,Xk))]−E[g(Fβ(Y1, . . . ,Yk))]. (22)

Let µi denote E[Xi] = E[Yi], and let X̃i = Xi − µi be the centered version of Xi and similarly

let Ỹi = Yi − µi. Observe that by independence we have E[XiYj ] = 0 for all i, j ∈ [k]. Now, as is

standard, we do a Slepian interpolation; so for t ∈ [0, 1], we define Zt,i :=
√
tX̃i +

√
1− tỸi + µi,

and we write Zt to denote (Zt,1, . . . ,Zt,k). We define the function

Ψ(t) = E[g(Fβ(Zt,1, . . . ,Zt,k))],

and we observe that

(22) = Ψ(1)−Ψ(0) =

∫ 1

0
Ψ′(t)dt. (23)

Thus to upper bound the magnitude of (22) it suffices to upper bound
∫ 1

0 |Ψ
′(t)|dt.

For x ∈ Rk let us write m(x) to denote g(Fβ(x)). By applying the chain rule, we have

Ψ′(t) =
1

2

k∑
i=1

E

[
∂im(Zt) ·

(
X̃i√
t
− Ỹi√

1− t

)]
.

Now we recall the following “integration by parts” lemma, which is sometimes referred to as “Stein’s
identity:”

Lemma 6.4 (Lemma 2 of [CCK15], see also Lemma 2.1 of [Cha05]). Let A = (A1, . . . ,Ak) be a
k-dimensional Gaussian random vector with mean zero and let f : Rk → R be a C1 function with
E[|∂if(A)|] <∞ for all i ∈ [k]. Then for each i ∈ [k], we have

E[Aif(A)] =

k∑
j=1

E[AiAj ] E[∂jf(A)].

Applying Lemma 6.4 with its “Ai” being X̃i√
t
− Ỹi√

1−t and its “f(A)” being ∂im(Zt), we get that

Ψ′(t) =
1

2

k∑
i=1

k∑
j=1

E

[(
X̃i√
t
− Ỹi√

1− t

)(
X̃j√
t
− Ỹj√

1− t

)]
E[∂i,jm(Zt)]

=
1

2

k∑
i=1

k∑
j=1

(σWi,j − σVi,j) ·E[∂i,jm(Zt)],
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where the second equality uses the independence between X and Y. We get that∫ 1

t=0
|Ψ′(t)|dt ≤ 1

2

∫ 1

t=0

k∑
i,j=1

|σWi,j − σVi,j | · |E[∂i,jm(Zt)]| dt

≤ ∆

2
·
∫ 1

t=0

k∑
i,j=1

|E[∂i,jm(Zt)]| dt, (24)

where ∆ = maxi,j∈[k] |σWi,j − σVi,j | is the quantity defined in (9). Thus, we are left with the task of
upper bounding the double derivatives. We have

∂im(x) = ∂i(g(Fβ(x1, . . . , xk))) = g′(Fβ(x1, . . . , xk)) ·
∂Fβ
∂xi

and hence

∂i,jm(x) = ∂i,j(g(Fβ(x1, . . . , xk))) = g′′(Fβ(x1, . . . , xk)) ·
∂Fβ
∂xi

∂Fβ
∂xj

+ g′(Fβ(x1, . . . , xk)) ·
∂2Fβ
∂xi∂xj

.

Appplying Facts 6.2 and 6.3, it follows that

k∑
i,j=1

|E[∂i,jm(Zt)]| = O(‖g′′‖∞ + ‖g′‖∞ · β).

Hence combining (23), (24), and the above, and recalling that ∆ ≤ 9ε′ (see Observation 5), we get
that

|E[g(Fβ(X1, . . . ,Xk))]−E[g(Fβ(Y1, . . . ,Yk))]| ≤ O(||g′′||∞ · ε′ + ||g′||∞ · ε′ · β),

giving the first claim of the theorem. For the second claim, using Fact 6.1, it follows that

|E[g(max
j∈[k]

(Xj))]−E[g(max
j∈[k]

(Xj))]| ≤ O(||g′′||∞ · ε′ + ||g′||∞ · ε′ · β) + ||g′||∞ ·
ln k

β

≤ O
(
||g′||∞ ·

(
ε′ · β + (ln k)/β

)
+ ||g′′||∞ · ε′

)
.

The second claim of the theorem now follows by setting β =
√

(ln k)/ε′.

6.3 Formalizing step (3′) of the intuitive sketch: anticoncentration of max of
non-centered Gaussians

We recall the following useful anticoncentration result from [HKM12], which follows almost directly
from a result of Nazarov [Naz03]:

Lemma 6.5 (Lemma 3.4 of [HKM12]: anticoncentration of multidimensional Gaussian). Let
W 1, . . . ,W k be unit vectors in Rn. For all ~θ ∈ Rk and all λ > 0, we have

Pr
G←N (0,1)n

[
WG ∈ Strip

λ,k,~θ

]
= O(λ

√
log k). (25)
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This can be viewed as a k-dimensional analogue of Theorem 3 from [CCK15], which gives
an anticoncentration bound on max{W 1 · G, · · ·W k · G} (and also the above lemma is for non-
centered Gaussians, whereas Theorem 3 of [CCK15] is about centered Gaussians). As an immediate
consequence of Lemma 6.5 we obtain the following:

Theorem 9 (anticoncentration of max of non-centered Gaussians). Fix any ~θ ∈ Rk. For all λ > 0
and all t ∈ R it holds that

Pr[max
j∈[k]

(W j ·G(n) − θj) ∈ [t− λ, t]] = O(λ
√

log k).

