
Relative Error Tensor Low Rank Approximation

Zhao Song∗
zhaos@utexas.edu

UT-Austin

David P. Woodruff
dpwoodru@us.ibm.com

IBM Almaden

Peilin Zhong†
peilin.zhong@columbia.edu

Columbia University

Abstract

We consider relative error low rank approximation of tensors with respect to the Frobenius
norm. Namely, given an order-q tensor A ∈ R

∏q
i=1 ni , output a rank-k tensor B for which

‖A − B‖2F ≤ (1 + ε) OPT, where OPT = infrank-k A′ ‖A − A′‖2F . Despite much success on
obtaining relative error low rank approximations for matrices, no such results were known for
tensors for arbitrary (1+ε)-approximations. One structural issue is that there may be no rank-k
tensor Ak achieving the above infinum. Another, computational issue, is that an efficient relative
error low rank approximation algorithm for tensors would allow one to compute the rank of a
tensor, which is NP-hard. We bypass these two issues via (1) bicriteria and (2) parameterized
complexity solutions:

1. We give an algorithm which outputs a rank k′ = O((k/ε)q−1) tensor B for which ‖A −
B‖2F ≤ (1+ ε) OPT in nnz(A)+n ·poly(k/ε) time in the real RAM model, whenever either
Ak exists or OPT > 0. Here nnz(A) denotes the number of non-zero entries in A. If both
Ak does not exist and OPT = 0, then B instead satisfies ‖A − B‖2F < γ, where γ is any
positive, arbitrarily small function of n.

2. We give an algorithm for any δ > 0 which outputs a rank k tensor B for which ‖A−B‖2F ≤
(1+ ε) OPT and runs in (nnz(A)+npoly(k/ε)+exp(k2/ε)) ·nδ time in the unit cost RAM

model, whenever OPT > 2−O(nδ) and there is a rank-k tensor B =
∑k
i=1 ui ⊗ vi ⊗ wi for

which ‖A − B‖2F ≤ (1 + ε/2) OPT and ‖ui‖2, ‖vi‖2, ‖wi‖2 ≤ 2O(nδ). If OPT ≤ 2−Ω(nδ),
then B instead satisfies ‖A−B‖2F ≤ 2−Ω(nδ).

Our first result is polynomial time, and in fact input sparsity time, in n, k, and 1/ε, for any
k ≥ 1 and any 0 < ε < 1, while our second result is fixed parameter tractable in k and 1/ε. For
outputting a rank-k tensor, or even a bicriteria solution with rank-Ck for a certain constant
C > 1, we show a 2Ω(k1−o(1)) time lower bound under the Exponential Time Hypothesis.

Our results are based on an “iterative existential argument”, and also give the first relative
error low rank approximations for tensors for a large number of error measures for which nothing
was known. In particular, we give the first relative error approximation algorithms on tensors
for: column row and tube subset selection, entrywise `p-low rank approximation for 1 ≤ p < 2,
low rank approximation with respect to sum of Euclidean norms of faces or tubes, weighted low
rank approximation, and low rank approximation in distributed and streaming models. We also
obtain several new results for matrices, such as nnz(A)-time CUR decompositions, improving
the previous nnz(A) log n-time CUR decompositions, which may be of independent interest.

∗Work done while visiting IBM Almaden, and supported in part by UTCS TAship (CS361 Spring 17 Introduction
to Computer Security).
†Supported in part by Simons Foundation, and NSF CCF-1617955.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 103 (2018)

Contents

1 Introduction 4
1.1 Our Results . 6
1.2 Our Techniques . 9
1.3 Other Low Rank Approximation Algorithms Following Our Framework. 11
1.4 Comparison to [BCV14] . 16
1.5 An Algorithm and a Roadmap . 16

A Notation 17

B Preliminaries 19
B.1 Subspace Embeddings and Approximate Matrix Product 20
B.2 Tensor CURT decomposition . 20
B.3 Polynomial system verifier . 24
B.4 Lower bound on the cost of a polynomial system . 25
B.5 Frobenius norm and `2 relaxation . 25
B.6 CountSketch and Gaussian transforms . 26
B.7 Cauchy and p-stable transforms . 27
B.8 Leverage scores . 28
B.9 Lewis weights . 28
B.10 TensorSketch . 30

C Frobenius Norm for Arbitrary Tensors 31
C.1 (1 + ε)-approximate low-rank approximation . 31
C.2 Input sparsity reduction . 35
C.3 Tensor multiple regression . 37
C.4 Bicriteria algorithms . 38

C.4.1 Solving a small regression problem . 38
C.4.2 Algorithm I . 40
C.4.3 poly(k)-approximation to multiple regression 44
C.4.4 Algorithm II . 46

C.5 Generalized matrix row subset selection . 47
C.6 Column, row, and tube subset selection, (1 + ε)-approximation 51
C.7 CURT decomposition, (1 + ε)-approximation . 53

C.7.1 Properties of leverage score sampling and BSS sampling 53
C.7.2 Row sampling for linear regression . 54
C.7.3 Leverage scores for multiple regression . 56
C.7.4 Sampling columns according to leverage scores implicitly, improving polyno-

mial running time to nearly linear running time 58
C.7.5 Input sparsity time algorithm . 61
C.7.6 Optimal sample complexity algorithm . 63

C.8 Face-based selection and decomposition . 64
C.8.1 Column-row, column-tube, row-tube face subset selection 64
C.8.2 CURT decomposition . 67

C.9 Solving small problems . 69
C.10 Extension to general q-th order tensors . 70

C.10.1 Fast sampling of columns according to leverage scores, implicitly 70

1

C.10.2 General iterative existential proof . 73
C.10.3 General input sparsity reduction . 74
C.10.4 Bicriteria algorithm . 74
C.10.5 CURT decomposition . 75

C.11 Matrix CUR decomposition . 76
C.11.1 Algorithm . 76
C.11.2 Stronger property achieved by leverage scores 78

D Entry-wise `1 Norm for Arbitrary Tensors 82
D.1 Facts . 82
D.2 Existence results . 83
D.3 Polynomial in k size reduction . 86
D.4 Solving small problems . 90
D.5 Bicriteria algorithms . 91

D.5.1 Input sparsity time . 91
D.5.2 Improving cubic rank to quadratic rank . 93

D.6 Algorithms . 95
D.6.1 Input sparsity time algorithm . 95
D.6.2 Õ(k3/2)-approximation algorithm . 97

D.7 CURT decomposition . 97

E Entry-wise `p Norm for Arbitrary Tensors, 1 < p < 2 101
E.1 Existence results for matrix case . 101
E.2 Existence results . 102
E.3 Polynomial in k size reduction . 105
E.4 Solving small problems . 107
E.5 Bicriteria algorithm . 107
E.6 Algorithms . 109
E.7 CURT decomposition . 109

F Robust Subspace Approximation (Asymmetric Norms for Arbitrary Tensors) 112
F.1 Preliminaries . 112
F.2 `1-Frobenius (a.k.a `1-`2-`2) norm . 112

F.2.1 Definitions . 112
F.2.2 Sampling and rescaling sketches . 113
F.2.3 No dilation and no contraction . 114
F.2.4 Oblivious sketches, MSketch . 116
F.2.5 Running time analysis . 117
F.2.6 Algorithms . 118

F.3 `1-`1-`2 norm . 125
F.3.1 Definitions . 125
F.3.2 Projection via Gaussians . 126
F.3.3 Reduction, projection to high dimension . 128
F.3.4 Existence results . 129
F.3.5 Running time analysis . 131
F.3.6 Algorithms . 132

2

G Weighted Frobenius Norm for Arbitrary Tensors 134
G.1 Definitions and Facts . 134
G.2 r distinct faces in each dimension . 135
G.3 r distinct columns, rows and tubes . 139
G.4 r distinct columns and rows . 141

H Hardness 145
H.1 Definitions . 145
H.2 Symmetric tensor eigenvalue . 146
H.3 Symmetric tensor singular value, spectral norm and rank-1 approximation 147
H.4 Tensor rank is hard to approximate . 149

H.4.1 Cover number . 150
H.4.2 Properties of 3SAT instances . 151
H.4.3 Reduction . 153

H.5 Hardness result for robust subspace approximation 163
H.6 Extending hardness from matrices to tensors . 166

H.6.1 Entry-wise `1 norm and `1-`1-`2 norm . 167
H.6.2 `1-`2-`2 norm . 168

I Hard Instance 170
I.1 Frobenius CURT decomposition for 3rd order tensor 170
I.2 General Frobenius CURT decomposition for q-th order tensor 172

J Distributed Setting 175

K Streaming Setting 179

L Extension to Other Tensor Ranks 183
L.1 Tensor Tucker rank . 183

L.1.1 Definitions . 183
L.1.2 Algorithm . 183

L.2 Tensor Train rank . 186
L.2.1 Definitions . 186
L.2.2 Algorithm . 186

M Acknowledgments 190

References 191

3

1 Introduction

Low rank approximation of matrices is one of the most well-studied problems in randomized numer-
ical linear algebra. Given an n × d matrix A with real-valued entries, we want to output a rank-k
matrix B for which ‖A−B‖ is small, under a given norm. While this problem can be solved exactly
using the singular value decomposition for some norms like the spectral and Frobenius norms, the
time complexity is still min(ndω−1, dnω−1), where ω ≈ 2.376 is the exponent of matrix multiplication
[Str69, CW87, Wil12]. This time complexity is prohibitive when n and d are large. By now there
are a number of approximation algorithms for this problem, with the Frobenius norm 1 being one of
the most common error measures. Initial solutions [FKV04, AM07] to this problem were based on
sampling and achieved additive error in terms of ε‖A‖F , where ε > 0 is an approximation parameter,
which can be arbitrarily larger than the optimal cost OPT = minrank-k B ‖A − B‖2F . Since then a
number of solutions based on the technique of oblivious sketching [Sar06, CW13, MM13, NN13] as
well as sampling based on non-uniform distributions [DMM06b, DMM06a, DMM08, DMIMW12],
have been proposed which achieve the stronger notion of relative error, namely, which output a rank-
k matrix B for which ‖A−B‖2F ≤ (1+ε) OPT with high probability. It is now known how to output
a factorization of such a B = U ·V , where U is n×k and V is k×d, in nnz(A)+(n+d) poly(k/ε) time
[CW13, MM13, NN13]. Such an algorithm is optimal, up to the poly(k/ε) factor, as any algorithm
achieving relative error must read almost all of the entries.

Tensors are often more useful than matrices for capturing higher order relations in data. Com-
puting low rank factorizations of approximations of tensors is the primary task of interest in
a number of applications, such as in psychology[Kro83], chemometrics [Paa00, SBG04], neuro-
science [AAB+07, KB09, CLK+15], computational biology [CV15, SC15], natural language pro-
cessing [CYYM14, LZBJ14, LZMB15, BNR+15], computer vision [VT02, WA03, SH05, HPS05,
HD08, AFdLGTL09, PLY10, LFC+16, CLZ17], computer graphics [VT04, WWS+05, Vas09], secu-
rity [AÇKY05, ACY06, KB06], cryptography [FS99, Sch12, KYFD15, SHW+16] data mining [KS08,
RST10, KABO10, Mør11], machine learning applications such as learning hidden Markov models,
reinforcement learning, community detection, multi-armed bandit, ranking models, neural network,
Gaussian mixture models and Latent Dirichlet allocation [MR05, AFH+12, HK13, ALB13, ABSV14,
AGH+14, AGHK14, BCV14, JO14a, GHK15, PBLJ15, JSA15, ALA16, AGMR16, ZSJ+17], pro-
gramming languages [RTP16], signal processing [Wes94, DLDM98, Com09, CMDL+15], and other
applications [YCS11, LMWY13, OS14, ZCZJ14, STLS14, YCS16, RNSS16].

Despite the success for matrices, the situation for order-q tensors for q > 2 is much less
understood. There are a number of works based on alternating minimization [CC70, Har70,
FMPS13, FT15, ZG01, BS15] gradient descent or Newton methods [ES09, ZG01], methods based
on the Higher-order SVD (HOSVD) [LMV00a] which provably incur Ω(

√
n)-inapproximability for

Frobenius norm error [LMV00b], the power method or orthogonal iteration method [LMV00b],
additive error guarantees in terms of the flattened (unfolded) tensor rather than the original
tensor [MMD08], tensor trains [Ose11], the tree Tucker decomposition [OT09], or methods spe-
cialized to orthogonal tensors [KM11, AGH+14, MHG15, WTSA15, WA16, SWZ16]. There are
also a number of works on the problem of tensor completion, that is, recovering a low rank
tensor from missing entries [WM01, AKDM10, TSHK11, LMWY13, MHWG14, JO14b, BM16].
There is also another line of work using the sum of squares (SOS) technique to study tensor
problems [BKS15, GM15, HSS15, HSSS16, MSS16, PS17, SS17], other recent work on tensor
PCA [All12b, All12a, RM14, JMZ15, ADGM16, ZX17], and work applying smoothed analysis to
tensor decomposition [BCMV14]. Several previous works also consider more robust norms than

1Recall the Frobenius norm ‖A‖F of a matrix A is (
∑n
i=1

∑d
j=1 A

2
i,j)

1/2.

4

the Frobenius norm for tensors, e.g., the R1 norm (`1-`2-`2 norm in our work) [HD08], `1-PCA
[PLY10], entry-wise `1 regularization [GGH14], M-estimator loss [YFS16], weighted approximation
[Paa97, TK11, LRHG13], tensor-CUR [OST08, MMD08, CC10, FMMN11, FT15], or robust tensor
PCA [GQ14, LFC+16, CLZ17].

Some of the above works, such as ones based on the tensor power method or alternating min-
imization, require incoherence or orthogonality assumptions. Others, such as those based on the
simultaneous SVD, require an assumption on the minimum singular value. See the monograph of
Moitra [Moi14] for further discussion. Unlike the situation for matrices, there is no work for tensors
that is able to achieve the following natural relative error guarantee: given a q-th order tensor
A ∈ Rn⊗q and an arbitrary accuracy parameter ε > 0, output a rank-k tensor B for which

‖A−B‖2F ≤ (1 + ε) OPT, (1)

where OPT = infrank-k B′ ‖A−B′‖2F , and where recall the rank of a tensor B is the minimal integer
k for which B can be expressed as

∑k
i=1 ui ⊗ vi ⊗ wi. A third order tensor, for example, has rank

which is an integer in {0, 1, 2, . . . , n2}. We note that [BCV14] is able to achieve a relative error
5-approximation for third order tensors, and an O(q)-approximation for q-th order tensors, though
it cannot achieve a (1 + ε)-approximation. We compare our work to [BCV14] in Section 1.4 below.

For notational simplicity, we will start by assuming third order tensors with all dimensions of
equal size, but we extend all of our main theorems below to tensors of any constant order q > 3 and
dimensions of different sizes.

The first caveat regarding (1) for tensors is that an optimal rank-k solution may not even exist!
This is a well-known problem for tensors (see, e.g., [KHL89, Paa00, KDS08, Ste06, Ste08] and more
details in section 4 of [DSL08]), for which for any rank-k tensor B, there always exists another
rank-k tensor B′ for which ‖A − B′‖2F < ‖A − B‖2F . If OPT = 0, then in this case for any rank-k
tensor B, necessarily ‖A−B‖2F > 0, and so (1) cannot be satisfied. This fact was known to algebraic
geometers as early as the 19th century, which they refer to as the fact that the locus of r-th secant
planes to a Segre variety may not define a (closed) algebraic variety [DSL08, Lan12]. It is also known
as the phenomenon underlying the concept of border rank2[Bin80, Bin86, BCS97, Knu98, Lan06]. In
this case it is natural to allow the algorithm to output an arbitrarily small γ > 0 amount of additive
error. Note that unlike several additive error algorithms for matrices, the additive error here can in
fact be an arbitrarily small positive function of n. If, however, OPT > 0, then for any ε > 0, there
exists a rank-k tensor B for which ‖A−B‖2F ≤ (1 + ε) OPT, and in this case we should still require
the algorithm to output a relative-error solution. If an optimal rank-k solution B exists, then as for
matrices, it is natural to require the algorithm to output a relative-error solution.

Besides the above definitional issue, a central reason that (1) has not been achieved is that
computing the rank of a third order tensor is well-known to be NP-hard [Hås90, HL13]. Thus, if
one had such a polynomial time procedure for solving the problem above, one could determine the
rank of A by running the procedure on each k ∈ {0, 1, 2, . . . , n2}, and check for the first value of k
for which ‖A − B‖2F = 0, thus determining the rank of A. However, it is unclear if approximating
the tensor rank is hard. This question will also be answered in this work.

The main question which we address is how to define a meaningful notion of (1) for the case
of tensors and whether it is possible to obtain provably efficient algorithms which achieve this
guarantee, without any assumptions on the tensor itself. Besides (1), there are many other notions
of relative error for low rank approximation of matrices for which provable guarantees for tensors
are unknown, such as tensor CURT, R1 norm, and the weighted and `1 norms mentioned above.
Our goal is to provide a general technique to obtain algorithms for many of these variants as well.

2https://en.wikipedia.org/wiki/Tensor_rank_decomposition#Border_rank

5

https://en.wikipedia.org/wiki/Tensor_rank_decomposition#Border_rank

1.1 Our Results

To state our results, we first consider the case when a rank-k solution Ak exists, that is, there exists
a rank-k tensor Ak for which ‖A−Ak‖2F = OPT.

We first give a poly(n, k, 1/ε)-time (1 + ε)-relative error approximation algorithm for any 0 <
ε < 1 and any k ≥ 1, but allow the output tensor B to be of rank O((k/ε)2) (for general q-order
tensors, the output rank is O((k/ε)q−1), whereas we measure the cost of B with respect to rank-k
tensors. Formally, ‖A − B‖2F ≤ (1 + ε)‖A − Ak‖2F . In fact, our algorithm can be implemented in
nnz(A)+n ·poly(k/ε) time in the real-RAM model, where nnz(A) is the number of non-zero entries
of A. Such an algorithm is optimal for any relative error algorithm, even bicriteria ones.

If Ak does not exist, then our output B instead satisfies ‖A−B‖2F ≤ (1 + ε) OPT +γ, where γ
is an arbitrarily small additive error. Since γ is arbitrarily small, (1 + ε) OPT +γ is still a relative
error whenever OPT > 0. Our theorem is as follows.

Theorem 1.1 (A Version of Theorem C.9, bicriteria). Given a 3rd order tensor A ∈ Rn×n×n, if Ak
exists then there is a randomized algorithm running in nnz(A) + n · poly(k/ε) time which outputs a
(factorization of a) rank-O(k2/ε2) tensor B for which ‖A−B‖2F ≤ (1+ε)‖A−Ak‖2F . If Ak does not
exist, then the algorithm outputs a rank-O(k2/ε2) tensor B for which ‖A−B‖2F ≤ (1 + ε) OPT +γ,
where γ > 0 is an arbitrarily small positive function of n. In both cases, the success probability is
at least 2/3.

One of the main applications of matrix low rank approximation is parameter reduction, as one
can store the matrix using fewer parameters in factored form or more quickly multiply by the
matrix if given in factored form, as well as remove directions that correspond to noise. In such
applications, it is not essential that the low rank approximation have rank exactly k, since one still
has a significant parameter reduction with a matrix of slightly larger rank. This same motivation
applies to tensor low rank approximation; we obtain both space and time savings by representing
a tensor in factored form, and in such applications bicriteria applications suffice. Moreover, the
extremely efficient nnz(A) + n · poly(k/ε) time algorithm we obtain may outweigh the need for
outputting a tensor of rank exactly k. Bicriteria algorithms are common for coping with hardness;
see e.g., results on robust low rank approximation of matrices [DV07, FFSS07, CW15a], sparse
recovery [CKPS16], clustering [MMSW15, HT16], and approximation algorithms more generally.

We note that there are other applications, such as unique tensor decomposition in the method
of moments, see, e.g., [BCV14], where one may have a hard rank constraint of k for the output.
However, in such applications the so-called Tucker decomposition is still a useful dimensionality-
reduction analogue of the SVD and our techniques for proving Theorem 1.1 can also be used for
obtaining Tucker decompositions, see Section L.

We next consider the case when the rank parameter k is small, and we try to obtain rank-k
solutions which are efficient for small values of k. As before, we first suppose that Ak exists.

If Ak =
∑k

i=1 ui⊗vi⊗wi and the norms ‖ui‖2, ‖vi‖2, and ‖wi‖2 are bounded by 2poly(n), we can
return a rank-k solution B for which ‖A−B‖2F ≤ (1+ε)‖A−Ak‖2F +2− poly(n), in f(k, 1/ε) ·poly(n)
time in the standard unit cost RAM model with words of size O(log n) bits. Thus, our algorithm
is fixed parameter tractable in k and 1/ε, and in fact remains polynomial time for any values of
k and 1/ε for which k2/ε = O(log n). This is motivated by a number of low rank approximation
applications in which k is typically small. The additive error of 2− poly(n) is only needed in order
to write down our solution B in the unit cost RAM model, since in general the entries of B may
be irrational, even if the entries of A are specified by poly(n) bits. If instead we only want to
output an approximation to the value ‖A − Ak‖2F , then we can output a number Z for which
OPT ≤ Z ≤ (1 + ε) OPT, that is, we do not incur additive error.

6

When Ak does not exist, there still exists a rank-k tensor Ã for which ‖A − Ã‖2F ≤ OPT +γ.
We require there exists such a Ã for which if Ã =

∑k
i=1 ui ⊗ vi ⊗ wi, then the norms ‖ui‖2, ‖vi‖2,

and ‖wi‖2 are bounded by 2poly(n).
The assumption in the previous two paragraphs that the factors of Ak and of Ã have norm

bounded by 2poly(n) is necessary in certain cases, e.g., if OPT = 0 and we are to write down the
factors in poly(n) time. An abridged version of our theorem is as follows.

Theorem 1.2 (Combination of Theorem C.1 and C.2, rank-k). Given a 3rd order tensor A ∈
Rn×n×n, for any δ > 0, if Ak =

∑k
i=1 ui⊗vi⊗wi exists and each of ‖ui‖2, ‖vi‖2, and ‖wi‖2 is bounded

by 2O(nδ), then there is a randomized algorithm running in O(nnz(A) +n poly(k, 1/ε) + 2O(k2/ε)) ·nδ
time in the unit cost RAM model with words of size O(log n) bits3, which outputs a (factorization
of a) rank-k tensor B for which ‖A−B‖2F ≤ (1 + ε)‖A−Ak‖2F + 2−O(nδ). Further, we can output a
number Z for which OPT ≤ Z ≤ (1+ε) OPT in the same amount of time. When Ak does not exist, if
there exists a rank-k tensor Ã for which ‖A−Ã‖2F ≤ OPT +2−O(nδ) and Ã =

∑k
i=1 ui⊗vi⊗wi is such

that the norms ‖ui‖2, ‖vi‖2, and ‖wi‖2 are bounded by 2O(nδ), then we can output a (factorization
of a) rank-k tensor Ã for which ‖A− Ã‖2F ≤ (1 + ε) OPT +2−O(nδ).

Our techniques for proving Theorem 1.1 and Theorem 1.2 open up avenues for many other
problems in linear algebra on tensors. We now define the problems and state our results for them.

There is a long line of research on matrix column subset selection and CUR decomposition
[DMM08, BMD09, DR10, BDM11, FEGK13, BW14, WS15, ABF+16, SWZ17] under operator,
Frobenius, and entry-wise `1 norm. It is natural to consider tensor column subset selection or tensor-
CURT4, however most previous works either give error bounds in terms of the tensor flattenings
[DMM08], assume the original tensor has certain properties [OST08, FT15, TM17], consider the
exact case which assumes the tensor has low rank [CC10], or only fit a high dimensional cross-shape
to the tensor rather than to all of its entries [FMMN11]. Such works are not able to provide a (1+ε)-
approximation guarantee as in the matrix case without assumptions. We consider tensor column,
row, and tube subset selection, with the goal being to find three matrices: a subset C ∈ Rn×c of
columns of A, a subset R ∈ Rn×r of rows of A, and a subset T ∈ Rn×t of tubes of A, such that
there exists a tensor U ∈ Rc×r×t for which

‖U(C,R, T)−A‖ξ ≤ α‖Ak −A‖ξ + γ, (2)

where γ = 0 if Ak exists and γ = 2− poly(n) otherwise, α > 1 is the approximation ratio, ξ is either
Frobenius norm or Entry-wise `1 norm, and U(C,R, T) =

∑c
i=1

∑r
j=1

∑t
l=1 Ui,j,l · Ci ⊗Rj ⊗ Tl. In

tensor CURT decomposition, we also want to output U .
We provide a (nearly) input sparsity time algorithm for this, together with an alternative input

sparsity time algorithm which chooses slightly larger factors C,R, and T .
To do this, we combine Theorem 1.1 with the following theorem which, given a factorization of

a rank-k tensor B, obtains C, U , R, and T in terms of it:

Theorem 1.3 (Combination of Theorem C.40 and C.41, ‖‖F -norm, CURT decomposition). Given a
3rd order tensor A ∈ Rn×n×n, let k ≥ 1, and let UB, VB,WB ∈ Rn×k be given. There is an algorithm
running in O(nnz(A) log n)+Õ(n2) poly(k, 1/ε) time (respectively, O(nnz(A))+n poly(k, 1/ε) time)
which outputs a subset C ∈ Rn×c of columns of A, a subset R ∈ Rn×r of rows of A, a subset T ∈ Rn×t
of tubes of A, together with a tensor U ∈ Rc×r×t with rank(U) = k such that c = r = t = O(k/ε)
(respectively, c = r = t = O(k log k+k/ε)), and ‖U(C,R, T)−A‖2F ≤ (1 + ε)‖UB⊗VB⊗WB−A‖2F
holds with probability at least 9/10.

3The entries of A are assumed to fit in nδ words.
4T denotes the tube which is the column in 3rd dimension of tensor.

7

Combining Theorems 1.2 and 1.3 (with B being a (1 + O(ε))-approximation to A) we achieve
Equation (2) with α = (1 + ε) and ξ = F with the optimal number of columns, rows, tubes, and
rank of U (we mention our matching lower bound later), though the running time has an 2O(k2/ε)

term in it. We note that instead combining Theorem 1.1 and Theorem 1.3 gives a bicriteria result
for CURT without a 2O(k2/ε) term in the running time, though it is suboptimal in the number of
columns, rows, tubes, and rank of U .

We also obtain several algorithms for tensor entry-wise `p norm low-rank approximation, as well
as results for asymmetric tensor norms, which are natural extensions of the matrix `1-`2 norm. Here,
for a tensor A, ‖A‖v =

∑
i(
∑

j,k(Ai,j,k)
2)

1
2 and ‖A‖u =

∑
i,j(
∑

k(Ai,j,k)
2)

1
2 .

Theorem 1.4 (Combination of Theorem D.14 (‖‖1-norm), Theorem E.9 (‖‖p-norm, p ∈ (0, 1))
Theorem F.23 (‖‖v-norm or `1-`2-`2), Theorem F.37 (‖‖u-norm or `1-`1-`2)). Given a 3rd order
tensor A ∈ Rn×n×n, for any k ≥ 1, let r = Õ(k2). If Ak exists then there is an algorithm which
runs in nnz(A) · t + Õ(n) poly(k) time and outputs a (factorization of a) rank-r tensor B for
which ‖B − A‖ξ ≤ poly(k, log n) · ‖Ak − A‖ξ holds. If Ak does not exist, we have ‖B − A‖ξ ≤
poly(k, log n)·OPT +γ, where γ is an arbitrarily small positive function of n. The success probability
is at least 9/10. For ξ = 1 or p, t = Õ(k); for ξ = v, t = O(1); for ξ = u, t = O(n).

As in the case of Frobenius norm, we can get rank-k and CURT algorithms for the above norms.
Our results for asymmetric norms can be extended to `p-`2-`2, `p-`p-`2, and families of M-estimators.

We also obtain the following result for weighted tensor low-rank approximation.

Theorem 1.5 (Informal Version of Theorem G.5, weighted). Suppose we are given a third order
tensor A ∈ Rn×n×n, as well as a tensor W ∈ Rn×n×n with r distinct rows and r distinct columns.
Suppose there is a rank-k tensor A′ ∈ Rn×n×n for which ‖W ◦ (A′−A)‖2F = OPT and one can write
A′ =

∑k
i=1 ui ⊗ vi ⊗ wi for ‖ui‖2, ‖vi‖2, and ‖wi‖2 bounded by 2n

δ . Then there is an algorithm
running in (nnz(A) + nnz(W) + n2Õ(r2k2/ε)) · nδ time and outputting n× k matrices U1, U2, U3 for
which ‖W ◦ (U1 ⊗ U2 ⊗ U3 −A)‖2F ≤ (1 + ε) OPT with probability at least 2/3.

We next strengthen Håstad’s NP-hardness to show that even approximating tensor rank is hard
(we note at the time of Håstad’s NP-hardness, there was no PCP theorem available; nevertheless
we need to do additional work here):

Theorem 1.6 (Informal Version of Theorem H.42). Let q ≥ 3. Unless the Exponential Time
Hypothesis (ETH) fails, there is an absolute constant c0 > 1 for which distinguishing if a tensor in
Rnq has rank at most k, or at least c0 · k, requires 2δk

1−o(1) time, for a constant δ > 0.

Under random-ETH [Fei02, GL04, RSW16], an average case hardness assumption for 3SAT , we
can replace the k1−o(1) in the exponent above with a k. We also obtain hardness in terms of ε:

Theorem 1.7 (Informal Version of Corollary H.22). Let q ≥ 3. Unless ETH fails, there is no
algorithm running in 2o(1/ε

1/4) time which, given a tensor A ∈ Rnq , outputs a rank-1 tensor B for
which ‖A−B‖2F ≤ (1 + ε) OPT.

As a side result worth stating, our analysis improves the best matrix CUR decomposition algo-
rithm under Frobenius norm [BW14], providing the first optimal nnz(A)-time algorithm:

Theorem 1.8 (Informal Version of Theorem C.48, Matrix CUR decomposition). There is an algo-
rithm, which given a matrix A ∈ Rn×d and an integer k ≥ 1, runs in O(nnz(A))+(n+d) poly(k, 1/ε)
time and outputs three matrices: C ∈ Rn×c containing c columns of A, R ∈ Rr×d containing r
rows of A, and U ∈ Rc×r with rank(U) = k for which r = c = O(k/ε) and ‖CUR − A‖2F ≤
(1 + ε) minrank−k Ak ‖Ak −A‖2F , holds with probability at least 9/10.

8

1.2 Our Techniques

Many of our proofs, in particular those for Theorem 1.1 and Theorem 1.2, are based on what we
call an “iterative existential proof”, which we then turn into an algorithm in two different ways
depending if we are proving Theorem 1.1 or Theorem 1.2.

Henceforth, we assume Ak exists; otherwise replace Ak with a suitably good tensor Ã in what
follows. Since Ak =

∑k
i=1 U

∗
i ⊗ V ∗i ⊗W ∗i 5, we can create three n × k matrices U∗, V ∗, and W ∗

whose columns are the vectors U∗i , V
∗
i , and W

∗
i , respectively. Now we consider the three different

flattenings (or unfoldings) of Ak, which express Ak as an n×n2 matrix. Namely, by thinking of Ak
as the sum of outer products, we can write the three flattenings of Ak as U∗ ·Z1, V ∗ ·Z2, andW ∗ ·Z3,
where the rows of Z1 are vec(V ∗i ⊗W ∗i) 6 (For simplicity, we write Z1 = (V ∗>�W ∗>). 7), the rows
of Z2 are vec(U∗i ⊗W ∗i), and the rows of Z3 are vec(U∗i ⊗ V ∗i), for i ∈ [k]

def
= {1, 2, . . . , k}. Letting

the three corresponding flattenings of the input tensor A be A1, A2, and A3, by the symmetry of
the Frobenius norm, we have ‖A−B‖2F = ‖A1 − U∗Z1‖2F = ‖A2 − V ∗Z2‖2F = ‖A3 −W ∗Z3‖2F .

Let us consider the hypothetical regression problem minU ‖A1 − UZ1‖2F . Note that we do not
know Z1, but we will not need to. Let r = O(k/ε), and suppose S1 is an n2 × r matrix of i.i.d.
normal random variables with mean 0 and variance 1/r, denoted N(0, 1/r). Then by standard
results for regression (see, e.g., [Woo14] for a survey), if Û is the minimizer to the smaller regression
problem Û = argminU‖UZ1S1 −A1S1‖2F , then

‖A1 − ÛZ1‖2F ≤ (1 + ε)minU‖A1 − UZ1‖2F . (3)

Moreover,Û = A1S1(Z1S1)†. Although we do not know know Z1, this implies Û is in the column
span of A1S1, which we do know, since we can flatten A to compute A1 and then compute A1S1.
Thus, this hypothetical regression argument gives us an existential statement - there exists a good
rank-k matrix Û in the column span of A1S1. We could similarly define V̂ = A2S2(Z2S2)† and
Ŵ = A3S3(Z3S3)† as solutions to the analogous regression problems for the other two flattenings
of A, which are in the column spans of A2S2 and A3S3, respectively. Given A1S1, A2S2, and A3S3,
which we know, we could hope there is a good rank-k tensor in the span of the rank-1 tensors

{(A1S1)a ⊗ (A2S2)b ⊗ (A3S3)c}a,b,c∈[r]. (4)

However, an immediate issue arises. First, note that our hypothetical regression problem guarantees
that ‖A1 − ÛZ1‖2F ≤ (1 + ε)‖A− Ak‖2F , and therefore since the rows of Z1 are of the special form
vec(V ∗i ⊗W ∗i), we can perform a “retensorization” to create a rank-k tensor B =

∑
i Ûi ⊗ V ∗i ⊗W ∗i

from the matrix ÛZ1 for which ‖A−B‖2F ≤ (1 + ε)‖A− Ak‖2F . While we do not know Û , since it
is in the column span of A1S1, it implies that B is in the span of the rank-1 tensors {(A1S1)a ⊗
V ∗b ⊗W ∗c }a∈[r],b,c∈[k]. Analogously, we have that there is a good rank-k tensor B in the span of the
rank-1 tensors {U∗a⊗(A2S2)b⊗W ∗c }a,c∈[k],b∈[r], and a good rank-k tensor B in the span of the rank-1
tensors {U∗a ⊗ V ∗b ⊗ (A3S3)c}a,b∈[k],c∈[r]. However, we do not know U∗ or V ∗, and it is not clear
there is a rank-k tensor B for which simultaneously its first factors are in the column span of A1S1,
its second factors are in the column span of A2S2, and its third factors are in the column span of
A3S3, i.e., whether there is a good rank-k tensor B in the span of rank-1 tensors in (4).

We fix this by an iterative argument. Namely, we first computeA1S1, and write Û = A1S1(Z1S1)†.
We now redefine Z2 with respect to Û , so the rows of Z2 are vec(Ûi ⊗W ∗i) for i ∈ [k], and consider

5For simplicity, we define U ⊗ V ⊗W =
∑k
i=1 Ui ⊗ Vi ⊗Wi, where Ui is the i-th column of U .

6vec(V ∗i ⊗W ∗i) denotes a row vector that has length n1n2 where V ∗i has length n1 and W ∗i has length n2.
7(V ∗> �W ∗>) denotes a k × n1n2 matrix where the i-th row is vec(V ∗i ⊗W ∗i), where length n1 vector V ∗i is the

i-th column of n1 × k matrix V ∗, and length n2 vector W ∗i is the i-th column of n2 × k matrix W ∗, ∀i ∈ [k].

9

the regression problem minV ‖A2 − V Z2‖2F . While we do not know Z2, if S2 is an n2 × r matrix of
i.i.d. Gaussians, we again have the statement that V̂ = A2S2(Z2S2)† satisfies

‖A2 − V̂ Z2‖2F ≤ (1 + ε)minV ‖A2 − V Z2‖2F by the regression guarantee with Gaussians
≤ (1 + ε)‖A2 − V ∗Z2‖2F since V ∗ is no better than the minimizer V
= (1 + ε)‖A1 − ÛZ1‖2F by retensorizing and flattening along a different dimension
≤ (1 + ε)2minU‖A1 − UZ1‖2F by (3)
= (1 + ε)2‖A−Ak‖2F by definition of Z1 .

Now we can retensorize V̂ Z2 to obtain a rank-k tensor B for which ‖A − B‖2F = ‖A2 − V̂ Z2‖2F ≤
(1 + ε)2‖A− Ak‖2F . Note that since the columns of V̂ are in the span of A2S2, and the rows of Z2

are vec(Ûi ⊗W ∗i) for i ∈ [k], where the columns of Û are in the span of A1S1, it follows that B is
in the span of rank-1 tensors {(A1S1)a ⊗ (A2S2)b ⊗ V̂c}a,b∈[r],c∈[k].

Suppose we now redefine Z3 so that it is now an r2×n2 matrix with rows vec((A1S1)a⊗(A2S2)b)
for all pairs a, b ∈ [r], and consider the regression problem minW ‖A3 −WZ3‖2F . Now observe that
since we know Z3, and since we can form A3 by flattening A, we can solve for W ∈ Rn×r2 in
polynomial time by solving a regression problem. Retensorizing WZ3 to a tensor B, it follows
that we have found a rank-r2 = O(k2/ε2) tensor B for which ‖A − B‖2F ≤ (1 + ε)2‖A − Ak‖2F =
(1 +O(ε))‖A−Ak‖2F , and the result follows by adjusting ε by a constant factor.

To obtain the nnz(A)+n poly(k/ε) running time guarantee of Theorem 1.1, while we can replace
S1 and S2 with compositions of a sparse CountSketch matrix and a Gaussian matrix (see chapter 2 of
[Woo14] for a survey), enabling us to compute A1S1 and A2S2 in nnz(A)+n poly(k/ε) time, we still
need to solve the regression problem minW ‖A3−WZ3‖2F quickly, and note that we cannot even write
down Z3 without spending r2n2 time. Here we use a different random matrix S3 called TensorSketch,
which was introduced in [Pag13, PP13], but for which we will need the stronger properties of a
subspace embedding and approximate matrix product shown to hold for it in [ANW14]. Given
the latter properties, we can instead solve the regression problem minW ‖A3S3 −WZ3S3‖2F , and
importantly A3S3 and Z3S3 can be computed in nnz(A) + n poly(k/ε) time. Finally, this small
problem can be solved in n poly(k/ε) time.

If we want to output a rank-k solution as in Theorem 1.2, then we need to introduce indeter-
minates at several places in the preceding argument and run a generic polynomial optimization
procedure which runs in time exponential in the number of indeterminates. Namely, we write Û as
A1S1X1, where X1 is an r×k matrix of indeterminates, we write V̂ as A2S2X2, where X2 is an r×k
matrix of indeterminates, and we write Ŵ as A3S3X3, whereX3 is an r×k matrix of indeterminates.
When executing the above iterative argument, we let the rows of Z1 be the vectors vec(V ∗i ⊗W ∗i),
the rows of Z2 be the vectors vec(Ûi ⊗W ∗i), and the rows of Z3 be the vectors vec(Ûi ⊗ Vi). Then
Û is a (1 + ε)-approximate minimizer to minU ‖A1−UZ1‖F , while V̂ is a (1 + ε)-approximate min-
imizer to minV ‖A2 − V Z2‖F , while Ŵ is a (1 + ε)-approximate minimizer to minW ‖A3 −WZ3‖F .
Note that by assigning X1 = (Z1S1)†, X2 = (Z2S2)†, and X3 = (Z3S3)†, it follows that the rank-k
tensor B =

∑k
i=1(A1S1X1)i ⊗ (A2S2X2)i ⊗ (A3S3X3)i satisfies ‖A−B‖2F ≤ (1 + ε)3‖A−Ak‖2F , as

desired. Note that here the rows of Z2 are a function of X1, while the rows of Z3 are a function
of both X1 and X2. What is important for us though is that it suffices to minimize the degree-6
polynomial

∑
a,b,c∈[n](

∑k
i=1(A1S1X1)a,i ·(A2S2X2)b,i ·(A3S3X3)c,i−Aa,b,c)2, over the 3rk = O(k2/ε)

indeterminates X1, X2, X3, since we know there exists an assignment to X1, X2, and X3 providing
a (1+O(ε))-approximate solution, and any solution X1, X2, and X3 found by minimizing the above
polynomial will be no worse than that solution. This polynomial can be minimized up to additive
2−poly(n) additive error in poly(n) time [Ren92a, BPR96] assuming the entries of U∗, V ∗, and W ∗

10

are bounded by 2poly(n), as assumed in Theorem 1.2. Similar arguments can be made for obtaining
a relative error approximation to the actual value OPT as well as handling the case when Ak does
not exist.

To optimize the running time to nnz(A), we can choose CountSketch matrices T1, T2, T3 of t =
poly(k, 1/ε)×n dimensions and reapply the above iterative argument. Then it suffices to minimize
this small size degree-6 polynomial

∑
a,b,c∈[t](

∑k
i=1(T1A1S1X1)a,i · (T2A2S2X2)b,i · (T3A3S3X3)c,i −

(A(T1, T2, T3))a,b,c)
2, over the 3rk = O(k2/ε) indeterminates X1, X2, X3. Outputting A1S1X1,

A2S2X2, A3S3X3 then provides a (1 + ε)-approximate solution.
Our iterative existential argument provides a general framework for obtaining low rank approx-

imation results for tensors for many other error measures as well.

1.3 Other Low Rank Approximation Algorithms Following Our Framework.

Column, row, tube subset selection, and CURT decomposition. In tensor column, row,
tube subset selection, the goal is to find three matrices: a subset C of columns of A, a subset
R of rows of A, and a subset T of tubes of A, such that there exists a small tensor U for which
‖U(C,R, T)−A‖2F ≤ (1+ ε) OPT. We first choose two Gaussian matrices S1 and S2 with s1 = s2 =

O(k/ε) columns, and form a matrix Z ′3 ∈ R(s1s2)×n2 with (i, j)-th row equal to the vectorization
of (A1S1)i ⊗ (A2S2)j . Motivated by the regression problem minW ‖A3 −WZ ′3‖F , we sample d3 =
O(s1s2/ε) columns from A3 and let D3 denote this selection matrix. There are a few ways to
do the sampling depending on the tradeoff between the number of columns and running time,
which we describe below. Proceeding iteratively, we write down Z ′2 by setting its (i, j)-th row to
the vectorization of (A1S1)i ⊗ (A3D3)j . We then sample d2 = O(s1d3/ε) columns from A2 and
let D2 denote that selection matrix. Finally, we define Z ′1 by setting its (i, j)-th row to be the
vectorization of (A2D2)i ⊗ (A3D3)j . We obtain C = A1D1, R = A2D2 and T = A3D3. For the
sampling steps, we can use a generalized matrix column subset selection technique, which extends a
column subset selection technique of [BW14] in the context of CUR decompositions to the case when
C is not necessarily a subset of the input. This gives O(nnz(A) log n) + Õ(n2) poly(k, 1/ε) time.
Alternatively, we can use a technique we develop called tensor leverage score sampling described
below, yielding O(nnz(A)) + n poly(k, 1/ε) time.

A body of work in the matrix case has focused on finding the best possible number of columns
and rows of a CUR decomposition, and we can ask the same question for tensors. It turns out
that if one is given the factorization

∑k
i=1(UB)i ⊗ (VB)i ⊗ (WB)i of a rank-k tensor B ∈ Rn×n×n

with UB, VB,WB ∈ Rn×k, then one can find a set C of O(k/ε) columns, a set R of O(k/ε) rows,
and a set T of O(k/ε) tubes of A, together with a rank-k tensor U for which ‖U(C,R, T)−A‖2F ≤
(1 + ε)‖A−B‖2F . This is based on an iterative argument, where the initial sampling (which needs
to be our generalized matrix column subset selection rather than tensor leverage score sampling
to achieve optimal bounds) is done with respect to V >B �W>B , and then an iterative argument is
carried out. Since we show a matching lower bound on the number of columns, rows, tubes and
rank of U , these parameters are tight. The algorithm is efficient if one is given a rank-k tensor B
which is a (1 + O(ε))-approximation to A; if not then one can use Theorem C.2 and and this step
will be exponential time in k. If one just wants O(k log k+k/ε) columns, rows, and tubes, then one
can achieve O(nnz(A)) + n poly(k, 1/ε) time, if one is given B.

Column-row, row-tube, tube-column face subset selection, and CURT decomposition.
In tensor column-row, row-tube, tube-column face subset selection, the goal is to find three tensors:
a subset C ∈ Rc×n×n of row-tube faces of A, a subset R ∈ Rn×r×n of tube-column faces of A,
and a subset T ∈ Rn×n×t of column-row faces of A, such that there exists a tensor U ∈ Rtn×cn×rn

11

with small rank for which ‖U(T1, C2, R3) − A‖2F ≤ (1 + ε) OPT, where T1 ∈ Rn×tn denotes the
matrix obtained by flattening the tensor T along the first dimension, C2 ∈ Rn×cn denotes the
matrix obtained by flattening the tensor C along the second dimension, and R3 ∈ Rn×rn denotes
the matrix obtained by flattening the tensor T along the third dimension.

We solve this problem by first choosing two Gaussian matrices S1 and S2 with s1 = s2 =
O(k/ε) columns, and then forming matrix U3 ∈ Rn×s1s2 with (i, j)-th column equal to (A1S1)i,
as well as matrix V3 ∈ Rn×s1s2 with (i, j)-th column equal to (A2S2)j . Inspired by the regression
problem minW∈Rn×s1s2 ‖V3 · (W> � U>3) − A2‖F , we sample d3 = O(s1s2/ε) rows from A2 and let
D3 ∈ Rn×n denote this selection matrix. In other words, D3 selects d3 tube-column faces from
the original tensor A. Thus, we obtain a small regression problem: minW ‖D3V3 · (W> � U>3) −
D3A2‖F . By retensorizing the objective function, we obtain the problem minW ‖U3⊗ (D3V3)⊗W −
A(I,D3, I)‖F . Flattening the objective function along the third dimension, we obtain minW ‖W ·
(U>3 � (D3V3)>)− (A(I,D3, I))3‖F which has optimal solution (A(I,D3, I))3(U>3 � (D3V3)>)†. Let
W ′ denote A(I,D3, I))3. In the next step, we fix W2 = W ′(U>3 � (D3V3)>)† and U2 = U3, and
consider the objective function minV ‖U2 · (V > �W>2) − A1‖F . Applying a similar argument, we
obtain V ′ = (A(D2, I, I))2 and U ′ = (A(I, I,D1)1). Let C denote A(D2, I, I), R denote A(I,D3, I),
and T denote A(I, I,D1). Overall, this algorithm selects poly(k, 1/ε) faces from each dimension.

Similar to our column-based CURT decomposition, our face-based CURT decomposition has
the property that if one is given the factorization

∑k
i=1(UB)i ⊗ (VB)i ⊗ (WB)i of a rank-k tensor

B ∈ Rn×n×n with UB, VB,WB ∈ Rn×k which is a (1+O(ε))-approximation to A, then one can find a
set C of O(k/ε) row-tube faces, a set R of O(k/ε) tube-column faces, and a set T of O(k/ε) column-
row faces of A, together with a rank-k tensor U for which ‖U(T1, C2, R3)−A‖2F ≤ (1 + ε) OPT.

Tensor multiple regression and tensor leverage score sampling. In the above we need to
consider standard problems for matrices in the context of tensors. Suppose we are given a matrix
A ∈ Rn1×n2n3 and a matrix B = (V > �W>) ∈ Rk×n2n3 with rows (Vi ⊗Wi) for an n2 × k matrix
V and n3 × k matrix W . Using TensorSketch [Pag13, PP13, ANW14] one can solve multiple
regression minU ‖UB−A‖F without forming B in O(n2+n3) poly(k, 1/ε) time, rather than the naïve
O(n2n3) poly(k, 1/ε) time. However, this does not immediately help us if we would like to sample
columns of such a matrix B proportional to its leverage scores. Even if we apply TensorSketch
to compute a k × k change of basis matrix R in O(n2 + n3) poly(k, log(n2n3)) time, for which the
leverage scores of B are (up to a constant factor) the squared column norms of R−1B, there are
still n2n3 leverage scores and we cannot write them all down! Nevertheless, we show we can still
sample by them by using that the matrix of interest is formed via a tensor product, which can be
rewritten as a matrix multiplication which we never need to explicily materialize. In more detail, for
the i-th row eiR

−1 of R−1, we create a matrix V ′i by scaling each of the columns of V > entrywise
by the entries of z. The squared norms of eiR−1B are exactly the squared entries of (V

′i)W>. We
cannot compute this matrix product, but we can first sample a column of it proportional to its
squared norm and then sample an entry in that column proportional to its square. To sample a
column, we compute G(V

′i)W> for a Gaussian matrix G with O(log n3) rows by computing G ·V ′i,
then computing (G · V ′i) ·W>, which is O(n2 + n3) poly(k, log(n2n3)) total time. After sampling a
column, we compute the column exactly and sample a squared entry. We do this for each i ∈ [k],
first sampling an i proportional to ‖GV ′iW>‖2F , then running the above scheme on that i. The
poly(log n) factor in the running time can be replaced by poly(k) if one wants to avoid a poly(log n)
dependence in the running time.

12

Entry-wise `1 low-rank approximation. We consider the problem of entrywise `1-low rank
approximation of an n×n×n tensor A, namely, the problem of finding a rank-k tensor B for which
‖A − B‖1 ≤ poly(k, log n) OPT, where OPT = infrank-k B ‖A − B‖1, and where for a tensor A,
‖A‖1 =

∑
i,j,k |Ai,j,k|. Our iterative existential argument can be applied in much the same way as

for the Frobenius norm. We iteratively flatten A along each of its three dimensions, obtaining A1, A2,
and A3 as above, and iteratively build a good rank-k solution B of the form (A1S1X1)⊗(A2S2X2)⊗
(A3S3X3), where now the Si are matrices of i.i.d. Cauchy random variables or sparse matrices of
Cauchy random variables and the Xi are O(k log k) × k matrices of indeterminates. For a matrix
C and a matrix S of i.i.d. Cauchy random variables with k columns, it is known [SWZ17] that the
column span of CS contains a poly(k log n)-approximate rank-k space with respect to the entrywise
`1-norm for C. In the case of tensors, we must perform an iterative flattening and retensorizing
argument to guarantee there exists a tensor B of the form above. Also, if we insist on outputting a
rank-k solution as opposed to a bicriteria solution, ‖(A1S1X1)⊗ (A2S2X2)⊗ (A3S3X3)−A‖1 is not
a polynomial of the Xi, and if we introduce sign variables for the n3 absolute values, the running
time of the polynomial solver will be 2# of variables = 2Ω(n3). We perform additional dimensionality
reduction by Lewis weight sampling [CP15] from the flattenings to reduce the problem size to
poly(k). This small problem still has Õ(k3) sign variables, and to obtain a 2Õ(k2) running time we
relax the reduced problem to a Frobenius norm problem, mildly increasing the approximation factor
by another poly(k) factor.