6.4 Formalizing step (4′) of the intuitive sketch: Passing from a smooth ap-
proximator of sign(·) to sign(·)

In this section we prove the following theorem, which upper bounds the Kolmogorov distance
between the random variables maxj∈[k] (W j ·G(n) − θj) and maxj∈[k] (V j ·G(d) − θj):

Theorem 10. Let W 1, . . . ,W k be unit vectors in Rn, V 1, . . . , V k be vectors in Rd satisfying (8).
For all ~θ ∈ Rk, the following bound holds:

dK

(
max
j∈[k]

(W j ·G(n) − θj),max
j∈[k]

(V j ·G(d) − θj)
)
≤ O(ε′ log2 k)1/3.

This is equivalent to showing that for all ~θ ∈ Rk and all t ∈ R, we have

|Pr[max
j∈[k]

(W j ·G(n) − θj) ≤ t]−Pr[max
j∈[k]

(V j ·G(d) − θj) ≤ t]| ≤ O(ε′ log2 k)1/3. (26)

Our argument follows the proof of Theorem 2 in [CCK15]; the main idea is to combine Theorem 8,
where g is a smooth approximation of the sign function, with Theorem 9, which establishes anti-
concentration of the max of non-centered Gaussians. The particular g ∈ C2(R), g : R → [−1, 1]
which we use is the following smooth approximator of the sign function:

g(z) =


−1 z ≤ −1

−60
∫ 1

(z+1)/2 s
2(1− s)2ds+ 1 −1 < z < 1

1 z ≥ 1.

Given parameters x ∈ R, β > 0, and δ > 0, define the function gx,β,δ(z) = g((z − x − eβ)/δ). We
record a simple claim that can be verified by direct calculation:

Claim 6.6. For any x ∈ R, β > 0 and δ > 0, the following hold:

1. ||g′x,β,δ||∞ = ||g′||∞/δ ≤ O(1/δ),

2. ||g′′x,β,δ||∞ = ||g′||∞/δ2 ≤ O(1/δ2),

3. 1(z ≤ x+ eβ) ≤ gx,β,δ(z) ≤ 1(z ≤ x+ eβ + δ), for all z ∈ R.
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We now proceed to prove (26). As before, for ease of presentation define the random variables
Xi = W i ·G(n) − θi and Yi = V i ·G(d) − θi, i ∈ [k].

For arbitrary x ∈ R, β > 0, and δ > 0, we have

Pr

[
max
j∈[k]

Xj ≤ x
]
≤ Pr[Fβ(X) ≤ x+ eβ] (Claim 6.1)

≤ E[gx,β,δ(Fβ(X))] (Claim 6.6)

≤ E[gx,β,δ(Fβ(Y))] +O
(
||g′′||∞ ·

ε′

δ2
+ ||g′||∞ ·

ε′β

δ

)
(Theorem 8, Claim 6.6)

≤ Pr[Fβ(Y) ≤ x+ eβ + δ] +O
( ε′
δ2

+
ε′β

δ

)
(Claim 6.6)

≤ Pr[max
j∈[k]

Yj ≤ x+ eβ + δ] + eβ +O
( ε′
δ2

+
ε′β

δ

)
(Claim 6.1)

= Pr[max
j∈[k]

Yj ≤ x] + (Pr[max
j∈[k]

Yj ≤ x+ eβ + δ]−Pr[max
j∈[k]

Yj ≤ x])+

eβ +O
( ε′
δ2

+
ε′β

δ

)
≤ Pr[max

j∈[k]
Yj ≤ x] +O((eβ + δ)

√
log k) + eβ +O

( ε′
δ2

+
ε′β

δ

)
(Theorem 9)

The proof of the other direction is similar and we skip it.
Thus for all x ∈ R, β > 0, δ > 0, we have

|Pr[max
j∈[k]

Xj ≤ t]−Pr[max
j∈[k]

Yj ≤ t]| ≤ O
( log3/2 k

β
+
ε′β

δ
+ δ
√

log k +
ε′

δ2

)
.

Setting β = (log k)/δ and δ = O(ε′
√

log k)1/3 completes the proof of (26).

6.5 Formalizing step (5′) of the intuitive sketch: Re-interpreting the Kolmogorov
distance bound as a PRG

We conclude the proof of our PRG construction from the bound proved in Theorem 10; recall that
this gives CDF-closeness at every point in R, specifically

dK(max
j∈[k]

(W j ·G(n) − θj),max
j∈[k]

(V j ·G(d) − θj)) ≤ O(ε′ log2 k)1/3

Specializing this to CDF-closeness at the point 0, we get that∣∣∣Pr[W j ·G(n) ≤ θj for all j ∈ [m]]−Pr[V j ·G(d) ≤ θj for all j ∈ [m]]
∣∣∣ ≤ O(ε′ log2 k)1/3,

Now we recall that, from Section 4.2, all but a δ′ = ε fraction of outcomes V 1, . . . , V k of Vj = W jAT

satisfy (8). Hence we have∣∣∣Pr[W j ·G(n) ≤ θj for all j ∈ [m]]−Pr[W jAT ·G(d) ≤ θj for all j ∈ [m]]
∣∣∣ ≤ O(ε′ log2 k)1/3 + ε,

and recalling that a draw Z from our generator Gen is Z = ATG(d), we get that this is equivalent
to ∣∣∣Pr[W j ·G(n) ≤ θj for all j ∈ [m]]−Pr[W j · Z ≤ θj for all j ∈ [m]]

∣∣∣ ≤ O(ε′ log2 k)1/3 + ε.

Setting ε′ = ε3/ log2 k completes the proof of correctness of our PRG construction.
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7 Application of our PRG: Deterministic approximate counting
for functions of LTFs over {−1, 1}n

In this section we prove Theorems 3 and 4, which we state with precise bounds as two parts of the
following theorem.

Theorem 11 (Restatements of Theorem 3 and 4).

1. (Arbitrary functions of LTFs). There is a deterministic algorithm which, given as input k
LTFs h1, . . . , hk over {−1, 1}n, an explicit function g : {−1, 1}k → {−1, 1}, and an error

parameter ε > 0, runs in poly(n) · 2Õ( k15

ε12 ) time and outputs a value ṽ ∈ [0, 1] such that
|ṽ − v| ≤ ε, where v is the fraction of points in {−1, 1}n that satisfy g(h1, . . . , hk).

2. (Intersections of LTFs). There is a deterministic algorithm which, given as input k LTFs
h1, . . . , hk over {−1, 1}n and an error parameter ε > 0, runs in poly(n) · 2poly(log k,1/ε) time
and outputs a value ṽ ∈ [0, 1] such that |ṽ−v| ≤ ε, where v is the fraction of points in {−1, 1}n
that satisfy h1(x) ∧ · · · ∧ hk(x).

We prove Part 1 first since it is simpler and relies on (extensions of) known tools such as
regularity lemmas and invariance principles. In particular, Part 1 requires an invariance principle
for arbitrary functions of LTFs. Such an invariance principle was proved in [GOWZ10a]; we provide
an alternate proof of the invariance principle that we require in Appendix C, which we believe could
be of independent interest. For Part 2, the main ingredients are an invariance principle of [HKM12]
for intersections of LTFs and a “multi-regularity lemma” for k-tuples of LTFs due to [GOWZ10a]
along with a subtle application of the PRG for intersections of LTFs due to [OST18].

7.1 A useful notion: Regularity

Given an LTF h(x) = sign(w1x1 + · · · + wnxn − θ) and a parameter 0 < τ < 1, we say that h is
τ -regular if

n∑
j=1

w4
j ≤ τ2 · (

n∑
j=1

w2
j )

2.

Intuitively, τ -regularity (when τ is small) captures the property that no weight in w1, . . . , wn has
magnitude which is large relative to “the overall scale of the weights.” Regularity is a useful
condition because if w is a τ -regular weight vector with two-norm 1, then by the Berry-Esseen
theorem [Ber41, Ess42] the CDF of the real random variable w · X (where X is uniform over
{−1, 1}n) is τ -close to the CDF of an N (0, 1) Gaussian. Thus the Berry-Esseen theorem implies
that regular LTFs will “behave similarly” whether they are given uniform inputs X ← {−1, 1}n
or Gaussian inputs G ← N (0, 1)n; in this sense, it can be viewed as an invariance principle for a
single LTF.

7.2 Proof of Part 1 of Theorem 11: Arbitrary functions of k LTFs

The first principal ingredient that we use is an invariance principle for arbitrary functions of LTFs.
As mentioned earlier, such a result was established in [GOWZ10a] via a “Lindeberg-method” type
proof. In Appendix C we give an alternate proof (which is very different from the proofs of
[GOWZ10a, HKM12]) of the version that we require, which is stated below:
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Theorem 12 (Invariance principle for arbitrary functions of k LTFs). Let h1, h2, . . . , hk be τ -regular
LTFs and let F (x) = g(h1(x), · · · , hk(x)) where g : {−1, 1}k → {−1, 1} may be any function. Then∣∣∣∣ Pr

X←{−1,1}n
[F (X) = −1]− Pr

Z←N (0,1)n
[F (Z) = −1]

∣∣∣∣ ≤ O(k3/2τ
√

log(k/τ)). (27)

Combining Theorem 1 (our PRG for arbitrary functions of LTFs over Gaussian space) and
Theorem 12, an algorithm that simply enumerates over all the seeds of our PRG yields the following
deterministic approximate counting algorithm for intersections of sufficiently regular LTFs:

Corollary 7.1 (Deterministic approximate counting for arbitrary functions of regular LTFs). There
is a deterministic algorithm with the following performance guarantee: Given ε > 0, a collection
h1, . . . , hk of LTFs over {−1, 1}n each of which is τ -regular where τ = O( ε

k3/2
√

(log k)(log k
ε

)
), and a

function g : {−1, 1}k → {−1, 1}, the algorithm runs in time poly(n) · 2Õ( k15

ε12 ) and outputs a value
ṽ ∈ [0, 1] such that |ṽ−v| ≤ ε, where v is the fraction of points in {−1, 1}n that satisfy g(h1, . . . , hk).

We next extend Corollary 7.1 to obtain a deterministic approximate counting algorithm for
arbitrary functions of k general LTFs using a slight extension of the “multi-regularity lemma”
established in [GOWZ10a] (see Theorem 5.4 of the ArXiV version, available at [GOWZ10b]) for
k-tuples of general LTFs.

While not precisely stated in these terms, we recall that this multi-regularity lemma, roughly
speaking, asserts the following: Given a k-tuple of LTFs h1, . . . , hk, there is a relatively shallow
non-adaptive decision tree on the variables such that for all i ∈ [k], one of the two following two
possibilities hold:

1. For every leaf ρ of the decision tree (corresponding to a restriction), the restricted LTF hi � ρ
is regular.

2. With high probability, the restricted LTF hi � ρ is close to a constant.

Similar to Lemma 18 of [DDS14], the multi-regularity lemma of [GOWZ10a] can be implemented
as a deterministic algorithm. In fact, because the decision tree is non-adaptive, the set of variables
appearing in the internal nodes can be computed in time polynomial in depth of the decision tree (as
opposed to exponential in the depth which is the size of the tree). This is because at each node, in
order to choose which variable from x1, . . . , xn should be placed at that node it suffices to compute
the influence of each variable in each of the k restricted linear forms, and this is a straightforward
deterministic computation. We remark that the ability to compute the tree in polynomial time
(in terms of its depth) is not crucial for this subsection. However, it is vital for the application
in the next subsection – deterministic counting for intersections of general LTFs. Viewed as an
algorithmic procedure from this perspective, Theorem 5.4 of [GOWZ10b] yields the following in
our setting:

Lemma 7.2 (Algorithmic regularity lemma for LTFs, general k, based on Theorem 5.4 of [GOWZ10b]).
There is an algorithm ConstructTree with the following properties: Let h1, . . . , hk be LTFs over
{−1, 1}n. Algorithm ConstructTree (which is deterministic) receives h1, . . . , hk and 0 < τ, γ < 1/4
as input, runs in time poly(n,Dk(τ, γ)) and outputs a set of variables S ⊆ [n] and a k-tuple of
labels (label1, . . . , labelk) ∈ {R, J}k such that the following holds:
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1. |S| ≤ Dk(τ, γ) where

Dk(τ, γ) := k · 1

τ
· poly

(
log

1

γ

)
.

2. For each leaf ρ and i ∈ [k], if labeli = R, then the LTF hi � ρ is τ -regular.

3. For each i ∈ [k], if labeli = J , then the LTF h′i obtained by zeroing the coordinates outside S
satisfies Prx∈{−1,1}n [hi(x) 6= h′i(x)] ≤ γ. In particular, observe that for any leaf ρ, h′i � ρ is
fixed at either +1 or −1.

Remark 13. The theorem above can be obtained by essentially observing the proof of Theorem 5.4
in [GOWZ10b]. In particular, the S in the above theorem corresponds to the H0 in their theo-
rem. Similarly, the coordinates i ∈ [k] which are labeled ‘R’ (resp. labeled ‘J ’) in our theorem
correspond exactly to the coordinates i ∈ [d] which fall in the first case (resp. second case) of
Theorem 5.4 in [GOWZ10b]. To get the guarantee for the third case, we define h′i as follows. Let
hi(x) = sign(

∑
j wi,jxj − θj). We then define h′i(x) = sign(

∑
j∈S wi,jxj − θj), i.e., simply erase

the coordinates outside of S. The upper bound on the quantity Prx∈{−1,1}n [hi(x) 6= h′i(x)] can
essentially be derived from the event whose probability is upper bound in the centered equation in
item (2) of Theorem 5.4 of [GOWZ10b].

We now extend the algorithm in Corollary 7.3 to handle arbitrary functions of k general LTFs
using the algorithmic regularity lemma for multiple LTFs given in Lemma 7.2. The parameter“δ”
in Lemma 7.2 is set to ε and the parameter “γ” is set to ε/k, and the parameter “τ” is set to
O( ε

k3/2
√

(log k)(log k
ε

)
) so that Corollary 7.1 can be applied. Constructing the decision tree in the

first step of the algorithm for general LTFs takes time poly(n,Dk(τ, ε, δ)) = poly(n, k, 1/ε). In the
second step of the algorithm for general LTFs, for each leaf ρ in the decision tree,

• If any of the k labels are “fail” the contribution from that leaf is 0;

• If all k labels are bits b1, . . . , bk ∈ {−1, 1}, then the contribution from that leaf is 2−Dk ·
1[g(b1, . . . , bk) = −1];

• If k − t of the labels (for notational convenience, say these are the ones corresponding to
ht+1, . . . , hk) are bits bt+1, . . . , bk and the remaining t labels (say the ones corresponding to
h1 � ρ, . . . , ht � ρ) are “regular,” we run the approximate counting algorithm for the regular
case from Corollary 7.1 to compute an ±ε-accurate estimate (call it vρ) of the fraction of
satisfying assignments of g((h1 � ρ) ∧ · · · ∧ (ht � ρ), bt+1, . . . , bk), and the contribution from
that leaf is 2−Dk · vρ.

The overall running time for the algorithm is at most poly(n)· (number of leaves) · (running

time of Corollary 7.1), which is poly(n) · 2Õ(k3/2/ε)+Õ(k15/ε12). To establish correctness, we observe
that the final value ṽ may be viewed as a sum of contributions across all the leaves. Property 3
of Lemma 7.2 and the setting of δ = ε in Step 1 ensures that leaves that have any “fail” label
contribute a total of O(ε) to the error |v − ṽ|. The setting of the γ parameter to be ε/k ensures
that leaves containing any +1 label, or having all −1’s as their labels, collectively contribute a
total of at most O(ε) to |v − ṽ|. Finally, Theorem 1 ensures that leaves as in the last bullet above
contribute a total of O(ε) to |v − ṽ|. This concludes the proof of Theorem 11.
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7.3 Proof of Part 2 of Theorem 11: Intersections of k LTFs

We begin by recalling the main structural result of [HKM12], which extends the Berry-Esseen
theorem to intersections of LTFs (also known as polytopes). (Recall that we view −1 as “true”
and +1 as “false.”)

Theorem 14 (Theorem 3.1 of [HKM12]: invariance principle for polytopes). Let h1, h2, . . . , hk be
τ -regular LTFs and let F (x) = h1(x) ∧ · · · ∧ hk(x). Then∣∣∣∣ Pr

U(n)←{−1,1}n
[F (U(n)) = −1]− Pr

G(n)←N (0,1)n
[F (G(n)) = −1]

∣∣∣∣ ≤ C(log k)8/5(τ log(1/τ))1/5

where C is an absolute constant.