Combining the iterative existential argument with techniques in [SWZ17], we also obtain an `1
CURT decomposition algorithm (which is similar to the Frobenius norm result in Theorem 1.3),
which can find Õ(k) columns, Õ(k) rows, Õ(k) tubes, and a tensor U . Our algorithm starts from
a given factorization of a rank-k tensor B = UB ⊗ VB ⊗WB found above. We compute a sampling
and rescaling diagonal matrix D1 according to the Lewis weights of matrix B1 = (V >B �W>B), where
D1 has Õ(k) nonzero entries. Then we iteratively construct B2, D2, B3 and D3. Finally we have
C = A1D1 (selecting Õ(k) columns from A), R = A2D2 (selecting Õ(k) rows from A), T = A3D3

(selecting Õ(k) tubes from A) and tensor U = ((B1D1)†)⊗ ((B2D2)†)⊗ ((B3D3)†).
We have similar results for entry-wise `p, 1 ≤ p < 2, via analogous techniques.

`1-`2-`2 low-rank approximation (sum of Euclidean norms of faces). For an n × n × n
tensor A, in `1-`2-`2 low rank approximation we seek a rank-k tensor B for which ‖A − B‖v ≤
poly(k, log n) OPT, where OPT = infrank-k B ‖A − B‖v and where ‖A‖v =

∑
i(
∑

j,k(Ai,j,k)
2)

1
2 for

a tensor A. This norm is asymmetric, i.e., not invariant under permutations to its coordinates,
and we cannot flatten the tensor along each of its dimensions while preserving its cost. Instead,
we embed the problem to a new problem with a symmetric norm. Once we have a symmetric
norm, we apply an iterative existential argument. We choose an oblivious sketching matrix (the
M -Sketch in [CW15b]) S ∈ Rs×n with s = poly(k, log n), and reduce the original problem to
‖S(A − B)‖v, by losing a small approximation factor. Because s is small, we can then turn the
`1 part of the problem to `2 by losing another

√
s in the approximation, so that now the problem

is a Frobenius norm problem. We then apply our iterative existential argument to the problem
‖S(
∑k

i=1 U
∗
i ⊗ (Â2S2X2)i⊗ (Â3S3X3)i−A)‖F where U∗ is a fixed matrix and Â = SA, and output

a bicriteria solution.

`1-`1-`2 low-rank approximation (sum of Euclidean norms of tubes). For an n×n×n tensor
A, in the `1-`1-`2 low rank approximation problem we seek a rank-k tensor B for which ‖A−B‖u ≤
poly(k, log n) OPT, where OPT = infrank-k B ‖A−B‖u and ‖A‖u =

∑
i,j(
∑

k(Ai,j,k)
2)

1
2 . The main

difficulty in this problem is that the norm is asymmetric, and we cannot flatten the tensor along all

13

three dimensions. To reduce the problem to a problem with a symmetric norm, we choose random
Gaussian matrices S ∈ Rn×s with s = O(n). By Dvoretzky’s theorem [Dvo61], for all tensors A,
‖AS‖1 ≈ ‖A‖u, which reduces our problem to minrank-k B ‖(A−B)S‖1. Via an iterative existential
argument, we obtain a generalized version of entrywise `1 low rank approximation, ‖((Â1S1X1) ⊗
(Â2S2X2) ⊗ (A3S3X3) − A)S‖1, where Â = AS is an n × n × s size tensor. Finally, we can either
use a polynomial system solver to obtain a rank-k solution, or output a bicriteria solution.

Weighted low-rank approximation. We also consider weighted low rank approximation. Given
an n × n × n tensor A and an n × n × n tensor W of weights, we want to find a rank-k tensor
B for which ‖W ◦ (A − B)‖2F ≤ (1 + ε) OPT, where OPT = infrank-k B ‖W ◦ (A − B)‖2F and
where for a tensor A, ‖W ◦ A‖F = (

∑
i,j,kW

2
i,j,kA

2
i,j,k)

1
2 . We provide two algorithms based on

different assumptions on the weight tensor W . The first algorithm assumes that W has r distinct
faces on each of its three dimensions. We flatten A and W along each of its three dimensions,
obtaining A1, A2, A3 and W1,W2,W3. Because each Wi has r distinct rows, combining the “guess
a sketch” technique from [RSW16] with our iterative argument, we can create matrices U1, U2, and
U3 in terms of O(rk2/ε) total indeterminates and for which a solution to the objective function
‖W ◦ (

∑k
i=1(U1)i ⊗ (U2)i ⊗ (U3)i − A)‖2F , together with O(r) side constraints, gives a (1 + ε)-

approximation. We can solve the latter problem in poly(n) · 2Õ(rk2/ε) time. Our second algorithm
assumes W has r distinct faces in two dimensions. Via a pigeonhole argument, the third dimension
will have at most 2Õ(r) distinct faces. We again use O(rk2/ε) variables to express U1 and U2, but
now express U3 in terms of these variables, which is necessary since W3 could have an exponential
number of distinct rows, ultimately causing too many variables needed to express U3 directly. We
again arrive at the objective function ‖W ◦ (

∑k
i=1(U1)i ⊗ (U2)i ⊗ (U3)i −A)‖2F , but now have 2Õ(r)

side constraints, coming from the fact that U3 is a rational function of the variables created for U1

and U2 and we need to clear denominators. Ultimately, the running time is 2Õ(r2k2/ε).

Computational Hardness. Our 2δk
1−o(1) time hardness for c-approximation in Theorem H.42

is shown via a reduction from approximating MAX-3SAT to approximating MAX-E3SAT, where the
latter problem has the property that each clause in the satisfiability instance has exactly 3 literals (in
MAX-3SAT some clauses may have 2 literals). Then, a reduction [Tre01] from approximating MAX-
E3SAT to approximating MAX-E3SAT(B) is performed, for a constant B which provides an upper
bound on the number of clauses each literal can occur in. Given an instance φ to MAX-E3SAT(B),
we create a 3rd order tensor T as Håstad does using φ [Hås90]. While Håstad’s reduction guarantees
that the rank of T is at most r if φ is satisfiable, and at least r+ 1 otherwise, we can show that if φ
is not satisfiable then its rank is at least the minimal size of a set of variables which is guaranteed
to intersect every unsatisfied clause in any unsatisfiable assignment. Since if φ is not satisfiable,
there are at least a linear fraction of clauses in φ that are unsatisfied under any assignment by
the inapproximability of MAX-E3SAT(B), and since each literal occurs in at most B clauses for a
constant B, it follows that the rank of T when φ is not satisfiable is at least c0r for a constant
c0 > 1. Further, under ETH , our reduction implies one cannot approximate MAX-E3SAT(B), and
thus approximate the rank of a tensor up to a factor c0, in less than 2δk

1−o(1) time. We need the
near-linear size reduction of MAX-3SAT to MAX-E3SAT of [MR10] to get our strongest result.

The 2Ω(1/ε1/4) time hardness for (1 + ε)-approximation for rank-1 tensors in Theorem H.21
strengthens the NP-hardness for rank-1 tensor computation in Section 7 of [HL13], where instead
of assuming the NP-hardness of the Clique problem, we assume ETH . Also, the proof in [HL13] did
not explicitly bound the approximation error; we do this for a poly(1/ε)-sized tensor (which can be

14

Algorithm 1 Main Meta-Algorithm
1: procedure TensorLowRankApproxBicriteria(A,n, k, ε) . Theorem 1.1
2: Choose sketching matrices S2,S3(Composition of Gaussian and CountSketch.)
3: Choose sketching matrices T2,T3(CountSketch.)
4: Compute T2A2S2, T3A3S3.
5: Construct V̂ by setting (i, j)-th column to be (A2S2)i.
6: Construct Ŵ by setting (i, j)-th column to be (A3S3)j .
7: Construct matrix B by setting (i, j)-th row of B is vectorization of (T2A2S2)i ⊗ (T3A3S3)j .
8: Solve minU ‖UB − (A(I, T2, T3))1‖2F .
9: return Û , V̂ , and Ŵ .

10: end procedure
11: procedure TensorLowRankApprox(A,n, k, ε) . Theorem 1.2
12: Choose sketching matrices S1,S2,S3(Composition of Gaussian and CountSketch.)
13: Choose sketching matrices T1,T2,T3(CountSketch.)
14: Compute T1A1S1, T2A2S2, T3A3S3.
15: Solve minX1,X2,X3 ‖(T1A1S1X1)⊗ (T2A2S2X2)⊗ (T3A3S3X3)−A(T1, T2, T3)‖2F .
16: return A1S1X1, A2S2X2, and A3S3X3.
17: end procedure

padded with 0s to a poly(n)-sized tensor) to rule out (1 + ε)-approximation in 2o(1/ε
1/4) time.

The same hard instance above shows, assuming ETH , that 2Ω(1/ε1/2) time is necessary for (1+ε)-
approximation to the spectral norm of a symmetric rank-1 tensor (see Section H.2 and Section H.3).

Assuming ETH , the 21/ε1−o(1)-hardness [SWZ17] for matrix `1-low rank approximation gives the
same hardness for tensor entry-wise `1 and `1-`1-`2 low rank approximation. Also, under ETH , we
strengthen the NP-hardness in [CW15a] to a 21/εΩ(1)-hardness for `1-`2-low rank approximation of
a matrix, which gives the same hardness for tensor `1-`2-`2 low rank approximation.

Hard Instance. We extend the previous matrix CUR hard instance [BW14] to 3rd order tensors
by planting multiple rotations of the hard instance for matrices into a tensor. We show C must
select Ω(k/ε) columns from A, R must select Ω(k/ε) rows from A, and T must select Ω(k/ε) tubes
from A. Also the tensor U must have rank at least k. This generalizes to q-th order tensors.

Optimal matrix CUR decomposition. We also improve the nnz(A) log n+(n+d) poly(log n, k,
1/ε) running time of [BW14] for CUR decomposition of A ∈ Rn×d to nnz(A) + (n+ d) poly(k, 1/ε),
while selecting the optimal number of columns, rows, and a rank-k matrix U . Using [CW13, MM13,
NN13], we find a matrix Û with k orthonormal columns in nnz(A) + n poly(k/ε) time for which
minV ‖ÛV − A‖2F ≤ (1 + ε)‖A − Ak‖2F . Let s1 = Õ(k/ε2) and S1 ∈ Rs1×n be a sampling/rescaling
matrix by the leverage scores of Û . By strengthening the affine embedding analysis of [CW13] to
leverage score sampling (the analysis of [CW13] gives a weaker analysis for affine embeddings using
leverage scores which does not allow approximation in the sketch space to translate to approximation
in the original space), with probability at least 0.99, for all X ′ which satisfy ‖S1ÛX

′ − S1A‖2F ≤
(1+ε′) minX ‖S1ÛX−S1A‖2F , we have ‖ÛX ′−A‖2F ≤ (1+ε) minX ‖ÛX−A‖2F , where ε′ = 0.0001ε.

Applying our generalized row subset selection procedure, we can find Y,R for which ‖S1ÛY R −
S1A‖2F ≤ (1 + ε′) minX ‖S1ÛX − S1A‖2F , where R contains O(k/ε′) = O(k/ε) rescaled rows of
S1A. A key point is that rescaled rows of S1A are also rescaled rows of A. Then, ‖ÛY R − A‖2F ≤
(1 + ε) minX ‖ÛX − A‖2F . Finding Y,R can be done in dpoly(s1/ε) = dpoly(k/ε) time. Now set

15

V̂ = Y R. We can choose S2 to be a sampling/rescaling matrix, and then find C,Z for which
‖CZV̂ S2 − AS2‖2F ≤ (1 + ε′) minX ‖XV̂ S2 − AS2‖2F in a similar way, where C contains O(k/ε)
rescaled columns of AS2, and thus also of A. We thus have ‖CZY R−A‖2F ≤ (1 +O(ε))‖A−Ak‖2F .

Distributed and streaming settings. Since our algorithms use linear sketches, they are imple-
mentable in distributed and streaming models. We use random variables with limited independence
to succinctly store the sketching matrices [CW13, KVW14, KN14, Woo14, SWZ17].

Extension to other notions of tensor rank. This paper focuses on the standard CP rank, or
canonical rank, of a tensor. As mentioned, due to border rank issues, the best rank-k solution does
not exist in certain cases. There are other notions of tensor rank considered in some applications
which do not suffer from this problem, e.g., the tucker rank [KC07, PC08, MH09, ZW13, YC14],
and the train rank [Ose11, OTZ11, ZWZ16, PTBD16]). We also show observe that our techniques
can be applied to these notions of rank.

1.4 Comparison to [BCV14]

In [BCV14], the authors show for a third order n1×n2×n3 tensor A how to find a rank-k tensor B
for which ‖A−B‖2F ≤ 5 OPT in poly(n1n2n3) exp(poly(k)) time. They generalize this to q-th order
tensors to find a rank-k tensor B for which ‖A−B‖2F = O(q) OPT in poly(n1n2 · · ·nq) exp(poly(qk))
time.

In contrast, we obtain a rank-k tensor B for which ‖A − B‖2F ≤ (1 + ε) OPT in nnz(A) + n ·
poly(k/ε) + exp((k2/ε) poly(q)) time for every order q. Thus, we obtain a (1 + ε) instead of an O(q)
approximation. The O(q) approximation in [BCV14] seems inherent since the authors apply triangle
inequality q times, each time losing a constant factor. This seems necessary since their argument
is based on the span of the top k principal components in the SVD in each flattening separately
containing a good space to project onto for a given mode. In contrast, our iterative existential
argument chooses the space to project onto in successive modes adaptively as a function of spaces
chosen for previous modes, and thus we obtain a (1 + ε)O(q) = (1 + O(εq))-approximation, which
becomes a (1 + ε)-approximation after replacing ε with ε/q. Also, importantly, our algorithm runs
in nnz(A) + n · poly(k/ε) + exp((k2/ε) poly(q)) time and there are multiple hurdles we overcome to
achieve this, as described in Section 1.2 above.

1.5 An Algorithm and a Roadmap

Roadmap Section A introduces notation and definitions. Section B includes several useful tools.
We provide our Frobenius norm low rank approximation algorithms in Section C. Section C.10
extends our results to general q-th order tensors. Section D has our results for entry-wise `1 norm
low rank approximation. Section E has our results for entry-wise `p norm low rank approximation.
Section G has our results for weighted low rank approximation. Section F has our results for
asymmetric norm low rank approximation algorithms. We present our hardness results in Section H
and Section I. Section J and Section K extend the results to distributed and streaming settings.
Section L extends our techniques from tensor rank to other notions of tensor rank including tensor
tucker rank and tensor train rank.

16

Figure 1: A 3rd order tensor with size 8× 8× 8.

A Notation

For an n ∈ N+, let [n] denote the set {1, 2, · · · , n}.
For any function f , we define Õ(f) to be f · logO(1)(f). In addition to O(·) notation, for two

functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp. ≥) for an
absolute constant C. We use f h g to mean cf ≤ g ≤ Cf for constants c, C.

For a matrix A, we use ‖A‖2 to denote the spectral norm of A. For a tensor A, let ‖A‖ and
‖A‖2 (which we sometimes use interchangeably) denote the spectral norm of tensor A,

‖A‖ = sup
x,y,z 6=0

|A(x, y, z)|
‖x‖ · ‖y‖ · ‖z‖ .

Let ‖A‖F denote the Frobenius norm of a matrix/tensor A, i.e., ‖A‖F is the square root of sum of
squares of all the entries of A. For 1 ≤ p < 2, we use ‖A‖p to denote the entry-wise `p-norm of
a matrix/tensor A, i.e., ‖A‖p is the p-th root of the sum of p-th powers of the absolute values of
the entries of A. ‖A‖1 will be an important special case of ‖A‖p, which corresponds to the sum of
absolute values of all of the entries.

Let nnz(A) denote the number of nonzero entries of A. Let det(A) denote the determinant of a
square matrix A. Let A> denote the transpose of A. Let A† denote the Moore-Penrose pseudoinverse
of A. Let A−1 denote the inverse of a full rank square matrix.

For a 3rd order tensor A ∈ Rn×n×n, its x-mode fibers are called column fibers (x = 1), row
fibers (x = 2) and tube fibers (x = 3). For tensor A, we use A∗,j,l to denote its (j, l)-th column, we
use Ai,∗,l to denote its (i, l)-th row, and we use Ai,j,∗ to denote its (i, j)-th tube.

A tensor A is symmetric if and only if for any i, j, k, Ai,j,k = Ai,k,j = Aj,i,k = Aj,k,i = Ak,i,j =
Ak,j,i.

For a tensor A ∈ Rn1×n2×n3 , we use > to denote rotation (3 dimensional transpose) so that
A> ∈ Rn3×n1×n2 . For a tensor A ∈ Rn1×n2×n3 and matrix B ∈ Rn3×k, we define the tensor-matrix
dot product to be A ·B ∈ Rn1×n2×k.

17

Figure 2: Flattening. We flatten a third order 4× 4× 4 tensor along the 1st dimension to obtain a
4 × 16 matrix. The red blocks correspond to a column in the original third order tensor, the blue
blocks correspond to a row in the original third order tensor, and the green blocks correspond to a
tube in the original third order tensor.

We use ⊗ to denote outer product, ◦ to denote entrywise product, and · to denote dot product.
Given two column vectors u, v ∈ Rn, let u⊗ v ∈ Rn×n and (u⊗ v)i,j = ui · vj , u>v =

∑n
i=1 uivi ∈ R

and (u ◦ v)i = uivi.

Definition A.1 (⊗ product for vectors). Given q vectors u1 ∈ Rn1, u2 ∈ Rn2 , · · · , uq ∈ Rnq , we
use u1 ⊗ u2 ⊗ · · · ⊗ uq to denote an n1 × n2 × · · · × nq tensor such that, for each (j1, j2, · · · , jq) ∈
[n1]× [n2]× · · · × [nq],

(u1 ⊗ u2 ⊗ · · · ⊗ uq)j1,j2,··· ,jq = (u1)j1(u2)j2 · · · (uq)jq ,
where (ui)ji denotes the ji-th entry of vector ui.

Definition A.2 (vec(), convert tensor into a vector). Given a tensor A ∈ Rn1×n2×···×nq , let
vec(A) ∈ R1×

∏q
i=1 ni be a row vector, such that the t-th entry of vec(A) is Aj1,j2,··· ,jq where t =

(j1 − 1)
∏q
i=2 ni + (j2 − 1)

∏q
i=3 ni + · · ·+ (jq−1 − 1)nq + jq.

For example if u =

[
1
2

]
, v =




3
4
5


 then vec(u⊗ v) =

[
3 4 5 6 8 10

]
.

Definition A.3 (⊗ product for matrices). Given q matrices U1 ∈ Rn1×k, U2 ∈ Rn2×k, · · · , Uq ∈
Rnq×k, we use U1 ⊗ U2 ⊗ · · · ⊗ Uq to denote an n1 × n2 × · · · × nq tensor which can be written as,

U1 ⊗ U2 ⊗ · · · ⊗ Uq =

k∑

i=1

(U1)i ⊗ (U2)i ⊗ · · · ⊗ (Uq)i ∈ Rn1×n2×···×nq ,

where (Uj)i denotes the i-th column of matrix Uj ∈ Rnj×k.

Definition A.4 (� product for matrices). Given q matrices U1 ∈ Rk×n1, U2 ∈ Rk×n2, · · · , Uq ∈
Rk×nq , we use U1�U2�· · ·�Uq to denote a k×∏q

j=1 nj matrix where the i-th row of U1�U2�· · ·�Uq
is the vectorization of (U1)i ⊗ (U2)i ⊗ · · · ⊗ (Uq)

i, i.e.,

U1 � U2 � · · · � Uq =




vec((U1)1 ⊗ (U2)1 ⊗ · · · ⊗ (Uq)
1)

vec((U1)2 ⊗ (U2)2 ⊗ · · · ⊗ (Uq)
2)

· · ·
vec((U1)k ⊗ (U2)k ⊗ · · · ⊗ (Uq)

k)


 ∈ Rk×

∏q
j=1 nj .

where (Uj)
i ∈ Rnj denotes the i-th row of matrix Uj ∈ Rk×nj .

18

Definition A.5 (Flattening vs unflattening/retensorizing). Suppose we are given three matrices
U ∈ Rn1×k, V ∈ Rn2×k, W ∈ Rn3×k. Let tensor A ∈ Rn1×n2×n3 denote U ⊗ V ⊗W . Let A1 ∈
Rn1×n2n3 denote a matrix obtained by flattening tensor A along the 1st dimension. Then A1 = U ·B,
where B = V >�W> ∈ Rk×n2n3 denotes the matrix for which the i-th row is vec(Vi⊗Wi),∀i ∈ [k].
We let the “flattening” be the operation that obtains A1 by A. Given A1 = U · B, we can obtain
tensor A by unflattening/retensorizing A1. We let “retensorization” be the operation that obtains A
from A1. Similarly, let A2 ∈ Rn2×n1n3 denote a matrix obtained by flattening tensor A along the
2nd dimension, so A2 = V · C, where C = W> � U> ∈ Rk×n1n3 denotes the matrix for which the
i-th row is vec(Wi ⊗ Ui), ∀i ∈ [k]. Let A3 ∈ Rn3×n1n2 denote a matrix obtained by flattening tensor
A along the 3rd dimension. Then, A3 = W ·D, where D = U>� V > ∈ Rk×n1n2 denotes the matrix
for which the i-th row is vec(Ui ⊗ Vi),∀i ∈ [k].

Definition A.6 ((·, ·, ·) operator for tensors and matrices). Given tensor A ∈ Rn1×n2×n3 and three
matrices B1 ∈ Rn1×d1, B2 ∈ Rn2×d2, B3 ∈ Rn3×d3, we define tensors A(B1, I, I) ∈ Rd1×n2×n3 ,
A(I,B2, I) ∈ Rn1×d2×n3, A(I, I, B3) ∈ Rn1×n2×d3, A(B1, B2, I) ∈ Rd1×d2×n3 , A(B1, B2, B3) ∈
Rd1×d2×d3 as follows,

A(B1, I, I)i,j,l =

n1∑

i′=1

Ai′,j,l(B1)i′,i, ∀(i, j, l) ∈ [d1]× [n2]× [n3]

A(I,B2, I)i,j,l =

n2∑

j′=1

Ai,j′,l(B2)j′,j , ∀(i, j, l) ∈ [n1]× [d2]× [n3]

A(I, I, B3)i,j,l =

n3∑

l′=1

Ai,j,l′(B3)l′,l, ∀(i, j, l) ∈ [n1]× [n2]× [d3]

A(B1, B2, I)i,j,l =

n1∑

i′=1

n2∑

j′=1

Ai′,j′,l(B1)i′,i(B2)j′,j , ∀(i, j, l) ∈ [d1]× [d2]× [n3]

A(B1, B2, B3)i,j,l =

n1∑

i′=1

n2∑

j′=1

n3∑

l′=1

Ai′,j′,l′(B1)i′,i(B2)j′,j(B3)l′,l, ∀(i, j, l) ∈ [d1]× [d2]× [d3]

Note that B>1 A = A(B1, I, I), AB3 = A(I, I, B3) and B>1 AB3 = A(B1, I, B3). In our pa-
per, if ∀i ∈ [3], Bi is either a rectangular matrix or a symmetric matrix, then we sometimes use
A(B1, B2, B3) to denote A(B>1 , B

>
2 , B

>
3) for simplicity. Similar to the (·, ·, ·) operator on 3rd order

tensors, we can define the (·, ·, · · · , ·) operator on higher order tensors.
For the matrix case, min

rank−k A′
‖A − A′‖2F always exists. However, this is not true for ten-

sors [DSL08]. For convenience, we redefine the notation of OPT and min.

Definition A.7. Given tensor A ∈ Rn1×n2×n3 , k > 0, if min
rank−k A′

‖A−A′‖2F does not exist, then we

define OPT = inf
rank−k A′

‖A−A′‖2F +γ for sufficiently small γ > 0, which can be an arbitrarily small

positive function of n. We let min
rank−k A′

‖A−A′‖2F be the value of OPT, and we let arg min
rank−k A′

‖A−A′‖2F
be a rank−k tensor Ak ∈ Rn1×n2×n3 which satisfies ‖A−Ak‖2F = OPT .

B Preliminaries

Section B.1 provides the definitions for Subspace Embeddings and Approximate Matrix Product.
We introduce the definition for Tensor-CURT decomposition in Section B.2. Section B.3 presents

19

Tensor Column Row Tube

Figure 3: A 3rd order tensor contains n2 columns, n2 rows, and n2 tubes.

a tool which we call a “polynomial system verifier”. Section B.4 introduces a tool which is able to
determine the minimum nonzero value of the absolute value of a polynomial evaluated on a set,
provided the polynomial is never equal to 0 on that set. Section B.5 shows how to relax an `p problem
to an `2 problem. We provide definitions for CountSketch and Gaussian transforms in Section B.6.
We present Cauchy and p-stable transforms in Section B.7. We introduce leverage scores and Lewis
weights in Section B.8 and Section B.9. Finally, we explain an extension of CountSketch, which is
called TensorSketch in Section B.10.

B.1 Subspace Embeddings and Approximate Matrix Product

Definition B.1 (Subspace Embedding). A (1 ± ε) `2-subspace embedding for the column space of
an n× d matrix A is a matrix S for which for all x ∈ Rd, ‖SAx‖22 = (1± ε)‖Ax‖22.

Definition B.2 (Approximate Matrix Product). Let 0 < ε < 1 be a given approximation parameter.
Given matrices A and B, where A and B each have n rows, the goal is to output a matrix C so
that ‖A>B−C‖F ≤ ε‖A‖F ‖B‖F . Typically C has the form A>S>SB, for a random matrix S with
a small number of rows. See, e.g., Lemma 32 of [CW13] for a number of example matrices S with
O(ε−2) rows for which this property holds.

B.2 Tensor CURT decomposition

We first review matrix CUR decompositions:

Definition B.3 (Matrix CUR, exact). Given a matrix A ∈ Rn×d, we choose C ∈ Rn×c to be a
subset of columns of A and R ∈ Rr×n to be a subset of rows of A. If there exists a matrix U ∈ Rc×r
such that A can be written as,

CUR = A,

then we say C,U,R is matrix A’s CUR decomposition.

20

Tensor A column-row face

.

Tensor A column-tube face

.

Tensor A row-tube face

.

Figure 4: A third order tensor has three types of faces: the column-row faces, the column-tube
faces, and the row-tube faces

21

Definition B.4 (Matrix CUR, approximate). Given a matrix A ∈ Rn×d, a parameter k ≥ 1, an
approximation ratio α > 1, and a norm ‖‖ξ, we choose C ∈ Rn×c to be a subset of columns of A
and R ∈ Rr×n to be a subset of rows of A. Then if there exists a matrix U ∈ Rc×r such that,

‖CUR−A‖ξ ≤ α min
rank−k Ak

‖Ak −A‖ξ,

where ‖‖ξ can be operator norm, Frobenius norm or Entry-wise `1 norm, we say that C,U,R is ma-
trix A’s approximate CUR decomposition, and sometimes just refer to this as a CUR decomposition.

Definition B.5 ([Bou11]). Given matrix A ∈ Rm×n, integer k, and matrix C ∈ Rm×r with r > k,
we define the matrix Πξ

C,k(A) ∈ Rm×n to be the best approximation to A (under the ξ-norm) within
the column space of C of rank at most k; so, Πξ

C,k(A) ∈ Rm×n minimizes the residual ‖A − Â‖ξ,
over all Â ∈ Rm×n in the column space of C of rank at most k.

We define the following notion of tensor-CURT decomposition.

Definition B.6 (Tensor CURT, exact). Given a tensor A ∈ Rn1×n2×n3, we choose three sets of
pair of coordinates S1 ⊆ [n2]× [n3], S2 ⊆ [n1]× [n3], S3 ⊆ [n1]× [n2]. We define c = |S1|, r = |S2|
and t = |S3|. Let C ∈ Rn1×c denote a subset of columns of A, R ∈ Rn2×r denote a subset of rows
of A, and T ∈ Rn3×t denote a subset of tubes of A. If there exists a tensor U ∈ Rc×r×t such that A
can be written as

(((U · T>)> ·R>)> · C>)> = A,

or equivalently,

U(C,R, T) = A,

or equivalently,

∀(i, j, l) ∈ [n1]× [n2]× [n3], Ai,j,l =
c∑

u1=1

r∑

u2=1

t∑

u3=1

Uu1,u2,u3Ci,u1Rj,u2Tl,u3 ,

then we say C,U,R, T is tensor A’s CURT decomposition.

Definition B.7 (Tensor CURT, approximate). Given a tensor A ∈ Rn1×n2×n3, for some k ≥ 1,
for some approximation α > 1, for some norm ‖‖ξ, we choose three sets of pair of coordinates
S1 ⊆ [n2] × [n3], S2 ⊆ [n1] × [n3], S3 ⊆ [n1] × [n2]. We define c = |S1|, r = |S2| and t = |S3|. Let
C ∈ Rn1×c denote a subset of columns of A, R ∈ Rn2×r denote a subset of rows of A, and T ∈ Rn3×t

denote a subset of tubes of A. If there exists a tensor U ∈ Rc×r×t such that

‖U(C,R, T)−A‖ξ ≤ α min
rank−k Ak

‖Ak −A‖ξ,

where ‖‖ξ is operator norm, Frobenius norm or Entry-wise `1 norm, then we refer to C,U,R, T as
an approximate CUR decomposition of A, and sometimes just refer to this as a CURT decomposition
of A.

Recently, [TM17] studied a very different face-based tensor-CUR decomposition, which selects
faces from tensors rather than columns. To achieve their results, [TM17] need to make several
incoherence assumptions on the original tensor. Their sample complexity depends on log n, and
they only sample two of the three dimensions. We will provide more general face-based tensor
CURT decompositions.

22

Tensor Selecting a subset of columns

.

Tensor Selecting a subset of rows

.

Tensor Selecting a subset of tubes

.

Figure 5: Column subset selection, row subset selection and tube subset selection.

Definition B.8 (Tensor (face-based) CURT, exact). Given a tensor A ∈ Rn1×n2×n3, we choose
three sets of coordinates S1 ⊆ [n1], S2 ⊆ [n2], S3 ⊆ [n3]. We define c = |S1|, r = |S2| and t = |S3|.
Let C ∈ Rc×n2×n3 denote a subset of row-tube faces of A, R ∈ Rn1×r×n3 denote a subset of column-
tube faces of A, and T ∈ Rn1×n2×t denote a subset of column-row faces of A. Let C2 ∈ Rn2×cn3

23

denote the matrix obtained by flattening the tensor C along the second dimension. Let R3 ∈ Rn3×rn1

denote the matrix obtained by flattening the tensor R along the third dimension. Let T1 ∈ Rn1×tn2

denote the matrix obtained by flattening the tensor T along the first dimension. If there exists a
tensor U ∈ Rtn2×cn3×rn1 such that A can be written as

tn2∑

i=1

cn3∑

j=1

rn1∑

l=1

Ui,j,l(T1)l ⊗ (C2)i ⊗ (R3)j = A,

U(T1, C2, R3) = A,

or equivalently,

∀(i′, j′, l′) ∈ [n1]× [n2]× [n3], Ai,j,l =

tn1∑

i=1

cn3∑

j=1

rn2∑

l=1

Ui,j,l(T1)i′,i(C2)j′,j(R3)l′,l,

then we say C,U,R, T is tensor A’s (face-based) CURT decomposition.

Definition B.9 (Tensor (face-based) CURT, approximate). Given a tensor A ∈ Rn1×n2×n3 , for
some k ≥ 1, for some approximation α > 1, for some norm ‖‖ξ,we choose three sets of coordinates
S1 ⊆ [n1], S2 ⊆ [n2], S3 ⊆ [n3]. We define c = |S1|, r = |S2| and t = |S3|. Let C ∈ Rc×n2×n3

denote a subset of row-tube faces of A, R ∈ Rn1×r×n3 denote a subset of column-tube faces of A,
and T ∈ Rn1×n2×t denote a subset of column-row faces of A. Let C2 ∈ Rn2×cn3 denote the matrix
obtained by flattening the tensor C along the second dimension. Let R3 ∈ Rn3×rn1 denote the
matrix obtained by flattening the tensor R along the third dimension. Let T1 ∈ Rn1×tn2 denote
the matrix obtained by flattening the tensor T along the first dimension. If there exists a tensor
U ∈ Rtn2×cn3×rn1 such that

‖U(T1, C2, R3)−A‖ξ ≤ α min
rank−k Ak

‖Ak −A‖ξ,

where ‖‖ξ is operator norm, Frobenius norm or Entry-wise `1 norm, then we refer to C,U,R, T as
an approximate CUR decomposition of A, and sometimes just refer to this as a (face-based) CURT
decomposition of A.

B.3 Polynomial system verifier

We use the polynomial system verifiers independently developed by Renegar [Ren92a, Ren92b] and
Basu et al. [BPR96].

Theorem B.10 (Decision Problem [Ren92a, Ren92b, BPR96]). Given a real polynomial system
P (x1, x2, · · · , xv) having v variables and m polynomial constraints fi(x1, x2, · · · , xv)∆i0, ∀i ∈ [m],
where ∆i is any of the “standard relations”: {>,≥,=, 6=,≤, <}, let d denote the maximum degree
of all the polynomial constraints and let H denote the maximum bitsize of the coefficients of all the
polynomial constraints. Then in

(md)O(v) poly(H),

time one can determine if there exists a solution to the polynomial system P .

Recently, this technique has been used to solve a number of low-rank approximation and matrix
factorization problems [AGKM12, Moi13, CW15a, BDL16, RSW16, SWZ17].

24

Tensor A subset of columns

C

A subset of rows

R

A subset of tubes

T
U

Figure 6: An example tensor CURT decomposition.

B.4 Lower bound on the cost of a polynomial system

An important result we use is the following lower bound on the minimum value attained by a
polynomial restricted to a compact connected component of a basic closed semi-algebraic subset of
Rv.

Theorem B.11 ([JPT13]). Let T = {x ∈ Rv|f1(x) ≥ 0, · · · , f`(x) ≥ 0, f`+1(x) = 0, · · · , fm(x) =
0} be defined by polynomials f1, · · · , fm ∈ Z[x1, · · · , xv] with n ≥ 2, degrees bounded by an even
integer d, and coefficients of absolute value at most H, and let C be a compact connected (in the
topological sense) component of T . Let g ∈ Z[x1, · · · , xv] be a polynomial of degree at most d and
coefficients of absolute value bounded by H. Then, the minimum value that g takes over C satisfies
that if it is not zero, then its absolute value is greater than or equal to

(24−v/2H̃dv)−v2vdv ,

where H̃ = max{H, 2v + 2m}.

While the above theorem involves notions from topology, we shall apply it in an elementary way.
Namely, in our setting T will be bounded and so every connected component, which is by definition
closed, will also be bounded and therefore compact. As the connected components partition T the
theorem will just be applied to give a global minimum value of g on T provided that it is non-zero.

B.5 Frobenius norm and `2 relaxation

Theorem B.12 (Generalized rank-constrained matrix approximations, Theorem 2 in [FT07]).
Given matrices A ∈ Rn×d, B ∈ Rn×p, and C ∈ Rq×d, let the SVD of B be B = UBΣBV

>
B and

the SVD of C be C = UCΣCV
>
C . Then,

B†(UBU
>
BAVCC

>
C)kC

† = arg min
rank−k X∈Rp×q

‖A−BXC‖F ,

where (UBU
>
BAVCV

>
C)k ∈ Rp×q is of rank at most k and denotes the best rank-k approximation to

UBU
>
BAVCV

>
C ∈ Rp×d in Frobenius norm.

25

Claim B.13 (`2 relaxation of `p-regression). Let p ∈ [1, 2). For any A ∈ Rn×d and b ∈ Rn, define
x∗ = arg min

x∈Rd
‖Ax− b‖p and x′ = arg min

x∈Rd
‖Ax− b‖2. Then,

‖Ax∗ − b‖p ≤ ‖Ax′ − b‖p ≤ n1/p−1/2 · ‖Ax∗ − b‖p.

Claim B.14 ((Matrix) Frobenius norm relaxation of `p-low rank approximation). Let p ∈ [1, 2) and
for any matrix A ∈ Rn×d, define A∗ = arg min

rank−k B∈Rn×d
‖B − A‖p and A′ = arg min

rank−k B∈Rn×d
‖B − A‖F .

Then

‖A∗ −A‖p ≤ ‖A′ −A‖p ≤ (nd)1/p−1/2‖A∗ −A‖p.

Claim B.15 ((Tensor) Frobenius norm relaxation of `p-low rank approximation). Let p ∈ [1, 2) and
for any matrix A ∈ Rn1×n2×n3, define

A∗ = arg min
rank−k B∈Rn1×n2×n3

‖B −A‖p

and

A′ = arg min
rank−k B∈Rn1×n2×n3

‖B −A‖F .

Then

‖A∗ −A‖p ≤ ‖A′ −A‖p ≤ (n1n2n3)1/p−1/2‖A∗ −A‖p.

B.6 CountSketch and Gaussian transforms

Definition B.16 (Sparse embedding matrix or CountSketch transform). A CountSketch transform
is defined to be Π = σ ·ΦD ∈ Rm×n. Here, σ is a scalar, D is an n×n random diagonal matrix with
each diagonal entry independently chosen to be +1 or −1 with equal probability, and Φ ∈ {0, 1}m×n
is an m × n binary matrix with Φh(i),i = 1 and all remaining entries 0, where h : [n] → [m] is a
random map such that for each i ∈ [n], h(i) = j with probability 1/m for each j ∈ [m]. For any
matrix A ∈ Rn×d, ΠA can be computed in O(nnz(A)) time. For any tensor A ∈ Rn×d1×d2 , ΠA
can be computed in O(nnz(A)) time. Let Π1,Π2,Π3 denote three CountSktech transforms. For any
tensor A ∈ Rn1×n2×n3 , A(Π1,Π2,Π3) can be computed in O(nnz(A)) time.

If the above scalar σ is not specified in the context, we assume the scalar σ to be 1.

Definition B.17 (Gaussian matrix or Gaussian transform). Let S = σ · G ∈ Rm×n where σ
is a scalar, and each entry of G ∈ Rm×n is chosen independently from the standard Gaussian
distribution. For any matrix A ∈ Rn×d, SA can be computed in O(m ·nnz(A)) time. For any tensor
A ∈ Rn×d1×d2, SA can be computed in O(m · nnz(A)) time.

If the above scalar σ is not specified in the context, we assume the scalar σ to be 1/
√
m. In

most places, we can combine CountSketch and Gaussian transforms to achieve the following:

Definition B.18 (CountSketch + Gaussian transform). Let S′ = SΠ, where Π ∈ Rt×n is the
CountSketch transform (defined in Definition B.16) and S ∈ Rm×t is the Gaussian transform (de-
fined in Definition B.17). For any matrix A ∈ Rn×d, S′A can be computed in O(nnz(A) + dtmω−2)
time, where ω is the matrix multiplication exponent.

26

Lemma B.19 (Affine Embedding - Theorem 39 in [CW13]). Given matrices A ∈ Rn×r, B ∈ Rn×d,
and rank(A) = k, let m = poly(k/ε), S ∈ Rm×n be a sparse embedding matrix (Definition B.16)
with scalar σ = 1. Then with probability at least 0.999, ∀X ∈ Rr×d, we have

(1− ε) · ‖AX −B‖2F ≤ ‖S(AX −B)‖2F ≤ (1 + ε)‖AX −B‖2F .

Lemma B.20 (see, e.g., Lemma 10 in version 1 of [BWZ16]8). Let m = Ω(k/ε), S = 1√
m
· G,

where G ∈ Rm×n is a random matrix where each entry is an i.i.d Gaussian N(0, 1). Then with
probability at least 0.998, S satisfies (1 ± 1/8) Subspace Embedding (Definition B.1) for any fixed
matrix C ∈ Rn×k, and it also satisfies O(

√
ε/k) Approximate Matrix Product (Definition B.2) for

any fixed matrix A and B which has the same number of rows.

Lemma B.21 (see, e.g., Lemma 11 in version 1 of [BWZ16]8). Let m = Ω(k2 + k/ε), Π ∈ Rm×n,
where Π is a sparse embedding matrix (Definition B.16) with scalar σ = 1, then with probability at
least 0.998, S satisfies (1±1/8) Subspace Embedding (Definition B.1) for any fixed matrix C ∈ Rn×k,
and it also satisfies O(

√
ε/k) Approximate Matrix Product (Definition B.2) for any fixed matrix A

and B which has the same number of rows.

Lemma B.22 (see, e.g., Lemma 12 in version 1 of [BWZ16]8). Let m2 = Ω(k2 + k/ε), Π ∈ Rm2×n,
where Π is a sparse embedding matrix (Definition B.16) with scalar σ = 1. Let m1 = Ω(k/ε),
S = 1√

m1
· G, where G ∈ Rm1×m2 is a random matrix where each entry is an i.i.d Gaussian

N(0, 1). Let S′ = SΠ. Then with probability at least 0.99, S′ is a (1 ± 1/3) Subspace Embedding
(Definition B.1) for any fixed matrix C ∈ Rn×k, and it also satisfies O(

√
ε/k) Approximate Matrix

Product (Definition B.2) for any fixed matrix A and B which have the same number of rows.

Theorem B.23 (Theorem 36 in [CW13]). Given A ∈ Rn×k, B ∈ Rn×d, suppose S ∈ Rm×n is such
that S is a (1± 1√

2
) Subspace Embedding for A, and satisfies O(

√
ε/k) Approximate Matrix Product

for matrices A and C where C with n rows, where C depends on A and B. If

X̂ = arg min
X∈Rk×d

‖SAX − SB‖2F ,

then

‖AX̂ −B‖2F ≤ (1 + ε) min
X∈Rk×d

‖AX −B‖2F .

B.7 Cauchy and p-stable transforms

Definition B.24 (Dense Cauchy transform). Let S = σ · C ∈ Rm×n where σ is a scalar, and each
entry of C ∈ Rm×n is chosen independently from the standard Cauchy distribution. For any matrix
A ∈ Rn×d, SA can be computed in O(m · nnz(A)) time.

Definition B.25 (Sparse Cauchy transform). Let Π = σ · SC ∈ Rm×n, where σ is a scalar,
S ∈ Rm×n has each column chosen independently and uniformly from the m standard basis vectors
of Rm, and C ∈ Rn×n is a diagonal matrix with diagonals chosen independently from the standard
Cauchy distribution. For any matrix A ∈ Rn×d, ΠA can be computed in O(nnz(A)) time. For
any tensor A ∈ Rn×d1×d2, ΠA can be computed in O(nnz(A)) time. Let Π1 ∈ Rm1×n1 ,Π2 ∈
Rm2×n2 ,Π3 ∈ Rm3×n3 denote three sparse Cauchy transforms. For any tensor A ∈ Rn1×n2×n3,
A(Π1,Π2,Π3) ∈ Rm1×m2×m3 can be computed in O(nnz(A)) time.

8 https://arxiv.org/pdf/1504.06729v1.pdf

27

https://arxiv.org/pdf/1504.06729v1.pdf

Definition B.26 (Dense p-stable transform). Let p ∈ (1, 2). Let S = σ · C ∈ Rm×n, where σ is a
scalar, and each entry of C ∈ Rm×n is chosen independently from the standard p-stable distribution.
For any matrix A ∈ Rn×d, SA can be computed in O(mnnz(A)) time.

Definition B.27 (Sparse p-stable transform). Let p ∈ (1, 2). Let Π = σ ·SC ∈ Rm×n, where σ is a
scalar, S ∈ Rm×n has each column chosen independently and uniformly from the m standard basis
vectors of Rm, and C ∈ Rn×n is a diagonal matrix with diagonals chosen independently from the
standard p-stable distribution. For any matrix A ∈ Rn×d, ΠA can be computed in O(nnz(A)) time.
For any tensor A ∈ Rn×d1×d2, ΠA can be computed in O(nnz(A)) time. Let Π1 ∈ Rm1×n1 ,Π2 ∈
Rm2×n2 ,Π3 ∈ Rm3×n3 denote three sparse p-stable transforms. For any tensor A ∈ Rn1×n2×n3,
A(Π1,Π2,Π3) ∈ Rm1×m2×m3 can be computed in O(nnz(A)) time.

B.8 Leverage scores

Definition B.28 (Leverage scores). Let U ∈ Rn×k have orthonormal columns, and let pi = u2
i /k,

where u2
i = ‖e>i U‖22 is the i-th leverage score of U .

Definition B.29 (Leverage score sampling). Given A ∈ Rn×d with rank k, let U ∈ Rn×k be an
orthonormal basis of the column space of A, and for each i let pi be the squared row norm of the i-th
row of U , i.e., the i-th leverage score. Let k · pi denote the i-th leverage score of U scaled by k. Let
β > 0 be a constant and q = (q1, · · · , qn) denote a distribution such that, for each i ∈ [n], qi ≥ βpi.
Let s be a parameter. Construct an n × s sampling matrix B and an s × s rescaling matrix D as
follows. Initially, B = 0n×s and D = 0s×s. For each column j of B, D, independently, and with
replacement, pick a row index i ∈ [n] with probability qi, and set Bi,j = 1 and Dj,j = 1/

√
qis. We

denote this procedure Leverage score sampling according to the matrix A.

B.9 Lewis weights

We follow the exposition of Lewis weights from [CP15].

Definition B.30. For a matrix A, let ai denote the ith row of A, where ai(= (Ai)>) is a column
vector. The statistical leverage score of a row ai is

τi(A)
def
= a>i (A>A)−1ai = ‖(A>A)−1/2ai‖22.

For a matrix A and norm p, the `p Lewis weights w are the unique weights such that for each row i
we have

wi = τi(W
1/2−1/pA).

or equivalently,

a>i (A>W 1−2/pA)−1ai = w
2/p
i .

Lemma B.31 (Lemma 2.4 of [CP15] and Lemma 7 of [CLM+15]). Given a matrix A ∈ Rn×d,
n ≥ d, for any constant C > 0, 4 > p ≥ 1, there is an algorithm which can compute C-approximate
`p Lewis weights for every row i of A in O((nnz(A) + dω log d) log n) time, where ω < 2.373 is the
matrix multiplication exponent[Str69, CW87, Wil12].

28

Lemma B.32 (Theorem 7.1 of [CP15]). Given matrix A ∈ Rn×d (n ≥ d) with `p (4 > p ≥ 1) Lewis
weights w, for any set of sampling probabilities pi,

∑
i pi = N ,

pi ≥ f(d, p)wi,

if S ∈ RN×n has each row chosen independently as the ith standard basis vector, multiplied by 1/p
1/p
i ,

with probability pi/N . Then, overall with probability at least 0.999,

∀x ∈ Rd,
1

2
‖Ax‖pp ≤ ‖SAx‖pp ≤ 2‖Ax‖pp.

Furthermore, if p = 1, N = O(d log d). If 1 < p < 2, N = O(d log d log log d). If 2 ≤ p < 4,
N = O(dp/2 log d).

Lemma B.33. Given matrix A ∈ Rn×d (n ≥ d), there is an algorithm to compute a diagonal matrix
D = SS1 with N nonzero entries in O(n poly(d)) time such that, with probability at least 0.999, for
all x ∈ Rd

1

10
‖DAx‖pp ≤ ‖Ax‖pp ≤ 10‖DAx‖pp,

where S, S1 are two sampling/rescaling matrices. Furthermore, if p = 1, then N = O(d log d). If
1 < p < 2, then N = O(d log d log log d). If 2 ≤ p < 4, then N = O(dp/2 log d).

Given a matrix A ∈ Rn×d (n ≥ d), by Lemma B.32 and Lemma B.31, we can compute a
sampling/rescaling matrix S in O((nnz(A) + dω log d) log n) time with Õ(d) nonzero entries such
that

∀x ∈ Rd,
1

2
‖Ax‖pp ≤ ‖SAx‖pp ≤ 2‖Ax‖pp.

Sometimes, poly(d) is much smaller than log n. In this case, we are also able to compute such a
sampling/rescaling matrix S in n poly(d) time in an alternative way.

To do so, we run one of the input sparsity `p embedding algorithms (see e.g., [MM13]) to compute
a well conditioned basis U of the column span of A in n poly(d/ε) time. By sampling according to the
well conditioned basis (see e.g. [Cla05, DDH+09, Woo14]), we can compute a sampling/rescaling
matrix S1 such that (1 − ε)‖Ax‖pp ≤ ‖S1Ax‖pp ≤ (1 + ε)‖Ax‖pp where ε ∈ (0, 1) is an arbitrary
constant. Notice that S1 has poly(d/ε) nonzero entries, and thus S1A has size poly(d/ε). Next, we
apply Lewis weight sampling according to S1A, and we obtain a sampling/rescaling matrix S for
which

∀x ∈ Rd, (1− 1

3
)‖S1Ax‖pp ≤ ‖SS1Ax‖pp ≤ (1 +

1

3
)‖S1Ax‖pp.

This implies that

∀x ∈ Rd,
1

2
‖Ax‖pp ≤ ‖SS1Ax‖pp ≤ 2‖Ax‖pp.

Note that SS1 is still a sampling/rescaling matrix according to A, and the number of non-zero
entries is Õ(d). The total running time is thus n poly(d/ε), as desired.

29

B.10 TensorSketch

Let φ(v1, v2, · · · , vq) denote the function that maps q vectors(ui ∈ Rni) to the
∏q
i=1 ni-dimensional

vector formed by v1 ⊗ v2 ⊗ · · · ⊗ uq.
We first give the definition of TensorSketch. Similar definitions can be found in previous

work [Pag13, PP13, ANW14, WTSA15].

Definition B.34 (TensorSketch [Pag13]). Given q points v1, v2, · · · , vq where for each i ∈
[q], vi ∈ Rni , let m be the target dimension. The TensorSketch transform is specified using
q 3-wise independent hash functions, h1, · · · , hq, where for each i ∈ [q], hi : [ni]→ [m], as well as q
4-wise independent sign functions s1, · · · , sq, where for each i ∈ [q], si : [ni]→ {−1,+1}.

TensorSketch applied to v1, · · · , vq is then CountSketch applied to φ(v1, · · · , vq) with hash
function H : [

∏q
i=1 ni]→ [m] and sign functions S : [

∏q
i=1 ni]→ {−1,+1} defined as follows:

H(i1, · · · , iq) = h1(i1) + h2(s2) + · · ·+ hq(iq) (mod m),

and

S(i1, · · · , iq) = s1(i1) · s2(i2) · · · · · sq(iq).

Using the Fast Fourier Transform, TensorSketch(v1, · · · , vq) can be computed in O(
∑q

i=1(nnz(vi)+
m logm)) time.

Note that Theorem 1 in [ANW14] only defines φ(v) = v ⊗ v ⊗ · · · ⊗ v. Here we state a stronger
version of Theorem 1 than in [ANW14], though the proofs are identical; a formal derivation can be
found in [DW17].

Theorem B.35 (Generalized version of Theorem 1 in [ANW14]). Let S be the (
∏q
i=1 ni)×m matrix

such that TensorSketch (v1, v2, · · · , vq) is φ(v1, v2, · · · , vq)S for a randomly selected TensorS-
ketch. The matrix S satisfies the following two properties.

Property I (Approximate Matrix Product). Let A and B be matrices with
∏q
i=1 ni rows. For

m ≥ (2 + 3q)/(ε2δ), we have

Pr[‖A>SS>B −A>B‖2F ≤ ε2‖A‖2F ‖B‖2F] ≥ 1− δ.

Property II (Subspace Embedding). Consider a fixed k-dimensional subspace V . If m ≥ k2(2 +
3q)/(ε2δ), then with probability at least 1− δ, ‖xS‖2 = (1± ε)‖x‖2 simultaneously for all x ∈ V .

30

C Frobenius Norm for Arbitrary Tensors

Section C.1 presents a Frobenius norm tensor low-rank approximation algorithm with (1 + ε)-
approximation ratio. Section C.2 introduces a tool which is able to reduce the size of the objective
function from n3 to poly(k, 1/ε). Section C.3 introduces a new problem called tensor multiple
regression. Section C.4 presents several bicriteria algorithms. Section C.5 introduces a powerful
tool which we call generalized matrix row subset selection. Section C.6 presents an algorithm that
is able to select a batch of columns, rows and tubes from a given tensor, and those samples are
also able to form a low-rank solution. Section C.7 presents several useful tools for tensor problems,
and also two (1 + ε)-approximation CURT decomposition algorithms: one has the optimal sample
complexity, and the other has the optimal running time. Section C.9 shows how to solve the problem
if the size of the objective function is small. Section C.10 extends several techniques from 3rd order
tensors to general q-th order tensors, for any q ≥ 3. Finally, in Section C.11 we also provide a new
matrix CUR decomposition algorithm, which is faster than [BW14].

For simplicity of presentation, we assume Ak exists in theorems (e.g., Theorem C.1) which
concern outputting a rank-k solution, as well as the theorems (e.g., Theorem C.7, Theorem C.8,
Theorem C.13) which concern outputting a bicriteria solution (the output rank is larger than k).
For each of the bicriteria theorems, we can obtain a more detailed version when Ak does not exist,
like Theorem 1.1 in Section 1 (by instead considering a tensor sufficiently close to Ak in objective
function value). Note that the theorems for column, row, tube subset selection Theorem C.20 and
Theorem C.21 also belong to this first category. In the second category, for each of the rank-k
theorems we can obtain a more detailed version handling all cases, even when Ak does not exist,
like Theorem 1.2 in Section 1 (by instead considering a tensor sufficiently close to Ak in objective
function value).

Several other tensor results or tools (e.g., Theorem C.4, Lemma C.3, Theorem C.40, Theorem
C.41, Theorem C.14, Theorem C.46) that we build in this section do not belong to the above two
categories. It means those results do not depend on whether Ak exists or not and whether OPT is
zero or not.

C.1 (1 + ε)-approximate low-rank approximation

Algorithm 2 Frobenius Norm Low-rank Approximation
1: procedure FLowRankApprox(A,n, k, ε) . Theorem C.1
2: s1 ← s2 ← s3 ← O(k/ε).
3: Choose sketching matrices S1 ∈ Rn2×s1 , S2 ∈ Rn2×s2 , S3 ∈ Rn2×s3 . . Definition B.18
4: Compute AiSi,∀i ∈ [3].
5: Y1, Y2, Y3, C ←FInputSparsityReduction(A,A1S1, A2S2, A3S3, n, s1, s2, s3, k, ε). .

Algorithm 3
6: Create variables for Xi ∈ Rsi×k,∀i ∈ [3].
7: Run polynomial system verifier for ‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖2F .
8: return A1S1X1, A2S2X2, and A3S3X3.
9: end procedure

Theorem C.1. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), there exists
an algorithm which takes O(nnz(A)) + n poly(k, 1/ε) + 2O(k2/ε) time and outputs three matrices

31

U ∈ Rn×k, V ∈ Rn×k, W ∈ Rn×k such that
∥∥∥∥∥

k∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k Ak

‖Ak −A‖2F

holds with probability 9/10.

Proof. Given any tensorA ∈ Rn1×n2×n3 , we define three matricesA1 ∈ Rn1×n2n3 , A2 ∈ Rn2×n3n1 , A3 ∈
Rn3×n1n2 such that, for any i ∈ [n1], j ∈ [n2], l ∈ [n3],

Ai,j,l = (A1)i,(j−1)·n3+l = (A2)j,(l−1)·n1+i = (A3)l,(i−1)·n2+j .

We define OPT as

OPT = min
rank−k A′

‖A′ −A‖2F .

Suppose the optimal Ak = U∗ ⊗ V ∗ ⊗ W ∗. We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k. We use
V ∗1 , V

∗
2 , · · · , V ∗k to denote the columns of V ∗ and W ∗1 ,W ∗2 , · · · ,W ∗k to denote the columns of W ∗.

We consider the following optimization problem,

min
U1,··· ,Uk∈Rn

∥∥∥∥∥
k∑

i=1

Ui ⊗ V ∗i ⊗W ∗i −A
∥∥∥∥∥

2

F

,

which is equivalent to

min
U1,··· ,Uk∈Rn

∥∥∥∥∥∥∥∥

[
U1 U2 · · · Uk

]



V ∗1 ⊗W ∗1
V ∗2 ⊗W ∗2
· · ·

V ∗k ⊗W ∗k


−A

∥∥∥∥∥∥∥∥

2

F

.

We use matrix Z1 to denote




vec(V ∗1 ⊗W ∗1)
vec(V ∗2 ⊗W ∗2)

· · ·
vec(V ∗k ⊗W ∗k)


 ∈ Rk×n2 and matrix U to denote

[
U1 U2 · · · Uk

]
.

Then we can obtain the following equivalent objective function,

min
U∈Rn×k

‖UZ1 −A1‖2F .

Notice that minU∈Rn×k ‖UZ1 −A1‖2F = OPT, since Ak = U∗Z1.
Let S>1 ∈ Rs1×n2 be a sketching matrix defined in Definition B.18, where s1 = O(k/ε). We

obtain the following optimization problem,

min
U∈Rn×k

‖UZ1S1 −A1S1‖2F .

Let Û ∈ Rn×k denote the optimal solution to the above optimization problem. Then Û =
A1S1(Z1S1)†. By Lemma B.22 and Theorem B.23, we have

‖ÛZ1 −A1‖2F ≤ (1 + ε) min
U∈Rn×k

‖UZ1 −A1‖2F = (1 + ε) OPT,

32

which implies
∥∥∥∥∥

k∑

i=1

Ûi ⊗ V ∗i ⊗W ∗i −A
∥∥∥∥∥

2

F

≤ (1 + ε) OPT .

To write down Û1, · · · , Ûk, we use the given matrix A1, and we create s1 × k variables for matrix
(Z1S1)†.

As our second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and we convert tensor A into matrix A2.

Let matrix Z2 denote




vec(Û1 ⊗W ∗1)

vec(Û2 ⊗W ∗2)
· · ·

vec(Ûk ⊗W ∗k)


. We consider the following objective function,

min
V ∈Rn×k

‖V Z2 −A2‖2F ,

for which the optimal cost is at most (1 + ε) OPT.
Let S>2 ∈ Rs2×n2 be a sketching matrix defined in Definition B.18, where s2 = O(k/ε). We

sketch S2 on the right of the objective function to obtain the new objective function,

min
V ∈Rn×k

‖V Z2S2 −A2S2‖2F .

Let V̂ ∈ Rn×k denote the optimal solution of the above problem. Then V̂ = A2S2(Z2S2)†. By
Lemma B.22 and Theorem B.23, we have,

‖V̂ Z2 −A2‖2F ≤ (1 + ε) min
V ∈Rn×k

‖V Z2 −A2‖2F ≤ (1 + ε)2 OPT,

which implies
∥∥∥∥∥

k∑

i=1

Ûi ⊗ V̂i ⊗W ∗i −A
∥∥∥∥∥

2

F

≤ (1 + ε)2 OPT .

To write down V̂1, · · · , V̂k, we need to use the given matrix A2 ∈ Rn2×n, and we need to create
s2 × k variables for matrix (Z2S2)†.

As our third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k. We convert tensor A ∈ Rn×n×n

into matrix A3 ∈ Rn2×n. Let matrix Z3 denote




vec(Û1 ⊗ V̂1)

vec(Û2 ⊗ V̂2)
· · ·

vec(Ûk ⊗ V̂k)


. We consider the following objective

function,

min
W∈Rn×k

‖WZ3 −A3‖2F ,

which has optimal cost at most (1 + ε)2 OPT.
Let S>3 ∈ Rs3×n2 be a sketching matrix defined in Definition B.18, where s3 = O(k/ε). We

sketch S3 on the right of the objective function to obtain a new objective function,

min
W∈Rn×k

‖WZ3S3 −A3S3‖2F .

33

Let Ŵ ∈ Rn×k denote the optimal solution of the above problem. Then Ŵ = A3S3(Z3S3)†. By
Lemma B.22 and Theorem B.23, we have,

‖ŴZ3 −A3‖2F ≤ (1 + ε) min
W∈Rn×k

‖WZ3 −A3‖2F ≤ (1 + ε)3 OPT .

Thus, we have

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(A1S1X1)i ⊗ (A2S2X2)i ⊗ (A3S3X3)i −A
∥∥∥∥∥

2

F

≤ (1 + ε)3 OPT .

Let V1 = A1S1, V2 = A2S2, V3 = A3S3, we then apply Lemma C.3, and we obtain V̂1, V̂2, V̂3, C. We
then apply Theorem C.45. Correctness follows by rescaling ε by a constant factor.

Running time. Due to Definition B.18, the running time of line 4 is O(nnz(A)) + n poly(k).
The running time of line 5 is shown by Lemma C.3, and the running time of line 7 is shown by
Theorem C.45.

Theorem C.2. Suppose we are given a 3rd order n × n × n tensor A such that each entry can be
written using nδ bits, where δ > 0 is a given, value which can be arbitrarily small (e.g., we could have
nδ being O(log n)). Define OPT = infrank−k Ak‖Ak −A‖2F . For any k ≥ 1, and for any 0 < ε < 1,
define nδ′ = O(nδ2O(k2/ε)). (I) If OPT > 0, and there exists a rank-k Ak = U∗ ⊗ V ∗ ⊗W ∗ tensor,
with size n×n×n, such that ‖Ak −A‖2F = OPT, and max(‖U∗‖F , ‖V ∗‖F , ‖W ∗‖F) ≤ 2O(nδ

′
), then

there exists an algorithm that takes (nnz(A)+n poly(k, 1/ε)+2O(k2/ε))nδ time in the unit cost RAM
model with word size O(log n) bits9 and outputs three n× k matrices U, V,W such that

‖U ⊗ V ⊗W −A‖2F ≤ (1 + ε) OPT (5)

holds with probability 9/10, and each entry of each of U, V,W fits in nδ′ bits.
(II) If OPT > 0, and Ak does not exist, and there exist three n×k matrices U ′, V ′,W ′ for which

max(‖U ′‖F , ‖V ′‖F , ‖W ′‖F) ≤ 2O(nδ
′
) and ‖U ′ ⊗ V ′ ⊗W ′ −A‖2F ≤ (1 + ε/2) OPT, then we can find

U, V,W such that (5) holds.
(III) If OPT = 0 and Ak does exist, and there exists a solution U∗, V ∗,W ∗ such that each entry

can be written by nδ′ bits, then we can obtain (5).
(IV) If OPT = 0, and there exist three n×k matrices U, V,W such that max(‖U‖F , ‖V ‖F , ‖W‖F)

≤ 2O(nδ
′
) and

‖U ⊗ V ⊗W −A‖2F ≤ (1 + ε) OPT +2−Ω(nδ
′
) = 2−Ω(nδ

′
), (6)

then we can output U, V,W such that (6) holds.
Further if Ak exists, we can output a number Z for which OPT ≤ Z ≤ (1 + ε) OPT. For all the

cases above, the algorithm runs in the same time as (I) and succeeds with probability at least 9/10.

Proof. This follows by the discussion in Section 1, Theorem C.1 and Theorem C.45 in Section C.9.
Part (I) Suppose δ > 0 and Ak = U∗⊗V ∗⊗W ∗ exists and each of ‖U∗‖F , ‖V ∗‖F , and ‖W ∗‖F is

bounded by 2O(nδ
′
). We assume the computation model is the unit cost RAM model with words of

size O(log n) bits, and allow each number of the input tensor A to be written using nδ bits. For the
9The entries of A are assumed to fit in nδ words.

34

case when OPT is nonzero, using the proof of Theorem C.1 and Theorems C.45, B.11, there exists a
lower bound on the cost OPT, which is at least 2−O(nδ)2O(k2/ε) . We can round each entry of matrices
U∗, V ∗,W ∗ to be an integer expressed using O(nδ

′
) bits to obtain U ′, V ′,W ′. Using the triangle

inequality and our lower bound on OPT, it follows that U ′, V ′,W ′ provide a (1 + ε)-approximation.
Thus, applying Theorem C.1 by fixing U ′, V ′,W ′ and using Theorem C.45 at the end, we can

output three matrices U, V,W , where each entry can be written using nδ′ bits, so that we satisfy
‖U ⊗ V ⊗W −A‖2F ≤ (1 + ε) OPT.

For the running time, since each entry of the input is bounded by nδ bits, due to Theorem C.1,
we need (nnz(A) + n poly(k/ε)) · nδ time to reduce the size of the problem to poly(k/ε) size (with
each number represented using O(nδ) bits). According to Theorem C.45, the running time of using
a polynomial system verifier to get the solution is 2O(k2/ε)nO(δ′) = 2O(k2/ε)nO(δ) time. Thus the
total running time is (nnz(A) + n poly(k/ε))nδ + 2O(k2/ε) · nO(δ).

Part (II) is similar to Part (I). Part (III) is trivial to prove since there exists a solution which
can be written down in the bit model, so we obtain a (1 + ε)-approximation. Part (IV) is also very
similar to Part (II).

C.2 Input sparsity reduction

Algorithm 3 Reducing the Size of the Objective Function from poly(n) to poly(k)

1: procedure FInputSparsityReduction(A, V1, V2, V3, n, b1, b2, b3, k, ε) . Lemma C.3
2: c1 ← c2 ← c3 ← poly(k, 1/ε).
3: Choose sparse embedding matrices T1 ∈ Rc1×n, T2 ∈ Rc2×n, T3 ∈ Rc3×n. . Definition B.16
4: V̂i ← TiVi ∈ Rci×bi , ∀i ∈ [3].
5: C ← A(T1, T2, T3) ∈ Rc1×c2×c3 .
6: return V̂1, V̂2, V̂3 and C.
7: end procedure

Lemma C.3. Let poly(k, 1/ε) ≥ b1b2b3 ≥ k. Given a tensor A ∈ Rn×n×n and three matrices
V1 ∈ Rn×b1, V2 ∈ Rn×b2, and V3 ∈ Rn×b3, there exists an algorithm that takes O(nnz(A)+nnz(V1)+
nnz(V2) + nnz(V3)) = O(nnz(A) + n poly(k/ε)) time and outputs a tensor C ∈ Rc1×c2×c3 and three
matrices V̂1 ∈ Rc1×b1, V̂2 ∈ Rc2×b2 and V̂3 ∈ Rc3×b3 with c1 = c2 = c3 = poly(k, 1/ε), such that with
probability at least 0.99, for all α > 0, X1, X

′
1 ∈ Rb1×k, X2, X

′
2 ∈ Rb2×k, X3, X

′
3 ∈ Rb3×k satisfy that,

∥∥∥∥∥
k∑

i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥

2

F

≤ α
∥∥∥∥∥
k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C
∥∥∥∥∥

2

F

,

then,
∥∥∥∥∥
k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i −A

∥∥∥∥∥

2

F

≤ (1 + ε)α

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

2

F

.

Proof. Let X1 ∈ Rb1×k, X2 ∈ Rb2×k, X3 ∈ Rb3×k. First, we define Z1 = ((V2X2)> � (V3X3)>) ∈
Rk×n2 . (Note that, for each i ∈ [k], the i-th row of matrix Z1 is vec((V2X2)i ⊗ (V3X3)i).) Then, by

35

flattening we have
∥∥∥∥∥

k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

2

F

= ‖V1X1 · Z1 −A1‖2F .

We choose a sparse embedding matrix (Definition B.16) T1 ∈ Rc1×n with c1 = poly(k, 1/ε) rows.
Since V1 has b1 ≤ poly(k/ε) columns, according to Lemma B.19 with probability 0.999, for all
X1 ∈ Rb1×k, Z ∈ Rk×n2 ,

(1− ε)‖V1X1Z −A1‖2F ≤ ‖T1V1X1Z − T1A1‖2F ≤ (1 + ε)‖V1X1Z −A1‖2F .

Therefore, we have

‖T1V1X1 · Z1 − T1A1‖2F = (1± ε)
∥∥∥∥∥

k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

2

F

.

Second, we unflatten matrix T1A1 ∈ Rc1×n2 to obtain a tensor A′ ∈ Rc1×n×n. Then we flatten A′

along the second direction to obtain A2 ∈ Rn×c1n. We define Z2 = (T1V1X1)>� (V3X3)> ∈ Rk×c1n.
Then, by flattening,

‖V2X2 · Z2 −A2‖2F = ‖T1V1X1 · Z1 − T1A1‖2F

= (1± ε)
∥∥∥∥∥

k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

2

F

.

We choose a sparse embedding matrix (Definition B.16) T2 ∈ Rc2×n with c2 = poly(k, 1/ε) rows.
Then according to Lemma B.19 with probability 0.999, for all X2 ∈ Rb2×k, Z ∈ Rk×c1n,

(1− ε)‖V2X2Z −A2‖2F ≤ ‖T2V2X2Z − T2A2‖2F ≤ (1 + ε)‖V2X2Z −A2‖2F .

Therefore, we have

‖T2V2X2 · Z2 − T2A2‖2F = (1± ε)‖V2X2 · Z2 −A2‖2F

= (1± ε)2

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

2

F

.

Third, we unflatten matrix T2A2 ∈ Rc2×c1n to obtain a tensor A′′(= A(T1, T2, I)) ∈ Rc1×c2×n.
Then we flatten tensor A′′ along the last direction (the third direction) to obtain matrix A3 ∈
Rn×c1c2 . We define Z3 = (T1V1X1)> � (T2V2X2)> ∈ Rk×c1c2 . Then, by flattening, we have

‖V3X3 · Z3 −A3‖2F = ‖T2V2X2 · Z2 − T2A2‖2F

= (1± ε)2

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

2

F

.

We choose a sparse embedding matrix (Definition B.16) T3 ∈ Rc3×n with c3 = poly(k, 1/ε) rows.
Then according to Lemma B.19 with probability 0.999, for all X3 ∈ Rb3×k, Z ∈ Rk×c1c2 ,

(1− ε)‖V3X3Z −A3‖2F ≤ ‖T3V3X3Z − T3A3‖2F ≤ (1 + ε)‖V3X3Z −A3‖2F .

36

Therefore, we have

‖T3V3X3 · Z3 − T3A3‖2F = (1± ε)3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

2

F

.

Note that

‖T3V3X3 · Z3 − T3A3‖2F =

∥∥∥∥∥
k∑

i=1

(T1V1X1)i ⊗ (T2V2X2)i ⊗ (T3V3X3)i −A(T1, T2, T3)

∥∥∥∥∥

2

F

,

and thus, we have ∀X1 ∈ Rb1×k, X2 ∈ Rb2×k, X3 ∈ Rb3×k
∥∥∥∥∥

k∑

i=1

(T1V1X1)i ⊗ (T2V2X2)i ⊗ (T3V3X3)i −A(T1, T2, T3)

∥∥∥∥∥

2

F

=(1± ε)3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

2

F

.

Let V̂i denote TiVi, for each i ∈ [3]. Let C ∈ Rc1×c2×c3 denote A(T1, T2, T3). For α > 1, if
∥∥∥∥∥

k∑

i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥

2

F

≤ α
∥∥∥∥∥

k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C
∥∥∥∥∥

2

F

,

then
∥∥∥∥∥

k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i − C

∥∥∥∥∥

2

F

≤ 1

(1− ε)3

∥∥∥∥∥
k∑

i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥

2

F

≤ 1

(1− ε)3
α

∥∥∥∥∥
k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C
∥∥∥∥∥

2

F

≤ (1 + ε)3

(1− ε)3
α

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − C
∥∥∥∥∥

2

F

By rescaling ε by a constant, we complete the proof of correctness.

Running time. According to Section B.6, for each i ∈ [3], TiVi can be computed in O(nnz(Vi))
time, and A(T1, T2, T3) can be computed in O(nnz(A)) time.

By the analysis above, the proof is complete.

C.3 Tensor multiple regression

Theorem C.4. Given matrices A ∈ Rd×n2, U, V ∈ Rn×k, let B ∈ Rk×n2 denote U> � V >. There
exists an algorithm that takes O(nnz(A) + nnz(U) + nnz(V) + dpoly(k, 1/ε)) time and outputs a
matrix W ′ ∈ Rd×k such that,

‖W ′B −A‖2F ≤ (1 + ε) min
W∈Rd×k

‖WB −A‖2F .

37

Algorithm 4 Frobenius Norm Tensor Multiple Regression
1: procedure FTensorMultipleRegression(A,U, V, d, n, k) . Theorem C.4
2: s← O(k2 + k/ε).
3: Choose S ∈ Rn2×s to be a TensorSketch. . Definition B.34
4: Compute A · S.
5: Compute B · S. . B = U> � V >
6: W ← (AS)(BS)†

7: return W .
8: end procedure

Proof. We choose a TensorSketch (Definition B.34) S ∈ Rn2×s to reduce the problem to a smaller
problem,

min
W∈Rd×k

‖WBS −AS‖2F .

Let W ′ denote the optimal solution to the above problem. Following a similar proof to that in
Section C.7.3, if S is a (1±1/2)-subspace embedding and satisfies

√
ε/k-approximate matrix product,

then W ′ provides a (1 + ε)-approximation to the original problem. By Theorem B.35, we have
s = O(k2 + k/ε).

Running time. According to Definition B.34, BS can be computed in O(nnz(U) + nnz(V)) +
poly(k/ε) time. Notice that each row of S has exactly 1 nonzero entry, thus AS can be computed
in O(nnz(A)) time. Since BS ∈ Rk×s and AS ∈ Rd×s, minW∈Rd×k ‖WBS −AS‖2F can be solved in
dpoly(sk) = d poly(k/ε) time.

C.4 Bicriteria algorithms

C.4.1 Solving a small regression problem

Lemma C.5. Given tensor A ∈ Rn×n×n and three matrices U ∈ Rn×s1 , V ∈ Rn×s2 and W ∈
Rn×s3 , there exists an algorithm that takes O(nnz(A) + n poly(s1, s2, s3, 1/ε)) time and outputs
α′ ∈ Rs1×s2×s3 such that
∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

α′i,j,l · Ui ⊗ Vj ⊗Wl −A

∥∥∥∥∥∥

2

F

≤ (1 + ε) min
α∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · Ui ⊗ Vj ⊗Wl −A

∥∥∥∥∥∥

2

F

.

holds with probability at least .99.

Proof. We define b̃ ∈ Rn3 to be the vector where the i+(j−1)n+(l−1)n2-th entry of b̃ is Ai,j,l. We
define Ã ∈ Rn3×s1s2s3 to be the matrix where the (i+(j−1)n+(l−1)n2, i′+(j′−1)s2 +(l′−1)s2s3)
entry is Ui′,i · Vj′,j ·Wl′,l. This problem is equivalent to a linear regression problem,

min
x∈Rs1s2s3

‖Ãx− b̃‖22,

where Ã ∈ Rn3×s1s2s3 , b̃ ∈ Rn3 . Thus, it can be solved fairly quickly using recent work [CW13,
MM13, NN13]. However, the running time of this naïvely is Ω(n3), since we have to write down
each entry of Ã. In the next few paragraphs, we show how to improve the running time to nnz(A)+
n poly(s1, s2, s3).

38

Since α ∈ Rs1×s2×s3 , α can be always written as α = X1⊗X2⊗X3, where X1 ∈ Rs1×s1s2s3 , X2 ∈
Rs2×s1s2s3 , X3 ∈ Rs3×s1s2s3 , we have

min
α∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · Ui ⊗ Vj ⊗Wl −A

∥∥∥∥∥∥

2

F

= min
X1∈Rs1×s1s2s3
X2∈Rs2×s1s2s3
X3∈Rs3×s1s2s3

‖(UX1)⊗ (V X2)⊗ (WX3)−A‖2F .

By Lemma C.3, we can reduce the problem size n × n × n to a smaller problem that has size
t1 × t2 × t3,

min
X1,X2,X3

∥∥∥∥∥
s1s2s3∑

i=1

(T1UX1)i ⊗ (T2V X2)i ⊗ (T3WX3)i −A(T1, T2, T3)

∥∥∥∥∥

2

F

where T1 ∈ Rt1×n, T2 ∈ Rt2×n, T3 ∈ Rt3×n, t1 = t2 = t3 = poly(s1s2s3/ε). Notice that

min
X1,X2,X3

∥∥∥∥∥
s1s2s3∑

i=1

(T1UX1)i ⊗ (T2V X2)i ⊗ (T3WX3)i −A(T1, T2, T3)

∥∥∥∥∥

2

F

= min
α∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · (T1U)i ⊗ (T2V)j ⊗ (T3W)l −A(T1, T2, T3)

∥∥∥∥∥∥

2

F

.

Let

α′ = arg min
α∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · (T1U)i ⊗ (T2V)j ⊗ (T3W)l −A(T1, T2, T3)

∥∥∥∥∥∥

2

F

,

then we have
∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

α′i,j,l · Ui ⊗ Vj ⊗Wl −A

∥∥∥∥∥∥

2

F

≤ (1 + ε) min
α∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · Ui ⊗ Vj ⊗Wl −A

∥∥∥∥∥∥

2

F

.

Again, according to Lemma C.3, the total running time is then O(nnz(A) + n poly(s1, s2, s3, 1/ε)).

Lemma C.6. Given tensor A ∈ Rn×n×n, and two matrices U ∈ Rn×s, V ∈ Rn×s with rank(U) =
r1, rank(V) = r2, let T1 ∈ Rt1×n, T2 ∈ Rt2×n be two sparse embedding matrices (Definition B.16)
with t1 = poly(r1/ε), t2 = poly(r2/ε). Then with probability at least 0.99, ∀X ∈ Rn×s,

(1− ε)‖U ⊗ V ⊗X −A‖2F ≤ ‖T1U ⊗ T2V ⊗X −A(T1, T2, I)‖2F ≤ (1 + ε)‖U ⊗ V ⊗X −A‖2F .

Proof. Let X ∈ Rn×s. We define Z1 = (V > �X>) ∈ Rs×n2 . We choose a sparse embedding matrix
(Definition B.16) T1 ∈ Rt1×n with t1 = poly(r1/ε) rows. According to Lemma B.19 with probability
0.999, for all Z ∈ Rs×n2 ,

(1− ε)‖UZ −A1‖2F ≤ ‖T1UZ − T1A1‖2F ≤ (1 + ε)‖T1UZ −A1‖2F .

39

It means that

(1− ε)‖UZ1 −A1‖2F ≤ ‖T1UZ1 − T1A1‖2F ≤ (1 + ε)‖T1UZ1 −A1‖2F .

Second, we unflatten matrix T1A1 ∈ Rt1×n2 to obtain a tensor A′ ∈ Rt1×n×n. Then we flatten A′

along the second direction to obtain A′2 ∈ Rn×t1n. We define Z2 = ((T1U)>�X>) ∈ Rs×t1n. Then,
by flattening,

‖V · Z2 −A′2‖2F = ‖T1U · Z1 − T1A1‖2F = (1± ε)‖U ⊗ V ⊗X −A‖2F .

We choose a sparse embedding matrix (Definition B.16) T2 ∈ Rt2×n with t2 = poly(r2/ε) rows.
Then according to Lemma B.19 with probability 0.999, for all Z ∈ Rs×t1n,

(1− ε)‖V Z −A′2‖2F ≤ ‖T2V Z − T2A
′
2‖2F ≤ (1 + ε)‖V Z −A′2‖2F .

Thus,

‖T2V · Z2 − T2A
′
2‖2F = (1± ε)2‖U ⊗ V ⊗X −A‖2F .

After rescaling ε by a constant, with probability at least 0.99, ∀X ∈ Rn×s,

(1− ε)‖U ⊗ V ⊗X −A‖2F ≤ ‖T1U ⊗ T2V ⊗X −A(T1, T2, I)‖2F ≤ (1 + ε)‖U ⊗ V ⊗X −A‖2F .

C.4.2 Algorithm I

We start with a slightly unoptimized bicriteria low rank approximation algorithm.

Algorithm 5 Frobenius Norm Bicriteria Low Rank Approximation Algorithm, rank-O(k3/ε3)

1: procedure FTensorLowRankBicriteriaCubicRank(A,n, k) . Theorem C.7
2: s1 ← s2 ← s3 ← O(k/ε).
3: t1 ← t2 ← t3 ← poly(k/ε).
4: Choose Si ∈ Rn2×si to be a Sketching matrix, ∀i ∈ [3]. . Definition B.18
5: Choose Ti ∈ Rti×n to be a Sketching matrix, ∀i ∈ [3]. . Definition B.16
6: Compute U ← T1 · (A1 · S1), V ← T2 · (A2 · S2), W ← T3 · (A3 · S3).
7: Compute C ← A(T1, T2, T3).
8: X ←FTensorRegression(C,U, V,W, t1, s1, t2, s2, t3, s3). . Linear regression
9: return X(A1S1, A2S2, A3S3).

10: end procedure

Theorem C.7. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let r = O(k3/ε3).
There exists an algorithm that takes O(nnz(A) + n poly(k, 1/ε)) time and outputs three matrices
U ∈ Rn×r, V ∈ Rn×r, W ∈ Rn×r such that

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k Ak

‖Ak −A‖2F

holds with probability 9/10.

40

Proof. At the end of Theorem C.1, we need to run a polynomial system verifier. This is why we
obtain exponential in k running time. Instead of running the polynomial system verifier, we can use
Lemma C.5. This reduces the running time to be polynomial in all parameters: n, k, 1/ε. However,
the output tensor has rank (k/ε)3 (Here we mean that we do not obtain a better decomposition than
(k/ε)3 components). According to Section B.6, for each i, AiSi can be computed in O(nnz(A)) +
n poly(k/ε) time. Then Ti(AiSi) can be computed in n poly(k, 1/ε) time and A(T1, T2, T3) also can
be computed in O(nnz(A)) time. The running time for the regression is poly(k/ε).

Now we present an optimized bicriteria algorithm.

Algorithm 6 Frobenius Norm Low Rank Approximation Algorithm, rank-O(k2/ε2)

1: procedure FTensorLowRankBicriteriaQuadraticRank(A,n, k) . Theorem C.8
2: s1 ← s2 ← O(k/ε).
3: Choose Si ∈ Rn2×si to be a sketching matrix, ∀i ∈ [3]. . Definition B.18
4: Compute A1 · S1, A2 · S2.
5: Form Û by using A1S1 according to Equation (9).
6: Form V̂ by using A2S2 according to Equation (10).
7: Ŵ ←FTensorMultipleRegression(A, Û , V̂ , n, n, s1s2). . Algorithm 4
8: return Û , V̂ , Ŵ .
9: end procedure

10: procedure FTensorLowRankBicriteriaQuadraticRank(A,n, k) . Theorem C.8
11: s1 ← s2 ← O(k/ε).
12: t1 ← t2 ← poly(k/ε).
13: Choose Si ∈ Rn2×si to be a Sketching matrix, ∀i ∈ [2]. . Definition B.18
14: Choose Ti ∈ Rti×n to be a Sketching matrix, ∀i ∈ [2]. . Definition B.16
15: Form Û by using A1S1 according to Equation (9).
16: Form V̂ by using A2S2 according to Equation (10).
17: Compute C ← A(T1, T2, I). . C ∈ Rt1×t2×n
18: Compute B ← (T1Û)> � (T2V̂)>.
19: Ŵ ← arg min

X∈Rn×s1s2
‖XB − C3‖2F .

20: return Û , V̂ , Ŵ .
21: end procedure

Theorem C.8. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let r = O(k2/ε2).
There exists an algorithm that takes O(nnz(A) + n poly(k, 1/ε)) time and outputs three matrices
U ∈ Rn×r, V ∈ Rn×r, W ∈ Rn×r such that

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k Ak

‖Ak −A‖2F

holds with probability 9/10.

Note that there are two different ways to implement algorithm FTensorLowRankBicrite-
riaQuadraticRank. We present the proofs for both of them here.

Approach I.

41

Proof. Let OPT = min
rank−k Ak

‖Ak − A‖2F . According to Theorem C.1, we know that there exists a

sketching matrix S3 ∈ Rn2×s3 where s3 = O(k/ε), such that

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥∥∥
k∑

l=1

(A1S1X1)l ⊗ (A2S2X2)l ⊗ (A3S3X3)l −A
∥∥∥∥∥

2

F

≤ (1 + ε) OPT

Now we fix an l and we have:

(A1S1X1)l ⊗ (A2S2X2)l ⊗ (A3S3X3)l

=

(
s1∑

i=1

(A1S1)i(X1)i,l

)
⊗




s2∑

j=1

(A2S2)j(X2)j,l


⊗ (A3S3X3)l

=

s1∑

i=1

s2∑

j=1

(A1S1)i ⊗ (A2S2)j ⊗ (A3S3X3)l(X1)i,l(X2)j,l

Thus, we have

min
X1,X2,X3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

(A1S1)i ⊗ (A2S2)j ⊗
(

k∑

l=1

(A3S3X3)l(X1)i,l(X2)j,l

)
−A

∥∥∥∥∥∥

2

F

≤ (1 + ε) OPT . (7)

We use matrices A1S1 ∈ Rn×s1 and A2S2 ∈ Rn×s2 to construct a matrix B ∈ Rs1s2×n2 in the
following way: each row of B is the vector corresponding to the matrix generated by the ⊗ product
between one column vector in A1S1 and the other column vector in A2S2, i.e.,

Bi+(j−1)s1 = vec((A1S1)i ⊗ (A2S2)j),∀i ∈ [s1], j ∈ [s2], (8)

where (A1S1)i denotes the i-th column of A1S1 and (A2S2)j denote the j-th column of A2S2.
We create matrix Û ∈ Rn×s1s2 by copying matrix A1S1 s2 times, i.e.,

Û =
[
A1S1 A1S1 · · · A1S1

]
. (9)

We create matrix V̂ ∈ Rn×s1s2 by copying the i-th column of A2S2 a total of s1 times, into columns
(i− 1)s1, · · · , is1 of V̂ , for each i ∈ [s2], i.e.,

V̂ =
[
(A2S2)1 · · · (A2S2)1 (A2S2)2 · · · (A2S2)2 · · · (A2S2)s2 · · · (A2S2)s2

]
. (10)

Thus, we can use Û and V̂ to represent B,

B = (Û> � V̂ >) ∈ Rs1s2×n
2
.

According to Equation (7), we have:

min
W∈Rn×s1s2

‖WB −A3‖2F ≤ (1 + ε) OPT .

Next, we want to find matrix W ∈ Rn×s1s2 by solving the following optimization problem,

min
W∈Rn×s1s2

‖WB −A3‖2F .

42

Note that B has size s1s2 × n2. Naïvely writing down B already requires Ω(n2) time. In or-
der to achieve nearly linear time in n, we cannot write down B. We choose S3 ∈ Rn1n2×s3 to
be a TensorSketch (Definition B.34). In order to solve multiple regression, we need to set
s3 = O((s1s2)2 + (s1s2)/ε). Let Ŵ denote the optimal solution to ‖WBS3 − A3S3‖2F . Then
Ŵ = (A3S3)(BS3)†. Since each row of S3 has exactly 1 nonzero entry, A3S3 can be computed in
O(nnz(A)) time. Since B = (Û> � V̂ >), according to Definition B.34, BS3 can be computed in
n poly(s1s2/ε) = n poly(k/ε) time. By Theorem C.4, we have

‖ŴB −A3‖2F ≤ (1 + ε) min
W∈Rn×s1s2

‖WB −A3‖2F .

Thus, we have

‖Û ⊗ V̂ ⊗ Ŵ −A‖2F ≤ (1 + ε) OPT .

According to Definition B.18, A1S1, A2S2 can be computed in O(nnz(A)+poly(k/ε)) time. Te total
running time is thus O(nnz(A) + poly(k/ε)).

Approach II.

Proof. Let OPT = min
rank−k Ak

‖Ak −A‖2F . Choose sketching matrices (Definition B.18) S1 ∈ Rn2×s1 ,

S2 ∈ Rn2×s2 , S3 ∈ Rn2×s3 , and sketching matrices (Definition B.16) T1 ∈ Rt1×n and T2 ∈ Rt2×n
with s1 = s2 = s3 = O(k/ε), t1 = t2 = poly(k/ε). We create matrix Û ∈ Rn×s1s2 by copying matrix
A1S1 s2 times, i.e.,

Û =
[
A1S1 A1S1 · · · A1S1

]
.

We create matrix V̂ ∈ Rn×s1s2 by copying the i-th column of A2S2 a total of s1 times, into columns
(i− 1)s1, · · · , is1 of V̂ , for each i ∈ [s2], i.e.,

V̂ =
[
(A2S2)1 · · · (A2S2)1 (A2S2)2 · · · (A2S2)2 · · · (A2S2)s2 · · · (A2S2)s2

]
.

As we proved in Approach I, we have

min
X∈Rn×s1s2

‖Û ⊗ V̂ ⊗X −A‖2F ≤ (1 + ε) OPT .

Let B = ((T1Û)>�(T2V̂)>) ∈ Rs1s2×t1t2 , and flatten A(T1, T2, I) along the third direction to obtain
C3 ∈ Rn×t1t2 . Let

Ŵ = arg min
X∈Rn×s1s2

‖T1Û ⊗ T2V̂ ⊗X −A(T1, T2, I)‖2F = arg min
X∈Rn×s1s2

‖XB − C3‖2F .

Let

W ∗ = arg min
X∈Rn×s1s2

‖Û ⊗ V̂ ⊗X −A‖2F .

43

According to Lemma C.6,

‖Û ⊗ V̂ ⊗ Ŵ −A‖2F
≤ 1

1− ε‖T1Û ⊗ T2V̂ ⊗ Ŵ −A(T1, T2, I)‖2F

≤ 1

1− ε‖T1Û ⊗ T2V̂ ⊗W ∗ −A(T1, T2, I)‖2F

≤1 + ε

1− ε‖Û ⊗ V̂ ⊗W
∗ −A‖2F

≤(1 + ε)2

1− ε OPT .

According to Definition B.18, A1S1, A2S2 can be computed in O(nnz(A) + poly(k/ε)) time.
The total running time is thus O(nnz(A) + poly(k/ε)). Since T1, T2 are sparse embedding matrices,
T1Û , T2V̂ can be computed in O(nnz(A)+poly(k/ε)) time. The total running time is in O(nnz(A)+
poly(k/ε)).

Theorem C.9. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1 and any 0 < ε < 1, if Ak
exists then there is a randomized algorithm running in nnz(A) + n · poly(k/ε) time which outputs a
rank-O(k2/ε2) tensor B for which ‖A − B‖2F ≤ (1 + ε)‖A − Ak‖2F . If Ak does not exist, then the
algorithm outputs a rank-O(k2/ε2) tensor B for which ‖A−B‖2F ≤ (1 + ε) OPT +γ, where γ is an
arbitrarily small positive function of n. In both cases, the algorithm succeeds with probability at least
9/10.

Proof. If Ak exists, then the proof directly follows the proof of Theorem C.1 and Theorem C.8. If
Ak does not exist, then for any γ > 0, there exist U∗ ∈ Rn×k, V ∗ ∈ Rn×k,W ∗ ∈ Rn×k such that

‖U∗ ⊗ V ∗ ⊗W ∗ −A‖2F ≤ inf
rank−k A′

‖A−A′‖2F +
1

10
γ.

Then we just regard U∗ ⊗ V ∗ ⊗W ∗ as the “best” rank k approximation to A, and follow the same
argument as in the proof of Theorem C.1 and the proof of Theorem C.8. We can finally output a
tensor B ∈ Rn×n×n with rank-O(k2/ε2) such that

‖B −A‖2F ≤ (1 + ε)‖U∗ ⊗ V ∗ ⊗W ∗ −A‖2F

≤ (1 + ε)

(
inf

rank−k A′
‖A−A′‖2F +

1

10
γ

)

≤ (1 + ε) inf
rank−k A′

‖A−A′‖2F + γ

where the first inequality follows by the proof of Theorem C.1 and the proof of theorem C.8. The
second inequality follows by our choice of U∗, V ∗,W ∗. The third inequality follows since 1 + ε < 2
and γ > 0.

C.4.3 poly(k)-approximation to multiple regression

Lemma C.10 ((1.4) and (1.9) in [RV09]). Let s ≥ k. Let U ∈ Rn×k denote a matrix that has
orthonormal columns, and S ∈ Rs×n denote an i.i.d. N(0, 1/s) Gaussian matrix. Then SU is also
an s×k i.i.d. Gaussian matrix with each entry draw from N(0, 1/s), and furthermore, we have with
arbitrarily large constant probability,

σmax(SU) = O(1) and σmin(SU) = Ω(1/
√
s).

44

Proof. Note that
√
s−
√
k − 1 = s−k−1√

s+
√
k−1

= Ω(1/
√
s).

Lemma C.11. Given matrices A ∈ Rn×k, B ∈ Rn×d, let S ∈ Rs×n denote a standard Gaussian
N(0, 1) matrix with s = k. Let X∗ = min

X∈Rk×d
‖AX − B‖F . Let X ′ = min

X∈Rk×d
‖SAX − SB‖F . Then,

we have that

‖AX ′ −B‖F ≤ O(
√
k)‖AX∗ −B‖F ,

holds with probability at least 0.99.

Proof. Let X∗ ∈ Rk×d denote the optimal solution such that

‖AX∗ −B‖F = min
X∈Rk×d

‖AX −B‖F .

Consider a standard Gaussian matrix S ∈ Rk×n scaled by 1/
√
k with exactly k rows. Then for

any X ∈ Rk×d, by the triangle inequality, we have

‖SAX − SB‖F ≤ ‖SAX − SAX∗‖F + ‖SAX∗ − SB‖F ,

and

‖SAX − SB‖F ≥ ‖SAX − SAX∗‖F − ‖SAX∗ − SB‖F .

We first show how to bound ‖SAX − SAX∗‖F , and then show how to bound ‖SAX∗ − SB‖F .
Note that Lemma C.10 implies the following result,

Claim C.12. For any X ∈ Rk×d, with probability 0.999, we have

1√
k
‖AX −AX∗‖F . ‖SAX − SAX∗‖F . ‖AX −AX∗‖F .

Proof. First, we can write A = UR ∈ Rn×k where U ∈ Rn×k has orthonormal columns and R ∈
Rk×k. It gives,

‖SAX − SAX∗‖F = ‖SU(RX −RX∗)‖F .

Second, applying Lemma C.10 to SU ∈ Rs×k completes the proof.

Using Markov’s inequality, for any fixed matrix AX∗ − B, choosing a Gaussian matrix S, we
have that

‖SAX∗ − SB‖2F = O(‖AX∗ −B‖2F)

holds with probability at least 0.999. This is equivalent to

‖SAX∗ − SB‖F = O(‖AX∗ −B‖F), (11)

holding with probability at least 0.999.

45

Let X ′ = arg min
X∈Rk×d

‖SAX − SB‖F . Putting it all together, we have

‖AX ′ −B‖F
≤ ‖AX ′ −AX∗‖F + ‖AX∗ −B‖F by triangle inequality

≤ O(
√
k)‖SAX ′ − SAX∗‖F + ‖AX∗ −B‖F by Claim C.12

≤ O(
√
k)‖SAX ′ − SB‖F +O(

√
k)‖SAX∗ − SB‖F + ‖AX∗ −B‖F by triangle inequality

≤ O(
√
k)‖SAX∗ − SB‖F +O(

√
k)‖SAX∗ − SB‖F + ‖AX∗ −B‖F by definition of X ′

≤ O(
√
k)‖AX∗ −B‖F . by Equation (11)

C.4.4 Algorithm II

Theorem C.13. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = k2. There exists
an algorithm which takes O(nnz(A)k) + n poly(k) time and outputs three matrices U, V,W ∈ Rn×r
such that,

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥
F

≤ poly(k) min
rank−k A′

‖A′ −A‖F

holds with probability 9/10.

Proof. Let OPT = min
rank−k A′

‖A′−A‖F , we fix V ∗ ∈ Rn×k,W ∗ ∈ Rn×k to be the optimal solution of

the original problem. We use Z1 = (V ∗> �W ∗>) ∈ Rk×n2 to denote the matrix where the i-th row
is the vectorization of V ∗i ⊗W ∗i . Let A1 ∈ Rn×n2 denote the matrix obtained by flattening tensor
A ∈ Rn×n×n along the first direction. Then, we have

min
U
‖UZ1 −A1‖F ≤ OPT .

Choosing an N(0, 1/k) Gaussian sketching matrix S1 ∈ Rn2×s1 with s1 = k, we can obtain the
smaller problem,

min
U∈Rn×k

‖UZ1S1 −A1S1‖F .

Define Û = A1S1(Z1S1)†. Define α = O(
√
k). By Lemma C.11, we have

‖ÛZ1 −A1‖F ≤ αOPT .

Second, we fix Û and W ∗. Define Z2, A2 similarly as above. Choosing an N(0, 1/k) Gaussian
sketching matrix S2 ∈ Rn2×s2 with s2 = k, we can obtain another smaller problem,

min
V ∈Rn×k

‖V Z2S2 −A2S2‖F .

Define V̂ = A2S2(Z2S2)†. By Lemma C.11 again, we have

‖V̂ Z2 −A2‖F ≤ α2 OPT .

46

Thus, we now have

min
X1,X2,W

‖A1S1X1 ⊗A2S2X2 ⊗W −A‖F ≤ α2 OPT

We use a similar idea as in the proof of Theorem C.8. We create matrix Ũ ∈ Rn×s1s2 by copying
matrix A1S1 s2 times, i.e.,

Ũ =
[
A1S1 A1S1 · · · A1S1

]
.

We create matrix Ṽ ∈ Rn×s1s2 by copying the i-th column of A2S2 a total of s1 times, into columns
(i− 1)s1, · · · , is1 of Ṽ , for each i ∈ [s2], i.e.,

Ṽ =
[
(A2S2)1 · · · (A2S2)1 (A2S2)2 · · · (A2S2)2 · · · (A2S2)s2 · · · (A2S2)s2

]
.

We have

min
X∈Rn×s1s2

‖Ũ ⊗ Ṽ ⊗X −A‖F ≤ α2 OPT .

Choose Ti ∈ Rti×n to be a sparse embedding matrix (Definition B.16) with ti = poly(k/ε), for
each i ∈ [2]. By applying Lemma C.6, we have, if W ′ satisfies,

‖T1Ũ ⊗ T2Ṽ ⊗W ′ −A(T1, T2, I)‖F = min
X∈Rn×s1s2

‖T1Ũ ⊗ T2Ṽ ⊗X −A(T1, T2, I)‖F

then,

‖Ũ ⊗ Ṽ ⊗W ′ −A‖F ≤ (1 + ε) min
X∈Rn×s1s2

‖Ũ ⊗ Ṽ ⊗X −A‖F ≤ (1 + ε)α2 OPT .

Thus, we only need to solve

min
X∈Rn×s1s2

‖T1Ũ ⊗ T2Ṽ ⊗X −A(T1, T2, I)‖F .

which is similar to the proof of Theorem C.8. Therefore, we complete the proof of correctness. For
the running time, A1S1, A2S2 can be computed in O(nnz(A)k) time, T1Ũ , T2Ṽ can be computed in
n poly(k) time. The final regression problem can be computed in n poly(k) running time.

C.5 Generalized matrix row subset selection

Note that in this section, the notation Πξ
C,k is given in Definition B.5.

Theorem C.14. Given matrices A ∈ Rn×m and C ∈ Rn×k, there exists an algorithm which takes
O(nnz(A) log n)+(m+n) poly(k, 1/ε) time and outputs a diagonal matrix D ∈ Rn×n with d = O(k/ε)
nonzeros (or equivalently a matrix R that contains d = O(k/ε) rescaled rows of A) and a matrix
U ∈ Rk×d such that

‖CUDA−A‖2F ≤ (1 + ε) min
X∈Rk×m

‖CX −A‖2F

holds with probability .99.