Combining Theorem 2 (our PRG for intersections of LTFs over Gaussian space) and Theorem 14,
an algorithm that simply enumerates over all the seeds of our PRG yields the following deterministic
approximate counting algorithm for intersections of sufficiently regular LTFs:

Corollary 7.3 (Deterministic approximate counting for intersections of regular LTFs). There is
a deterministic algorithm with the following performance guarantee: Given ε > 0 and a collection
h1, . . . , hk of LTFs over {−1, 1}n, each of which is τ -regular where τ = O( ε5

log8(k)·log( log k
ε

)
), the

algorithm runs in time poly(n) · 2Õ( log6 k

ε6 ) and outputs a value ṽ ∈ [0, 1] such that |ṽ− v| ≤ ε, where
v is the fraction of points in {−1, 1}n that satisfy h1 ∧ · · · ∧ hk.

The above algorithm works only for intersections of sufficiently regular LTFs. We will now
extend Corollary 7.3 to obtain a deterministic approximate counting algorithm for intersections
of k general LTFs using two tools. The first is the multi-regularity lemma (Lemma 7.2) from
the previous subsection. The second ingredient we require is the recent construction of a PRG
for intersection of LTFs by O’Donnell, Servedio and Tan [OST18] where they construct a PRG
for the uniform distribution on {−1, 1}n which fools intersections of k LTFs with seed length
(log n) · poly(log k, 1/ε). More precisely, we have the following theorem from [OST18].

Theorem 15. There is an efficiently computable ε-PRG GOST : {−1, 1}s → {−1, 1}n for intersec-
tions of k LTFs over {−1, 1}n with s = (log n) · poly(log k, 1/ε).

Observe that while GOST simultaneously achieves polylogarithmic dependence on both n and
k, to get a deterministic approximate counting algorithm with the kind of guarantee we want, we
would need a seed length of the form log n+ poly(log k, 1/ε). While we will crucially use GOST, we
will essentially bootstrap it with the algorithms from Corollary 7.3 and Lemma 7.2 as follows.

Given as input h1, . . . , hk and a desired accuracy parameter ε, the algorithm proceeds as follows:

1. Run the algorithm ConstructTree on the LTFs h1, . . . , hk with its “γ” parameter as ε/4k

and “τ” parameter as O( ε5

log8(k)·log( log k
ε

)
).

2. Let S be the set of variables returned by the algorithm ConstructTree. We set nOST = |S|,
εOST = ε/4 and kOST = k.

3. Let us run GOST with parameters nOST, εOST and kOST. Let sOST be the seed length. Let
OOST ⊆ {−1, 1}S denote the range of GOST. We treat each ρ ∈ OOST as an assignment for
the coordinates in S.
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4. For each ρ ∈ OOST, compute vρ as follows: If there is any i ∈ [k] such that labeli = J and
h′i � ρ = −1, then set vρ = 0. Otherwise, observe that for all i ∈ [k] such that labeli = R,
hi � ρ is τ -regular (for τ specified earlier). Run the algorithm from Corollary 7.3 to compute
Pr[∧i:labeli=R(hi � ρ)]. Let the output be vρ.

5. Output the value Eρ∈OOST
[vρ].

The analysis of the running time of the above routine is straightforward: Observe that for our
choice of τ and γ, the value Dk(τ, γ) (from Lemma 7.2) is Õ(k · ε−5). The running time of the first
step, i.e., ConstructTree is bounded by poly(n,Dk(τ, γ)). Now, observing that |S| ≤ Dk(τ, γ),
from Theorem 15, we get that sOST = poly(log k, ε−1) and thus |OOST| = 2poly(log k,ε−1). For each

ρ ∈ OOST, the running time of the algorithm from Lemma 7.2 is bounded by poly(n) · 2Õ(log6 k/ε6).

Thus, the total running time is |OOST| · poly(n) · 2Õ(log6 k/ε6) which is poly(n) · 2poly(log k,1/ε).
We now move to the proof of correctness of the algorithm. Observe that if labeli = J for any

i ∈ [k], then by guarantee of Lemma 7.2, Prx∈{−1,1}n [hi(x) 6= h′i(x)] ≤ γ. Thus, if we define
AJ = {i ∈ [k] : labeli = J} and AR = {i ∈ [k] : labeli = R},∣∣Prx∈{−1,1}n [h1(x) ∧ . . . ∧ hk(x)]−Prx∈{−1,1}n [∧i∈AJ

h′i(x) ∧i∈AR
hi(x)]

∣∣ ≤ kγ =
ε

4
. (28)

Now, consider any assignment z ∈ {−1, 1}[n]\S of the variables in [n]\S. Then, using the guarantee
of GOST, we get∣∣Prx∈{−1,1}S [∧i∈AJ

h′i � z(x) ∧i∈AR
hi � z(x)]−Prρ∈OOST

[∧i∈AJ
h′i � z(ρ) ∧i∈AR

hi � z(ρ)]
∣∣ ≤ ε

4
.

Averaging over all possible values of z ∈ {−1, 1}[n]\S and combining with (28), we get∣∣Prx∈{−1,1}n[h1(x)∧ . . .∧ hk(x)]−Prz∈{−1,1}[n]\S ,ρ∈OOST
[∧i∈AJ

h′i(z, ρ) ∧i∈AR
hi(z, ρ)]

∣∣ ≤ ε

2
. (29)

Now, observe that for any ρ ∈ OOST, h′i(z, ρ) = h′i(ρ) (since h′i does not depend on the variables
outside S). Further, for each i ∈ AR, the LTF hi � ρ is τ -regular. Consequently, for each choice of
ρ, Step 4 of our routine outputs vρ such that∣∣Prz∈{−1,1}[n]\S [∧i∈AJ

h′i(z, ρ) ∧i∈AR
hi(z, ρ)]− vρ

∣∣ ≤ ε

2
.