47

Algorithm 7 Generalized Matrix Row Subset Selection: Constructing R with r = O(k+k/ε) Rows
and a rank-k U ∈ Rk×r

1: procedure GeneralizedMatrixRowSubsetSelection(A,C, n,m, k, ε) . Theorem C.14
2: Y,Φ,∆← ApproxSubspaceSVD(A,C, k). . Claim C.16 and Lemma 3.12 in [BW14]
3: B ← Y∆.
4: Z2, D ← QR(B). . Z2 ∈ Rm×k, Z>2 Z2 = Ik, D ∈ Rk×k
5: h2 ← 8k ln(20k).
6: Ω2, D2 ← RandSampling(Z2, h2, 1) . Definition 3.6 in [BW14]
7: M2 ← Z>2 Ω2D2 ∈ Rk×h2 .
8: UM2 ,ΣM2 , V

>
M2
← SVD(M2). . rank(M2) = k and VM2 ∈ Rh2×k

9: r1 ← 4k.
10: S2 ← BSSSamplingSparse(VM2 , ((A

> −A>Z2Z
>
2)Ω2D2)>, r1, 0.5) . Lemma 4.3 in

[BW14]
11: R1 ← (A>Ω2D2S2)> ∈ Rr1×n containing rescaled rows from A.
12: r2 ← 4820k/ε.
13: R2 ← AdaptiveRowsSparse(A,Z2, R1, r2) . Lemma 4.5 in [BW14]
14: R← [R>1 , R

>
2]>. . R ∈ R(r1+r2)×n containing r = 4k + 4820k/ε rescaled rows of A.

15: Choose W ∈ Rξ×m to be a randomly chosen sparse subspace embedding with ξ = Ω(k2ε−2).
16: U ← Φ−1∆D−1(WCΦ−1∆D−1)†WAR† = Φ−1∆∆>(WC)†WAR†.
17: return R, U .
18: end procedure

Proof. This follows by combining Lemma C.17 and C.18. Let U,R denote the output of procedure
GeneralizedMatrixRowSubsetSelection,

‖A− CUR‖2F ≤ (1 + ε)‖A− Z2Z
>
2 AR

†R‖2F
≤ (1 + ε)(1 + 60ε)‖A−ΠF

C,k(A)‖2F
≤ (1 + 130ε)‖A−ΠF

C,k(A)‖2F .

Because R is a subset of rows of A and R has size O(k/ε)×m, there must exist a diagonal matrix
D ∈ Rn×n with O(k/ε) nonzeros such that R = DA. This completes the proof.

Corollary C.15 (A slightly different version of Theorem C.14, faster running time, and small input
matrix). Given matrices A ∈ Rn×m and C ∈ Rn×k, if min(m,n) = poly(k, 1/ε), then there exists
an algorithm which takes O(nnz(A)) + (m + n) poly(k, 1/ε) time and outputs a diagonal matrix
D ∈ Rn×n with d = O(k/ε) nonzeros (or equivalently a matrix R that contains d = O(k/ε) rescaled
rows of A) and a matrix U ∈ Rk×d such that

‖CUDA−A‖2F ≤ (1 + ε) min
X∈Rk×m

‖CX −A‖2F

holds with probability .99.

Proof. The log n factor comes from the adaptive sampling where we need to choose a Gaussian
matrix with O(log n) rows and compute SA. If A has poly(k, 1/ε) columns, it is sufficient to choose
S to be a CountSketch matrix with poly(k, 1/ε) rows. Then, we do not need a log n factor in the
running time. If S has poly(k, 1/ε) rows, then we no longer need the matrix S.

48

Claim C.16. Given matrices A ∈ Rm×n and C ∈ Rm×c, let Y ∈ Rm×c,Φ ∈ Rc×c and ∆ ∈ Rc×k
denote the output of procedure ApproxSubspaceSVD(A,C, k, ε). Then with probability .99, we
have,

‖A− Y∆∆>Y >A‖2F ≤ (1 + 30ε)‖A−ΠF
C,k(A)‖2F .

Proof. This follows by Lemma 3.12 in [BW14].

Lemma C.17. The matrices R and Z2 in procedure GeneralizedMatrixRowSubsetSelec-
tion (Algorithm 7) satisfy with probability at least 0.17− 2/n,

‖A− Z2Z
>
2 AR

†R‖2F ≤ ‖A−ΠF
C,k(A)‖2F + 60ε‖A−ΠF

C,k(A)‖2F .

Proof. We can show,

‖A− Z2Z
>
2 A‖2F +

30ε

4820
‖A−AR†1R1‖2F

= ‖A−BB†A‖2F +
30ε

4820
‖A−AR†1R1‖2F

≤ ‖A−BB†A‖2F + 30ε‖A−Ak‖2F
≤ ‖A− Y∆∆>Y A‖2F + 30ε‖A−ΠF

C,k(A)‖2F
≤ (1 + 30ε)‖A−ΠF

C,k(A)‖2F + 30ε‖A−ΠF
C,k(A)‖2F ,

where the first step follows by the fact that Z2Z
>
2 = Z2DD

−1Z>2 = (Z2D)(Z2D)† = BB†, the
second step follows by ‖A − AR†1R1‖2F ≤ 4820‖A − Ak‖2F , the third step follows by B = Y∆ and
B† = (Y∆)† = ∆†Y † = ∆>Y >, and the last step follows by Claim C.16.

Lemma C.18. The matrices C,U and R in procedure GeneralizedMatrixRowSubsetSelec-
tion (Algorithm 7) satisfy that

‖A− CUR‖2F ≤ (1 + ε)‖A− Z2Z
>
2 AR

†R‖2F

with probability at least .99.

Proof. Let UR,ΣR, VR denote the SVD of R. Then VRV >R = R†R.
We define Y ∗ to be the optimal solution of

min
X∈Rk×r

‖WAVRV
>
R −WCΦ−1∆D−1Y R‖2F .

We define X̂∗ to be Y ∗R ∈ Rk×n, which is also equivalent to defining X̂∗ to be the optimal solution
of

min
X∈Rk×n

‖WAVRV
>
R −WCΦ−1∆D−1X‖2F .

Furthermore, it implies X̂∗ = (WCΦ−1∆D−1)†WAVRV
†
R.

We also define X∗ to be the optimal solution of

min
X∈Rk×n

‖AVRV †R − CΦ−1∆D−1X‖2F ,

49

which implies that,

X∗ = (CΦ−1∆D−1)†AVRV
>
R = Z>2 AVRV

>
R .

Now, we start to prove an upper bound on ‖A− CUR‖2F ,

‖A− CUR‖2F = ‖A− CΦ−1∆D−1Y ∗R‖2F by definition of U

= ‖A− CΦ−1∆D−1X̂∗‖2F by X̂∗ = Y ∗R

= ‖AVRV >R − CΦ−1∆D−1X̂∗ +A−AVRV >R ‖2F
= ‖AVRV >R − CΦ−1∆D−1X̂∗‖2F︸ ︷︷ ︸

α

+ ‖A−AVRV >R ‖2F︸ ︷︷ ︸
β

, (12)

where the last step follows by X̂∗ = MV >R , A − AVRV >R = A(I − VRV >R) and the Pythagorean
theorem. We show how to upper bound the term α,

α ≤ (1 + ε)‖AVRV >R − CΦ−1∆D−1X∗‖2F by Lemma C.19

= ε‖AVRV >R − CΦ−1∆D−1X∗‖2F + ‖AVRV >R − CΦ−1∆D−1X∗‖2F
= ε‖AVRV >R − CΦ−1∆D−1X∗‖2F + ‖AVRV >R − CΦ−1∆D−1(Z>2 AR

†R)‖2F . (13)

By the Pythagorean theorem and the definition of Z2 (which means Z2 = CΦ−1∆D−1), we have,

‖AVRV >R − CΦ−1∆D−1(Z>2 AR
†R)‖2F + β

= ‖AVRV >R − CΦ−1∆D−1(Z>2 AR
†R)‖2F + ‖A−AVRV >R ‖2F

= ‖A− CΦ−1∆D−1(Z>2 AR
†R)‖2F

= ‖A− Z2Z
>
2 AR

†R‖2F . (14)

Combining Equations (12), (13) and (14) together, we obtain,

‖A− CUR‖2F ≤ ε‖AVRV >R − CΦ−1∆D−1X∗‖2F + ‖A− Z2Z
>
2 AR

†R‖2F .

We want to show ‖AVRV >R − CΦ−1∆D−1X∗‖2F ≤ ‖A− Z2Z
>
2 AR

†R‖2F ,

‖AVRV >R − CΦ−1∆D−1X∗‖2F
= ‖AVRV >R − CΦ−1∆D−1Z>2 AVRV

>
R ‖2F by X∗ = Z>2 AVRV

>
R

≤ ‖A− CΦ−1∆D−1Z>2 A‖2F by properties of projections

≤ ‖A− CΦ−1∆D−1Z>2 AR
†R‖2F by properties of projections

= ‖A− Z2Z
>
2 AR

†R‖2F . by Z2 = CΦ−1∆D−1

This completes the proof.

Lemma C.19 ([CW13]). Let A ∈ Rn×d have rank ρ and B ∈ Rn×r. Let W ∈ Rr×n be a randomly
chosen sparse subspace embedding with r = Ω(ρ2ε−2). Let X̂∗ = arg min

X∈Rd×r
‖WAX −WB‖2F and let

X∗ = arg min
X∈Rd×r

‖AX −B‖2F . Then with probability at least .99,

‖AX̃∗ −B‖2F ≤ (1 + ε)‖AX∗ −B‖2F .

50

Algorithm 8 Frobenius Norm Tensor Column, Row and Tube Subset Selection, Polynomial Time
1: procedure FCRTSelection(A,n, k, ε) . Theorem C.20
2: s1 ← s2 ← O(k/ε).
3: Choose a Gaussian matrix S1 with s1 columns. . Definition B.18
4: Choose a Gaussian matrix S2 with s2 columns. . Definition B.18
5: Form matrix Z ′3 by setting the (i, j)-th row to be the vectorization of (A1S1)i ⊗ (A2S2)j .
6: D3 ←GeneralizedMatrixRowSubsetSelection(A>3 , (Z ′3)>,n2,n,s1s2,ε). . Algorithm

7
7: Let d3 denote the number of nonzero entries in D3. . d3 = O(s1s2/ε)
8: Form matrix Z ′2 by setting the (i, j)-th row to be the vectorization of (A1S1)i ⊗ (A3S

′
3)j .

9: D2 ←GeneralizedMatrixRowSubsetSelection(A>2 , (Z ′2)>,n2,n,s1d3,ε).
10: Let d2 denote the number of nonzero entries in D2. . d2 = O(s1d3/ε)
11: Form matrix Z ′1 by setting the (i, j)-th row to be the vectorization of (A2D2)i ⊗ (A3D3)j .
12: D1 ←GeneralizedMatrixRowSubsetSelection(A>1 , (Z ′1)>,n2,n,d2d3,ε).
13: Let d1 denote the number of nonzero entries in D1. . d1 = O(d2d3/ε)
14: C ← A1D1, R← A2D2 and T ← A3D3.
15: return C, R and T .
16: end procedure

C.6 Column, row, and tube subset selection, (1 + ε)-approximation

We provide two bicriteria CURT results in this Section. We first present a warm-up result. That
result (Theorem C.20) does not output tensor U and only guarantees that there is a rank-poly(k/ε)
tensor U . Then we show the second result (Theorem C.21), our second result is able to output
tensor U . The U has rank poly(k/ε), but not k.

Theorem C.20. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm
which takes O(nnz(A)) + n poly(k, 1/ε) time and outputs three matrices: C ∈ Rn×c, a subset of
columns of A, R ∈ Rn×r a subset of rows of A, and T ∈ Rn×t, a subset of tubes of A where
c = r = t = poly(k, 1/ε), and there exists a tensor U ∈ Rc×r×t such that

‖(((U · T>)> ·R>)> · C>)> −A‖2F ≤ (1 + ε) min
rank−k Ak

‖Ak −A‖2F ,

or equivalently,
∥∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl −A

∥∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k Ak

‖Ak −A‖2F

holds with probability 9/10.

Proof. We mainly analyze Algorithm 8 and it is easy to extend to Algorithm 9.
We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k. We define Z1 ∈ Rk×n2 where the i-th row of Z1 is

the vector Vi ⊗Wi. Choose sketching (Gaussian) matrix S1 ∈ Rn2×s1 (Definition B.18), and let
Û = A1S1(Z1S1)† ∈ Rn×k. Following a similar argument as in the previous theorem, we have

‖ÛZ1 −A1‖2F ≤ (1 + ε) OPT .

51

We fix Û and W ∗. We define Z2 ∈ Rk×n2 where the i-th row of Z2 is the vector Ûi ⊗W ∗i . Choose
sketching (Gaussian) matrix S2 ∈ Rn2×s2 (Definition B.18), and let V̂ = A2S2(Z2S2)† ∈ Rn×k.
Following a similar argument as in the previous theorem, we have

‖V̂ Z2 −A2‖2F ≤ (1 + ε)2 OPT .

We fix Û and V̂ . Note that Û = A1S1(Z1S1)† and V̂ = A2S2(Z2S2)†. We define Z3 ∈ Rk×n2

such that the i-th row of Z3 is the vector Ûi ⊗ V̂i. Let z3 = s1 · s2. We define Z ′3 ∈ Rz3×n2 such
that, ∀i ∈ [s1],∀j ∈ [s2], the i+ (j− 1)s1-th row of Z ′3 is the vector (A1S1)i⊗ (A2S2)j . We consider
the following objective function,

min
W∈Rn×k,X∈Rk×z3

‖WXZ ′3 −A3‖2F ≤ min
W∈Rn×k

‖WZ3 −A3‖2F ≤ (1 + ε)2 OPT .

Using Theorem C.14, we can find a diagonal matrix D3 ∈ Rn2×n2 with d3 = O(z3/ε) = O(k2/ε3)
nonzero entries such that

min
X∈Rd3×z3

‖A3D3XZ
′
3 −A3‖2F ≤ (1 + ε)3 OPT .

In the following, we abuse notation and let A3D3 ∈ Rn×d3 by deleting zero columns. Let W ′ denote
A3D3 ∈ Rn×d3 . Then,

min
X∈Rd3×z3

‖W ′XZ ′3 −A3‖2F ≤ (1 + ε)3 OPT .

We fix Û and W ′. Let z2 = s1 · d3. We define Z ′2 ∈ Rz2×n2 such that, ∀i ∈ [s1], ∀j ∈ [d3], the
i+ (j − 1)s1-th row of Z ′2 is the vector (A1S1)i ⊗ (A3D3)j .

Using Theorem C.14, we can find a diagonal matrix D2 ∈ Rn2×n2 with d2 = O(z2/ε) =
O(s1d3/ε) = O(k3/ε5) nonzero entries such that

min
X∈Rd2×z2

‖A2D2XZ
′
2 −A2‖2F ≤ (1 + ε)4 OPT .

Let V ′ denote A2D2. Then,

min
X∈Rd2×z2

‖V ′XZ ′2 −A2‖2F ≤ (1 + ε)4 OPT .

We fix V ′ and W ′. Let z1 = d2 · d3. We define Z ′1 ∈ Rz1×n2 such that, ∀i ∈ [d2],∀j ∈ [d3], the
i+ (j − 1)s1-th row of Z ′1 is the vector (A2D2)i ⊗ (A3D3)j .

Using Theorem C.14, we can find a diagonal matrix D1 ∈ Rn2×n2 with d1 = O(z1/ε) =
O(d2d3/ε) = O(k5/ε9) nonzero entries such that

min
X∈Rd1×z1

‖A1D1XZ
′
1 −A1‖2F ≤ (1 + ε)5 OPT .

Let U ′ denote A1D1. Then,

min
X∈Rd1×z1

‖U ′XZ ′1 −A1‖2F ≤ (1 + ε)5 OPT .

Putting U ′, V ′,W ′ all together, we complete the proof.
All the above analysis gives the running time O(nnz(A)) log n+n2 poly(log n, k, 1/ε). To improve

the running time, we need to use Algorithm 9, the similar analysis will go through, the running
time will be improved to O(nnz(A) + n poly(k, 1/ε)), but the sample complexity of c, r, k will be
slightly worse (poly log factors).

52

Algorithm 9 Frobenius Norm Tensor Column, Row and Tube Subset Selection, Input Sparsity
Time
1: procedure FCRTSelection(A,n, k, ε) . Theorem C.20
2: s1 ← s2 ← O(k/ε).
3: ε0 ← 0.001.
4: Choose a Gaussian matrix S1 with s1 columns. . Definition B.18
5: Choose a Gaussian matrix S2 with s2 columns. . Definition B.18
6: Form matrix B1 by setting (i, j)-th column to be (A1S1)i.
7: Form matrix B2 by setting (i, j)-th column to be (A2S2)j . . Z ′3 = B>1 �B>2
8: d3 ← O(s1s2 log(s1s2) + (s1s2/ε)).
9: D3 ←FastTensorLeverageScoreGeneralOrder(B>1 , B>2 , n, n, s1s2, ε0, d1). .

Algorithm 15
10: Form matrix B1 by setting (i, j)-th column to be (A1S1)i.
11: Form matrix B3 by setting (i, j)-th column to be (A3D3)j . . Z ′2 = B>1 �B>3
12: d2 ← O(s1d3 log(s1d3) + (s1d3/ε)).
13: D2 ←FastTensorLeverageScoreGeneralOrder(B>1 , B>3 , n, n, s1d3, ε0, d2).
14: Form matrix B2 by setting (i, j)-th column to be (A2D2)i.
15: Form matrix B3 by setting (i, j)-th column to be (A3D3)j . . Z ′1 = B>2 �B>3
16: d1 ← O(d2d3 log(d2d3) + (d2d3/ε)).
17: D1 ←FastTensorLeverageScoreGeneralOrder(B>2 , B>3 , n, n, d2d3, ε0, d1).
18: C ← A1D1, R← A2D2 and T ← A3D3.
19: return C, R and T .
20: end procedure

Theorem C.21. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm
which takes O(nnz(A) + n poly(k, 1/ε)) time and outputs three matrices: C ∈ Rn×c, a subset of
columns of A, R ∈ Rn×r a subset of rows of A, and T ∈ Rn×t, a subset of tubes of A, together with
a tensor U ∈ Rc×r×t with rank(U) = k′ where c = r = t = poly(k, 1/ε) and k′ = poly(k, 1/ε) such
that

‖U(C,R, T)−A‖2F ≤ (1 + ε) min
rank−k Ak

‖Ak −A‖2F ,

or equivalently,
∥∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl −A

∥∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k Ak

‖Ak −A‖2F

holds with probability 9/10.

Proof. The proof follows by combining Theorem 1.1 and Theorem 1.3 directly.

C.7 CURT decomposition, (1 + ε)-approximation

C.7.1 Properties of leverage score sampling and BSS sampling

Notice that, the BSS algorithm is a deterministic procedure developed in [BSS12] for selecting rows
from a matrix A ∈ Rn×d (with ‖A‖2 ≤ 1 and ‖A‖2F ≤ k) using a selection matrix S so that

‖A>S>SA−A>A‖2 ≤ ε.

53

The algorithm runs in poly(n, d, 1/ε) time. Using the ideas from [BW14] and [CEM+15], we are
able to reduce the number of nonzero entries from O(ε−2k log k) to O(ε−2k), and also improve the
running time to input sparsity.

Lemma C.22 (Leverage score preserves subspace embedding - Theorem 2.11 in [Woo14]). Given
a rank-k matrix A ∈ Rn×d, via leverage score sampling, we can obtain a diagonal matrix D with
m nonzero entries such that, letting B = DA, if m = O(ε−2k log k), then, with probability at least
0.999, for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖Bx‖2 ≤ (1 + ε)‖Ax‖2

Lemma C.23. Given a rank-k matrix A ∈ Rn×d, there exists an algorithm that runs in O(nnz(A)+
n poly(k, 1/ε)) time and outputs a matrix B containing O(ε−2k log k) re-weighted rows of A, such
that with probability at least 0.999, for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖Bx‖2 ≤ (1 + ε)‖Ax‖2

Proof. We choose a sparse embedding matrix (Definition B.16) Π ∈ Rd×s with s = poly(k/ε).
With probability at least 0.999, Π> is a subspace embedding of A>. Thus, rank(AΠ) = rank(A).
Also, the leverage scores of AΠ are the same as those of A. Thus, we can compute the leverage
scores of AΠ. The running time of computing AΠ is O(nnz(A)). Thus the total running time is
O(nnz(A) + n poly(k, 1/ε)).

Lemma C.24. Let B denote a matrix which contains O(ε−2k log k) rows of A ∈ Rn×d. Choosing Π
to be a sparse subspace embedding matrix of size d×O(ε−6(k log k)2), with probability at least 0.999,

‖BΠΠ>B> −BB>‖2 ≤ ε‖B‖22.

Combining Lemma C.23, C.24 and the BSS algorithm, we obtain:

Lemma C.25. Given a rank-k matrix A ∈ Rn×d, there exists an algorithm that runs in O(nnz(A)+
n poly(k, 1/ε)) time and outputs a sampling and rescaling diagonal matrix S that selects O(ε−2k)
re-weighted rows of A, such that, with probability at least 0.999,

‖A>S>SA−A>A‖2 ≤ ε‖A‖22.

or equivalently, for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2.

Proof. Using Lemma C.23, we can obtain B. Then we apply a sparse subspace embedding matrix
Π on the right of B. At the end, we run the BSS algorithm on BΠ and we are able to output
O(ε−2k) re-weighted rows of BΠ. Using these rows, we are able to determine O(ε−2k) re-weighted
rows of A.

C.7.2 Row sampling for linear regression

Theorem C.26 (Theorem 5 in [CNW15]). We are given A ∈ Rn×d with ‖A‖22 ≤ 1 and ‖A‖2F ≤ k,
and an ε ∈ (0, 1). There exists a diagonal matrix S with O(k/ε2) nonzero entries such that

‖(SA)>SA−A>A‖2 ≤ ε.

54

Corollary C.27. Given a rank-k matrix A ∈ Rn×d, vector b ∈ Rn, and parameter ε > 0, let
U ∈ Rn×(k+1) denote an orthonormal basis of [A, b]. Let S ∈ Rn×n denote a sampling and rescaling
diagonal matrix according to Leverage score sampling and sparse BSS sampling of U with m nonzero
entries. If m = O(k), then S is a (1±1/2) subspace embedding for U ; if m = O(k/ε), then S satisfies√
ε-operator norm approximate matrix product for U .

Proof. This follows by Lemma C.22, Lemma C.24 and Theorem C.26.

Lemma C.28 ([NW14]). Given A ∈ Rn×d and b ∈ Rn, let S ∈ Rn×n denote a sampling and
rescaling diagonal matrix. Let x∗ denote arg minx ‖Ax− b‖22 and x′ denote arg minx ‖SAx− Sb‖22.
If S is a (1 ± 1/2) subspace embedding for the column span of A, and ε′ (=

√
ε)-operator norm

approximate matrix product for U adjoined with b−Ax∗, then, with probability at least .999,

‖Ax′ − b‖22 ≤ (1 + ε)‖Ax∗ − b‖22.

Proof. We define OPT = min
x
‖Ax−b‖2. We define x′ = arg min

x
‖SAx−Sb‖22 and x∗ = arg min

x
‖Ax−

b‖22. Let w = b − Ax∗. Let U denote an orthonormal basis of A. We can write Ax′ − Ax∗ = Uβ.
Then, we have,

‖Ax′ − b‖22 = ‖Ax′ −Ax∗ +AA†b− b‖22 by x∗ = A†b

= ‖Uβ + (UU> − I)b‖22
= ‖Ax∗ −Ax′‖22 + ‖Ax∗ − b‖22 by Pythagorean Theorem

= ‖Uβ‖22 + OPT2

= ‖β‖22 + OPT2 .

If S is a (1± 1/2) subspace embedding for U , then we can show

‖β‖2 − ‖U>S>SUβ‖2
≤ ‖β − U>S>SUβ‖2 by triangle inequality

= ‖(I − U>S>SU)β‖2
≤ ‖I − U>S>SU‖2 · ‖β‖2
≤ 1

2
‖β‖2.

Thus, we obtain

‖U>S>SUβ‖2 ≥ ‖β‖2/2.

Next, we can show

‖U>S>SUβ‖2 = ‖U>S>S(Ax′ −Ax∗)‖22
= ‖U>S>S(A(SA)†Sb−Ax∗)‖2 by x′ = (SA)†Sb

= ‖U>S>S(b−Ax∗)‖2 by SA(SA)† = I

= ‖U>S>Sw‖2. by w = b−Ax∗

55

We define U ′ =
[
U w/‖w‖2

]
. We define X and y to satisfy U = U ′X and w = U ′y. Then, we

have

‖U>S>Sw‖2
= ‖U>S>Sw − U>w‖2 by U>w = 0

= ‖X>U ′>S>SU ′y −X>U ′>U ′y‖2
= ‖X>(U ′>S>SU ′ − I)y‖2
≤ ‖X‖2 · ‖U ′>S>SU ′ − I‖2 · ‖y‖2
≤ ε′‖X‖2‖y‖2
= ε′‖U‖2‖w‖2
= ε′OPT, by ‖U‖2 = 1 and ‖w‖2 = OPT

where the fifth inequality follows since S satisfies ε′-operator norm approximate matrix product for
the column span of U adjoined with w.

Putting it all together, we have

‖Ax′ − b‖22 = ‖Ax∗ − b‖22 + ‖Ax∗ −Ax′‖22
= OPT2 +‖β‖22
≤ OPT2 +4‖U>S>Sw‖22
≤ OPT2 +4(ε′OPT)2

≤ (1 + ε) OPT2 . by ε′ =
1

2

√
ε.

Finally, note that S satisfies ε′-operator norm approximate matrix product for U adjoined with
w if it is a (1± ε′)-subspace embedding for U adjoined with w, which holds using BSS sampling by
Theorem 5 of [CNW15] with O(d/ε) samples.

C.7.3 Leverage scores for multiple regression

Lemma C.29 (see, e.g., Lemma 32 in [CW13] among other places). Given matrix A ∈ Rn×d with
orthonormal columns, and parameter ε > 0, if S ∈ Rn×n is a sampling and rescaling diagonal matrix
according to the leverage scores of A where the number of nonzero entries is t = O(1/ε2), then, for
any B ∈ Rn×m, we have

‖A>S>SB −A>B‖2F < ε2‖A‖2F ‖B‖2F ,

holds with probability at least 0.9999.

Corollary C.30. Given matrix A ∈ Rn×d with orthonormal columns, and parameter ε > 0, if
S ∈ Rn×n is a sampling and rescaling diagonal matrix according to the leverage scores of A with
m nonzero entries, then if m = O(d log d), then S is a (1 ± 1/2) subspace embedding for A. If
m = O(d/ε), then S satisfies

√
ε/d-Frobenius norm approximate matrix product for A.

Proof. This follows by Lemma C.22 and Lemma C.29.

Lemma C.31 ([NW14]). Given A ∈ Rn×d and B ∈ Rn×m, let S ∈ Rn×n denote a sampling and
rescaling matrix according to A. Let X∗ denote arg minX ‖AX−B‖2F and X ′ denote arg minX ‖SAX−

56

SB‖2F . Let U denote an orthonormal basis for A. If S is a (1 ± 1/2) subspace embedding for U ,
and satisfies ε′(=

√
ε/d)-Frobenius norm approximate matrix product for U , then, we have that

‖AX ′ −B‖2F ≤ (1 + ε)‖AX∗ −B‖2F
holds with probability at least 0.999.

Proof. We define OPT = minX ‖AX − B‖F . Let A = UΣV > denote the SVD of A. Since A has
rank k, U and V have k columns. We can write A(X ′ −X∗) = Uβ. Then, we have

‖AX ′ −B‖2F = ‖AX ′ −AX∗ +AA†B −B‖2F by X∗ = A†B

= ‖Uβ + (UU> − I)B‖2F
= ‖AX∗ −AX ′‖2F + ‖AX∗ −B‖2F by Pythagorean Theorem

= ‖Uβ‖2F + OPT2

= ‖β‖2F + OPT2 . (15)

If S is a (1± 1/2) subspace embedding for U , then we can show,

‖β‖F − ‖U>S>SSUβ‖F
≤ ‖β − U>S>SUβ‖F by triangle inequality

= ‖(I − U>S>SU)β‖F
≤ ‖(I − U>S>SU)‖2 · ‖β‖F by ‖AB‖F ≤ ‖A‖2‖B‖F
≤ 1

2
‖β‖F . by ‖(I − U>S>SU)‖2 ≤ 1/2

Thus, we obtain

‖U>S>SUβ‖F ≥ ‖β‖F /2. (16)

Next, we can show

‖U>S>SUβ‖F = ‖U>S>S(AX ′ −AX∗)‖F
= ‖U>S>S(A(SA)†Sb−AX∗)‖F by X ′ = (SA)†SB

= ‖U>S>S(B −AX∗)‖F . by SA(SA)† = I

Then, we can show

‖U>S>S(B −AX∗)‖F ≤ ε′‖U>‖F ‖B −AX∗‖F by Lemma C.29

= ε′
√
dOPT . by ‖U‖F =

√
d and ‖B −AX∗‖F = OPT

(17)

Putting it all together, we have

‖AX ′ −B‖2F = ‖AX∗ −B‖2F + ‖AX∗ −AX ′‖2F
= OPT2 +‖β‖2F by Equation (15)

≤ OPT2 +4‖U>S>Sw‖2F by Equation (16)

≤ OPT2 +4(ε′
√
dOPT)2 by Equation (17)

≤ (1 + ε) OPT2 . by ε′ =
1

2

√
ε/d

57

C.7.4 Sampling columns according to leverage scores implicitly, improving polynomial
running time to nearly linear running time

This section explains an algorithm that is able to sample from the leverage scores from the � product
of two matrices U, V without explicitly writing down U � V . To build this algorithm we combine
TensorSketch, some ideas from [DMIMW12] and some ideas from [AKO11, MW10]. Finally, we
are able to improve the running time of sampling columns according to leverage scores from Ω(n2)
to Õ(n). Given two matrices U, V ∈ Rk×n, we define A ∈ Rk×n1n2 to be the matrix where the i-th
row of A is the vectorization of U i ⊗ V i, ∀i ∈ [k]. Naïvely, in order to sample O(poly(k, 1/ε)) rows
from A> according to leverage scores, we need to write down n2 leverage scores. This approach
will take at least Ω(n2) running time. In the rest of this section, we will explain how to do it in
O(n · poly(log n, k, 1/ε)) time. In Section C.10.1, we will explain how to extend this idea from 3rd
order tensors to general q-th order tensors and remove the poly(log n) factor from running time,
i.e., obtain O(n · poly(k, 1/ε)) time.

Lemma C.32. Given two matrices U ∈ Rk×n1 and V ∈ Rk×n2, there exists an algorithm that takes
O((n1 + n2) · poly(log(n1n2), k) ·Rsamples) time and samples Rsamples columns of U � V ∈ Rk×n1n2

according to the leverage scores of R−1(U � V), where R is the R of a QR factorization.

Proof. We choose Π ∈ Rn1n2×s1 to be a TensorSketch. Then, according to Section B.10, we can
compute R−1 in n · poly(log n, k, 1/ε) time, where R is the R in a QR-factorization. We want to
sample columns from U �V according to the square of the `2-norms of each column of R−1(U �V).
However, explicitly writing down the matrix R−1(U � V) takes kn1n2 time, and the number of
columns is already n1n2. The goal is to sample columns from R−1(U � V) without explicitly
computing the square of the `2-norm of each column.

The first simple observation is that the following two sampling procedures are equivalent in
terms of the column samples of a matrix that they take. (1) We sample a single entry from the
matrix R−1(U � V) proportional to its squared value. (2) We sample a column from the matrix
R−1(U �V) proportional to its squared `2-norm. Let the (i, j1, j2)-th entry denote the entry in the
i-th row and the (j1 − 1)n2 + j2-th column. We can show, for a particular column (j1 − 1)n2 + j2,

Pr[sample an entry from the (j1 − 1)n2 + j2 th column of a matrix]

=
k∑

i=1

Pr[sample the (i, j1, j2)-th entry of matrix]

=
k∑

i=1

|(R−1(U � V))i,(j1−1)n2+j2 |2
‖R−1(U � V)‖2F

=
‖(R−1(U � V))(j1−1)n2+j2‖2

‖R−1(U � V)‖2F
= Pr[sample the (j1 − 1)n2 + j2 th column of matrix]. (18)

Thus, it is sufficient to show how to sample a single entry from matrix R−1(U � V) proportional to
its squared value without writing down all of the entries of a k × n1n2 matrix.

We choose a Gaussian matrix G1 ∈ Rg1×k with g1 = O(ε−2 log(n1n2)). By Claim C.33 we can
reduce the length of each column vector of matrixR−1U�V from k to g1 while preserving the squared
`2-norm of all columns simultaneously. Thus, we obtain a new matrix GR−1(U � V) ∈ Rg1×n1n2 ,
and sampling from this new matrix is equivalent to sampling from the original matrix R−1(U �V).

In the following paragraphs, we explain a sampling procedure (also described in Procedure
FastTensorLeverageScore in Algorithm 10) which contains three sampling steps. The first

58

Algorithm 10 Fast Tensor Leverage Score Sampling
1: procedure FastTensorLeverageScore(U, V, n1, n2, k, ε, Rsamples) . Lemma C.32
2: s1 ← poly(k, 1/ε).
3: g1 ← g2 ← g3 ← O(ε−2 log(n1n2)).
4: Choose Π ∈ Rn1n2×s1 to be a TensorSketch. . Definition B.34
5: Compute R−1 ∈ Rk×k by using (U � V)Π. . U ∈ Rk×n1 , V ∈ Rk×n2

6: Choose G1 ∈ Rg1×k to be a Gaussian sketching matrix.
7: for i = 1→ g1 do
8: w ← (GiR−1)> . Gi denotes the i-th row of G
9: for j = 1→ [n1] do . Form matrix U ′i ∈ Rk×n1

10: U ′ij ← w ◦ Uj , ∀j ∈ [n1]. . Uj denotes the j-th column of U ∈ Rk×n1

11: end for
12: end for
13: Choose G2,i ∈ Rg2×n1 to be a Gaussian sketching matrix.
14: for i = 1→ g1 do
15: αi ← ‖(G2,iU

′i>)V ‖2F .
16: Choose G3,i ∈ Rg3×n1 to be a Gaussian sketching matrix.
17: for j2 = 1→ n2 do
18: βi,j ← ‖G3,i(U

′i>)Vj2‖22.
19: end for
20: end for
21: S ← ∅.
22: for r = 1→ Rsamples do
23: Sample i from [g1] with probability αi/

∑g1

i′=1 αi′ .
24: Sample j2 from [n2] with probability βi,j2/

∑n2

j′2=1 βi,j′2 .
25: for j1 = 1→ n1 do
26: γj1 ← ((U ′i>)j1Vj2)2.
27: end for
28: Sample j1 from [n1] with probability γj1/

∑n1

j′1=1 γj′1 .
29: S ← S ∪ (j1, j2).
30: end for
31: Convert S into a diagonal matrix D with at most Rsamples nonzero entries.
32: return D. . Diagonal matrix D ∈ Rn1n2×n1n2

33: end procedure

step is sampling i from [g1], the second step is sampling j2 from [n2], and the last step is sampling
j1 from [n1].

For each j1 ∈ [n1], let Uj1 denote the j1-th column of U . For each i ∈ [g1], let Gi1 denote
the i-th row of matrix G1 ∈ Rg1×k, let U ′i ∈ Rk×n1 denote a matrix where the j1-th column is
(GiR−1)> ◦Uj1 ∈ Rk, ∀j ∈ [n1]. Then, using Claim C.37, we have that (GiR−1) · (U �V) ∈ Rn1n2 is
a row vector where the entry in the (j1−1)n2 +j2-th coordinate is the entry in the j1-th row and j2-
th column of matrix (U ′i>V) ∈ Rn1×n2 . Further, the squared `2-norm of vector (GiR−1) · (U � V)
is equal to the squared Frobenius norm of matrix (U ′i>V). Thus, sampling i proportional to
the squared `2-norm of vector (GiR−1) · (U � V) is equivalent to sampling i proportional to the
squared Frobenius norm of matrix (U ′i>V). Naïvely, computing the Frobenius norm of an n1 × n2

matrix requires O(n1n2) time. However, we can choose a Gaussian matrix G2,i ∈ Rg2×n1 to sample

59

according to the value ‖(G2,iU
′i>)V ‖2F , which can be computed in O((n1 + n2)g2k) time. By

claim C.35, ‖(G2,iU
′i>)V ‖2F ≈ ‖(U ′i>)V ‖2F with high probability. So far, we have finished the first

step of the sampling procedure.
For the second step of the sampling procedure, we need to sample j2 from [n2]. To do that,

we need to compute the squared `2-norm of each column of U ′i>V ∈ Rn1×n2 . This can be done
by choosing another Gaussian matrix G3,i ∈ Rg3×n1 . For all j2 ∈ [n2], by Claim C.36, we have
‖G3,iU

′i>Vj2‖22 ≈ ‖U ′i>Vj2‖22. Also, for j2 ∈ [n2], ‖G3,iU
′i>Vj2‖22 can be computed in nearly linear

in n1 + n2 time.
For the third step of the sampling procedure, we need to sample j1 from [n1]. Since we already

have i and j2 from the previous two steps, we can directly compute |(U ′i>)j1Vj2 |2, for all j1. This
only takes O(n1k) time.

Overall, the running time is O((n1 + n2) · poly(log(n1n2), k, 1/ε)). Because our estimates are
accurate enough, our sampling probabilities are also good approximations to the leverage score
sampling probabilities. Putting it all together, we complete the proof.

Claim C.33. Given matrix R−1(U �V) ∈ Rk×n1n2, let G1 ∈ Rg1×k denote a Gaussian matrix with
g1 = (ε−2 log(n1n2)). Then with probability at least 1− 1/ poly(n1n2), we have: for all j ∈ [n1n2],

(1− ε)‖R−1(U � V)j‖22 ≤ ‖G1R
−1(U � V)j‖22 ≤ (1 + ε)‖R−1(U � V)j‖22.

Proof. This follows by the Johnson-Lindenstrauss Lemma.

Claim C.34. For a fixed i ∈ [g1], let G2,i ∈ Rg2×n1 denote a Gaussian matrix with g2 = O(ε−2 log(n1n2)).
Then with probability at least 1− 1/ poly(n1n2), we have: for all j2 ∈ [n2],

(1− ε)‖U ′i>Vj2‖22 ≤ ‖(G2,iU
′i>)Vj2‖2 ≤ (1 + ε)‖U ′i>Vj2‖22.

By taking the union bound over all i ∈ [g1], we obtain a stronger claim,

Claim C.35. With probability at least 1−1/ poly(n1n2), we have : for all i ∈ [g1], for all j2 ∈ [n2],

(1− ε)‖U ′i>Vj2‖22 ≤ ‖(G2,iU
′i>)Vj2‖2 ≤ (1 + ε)‖U ′i>Vj2‖22.

Similarly, if we choose G3,i to be a Gaussian matrix, we can obtain the same result as for G2,i:

Claim C.36. With probability at least 1−1/ poly(n1n2), we have : for all i ∈ [g1], for all j2 ∈ [n2],

(1− ε)‖U ′i>Vj2‖22 ≤ ‖(G3,iU
′i>)Vj2‖2 ≤ (1 + ε)‖U ′i>Vj2‖22.

Claim C.37. For any i ∈ [g1], j1 ∈ [n1], j2 ∈ [n2], let Gi1 denote the i-th row of matrix G1 ∈ Rg1×k.
Let (U � V)(j1−1)n2+j2 denote the (j1− 1)n2 + j2-th column of matrix Rk×n1n2 . Let (U ′i>)j1 denote
the j1-th row of matrix (U ′i>) ∈ Rn1×k. Let Vj2 denote the j2-th column of matrix V ∈ Rk×n2.
Then, we have

Gi1R
−1(U � V)(j1−1)n2+j2 = (U ′i>)j1Vj2 .

Proof. This follows by,

Gi1R
−1(U � V)(j1−1)n2+j2 = Gi1R

−1(Uj1 ◦ Vj2) = (Gi1R
−1 ◦ (Uj1)>)Vj2 = (U ′i>)j1Vj2 .

60

Lemma C.38. Given A ∈ Rn×n2, V,W ∈ Rk×n, for any ε > 0, there exists an algorithm that runs
in O(n · poly(k, 1/ε)) time and outputs a diagonal matrix D ∈ Rn2×n2 with m = O(k log k + k/ε)
nonzero entries such that,

‖Û(V �W)−A‖2F ≤ (1 + ε) min
U∈Rn×k

‖U(V �W)−A‖2F ,

holds with probability at least 0.999, where Û denotes the optimal solution to minU ‖U(V �W)D−
AD‖2F .

Proof. This follows by combining Theorem C.46, Corollary C.30, and Lemma C.31.

Remark C.39. Replacing Theorem C.46 (Algorithm 15) by Lemma C.32 (Algorithm 10), we can
obtain a slightly different version of Lemma C.38 with n poly(log n, k, 1/ε) running time, where the
dependence on k is better.

C.7.5 Input sparsity time algorithm

Algorithm 11 Frobenius Norm CURT Decomposition Algorithm, Input Sparsity Time and Nearly
Optimal Number of Samples
1: procedure FCURTInputSparsity(A,UB, VB,WB, n, k, ε) . Theorem C.40
2: d1 ← d2 ← d3 ← O(k log k + k/ε).
3: ε0 ← 0.01.
4: Form B1 = V >B �W>B ∈ Rk×n2 .
5: D1 ←FastTensorLeverageScoreGeneralOrder(V >B ,W

>
B , n, n, k, ε0, d1). .

Algorithm 15
6: Form Û = A1D1(B1D1)† ∈ Rn×k.
7: Form B2 = Û> �W>B ∈ Rk×n2 .
8: D2 ←FastTensorLeverageScoreGeneralOrder(Û>,W>B , n, n, k, ε0, d2).
9: Form V̂ = A2D2(B2D2)† ∈ Rn×k.

10: Form B3 = Û> � V̂ > ∈ Rk×n2 .
11: D3 ←FastTensorLeverageScoreGeneralOrder(Û>, V̂ >, n, n, k, ε0, d3).
12: C ← A1D1, R← A2D2, T ← A3D3.
13: U ←∑k

i=1((B1D1)†)i ⊗ ((B2D2)†)i ⊗ ((B3D3)†)i.
14: return C, R, T and U .
15: end procedure

Theorem C.40. Given a 3rd order tensor A ∈ Rn×n×n, let k ≥ 1, and let UB, VB,WB ∈ Rn×k
denote a rank-k, α-approximation to A. Then there exists an algorithm which takes O(nnz(A) +
n poly(k, 1/ε)) time and outputs three matrices C ∈ Rn×c with columns from A, R ∈ Rn×r with
rows from A, T ∈ Rn×t with tubes from A, and a tensor U ∈ Rc×r×t with rank(U) = k such that
c = r = t = O(k log k + k/ε), and

∥∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl −A

∥∥∥∥∥∥

2

F

≤ (1 + ε)α min
rank−k A′

‖A′ −A‖2F

holds with probability 9/10.

61

Proof. We define

OPT := min
rank−k A′

‖A′ −A‖2F .

We already have three matrices UB ∈ Rn×k, VB ∈ Rn×k and WB ∈ Rn×k and these three matrices
provide a rank-k, α-approximation to A, i.e.,

∥∥∥∥∥
k∑

i=1

(UB)i ⊗ (VB)i ⊗ (WB)i −A
∥∥∥∥∥

2

F

≤ αOPT . (19)

Let B1 = V >B �W>B ∈ Rk×n2 denote the matrix where the i-th row is the vectorization of (VB)i ⊗
(WB)i. Let D1 ∈ Rn2×n2 be a sampling and rescaling matrix corresponding to sampling by the
leverage scores of B>1 ; there are d1 nonzero entries on the diagonal of D1. Let Ai ∈ Rn×n2 denote
the matrix obtained by flattening A along the i-th direction, for each i ∈ [3].

Define U∗ ∈ Rn×k to be the optimal solution to min
U∈Rn×k

‖UB1−A1‖2F , Û = A1D1(B1D1)† ∈ Rn×k,

and V0 ∈ Rn×k to be the optimal solution to min
V ∈Rn×k

‖V · (Û> �W>B)−A2‖2F . Due to Lemma C.38,

if d1 = O(k log k + k/ε) then with constant probability, we have

‖ÛB1 −A1‖2F ≤ αD1‖U∗B1 −A1‖2F . (20)

Recall that (Û> �W>B) ∈ Rk×n2 denotes the matrix where the i-th row is the vectorization of
Ûi ⊗ (WB)i, ∀i ∈ [k]. Now, we can show,

‖V0 · (Û> �W>B)−A2‖2F ≤ ‖ÛB1 −A1‖2F by V0 = arg min
V ∈Rn×k

‖V · (Û> �W>B)−A2‖2F

≤ αD1‖U∗B1 −A1‖2F by Equation (20)

≤ αD1‖UBB1 −A1‖2F by U∗ = arg min
U∈Rn×k

‖UB1 −A1‖2F

≤ αD1αOPT . by Equation (19) (21)

We define B2 = Û>�W>B . Let D2 ∈ Rn2×n2 be a sampling and rescaling matrix corresponding
to the leverage scores of B>2 . Suppose there are d2 nonzero entries on the diagonal of D2.

Define V ∗ ∈ Rn×k to be the optimal solution to minV ∈Rn×k ‖V B2−A2‖2F , V̂ = A2D2(B2D2)† ∈
Rn×k, W0 ∈ Rn×k to be the optimal solution to min

W∈Rn×k
‖W · (Û> � V̂ >)−A3‖2F , and V ′ to be the

optimal solution to min
V ∈Rn×k

‖V B2D2 −A2D2‖2F .
Due to Lemma C.38, with constant probability, we have

‖V̂ B2 −A2‖2F ≤ αD2‖V ∗B2 −A2‖2F . (22)

Recall that (Û> � V̂ >) ∈ Rk×n2 denotes the matrix where the i-th row is the vectorization of
Ûi ⊗ V̂i, ∀i ∈ [k]. Now, we can show,

‖W0 · (Û> � V̂ >)−A3‖2F ≤ ‖V̂ B2 −A2‖2F by W0 = arg min
W∈Rn×k

‖W · (Û> � V̂ >)−A3‖2F

≤ αD2‖V ∗B2 −A2‖2F by Equation (22)

≤ αD2‖V0B2 −A2‖2F by V ∗ = arg min
V ∈Rn×k

‖V B2 −A2‖2F

≤ αD2αD1αOPT . by Equation (21) (23)

62

We define B3 = Û>� V̂ >. Let D3 ∈ Rn2×n2 denote a sampling and rescaling matrix correspond-
ing to sampling by the leverage scores of B>3 . Suppose there are d3 nonzero entries on the diagonal
of D3.

DefineW ∗ ∈ Rn×k to be the optimal solution to minW∈Rn×k ‖WB3−A3‖2F , Ŵ = A3D3(B3D3)† ∈
Rn×k, and W ′ to be the optimal solution to min

W∈Rn×k
‖WB3D3 −A3D3‖2F .

Due to Lemma C.38 with constant probability, we have

‖ŴB3 −A3‖2F ≤ αD3‖W ∗B3 −A3‖2F . (24)

Now we can show,

‖ŴB3 −A3‖2F ≤ αD3‖W ∗B3 −A3‖2F , by Equation (24)

≤ αD3‖W0B3 −A3‖2F , by W ∗ = arg min
W∈Rn×k

‖WB3 −A3‖2F

≤ αD3αD2αD1αOPT . by Equation (23)

This implies,

∥∥∥∥∥
k∑

i=1

Ûi ⊗ V̂i ⊗ Ŵi −A
∥∥∥∥∥

2

F

≤ O(1)αOPT2 .

where Û = A1D1(B1D1)†, V̂ = A2D2(B2D2)†, Ŵ = A3D3(B3D3)†.
By Lemma C.38, we need to set d1 = d2 = d3 = O(k log k + k/ε). Note that B1 = (V >B �W>B).

Thus D1 can be found in n · poly(k, 1/ε) time. Because D1 has a small number of nonzero entries
on the diagonal, we can compute B1D1 quickly without explicitly writing down B1. Also A1D1

can be computed in nnz(A) time. Using (A1D1) and (B1D1), we can compute Û in n poly(k, 1/ε)
time. In a similar way, we can compute B2, D2, B3, and D3. Since tensor U is constructed based
on three poly(k, 1/ε) size matrices, (B1D1)†, (B2D2)†, and (B3D3)†, the overall running time is
O(nnz(A) + n poly(k, 1/ε))

C.7.6 Optimal sample complexity algorithm

Theorem C.41. Given a 3rd order tensor A ∈ Rn×n×n, let k ≥ 1, and let UB, VB,WB ∈ Rn×k
denote a rank-k, α-approximation to A. Then there exists an algorithm which takes O(nnz(A) log n+
n2 poly(log n, k, 1/ε)) time and outputs three matrices: C ∈ Rn×c with columns from A, R ∈ Rn×r
with rows from A, T ∈ Rn×t with tubes from A, and a tensor U ∈ Rc×r×t with rank(U) = k such
that c = r = t = O(k/ε), and

∥∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl −A

∥∥∥∥∥∥

2

F

≤ (1 + ε)α min
rank−k A′

‖A′ −A‖2F

holds with probability 9/10.

Proof. The proof is almost the same as the proof of Theorem C.40. The only difference is that
instead of using Theorem C.38, we use Theorem C.14.