Averaging it over all choices of ρ, we get that output in the final step Eρ∈OOST
[vρ] satisfies∣∣Eρ∈OOST

[vρ]−Prz∈{−1,1}[n]\S ,ρ∈OOST
[∧i∈AJ

h′i(z, ρ) ∧i∈AR
hi(z, ρ)]

∣∣ ≤ ε

2
.

Combining this with (29) finishes the proof.
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A Lower bound on seed length for PRG fooling arbitrary func-
tions of k LTFs

The following simple claim gives an Ω(log n) lower bound even for k = 1:

Claim A.1. Let G be a 0.49-PRG for the class of all LTFs over Gaussian space N (0, 1)n. Then
the seed length of G is at least blog nc.

Proof. Suppose that G is a generator with seed length s ≤ blog nc − 1. Let S = {v1, . . . , vm} ⊂
Rn, |S| ≤ n/2 be the set of all points G({−1, 1}s). Since m < n there is a unit vector w ∈ Rn which
hs orthogonal to all of v1, . . . , vm; fix such a w. Fix any value κ = on(1). It is easy to see that the
LTF f(x) = sign(w · x − κ) has PrG(n)←N (0,1)n [f(G(n)) = 1] = 1

2 − on(1), but each of v1, . . . , vm

has sign(w · x − κ) = sign(−κ) = −1, so Pr[f(G(U(s))) = 1] = 0. Hence G cannot be a 0.49-PRG
for the class of all LTFs over Gaussian space.

Claim A.2. Let k ≤ n and let G be a 0.49-PRG for the class of all functions g(h1, . . . , hk) : Rn →
{−1, 1}n where g : {−1, 1}k → {−1, 1} and each hi is an LTF. Then the seed length of G is at least
k.

Proof. Suppose that G is a generator with seed length s ≤ k− 1. Let S = {v1, . . . , vm} ⊂ Rn, |S| ≤
2k−1 be the set of all points G({−1, 1}s). Say that b ∈ {−1, 1}k is good if some j ∈ [m] satisfies
sign(vji ) = bi for all i ∈ [k] (i.e. b is the sign-pattern of the first k coordinates of some string in S).
Let g : {−1, 1}k → {−1, 1} be any function which outputs −1 on each good string in {−1, 1}k and
outputs 1 on exactly 2k−1 strings in {−1, 1}k (such a g must exist since |S| ≤ 2k−1 and hence there
are at most 2k−1 good strings in {−1, 1}k). Let hi(x) be the LTF sign(xi) for each i ∈ [k]. Then
for f(x) = g(h1(x), . . . , hk(x)), we have Pr[f(G(U(s))) = 1] = 0 but Pr[f(G(n)) = 1] = 1/2. Hence
G cannot be a 0.49-PRG for the class of all functions of k LTFs over Gaussian space.

B Simulating draws from the Gaussian distribution

In the analysis of our PRGs for arbitrary functions of k LTFs and for intersections of k LTFs, we
assumed that we can sample from d-dimensional Gaussians, but to do this with perfect fidelity
clearly requires infinitely many random bits. In this section we show that O(d log(kd/ε)) truly
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random bits suffice to produce d-dimensional “approximate Gaussian” distributions that suffice for
our applications.

Definition 2. We say that a random variable G′ on R is a δ-approximate Gaussian random
variable if there is a standard (correlated) Gaussian Ĝ such that Pr[|G′ − Ĝ| > δ] < δ.

We recall a lemma proved by Kane [Kan15b] which generates such approximate Gaussians in a
randomness efficient way. It is based on the Box-Muller transform.

Lemma B.1 ([Kan15b]). There is an explicit construction of a δ-approximate Gaussian random
variable using O(log(1/δ)) bits of randomness.

Let Gd be a N (0, 1)d Gaussian. Let Ĝ(d) denote a coordinate-wise independent distribution in

which the i-th coordinate Ĝ
(d)
i is a δ-approximate Gaussian random variable with respect to G

(d)
i

as given by Lemma B.1. We set (with foresight) the parameter δ = ε/(k
√
d). By Lemma B.1, a

draw of Ĝ(d) can be generated using O(d log(kd/ε)) bits of randomness. Below we prove that Ĝ(d)

can be used instead of Gd in our PRGs, at the cost of an additional additive ε error for our PRG.
Let X = VG(d) − ~θ and X̂ = V Ĝ(d) − θ. We prove that the “union-of-orthants” distance

dUO(X, X̂) between X and X̂ (see (18)) is at most ε. This directly implies that the approximation
works since, as observed in Section 5.3, for any function g : {−1, 1}k → {−1, 1}, we have∣∣∣Pr[g(sign(X1), . . . , sign(Xk)) = 1]−Pr[g(sign(X̂1), . . . , sign(X̂k)) = 1]

∣∣∣ ≤ dUO(X, X̂).

In order to prove that dUO(X, X̂) ≤ ε, we recall some definitions from Section 5.3. Recall that

Br :=
{
x ∈ Rk : |xi| ≤ r for some i ∈ [k]

}
is the region of all points in Rk whose L∞-distance from any orthant boundary point is at most r.
Set r = 2δ

√
d. For any union of orthants O, we partition O into Obd := O ∩ Br (the points in O

that lie close to the orthant boundaries) and Oin := O \Br (the points in O that lie far away from
the orthant boundaries).

We have

|Pr[X ∈ O]−Pr[X̂ ∈ O]| ≤ Pr[X ∈ Obd] + |Pr[X ∈ Oin]−Pr[X̂ ∈ O]|.

By Lemma B.1 and a union bound, it follows that with probability at least 1−kδ, |G(d)
i −Ĝ

(d)
i | ≤ δ

for each i ∈ [k]. Thus, with probability at least 1− kδ, for each i ∈ [k], we have

|Xi − X̂i| = V i · (G(d)
i − Ĝ

(d)
i ) ≤ ||V i||2||G(d)

i − Ĝ
(d)
i ||2 ≤ δ

√
d.

As a direct consequence, we have that Pr[X̂ ∈ O|X 6∈ Oin]| ≤ kδ and Pr[X̂ ∈ O|X ∈ Oin] ≥ 1−kδ.
Thus,

Pr[X̂ ∈ O] ≤ Pr[X̂ ∈ O|X ∈ Oin] ·Pr[X ∈ Oin] + Pr[X̂ ∈ O|X 6∈ Oin] ·Pr[X 6∈ Oin]

≤ Pr[X ∈ Oin] + kδ,

and

Pr[X̂ ∈ O] ≥ Pr[X̂ ∈ O|X ∈ Oin] ·Pr[X ∈ Oin]

≥ (1− kδ) Pr[X ∈ Oin] ≥ Pr[X ∈ Oin]− kδ.
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Hence, |Pr[X ∈ Oin]−Pr[X̂ ∈ O]| ≤ kδ.
Finally note that, as estimated in Section 5.3, using anti-concentration of Gaussians,

Pr[X ∈ Obd] ≤ O(kr).

Combining the above estimates, we have

|Pr[X ∈ O]−Pr[X̂ ∈ O]| ≤ Pr[X ∈ Obd] + |Pr[X ∈ Oin]−Pr[X̂ ∈ O]|

≤ O(kδ
√
d) = O(ε),

which concludes our proof.

C Proof of Theorem 12: An invariance principle for arbitrary
functions of LTFs

C.1 Our starting point: a Wasserstein distance bound

Our proof of Theorem 12 closely parallels the arguments underlying our PRG for arbitrary functions
of k LTFs that were given in Section 5. However, for technical reasons we will now be using the
(non-quadratic) Wasserstein distance. We recall the definition of this distance measure between
distributions that we will use. (As was the case earlier for quadratic Wasserstein distance, there is
an equivalent formulation in terms of Lipschitz test functions, but we will not need this alternative
formulation.)

Definition 3. For any two distributions X and Y over Rk, the Wasserstein distance between X
and Y is defined to be

dW (X,Y) = inf
(X̂,Ŷ)

(E[‖X̂− Ŷ‖]),

where the infimum is taken over all couplings (X̂, Ŷ) of X and Y.

As in the analysis of our PRG for arbitrary functions of k LTFs, we need an upper bound
on the Wasserstein distance between the two random variables of interest as a starting point. In
Section 5 the two relevant random variables were both multi-dimensional Gaussians and the desired
(quadratic) Wasserstein closeness was given by Proposition 5.1. In the context of Theorem 12, the
two relevant random variables are (i) a sum of independent vector-valued random variables and
(ii) the Gaussian with matching mean and covariance, so it is natural to turn to the literature on
central limit theorems for sums of vector-valued random variables for the desired upper bound on
Wasserstein distance.

A range of central limit theorems for sums of independent vector-valued random variables have
been established in the literature, but we are not aware of one which can be used “out of the box”
for our purposes. Valiant and Valiant [VV11] gave a central limit theorem which upper bounds the
Wasserstein distance between a sum of n vector-valued random variables and the corresponding
Gaussian, but their quantitative bound has a log n factor which would spoil our desired final result.
Zhai [Zha18] gave a variant of the [VV11] CLT, but only for the setting of i.i.d. vector-valued random
variables, whereas our summands are not identically distributed. Bonis [Bon15] gave a sharpening
of Zhai’s bound, but it assumes that each summand random variable has identity covariance, which
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need not hold for us. While we do not know of any CLTs in the literature which directly yield our
desired starting point, below we show how a “bucketing” scheme can be applied to the Valiant-
Valiant CLT to yield a CLT of exactly the type that we need (where there is no dependence on n
in the upper bound).

We begin by recalling the Valiant-Valiant CLT:

Theorem 16 (Valiant-Valiant CLT for Wasserstein distance [VV11]). Let Z1, . . . ,Zn be indepen-
dent distributions in Rk with mean 0 and ||Zi||2 ≤ β. Then, writing Σ to denote the covariance
matrix of Z1 + · · ·+ Zn, we have

dW (
n∑
a=1

Za,N (0,Σ)) ≤ βk(2.7 + 0.83 log n).

We use this to prove the following:

Proposition C.1. Let h1, h2, . . . , hk be τ -regular LTFs, hi(x) = sign(W i
1x1 + · · · + W i

nxn − θ)
where we have normalized so that each vector W i = (W i

1, . . . ,W
i
n) has two-norm 1. Let W be the

k × n matrix with (i, j) entry W i
j , and for ` ∈ [n] let W` denote the column vector with entries

W 1
` , . . . ,W

k
` . For ` ∈ [n] let Z` denote the k-dimensional random variable Z` = x`W` where

x = (x1, . . . ,xn) is uniform over {−1, 1}n and let Z = Z1 + · · ·+ Zn. Let G′ be the k-dimensional
random Gaussian vector G′ = WG where G is distributed as N (0, 1)n. Then

dW (Z,G′) ≤ O(k2 log(k) · τ2 + k). (30)

Further, if τ < 10/
√
k, then the following bound also holds:

dW (Z,G′) ≤ O(k2τ2 log(k/τ)). (31)

(We note that while (30) does not provide a very strong upper bound on Wasserstein distance,
for suitably small values of τ the bound (31) does give a useful upper bound, and it is this bound
that we will employ in the next subsection.)