63

Algorithm 12 Frobenius Norm CURT Decomposition Algorithm, Optimal Sample Complexity
1: procedure FCURTOptimalSamples(A,UB, VB,WB, n, k) . Theorem C.41
2: d1 ← d2 ← d3 ← O(k/ε).
3: Form B1 = V >B �W>B ∈ Rk×n2 .
4: D1 ←GeneralizedMatrixRowSubsetSelection(A>1 , B>1 , n2, n, k, ε). . Algorithm 7
5: Let d1 denote the number of nonzero entries in D1. . d1 = O(k/ε)
6: Form Û = A1D1(B1D1)† ∈ Rn×k.
7: Form B2 = Û> �W>B ∈ Rk×n2 .
8: D2 ←GeneralizedMatrixRowSubsetSelection(A>2 , B>2 , n2, n, k, ε). . Algorithm 7
9: Let d2 denote the number of nonzero entries in D2. . d2 = O(k/ε)

10: Form V̂ = A2D2(B2D2)† ∈ Rn×k.
11: Form B3 = Û> � V̂ > ∈ Rk×n2 .
12: D3 ←GeneralizedMatrixRowSubsetSelection(A>3 , B>3 , n2, n, k, ε). . Algorithm 7
13: d3 denote the number of nonzero entries in D3. . d3 = O(k/ε)
14: C ← A1D1, R← A2D2, T ← A3D3.
15: U ←∑k

i=1((B1D1)†)i ⊗ ((B2D2)†)i ⊗ ((B3D3)†)i.
16: return C, R, T and U .
17: end procedure

C.8 Face-based selection and decomposition

Previously we provided column-based tensor CURT algorithms, which are algorithms that can select
a subset of columns from each of the three dimensions. Here we provide two face-based tensor CURT
decomposition algorithms. The first algorithm runs in polynomial time and is a bicriteria algorithm
(the number of samples is poly(k/ε)). The second algorithm needs to start with a rank-k (1+O(ε))-
approximate solution, which we then show how to combine with our previous algorithm. Both of
our algorithms are able to select a subset of column-row faces, a subset of row-tube faces and a
subset of column-tube faces. The second algorithm is able to output U , but the first algorithm is
not.

C.8.1 Column-row, column-tube, row-tube face subset selection

Theorem C.42. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm
which takes O(nnz(A)) log n + n2 poly(log n, k, 1/ε) time and outputs three tensors : a subset C ∈
Rc×n×n of row-tube faces of A, a subset R ∈ Rn×r×n of column-tube faces of A, and a subset
T ∈ Rn×n×t of column-row faces of A, where c = r = t = poly(k, 1/ε), and for which there exists a
tensor U ∈ Rtn×cn×rn for which

‖U(T1, C2, R3)−A‖2F ≤ (1 + ε) min
rank−k A′

‖A′ −A‖2F ,

or equivalently,
∥∥∥∥∥∥

tn∑

i=1

cn∑

j=1

rn∑

l=1

Ui,j,l · (T1)i ⊗ (C2)j ⊗ (R3)l −A

∥∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k A′

‖A′ −A‖2F .

Proof. We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k. We define Z1 ∈ Rk×n2 where the i-th row of Z1 is
the vector Vi ⊗Wi. Choose a sketching (Gaussian) matrix S1 ∈ Rn2×s1 (Definition B.18), and let

64

Algorithm 13 Frobenius Norm Tensor Column-row, Row-tube and Tube-column Face Subset
Selection
1: procedure FFaceCRTSelection(A,n, k, ε) . Theorem C.42
2: s1 ← s2 ← O(k/ε).
3: Choose a Gaussian matrix S1 with s1 columns. . Definition B.18
4: Choose a Gaussian matrix S2 with s2 columns. . Definition B.18
5: Form matrix V3 by setting the (i, j)-th column to be (A2S2)j .
6: D3 ←GeneralizedMatrixRowSubsetSelection(A2,V3,n,n2,s1s2,ε). . Algorithm 7
7: Let d3 denote the number of nonzero entries in D3. . d3 = O(s1s2/ε)
8: Form matrix U2 by setting the (i, j)-th column to be (A1S1)i.
9: D2 ←GeneralizedMatrixRowSubsetSelection(A1,U2,n,n2,s1s2,ε).
10: Let d2 denote the number of nonzero entries in D2. . d2 = O(s1s2/ε)
11: Form matrix W1 by setting the (i, j)-th column to be (A(I,D3, I)3)j .
12: D1 ←GeneralizedMatrixRowSubsetSelection(A3,W1,n,n2,s1s2,ε).
13: Let d1 denote the number of nonzero entries in D1. . d1 = O(s1s2/ε)
14: T ← A(I, I,D1), C ← A(D2, I, I), and R← A(I,D3, I).
15: return C, R and T .
16: end procedure

Û = A1S1(Z1S1)† ∈ Rn×k. Following a similar argument as in the previous theorem, we have

‖ÛZ1 −A1‖2F ≤ (1 + ε) OPT .

We fix Û and W ∗. We define Z2 ∈ Rk×n2 where the i-th row of Z2 is the vector Ûi ⊗W ∗i . Choose
a sketching (Gaussian) matrix S2 ∈ Rn2×s2 (Definition B.18), and let V̂ = A2S2(Z2S2)† ∈ Rn×k.
Following a similar argument as in the previous theorem, we have

‖V̂ Z2 −A2‖2F ≤ (1 + ε)2 OPT .

We fix Û and V̂ . Note that Û = A1S1(Z1S1)† and V̂ = A2S2(Z2S2)†. We define Z3 ∈ Rk×n2

such that the i-th row of Z3 is the vector Ûi ⊗ V̂i. Let z3 = s1 · s2. We define Z ′3 ∈ Rz3×n2 such
that, ∀i ∈ [s1], ∀j ∈ [s2], the i+ (j − 1)s1-th row of Z ′3 is the vector (A1S1)i ⊗ (A2S2)j .

We define U3 ∈ Rn×z3 to be the matrix where the i + (j − 1)s1-th column is (A1S1)i and
V3 ∈ Rn×z3 to be the matrix where the i+ (j − 1)s1-th column is (A2S2)j . Then Z ′3 = (U>3 � V >3).

We first have,

min
W∈Rn×k,X∈Rk×z3

‖WXZ ′3 −A3‖2F ≤ min
W∈Rn×k

‖WZ3 −A3‖2F ≤ (1 + ε)2 OPT .

Now consider the following objective function,

min
W∈Rn×z3

‖V3 · (W> � U>3)−A2‖2F .

Let D3 denote a sampling and rescaling diagonal matrix according to V1 ∈ Rn×z3 , let d3 denote the
number of nonzero entries of D3. Then we have

min
W∈Rn×z3

‖D3V3 · (W> � U>3)−D3A2‖2F
= min

W∈Rn×z3
‖U3 ⊗ (D3V3)⊗W −A(I,D3, I)‖2F

= min
W∈Rn×z3

‖W · (U>3 � (D3V3)>)− (A(I,D3, I))3‖2F ,

65

where the first equality follows by retensorizing the objective function, and the second equality
follows by flattening the tensor along the third dimension.

Let Z3 denote (U>3 � (D3V3)>) ∈ Rz3×nd3 and W ′ = (A(I,D3, I))3 ∈ Rn×nd3 . Using Theo-
rem C.14, we can find a diagonal matrix D3 ∈ Rn2×n2 with d3 = O(z3/ε) = O(k2/ε3) nonzero
entries such that

‖U3 ⊗ V3 ⊗ (W ′Z†3)−A‖2F ≤ (1 + ε)3 OPT .

We define U2 = U3 ∈ Rn×z2 with z2 = z3. We define W2 = W ′Z
†
3 ∈ Rn×z2 with z2 = z3. We

consider,

min
V ∈Rn×z2

‖U2 · (V > �W>2)−A1‖2F .

Let D2 denote a sampling and rescaling matrix according to U2, and let d2 denote the number of
nonzero entries of D2. Then, we have

min
V ∈Rn×z2

‖D2U2 · (V > �W>2)−D2A1‖2F
= min

V ∈Rn×z2
‖D2U2 ⊗ V ⊗W2 −A(D2, I, I)‖2F

= min
V ∈Rn×z2

‖V · (W>2 � (D2U2)>)− (A(D2, I, I))2‖2F ,

where the first equality follows by retensorizing the objective function, and the second equality
follows by flattening the tensor along the second dimension.

Let Z2 denote (W>2 � (D2U2)>) ∈ Rz2×nd2 and V ′ = (A(D2, I, I))2 ∈ Rn×nd2 . Using Theo-
rem C.14, we can find a diagonal matrix D2 ∈ Rn2×n2 with d2 = O(z2/ε) nonzero entries such
that

‖U2 ⊗ (V ′Z
†
2)⊗W2 −A‖2F ≤ (1 + ε)4 OPT .

We define W1 = W2 ∈ Rn×z1 with z1 = z2, and define V1 = (V ′Z
†
2) ∈ Rn×z1 with z1 = z2.

Let D1 denote a sampling and rescaling matrix according to W1, and let d1 denote the number
of nonzero entries of D1. Then we have

min
U∈Rn×z1

‖D1W1 · (U> � V >1)−D1A3‖2F
= min

U∈Rn×z1
‖U ⊗ V1 ⊗ (D1W1)−A(I, I,D1)‖2F

= min
U∈Rn×z1

‖U · (V >1 � (D1W1)>)−A(I, I,D1)1‖2F

where the first equality follows by unflattening the objective function, and second equality follows
by flattening the tensor along the first dimension.

Let Z1 denote (V >1 � (D1W1)>) ∈ Rz1×nd1 , and U ′ = A(I, I,D1)1 ∈ Rn×nd1 . Using Theo-
rem C.14, we can find a diagonal matrix D1 ∈ Rn2×n2 with d1 = O(z1/ε) nonzero entries such
that

‖(U ′Z†1)⊗ (V1)⊗W1 −A‖2F ≤ (1 + ε)5 OPT,

which means,

‖(U ′Z†1)⊗ (V ′Z
†
2)⊗ (W ′Z

†
3)−A‖2F ≤ (1 + ε)5 OPT .

Putting U ′, V ′,W ′ together completes the proof.

66

Corollary C.43. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm
which takes O(nnz(A)) + n2 poly(k, 1/ε) time and outputs three tensors : a subset C ∈ Rc×n×n of
row-tube faces of A, a subset R ∈ Rn×r×n of column-tube faces of A, and a subset T ∈ Rn×n×t of
column-row faces of A, where c = r = t = poly(k, 1/ε), so that there exists a tensor U ∈ Rtn×cn×rn
for which

‖U(T1, C2, R3)−A‖2F ≤ (1 + ε) min
rank−k A′

‖A′ −A‖2F ,

or equivalently,
∥∥∥∥∥∥

tn∑

i=1

cn∑

j=1

rn∑

l=1

Ui,j,l · (T1)i ⊗ (C2)j ⊗ (R3)l −A

∥∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k A′

‖A′ −A‖2F

Proof. If we allow a poly(k/ε) factor increase in running time and a poly(k/ε) factor increase in the
number of faces selected, then instead of using generalized row subset selection, which has running
time depending on log n, we can use the technique in Section C.11 to avoid the log n factor.

C.8.2 CURT decomposition

Algorithm 14 Frobenius Norm (Face-based) CURT Decomposition Algorithm, Optimal Sample
Complexity
1: procedure FFaceCURTDecomposition(A,UB, VB,WB, n, k) . Theorem C.44
2: D1 ←GeneralizedMatrixRowSubsetSelection(A3,WB, n, n

2, k, ε). . Algorithm 7,
the number of nonzero entries is d1 = O(k/ε)

3: Form Z1 = V >B � (D1WB)>.
4: Form Û = (A(I, I,D1))1Z

†
1 ∈ Rn×k.

5: D2 ←GeneralizedMatrixRowSubsetSelection(A1, Û , n, n
2, k, ε). . The number of

nonzero entries is d2 = O(k/ε)
6: Form Z2 = (W>B � (D2Û)).
7: Form V̂ = (A(D2, I, I))2Z

†
2 ∈ Rn×k.

8: D3 ←GeneralizedMatrixRowSubsetSelection(A2, V̂ , n, n
2, k, ε). . The number of

nonzero entries is d3 = O(k/ε)
9: Form Z3 = Û> � (D3V̂)>.

10: Form Ŵ = (A(I,D3, I))3(Z3)† ∈ Rn×k.
11: T ← A(I, I,D1), C ← A(D2, I, I), R← A(I,D3, I).
12: U ←∑k

i=1((Z1)†)i ⊗ ((Z2)†)i ⊗ ((Z3)†)i.
13: return C, R, T and U .
14: end procedure

Theorem C.44. Given a 3rd order tensor A ∈ Rn×n×n, let k ≥ 1, and let UB, VB,WB ∈ Rn×k de-
note a rank-k, α-approximation to A. Then there exists an algorithm which takes O(nnz(A)) log n+
n2 poly(log n, k, 1/ε) time and outputs three tensors: C ∈ Rc×n×n with row-tube faces from A,
R ∈ Rn×r×n with colum-tube faces from A, T ∈ Rn×n×t with column-row faces from A, and a
(factorization of a) tensor U ∈ Rtn×cn×rn with rank(U) = k for which c = r = t = O(k/ε) and

‖U(T1, C2, R3)−A‖2F ≤ (1 + ε)α min
rank−k A′

‖A′ −A‖2F ,

67

or equivalently,
∥∥∥∥∥∥

tn∑

i=1

cn∑

j=1

rn∑

l=1

Ui,j,l · (T1)i ⊗ (C2)j ⊗ (R3)l −A

∥∥∥∥∥∥

2

F

≤ (1 + ε)α min
rank−k A′

‖A′ −A‖2F

holds with probability 9/10.

Proof. We already have three matrices UB ∈ Rn×k, VB ∈ Rn×k and WB ∈ Rn×k and these three
matrices provide a rank-k, α-approximation to A, i.e.,

‖UB ⊗ VB ⊗WB −A‖2F ≤ α min
rank−k A′

‖A′ −A‖2F
︸ ︷︷ ︸

OPT

.

We can consider the following problem,

min
U∈Rn×k

‖WB · (U> � V >B)−A3‖2F .

Let D1 denote a sampling and rescaling diagonal matrix according to WB, and let d1 denote the
number of nonzero entries of D1. Then we have

min
U∈Rn×k

‖(D1WB) · (U> � V >B)−D1A3‖2F
= min
U∈Rn×k

‖U ⊗ VB ⊗D1WB −A(I, I,D1)‖2F

= min
U∈Rn×k

‖U · (V >B � (D1WB)>)− (A(I, I,D1))1‖2F ,

where the first equality follows by retensorizing the objective function, and the second equality
follows by flattening the tensor along the first dimension. Let Z1 denote V >B � (D1WB)> ∈ Rk×nd1 ,
and define Û = (A(I, I,D1))1Z

†
1 ∈ Rn×k. Then we have

‖Û ⊗ VB ⊗WB −A‖2F ≤ (1 + ε)αOPT .

In the second step, we fix Û and WB, and consider the following objective function,

min
V ∈Rn×k

‖Û · (V > �WB)−A1‖2F .

Let D2 denote a sampling and rescaling matrix according to Û , and let d2 denote the number of
nonzero entries of D2. Then we have,

min
V ∈Rn×k

‖(D2Û) · (V > �W>B)−D2A1‖2F

= min
V ∈Rn×k

‖(D2Û)⊗ V ⊗WB −A(D2, I, I)‖2F

= min
V ∈Rn×k

‖V · (W>B � (D2Û)>)− (A(D2, I, I))2‖2F ,

where the first equality follows by unflattening the objective function, and the second equality follows
by flattening the tensor along the second dimension. Let Z2 denote (W>B � (D2Û)>) ∈ Rk×nd2 , and
define V̂ = (A(D2, I, I))2(Z2)† ∈ Rn×k. Then we have,

‖Û ⊗ V̂ ⊗WB −A‖2F ≤ (1 + ε)2αOPT .

68

In the third step, we fix Û and V̂ , and consider the following objective function,

min
W∈Rn×k

‖V̂ · (W � Û)−A2‖2F .

Let D3 denote a sampling and rescaling matrix according to V̂ , and let d3 denote the number of
nonzero entries of D3. Then we have,

min
W∈Rn×k

‖(D3V̂) · (W> � Û>)−D3A2‖2F

= min
W∈Rn×k

‖Û ⊗ (D3V̂)⊗W −A(I,D3, I)‖2F

= min
W∈Rn×k

‖W · (Û> � (D3V̂)>)− (A(I,D3, I))3‖2F ,

where the first equality follows by retensorizing the objective function, and the second equality
follows by flattening the tensor along the third dimension. Let Z3 denote (Û>� (D3V̂)>) ∈ Rk×nd3 ,
and define Ŵ = (A(I,D3, I))3(Z3)†. Putting it all together, we have,

‖Û ⊗ V̂ ⊗ Ŵ −A‖2F ≤ (1 + ε)3αOPT .

This implies

‖(A(I, I,D1))1Z
†
1 ⊗ (A(D2, I, I))2Z

†
2 ⊗ (A(I,D3, I))3Z

†
3 −A‖2F ≤ (1 + ε)3αOPT .

C.9 Solving small problems

Theorem C.45. Let maxi{ti, di} ≤ n. Given a t1 × t2 × t3 tensor A and three matrices: a t1 × d1

matrix T1, a t2 × d2 matrix T2, and a t3 × d3 matrix T3, if for any δ > 0 there exists a solution to

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i −A
∥∥∥∥∥

2

F

:= OPT,

and each entry of Xi can be expressed using O(nδ) bits, then there exists an algorithm that takes
nO(δ)·2O(d1k+d2k+d3k) time and outputs three matrices: X̂1, X̂2, and X̂3 such that ‖(T1X̂1)⊗(T2X̂2)⊗
(T3X̂3)−A‖2F = OPT.

Proof. For each i ∈ [3], we can create ti × di variables to represent matrix Xi. Let x denote this
list of variables. Let B denote tensor

∑k
i=1(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i and let Bi,j,l(x) denote an

entry of tensor B (which can be thought of as a polynomial written in terms of x). Then we can
write the following objective function,

min
x

t1∑

i=1

t2∑

j=1

t3∑

l=1

(Bi,j,l(x)−Ai,j,l)2.

We slightly modify the above objective function to obtain a new objective function,

min
x,σ

t1∑

i=1

t2∑

j=1

t3∑

l=1

(Bi,j,l(x)−Ai,j,l)2,

s.t. ‖x‖22 ≤ 2O(nδ),

69

where the last constraint is unharmful, because there exists a solution that can be written using
O(nδ) bits. Note that the number of inequality constraints in the above system is O(1), the degree
is O(1), and the number of variables is v = (d1k+d2k+d3k). Thus by Theorem B.11, the minimum
nonzero cost is at least

(2O(nδ))−2O(v)
.

It is clear that the upper bound on the cost is at most 2O(nδ). Thus the number of binary search
steps is at most log(2O(nδ))2O(v). In each step of the binary search, we need to choose a cost C
between the lower bound and the upper bound, and write down the polynomial system,

t1∑

i=1

t2∑

j=1

t3∑

l=1

(Bi,j,l(x)−Ai,j,l)2 ≤ C,

‖x‖22 ≤ 2O(nδ).

Using Theorem B.10, we can determine if there exists a solution to the above polynomial system.
Since the number of variables is v, and the degree is O(1), the number of inequality constraints is
O(1). Thus, the running time is

poly(bitsize) · (# constraints ·degree)# variables = nO(δ)2O(v).

C.10 Extension to general q-th order tensors

This section provides the details for our extensions from 3rd order tensors to general q-th order
tensors. In most practical applications, the order q is a constant. Thus, to simplify the analysis, we
use Oq(·) to hide dependencies on q.

C.10.1 Fast sampling of columns according to leverage scores, implicitly

This section explains an algorithm that is able to sample from the leverage scores from the �
product of q matrices U1, U2, · · · , Uq without explicitly writing down U1 � U2 � · · ·Uq. To build
this algorithm we combine TensorSketch, some ideas from [DMIMW12], and some techniques
from [AKO11, MW10]. Finally, we improve the running time for sampling columns according to
the leverage scores from poly(n) to Õ(n). Given q matrices U1, U2, · · · , Uq, with each such matrix
Ui having size k × ni, we define A ∈ Rk×

∏q
i=1 ni to be the matrix where the i-th row of A is the

vectorization of U i1 ⊗ U i2 ⊗ · · · ⊗ U iq, ∀i ∈ [k]. Naïvely, in order to sample poly(k, 1/ε) rows from A
according to the leverage scores, we need to write down

∏q
i=1 ni leverage scores. This approach will

take at least
∏q
i=1 ni running time. In the remainder of this section, we will explain how to do it in

Oq(n · poly(k, 1/ε)) time for any constant p, and maxi∈[q] ni ≤ n.

Theorem C.46. Given q matrices U1 ∈ Rk×n1, U2 ∈ Rk×n2, · · · , Uq ∈ Rk×nq , let maxi ni ≤ n.
There exists an algorithm that takes Oq(n ·poly(k, 1/ε) ·Rsamples) time and samples Rsamples columns
of U1 � U2 � · · · � Uq ∈ Rk×

∏q
i=1 ni according to the leverage scores of U1 � U2 � · · · � Uq.

Proof. Let maxi ni ≤ n. First, choosing Π0 to be a TensorSketch, we can compute R−1 in
Oq(n poly(k, 1/ε)) time, where R is the R in a QR-factorization. We want to sample columns from
U1�U2� · · · �Uq according to the square of the `2-norm of each column of R−1(U1�U2� · · ·Uq).

70

Algorithm 15 Fast Tensor Leverage Score Sampling, for General q-th Order
1: procedure FastTensorLeverageScoreGeneralOrder({Ui}i∈[q], {ni}i∈[q], k, ε, Rsamples)
. Theorem C.46

2: s1 ← poly(k, 1/ε).
3: Choose Π0,Π1 ∈ Rn1n2···nq×s1 to each be a TensorSketch. . Definition B.34
4: Compute R−1 ∈ Rk×k by using (U1 � U2 � · · · � Uq)Π0. . Ui ∈ Rk×ni , ∀i ∈ [q]
5: V0 ← R−1, n0 ← k.
6: for i = 1→ [n0] do
7: αi ← ‖(V0)i((U1 � U2 � · · · � Uq)Π1)‖22.
8: end for
9: for r = 1→ Rsamples do

10: Sample ĵ0 from [n0] with probability αi/
∑n0

i′=1 αi′ .
11: for l = 1→ q − 1 do
12: sl+1 ← Oq(poly(k, 1/ε)).
13: Choose Πl+1 ∈ Rnl+1···nq×sl+1 to be a TensorSketch.
14: for jl = 1→ [nl] do . Form Vl ∈ Rnl×k

15: (Vl)
jl ← (Vl−1)ĵl−1 ◦ (Ul)

>
jl
.

16: end for
17: for i = 1→ nq do
18: βi ← ‖(Vl)i((Ul+1 � · · · � Uq)Πl+1)‖22.
19: end for
20: Sample ĵl from [nl] with probability βi/

∑nl
i′=1 βi′ .

21: end for
22: for i = 1→ nq do
23: βi ← |(Vq−1)ĵq−1(Uq)i|2.
24: end for
25: Sample ĵq from [nq] with probability βi/

∑nq
i′=1 βi′ .

26: S ← S ∪ (ĵ1, · · · , ĵq).
27: end for
28: Convert S into a diagonal matrix D with at most Rsamples nonzero entries.
29: return D. . Diagonal matrix D ∈ Rn1n2···nq×n1n2···nq

30: end procedure

The issue is the number of columns of this matrix is already
∏q
i=1 ni. The goal is to sample columns

from R−1(U1�U2�· · ·Uq) without explicitly computing the square of the `2-norm of each column.
Similarly as in the proof of Lemma C.32, we have the observation that the following two sampling

procedures are equivalent in terms of sampling a column of a matrix: (1) We sample a single entry
from matrix R−1(U1�U2�· · ·�Uq) proportional to its squared value, (2) We sample a column from
matrix R−1(U1 � U2 � · · · � Uq) proportional to its squared `2-norm. Let the (i, j1, j2, · · · , jq)-th
entry denote the entry in the i-th row and the j-th column, where

j =

q−1∑

l=1

(jl − 1)

q∏

t=l+1

nt + jq.

Similarly to Equation (18), we can show, for a particular column j,

Pr[we sample an entry from the j-th column of matrix] = Pr[we sample the j-th column of a matrix].

71

Thus, it is sufficient to show how to sample a single entry from matrix R−1(U1 � U2 � · · · � Uq)
proportional to its squared value without writing down all the entries of the k ×∏q

i=1 ni matrix.
Let V0 denote R−1. Let n0 denote the number of rows of V0.
In the next few paragraphs, we describe a sampling procedure (procedure FastTensorLever-

ageScoreGeneralOrder in Algorithm 15) which first samples ĵ0 from [n0], then samples ĵ1
from [n1], · · · , and at the end samples ĵq from [nq].

In the first step, we want to sample ĵ0 from [n0] proportional to the squared `2-norm of that
row. To do this efficiently, we choose Π1 ∈ R

∏q
i=1 ni×s1 to be a TensorSketch to sketch on the

right of V0(U1 � U2 � · · · � Uq). By Section B.10, as long as s1 = Oq(poly(k, 1/ε)), then Π1 is a
(1± ε)-subspace embedding matrix. Thus with probability 1− 1/Ω(q), for all i ∈ [n0],

‖(V0)i((U1 � U2 � · · · � Uq)Π1)‖22 = (1± ε)‖(V0)i((U1 � U2 � · · · � Uq))‖22,

which means we can sample ĵ0 from [n0] in Oq(n poly(k, 1/ε)) time.
In the second step, we have already obtained ĵ0. Using that row of V0 with U1, we can form a

new matrix V1 ∈ Rn1×k in the following sense,

(V1)i = (V0)ĵ0 ◦ (U1)>i ,∀i ∈ [n1],

where (V1)i denotes the i-th row of matrix V1, (V0)ĵ0 denotes the ĵ0-th row of V0 and (U1)i is the
i-th column of U1. Another important observation is, the entry in the (j1, j2, · · · , jq)-th coordinate
of vector (V0)ĵ0(U1 � U2 � · · · � Uq) is the same as the entry in the j1-th row and (j2, · · · , jq)-th
column of matrix V1(U2 � U3 � · · · � Uq). Thus, sampling j1 is equivalent to sampling j1 from the
new matrix V1(U2 � U3 � · · · � Uq) proportional to the squared `2-norm of that row. We still have
the computational issue that the length of the row vector is very long. To deal with this, we can
choose Π2 ∈ R

∏q
i=2 ni×s2 to be a TensorSketch to multiply on the right of V1(U2�U3�· · ·�Uq).

By Section B.10, as long as s2 = Oq(poly(k, 1/ε)), then Π2 is a (1 ± ε)-subspace embedding
matrix. Thus with probability 1− 1/Ω(q), for all i ∈ [n1],

‖(V1)i((U2 � · · · � Uq)Π2)‖22 = (1± ε)‖(V1)i((U2 � · · · � Uq))‖22,

which means we can sample ĵ1 from [n1] in Oq(n poly(k, 1/ε)) time.
We repeat the above procedure until we obtain each of ĵ0, ĵ1, · · · , ĵq. Note that the last one,

ĵq, is easier, since the length of the vector is already small enough, and so we do not need to use
TensorSketch for it.

By Section B.10, the time for multiplying by TensorSketch is Oq(n poly(k, 1/ε)). Setting ε
to be a small constant, and taking a union bound over O(q) events completes the proof.

Lemma C.47. Given A ∈ Rn0×
∏q
i=1 ni, U1, U2, · · · , Uq ∈ Rk×n, for any ε > 0, there exists an

algorithm that runs in O(n · poly(k, 1/ε)) time and outputs a diagonal matrix D ∈ R
∏q
i=1 ni×

∏q
i=1 ni

with m = O(k log k + k/ε) nonzero entries such that,

‖Û(U1 � U2 � · · · � Uq)−A‖2F ≤ (1 + ε) min
U∈Rn×k

‖U(U1 � U2 � · · · � Uq)−A‖2F ,

holds with probability at least 0.999, where Û denotes the optimal solution of

min
U∈Rn0×k

‖U(U1 � U2 � · · · � Uq)D −AD‖2F .

Proof. This follows by combining Theorem C.46, Corollary C.30, and Lemma C.31.

72

Algorithm 16 General q-th Order Iterative Existential Proof
1: procedure GeneralIterativeExistentialProof(A,n, k, q, ε) . Section C.10.2
2: Fix U∗1 , U∗2 , · · · , U∗q ∈ Rn×k.
3: for i = 1→ q do
4: Choose sketching matrix Si ∈ Rnq−1×si with si = Oq(k/ε).
5: Define Zi ∈ Rk×nq−1 to be �

j<i
Û>j � �

j′>i
U∗>j′ .

6: Let Ai denote the matrix obtained by flattening tensor A along the i-th dimension.
7: Define Ûi to be AiSi(ZiSi)†.
8: end for
9: return Û1, Û2, · · · , Ûq.

10: end procedure

C.10.2 General iterative existential proof

Given a q-th order tensor A ∈ Rn×n×···×n, we fix U∗1 , U
∗
2 , · · · , U∗q ∈ Rn×k to be the best rank-k

solution (if it does not exist, then we replace it by a good approximation, as discussed). We define
OPT = ‖U∗1 ⊗ U∗2 ⊗ · · · ⊗ U∗q − A‖2F . Our iterative proof works as follows. We first obtain the
objective function,

min
U1∈Rn×k

‖U1 · Z1 −A1‖2F ≤ OPT,

where A1 is a matrix obtained by flattening tensor A along the first dimension, Z1 = (U∗>2 �U∗>3 �
· · · � U∗>q) denotes a k × nq−1 matrix. Choosing S1 ∈ Rnq−1×s1 to be a Gaussian sketching matrix
with s1 = O(k/ε), we obtain a smaller problem,

min
U1∈Rn×k

‖U1 · Z1S1 −A1S1‖2F .

We define Û1 to be A1S1(Z1S1)† ∈ Rn×k, which gives,

‖Û1 · Z1 −A1‖2F ≤ (1 + ε) OPT .

After retensorizing the above, we have,

‖Û1 ⊗ U∗2 ⊗ · · · ⊗ U∗q −A‖2F ≤ (1 + ε) OPT .

In the second round, we fix Û1, U∗3 , · · · , U∗q ∈ Rn×k, and choose S2 ∈ Rnq−1×s2 to be a Gaussian
sketching matrix with s2 = O(k/ε). We define Z2 ∈ Rk×nq−1 to be (Û>1 � U∗>3 � · · · � U∗>q). We
define Û2 to be A2S2(Z2S2)† ∈ Rn×k. Then, we have

‖Û1 ⊗ Û2 ⊗ U∗3 ⊗ · · · ⊗ U∗q −A‖2F ≤ (1 + ε)2 OPT .

We repeat the above process, where in the i-th round we fix Û1, · · · , Ûi−1, U∗i+1, · · · , U∗q ∈ Rn×k, and
choose Si ∈ Rnq−1×si to be a Gaussian sketching matrix with si = O(k/ε). We define Zi ∈ Rk×nq−1

to be (Û>1 � · · ·� Û>i−1�U∗>i+1� · · ·�U∗>q). We define Ûi to be AiSi(ZiSi)† ∈ Rn×k. Then, we have

‖Û1 ⊗ · · · ⊗ Ûi−1 ⊗ Ûi ⊗ U∗i+1 ⊗ · · · ⊗ U∗q −A‖2F ≤ (1 + ε)2 OPT .

73

At the end of the q-th round, we have

‖Û1 ⊗ · · · ⊗ Ûq −A‖2F ≤ (1 + ε)q OPT .

Replacing ε = ε′/(2q), we obtain

‖Û1 ⊗ · · · ⊗ Ûq −A‖2F ≤ (1 + ε′) OPT .

where for all i ∈ [q], si = O(kq/ε′) = Oq(k/ε
′) .

C.10.3 General input sparsity reduction

This section shows how to extend the input sparsity reduction from third order tensors to general
q-th order tensors. Given a tensor A ∈ Rn×n×···×n and q matrices, for each i ∈ [q], matrix Vi has
size Vi ∈ Rn×bi , with bi ≤ poly(k, 1/ε). We choose a batch of sparse embedding matrices Ti ∈ Rti×n.
Define V̂i = TiVi, and C = A(T1, T2, · · · , Tq). Thus we have with probability 99/100, for any α ≥ 0,
for all {Xi, X

′
i ∈ Rbi×k}i∈[q], if

‖V̂1X
′
1 ⊗ V̂2X

′
2 ⊗ · · · ⊗ V̂qX ′q − C‖2F ≤ α‖V̂1X1 ⊗ V̂2X2 ⊗ · · · ⊗ V̂qXq − C‖2F ,

then

‖V1X
′
1 ⊗ V2X

′
2 ⊗ · · · ⊗ VqX ′q −A‖2F ≤ (1 + ε)α‖V1X1 ⊗ V2X2 ⊗ · · · ⊗ VqXq −A‖2F ,

where ti = Oq(poly(bi, 1/ε)).

Algorithm 17 General q-th Order Input Sparsity Reduction
1: procedure GeneralInputSparsityReduction(A, {Vi}i∈[q], n, k, q, ε) . Section C.10.3
2: for i = 1→ q do
3: Choose sketching matrix Ti ∈ Rti×n with ti = poly(k, q, 1/ε).
4: V̂i ← TiVi.
5: end for
6: C ← A(T1, T2, · · · , Tq).
7: return {V̂i}i∈[q], C.
8: end procedure

C.10.4 Bicriteria algorithm

This section explains how to extend the bicriteria algorithm from third order tensors (Section C.4)
to general q-th order tensors. Given any q-th order tensor A ∈ Rn×n×···×n, we can output a rank-r
tensor (or equivalently q matrices U1, U2, · · · , Uq ∈ Rn×r) such that,

‖U1 ⊗ U2 ⊗ · · · ⊗ Uq −A‖2F ≤ (1 + ε) OPT,

where r = Oq((k/ε)
q−1) and the algorithm takes Oq(nnz(A) + n · poly(k, 1/ε)).

74

Algorithm 18 General q-th Order Bicriteria Algorithm
1: procedure GeneralBicriteriaAlgorithm(A,n, k, q, ε) . Section C.10.4
2: for i = 2→ q do
3: Choose sketching matrix Si ∈ Rnq−1×si with si = O(kq/ε).
4: Choose sketching matrix Ti ∈ Rti×n with ti = poly(k, q, 1/ε).
5: Form matrix Ûi by setting (j2, j3, · · · , jq)-th column to be (AiSi)ji .
6: end for
7: Solve minU1 ‖U1B − (A(I, T2, · · · , Tq))1‖2F .
8: return {Ûi}i∈[q].
9: end procedure

C.10.5 CURT decomposition

This section extends the tensor CURT algorithm from 3rd order tensors (Section C.7) to general q-th
order tensors. Given a q-th order tensor A ∈ Rn×n×···×n and a batch of matrices U1, U2, · · · , Uq ∈
Rn×k, we iteratively apply the proof in Theorem C.40 (or Theorem C.41) q times. Then for each
i ∈ [q], we are able to select di columns from the i-th dimension of tensor A (let Ci denote those
columns) and also find a tensor U ∈ Rd1×d2×···×dq such that,

‖U(C1, C2, · · · , Cq)−A‖2F ≤ (1 + ε)‖U1 ⊗ U2 ⊗ · · · ⊗ Uq −A‖2F ,

where either di = Oq(k log k + k/ε) (similar to Theorem C.40) or di = Oq(k/ε) (similar to Theo-
rem C.41).

Algorithm 19 General q-th Order CURT Decomposition
1: procedure GeneralCURTDecomposition(A, {Ui}i∈[q], n, k, q, ε) . Section C.10.5
2: for i = 1→ q do
3: Form Bi = �

j<i
Û>j � �

j>i
U>j ∈ Rk×nq−1 .

4: if fast = true then . Optimal running time
5: ε0 ← 0.01.
6: di ← Oq(k log k + k/ε).
7: Di ← FastTensorLeverageScoreGeneralOrder ({Ûj}j<i, {Uj}j>i, n, k, ε0, di).
. Algorithm 15

8: else . Optimal sample complexity
9: ε0 ← Oq(ε).

10: Di ← GeneralizedMatrixRowSubsetSelection (A>i , B
>
i , n

q−1, n, k, ε0). .
Algorithm C.5, di = Oq(k/ε).

11: end if
12: Ûi ← AiDi(BiDi)

†.
13: Ci ← AiDi.
14: end for
15: U ← (B1D1)† ⊗ (B2D2)† ⊗ · · · ⊗ (BqDq)

†.
16: return {Ci}i∈[q], U .
17: end procedure

75

C.11 Matrix CUR decomposition

There is a long line of research on matrix CUR decomposition under operator, Frobenius or re-
cently, entry-wise `1 norm [DMM08, BMD09, DR10, BDM11, BW14, SWZ17]. We provide the first
algorithm that runs in nnz(A) time, which improves the previous best matrix CUR decomposition
algorithm under Frobenius norm [BW14].

C.11.1 Algorithm

Algorithm 20 Optimal Matrix CUR Decomposition Algorithm
1: procedure OptimalMatrixCUR(A,n, k, ε) . Theorem C.48
2: ε′ ← 0.1ε. ε′′ ← 0.001ε′.
3: Û ←SparseSVD(A, k, ε′). . Û ∈ Rn×k
4: Choose S1 ∈ Rn×n to be a sampling and rescaling diagonal matrix according to the leverage

scores of Û with s1 = O(ε−2k log k) nonzero entries.
5: R, Y ←GeneralizedMatrixRowSubsetSelection(S1A,S1Û , s1, n, k, ε

′′). .
Algorithm 7, R ∈ Rr×n, Y ∈ Rk×r and r = O(k/ε)

6: V̂ ← Y R ∈ Rk×n.
7: Choose S>2 ∈ Rn×n to be a sampling and rescaling diagonal matrix according to the leverage

scores of V̂ > ∈ Rn×k with s2 = O(ε−2k log k) nonzero entries.
8: C>, Z> ← GeneralizedMatrixRowSubsetSelection ((AS2)>, (V̂ S2)>, s2, n, k, ε

′′). .
Algorithm 7, C ∈ Rn×c, Z ∈ Rc×k, and c = O(k/ε)

9: U ← ZY . . U ∈ Rc×r and rank(U) = k
10: return C,U,R.
11: end procedure

Theorem C.48. Given matrix A ∈ Rn×n, for any k ≥ 1 and ε ∈ (0, 1), there exists an algorithm
that takes O(nnz(A) + n poly(k, 1/ε)) time and outputs three matrices C ∈ Rn×c with c columns
from A, R ∈ Rr×n with r rows from A, and U ∈ Rc×r with rank(U) = k such that r = c = O(k/ε)
and,

‖CUR−A‖2F ≤ (1 + ε) min
rank−k Ak

‖Ak −A‖2F ,

holds with probability at least 9/10.

Proof. We define

OPT = min
rank−k Ak

‖Ak −A‖2F .

We first compute Û ∈ Rn×k by using the result of [CW13], so that Û satisfies:

min
X∈Rk×n

‖ÛX −A‖2F ≤ (1 + ε) OPT . (25)

This step can be done in O(nnz(A) + n poly(k, 1/ε)) time.
We choose S1 ∈ Rn×n to be a sampling and rescaling diagonal matrix according to the leverage

scores of Û , where here s1 = O(ε−2k log k) is the number of samples. This step also can be done in
O(n poly(k, 1/ε)) time.

76

We run GeneralizedMatrixRowSubsetSelection(Algorithm 7) on matrices S1A and S1Û .
Then we obtain two new matrices R and Y , where R contains r = O(k/ε) rows of S1A and Y has
size k × r. According to Theorem C.14 and Corollary C.15, this step takes n poly(k, 1/ε) time.

We construct V̂ = Y R, and choose S>2 to be another sampling and rescaling diagonal matrix
according to the leverage scores of V̂ > with s2 = O(ε−2k log k) nonzero entries. As in the case of
constructing S1, this step can be done in O(n poly(k, 1/ε)) time.

We run GeneralizedMatrixRowSubsetSelection(Algorithm 7) on matrices (AS2)> and
(V̂ S2)>. Then we can obtain two new matrices C> and Y >, where C> contains c = O(k/ε) rows
of (AS2)> and Z> has size k × c. According to Theorem C.14 and Corollary C.15, this step takes
n poly(k, 1/ε) time.

Thus, overall the running time is O(nnz(A) + n poly(k, 1/ε)).

Correctness. Let

X∗ = arg min
X∈Rn×k

‖XV̂ −A‖2F .

According to Corollary C.15,

‖CZV̂ S2 −AS2‖2F ≤ (1 + ε′′) min
X∈Rn×k

‖XV̂ S2 −AS2‖2F ≤ (1 + ε′′)‖X∗V̂ S2 −AS2‖2F .

According to Theorem C.52, ε′′ = 0.001ε′,

‖CZV̂ −A‖2F ≤ (1 + ε′)‖X∗V̂ −A‖2F . (26)

Let

X̃ = arg min
X∈Rk×n

‖ÛX −A‖2F .

According to Corollary C.15,

‖S1ÛY R− S1A‖2F ≤ (1 + ε′′) min
X∈Rk×n

‖S1ÛX − S1A‖2F ≤ (1 + ε′′)‖S1ÛX̃ − S1A‖2F .

According to Theorem C.52, since ε′′ = 0.001ε′,

‖ÛY R−A‖2F ≤ (1 + ε′)‖ÛX̃ −A‖2F . (27)

Then, we can conclude

‖CUR−A‖2F = ‖CZY R−A‖2F
= ‖CZV̂ −A‖2F
≤ (1 + ε′) min

X∈Rn×k
‖XV̂ −A‖2F

≤ (1 + ε′)‖Û V̂ −A‖2F
≤ (1 + ε′)2 min

X∈Rk×n
‖ÛX −A‖2F

≤ (1 + ε′)3 OPT

≤ (1 + ε) OPT .

77

The first equality follows since U = ZY . The second equality follows since Y R = V̂ . The first
inequality follows by Equation (26). The third inequality follows by Equation (27). The fourth
inequality follows by Equation (25). The last inequality follows since ε′ = 0.1ε.

Notice that C has O(k/ε) reweighted columns of AS2, and AS2 is a subset of reweighted columns
of A, so C has O(k/ε) reweighted columns of A. Similarly, we can prove that R has O(k/ε)
reweighted rows of A. Thus, CUR is a CUR decomposition of A.

C.11.2 Stronger property achieved by leverage scores

Claim C.49. Given matrix A ∈ Rn×m, for any distribution p = (p1, p2, · · · , pn) define random
variable X such that X = ‖Ai‖22/pi with probability pi, where Ai is the i-th row of matrix A. Then
take m independent samples X1, X2, · · · , Xm, and let Y = 1

m

∑m
j=1X

j. We have

Pr[Y ≤ 100‖A‖2F] ≥ .99.

Proof. We can compute the expectation of Xj , for any j ∈ [m],

E[Xj] =
n∑

i=1

‖Ai‖22
pi
· pi = ‖A‖2F .

Then E[Y] = 1
m

∑m
j=1 E[Xj] = ‖A‖2F . Using Markov’s inequality, we have

Pr[Y ≥ ‖A‖2F] ≤ .01.

Theorem C.50 (The leverage score case of Theorem 39 in [CW13]). Let A ∈ Rn×k, B ∈ Rn×d. Let
S ∈ Rn×n denote a sampling and rescaling diagonal matrix according to the leverage scores of A. If
the event occurs that S satisfies (ε/

√
k)-Frobenius norm approximate matrix product for A, and also

S is a (1 + ε)-subspace embedding for A, then let X∗ be the optimal solution of minX ‖AX −B‖2F ,
and B̃ ≡ AX∗ −B. Then, for all X ∈ Rk×d,

(1− 2ε)‖AX −B‖2F ≤ ‖S(AX −B)‖2F + ‖B̃‖2F − ‖SB̃‖2F ≤ (1 + 2ε)‖AX −B‖2F .

Furthermore, if S has m = O(ε−2k log(k)) nonzero entries, the above event happens with probability
at least 0.99.

Note that Theorem 39 in [CW13] is stated in a way that holds for general sketching matrices.
However, we are only interested in the case when S is a sampling and rescaling diagonal matrix
according to the leverage scores. For completeness, we provide the full proof of the leverage score
case with certain parameters.

Proof. Suppose S is a sampling and rescaling diagonal matrix according to the leverage scores of
A, and it has m = O(ε−2k log k) nonzero entries. Then, according to Lemma C.22, S is a (1 + ε)-
subspace embedding for A with probability at least 0.999, and according to Lemma C.29, S satisfies
(ε/
√
k)-Frobenius norm approximate matrix product for A with probability at least 0.999.

Let U ∈ Rn×k denote an orthonormal basis of the column span of A. Then the leverage scores
of U are the same as the leverage scores of A. Furthermore, for any X ∈ Rk×d, there is a matrix Y
such that AX = UY , and vice versa, so we can now assume A has k orthonormal columns.

78

Then,

‖S(AX −B)‖2F − ‖SB̃‖2F
= ‖SA(X −X∗) + S(AX∗ −B)‖2F − ‖SB̃‖2F
= ‖SA(X −X∗)‖2F + ‖S(AX∗ −B)‖2F + 2 tr

(
(X −X∗)>A>S>S(AX∗ −B)

)
− ‖SB̃‖2F

= ‖SA(X −X∗)‖2F + 2 tr
(

(X −X∗)>A>S>SB̃
)

︸ ︷︷ ︸
α

. (28)

The second equality follows using ‖C + D‖2F = ‖C‖2F + ‖D‖2F + 2 tr(C>D). The third equality
follows from B̃ = AX∗ −B. Now, let us first upper bound the term α in Equation (28):

‖SA(X −X∗)‖2F + 2 tr
(

(X −X∗)>A>S>SB̃
)

≤ (1 + ε)‖A(X −X∗)‖2F + 2‖X −X∗‖F ‖A>S>SB̃‖F
≤ (1 + ε)‖A(X −X∗)‖2F + 2(ε/

√
k) · ‖X −X∗‖F ‖A‖F ‖B̃‖F

≤ (1 + ε)‖A(X −X∗)‖2F + 2ε‖A(X −X∗)‖F ‖B̃‖F .

The first inequality follows since S is a (1+ε) subspace embedding of A, and tr(C>D) ≤ ‖C‖F ‖D‖F .
The second inequality follows since S satisfies (ε/

√
k)-Frobenius norm approximate matrix product

for A. The last inequality follows using that ‖A‖F ≤
√
k since A only has k orthonormal columns.

Now, let us lower bound the term α in Equation (28):

‖SA(X −X∗)‖2F + 2 tr
(

(X −X∗)>A>S>SB̃
)

≥ (1− ε)‖A(X −X∗)‖2F − 2‖X −X∗‖F ‖A>S>SB̃‖F
≥ (1− ε)‖A(X −X∗)‖2F − 2(ε/

√
k) · ‖X −X∗‖F ‖A‖F ‖B̃‖F

≥ (1− ε)‖A(X −X∗)‖2F − 2ε‖A(X −X∗)‖F ‖B̃‖F .

The first inequality follows since S is a (1+ε) subspace embedding ofA, and tr(C>D) ≥ −‖C‖F ‖D‖F .
The second inequality follows since S satisfies (ε/

√
k)-Frobenius norm approximate matrix product

for A. The last inequality follows using that ‖A‖F ≤
√
k since A only has k orthonormal columns.

Therefore,

(1− ε)‖A(X −X∗)‖2F − 2ε‖A(X −X∗)‖F ‖B̃‖F ≤ ‖S(AX −B)‖2F − ‖SB̃‖2F , (29)

and

(1 + ε)‖A(X −X∗)‖2F + 2ε‖A(X −X∗)‖F ‖B̃‖F ≥ ‖S(AX −B)‖2F − ‖SB̃‖2F . (30)

Notice that B̃ = AX∗ −B = AA†B −B = (AA† − I)B, so according to the Pythagorean theorem,
we have

‖AX −B‖2F = ‖A(X −X∗)‖2F + ‖B̃‖2F ,

which means that

‖A(X −X∗)‖2F = ‖AX −B‖2F − ‖B̃‖2F . (31)

79

Using Equation (31), we can rewrite and lower bound the LHS of Equation (29),

(1− ε)‖A(X −X∗)‖2F − 2ε‖A(X −X∗)‖F ‖B̃‖F
= ‖A(X −X∗)‖2F − ε

(
‖A(X −X∗)‖2F + 2‖A(X −X∗)‖F ‖B̃‖F

)

= ‖AX −B‖2F − ‖B̃‖2F − ε
(
‖A(X −X∗)‖2F + 2‖A(X −X∗)‖F ‖B̃‖F

)

≥ ‖AX −B‖2F − ‖B̃‖2F − ε
(
‖A(X −X∗)‖F + ‖B̃‖F

)2

≥ ‖AX −B‖2F − ‖B̃‖2F − 2ε
(
‖A(X −X∗)‖2F + ‖B̃‖2F

)

= (1− 2ε)‖AX −B‖2F − ‖B̃‖2F . (32)

The second step follows by Equation (31). The first inequality follows using a2 + 2ab < (a + b)2.
The second inequality follows using (a + b)2 ≤ 2(a2 + b2). The last equality follows using ‖A(X −
X∗)‖2F + ‖B̃‖2F = ‖AX−B‖2F . Similarly, using Equation (31), we can rewrite and upper bound the
LHS of Equation (30)

(1 + ε)‖A(X −X∗)‖2F + 2ε‖A(X −X∗)‖F ‖B̃‖F ≤ (1 + 2ε)‖AX −B‖2F − ‖B̃‖2F . (33)

Combining Equations (29),(32),(30),(33), we conclude that

(1− 2ε)‖AX −B‖2F − ‖B̃‖2F ≤ ‖S(AX −B)‖2F − ‖SB̃‖2F ≤ (1 + 2ε)‖AX −B‖2F − ‖B̃‖2F .

Theorem C.51. Let A ∈ Rn×k, B ∈ Rn×d, and 1
2 > ε > 0. Let X∗ be the optimal solution to

minX ‖AX −B‖2F , and B̃ ≡ AX∗ −B. Let S ∈ Rn×n denote a sketching matrix which satisfies the
following:

1. ‖SB̃‖2F ≤ 100 · ‖B̃‖2F ,

2. for all X ∈ Rk×d,

(1− ε)‖AX −B‖2F ≤ ‖S(AX −B)‖2F + ‖B̃‖2F − ‖SB̃‖2F ≤ (1 + ε)‖AX −B‖2F .

Then, for all X1, X2 ∈ Rk×d satisfying

‖SAX1 − SB‖2F ≤
(

1 +
ε

100

)
· ‖SAX2 − SB‖2F ,

we have

‖AX1 −B‖2F ≤ (1 + 5ε) · ‖AX2 −B‖2F .

Proof. Let A,B, S, ε be the same as in the statement of the theorem, and suppose S satisfies those
two conditions. Let X1, X2 ∈ Rk×d satisfy

‖SAX1 − SB‖2F ≤
(

1 +
ε

100

)
‖SAX2 − SB‖2F .

80

We have

‖AX1 −B‖2F
≤ 1

1− ε
(
‖S(AX1 −B)‖2F + ‖B̃‖2F − ‖SB̃‖2F

)

≤ 1

1− ε
((

1 +
ε

100

)
· ‖S(AX2 −B)‖2F + ‖B̃‖2F − ‖SB̃‖2F

)

=
1

1− ε
((

1 +
ε

100

)
·
(
‖S(AX2 −B)‖2F + ‖B̃‖2F − ‖SB̃‖2F

)
− ε

100
·
(
‖B̃‖2F − ‖SB̃‖2F

))

≤ 1

1− ε ·
(

1 +
ε

100

)
· ‖AX2 −B‖2F −

1

1− ε ·
ε

100
·
(
‖B̃‖2F − ‖SB̃‖2F

)

≤ (1 + 3ε)‖AX2 −B‖2F +
1

1− ε ·
ε

100
‖SB̃‖2F

≤ (1 + 3ε)‖AX2 −B‖2F + 2ε‖B̃‖2F
≤ (1 + 5ε)‖AX2 −B‖2F .

The first inequality follows since S satisfies the second condition. The second inequality follows
by the relationship between X1 and X2. The third inequality follows since S satisfies the second
condition. The fifth inequality follows using that ε < 1

2 and that S satisfies the first condition. The
last inequality follows using that ‖B̃‖2F = ‖AX∗ −B‖2F ≤ ‖AX2 −B‖2F .

Theorem C.52. Let A ∈ Rn×k, B ∈ Rn×d, and 1
2 > ε > 0. Let S ∈ Rn×n denote a sampling and

rescaling diagonal matrix according to the leverage scores of A. If S has at least m = O(k log(k)/ε2)
nonzero entries, then with probability at least 0.98, for all X1, X2 ∈ Rk×d satisfying

‖SAX1 − SB‖2F ≤ (1 +
ε

500
) · ‖SAX2 − SB‖2F ,

we have

‖AX1 −B‖2F ≤ (1 + ε) · ‖AX2 −B‖2F .

Proof. The proof directly follows by Claim C.49, Theorem C.50 and Theorem C.51. Because of
Claim C.49, S satisfies the first condition in the statement of Theorem C.51 with probability at least
0.99. According to Theorem C.50, S satisfies the second condition in the statement of Theorem C.51
with probability at least 0.99. Thus, with probability 0.98, by Theorem C.51, we complete the
proof.

81

D Entry-wise `1 Norm for Arbitrary Tensors

In this section, we provide several different algorithms for tensor `1-low rank approximation. Sec-
tion D.1 provides some useful facts and definitions. Section D.2 presents several existence results.
Section D.3 describes a tool that is able to reduce the size of the objective function from poly(n)
to poly(k). Section D.4 discusses the case when the problem size is small. Section D.5 provides
several bicriteria algorithms. Section D.6 summarizes a batch of algorithms. Section D.7 provides
an algorithm for `1 norm CURT decomposition.

Notice that if the rank−k solution does not exist, then every bicriteria algorithm in Section D.5
can be stated in a form similar to Theorem 1.1, and every algorithm which can output a rank−k
solution in Section D.6 can be stated in a form similar to Theorem 1.2. See Section 1 for more
details.

D.1 Facts

We present a method that is able to reduce the entry-wise `1-norm objective function to the Frobe-
nius norm objective function.

Fact D.1. Given a 3rd order tensor C ∈ Rc1×c2×c3, three matrices V1 ∈ Rc1×b1, V2 ∈ Rc2×b2 ,
V3 ∈ Rc3×b3, for any k ∈ [1,mini bi], if X ′1 ∈ Rb1×k, X ′2 ∈ Rb2×k, X ′3 ∈ Rb3×k satisfies that,

‖(V1X
′
1)⊗ (V2X

′
2)⊗ (V3X

′
3)− C‖F ≤ α min

X1,X2,X3

‖(V1X1)⊗ (V2X2)⊗ (V3X3)− C‖F ,

then

‖(V1X
′
1)⊗ (V2X

′
2)⊗ (V3X

′
3)− C‖1 ≤ α

√
c1c2c3 min

X1,X2,X3

‖(V1X1)⊗ (V2X2)⊗ (V3X3)− C‖1.

We extend Lemma C.15 in [SWZ17] to tensors:

Fact D.2. Given tensor A ∈ Rn×n×n, let OPT = min
rank−k Ak

‖A − Ak‖1. For any r ≥ k, if rank-r

tensor B ∈ Rn×n×n is an f -approximation to A, i.e.,

‖B −A‖1 ≤ f ·OPT,

and U, V,W ∈ Rn×k is a g-approximation to B, i.e.,

‖U ⊗ V ⊗W −B‖1 ≤ g · min
rank−k Bk

‖Bk −B‖1,

then,

‖U ⊗ V ⊗W −A‖1 . gf ·OPT .

Proof. We define Ũ , Ṽ , W̃ ∈ Rn×k to be three matrices, such that

‖Ũ ⊗ Ṽ ⊗ W̃ −B‖1 ≤ g min
rank−k Bk

‖Bk −B‖1,

and also define,

Û , V̂ , Ŵ = arg min
U,V,W∈Rn×k

‖U ⊗ V ⊗W −B‖1 and U∗, V ∗,W ∗ = arg min
U,V,W∈Rn×k

‖U ⊗ V ⊗W −A‖1.

82

It is obvious that,

‖Û ⊗ V̂ ⊗ Ŵ −B‖1 ≤ ‖U∗ ⊗ V ∗ ⊗W ∗ −B‖1. (34)

Then,

‖Ũ ⊗ Ṽ ⊗ W̃ −A‖1
≤ ‖Ũ ⊗ Ṽ ⊗ W̃ −B‖1 + ‖B −A‖1 by the triangle inequality

≤ g‖Û ⊗ V̂ ⊗ Ŵ −B‖1 + ‖B −A‖1 by definition
≤ g‖U∗ ⊗ V ∗ ⊗W ∗ −B‖1 + ‖B −A‖1 by Equation (34)
≤ g‖U∗ ⊗ V ∗ ⊗W ∗ −A‖1 + g‖B −A‖1 + ‖B −A‖1 by the triangle inequality
= gOPT +(g + 1)‖B −A‖1 by definition of OPT

≤ gOPT +(g + 1)f ·OPT since B is an f -approximation to A
. gf OPT .

This completes the proof.

Using the above fact, we are able to optimize our approximation ratio.

D.2 Existence results

Definition D.3 (`1 multiple regression cost preserving sketch - Definition D.5 in [SWZ17]). Given
matrices U ∈ Rn×r, A ∈ Rn×d, let S ∈ Rm×n. If ∀β ≥ 1, V̂ ∈ Rr×d which satisfy

‖SUV̂ − SA‖1 ≤ β · min
V ∈Rr×d

‖SUV − SA‖1,

it holds that

‖UV̂ −A‖1 ≤ β · c · min
V ∈Rr×d

‖UV −A‖1,

then S provides a c-`1-multiple-regression-cost-preserving-sketch for (U,A).

Theorem D.4. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exist three matrices
S1 ∈ Rn2×s1 , S2 ∈ Rn2×s2 , S3 ∈ Rn2×s3 such that

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(A1S1X1)i ⊗ (A2S2X2)i ⊗ (A3S3X3)i −A
∥∥∥∥∥

1

≤ α min
rank−k Ak∈Rn×n×n

‖Ak −A‖1,

holds with probability 99/100.
(I). Using a dense Cauchy transform,

s1 = s2 = s3 = Õ(k), α = Õ(k1.5) log3 n.
(II). Using a sparse Cauchy transform,

s1 = s2 = s3 = Õ(k5), α = Õ(k13.5) log3 n.
(III). Guessing Lewis weights,

s1 = s2 = s3 = Õ(k), α = Õ(k1.5).

83

Proof. We use OPT to denote

OPT := min
rank−k Ak∈Rn×n×n

‖Ak −A‖1.

Given a tensor A ∈ Rn1×n2×n3 , we define three matrices A1 ∈ Rn1×n2n3 , A2 ∈ Rn2×n3n1 , A3 ∈
Rn3×n1n2 such that, for any i ∈ [n1], j ∈ [n2], l ∈ [n3],

Ai,j,l = (A1)i,(j−1)·n3+l = (A2)j,(l−1)·n1+i = (A3)l,(i−1)·n2+j .

We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k, and use V ∗1 , V ∗2 , · · · , V ∗k to denote the columns of V ∗ and
W ∗1 ,W

∗
2 , · · · ,W ∗k to denote the columns of W ∗.

We consider the following optimization problem,

min
U1,··· ,Uk∈Rn

∥∥∥∥∥
k∑

i=1

Ui ⊗ V ∗i ⊗W ∗i −A
∥∥∥∥∥

1

,

which is equivalent to

min
U1,··· ,Uk∈Rn

∥∥∥∥∥∥∥∥

[
U1 U2 · · · Uk

]



V ∗1 ⊗W ∗1
V ∗2 ⊗W ∗2
· · ·

V ∗k ⊗W ∗k


−A

∥∥∥∥∥∥∥∥
1

.

We use matrix Z1 to denote V ∗> �W ∗> ∈ Rk×n2 and matrix U to denote
[
U1 U2 · · · Uk

]
.

Then we can obtain the following equivalent objective function,

min
U∈Rn×k

‖UZ1 −A1‖1.

Choose an `1 multiple regression cost preserving sketch S1 ∈ Rn2×s1 for (Z>1 , A
>
1). We can

obtain the optimization problem,

min
U∈Rn×k

‖UZ1S1 −A1S1‖1 = min
U∈Rn×k

n∑

i=1

‖U iZ1S1 − (A1S1)i‖1,

where U i denotes the i-th row of matrix U ∈ Rn×k and (A1S1)i denotes the i-th row of matrix
A1S1. Instead of solving it under the `1-norm, we consider the `2-norm relaxation,

min
U∈Rn×k

‖UZ1S1 −A1S1‖2F = min
U∈Rn×k

n∑

i=1

‖U iZ1S1 − (A1S1)i‖22.

Let Û ∈ Rn×k denote the optimal solution of the above optimization problem. Then, Û =
A1S1(Z1S1)†. We plug Û into the objective function under the `1-norm. According to Claim B.13,
we have,

‖ÛZ1S1 −A1S1‖1 =
n∑

i=1

‖Û iZ1S1 − (A1S1)i‖1 ≤
√
s1 min

U∈Rn×k
‖UZ1S1 −A1S1‖1.

Since S1 ∈ Rn2×s1 satisfies Definition D.3, we have

‖ÛZ1 −A1‖1 ≤ α min
U∈Rn×k

‖UZ1 −A1‖1 = αOPT,

84

where α =
√
s1β and β (see Definition D.3) is a parameter which depends on which kind of sketching

matrix we actually choose. It implies

‖Û ⊗ V ∗ ⊗W ∗ −A‖1 ≤ αOPT .

As a second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and convert tensor A into matrix A2. Let
matrix Z2 denote Û> �W ∗>. We consider the following objective function,

min
V ∈Rn×k

‖V Z2 −A2‖1,

and the optimal cost of it is at most αOPT.
Choose an `1 multiple regression cost preserving sketch S2 ∈ Rn2×s2 for (Z>2 , A

>
2), and sketch

on the right of the objective function to obtain this new objective function,

min
V ∈Rn×k

‖V Z2S2 −A2S2‖1 = min
U∈Rn×k

n∑

i=1

‖V iZ2S2 − (A2S2)i‖1,

where V i denotes the i-th row of matrix V and (A2S2)i denotes the i-th row of matrix A2S2. Instead
of solving this under the `1-norm, we consider the `2-norm relaxation,

min
U∈Rn×k

‖V Z2S2 −A2S2‖2F = min
V ∈Rn×k

‖V i(Z2S2)− (A2S2)i‖22.

Let V̂ ∈ Rn×k denote the optimal solution of the above problem. Then V̂ = A2S2(Z2S2)†. By
properties of the sketching matrix S2 ∈ Rn2×s2 , we have,

‖V̂ Z2 −A2‖1 ≤ α min
V ∈Rn×k

‖V Z2 −A2‖1 ≤ α2 OPT,

which implies

‖Û ⊗ V̂ ⊗W ∗ −A‖1 ≤ α2 OPT .

As a third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k. We can convert tensor A ∈ Rn×n×n
into matrix A3 ∈ Rn2×n. Let matrix Z3 denote Û> � V̂ > ∈ Rk×n2 . We consider the following
objective function,

min
W∈Rn×k

‖WZ3 −A3‖1,

and the optimal cost of it is at most α2 OPT.
Choose an `1 multiple regression cost preserving sketch S3 ∈ Rn2×s3 for (Z>3 , A

>
3) and sketch on

the right of the objective function to obtain the new objective function,

min
W∈Rn×k

‖WZ3S3 −A3S3‖1.

Let Ŵ ∈ Rn×k denote the optimal solution of the above problem. Then Ŵ = A3S3(Z3S3)†. By
properties of sketching matrix S3 ∈ Rn2×s3 , we have,

‖ŴZ3 −A3‖1 ≤ α min
W∈Rn×k

‖WZ3 −A3‖1 ≤ α3 OPT .

85

Thus, we obtain,

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥∥∥
k∑

i=1

(A1S1X1)i ⊗ (A2S2X2)i ⊗ (A3S3X3)i −A
∥∥∥∥∥

1

≤ α3 OPT .

Proof of (I) By Theorem C.1 in [SWZ17], we can use dense Cauchy transforms for S1, S2, S3,
and then s1 = s2 = s3 = O(k log k) and α = O(

√
k log k log n).

Proof of (II) By Theorem C.1 in [SWZ17], we can use sparse Cauchy transforms for S1, S2, S3,
and then s1 = s2 = s3 = O(k5 log5 k) and α = O(k4.5 log4.5 k log n).

Proof of (III) By Theorem C.1 in [SWZ17], we can sample by Lewis weights. Then S1, S2, S3 ∈
Rn2×n2 are diagonal matrices, and each of them has O(k log k) nonzero rows. This gives α =
O(
√
k log k).

D.3 Polynomial in k size reduction

Definition D.5 (Definition D.1 in [SWZ17]). Given a matrix M ∈ Rn×d, if matrix S ∈ Rm×n
satisfies

‖SM‖1 ≤ β‖M‖1,

then S has at most β dilation on M .

Definition D.6 (Definition D.2 in [SWZ17]). Given a matrix U ∈ Rn×k, if matrix S ∈ Rm×n
satisfies

∀x ∈ Rk, ‖SUx‖1 ≥
1

β
‖Ux‖1,

then S has at most β contraction on U .

Theorem D.7. Given a tensor A ∈ Rn1×n2×n3 and three matrices V1 ∈ Rn1×b1 , V2 ∈ Rn2×b2 , V3 ∈
Rn3×b3 , let X∗1 ∈ Rb1×k, X∗2 ∈ Rb2×k, X∗3 ∈ Rb3×k satisfies

X∗1 , X
∗
2 , X

∗
3 = arg min

X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k
‖V1X1 ⊗ V2X2 ⊗ V3X3 −A‖1.

Let S ∈ Rm×n have at most β1 ≥ 1 dilation on V1X
∗
1 · ((V2X

∗
2)> � (V3X

∗
3)>) − A1 and S have at

most β2 ≥ 1 contraction on V1. If X̂1 ∈ Rb1×k, X̂2 ∈ Rb2×k, X̂3 ∈ Rb3×k satisfies

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖1 ≤ β min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖SV1X1 ⊗ V2X2 ⊗ V3X3 − SA‖1,

where β ≥ 1, then

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 −A‖1 . β1β2β min
X1,X2,X3

‖V1X1 ⊗ V2X2 ⊗ V3X3 −A‖1.

The proof idea is similar to [SWZ17].

Proof. Let A, V1, V2, V3, S,X
∗
1 , X

∗
2 , X

∗
3 , β1, β2 be the same as stated in the theorem. Let X̂1 ∈

Rb1×k, X̂2 ∈ Rb2×k, X̂3 ∈ Rb3×k satisfy

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖1 ≤ β min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖SV1X1 ⊗ V2X2 ⊗ V3X3 − SA‖1.

86

We have,

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖1
≥ ‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SV1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3‖1 − ‖SV1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − SA‖1

≥ 1

β2
‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3‖1 − β1‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖1

≥ 1

β2
‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 −A‖1 −

1

β2
‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖1

− β1‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖1

=
1

β2
‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 −A‖1 − (

1

β2
+ β1)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖1. (35)

The first and the third inequality follow by the triangle inequalities. The second inequality follows
using that

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SV1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3‖1

=
∥∥∥SV1(X̂1 −X∗1) ·

(
(V2(X̂2 −X∗2))> � (V3(X̂3 −X∗3))>

)∥∥∥
1

≥ 1

β2

∥∥∥V1(X̂1 −X∗1) ·
(

(V2(X̂2 −X∗2))> � (V3(X̂3 −X∗3))>
)∥∥∥

1

≥ 1

β2
‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3‖1,

and

‖SV1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − SA‖1

= ‖S(V1X
∗
1 · ((V2X

∗
2)> � (V3X

∗
3)>)−A1)‖1

≤ ‖V1X
∗
1 · ((V2X

∗
2)> � (V3X

∗
3)>)−A1‖1

= β1‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖1. (36)

Then, we have

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 −A‖1
≤ β2‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖1 + (1 + β1β2)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖1

≤ β2β‖SV1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − SA‖1 + (1 + β1β2)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖1

≤ β1β2β‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖1 + (1 + β1β2)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖1

≤ β(1 + 2β1β2)‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖1.

The first inequality follows by Equation (35). The second inequality follows by

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖1 ≤ β min
X1,X2,X3

‖SV1X1 ⊗ V2X2 ⊗ V3X3 − SA‖1.

The third inequality follows by Equation (36). The final inequality follows using that β ≥ 1.

Lemma D.8. Let min(b1, b2, b3) ≥ k. Given three matrices V1 ∈ Rn×b1, V2 ∈ Rn×b2, and V3 ∈
Rn×b3, there exists an algorithm that takes O(nnz(A)) + n poly(b1, b2, b3) time and outputs a tensor

87

Algorithm 21 Reducing the Size of the Objective Function to poly(k)

1: procedure L1PolyKSizeReduction(A, V1, V2, V3, n, b1, b2, b3, k) . Lemma D.8
2: for i = 1→ 3 do
3: ci ← Õ(bi).
4: Choose sampling and rescaling matrices Ti ∈ Rci×n according to the Lewis weights of Vi.
5: V̂i ← TiVi ∈ Rci×bi .
6: end for
7: C ← A(T1, T2, T3) ∈ Rc1×c2×c3 .
8: return V̂1, V̂2, V̂3 and C.
9: end procedure

C ∈ Rc1×c2×c3 and three matrices V̂1 ∈ Rc1×b1, V̂2 ∈ Rc2×b2 and V̂3 ∈ Rc3×b3 with c1 = c2 = c3 =
poly(b1, b2, b3), such that with probability 0.99, for any α ≥ 1, if X ′1, X

′
2, X

′
3 satisfy that,

∥∥∥∥∥
k∑

i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥
1

≤ α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C
∥∥∥∥∥

1

,

then,
∥∥∥∥∥

k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i −A

∥∥∥∥∥
1

. α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

1

.

Proof. For simplicity, we define OPT to be

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

1

.

Let T1 ∈ Rc1×n sample according to the Lewis weights of V1 ∈ Rn×b1 , where c1 = Õ(b1). Let
T2 ∈ Rc2×n sample according to the Lewis weights of V2 ∈ Rn×b2 , where c2 = Õ(b2). Let T3 ∈ Rc3×n
sample according to the Lewis weights of V3 ∈ Rn×b3 , where c3 = Õ(b3).

For any α ≥ 1, let X ′1 ∈ Rb1×k, X ′2 ∈ Rb2×k, X ′3 ∈ Rb3×k satisfy

‖T1V1X
′
1 ⊗ T2V2X

′
2 ⊗ T3V3X

′
3 −A(T1, T2, T3)‖1

≤ α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖T1V1X1 ⊗ T2V2X2 ⊗ T3V3X3 −A(T1, T2, T3)‖1.

First, we regard T1 as the sketching matrix for the remainder. Then by Lemma D.11 in [SWZ17]
and Theorem D.7, we have

‖V1X
′
1 ⊗ T2V2X

′
2 ⊗ T3V3X

′
3 −A(I, T2, T3)‖1

. α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖V1X1 ⊗ T2V2X2 ⊗ T3V3X3 −A(I, T2, T3)‖1.

Second, we regard T2 as a sketching matrix for V1X1 ⊗ V2X2 ⊗ T3V3X3 − A(I, I, T3). Then by
Lemma D.11 in [SWZ17] and Theorem D.7, we have

‖V1X
′
1 ⊗ V2X

′
2 ⊗ T3V3X

′
3 −A(I, I, T3)‖1

. α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖V1X1 ⊗ V2X2 ⊗ T3V3X3 −A(I, I, T3)‖1.

88

Third, we regard T3 as a sketching matrix for V1X1 ⊗ V2X2 ⊗ V3X3 −A. Then by Lemma D.11 in
[SWZ17] and Theorem D.7, we have
∥∥∥∥∥

k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i −A

∥∥∥∥∥
1

. α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

1

.

Lemma D.9. Given tensor A ∈ Rn1×n2×n3, and two matrices U ∈ Rn1×s, V ∈ Rn2×s with
rank(U) = r, let T ∈ Rt×n1 be a sampling/rescaling matrix according to the Lewis weights of U
with t = Õ(r). Then with probability at least 0.99, for all X ′ ∈ Rn3×s, α ≥ 1 which satisfy

‖T1U ⊗ V ⊗X ′ − T1A‖1 ≤ α · min
X∈Rn3×s

‖T1U ⊗ V ⊗X − T1A‖1,

it holds that

‖U ⊗ V ⊗X ′ −A‖1 . α · min
X∈Rn3×s

‖U ⊗ V ⊗X −A‖1.

The proof is similar to the proof of Lemma D.8.

Proof. Let X∗ = arg min
X∈Rn3×s

‖U ⊗ V ⊗ X − A‖1. Then according to Lemma D.11 in [SWZ17], T has

at most constant dilation (Definition D.5) on U · (V > � (X∗)>) − A1, and has at most constant
contraction (Definition D.6) on U . We first look at

‖TU ⊗ V ⊗X ′ − TA‖1
= ‖TU · (V > � (X ′)>)− TA1‖1
≥ ‖TU · ((V > � (X ′)>)− (V > � (X∗)>))‖1 − ‖TU · (V > � (X∗)>)− TA1‖1
≥ 1

β2
‖U · ((V > � (X ′)>)−A1‖1 − (

1

β2
+ β1)‖U · (V > � (X∗)>)−A1‖1,

where β1 ≥ 1, β2 ≥ 1 are two constants. Then we have:

‖U ⊗ V ⊗X ′ −A‖1
≤ β2‖TU · (V > � (X ′)>)− TA1‖1 + (1 + β1β2)‖U · (V > � (X∗)>)−A1‖1
≤ αβ2‖TU · (V > � (X∗)>)− TA1‖1 + (1 + β1β2)‖U · (V > � (X∗)>)−A1‖1
≤ αβ1β2‖U · (V > � (X∗)>)−A1‖1 + (1 + β1β2)‖U · (V > � (X∗)>)−A1‖1
. α‖U ⊗ V ⊗X∗ −A‖1.

Corollary D.10. Given tensor A ∈ Rn×n×n, and two matrices U ∈ Rn×s, V ∈ Rn×s with rank(U) =
r1, rank(V) = r2, let T1 ∈ Rt1×n be a sampling/rescaling matrix according to the Lewis weights of
U , and let T2 ∈ Rt2×n be a sampling/rescaling matrix according to the Lewis weights of V with
t1 = Õ(r1), t2 = Õ(r2). Then with probability at least 0.99, for all X ′ ∈ Rn×s, α ≥ 1 which satisfy

‖T1U ⊗ T2V ⊗X ′ −A(T1, T2, I)‖1 ≤ α · min
X∈Rn×s

‖T1U ⊗ T2V ⊗X −A(T1, T2, I)‖1,

it holds that

‖U ⊗ V ⊗X ′ −A‖1 . α · min
X∈Rn×s

‖U ⊗ V ⊗X −A‖1.

89

Proof. We apply Lemma D.9 twice: if

‖T1U ⊗ T2V ⊗X ′ −A(T1, T2, I)‖1 ≤ α · min
X∈Rn×s

‖T1U ⊗ T2V ⊗X −A(T1, T2, I)‖1,

then

‖U ⊗ T2V ⊗X ′ −A(I, T2, I)‖1 . α · min
X∈Rn×s

‖U ⊗ T2V ⊗X −A(I, T2, I)‖1.

Then, we have

‖U ⊗ V ⊗X ′ −A‖1 . α · min
X∈Rn×s

‖U ⊗ V ⊗X −A‖1.

D.4 Solving small problems

Theorem D.11. Let maxi{ti, di} ≤ n. Given a t1 × t2 × t3 tensor A and three matrices: a t1 × d1

matrix T1, a t2 × d2 matrix T2, and a t3 × d3 matrix T3, if for δ > 0 there exists a solution to

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i −A
∥∥∥∥∥

1

:= OPT,

such that each entry of Xi can be expressed using O(nδ) bits, then there exists an algorithm that
takes nO(δ) · 2O(d1k+d2k+d3k) time and outputs three matrices: X̂1, X̂2, and X̂3 such that ‖(T1X̂1)⊗
(T2X̂2)⊗ (T3X̂3)−A‖1 = OPT.

Proof. For each i ∈ [3], we can create ti× di variables to represent matrix Xi. Let x denote the list
of these variables. Let B denote tensor

∑k
i=1(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i. Then we can write the

following objective function,

min
x

t1∑

i=1

t2∑

j=1

t3∑

l=1

|Bi,j,l(x)−Ai,j,l|.

To remove the | · |, we create t1t2t3 extra variables σi,j,l. Then we obtain the objective function:

min
x,σ

t1∑

i=1

t2∑

j=1

t3∑

l=1

σi,j,l(Bi,j,l(x)−Ai,j,l)

s.t. σ2
i,j,l = 1,

σi,j,l(Bi,j,l(x)−Ai,j,l) ≥ 0,

‖x‖22 + ‖σ‖22 ≤ 2O(nδ)

where the last constraint is unharmful, because there exists a solution that can be written using
O(nδ) bits. Note that the number of inequality constraints in the above system is O(t1t2t3), the
degree is O(1), and the number of variables is v = (t1t2t3 +d1k+d2k+d3k). Thus by Theorem B.11,
we know that the minimum nonzero cost is at least

(2O(nδ))−2Õ(v)
.

90

It is immediate that the upper bound on cost is at most 2O(nδ), and thus the number of binary
search steps is at most log(2O(nδ))2Õ(v). In each step of the binary search, we need to choose a cost
C between the lower bound and the upper bound, and write down the polynomial system,

t1∑

i=1

t2∑

j=1

t3∑

l=1

σi,j,l(Bi,j,l(x)−Ai,j,l) ≤ C,

σ2
i,j,l = 1,

σi,j,l(Bi,j,l(x)−Ai,j,l) ≥ 0,

‖x‖22 + ‖σ‖22 ≤ 2O(nδ).

Using Theorem B.10, we can determine if there exists a solution to the above polynomial system.
Since the number of variables is v, and the degree is O(1), the number of inequality constraints is
t1t2t2. Thus, the running time is

poly(bitsize) · (# constraints ·degree)# variables = nO(δ)2Õ(v)

D.5 Bicriteria algorithms

We present several bicriteria algorithms with different tradeoffs. We first present an algorithm that
runs in nearly linear time and outputs a solution with rank Õ(k3) in Theorem D.12. Then we show
an algorithm that runs in nnz(A) time but outputs a solution with rank poly(k) in Theorem D.13.
Then we explain an idea which is able to decrease the cubic rank to quadratic rank, and thus we
can obtain Theorem D.14 and Theorem D.15.

D.5.1 Input sparsity time

Algorithm 22 `1-Low Rank Approximation, Bicriteria Algorithm, rank-Õ(k3), Nearly Input Spar-
sity Time
1: procedure L1BicriteriaAlgorithm(A,n, k) . Theorem D.12
2: s1 ← s2 ← s3 ← Õ(k).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be a dense Cauchy transform. . Part (I) of

Theorem D.2
4: Compute A1 · S1, A2 · S2, A3 · S3.
5: Y1, Y2, Y3, C ←L1PolyKSizeReduction(A,A1S1, A2S2, A3S3, n, s1, s2, s3, k) .

Algorithm 21
6: Form objective function

min
X∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)l − C

∥∥∥∥∥∥
1

.

7: Run `1-regression solver to find X.
8: return A1S1, A2S2, A3S3 and X.
9: end procedure

91

Theorem D.12. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let r = Õ(k3).
There exists an algorithm which takes nnz(A) · Õ(k)+O(n) poly(k)+poly(k) time and outputs three
matrices U, V,W ∈ Rn×r such that

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

1

≤ Õ(k3/2) log3 n min
rank−k Ak

‖Ak −A‖1

holds with probability 9/10.

Proof. We first choose three dense Cauchy transforms Si ∈ Rn2×si . According to Section B.7, for
each i ∈ [3], AiSi can be computed in nnz(A)·Õ(k) time. Then we apply Lemma D.8 (Algorithm 21).
We obtain three matrices Y1, Y2, Y3 and a tensor C. Note that for each i ∈ [3], Yi can be computed
in n poly(k) time. Because C = A(T1, T2, T3) and T1, T2, T3 ∈ Rn×Õ(k) are three sampling and
rescaling matrices, C can be computed in nnz(A) + Õ(k3) time. At the end, we just need to run an
`1-regression solver to find the solution to the problem,

min
X∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)j

∥∥∥∥∥∥
1

,

where (Y1)i denotes the i-th column of matrix Y1. Since the size of the above problem is only
poly(k), this can be solved in poly(k) time.

Algorithm 23 `1-Low Rank Approximation, Bicriteria Algorithm, rank-poly(k), Input Sparsity
Time
1: procedure L1BicriteriaAlgorithm(A,n, k) . Theorem D.13
2: s1 ← s2 ← s3 ← Õ(k5).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be a sparse Cauchy transform. . Part (II) of

Theorem D.4
4: Compute A1 · S1, A2 · S2, A3 · S3.
5: Y1, Y2, Y3, C ←L1PolyKSizeReduction(A,A1S1, A2S2, A3, S3, n, s1, s2, s3, k) .

Algorithm 21
6: Form objective function

min
X∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)l − C

∥∥∥∥∥∥
1

.

7: Run `1-regression solver to find X.
8: return A1S1, A2S2, A3S3 and X.
9: end procedure

Theorem D.13. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let r = Õ(k15).
There exists an algorithm that takes nnz(A)+O(n) poly(k)+poly(k) time and outputs three matrices
U, V,W ∈ Rn×r such that

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

1

≤ poly(k, log n) min
rank−k Ak

‖Ak −A‖1

holds with probability 9/10.

92

Proof. We first choose three dense Cauchy transforms Si ∈ Rn2×si . According to Section B.7, for
each i ∈ [3], AiSi can be computed in O(nnz(A)) time. Then we apply Lemma D.8 (Algorithm
21), and can obtain three matrices Y1, Y2, Y3 and a tensor C. Note that for each i ∈ [3], Yi can
be computed in O(n) poly(k) time. Because C = A(T1, T2, T3) and T1, T2, T3 ∈ Rn×Õ(k) are three
sampling and rescaling matrices, C can be computed in nnz(A) + Õ(k3) time. At the end, we just
need to run an `1-regression solver to find the solution to the problem,

min
X∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)l − C

∥∥∥∥∥∥
1

,

where (Y1)i denotes the i-th column of matrix Y1. Since the size of the above problem is only
poly(k), it can be solved in poly(k) time.

D.5.2 Improving cubic rank to quadratic rank

Algorithm 24 `1-Low Rank Approximation, Bicriteria Algorithm, rank-Õ(k2), Nearly Input Spar-
sity Time
1: procedure L1BicriteriaAlgorithm(A,n, k) . Theorem D.14
2: s1 ← s2 ← s3 ← Õ(k).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be a dense Cauchy transform. . Part (I) of

Theorem D.2
4: Compute A1 · S1, A2 · S2.
5: For each i ∈ [2], choose Ti to be a sampling and rescaling diagonal matrix according to the

Lewis weights of AiSi, with ti = Õ(k) nonzero entries.
6: C ← A(T1, T2, I).
7: Bi+(j−1)s1 ← vec((T1A1S1)i ⊗ (T2A2S2)j),∀i ∈ [s1], j ∈ [s2].
8: Form objective function minW ‖WB − C3‖1
9: Run `1-regression solver to find Ŵ .

10: Construct Û by using A1S1 according to Equation (38).
11: Construct V̂ by using A2S2 according to Equation (39).
12: return Û , V̂ , Ŵ .
13: end procedure

Theorem D.14. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let r = Õ(k2).
There exists an algorithm which takes nnz(A) · Õ(k)+O(n) poly(k)+poly(k) time and outputs three
matrices U, V,W ∈ Rn×r such that

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

1

≤ Õ(k3/2) log3 n min
rank−k Ak

‖Ak −A‖1

holds with probability 9/10.

Proof. Let OPT = min
Ak∈Rn×n×n

‖Ak−A‖1.We first choose three dense Cauchy transforms Si ∈ Rn2×si ,

∀i ∈ [3]. According to Section B.7, for each i ∈ [3], AiSi can be computed in nnz(A) · Õ(k) time.
Then we choose Ti to be a sampling and rescaling diagonal matrix according to the Lewis weights
of AiSi, ∀i ∈ [2].

93

According to Theorem D.4, we have

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥∥∥
k∑

l=1

(A1S1X1)l ⊗ (A2S2X2)l ⊗ (A3S3X3)l −A
∥∥∥∥∥

1

≤ Õ(k1.5) log3 nOPT

Now we fix an l and we have:

(A1S1X1)l ⊗ (A2S2X2)l ⊗ (A3S3X3)l

=

(
s1∑

i=1

(A1S1)i(X1)i,l

)
⊗




s2∑

j=1

(A2S2)j(X2)j,l


⊗ (A3S3X3)l

=

s1∑

i=1

s2∑

j=1

(A1S1)i ⊗ (A2S2)j ⊗ (A3S3X3)l(X1)i,l(X2)j,l

Thus, we have

min
X1,X2,X3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

(A1S1)i ⊗ (A2S2)j ⊗
(

k∑

l=1

(A3S3X3)l(X1)i,l(X2)j,l

)
−A

∥∥∥∥∥∥
1

≤ Õ(k1.5) log3 nOPT .

(37)

We create matrix Û ∈ Rn×s1s2 by copying matrix A1S1 s2 times, i.e.,

Û =
[
A1S1 A1S1 · · · A1S1

]
. (38)

We create matrix V̂ ∈ Rn×s1s2 by copying the i-th column of A2S2 a total of s1 times into the
columns (i− 1)s1, · · · , is1 of V̂ , for each i ∈ [s2], i.e.,

V̂ =
[
(A2S2)1 · · · (A2S2)1 (A2S2)2 · · · (A2S2)2 · · · (A2S2)s2 · · · (A2S2)s2 .

]
(39)

According to Equation (37), we have:

min
W∈Rn×s1s2

‖Û ⊗ V̂ ⊗W −A‖1 ≤ Õ(k1.5) log3 n ·OPT .

Let

Ŵ = arg min
W∈Rn×s1s2

‖T1Û ⊗ T2V̂ ⊗W −A(T1, T2, I)‖1.

Due to Corollary D.10, we have

‖Û ⊗ V̂ ⊗ Ŵ −A‖1 ≤ Õ(k1.5) log3 n ·OPT .

Putting it all together, we have that Û , V̂ , Ŵ gives a rank-Õ(k2) bicriteria algorithm to the original
problem.

Theorem D.15. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let r = Õ(k10).
There exists an algorithm which takes nnz(A) + O(n) poly(k) + poly(k) time and outputs three
matrices U, V,W ∈ Rn×r such that

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

1

≤ poly(k, log n) min
rank−k Ak

‖Ak −A‖1

holds with probability 9/10.

94

Algorithm 25 `1-Low Rank Approximation, Bicriteria Algorithm, rank-poly(k), Input Sparsity
Time
1: procedure L1BicriteriaAlgorithm(A,n, k) . Theorem D.15
2: s1 ← s2 ← s3 ← Õ(k5).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be a sparse Cauchy transform. . Part (II) of

Theorem D.2
4: Compute A1 · S1, A2 · S2.
5: For each i ∈ [2], choose Ti to be a sampling and rescaling diagonal matrix according to the

Lewis weights of AiSi, with ti = Õ(k) nonzero entries.
6: C ← A(T1, T2, I).
7: Bi+(j−1)s1 ← vec((T1A1S1)i ⊗ (T2A2S2)j),∀i ∈ [s1], j ∈ [s2].
8: Form objective function minW ‖WB − C3‖1.
9: Run `1-regression solver to find Ŵ .

10: Construct Û by using A1S1 according to Equation (38).
11: Construct V̂ by using A2S2 according to Equation (39).
12: return Û , V̂ , Ŵ .
13: end procedure

Proof. The proof is similar to the proof of Theorem D.14. The only difference is that instead of
choosing dense Cauchy matrices S1, S2, we choose sparse Cauchy matrices.

Notice that if we firstly apply a sparse Cauchy transform, we can reduce the rank of the matrix
to poly(k). Then we apply a dense Cauchy transform and can further reduce the dimension while
only incurring another poly(k) factor in the approximation ratio. By combining a sparse Cauchy
transform and a dense Cauchy transform, we can improve the running time from nnz(A) · Õ(k) to
nnz(A).

Corollary D.16. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let r = Õ(k2).
There exists an algorithm which takes nnz(A) + O(n) poly(k) + poly(k) time and outputs three
matrices U, V,W ∈ Rn×r such that

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

1

≤ poly(k, log n) min
rank−k Ak

‖Ak −A‖1

holds with probability 9/10.

D.6 Algorithms

In this section, we show two different algorithms by using different kind of sketches. One is shown
in Theorem D.17 which gives a fast running time. Another one is shown in Theorem D.19 which
gives the best approximation ratio.

D.6.1 Input sparsity time algorithm

Theorem D.17. Given a 3rd tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm that
takes nnz(A) · Õ(k) + O(n) poly(k) + 2Õ(k2) time and outputs three matrices U, V,W ∈ Rn×k such
that,

‖U ⊗ V ⊗W −A‖1 ≤ poly(k, log n) min
rank−k A′

‖A′ −A‖1.

95

Algorithm 26 `1-Low Rank Approximation, Bicriteria Algorithm, rank-Õ(k2), Input Sparsity
Time
1: procedure L1BicriteriaAlgorithm(A,n, k) . Corollary D.16
2: s1 ← s2 ← s3 ← Õ(k).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be the composition of a sparse Cauchy transform and

a dense Cauchy transform. . Part (I,II) of Theorem D.2
4: Compute A1 · S1, A2 · S2.
5: For each i ∈ [2], choose Ti to be a sampling and rescaling diagonal matrix according to the

Lewis weights of AiSi, with ti = Õ(k) nonzero entries.
6: C ← A(T1, T2, I).
7: Bi+(j−1)s1 ← vec((T1A1S1)i ⊗ (T2A2S2)j),∀i ∈ [s1], j ∈ [s2].
8: Form objective function minW ‖WB − C3‖1.
9: Run `1-regression solver to find Ŵ .

10: Construct Û by using A1S1 according to Equation (38).
11: Construct V̂ by using A2S2 according to Equation (39).
12: return Û , V̂ , Ŵ .
13: end procedure

Algorithm 27 `1-Low Rank Approximation, Input sparsity Time Algorithm
1: procedure L1TensorLowRankApproxInputSparsity(A,n, k) . Theorem D.17
2: s1 ← s2 ← s3 ← Õ(k5).
3: Choose Si ∈ Rn2×si to be a dense Cauchy transform, ∀i ∈ [3]. . Part (I) of Theorem D.4
4: Compute A1 · S1, A2 · S2, and A3 · S3.
5: Y1, Y2, Y3, C ←L1PolyKSizeReduction(A,A1S1, A2S2, A3S3, n, s1, s2, s3, k). .

Algorithm 21
6: Create variables s1 × k + s2 × k + s3 × k variables for each entry of X1, X2, X3.
7: Form objective function ‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖2F .
8: Run polynomial system verifier.
9: return A1S1X1, A2S2X2, A3S3X3.

10: end procedure

holds with probability at least 9/10.

Proof. First, we apply part (II) of Theorem D.4. Then AiSi can be computed in O(nnz(A)) time.
Second, we use Lemma D.8 to reduce the size of the objective function from O(n3) to poly(k) in
n poly(k) time by only losing a constant factor in approximation ratio. Third, we use Claim B.15
to relax the objective function from entry-wise `1-norm to Frobenius norm, and this step causes us
to lose some other poly(k) factors in approximation ratio. As a last step, we use Theorem C.45 to
solve the Frobenius norm objective function.

Notice again that if we first apply a sparse Cauchy transform, we can reduce the rank of the
matrix to poly(k). Then as before we can apply a dense Cauchy transform to further reduce the
dimension while only incurring another poly(k) factor in the approximation ratio. By combining
a sparse Cauchy transform and a dense Cauchy transform, we can improve the running time from
nnz(A) · Õ(k) to nnz(A), while losing some additional poly(k) factors in approximation ratio.

96

Corollary D.18. Given a 3rd tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm that
takes nnz(A) +O(n) poly(k) + 2Õ(k2) time and outputs three matrices U, V,W ∈ Rn×k such that,

‖U ⊗ V ⊗W −A‖1 ≤ poly(k, log n) min
rank−k A′

‖A′ −A‖1.

holds with probability at least 9/10.

D.6.2 Õ(k3/2)-approximation algorithm

Algorithm 28 `1-Low Rank Approximation Algorithm, Õ(k3/2)-approximation

1: procedure L1TensorLowRankApproxK(A,n, k) . Theorem D.19
2: s1 ← s2 ← s3 ← Õ(k).
3: Guess diagonal matrices Si ∈ Rn2×si with si nonzero entries, ∀i ∈ [3]. . Part (III) of

Theorem D.4
4: Compute A1 · S1, A2 · S2, and A3 · S3.
5: Y1, Y2, Y3, C ←L1PolyKSizeReduction(A,A1S1, A2S2, A3S3, n, s1, s2, s3, k). .

Algorithm 21
6: Create s1 × k + s2 × k + s3 × k variables for each entry of X1, X2, X3.
7: Form objective function ‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖1.
8: Run polynomial system verifier.
9: return U, V,W .

10: end procedure

Theorem D.19. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm
that takes nÕ(k)2Õ(k3) time and output three matrices U, V,W ∈ Rn×k such that,

‖U ⊗ V ⊗W −A‖1 ≤ Õ(k3/2) min
rank−k A′

‖A′ −A‖1.

holds with probability at least 9/10.

Proof. First, we apply part (III) of Theorem D.4. Then, guessing Si requires nÕ(k) time. Second,
we use Lemma D.8 to reduce the size of the objective from O(n3) to poly(k) in polynomial time
while only losing a constant factor in approximation ratio. Third, we use Theorem D.11 to solve
the entry-wise `1-norm objective function directly.

D.7 CURT decomposition

Theorem D.20. Given a 3rd order tensor A ∈ Rn×n×n, let k ≥ 1, let UB, VB,WB ∈ Rn×k
denote a rank-k, α-approximation to A. Then there exists an algorithm which takes O(nnz(A)) +
O(n2) poly(k) time and outputs three matrices: C ∈ Rn×c with columns from A, R ∈ Rn×r with
rows from A, T ∈ Rn×t with tubes from A, and a tensor U ∈ Rc×r×t with rank(U) = k such that
c = r = t = O(k log k), and

∥∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl −A

∥∥∥∥∥∥
1

≤ Õ(k1.5)α min
rank−k A′

‖A′ −A‖1

holds with probability 9/10.

97

Algorithm 29 `1-CURT Decomposition Algorithm
1: procedure L1CURT(A,UB, VB,WB, n, k) . Theorem D.20
2: Form B1 = V >B �W>B ∈ Rk×n2 .
3: Let D>1 ∈ Rn2×n2 be the sampling and rescaling diagonal matrix corresponding to the Lewis

weights of B>1 , and let D1 have d1 = O(k log k) nonzero entries.
4: Form Û = A1D1(B1D1)† ∈ Rn×k.
5: Form B2 = Û> �W>B ∈ Rk×n2 .
6: Let D>2 ∈ Rn2×n2 be the sampling and rescaling diagonal matrix corresponding to the Lewis

weights of B>2 , and let D2 have d2 = O(k log k) nonzero entries.
7: Form V̂ = A2D2(B2D2)† ∈ Rn×k.
8: Form B3 = Û> � V̂ > ∈ Rk×n2 .
9: Let D>3 ∈ Rn2×n2 be the sampling and rescaling diagonal matrix corresponding to the Lewis

weights of B>3 , and let D3 have d3 = O(k log k) nonzero entries.
10: C ← A1D1, R← A2D2, T ← A3D3.
11: U ←∑k

i=1((B1D1)†)i ⊗ ((B2D2)†)i ⊗ ((B3D3)†)i.
12: return C, R, T and U .
13: end procedure

Proof. We define

OPT := min
rank−k A′

‖A′ −A‖1.

We already have three matrices UB ∈ Rn×k, VB ∈ Rn×k and WB ∈ Rn×k and these three matrices
provide a rank-k, α approximation to A, i.e.,

∥∥∥∥∥
k∑

i=1

(UB)i ⊗ (VB)i ⊗ (WB)i −A
∥∥∥∥∥

1

≤ αOPT (40)

Let B1 = V >B �W>B ∈ Rk×n2 denote the matrix where the i-th row is the vectorization of (VB)i ⊗
(WB)i. By Section B.3, we can compute D1 ∈ Rn2×n2 which is a sampling and rescaling matrix
corresponding to the Lewis weights of B>1 in O(n2 poly(k)) time, and there are d1 = O(k log k)
nonzero entries on the diagonal of D1. Let Ai ∈ Rn×n2 denote the matrix obtained by flattening A
along the i-th direction, for each i ∈ [3].

Define U∗ ∈ Rn×k to be the optimal solution to min
U∈Rn×k

‖UB1−A1‖1, Û = A1D1(B1D1)† ∈ Rn×k,

V0 ∈ Rn×k to be the optimal solution to min
V ∈Rn×k

‖V · (Û> �W>B)−A2‖1, and U ′ to be the optimal

solution to min
U∈Rn×k

‖UB1D1 −A1D1‖1.
By Claim B.13, we have

‖ÛB1D1 −A1D1‖1 ≤
√
d1‖U ′B1D1 −A1D1‖1

Due to Lemma D.11 and Lemma D.8 (in [SWZ17]) with constant probability, we have

‖ÛB1 −A1‖1 ≤
√
d1αD1‖U∗B1 −A1‖1, (41)

where αD1 = O(1).

98

Recall that (Û> �W>B) ∈ Rk×n2 denotes the matrix where the i-th row is the vectorization of
Ûi ⊗ (WB)i, ∀i ∈ [k]. Now, we can show,

‖V0 · (Û> �W>B)−A2‖1 ≤ ‖ÛB1 −A1‖1 by V0 = arg min
V ∈Rn×k

‖V · (Û> �W>B)−A2‖1

.
√
d1‖U∗B1 −A1‖1 by Equation (41)

≤
√
d1‖UBB1 −A1‖1 by U∗ = arg min

U∈Rn×k
‖UB1 −A1‖1

≤ O(
√
d1)αOPT by Equation (40) (42)

We define B2 = Û>�W>B . We can compute D2 ∈ Rn2×n2 which is a sampling and rescaling ma-
trix corresponding to the Lewis weights of B>2 in O(n2 poly(k)) time, and there are d2 = O(k log k)
nonzero entries on the diagonal of D2.

Define V ∗ ∈ Rn×k to be the optimal solution of minV ∈Rn×k ‖V B2 −A2‖1, V̂ = A2D2(B2D2)† ∈
Rn×k, W0 ∈ Rn×k to be the optimal solution of min

W∈Rn×k
‖W · (Û> � V̂ >)− A3‖1, and V ′ to be the

optimal solution of min
V ∈Rn×k

‖V B2D2 −A2D2‖1.
By Claim B.13, we have

‖V̂ B2D2 −A2D2‖1 ≤
√
d2‖V ′B2D2 −A2D2‖1.

Due to Lemma D.11 and Lemma D.8(in [SWZ17]) with constant probability, we have

‖V̂ B2 −A2‖1 ≤
√
d2αD2‖V ∗B2 −A2‖1, (43)

where αD2 = O(1).
Recall that (Û> � V̂ >) ∈ Rk×n2 denotes the matrix for which the i-th row is the vectorization

of Ûi ⊗ V̂i, ∀i ∈ [k]. Now, we can show,

‖W0 · (Û> � V̂ >)−A3‖1 ≤ ‖V̂ B2 −A2‖1 by W0 = arg min
W∈Rn×k

‖W · (Û> � V̂ >)−A3‖1

.
√
d2‖V ∗B2 −A2‖1 by Equation (43)

≤
√
d2‖V0B2 −A2‖1 by V ∗ = arg min

V ∈Rn×k
‖V B2 −A2‖1

≤ O(
√
d1d2)αOPT by Equation (42) (44)

We define B3 = Û>� V̂ >. We can compute D3 ∈ Rn2×n2 which is a sampling and rescaling ma-
trix corresponding to the Lewis weights of B>3 in O(n2 poly(k)) time, and there are d3 = O(k log k)
nonzero entries on the diagonal of D3.

DefineW ∗ ∈ Rn×k to be the optimal solution to minW∈Rn×k ‖WB3−A3‖1, Ŵ = A3D3(B3D3)† ∈
Rn×k, and W ′ to be the optimal solution to min

W∈Rn×k
‖WB3D3 −A3D3‖1.

By Claim B.13, we have

‖ŴB3D3 −A3D3‖1 ≤
√
d3‖W ′B3D3 −A3D3‖1.