Proof. We begin by observing that the random variables Z1, . . . ,Z` are independent, have mean
zero (indeed each has support size two, on the two points W` and −W`), and lie in Rk. However,
at this point, just having the condition that the rows of W are τ -regular and have two-norm 1
doesn’t provide much useful information about the two-norms of the columns W`. Our approach
is to bucket the columns according to the two-norms and use the Valiant-Valiant CLT (Theorem
16) separately on each of these buckets. We now proceed to give more details.

Let Ai be the subset of those ` ∈ [n] such that 2−i−1 ≤ ‖W`‖2 ≤ 2−i, i.e.

2−2i−2 ≤ (W 1
` )2 + · · ·+ (W k

` )2 ≤ 2−2i.

Fix an ` ∈ [n] and consider the column vector W` = (W 1
` , . . . ,W

k
` ). We have that each |W i

` | ≤ τ
(using the τ -regularity of each row and the fact that each row is normalized to have 2-norm 1). Thus,
we have 0 ≤ (W 1

` )2 + · · ·+(W k
` )2) ≤ kτ2. It follows that Ai is empty if i < i0 := (log(1/kτ2))/2−1.

(Note that if k is large and τ is not very small then i0 may be a negative value; this will come up
below.)
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The sum of squares of all Wi,j is k, so each Ai can have at most k ·22i+2 = 4k22i many elements.
Fix an i such that Ai is nonempty (so i ≥ i0). Each ` ∈ Ai has ‖W`‖2 ≤ 2−i, and hence applying
the Valiant-Valiant CLT to

∑
`∈Ai

Z` (setting its parameter “β” to 2−i) gives

dW

∑
`∈Ai

Z`,N (0,Σ(i))

 ≤ 2−i·k·(2.7+log |Ai|) ≤ 2−i·k·(O(1)+log k+2i) = O(k log(k)·2−i+k·i·2−i).

Now we use the fact that if X,Y are two independent random variables and U,V are two
independent random variables, then

dW (X + Y,U + V) ≤ dW (X,U) + dW (Y,V)

(this is easy to see from the coupling-based definition that we have given for dW ). Applying this,
where the sum is over all i ≥ i0, since

∑
i

∑
`∈Ai

Z` = Z and
∑

iN (0,Σ(i)) = G′, we get that

dW (Z,G′) ≤
∑
i≥i0

O(k log(k) · 2−i) +
∑
i≥i0

O(k · i · 2−i).

Let us upper bound this sum, keeping in mind that log(1/kτ2) may be negative. The first sum is
at most ∑

i≥i0

O(k log(k) · 2−i) ≤ O(k2 log(k) · τ2).

The second sum is ∑
i≥i0

O(k · i · 2−i)

which needs to be considered with a bit of care since i0 may be negative. Summing over any
negative values of i obviously gives a negative contribution. Summing over positive values of i gives
at most O(k) (and we note that indeed the contribution when i = 1 is Θ(k)). So the total sum is
at most

O(k2 log(k) · τ2 + k).

We note that either of the two summands may dominate depending on the relation between τ
and k). However, if we assume that τ < 10/

√
k (so i0 is a positive number), then the upper bound

on the second sum above becomes O(k2τ2 log(1/kτ2)), which is at most O(k2τ2 log(1/τ)), and we
can bound the whole quantity by O(k2τ2 log(k/τ)) as claimed.

C.2 The invariance principle for arbitrary functions of LTFs

The CLT in Proposition C.1 gives closeness in (non-quadratic) Wasserstein distance. As in Sec-
tion 5, using arguments from [CST14] this can be translated into closeness in union-of-orthants
distance. The details of the arguments are almost identical to the analysis from [CST14] since
now (as in that work) one of the random variables is a sum of independent vector-valued random
variables, the other is Gaussian, and the relevant Wasserstein distance under consideration is the
non-quadratic Wasserstein distance. In a bit more detail, the analogue of (20) is now established, as
in [CST14], using the Berry-Esseen theorem and the fact that each linear form is τ -regular, yielding
Γ ≤ O(k(r + τ)). The upper bound on Wasserstein distance that was provided by Theorem 7 in
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the [CST14] analysis is now provided by our Proposition C.1; to be more precise, the analogue to
the next-to-last centered equation in the proof of Theorem 5 of [CST14] in our setting is that we
have r∆/2 ≤ dW (Z,G′) which is O(k2τ2 log(k/τ)) by Proposition C.1. Optimizing the choice of
r to make Γ + ∆ as small as possible, we obtain the following (we refer the reader to the proof of
Theorem 5 of [CST14] for more details):

Theorem 17. Let h1, h2, . . . , hk be τ -regular LTFs, hi(x) = sign(W i
1x1 + · · ·+W i

nxn−θ) where we
have normalized so that each vector W i = (W i

1, . . . ,W
i
n) has two-norm 1. Let W be the k×n matrix

with (i, j) entry W i
j , and for ` ∈ [n] let W` denote the column vector with entries W 1

` , . . . ,W
k
` . For

` ∈ [n] let Z` denote the k-dimensional random variable Z` = x`W` where x = (x1, . . . ,xn) is
uniform over {−1, 1}n and let Z = Z1 + · · · + Zn. Let G′ be the k-dimensional random Gaussian
vector G′ = WG where G is distributed as N (0, 1)n. Then

dUO(Z,G′) ≤ O(k3/2τ
√

log(k/τ)).

(The condition τ < 10/
√
k in Proposition C.1 does not necessitate any condition on τ in

Theorem 17, because if τ ≥ 10/
√
k then the claimed bound of Theorem 17 holds trivially.) Finally,

we note that the desired invariance principle, Theorem 12, is a restatement of Theorem 17, using
the connection between union-of-orthants distance and any k-variable Boolean combining function
g that was formalized in Observation 7.
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