Due to Lemma D.11 and Lemma D.8(in [SWZ17]) with constant probability, we have

‖ŴB3 −A3‖1 ≤
√
d3αD3‖W ∗B3 −A3‖1, (45)

99

where αD3 = O(1). Now we can show,

‖ŴB3 −A3‖1 .
√
d3‖W ∗B3 −A3‖1, by Equation (45)

≤
√
d3‖W0B3 −A3‖1, by W ∗ = arg min

W∈Rn×k
‖WB3 −A3‖1

≤ O(
√
d1d2d3)αOPT by Equation (44)

Thus, it implies,
∥∥∥∥∥

k∑

i=1

Ûi ⊗ V̂i ⊗ Ŵi −A
∥∥∥∥∥

1

≤ poly(k, log n) OPT .

where Û = A1D1(B1D1)†, V̂ = A2D2(B2D2)†, Ŵ = A3D3(B3D3)†.

Algorithm 30 `1-CURT decomposition algorithm

1: procedure L1CURT+(A,n, k) . Theorem D.21
2: UB, VB,WB ←L1LowRankApproximation(A,n, k). . Corollary D.18
3: C,R, T, U ← L1CURT(A,UB, VB,WB, n, k). . Algorithm 29
4: return C, R, T and U .
5: end procedure

Theorem D.21. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm
which takes O(nnz(A)) + O(n2) poly(k) + 2Õ(k2) time and outputs three matrices C ∈ Rn×c with
columns from A, R ∈ Rn×r with rows from A, T ∈ Rn×t with tubes from A, and a tensor U ∈ Rc×r×t
with rank(U) = k such that c = r = t = O(k log k), and

∥∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl −A

∥∥∥∥∥∥
1

≤ poly(k, log n) min
rank−k A′

‖A′ −A‖1,

holds with probability 9/10.

Proof. This follows by combining Corollary D.18 and Theorem D.20.

100

E Entry-wise `p Norm for Arbitrary Tensors, 1 < p < 2

There is a long line of research dealing with `p norm-related problems [DDH+09, MM13, CDMI+13,
CP15, BCKY16, YCRM16, BBC+17].

In this section, we provide several different algorithms for tensor `p-low rank approximation.
Section E.1 formally states the `p version of Theorem C.1 in [SWZ17]. Section E.2 presents several
existence results. Section E.3 describes a tool that is able to reduce the size of the objective function
from poly(n) to poly(k). Section E.4 discusses the case when the problem size is small. Section E.5
provides several bicriteria algorithms. Section E.6 summarizes a batch of algorithms. Section E.7
provides an algorithm for `p norm CURT decomposition.

Notice that if the rank-k solution does not exist, then every bicriteria algorithm in Section E.5
can be stated in the form as Theorem 1.1, and every algorithm which can output a rank-k solution
in Section E.6 can be stated in the form as Theorem 1.2. See Section 1 for more details.

E.1 Existence results for matrix case

Theorem E.1 ([SWZ17]). Let 1 ≤ p < 2. Given V ∈ Rk×n, A ∈ Rd×n. Let S ∈ Rn×s be a proper
random sketching matrix. Let

Û = arg min
U∈Rd×k

‖UV S −AS‖2F ,

i.e.,

Û = AS(V S)†.

Then with probability at least 0.999,

‖ÛV −A‖pp ≤ α · min
U∈Rd×k

‖UV −A‖pp.

(I). S denotes a dense p-stable transform,
s = Õ(k), α = Õ(k1−p/2) log d.

(II). S denotes a sparse p-stable transform,
s = Õ(k5), α = Õ(k5−5p/2+2/p) log d.

(III). S> denotes a sampling/rescaling matrix according to the `p Lewis weights of V >,
s = Õ(k), α = Õ(k1−p/2).

We give the proof for completeness.

Proof. Let S ∈ Rn×s be a sketching matrix which satisfies the property (∗): ∀c ≥ 1, Ũ ∈ Rd×k
which satisfy

‖ŨV S −AS‖pp ≤ c · min
U∈Rd×k

‖UV S −AS‖pp,

we have

‖ŨV −A‖pp ≤ cβS · min
U∈Rd×k

‖UV −A‖pp,

where βS ≥ 1 only depends on the sketching matrix S. Let

∀i ∈ [d], (Û i)> = arg min
x∈Rk

‖x>V S −AiS‖22,

101

i.e.,

Û = AS(V S)†.

Let

Ũ = arg min
U∈Rd×k

‖UV S −AS‖pp.

Then, we have:

‖ÛV S −AS‖pp

=
d∑

i=1

‖Û iV S −AiS‖pp

≤
d∑

i=1

(s1/p−1/2‖Û iV S −AiS‖2)p

≤
d∑

i=1

(s1/p−1/2‖Ũ iV S −AiS‖2)p

≤
d∑

i=1

(s1/p−1/2‖Ũ iV S −AiS‖p)p

≤ s1−p/2‖ŨV S −AS‖pp.

The first inequality follows using ∀x ∈ Rs, ‖x‖p ≤ s1/p−1/2‖x‖2 since p < 2. The third inequality
follows using ∀x ∈ Rs, ‖x‖2 ≤ ‖x‖p since p < 2. Thus, according to the property (∗) of S,

‖ÛV −A‖pp ≤ s1−p/2βS min
U∈Rd×k

‖UV −A‖pp.

Due to Lemma E.8 and Lemma E.11 of [SWZ17], we have:
for (I), s = Õ(k), βS = O(log d), α = s1−p/2βS = Õ(k1−p/2) log d,
for (II), s = Õ(k5), βS = Õ(k2/p log d), α = s1−p/2βS = Õ(k5−5p/2+2/p) log d,
for (III), s = Õ(k), βS = O(1), α = s1−p/2βS = Õ(k1−p/2).

E.2 Existence results

Theorem E.2. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exist three matrices
S1 ∈ Rn2×s1 , S2 ∈ Rn2×s2 , S3 ∈ Rn2×s3 such that

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(A1S1X1)i ⊗ (A2S2X2)i ⊗ (A3S3X3)i −A
∥∥∥∥∥

p

p

≤ α min
rank−k Ak∈Rn×n×n

‖Ak −A‖pp,

holds with probability 99/100.
(I). Using a dense p-stable transform,

s1 = s2 = s3 = Õ(k), α = Õ(k3−1.5p) log3 n.
(II). Using a sparse p-stable transform,

s1 = s2 = s3 = Õ(k5), α = Õ(k15−7.5p+6/p) log3 n.
(III). Guessing Lewis weights,

s1 = s2 = s3 = Õ(k), α = Õ(k3−1.5p).

102

Proof. We use OPT to denote

OPT := min
rank−k Ak∈Rn×n×n

‖Ak −A‖pp.

Given a tensor A ∈ Rn1×n2×n3 , we define three matrices A1 ∈ Rn1×n2n3 , A2 ∈ Rn2×n3n1 , A3 ∈
Rn3×n1n2 such that, for any i ∈ [n1], j ∈ [n2], l ∈ [n3]

Ai,j,l = (A1)i,(j−1)·n3+l = (A2)j,(l−1)·n1+i = (A3)l,(i−1)·n2+j .

We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k, and use V ∗1 , V ∗2 , · · · , V ∗k to denote the columns of V ∗ and
W ∗1 ,W

∗
2 , · · · ,W ∗k to denote the columns of W ∗.

We consider the following optimization problem,

min
U1,··· ,Uk∈Rn

∥∥∥∥∥
k∑

i=1

Ui ⊗ V ∗i ⊗W ∗i −A
∥∥∥∥∥

p

p

,

which is equivalent to

min
U1,··· ,Uk∈Rn

∥∥∥∥∥∥∥∥

[
U1 U2 · · · Uk

]



V ∗1 ⊗W ∗1
V ∗2 ⊗W ∗2
· · ·

V ∗k ⊗W ∗k


−A

∥∥∥∥∥∥∥∥

p

p

.

We use matrix Z1 to denote V ∗> �W ∗> ∈ Rk×n2 and matrix U to denote
[
U1 U2 · · · Uk

]
.

Then we can obtain the following equivalent objective function,

min
U∈Rn×k

‖UZ1 −A1‖pp.

Choose a sketching matrix (a dense p-stable, a sparse p-stable or an `p Lewis weight sam-
pling/rescaling matrix to Z1) S1 ∈ Rn2×s1 . We can obtain the optimization problem,

min
U∈Rn×k

‖UZ1S1 −A1S1‖pp = min
U∈Rn×k

n∑

i=1

‖U iZ1S1 − (A1S1)i‖pp,

where U i denotes the i-th row of matrix U ∈ Rn×k and (A1S1)i denotes the i-th row of matrix
A1S1. Instead of solving it under the `p-norm, we consider the `2-norm relaxation,

min
U∈Rn×k

‖UZ1S1 −A1S1‖2F = min
U∈Rn×k

n∑

i=1

‖U iZ1S1 − (A1S1)i‖22.

Let Û ∈ Rn×k denote the optimal solution of the above optimization problem. Then, Û =
A1S1(Z1S1)†. We plug Û into the objective function under the `p-norm. By choosing s1 and
by the properties of sketching matrices (a dense p-stable, a sparse p-stable or an `p Lewis weight
sampling/rescaling matrix to Z1) S1 ∈ Rn2×s1 , we have

‖ÛZ1 −A1‖pp ≤ α min
U∈Rn×k

‖UZ1 −A1‖pp = αOPT .

This implies

‖Û ⊗ V ∗ ⊗W ∗ −A‖pp ≤ αOPT .

103

As a second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and convert tensor A into matrix A2. Let
matrix Z2 denote Û> �W ∗>. We consider the following objective function,

min
V ∈Rn×k

‖V Z2 −A2‖pp,

and the optimal cost of it is at most αOPT.
We choose a sketching matrix (a dense p-stable, a sparse p-stable or an `p Lewis weight sam-

pling/rescaling matrix to Z2) S2 ∈ Rn2×s2 and sketch on the right of the objective function to obtain
the new objective function,

min
V ∈Rn×k

‖V Z2S2 −A2S2‖pp = min
V ∈Rn×k

n∑

i=1

‖V iZ2S2 − (A2S2)i‖pp,

where V i denotes the i-th row of matrix V and (A2S2)i denotes the i-th row of matrix A2S2. Instead
of solving this under the `p-norm, we consider the `2-norm relaxation,

min
V ∈Rn×k

‖V Z2S2 −A2S2‖2F = min
V ∈Rn×k

n∑

i=1

‖V i(Z2S2)− (A2S2)i‖22.

Let V̂ ∈ Rn×k denote the optimal solution of the above problem. Then V̂ = A2S2(Z2S2)†. By
properties of sketching matrix S2 ∈ Rn2×s2 , we have,

‖V̂ Z2 −A2‖pp ≤ α min
V ∈Rn×k

‖V Z2 −A2‖pp ≤ α2 OPT,

which implies

‖Û ⊗ V̂ ⊗W ∗ −A‖pp ≤ α2 OPT,

As a third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k. We can convert tensor A ∈ Rn×n×n
into matrix A3 ∈ Rn2×n. Let matrix Z3 denote Û> � V̂ > ∈ Rk×n2 . We consider the following
objective function,

min
W∈Rn×k

‖WZ3 −A3‖pp,

and the optimal cost of it is at most α2 OPT.
We choose sketching matrix (a dense p-stable, a sparse p-stable or an `p Lewis weight sam-

pling/rescaling matrix to Z3) S3 ∈ Rn2×s3 and sketch on the right of the objective function to
obtain the new objective function,

min
W∈Rn×k

‖WZ3S3 −A3S3‖pp.

Instead of solving this under the `p-norm, we consider the `2-norm relaxation,

min
W∈Rn×k

‖WZ3S3 −A3S3‖2F = min
W∈Rn×k

n∑

i=1

‖W i(Z3S3)− (A3S3)i‖22.

Let Ŵ ∈ Rn×k denote the optimal solution of the above problem. Then Ŵ = A3S3(Z3S3)†. By
properties of sketching matrix S3 ∈ Rn2×s3 , we have,

‖ŴZ3 −A3‖pp ≤ α min
W∈Rn×k

‖WZ3 −A3‖pp ≤ α3 OPT .

104

Thus, we obtain,

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥∥∥
k∑

i=1

(A1S1X1)i ⊗ (A2S2X2)i ⊗ (A3S3X3)i −A
∥∥∥∥∥

p

p

≤ α3 OPT .

According to Theorem E.1, we let s = s1 = s2 = s3 and take the corresponding α. We can
directly get the results for (I), (II) and (III).

E.3 Polynomial in k size reduction

Definition E.3 (Definition E.1 in [SWZ17]). Given a matrix M ∈ Rn×d, if matrix S ∈ Rm×n
satisfies

‖SM‖pp ≤ β‖M‖pp,

then S has at most β dilation on M in the `p case.

Definition E.4 (Definition E.2 in [SWZ17]). Given a matrix U ∈ Rn×k, if matrix S ∈ Rm×n
satisfies

∀x ∈ Rk, ‖SUx‖pp ≥
1

β
‖Ux‖pp,

then S has at most β contraction on U in the `p case.

Theorem E.5. Given a tensor A ∈ Rn1×n2×n3 and three matrices V1 ∈ Rn1×b1 , V2 ∈ Rn2×b2 , V3 ∈
Rn3×b3 , let X∗1 ∈ Rb1×k, X∗2 ∈ Rb2×k, X∗3 ∈ Rb3×k satisfy

X∗1 , X
∗
2 , X

∗
3 = arg min

X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k
‖V1X1 ⊗ V2X2 ⊗ V3X3 −A‖pp.

Let S ∈ Rm×n have at most β1 ≥ 1 dilation on V1X
∗
1 · ((V2X

∗
2)> � (V3X

∗
3)>) − A1 and S have at

most β2 ≥ 1 contraction on V1 in the `p case. If X̂1 ∈ Rb1×k, X̂2 ∈ Rb2×k, X̂3 ∈ Rb3×k satisfy

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖pp ≤ β min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖SV1X1 ⊗ V2X2 ⊗ V3X3 − SA‖pp,

where β ≥ 1, then

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 −A‖pp . β1β2β min
X1,X2,X3

‖V1X1 ⊗ V2X2 ⊗ V3X3 −A‖pp.

The proof is essentially the same as the proof of Theorem D.7:

Proof. Let A, V1, V2, V3, S,X
∗
1 , X

∗
2 , X

∗
3 , β1, β2 be as stated in the theorem. Let X̂1 ∈ Rb1×k, X̂2 ∈

Rb2×k, X̂3 ∈ Rb3×k satisfy

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖pp ≤ β min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖SV1X1 ⊗ V2X2 ⊗ V3X3 − SA‖pp.

Similar to the proof of Theorem D.7, we have,

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖pp
= 22−2p 1

β2
‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 −A‖pp − (21−p 1

β2
+ β1)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖pp

105

The only difference from the proof of Theorem D.7 is that instead of using triangle inequality, we
actually use ‖x+ y‖pp ≤ 2p−1‖x‖pp + ‖y‖pp. Then, we have

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 −A‖pp
≤ 22p−2β2‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖pp + (2p−1 + 22p−2β1β2)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖pp

≤ 22p−2β2β‖SV1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − SA‖pp + (2p−1 + 22p−2β1β2)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖pp

≤ 22p−2β1β2β‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖pp + (2p−1 + 22p−2β1β2)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖pp

≤ 2p−1β(1 + 2β1β2)‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 −A‖pp.

Lemma E.6. Let min(b1, b2, b3) ≥ k. Given three matrices V1 ∈ Rn×b1, V2 ∈ Rn×b2, and V3 ∈
Rn×b3, there exists an algorithm which takes O(nnz(A))+n poly(b1, b2, b3) time and outputs a tensor
C ∈ Rc1×c2×c3 and three matrices V̂1 ∈ Rc1×b1, V̂2 ∈ Rc2×b2 and V̂3 ∈ Rc3×b3 with c1 = c2 = c3 =
poly(b1, b2, b3), such that with probability 0.99, for any α ≥ 1, if X ′1, X

′
2, X

′
3 satisfy that,

∥∥∥∥∥
k∑

i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥

p

p

≤ α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C
∥∥∥∥∥

p

p

,

then,
∥∥∥∥∥

k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i −A

∥∥∥∥∥

p

p

. α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

p

p

.

Proof. For simplicity, we define OPT to be

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

p

p

.

Let T1 ∈ Rc1×n correspond to sampling according to the `p Lewis weights of V1 ∈ Rn×b1 , where
c1 = b̃1. Let T2 ∈ Rc2×n be sampling according to the `p Lewis weights of V2 ∈ Rn×b2 , where c2 = b̃2.
Let T3 ∈ Rc3×n be sampling according to the `p Lewis weights of V3 ∈ Rn×b3 , where c3 = b̃3.

For any α ≥ 1, let X ′1 ∈ Rb1×k, X ′2 ∈ Rb2×k, X ′3 ∈ Rb3×k satisfy

‖T1V1X
′
1 ⊗ T2V2X

′
2 ⊗ T3V3X

′
3 −A(T1, T2, T3)‖pp

≤ α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖T1V1X1 ⊗ T2V2X2 ⊗ T3V3X3 −A(T1, T2, T3)‖pp.

First, we regard T1 as the sketching matrix for the remainder. Then by Lemma D.11 in [SWZ17]
and Theorem D.7, we have

‖V1X
′
1 ⊗ T2V2X

′
2 ⊗ T3V3X

′
3 −A(I, T2, T3)‖pp

. α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖V1X1 ⊗ T2V2X2 ⊗ T3V3X3 −A(I, T2, T3)‖pp.

Second, we regard T2 as the sketching matrix for V1X1 ⊗ V2X2 ⊗ T3V3X3 − A(I, I, T3). Then by
Lemma D.11 in [SWZ17] and Theorem D.7, we have

‖V1X
′
1 ⊗ V2X

′
2 ⊗ T3V3X

′
3 −A(I, I, T3)‖pp

. α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖V1X1 ⊗ V2X2 ⊗ T3V3X3 −A(I, I, T3)‖pp.

106

Third, we regard T3 as the sketching matrix for V1X1 ⊗ V2X2 ⊗ V3X3 − A. Then by Lemma D.11
in [SWZ17] and Theorem D.7, we have
∥∥∥∥∥

k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i −A

∥∥∥∥∥

p

p

. α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

p

p

.

E.4 Solving small problems

Combining Section B.5 in [SWZ17] and the proof of Theorem D.4, for any p = a/b with a, b are
integers, we can obtain the `p version of Theorem D.4.

E.5 Bicriteria algorithm

We present several bicriteria algorithms with different tradeoffs. We first present an algorithm that
runs in nearly linear time and outputs a solution with rank Õ(k3) in Theorem E.7. Then we show
an algorithm that runs in nnz(A) time but outputs a solution with rank poly(k) in Theorem E.8.
Then we explain an idea which is able to decrease the cubic rank to quadratic, and thus we can
obtain Theorem E.9.

Theorem E.7. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = Õ(k3). There
exists an algorithm which takes nnz(A) · Õ(k) +n poly(k) + poly(k) time and outputs three matrices
U, V,W ∈ Rn×r such that

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

p

p

≤ Õ(k3−p/2) log3 n min
rank−k Ak

‖Ak −A‖pp

holds with probability 9/10.

Proof. We first choose three dense Cauchy transforms Si ∈ Rn2×si . According to Section B.7,
for each i ∈ [3], AiSi can be computed in nnz(A) · Õ(k) time. Then we apply Lemma E.6. We
obtain three matrices Y1 = T1A1S1, Y2 = T2A2S2, Y3 = T3A3S3 and a tensor C = A(T1, T2, T3).
Note that for each i ∈ [3], Yi can be computed in n poly(k) time. Because C = A(T1, T2, T3) and
T1, T2, T3 ∈ Rn×Õ(k) are three sampling and rescaling matrices, C can be computed in nnz(A)+Õ(k3)
time. At the end, we just need to run an `p-regression solver to find the solution for the problem:

min
X∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)j

∥∥∥∥∥∥

p

p

,

where (Y1)i denotes the i-th column of matrix Y1. Since the size of the above problem is only
poly(k), this can be solved in poly(k) time.

Theorem E.8. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = Õ(k15). There exists
an algorithm that takes nnz(A)+n poly(k)+poly(k) time and outputs three matrices U, V,W ∈ Rn×r
such that

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

p

p

≤ poly(k, log n) min
rank−k Ak

‖Ak −A‖pp

holds with probability 9/10.

107

Proof. We first choose three sparse p-stable transforms Si ∈ Rn2×si . According to Section B.7,
for each i ∈ [3], AiSi can be computed in O(nnz(A)) time. Then we apply Lemma E.6, and can
obtain three matrices Y1 = T1A1S1, Y2 = T2A2S2, Y3 = T3A3S3 and a tensor C = A(T1, T2, T3).
Note that for each i ∈ [3], Yi can be computed in n poly(k) time. Because C = A(T1, T2, T3) and
T1, T2, T3 ∈ Rn×Õ(k) are three sampling and rescaling matrices, C can be computed in nnz(A)+Õ(k3)
time. At the end, we just need to run an `p-regression solver to find the solution to the problem,

min
X∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)l − C

∥∥∥∥∥∥

p

p

,

where (Y1)i denotes the i-th column of matrix Y1. Since the size of the above problem is only
poly(k), it can be solved in poly(k) time.

Theorem E.9. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let r = Õ(k2).
There exists an algorithm which takes nnz(A) · Õ(k) + n poly(k) + poly(k) time and outputs three
matrices U, V,W ∈ Rn×r such that

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

p

p

≤ Õ(k3−1.5p) log3 n min
rank−k Ak

‖Ak −A‖pp

holds with probability 9/10.

Proof. The proof is similar to Theorem D.14.

Algorithm 31 `p-Low Rank Approximation, Bicriteria Algorithm, rank-Õ(k2), Input Sparsity
Time
1: procedure LpBicriteriaAlgorithm(A,n, k) . Corollary E.10
2: s1 ← s2 ← s3 ← Õ(k).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be the composition of a sparse p-stable transform

and a dense p-stable transform. . Part (I,II) of Theorem E.2
4: Compute A1 · S1, A2 · S2.
5: For each i ∈ [2], choose Ti to be a sampling and rescaling diagonal matrix according to the

Lewis weights of AiSi, with ti = Õ(k) nonzero entries.
6: C ← A(T1, T2, I).
7: Bi+(j−1)s1 ← vec((T1A1S1)i ⊗ (T2A2S2)j),∀i ∈ [s1], j ∈ [s2].
8: Form objective function minW ‖WB − C3‖1.
9: Run `p-regression solver to find Ŵ .

10: Construct Û by copying (A1S1)i to the (i, j)-th column of Û .
11: Construct V̂ by copying (A2S2)j to the (i, j)-th column of V̂ .
12: return Û , V̂ , Ŵ .
13: end procedure

As for `1, notice that if we first apply a sparse Cauchy transform, we can reduce the rank of
the matrix to poly(k). Theyn we can apply a dense Cauchy transform and further reduce the
dimension, while only incurring another poly(k) factor in the approximation ratio. By combining
sparse p-stable and dense p-stable transforms, we can improve the running time from nnz(A) · Õ(k)
to be nnz(A) by losing some additional poly(k) factors in the approximation ratio.

108

Corollary E.10. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let r = Õ(k2).
There exists an algorithm which takes nnz(A) +n poly(k) + poly(k) time and outputs three matrices
U, V,W ∈ Rn×r such that

∥∥∥∥∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

p

p

≤ poly(k, log n) min
rank−k Ak

‖Ak −A‖pp

holds with probability 9/10.

E.6 Algorithms

In this section, we show two different algorithms by using different kind of sketches. One is shown
in Theorem E.11 which gives a fast running time. Another one is shown in Theorem E.12 which
gives the best approximation ratio.

Theorem E.11. Given a 3rd tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm which
takes O(nnz(A)) + n poly(k) + 2Õ(k2) time and outputs three matrices U, V,W ∈ Rn×k such that,

‖U ⊗ V ⊗W −A‖pp ≤ poly(k, log n) min
rank−k A′

‖A′ −A‖pp.

holds with probability at least 9/10.

Proof. First, we apply part (II) of Theorem E.2. Then AiSi can be computed in O(nnz(A)) time.
Second, we use Lemma E.6 to reduce the size of the objective function from O(n3) to poly(k) in
n poly(k) time by only losing a constant factor in approximation ratio. Third, we use Claim B.15
to relax the objective function from entry-wise `p-norm to Frobenius norm, and this step causes us
to lose some other poly(k) factors in approximation ratio. As a last step, we use Theorem C.45 to
solve the Frobenius norm objective function.

Theorem E.12. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm
that takes nÕ(k)2Õ(k3) time and output three matrices U, V,W ∈ Rn×k such that,

‖U ⊗ V ⊗W −A‖pp ≤ Õ(k3−1.5p) min
rank−k A′

‖A′ −A‖pp.

holds with probability at least 9/10.

Proof. First, we apply part (III) of Theorem E.2. Then, guessing Si requires nÕ(k) time. Second,
we use Lemma E.6 to reduce the size of the objective from O(n3) to poly(k) in polynomial time
while only losing a constant factor in approximation ratio. Third, we solve the small optimization
problem.

E.7 CURT decomposition

Theorem E.13. Given a 3rd order tensor A ∈ Rn×n×n, let k ≥ 1, and let UB, VB,WB ∈ Rn×k
denote a rank-k, α-approximation to A. Then there exists an algorithm which takes O(nnz(A)) +
O(n2) poly(k) time and outputs three matrices C ∈ Rn×c with columns from A, R ∈ Rn×r with
rows from A, T ∈ Rn×t with tubes from A, and a tensor U ∈ Rc×r×t with rank(U) = k such that
c = r = t = O(k log k log log k), and

∥∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl −A

∥∥∥∥∥∥

p

p

≤ Õ(k3−1.5p)α min
rank−k A′

‖A′ −A‖pp

holds with probability 9/10.

109

Proof. We define

OPT := min
rank−k A′

‖A′ −A‖pp.

We already have three matrices UB ∈ Rn×k, VB ∈ Rn×k and WB ∈ Rn×k and these three matrices
provide a rank-k, α approximation to A, i.e.,

∥∥∥∥∥
k∑

i=1

(UB)i ⊗ (VB)i ⊗ (WB)i −A
∥∥∥∥∥

p

p

≤ αOPT . (46)

Let B1 = V >B � W>B ∈ Rk×n2 denote the matrix where the i-th row is the vectorization of
(VB)i ⊗ (WB)i. By Section B.3 in [SWZ17], we can compute D1 ∈ Rn2×n2 which is a sampling
and rescaling matrix corresponding to the Lewis weights of B>1 in O(n2 poly(k)) time, and there are
d1 = O(k log k log log k) nonzero entries on the diagonal of D1. Let Ai ∈ Rn×n2 denote the matrix
obtained by flattening A along the i-th direction, for each i ∈ [3].

Define U∗ ∈ Rn×k to be the optimal solution to min
U∈Rn×k

‖UB1−A1‖pp, Û = A1D1(B1D1)† ∈ Rn×k,

V0 ∈ Rn×k to be the optimal solution to min
V ∈Rn×k

‖V · (Û> �W>B)−A2‖pp, and U ′ to be the optimal

solution to min
U∈Rn×k

‖UB1D1 −A1D1‖pp.
By Claim B.13, we have

‖ÛB1D1 −A1D1‖pp ≤ d1−p/2
1 ‖U ′B1D1 −A1D1‖pp.

Due to Lemma E.11 and Lemma E.8 in [SWZ17], with constant probability, we have

‖ÛB1 −A1‖pp ≤ d1−p/2
1 αD1‖U∗B1 −A1‖pp, (47)

where αD1 = O(1).
Recall that (Û> �W>B) ∈ Rk×n2 denotes the matrix where the i-th row is the vectorization of

Ûi ⊗ (WB)i, ∀i ∈ [k]. Now, we can show,

‖V0 · (Û> �W>B)−A2‖pp ≤ ‖ÛB1 −A1‖pp by V0 = arg min
V ∈Rn×k

‖V · (Û> �W>B)−A2‖pp

. d
1−p/2
1 ‖U∗B1 −A1‖pp by Equation (47)

≤ d
1−p/2
1 ‖UBB1 −A1‖pp by U∗ = arg min

U∈Rn×k
‖UB1 −A1‖pp

≤ O(d
1−p/2
1)αOPT . by Equation (46) (48)

We define B2 = Û> �W>B . We can compute D2 ∈ Rn2×n2 which is a sampling and rescaling
matrix corresponding to the `p Lewis weights of B>2 in O(n2 poly(k)) time, and there are d2 =
O(k log k log log k) nonzero entries on the diagonal of D2.

Define V ∗ ∈ Rn×k to be the optimal solution of minV ∈Rn×k ‖V B2 −A2‖pp, V̂ = A2D2(B2D2)† ∈
Rn×k, W0 ∈ Rn×k to be the optimal solution of min

W∈Rn×k
‖W · (Û> � V̂ >)− A3‖pp, and V ′ to be the

optimal solution of min
V ∈Rn×k

‖V B2D2 −A2D2‖pp.
By Claim B.13, we have

‖V̂ B2D2 −A2D2‖pp ≤ d1−p/2
2 ‖V ′B2D2 −A2D2‖pp.

110

Due to Lemma E.11 and Lemma E.8 in [SWZ17], with constant probability, we have

‖V̂ B2 −A2‖pp ≤ d1−p/2
2 αD2‖V ∗B2 −A2‖pp, (49)

where αD2 = O(1).
Recall that (Û> � V̂ >) ∈ Rk×n2 denotes the matrix for which the i-th row is the vectorization

of Ûi ⊗ V̂i, ∀i ∈ [k]. Now, we can show,

‖W0 · (Û> � V̂ >)−A3‖pp
≤ ‖V̂ B2 −A2‖pp by W0 = arg min

W∈Rn×k
‖W · (Û> � V̂ >)−A3‖pp

. d
1−p/2
2 ‖V ∗B2 −A2‖pp by Equation (49)

≤ d
1−p/2
2 ‖V0B2 −A2‖pp by V ∗ = arg min

V ∈Rn×k
‖V B2 −A2‖pp

≤ O((d1d2)1−p/2)αOPT . by Equation (48) (50)

We define B3 = Û> � V̂ >. We can compute D3 ∈ Rn2×n2 which is a sampling and rescaling
matrix corresponding to the `p Lewis weights of B>3 in O(n2 poly(k)) time, and there are d3 =
O(k log k log log k) nonzero entries on the diagonal of D3.

DefineW ∗ ∈ Rn×k to be the optimal solution to minW∈Rn×k ‖WB3−A3‖pp, Ŵ = A3D3(B3D3)† ∈
Rn×k, and W ′ to be the optimal solution to min

W∈Rn×k
‖WB3D3 −A3D3‖pp.

By Claim B.13, we have

‖ŴB3D3 −A3D3‖pp ≤ d1−p/2
3 ‖W ′B3D3 −A3D3‖pp.

Due to Lemma E.11 and Lemma E.8 in [SWZ17], with constant probability, we have

‖ŴB3 −A3‖pp ≤ d1−p/2
3 αD3‖W ∗B3 −A3‖pp, (51)

where αD3 = O(1). Now we can show,

‖ŴB3 −A3‖pp . d
1−p/2
3 ‖W ∗B3 −A3‖pp, by Equation (51)

≤ d
1−p/2
3 ‖W0B3 −A3‖pp, by W ∗ = arg min

W∈Rn×k
‖WB3 −A3‖pp

≤ O((d1d2d3)1−p/2)αOPT . by Equation (50)

Thus, it implies,
∥∥∥∥∥

k∑

i=1

Ûi ⊗ V̂i ⊗ Ŵi −A
∥∥∥∥∥

p

p

≤ poly(k, log n) OPT .

where Û = A1D1(B1D1)†, V̂ = A2D2(B2D2)†, Ŵ = A3D3(B3D3)†.

111

F Robust Subspace Approximation (Asymmetric Norms for Arbi-
trary Tensors)

Recently, [CW15b] and [CW15a] study the linear regression problem and low-rank approximation
problem under M-Estimator loss functions. In this section, we extend the matrix version of the low
rank approximation problem to tensors, i.e., in particular focusing on tensor low-rank approximation
under M-Estimator norms. Note that M-Estimators are very different from Frobenius norm and
Entry-wise `1 norm, which are symmetric norms. Namely, flattening the tensor objective function
along any of the dimensions does not change the cost if the norm is Frobenius or Entry-wise `1-
norm. However, for M-Estimator norms, we cannot flatten the tensor along all three dimensions.
This property makes the tensor low-rank approximation problem under M-Estimator norms more
difficult. This section can be split into two independent parts. Section F.2 studies the `1-`2-`2 norm
setting, and Section F.3 studies the `1-`1-`2 norm setting.

F.1 Preliminaries

Definition F.1 (Nice functions for M -Estimators,M2, Lp, [CW15a]). We say an M -Estimator is
nice if M(x) = M(−x), M(0) = 0, M is non-decreasing in |x|, there is a constant CM > 0 and a
constant p ≥ 1 so that for all a, b ∈ R>0 with a ≥ b, we have

Cm
|a|
|b| ≤

M(a)

M(b)
≤ (

a

b
)p,

and also that M(x)
1
p is subadditive, that is, M(x+ y)

1
p ≤M(x)

1
p +M(y)

1
p .

LetM2 denote the set of such nice M -estimators, for p = 2. Let Lp denote M -Estimators with
M(x) = |x|p and p ∈ [1, 2).

F.2 `1-Frobenius (a.k.a `1-`2-`2) norm

Section F.2.1 presents basic definitions and facts for the `1-`2-`2 norm setting. Section F.2.2 intro-
duces some useful tools. Section F.2.3 presents the “no dilation” and “no contraction” bounds, which
are the key ideas for reducing the problem to a “generalized” Frobenius norm low rank approximation
problem. Finally, we provide our algorithms in Section F.2.6.

F.2.1 Definitions

We first give the definition for the v-norm of a tensor, and then give the definition of the v-norm
for a matrix and a weighted version of the v-norm for a matrix.

Definition F.2 (Tensor v-norm). For an n× n× n tensor A, we define the v-norm of A, denoted
‖A‖v, to be

(
n∑

i=1

M(‖Ai,∗,∗‖F)

)1/p

,

where Ai,∗,∗ is the i-th face of A (along the 1st direction), and p is a parameter associated with the
function M(), which defines a nice M -Estimator.

112

Definition F.3 (Matrix v-norm). For an n×d matrix A, we define the v-norm of A, denoted ‖A‖v,
to be

n∑

i=1

M(‖Ai,∗‖2)1/p,

where Ai,∗ is the i-th row of A, and p is a parameter associated with the function M(), which defines
a nice M -Estimator.

Definition F.4. Given matrix A ∈ Rn×d, let Ai,∗ denote the i-th row of A. Let TS ⊂ [n] denote
the indices i such that ei is chosen for S. Using a probability vector q and a sampling and rescaling
matrix S ∈ Rn×n from q, we will estimate ‖A‖v using S and a re-weighted version, ‖S · ‖v,w′ of
‖ · ‖v, with

‖SA‖v,w′ =


∑

i∈TS

w′iM(‖Ai,∗‖2)




1/p

,

where w′i = wi/qi. Since w′ is generally understood, we will usually just write ‖SA‖v. We will also
need an “entrywise row-weighted” version :

|||SA||| =


∑

i∈TS

wi
qi
‖Ai,∗‖pM




1/p

=


 ∑

i∈TS ,j∈[d]

wi
qi
M(Ai,j)




1/p

,

where Ai,j denotes the entry in the i-th row and j-th column of A.

Fact F.5. For p = 1, for any two matrices A and B, we have ‖A+B‖v ≤ ‖A‖v + ‖B‖v. For any
two tensors A and B, we have ‖A+B‖v ≤ ‖A‖v + ‖B‖v.

F.2.2 Sampling and rescaling sketches

Note that Lemmas 42 and 44 in [CW15a] are stronger than stated. In particular, we do not need
to assume X is a square matrix. For any m ≥ z, if X ∈ Rd×m, then we have the same result.

Lemma F.6 (Lemma 42 in [CW15a]). Let ρ > 0 and integer z > 0. For sampling matrix S,
suppose for a given y ∈ Rd with failure probability δ it holds that ‖SAy‖M = (1 ± 1/10)‖Ay‖M .
There is K1 = O(z2/CM) so that with failure probability δ(KN /CM)(1+p)d, for a constant KN , any
rank-z matrix X ∈ Rd×m has the property that if ‖AX‖v ≥ K1ρ, then ‖SAX‖v ≥ ρ, and that if
‖AX‖v ≤ ρ/K1, then ‖SAX‖v ≤ ρ.

Lemma F.7 (Lemma 44 in [CW15a]). Let δ, ρ > 0 and integer z > 0. Given matrix A ∈ Rn×d, there
exists a sampling and rescaling matrix S ∈ Rn×n with r = O(γ(A,M,w)ε−2dz2 log(z/ε) log(1/δ))
nonzero entries such that, with probability at least 1− δ, for any rank-z matrix X ∈ Rd×m, we have
either

‖SAX‖v ≥ ρ,

or

(1− ε)‖AX‖v − ερ ≤ ‖SAX‖v ≤ (1 + ε)‖AX‖v + ερ.

113

Lemma F.8 (Lemma 43 in [CW15a]). For r > 0, let r̂ = r/γ(A,M,w), and let q ∈ Rn have

qi = min{1, r̂γi(A,M,w)}.

Let S be a sampling and rescaling matrix generated using q, with weights as usual w′i = wi/qi. Let
W ∈ Rd×z, and δ > 0. There is an absolute constant C so that for r̂ ≥ Cz log(1/δ)/ε2, with
probability at least 1− δ, we have

(1− ε)‖AW‖v,w ≤ ‖SAW‖v,w′ ≤ (1 + ε)‖AW‖v,w.

F.2.3 No dilation and no contraction

Lemma F.9. Given matrices A ∈ Rn×m, U ∈ Rn×d, let V ∗ = arg min
rank−k V ∈Rd×m

‖UV − A‖v. If

S ∈ Rs×n has at most c1-dilation on UV ∗ −A, i.e.,

‖S(UV ∗ −A)‖v ≤ c1‖UV ∗ −A‖v,

and it has at most c2-contraction on U , i.e.,

∀x ∈ Rd, ‖SUx‖v ≥
1

c2
‖Ux‖v,

then S has at most (c2, c1 + 1
c2

)-contraction on (U,A), i.e.,

∀ rank−k V ∈ Rd×m, ‖SUV − SA‖v ≥
1

c2
‖UV −A‖v − (c1 +

1

c2
)‖UV ∗ −A‖v.

Proof. Let A ∈ Rn×m, U ∈ Rn×d and S ∈ Rs×n be the same as that described in the lemma. Let
(V − V ∗)j denote the j-th column of V − V ∗. Then ∀ rank−k V ∈ Rd×m,

‖SUV − SA‖v ≥ ‖SUV − SUV ∗‖v − ‖SUV ∗ − SA‖v
≥ ‖SUV − SUV ∗‖v − c1‖UV ∗ −A‖v
= ‖SU(V − V ∗)‖v − c1‖UV ∗ −A‖v

=

m∑

j=1

‖SU(V − V ∗)j‖v − c1‖UV ∗ −A‖v

≥
m∑

j=1

1

c2
‖U(V − V ∗)j‖v − c1‖UV ∗ −A‖v

=
1

c2
‖UV − UV ∗‖v − c1‖UV ∗ −A‖v

≥ 1

c2
‖UV −A‖v −

1

c2
‖UV ∗ −A‖v − c1‖UV ∗ −A‖v

=
1

c2
‖UV −A‖v −

(
(

1

c2
+ c2)‖UV ∗ −A‖v

)
,

where the first inequality follows by the triangle inequality, the second inequality follows since S
has at most c1 dilation on UV ∗−A, the third inequality follows since S has at most c2 contraction
on U , and the fourth inequality follows by the triangle inequality.

114

Claim F.10. Given matrix A ∈ Rn×m, for any distribution p = (p1, p2, · · · , pn) define random
variable X such that X = ‖Ai‖2/pi with probability pi where Ai is the i-th row of matrix A. Then
take m independent samples X1, X2, · · · , Xm, and let Y = 1

m

∑m
j=1X

j. We have

Pr[Y ≤ 1000‖A‖v] ≥ .999.

Proof. We can compute the expectation of Xj , for any j ∈ [m],

E[Xj] =
n∑

i=1

‖Ai‖2
pi
· pi = ‖A‖v.

Then E[Y] = 1
m

∑m
j=1 E[Xj] = ‖A‖v. Using Markov’s inequality, we have

Pr[Y ≥ ‖A‖v] ≤ .001.

Lemma F.11. For any fixed U∗ ∈ Rn×d and rank-k V ∗ ∈ Rd×m with d = poly(k), there exists an
algorithm that takes poly(n, d) time to compute a sampling and rescaling diagonal matrix S ∈ Rn×n
with s = poly(k) nonzero entries such that, with probability at least .999, we have: for all rank-k
V ∈ Rd×m,

‖U∗V ∗ − U∗V ‖v . ‖SU∗V ∗ − SU∗V ‖v . ‖U∗V ∗ − U∗V ‖v.

Lemma F.12 (No dilation). Given matrices A ∈ Rn×m, U∗ ∈ Rn×d with d = poly(k), define
V ∗ ∈ Rd×m to be the optimal solution min

rank−k V ∈Rd×m
‖U∗V −A‖v. Choose a sampling and rescaling

diagonal matrix S ∈ Rn×n with s = poly(k) according to Lemma F.8. Then with probability at least
.99, we have: for all rank-k V ∈ Rd×m,

‖SU∗V − SA‖v . ‖U∗V ∗ − U∗V ‖v +O(1)‖U∗V ∗ −A‖v . ‖U∗V −A‖v.

Proof. Using Claim F.10 and Lemma F.11, we have with probability at least .99, for all rank-k
V ∈ Rd×m,

‖SU∗V − SA‖v
≤ ‖SU∗V − SU∗V ∗‖v + ‖SU∗V ∗ − SA‖v by triangle inequality
. ‖SU∗V − SU∗V ∗‖v +O(1)‖U∗V ∗ −A‖v by Claim F.10
. ‖U∗V − U∗V ∗‖v +O(1)‖U∗V ∗ −A‖v by Lemma F.11
. ‖U∗V −A‖v + ‖U∗V ∗ −A‖v +O(1)‖U∗V ∗ −A‖v by triangle inequality
. ‖U∗V −A‖v.

Lemma F.13 (No contraction). Given matrices A ∈ Rn×m, U∗ ∈ Rn×d with d = poly(k), define
V ∗ ∈ Rd×m to be the optimal solution min

rank−k V ∈Rd×m
‖U∗V −A‖v. Choose a sampling and rescaling

diagonal matrix S ∈ Rn×n with s = poly(k) according to Lemma F.8. Then with probability at least
.99, we have: for all rank-k V ∈ Rd×m,

‖U∗V −A‖v . ‖SU∗V − SA‖v +O(1)‖U∗V ∗ −A‖v.

Proof. This follows by Lemma F.9, Claim F.10 and Lemma F.12.

115

F.2.4 Oblivious sketches, MSketch

In this section, we recall a concept calledM -sketches forM -estimators which is defined in [CW15b].
M -sketch is an oblivious sketch for matrices.

Theorem F.14 (Theorem 3.1 in [CW15b]). Let OPT denote minx∈Rd ‖Ax − b‖G. There is an
algorithm that in O(nnz(A))+poly(d log n) time, with constant probability finds x′ such that ‖Ax′−
b‖G ≤ O(1) OPT.

Definition F.15 (M-Estimator sketches or MSketch [CW15b]). Given parameters N,n,m, b > 1,
define hmax = blogb(n/m)c, β = (b − b−hmax)/(b − 1) and s = Nhmax. For each p ∈ [n], σp, gp, hp
are generated (independently) in the following way,

σp ← ±1, chosen with equal probability,

gp ∈ [N], chosen with equal probability,

hp ← t, chosen with probability 1/(βbt) for t ∈ {0, 1, · · ·hmax}.

For each p ∈ [n], we define jp = gp +Nhp. Let w ∈ Rs denote the scaling vector such that, for each
j ∈ [s],

wj =

{
βbhp , if there exists p ∈ [n] s.t.j = jp,

0 otherwise.

Let S ∈ RNhmax×n be such that, for each j ∈ [s],for each p ∈ [n],

Sj,p =

{
σp, if j = gp +N · hp,
0, otherwise.

Let Dw denote the diagonal matrix where the i-th entry on the diagonal is the i-th entry of w. Let
S = DwS. We say (S,w) or S is an MSketch.

Definition F.16 (Tensor ‖‖v,w-norm). For a tensor A ∈ Rd×n1×n2 and a vector w ∈ , we define

‖A‖v,w =
d∑

i=1

wi‖Ai,∗,∗‖F .

Let (S,w) denote an MSketch, and let S = DwS. If v corresponds to a scale-invariant M-
Estimator, then for any three matrices U, V,W , we have the following,

‖(SU)⊗ V ⊗W‖v,w = ‖(DwSU)⊗ V ⊗W‖v = ‖(SU)⊗ V ⊗W‖v.

Fact F.17. For a tensor A ∈ Rn×n×n, let S ∈ Rs×n denote an MSketch (defined in F.15) with
s = poly(k, log n). Then SA can be computed in O(nnz(A)) time.

Lemma F.18. For any fixed U∗ ∈ Rn×d and rank-k V ∗ ∈ Rd×m with d = poly(k), let S ∈ Rs×n
denote an MSketch (defined in Definition F.15) with s = poly(k, log n) rows. Then with probability
at least .999, we have: for all rank-k V ∈ Rd×m,

‖U∗V ∗ − U∗V ‖v . ‖SU∗V ∗ − SU∗V ‖v . ‖U∗V ∗ − U∗V ‖v.

116

Lemma F.19 (No dilation, Theorem 3.4 in [CW15b]). Given matrices A ∈ Rn×m, U∗ ∈ Rn×d with
d = poly(k), define V ∗ ∈ Rd×m to be the optimal solution to min

rank−k V ∈Rd×m
‖U∗V − A‖v. Choose

an MSketch S ∈ Rs×n with s = poly(k, log n) according to Definition F.15. Then with probability
at least .99, we have: for all rank-k V ∈ Rd×m,

‖SU∗V − SA‖v . ‖U∗V ∗ − U∗V ‖v +O(1)‖U∗V ∗ −A‖v . ‖U∗V −A‖v.

Lemma F.20 (No contraction). Given matrices A ∈ Rn×m, U∗ ∈ Rn×d with d = poly(k), define
V ∗ ∈ Rd×m to be the optimal solution to min

rank−k V ∈Rd×m
‖U∗V −A‖v. Choose an MSketch S ∈ Rs×n

with s = poly(k, log n) according to Definition F.15. Then with probability at least .99, we have: for
all rank-k V ∈ Rd×m,

‖U∗V −A‖v . ‖SU∗V − SA‖v +O(1)‖U∗V ∗ −A‖v.

F.2.5 Running time analysis

Lemma F.21. Given a tensor A ∈ Rn×d×d, let S ∈ Rs×n denote an MSketch with s rows. Let
SA denote a tensor that has size s× d× d. For each i ∈ {2, 3}, let (SA)i ∈ Rd×ds denote a matrix
obtained by flattening tensor SA along the i-th dimension. For each i ∈ {2, 3}, let Si ∈ Rds×si
denote a CountSketch transform with si columns. For each i ∈ {2, 3}, let Ti ∈ Rti×d denote a
CountSketch transform with ti rows. Then
(I) For each i ∈ {2, 3}, (SA)iSi can be computed in O(nnz(A)) time.
(II) For each i ∈ {2, 3}, Ti(SA)iSi can be computed in O(nnz(A)) time.

Proof. Proof of Part (I). First note that (SA)2S2 has size n×S2. Thus for each i ∈ [d], j ∈ [s2], we
have,

((SA)2S2)i,j =
ds∑

x′=1

((SA)2)i,x′(S2)x′,j by (SA)2 ∈ Rd×ds, S2 ∈ Rds×s2

=

d∑

y=1

s∑

z=1

((SA)2)i,(y−1)s+z(S2)(y−1)s+z,j

=
d∑

y=1

s∑

z=1

(SA)z,i,y(S2)(y−1)s+z,j by unflattening

=

d∑

y=1

s∑

z=1

(
n∑

x=1

Sz,xAx,i,y

)
(S2)(y−1)s+z,j

=

d∑

y=1

s∑

z=1

n∑

x=1

Sz,x ·Ax,i,y · (S2)(y−1)s+z,j .

For each nonzero entry Ax,i,y, there is only one z such that Sz,x is nonzero. Thus there is only one
j such that (S2)(y−1)s+z,j is nonzero. It means that Ax,i,y can only affect one entry of ((SA)2S2)i,j .
Thus, (SA)2S2 can be computed in O(nnz(A)) time. Similarly, we can compute (SA)3S3 in
O(nnz(A)) time.

117

Proof of Part (II). Note that T2(SA)2S2 has size t2×s2. Thus for each i ∈ [t2], j ∈ [s2], we have,

(T2(SA)2S2)i,j =
d∑

x=1

ds∑

y′=1

(T2)i,x((SA)2)x,y′(S2)y′,j by (SA)2 ∈ Rd×ds

=

d∑

x=1

d∑

y=1

s∑

z=1

(T2)i,x((SA)2)x,(y−1)s+z(S2)(y−1)s+z,j

=
d∑

x=1

d∑

y=1

s∑

z=1

(T2)i,x(SA)z,x,y(S2)(y−1)s+z,j by unflattening

=
d∑

x=1

d∑

y=1

s∑

z=1

(T2)i,x

(
n∑

w=1

Sz,wAw,x,y

)
(S2)(y−1)s+z,j

=

d∑

x=1

d∑

y=1

s∑

z=1

n∑

w=1

(T2)i,x · Sz,w ·Aw,x,y · (S2)(y−1)s+z,j .

For each nonzero entry Aw,x,y, there is only one z such that Sz,w is nonzero. There is only one i
such that (T2)i,x is nonzero. Since there is only one z to make Sz,w nonzero, there is only one j, such
that (S2)(y−1)s+z,j is nonzero. Thus, T2(SA)2S2 can be computed in O(nnz(A)) time. Similarly, we
can compute T3(SA)3S3 in O(nnz(A)) time.

F.2.6 Algorithms

We first give a “warm-up” algorithm in Theorem F.22 by using a sampling and rescaling matrix.
Then we improve the running time to be polynomial in all the parameters by using an oblivious
sketch, and thus we obtain Theorem F.23.

Algorithm 32 `1-Frobenius(`1-`2-`2) Low-rank Approximation Algorithm, poly(k)-approximation

1: procedure L122TensorLowRankApprox(A,n, k) . Theorem F.22
2: ε← 0.1.
3: s← poly(k, 1/ε).
4: Guess a sampling and rescaling matrix S ∈ Rs×n.
5: s2 ← s3 ← O(k/ε).
6: r ← s2s3.
7: Choose sketching matrices S2 ∈ Rns×s2 , S3 ∈ Rns×s3 .
8: Compute (SA)2S2, (SA)3S3.
9: Form Ṽ ∈ Rn×r by repeating (SA)2S2 s3 times according to Equation (59).

10: Form W̃ ∈ Rn×r by repeating (SA)3S3 s2 times according to Equation (60).
11: Form objective function minU∈Rn×r ‖U · (Ṽ > � W̃>)−A1‖F .
12: Use a linear regression solver to find a solution Ũ .
13: Take the best solution found over all guesses.
14: return Ũ , Ṽ , W̃ .
15: end procedure

Theorem F.22. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = O(k2). There exists

118

an algorithm which takes npoly(k) time and outputs three matrices U, V,W ∈ Rn×r such that

‖U ⊗ V ⊗W −A‖v ≤ poly(k) min
rank−k A′

‖A′ −A‖v,

holds with probability at least 9/10.

Proof. We define OPT as follows,

OPT = min
U,V,W∈Rn×k

‖U ⊗ V ⊗W −A‖v = min
U,V,W∈Rn×k

∥∥∥∥∥
k∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥
v

.

Let A1 ∈ Rn×n2 denote the matrix obtained by flattening tensor A along the 1st dimension. Let
U∗ ∈ Rn×k denote the optimal solution. We fix U∗ ∈ Rn×k, and consider this objective function,

min
V,W∈Rn×k

‖U∗ ⊗ V ⊗W −A‖v ≡ min
V,W∈Rn×k

∥∥∥U∗ · (V > �W>)−A1

∥∥∥
v
, (52)

which has cost at most OPT, and where V > � W> ∈ Rk×n2 denotes the matrix for which the
i-th row is a vectorization of Vi ⊗Wi, ∀i ∈ [k]. (Note that Vi ∈ Rn is the i-th column of matrix
V ∈ Rn×k). Choose a sampling and rescaling diagonal matrix S ∈ Rn×n according to U∗, which
has s = poly(k) non-zero entries. Using S to sketch on the left of the objective function when U∗

is fixed (Equation (52)), we obtain a smaller problem,

min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖v ≡ min
V,W∈Rn×k

∥∥∥SU∗ · (V > �W>)− SA1

∥∥∥
v
. (53)

Let V ′,W ′ denote the optimal solution to the above problem, i.e.,

V ′,W ′ = arg min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖v .

Then using properties (no dilation Lemma F.12 and no contraction Lemma F.13) of S, we have
∥∥U∗ ⊗ V ′ ⊗W ′ −A

∥∥
v
≤ αOPT .

where α is an approximation ratio determined by S.
By definition of ‖ · ‖v and ‖ · ‖2 ≤ ‖ · ‖1 ≤

√
dim‖ · ‖2, we can rewrite Equation (53) in the

following way,

‖(SU∗)⊗ V ⊗W − SA‖v

=

s∑

i=1




n∑

j=1

n∑

l=1

(
((SU∗)⊗ V ⊗W)i,j,l − (SA)i,j,l

)2




1
2

≤ √s




s∑

i=1

n∑

j=1

n∑

l=1

(
((SU∗)⊗ V ⊗W)i,j,l − (SA)i,j,l

)2




1
2

=
√
s ‖(SU∗)⊗ V ⊗W − SA‖F . (54)

Given the above properties of S and Equation (54), for any β ≥ 1, let V ′′,W ′′ denote a β-
approximate solution of min

V,W∈Rn×k
‖(SU∗)⊗ V ⊗W − SA‖F , i.e.,

119

∥∥(SU∗)⊗ V ′′ ⊗W ′′ − SA
∥∥
F
≤ β · min

V,W∈Rn×k
‖(SU∗)⊗ V ⊗W − SA‖F . (55)

Then,
∥∥U∗ ⊗ V ′′ ⊗W ′′ −A

∥∥
v
≤ √sαβ ·OPT . (56)

In the next few paragraphs we will focus on solving Equation (55). We start by fixing W ∗ ∈ Rn×k
to be the optimal solution of

min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖F .

We use (SA)2 ∈ Rn×ns to denote the matrix obtained by flattening the tensor SA ∈ Rs×n×n along
the second direction. We use Z2 = (SU∗)> � (W ∗)> ∈ Rk×ns to denote the matrix where the i-th
row is the vectorization of (SU∗)i ⊗W ∗i . We can consider the following objective function,

min
V ∈Rn×k

‖V Z2 − (SA)2‖F .

Choosing a sketching matrix S2 ∈ Rns×s2 with s2 = O(k/ε) gives a smaller problem,

min
V ∈Rn×k

‖V Z2S2 − (SA)2S2‖F .

Letting V̂ = (SA)2S2(Z2S2)† ∈ Rn×k, then

‖V̂ Z2 − (SA)2‖F ≤ (1 + ε) min
V ∈Rn×k

‖V Z2 − (SA)2‖F

= (1 + ε) min
V ∈Rn×k

‖V ((SU∗)> � (W ∗)>)− (SA)2‖F

= (1 + ε) min
V ∈Rn×k

‖(SU∗)⊗ V ⊗W ∗ − SA‖F by unflattening

= (1 + ε) min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖F . by definition of W ∗ (57)

We define D2 ∈ Rn2×n2 to be a diagonal matrix obrained by copying the n× n identity matrix
s times on n diagonal blocks of D2. Then it has ns nonzero entries. Thus, D2 also can be thought
of as a matrix that has size n2 × ns.

We can think of (SA)2S2 ∈ Rn×s2 as follows,

(SA)2S2 = (A(S, I, I))2S2

= A2︸︷︷︸
n×n2

· D2︸︷︷︸
n2×n2

· S2︸︷︷︸
ns×s2

by D2 can be thought of as having size n2 × ns

= A2 ·




c2,1In
c2,2In

. . .
c2,nIn


 · S2

where In is an n× n identity matrix, c2,i ≥ 0 for each i ∈ [n], and the number of nonzero c2,i is s.
For the last step, we fix SU∗ and V̂ . We use (SA)3 ∈ Rn×ns to denote the matrix obtained by

flattening the tensor SA ∈ Rs×n×n along the third direction. We use Z3 = (SU∗)> � V̂ > ∈ Rk×ns

120

to denote the matrix where the i-th row is the vectorization of (SU∗)i ⊗ V̂i. We can consider the
following objective function,

min
W∈Rn×k

‖WZ3 − (SA)3‖F .

Choosing a sketching matrix S3 ∈ Rns×s3 with s3 = O(k/ε) gives a smaller problem,

min
W∈Rn×k

‖WZ3S3 − (SA)3S3‖F .

Let Ŵ = (SA)3S3(Z3S3)† ∈ Rn×k. Then

‖ŴZ3 − (SA)3‖F ≤ (1 + ε) min
W∈Rn×k

‖WZ3 − (SA)3‖F by property of S3

= (1 + ε) min
W∈Rn×k

‖W ((SU∗)> � V̂ >)− (SA)3‖F by definition Z3

= (1 + ε) min
W∈Rn×k

‖(SU∗)⊗ V̂ ⊗W − SA‖F by unflattening

≤ (1 + ε)2 ‖(SU∗)⊗ V ⊗W − SA‖F . by Equation (57)

We define D3 ∈ Rn2×n2 to be a diagonal matrix formed by copying the n× n identity matrix s
times on n diagonal blocks of D3. Then it has ns nonzero entries. Thus, D3 also can be thought of
as a matrix that has size n2 × ns and D3 is uniquely determined by S.

Similarly as to the 2nd dimension, for the 3rd dimension, we can think of (SA)3S3 as follows,

(SA)3S3 = (A(S, I, I))3S3

= A3︸︷︷︸
n×n2

· D3︸︷︷︸
n2×n2

· S3︸︷︷︸
ns×s3

by D3 can be thought of as having size n2 × ns

= A3 ·




c3,1In
c3,2In

. . .
c3,nIn


 · S3

where In is an n× n identity matrix, c3,i ≥ 0 for each i ∈ [n] and the number of nonzero c3,i is s.
Overall, we have proved that,

min
X2,X3

‖(SU∗)⊗ (A2D2S2X2)⊗ (A3D3S3X3)− SA‖F ≤ (1 + ε)2 ‖(SU∗)⊗ V ⊗W − SA‖F , (58)

where diagonal matrix D2 ∈ Rn2×n2 (with ns nonzero entries) and D3 ∈ Rn2×n2 (with ns nonzero
entries) are uniquely determined by diagonal matrix S ∈ Rn×n (s nonzero entries). Let X ′2 and X ′3
denote the optimal solution to the above problem (Equation (58)). Let V ′′ = (A2D2S2X

′
2) ∈ Rn×k

and W ′′ = (A3D3S3X
′
3) ∈ Rn×k. Then we have

∥∥U∗ ⊗ V ′′ ⊗W ′′ −A
∥∥
v
≤ √sαβOPT .

We construct matrix Ṽ ∈ Rn×s2s3 by copying matrix (SA)2S2 ∈ Rn×s2 s3 times,

Ṽ =
[
(SA)2S2 (SA)2S2 · · · (SA)2S2.

]
(59)

121

We construct matrix W̃ ∈ Rn×s2s3 by copying the i-th column of matrix (SA)3S3 ∈ Rn×s3 into
(i− 1)s2 + 1, · · · , is2 columns of W̃ ,

W̃ = [((SA)3S3)1 · · · ((SA)3S3)1 ((SA)3S3)2 · · · ((SA)3S3)2 · · · ((SA)3S3)s3 · · · ((SA)3S3)s3 .] (60)

Although we don’t know S, we can guess all of the possibilities. For each possibility, we can find
a solution Ũ ∈ Rn×s2s3 to the following problem,

min
U∈Rn×s2s3

∥∥∥∥∥∥

s2∑

i=1

s3∑

j=1

U(i−1)s3+j ⊗ ((SA)2S2)i ⊗ ((SA)3S3)j −A

∥∥∥∥∥∥
v

= min
U∈Rn×s2s3

∥∥∥∥∥∥

s2∑

i=1

s3∑

j=1

U(i−1)s3+j · vec(((SA)2S2)i ⊗ ((SA)3S3)j)−A1

∥∥∥∥∥∥
v

= min
U∈Rn×s2s3

∥∥∥∥∥∥

s2∑

i=1

s3∑

j=1

U(i−1)s3+j · (Ṽ > � W̃>)(i−1)s3+j −A1

∥∥∥∥∥∥
v

= min
U∈Rn×s2s3

∥∥∥U · (Ṽ > � W̃>)−A1

∥∥∥
v

= min
U∈Rn×s2s3

‖UZ −A1‖v

= min
U∈Rn×s2s3

s2s3∑

i=1

‖U iZ −Ai1‖2,

where the first step follows by flattening the tensor along the 1st dimension, U(i−1)s3+j denotes the
(i−1)s3 +j-th column of U ∈ Rn×s2s3 , A1 ∈ Rn×n2 denotes the matrix obtained by flattening tensor
A along the 1st dimension, the second step follows since Ṽ > � W̃> ∈ Rs2s3∈n2 is defined to be the
matrix where the (i− 1)s3 + j-th row is vectorization of ((SA)2S2)i ⊗ ((SA)3S3)j , the fourth step
follows by defining Z to be Ṽ > � W̃>, and the last step follows by definition of ‖ · ‖v norm. Thus,
we obtain a multiple regression problem and it can be solved directly by using [CW13, NN13].

Finally, we take the best Ũ , Ṽ , W̃ over all the guesses. The entire running time is dominated by
the number of guesses, which is npoly(k). This completes the proof.

Theorem F.23. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = O(k2). There exists
an algorithm which takes O(nnz(A)) + n poly(k, log n) time and outputs three matrices U, V,W ∈
Rn×r such that

‖U ⊗ V ⊗W −A‖v ≤ poly(k, log n) min
rank−k A′

‖A′ −A‖v

holds with probability at least 9/10.

Proof. We define OPT as follows,

OPT = min
U,V,W∈Rn×k

‖U ⊗ V ⊗W −A‖v = min
U,V,W∈Rn×k

∥∥∥∥∥
k∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥
v

.

122

Algorithm 33 `1-Frobenius(`1-`2-`2) Low-rank Approximation Algorithm, poly(k, log n)-
approximation
1: procedure L122TensorLowRankApprox(A,n, k) . Theorem F.23
2: ε← 0.1.
3: s← poly(k, log n).
4: Choose S ∈ Rs×n to be an MSketch. . Definition F.15
5: s2 ← s3 ← O(k/ε).
6: t2 ← t3 ← poly(k/ε).
7: r ← s2s3.
8: Choose sketching matrices S2 ∈ Rns×s2 , S3 ∈ Rns×s3 .
9: Choose sketching matrices T2 ∈ Rt2×n, T3 ∈ Rt3×n.

10: Compute (SA)2S2, (SA)3S3.
11: Compute T2(SA)2S2, T3(SA)3S3.
12: Form Ṽ ∈ Rn×r by repeating (SA)2S2 s3 times according to Equation (69).
13: Form W̃ ∈ Rn×r by repeating (SA)3S3 s2 times according to Equation (70).
14: Form V ∈ Rt2×r by repeating T2(SA)2S2 s3 times according to Equation (67).
15: Form W ∈ Rt3×r by repeating T3(SA)3S3 s2 times according to Equation (68).
16: C ← A(I, T2, T3).
17: Form objective function minU∈Rn×r ‖U · (V

> �W>)− C1‖F .
18: Use linear regression solver to find a solution Ũ .
19: return Ũ , Ṽ , W̃ .
20: end procedure

Let A1 ∈ Rn×n2 denote the matrix obtained by flattening tensor A along the 1st dimension. Let
U∗ ∈ Rn×k denote the optimal solution. We fix U∗ ∈ Rn×k, and consider the objective function,

min
V,W∈Rn×k

‖U∗ ⊗ V ⊗W −A‖v ≡ min
V,W∈Rn×k

∥∥∥U∗ · (V > �W>)−A1

∥∥∥
v
, (61)

which has cost at most OPT, and where V > � W> ∈ Rk×n2 denotes the matrix for which the
i-th row is a vectorization of Vi ⊗Wi, ∀i ∈ [k]. (Note that Vi ∈ Rn is the i-th column of matrix
V ∈ Rn×k). Choose an (oblivious) MSketch S ∈ Rs×n with s = poly(k, log n) according to
Definition F.15. Using MSketch S,w to sketch on the left of the objective function when U∗ is
fixed (Equation (61)), we obtain a smaller problem,

min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖v ≡ min
V,W∈Rn×k

∥∥∥SU∗ · (V > �W>)− SA1

∥∥∥
v
. (62)

Let V ′,W ′ denote the optimal solution to the above problem, i.e.,

V ′,W ′ = arg min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖v .

Then using properties (no dilation Lemma F.19 and no contraction Lemma F.20) of S, we have
∥∥U∗ ⊗ V ′ ⊗W ′ −A

∥∥
v
≤ αOPT .

where α is an approximation ratio determined by S.

123

By definition of ‖ · ‖v and ‖ · ‖2 ≤ ‖ · ‖1 ≤
√
dim‖ · ‖2, we can rewrite Equation (62) in the

following way,

‖(SU∗)⊗ V ⊗W − SA‖v

=

s∑

i=1




n∑

j=1

n∑

l=1

(
((SU∗)⊗ V ⊗W)i,j,l − (SA)i,j,l

)2




1
2

≤ √s




s∑

i=1

n∑

j=1

n∑

l=1

(
((SU∗)⊗ V ⊗W)i,j,l − (SA)i,j,l

)2




1
2

=
√
s ‖(SU∗)⊗ V ⊗W − SA‖F (63)

Using the properties of S and Equation (63), for any β ≥ 1, let V ′′,W ′′ denote a β-approximation
solution of min

V,W∈Rn×k
‖(SU∗)⊗ V ⊗W − SA‖F , i.e.,

∥∥(SU∗)⊗ V ′′ ⊗W ′′ − SA
∥∥
F
≤ β · min

V,W∈Rn×k
‖(SU∗)⊗ V ⊗W − SA‖F . (64)

Then,
∥∥U∗ ⊗ V ′′ ⊗W ′′ −A

∥∥
v
≤ √sαβ ·OPT . (65)

Let Â denote SA. Choose Si ∈ Rns×si to be Gaussian matrix with si = O(k/ε), ∀i{2, 3}. By a
similar proof as in Theorem F.22, we have if X ′2, X ′3 is a β-approximate solution to

min
X2,X3

‖(SU∗)⊗ (Â2S2X2)⊗ (Â3S3X3)− SA‖F ,

then,

‖U∗ ⊗ (Â2S2X2)⊗ (Â3S3X3)−A‖v ≤
√
sαβ.

To reduce the size of the objective function from poly(n) to poly(k/ε), we use perform an
“input sparsity reduction” (in Lemma C.3). Note that, we do not need to use this idea to optimize
the running time in Theorem F.22. The running time of Theorem F.22 is dominated by guessing
sampling and rescaling matrices. (That running time is � nnz(A).) Choose Ti ∈ Rti×n to be a
sparse subspace embedding matrix (CountSketch transform) with ti = poly(k, 1/ε), ∀i ∈ {2, 3}.
Applying the proof of Lemma C.3 here, we obtain, if X ′2, X ′3 is a β-approximate solution to

min
X2,X3

‖(SU∗)⊗ (T2(SA)2S2X2)⊗ (T3(SA)3S3X3)− SA‖F ,

then,

‖U∗ ⊗ ((SA)2S2X2)⊗ ((SA)3S3X3)−A‖v ≤
√
sαβ. (66)

Similar to the bicriteria results in Section C.4, Equation (66) indicates that we can construct a
bicriteria solution by using two matrices (SA)2S2 and (SA)3S3. The next question is how to obtain
the final results Û , V̂ , Ŵ . We first show how to obtain Û . Then we show to construct V̂ and Ŵ .

124

To obtain Û , we need to solve a regression problem related to two matrices V , Ŵ and a tensor
A(I, T2, T3). We construct matrix V ∈ Rt2×s2s3 by copying matrix T2(SA)2S2 ∈ Rt2×s2 s3 times,

V =
[
T2(SA)2S2 T2(SA)2S2 · · · T2(SA)2S2

]
. (67)

We construct matrix W ∈ Rt3×s2s3 by copying the i-th column of matrix T3(SA)3S3 ∈ Rt3×s3 into
(i− 1)s2 + 1, · · · , is2 columns of W ,

W =
[
F1 · · ·F1 F2 · · ·F2 · · · Fs3 · · ·Fs3

]
, (68)

where F = T3(SA)3S3.
Thus, to obtain Ũ ∈ Rs2s3 , we just need to use a linear regression solver to solve a smaller

problem,

min
U∈Rs2s3

‖U · (V > �W>)−A(I, T2, T3)‖F ,

which can be solved in O(nnz(A)) + n poly(k, log n) time. We will show how to obtain Ṽ and W̃ .
We construct matrix Ṽ ∈ Rn×s2s3 by copying matrix (SA)2S2 ∈ Rn×s2 s3 times,

Ṽ =
[
(SA)2S2 (SA)2S2 · · · (SA)2S2.

]
(69)

We construct matrix W̃ ∈ Rn×s2s3 by copying the i-th column of matrix (SA)3S3 ∈ Rn×s3 into
(i− 1)s2 + 1, · · · , is2 columns of W̃ ,

W̃ =
[
F1 · · ·F1 F2 · · ·F2 · · · Fs3 · · ·Fs3

]
, (70)

where F = (SA)3S3.

F.3 `1-`1-`2 norm

Section F.3.1 presents some definitions and useful facts for the tensor `1-`1-`2 norm. We provide
some tools in Section F.3.2. Section F.3.3 presents a key idea which shows we are able to reduce
the original problem to a new problem under entry-wise `1 norm. Section F.3.4 presents several
existence results. Finally, Section F.3.6 introduces several algorithms with different tradeoffs.

F.3.1 Definitions

Definition F.24. (Tensor u-norm) For an n×n×n tensor A, we define the u-norm of A, denoted
‖A‖u, to be




n∑

i=1

n∑

j=1

M(‖Ai,j,∗‖2)




1/p

,

where Ai,j,∗ is the (i, j)-th tube of A, and p is a parameter associated with the function M(), which
defines a nice M -Estimator.

Definition F.25. (Matrix u-norm) For an n× n matrix A, we define u-norm of A, denoted ‖A‖u,
to be

(
n∑

i=1

M(‖Ai,∗‖2)

)1/p

,

where Ai,∗ is the i-th row of A, and p is a parameter associated with the function M(), which defines
a nice M -Estimator.

125

Fact F.26. For p = 1, for any two matrices A and B, we have ‖A+B‖u ≤ ‖A‖u + ‖B‖u. For any
two tensors A and B, we have ‖A+B‖u ≤ ‖A‖u + ‖B‖u.

F.3.2 Projection via Gaussians

Definition F.27. Let p ≥ 1. Let `Sn−1

p be an infinite dimensional `p metric which consists of a
coordinate for each vector r in the unit sphere Sn−1. Define function f : Sn−1 → R. The `1-norm
of any such f is defined as follows:

‖f‖1 =

(∫

r∈Sn−1

|f(r)|pdr
)1/p

.

Claim F.28. Let fv(r) = 〈v, r〉. There exists a universal constant αp such that

‖fv‖p = αp‖v‖2.

Proof. We have,

‖fv‖p =

(∫

r∈Sn−1

|〈v, r〉|pdr
)1/p

=

(∫

θ∈Sn−1

‖v‖p2 · | cos θ|pdθ
)1/p

= ‖v‖2
(∫

θ∈Sn−1

| cos θ|pdθ
)1/p

= αp‖v‖2.

This completes the proof.

Lemma F.29. Let G ∈ Rk×n denote i.i.d. random Gaussian matrices with rescaling. Then for any
v ∈ Rn, we have

Pr[(1− ε)‖v‖2 ≤ ‖Gv‖1 ≤ (1 + ε)‖v‖2] ≥ 1− 2−Ω(kε2).

Proof. For each i ∈ [k], we define Xi = 〈v, gi〉, where gi ∈ Rn is the i-th row of G. Then Xi =∑n
j=1 vjgi,j and E[|Xi|] = αp‖v‖2. Define Y =

∑k
i=1 |Xi|. We have E[Y] = kα1‖v‖2 = kα1.

We can show

Pr[Y ≥ (1 + ε)α1k] = Pr[esY ≥ es(1+ε)α1k] for all s > 0

≤ E[esY]/es(1+ε)α1k by Markov’s inequality

= e−s(1+ε)α1k ·E[

k∏

i=1

es|Xi|] by Y =

k∑

i=1

|Xi|

= e−s(1+ε)α1k · (E[es|X1|])k

It remains to bound E[es|X1|]. Since X1 ∼ N (0, 1), we have that X1 has density function e−t2/2.

126

Thus, we have,

E[es|X1|] =
1√
2π

∫ +∞

−∞
es|t| · e−t2/2dt

=
1√
2π

∫ +∞

−∞
es

2/2 · e−(|t|−s)2/2dt

= es
2/2(erf(s/

√
2) + 1)

≤ es
2/2((1− exp(−2s2/π))1/2 + 1) by 1− exp(−4x2/π) ≥ erf(x)2

≤ es
2/2(

√
2/πs+ 1). by 1− e−x ≤ x

Thus, we have

Pr[Y ≥ (1 + ε)α1k] ≤ e−s(1+ε)keks
2/2(1 + s

√
2/π)k

= e−s(1+ε)α1keks
2/2ek·log(1+s

√
2/π)

≤ e−s(1+ε)α1k+ks2/2+k·s
√

2/π

≤ e−Ω(kε2). by α1 ≥
√

2/π and setting s = ε

Lemma F.30. For any ε ∈ (0, 1), let k = O(n/ε2). Let G ∈ Rk×n denote i.i.d. random Gaussian
matrices with rescaling. Then for any v ∈ Rn, with probability at least 1− 2−Ω(n/ε2), we have : for
all v ∈ Rn,

(1− ε)‖v‖2 ≤ ‖Gv‖1 ≤ (1 + ε)‖v‖2.

Proof. Let S denote {y ∈ Rn | ‖y‖2 = 1}. We construct a γ-net so that for all y ∈ S, there exists a
vector w ∈ N for which ‖y − w‖2 ≤ γ. We set γ = 1/2.

For any unit vector y, we can write

y = y0 + y1 + y2 + · · · ,

where ‖yi‖2 ≤ 1/2i and yi is a scalar multiple of a vector in N . Thus, we have

‖Gy‖1 = ‖G(y0 + y1 + y2 + · · ·)‖1

≤
∞∑

i=0

‖Gyi‖1 by triangle inequality

≤
∞∑

i=0

(1 + ε)‖yi‖2

≤
∞∑

i=0

(1 + ε)
1

2i

≤ 1 + Θ(ε).

Similarly, we can lower bound ‖Gy‖1 by 1−Θ(ε). By Lemma 2.2 in [Woo14], we know that for any
γ ∈ (0, 1), there exists a γ-net N of S for which |N | ≤ (1 + 4/γ)n.

127

F.3.3 Reduction, projection to high dimension

Lemma F.31. Given a 3rd order tensor A ∈ Rn×n×n, let S ∈ Rn×s denote a Gaussian matrix with
s = O(n/ε2) columns. With probability at least 1− 2−Ω(n/ε2), for any U, V,W ∈ Rn×k, we have

(1− ε) ‖U ⊗ V ⊗W −A‖u ≤ ‖(U ⊗ V ⊗W)S −AS‖1 ≤ (1 + ε) ‖U ⊗ V ⊗W −A‖u .

Proof. By definition of the ⊗ product between matrices and · product between a tensor and a
matrix, we have (U ⊗ V ⊗W)S = U ⊗ V ⊗ (SW) ∈ Rn×n×s. We use Ai,j,∗ ∈ Rn to denote the
(i, j)-th tube (the column in the 3rd dimension) of tensor A. We first prove the upper bound,

‖(U ⊗ V ⊗W)S −AS‖1 =

n∑

i=1

n∑

j=1

‖((U ⊗ V ⊗W)i,j,∗ −Ai,j,∗)S‖1

≤
n∑

i=1

n∑

j=1

(1 + ε) ‖(U ⊗ V ⊗W)i,j,∗ −Ai,j,∗‖2

= (1 + ε) ‖U ⊗ V ⊗W −A‖u ,

where the first step follows by definition of tensor ‖·‖u norm, the second step follows by Lemma F.30,
and the last step follows by tensor entry-wise `1 norm. Similarly, we can prove the lower bound,

‖(U ⊗ V ⊗W)S −AS‖1 ≥
n∑

i=1

n∑

j=1

(1− ε) ‖(U ⊗ V ⊗W)i,j,∗ −Ai,j,∗‖2

= (1− ε) ‖U ⊗ V ⊗W −A‖u .

This completes the proof.

Corollary F.32. For any α ≥ 1, if U ′, V ′,W ′ satisfy

‖(U ′ ⊗ V ′ ⊗W ′ −A)S‖1 ≤ γ min
rank−k Ak

‖(Ak −A)S‖1,

then

‖U ′ ⊗ V ′ ⊗W ′ −A‖u ≤ γ
1 + ε

1− ε min
rank−k Ak

‖Ak −A‖u.

Proof. Let Û , V̂ , Ŵ denote the optimal solution to minrank−k Ak ‖(Ak − A)S‖1. Let U∗, V ∗,W ∗

denote the optimal solution to minrank−k Ak ‖Ak −A‖u. Then,

‖U ′ ⊗ V ′ ⊗W ′ −A‖u ≤
1

1− ε‖(U
′ ⊗ V ′ ⊗W ′ −A)S‖1

≤ γ
1

1− ε‖(Û ⊗ V̂ ⊗ Ŵ −A)S‖1

≤ γ
1

1− ε‖(U
∗ ⊗ V ∗ ⊗W ∗ −A)S‖1

≤ γ
1 + ε

1− ε‖U
∗ ⊗ V ∗ ⊗W ∗ −A‖u,

which completes the proof.

128

F.3.4 Existence results

Theorem F.33 (Existence results). Given a 3rd order tensor A ∈ Rn×n×n and a matrix S ∈ Rn×n,
let OPT denote minrank−k Ak∈Rn×n×n ‖(Ak − A)S‖1, let Â = AS ∈ Rn×n×n. For any k ≥ 1, there
exist three matrices S1 ∈ Rnn×s1, S2 ∈ Rnn×s2, S3 ∈ Rn2×s3 such that

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥(Â1S1X1)⊗ (Â2S2X2)⊗ (Â3S3X3)− Â
∥∥∥

1
≤ αOPT,

or equivalently,

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥
(

(Â1S1X1)⊗ (Â2S2X2)⊗ (A3S3X3)−A
)
S
∥∥∥

1
≤ αOPT,

holds with probability 99/100.
(I). Using a dense Cauchy transform,

s1 = s2 = s3 = Õ(k), α = Õ(k1.5) log3 n.
(II). Using a sparse Cauchy transform,

s1 = s2 = s3 = Õ(k5), α = Õ(k13.5) log3 n.
(III). Guessing Lewis weights,

s1 = s2 = s3 = Õ(k), α = Õ(k1.5).

Proof. We use OPT to denote the optimal cost,

OPT := min
rank−k Ak∈Rn×n×n

‖(Ak −A)S‖1.

We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k to be the optimal solution to

min
U,V,W

‖(U ⊗ V ⊗W −A)S‖1.

We define Z1 ∈ Rk×nn to be the matrix where the i-th row is the vectorization of V ∗i ⊗ (SW ∗i). We
define tensor

Â = AS ∈ Rn×n×n.

Then we also have Â = A(I, I, S) according to the definition of the · product between a tensor and
a matrix.

Let Â1 ∈ Rn×nn denote the matrix obtained by flattening tensor Â along the first direction. We
can consider the following optimization problem,

min
U∈Rn×k

∥∥∥UZ1 − Â1

∥∥∥
1
.

Choosing S1 to be one of the following sketching matrices:
(I) a dense Cauchy transform,
(II) a sparse Cauchy transform,
(III) a sampling and rescaling diagonal matrix according to Lewis weights.

Let αS1 denote the approximation ratio produced by the sketching matrix S1. We use S1 ∈
Rnn×s1 to sketch on right of the above problem, and obtain the problem:

min
U∈Rn×k

‖UZ1S1 − Â1S1‖1 = min
U∈Rn×k

n∑

i=1

‖U iZ1S1 − (Â1S1)i‖1,

129

where U i denotes the i-th row of matrix U ∈ Rn×k and (Â1S1)i denotes the i-th row of matrix
Â1S1. Instead of solving it under `1-norm, we consider the `2-norm relaxation,

min
U∈Rn×k

‖UZ1S1 − Â1S1‖2F = min
U∈Rn×k

n∑

i=1

‖U iZ1S1 − (Â1S1)i‖22.

Let Û ∈ Rn×k denote the optimal solution of the above optimization problem, so that Û =
Â1S1(Z1S1)†. We plug Û into the objective function under the `1-norm. By the property of
sketching matrix S1 ∈ Rnn×s1 , we have,

‖ÛZ1 − Â1‖1 ≤ αS1 min
U∈Rn×k

‖UZ1 − Â1‖1 = αS1 OPT,

which implies that,

‖Û ⊗ V ∗ ⊗ (SW ∗)− Â‖1 = ‖(Û ⊗ V ∗ ⊗W ∗)S − Â‖1 ≤ αS1 OPT .

In the second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k. Let Â2 ∈ Rn×nn denote the matrix
obtained by flattening tensor Â ∈ Rn×n×n along the second direction. We choose a sketching
matrix S2 ∈ Rnn×s2 . Let Z2 = Û> � (SW ∗)> ∈ Rk×nn denote the matrix where the i-th row is the
vectorization of Ûi ⊗ (SW ∗i). Define V̂ = Â2S2(Z2S2)†. By the properties of sketching matrix S2,
we have

‖V̂ Z2 − Â2‖1 ≤ αS2αS1 OPT,

In the third step, we fix Û ∈ Rn×k and V̂ ∈ Rn×k. Let Â3 ∈ Rn×n2 denote the matrix
obtained by flattening tensor Â ∈ Rn×n×n along the third direction. We choose a sketching matrix
S3 ∈ Rn2×s3 . Let Z3 ∈ Rk×n2 denote the matrix where the i-th row is the vectorization of Ûi ⊗ V̂i.
Define W ′ = Â3S3(Z3S3)† ∈ Rn×k and Ŵ = A3S3(Z3S3)† ∈ Rn×k. Then we have,

W ′ = Â3S3(Z3S3)†

= (A(I, I, S))3S3(Z3S3)†

= (S>A3)S3(Z3S3)†

= S>Ŵ

By properties of sketching matrix S3, we have

‖W ′Z3 − Â3‖1 ≤ αS3αS2αS1 OPT .

Replacing W ′ by S>Ŵ , we obtain,

‖W ′Z3 − Â3‖1 = ‖S>ŴZ3 − Â3‖1 = ‖S>ŴZ3 − S>A3‖1 = ‖(Û ⊗ V̂ ⊗ Ŵ −A)S‖1.

Thus, we have

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥(Â1S1X1)⊗ (Â2S2X2)⊗ (Â3S3X3)− Â
∥∥∥

1
≤ αS1αS2αS3 OPT .

130

F.3.5 Running time analysis

Fact F.34. Given tensor A ∈ Rn×n×n and a matrix B ∈ Rn×d with d = O(n), let AB denote an
n× n× d size tensor, For each i ∈ [3], let (AB)i denote a matrix obtained by flattening tensor AB
along the i-th dimension, then

(AB)1 ∈ Rn×nd, (AB)2 ∈ Rn×nd, (AB)3 ∈ Rd×n
2
.

For each i ∈ [3], let Si ∈ Rnd×si denote a sparse Cauchy transform, Ti ∈ Rti×n. Then we have,
(I) If T1 denotes a sparse Cauchy transform or a sampling and rescaling matrix according to the
Lewis weights, T1(AB)1S1 can be computed in O(nnz(A)d) time. Otherwise, it can be computed in
O(nnz(A)d+ ns1t1).
(II) If T2 denotes a sparse Cauchy transform or a sampling and rescaling matrix according to the
Lewis weights, T2(AB)2S2 can be computed in O(nnz(A)d) time. Otherwise, it can be computed in
O(nnz(A)d+ ns2t2).
(III) If T3 denotes a sparse Cauchy transform or a sampling and rescaling matrix according to the
Lewis weights, T3(AB)3S3 can be computed in O(nnz(A)d) time. Otherwise, it can be computed in
O(nnz(A)d+ ds3t3).

Proof. Part (I). Note that T1(AB)1S1 ∈ Rt1×s1 and (AB)1 ∈ Rn×nd, for each i ∈ [t1], j ∈ [s1],

(T1(AB)1S1)i,j =

n∑

x=1

nd∑

y′=1

(T1)i,x((AB)1)x,y′(S1)y′,j

=
n∑

x=1

n∑

y=1

d∑

z=1

(T1)i,x((AB)1)x,(y−1)d+z(S1)(y−1)d+z,j

=
n∑

x=1

n∑

y=1

d∑

z=1

(T1)i,x(AB)x,y,z(S1)(y−1)d+z,j

=

n∑

x=1

n∑

y=1

d∑

z=1

(T1)i,x

n∑

w=1

(Ax,y,wBw,z)(S1)(y−1)d+z,j

=
n∑

x=1

n∑

y=1

(T1)i,x

n∑

w=1

Ax,y,w

d∑

z=1

Bw,z(S1)(y−1)d+z,j .

We look at a non-zero entry Ax,y,w and the entry Bw,z. If T1 denotes a sparse Cauchy transform
or a sampling and rescaling matrix according to the Lewis weights, then there is at most one pair
(i, j) such that (T1)i,xAx,y,wBw,z(S1)(y−1)d+z,j is non-zero. Therefore, computing T1(AB)1S1 only
needs nnz(A)d time. If T1 is not in the above case, since S1 is sparse, we can compute (AB)1S1 in
nnz(A)d time by a similar argument. Then, we can compute T1(AB)1S1 in nt1s1 time.

Part (II). It is as the same as Part (I).

131

Part (III). Note that T3(AB)3S3 ∈ Rt3×s3 and (AB)3 ∈ Rd×n2 . For each i ∈ [t3], j ∈ [s3],

(T3(AB)3S3)i,j =
d∑

x=1

n2∑

y′=1

(T3)i,x((AB)3)x,y′(S3)y′,j

=
d∑

x=1

n∑

y=1

n∑

z=1

(T3)i,x((AB)3)x,(y−1)n+z(S3)(y−1)n+z,j

=

d∑

x=1

n∑

y=1

n∑

z=1

(T3)i,x(AB)y,z,x(S3)(y−1)n+z,j

=
d∑

x=1

n∑

y=1

n∑

z=1

(T3)i,x

n∑

w=1

Ay,z,wBw,x(S3)(y−1)n+z,j

Similar to Part (I), if T1 denotes a sparse Cauchy transform or a sampling and rescaling matrix
according to the Lewis weights, computing T3(AB)3S3 only needs nnz(A)d time. Otherwise, it
needs dt3s3 + nnz(A)d running time.

F.3.6 Algorithms

Algorithm 34 `1-`1-`2-Low Rank Approximation algorithm, input sparsity time
1: procedure L112TensorLowRankApproxInputSparsity(A,n, k) . Theorem F.35
2: n← O(n).
3: s1 ← s2 ← s3 ← Õ(k5).
4: Choose S ∈ Rn×n to be a Gaussian matrix.
5: Choose S1 ∈ Rnn×s1 to be a sparse Cauchy transform. . Part (II) of Theorem F.33
6: Choose S2 ∈ Rnn×s2 to be a sparse Cauchy transform.
7: Choose S3 ∈ Rn2×s3 to be a sparse Cauchy transform.
8: Form Â = AS.
9: Compute Â1S1, Â2S2, and Â3S3

10: Y1, Y2, Y3, C ←L1PolyKSizeReduction(Â, Â1S1, Â2S2, Â3S3, n, n, n, s1, s2, s3, k) .
Algorithm 21

11: Create s1k + s2k + s3k variables for each entry of X1, X2, X3.
12: Form objective function ‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖2F .
13: Run polynomial system verifier.
14: return A1S1X1, A2S2X2, A3S3X3

15: end procedure

Theorem F.35. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm
which takes O(nnz(A)n) + Õ(n) poly(k) + n2Õ(k2) time and outputs three matrices U, V,W ∈ Rn×k
such that,

‖U ⊗ V ⊗W −A‖u ≤ poly(k, log n) min
rank−k A′

‖A′ −A‖u,

holds with probability at least 9/10.

132

Proof. We first choose a Gaussian matrix S ∈ Rn×n with n = O(n). By applying Corollary F.32,
we can reduce the original problem to a “generalized” `1 low rank approximation problem. Next, we
use the existence results (Theorem F.33) and polynomial in k size reduction (Lemma D.8). At the
end, we relax the `1-norm objective function to a Frobenius norm objective function (Fact D.1).

Algorithm 35 `1-`1-`2-Low Rank Approximation Algorithm, Õ(k2/3)

1: procedure L112TensorLowRankApproxK(A,n, k) . Theorem F.36
2: n← O(n).
3: s1 ← s2 ← s3 ← Õ(k).
4: Choose S ∈ Rn×n to be a Gaussian matrix.
5: Guess a diagonal matrix S1 ∈ Rnn×s1 with s1 nonzero entries. . Part (III) of Theorem F.33
6: Guess a diagonal matrix S2 ∈ Rnn×s2 with s2 nonzero entries.
7: Guess a diagonal matrix S3 ∈ Rn2×s3 with s3 nonzero entries.
8: Form Â = AS.
9: Compute Â1S1, Â2S2, and Â3S3

10: Y1, Y2, Y3, C ←L1PolyKSizeReduction(Â, Â1S1, Â2S2, Â3S3, n, n, n, s1, s2, s3, k) .
Algorithm 21

11: Create s1k + s2k + s3k variables for each entry of X1, X2, X3.
12: Form objective function ‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖1.
13: Run polynomial system verifier.
14: return A1S1X1, A2S2X2, A3S3X3

15: end procedure

Theorem F.36. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm
which takes nÕ(k)2Õ(k3) time and outputs three matrices U, V,W ∈ Rn×k such that,

‖U ⊗ V ⊗W −A‖u ≤ O(k3/2) min
rank−k A′

‖A′ −A‖u,

holds with probability at least 9/10.

Proof. We first choose a Gaussian matrix S ∈ Rn×n with n = O(n). By applying Corollary F.32,
we can reduce the original problem to a “generalized” `1 low rank approximation problem. Next,
we use the existence results (Theorem F.33) and polynomial in k size reduction (Lemma D.8). At
the end, we solve an entry-wise `1 norm objective function directly.

Theorem F.37. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = Õ(k2). There is an
algorithm which takes O(nnz(A)n) + Õ(n) poly(k) time and outputs three matrices U, V,W ∈ Rn×r
such that

‖U ⊗ V ⊗W −A‖u ≤ poly(log n, k) min
rank−k Ak

‖Ak −A‖u,

holds with probability at least 9/10.

Proof. We first choose a Gaussian matrix S ∈ Rn×n with n = O(n). By applying Corollary F.32,
we can reduce the original problem to a “generalized” `1 low rank approximation problem. Next,
we use the existence results (Theorem F.33) and polynomial in k size reduction (Lemma D.8). At
the end, we solve an entry-wise `1 norm objective function directly.

133

Algorithm 36 `1-`1-`2-Low Rank Approximation Algorithm, Bicriteria Algorithm
1: procedure L112TensorLowRankApproxBicteriteria(A,n, k) . Theorem F.37
2: n← O(n).
3: s2 ← s3 ← Õ(k5).
4: t2 ← t3 ← Õ(k).
5: r ← s2s3.
6: Choose S ∈ Rn×n to be a Gaussian matrix.
7: Form Â = AS ∈ Rn×n×n.
8: Choose a sketching matrix S2 ∈ Rnn×s2 with s2 nonzero entries (Sparse Cauchy transform),

for each i ∈ {2, 3}. . Part (II) of Theorem F.33
9: Choose a sampling and rescaling diagonal matrix Di according to the Lewis weights of ÂiSi

with ti nonzero entries, for each i ∈ {2, 3}.
10: Form V̂ ∈ Rn×r by setting the (i, j)-th column to be (Â2S2)i.
11: Form Ŵ ∈ Rn×r by setting the (i, j)-th column to be (A3S3)j .
12: Form matrix B ∈ Rr×t2t3 by setting the (i, j)-th column to be the vectorization of

(T2Â2S2)i ⊗ (T3Â3S3)j .
13: Solve minU ‖U ·B − (Â(I, T2, T3))1‖1.
14: return Û , V̂ , Ŵ
15: end procedure

G Weighted Frobenius Norm for Arbitrary Tensors

This section presents several tensor algorithms for the weighted case. For notational purposes,
instead of using U, V,W to denote the ground truth factorization, we use U1, U2, U3 to denote the
ground truth factorization. We use A to denote the input tensor, and W to denote the tensor
of weights. Combining our new tensor techniques with existing weighted low rank approximation
algorithms [RSW16] allows us to obtain several interesting new results. We provide some necessary
definitions and facts in Section G.1. Section G.2 provides an algorithm when W has at most r
distinct faces in each dimension. Section G.3 studies relationships between r distinct faces and
r distinct columns. Finally, we provides an algorithm with a similar running time but weaker
assumption, where W has at most r distinct columns and r distinct rows in Section G.4. The result
in Theorem G.2 is fairly similar to Theorem G.5, except for the running time. We only put a very
detailed discussion in the statement of Theorem G.5. Note that Theorem G.2 also has other versions
which are similar to the Frobnius norm rank-k algorithms described in Section 1. For simplicity of
presentation, we only present one clean and simple version (which assumes Ak exists and has factor
norms which are not too large).

G.1 Definitions and Facts

For a matrix A ∈ Rn×m and a weight matrix W ∈ Rn×m, we define ‖W ◦A‖F as follows,

‖W ◦A‖F =




n∑

i=1

m∑

j=1

W 2
i,jA

2
i,j




1
2

.

134

For a tensor A ∈ Rn×n×n and a weight tensor W ∈ Rn×n×n, we define ‖W ◦A‖F as follows,

‖W ◦A‖F =




n∑

i=1

n∑

j=1

n∑

l=1

W 2
i,j,lA

2
i,j,l




1
2

.

For three matrices A ∈ Rn×m, U ∈ Rn×k, V ∈ Rk×m and a weight matrix W , from one perspective,
we have

‖(UV −A) ◦W‖2F =
n∑

i=1

‖(U iV −Ai) ◦W i‖22 =
n∑

i=1

‖(U iV −Ai)DW i‖22,

where W i denote the i-th row of matrix W , and DW i ∈ Rm×m denotes a diagonal matrix where
the j-th entry on diagonal is the j-th entry of vector W i. From another perspective, we have

‖(UV −A) ◦W‖2F =

m∑

j=1

‖(UVj −Aj) ◦Wj‖22 =

m∑

j=1

‖(UVj −Aj)DWj‖22,

where Wj denotes the j-th column of matrix W , and DWj ∈ Rn×n denotes a diagonal matrix where
the i-th entry on the diagonal is the i-th entry of vector Wj .

One of the key tools we use in this section is,

Lemma G.1 (Cramer’s rule). Let R be an n× n invertible matrix. Then, for each i ∈ [n], j ∈ [n],

(R−1)ji = det(R¬i¬j)/det(R),

where R¬i¬j is the matrix R with the i-th row and the j-th column removed.

G.2 r distinct faces in each dimension

Notice that in the matrix case, it is sufficient to assume that ‖A′‖F is upper bounded [RSW16].
Once we have that ‖A′‖F is bounded, without loss of generality, we can assume that U∗1 is an
orthonormal basis[CW15a, RSW16]. If U∗1 is not an orthonormal basis, then let U ′1R denote a QR
factorization of U∗1 , and then write U ′2 = RU∗2 . However, in the case of tensors we have to assume
that each factor ‖U∗i ‖F is upper bounded due to border rank issues (see, e.g., [DSL08]).

Theorem G.2. Given a 3rd order n×n×n tensor A and an n×n×n tensor W of weights with r
distinct faces in each of the three dimensions for which each entry can be written using O(nδ) bits,
for δ > 0, define OPT = infrank−k Ak‖W ◦ (Ak −A)‖2F . Let k ≥ 1 be an integer and let 0 < ε < 1.

If OPT > 0, and there exists a rank-k Ak = U∗1 ⊗U∗2 ⊗U∗3 tensor (with size n×n×n) such that
‖W ◦ (Ak − A)‖2F = OPT, and maxi∈[3] ‖U∗i ‖F ≤ 2O(nδ), then there exists an algorithm that takes
(nnz(A) + nnz(W) + n2Õ(rk2/ε))nO(δ) time in the unit cost RAM model with words of size O(log n)
bits10 and outputs three n× k matrices U1, U2, U3 such that

‖W ◦ (U1 ⊗ U2 ⊗ U3 −A)‖2F ≤ (1 + ε) OPT (71)

holds with probability 9/10.
10The entries of A and W are assumed to fit in nδ words.

135

Algorithm 37 Weighted Tensor Low-rank Approximation Algorithm when the Weighted Tensor
has r Distinct Faces in Each of the Three Dimensions.
procedure WeightedRDistinctFacesIn3Dimensions(A,W, n, r, k, ε) . Theorem G.2

for j = 1→ 3 do
sj ← O(k/ε).
Choose a sketching matrix Sj ∈ Rn2×sj .
for i = 1→ r do

Create k × s1 variables for matrix Pi,j ∈ Rk×sj .
end for
for i = 1→ n do

Write down (Ûj)
i = AjiDW j

1
SjP

>
j,i(Pj,iP

>
j,i)
−1.

end for
end for
Form ‖W ◦ (Û1 ⊗ Û2 ⊗ Û3 −A)‖2F .
Run polynomial system verifier.
return U1, U2, U3

end procedure

Proof. Note thatW has r distinct columns, rows, and tubes. Hence, each of the matricesW1,W2,W3

∈ Rn×n2 has at most r distinct columns, and at most r distinct rows. Let U∗1 , U∗2 , U∗3 ∈ Rn×k denote
the matrices satisfying ‖W ◦ (U∗1 ⊗ U∗2 ⊗ U∗3 − A)‖2F = OPT. We fix U∗2 and U∗3 , and consider a
flattening of the tensor along the first dimension,

min
U1∈Rn×k

‖(U1Z1 −A1) ◦W1‖2F = OPT,

where matrix Z1 = U∗>2 �U∗>3 has size k×n2 and for each i ∈ [k] the i-th row of Z1 is vec((U∗2)i⊗
(U∗3)i). For each i ∈ [n], let W i

1 denote the i-th row of n× n2 matrix W1. For each i ∈ [n], let DW i
1

denote the diagonal matrix of size n2× n2, where each diagonal entry is from the vector W i
1 ∈ Rn2 .

Without loss of generality, we can assume the first r rows of W1 are distinct. We can rewrite the
objective function along the first dimension as a sum of multiple regression problems. For any n×k
matrix U1,

‖(U1Z1 −A1) ◦W1‖2F =

n∑

i=1

‖U i1Z1DW i
1
−Ai1DW i

1
‖22. (72)

Based on the observation thatW1 has r distinct rows, we can group the n rows ofW 1 into r groups.
We use g1,1, g1,2, · · · , g1,r to denote r sets of indices such that, for each i ∈ g1,j , W i

1 = W j
1 . Thus we

can rewrite Equation (72),

‖(U1Z1 −A1) ◦W1‖2F =

n∑

i=1

‖U i1Z1DW i
1
−Ai1DW i

1
‖22

=

r∑

j=1

∑

i∈g1,j

‖U i1Z1DW i
1
−Ai1DW i

1
‖22.

We can sketch the objective function by choosing Gaussian matrices S1 ∈ Rn2×s1 with s1 = O(k/ε).
n∑

i=1

‖U i1Z1DW i
1
S1 −Ai1DW i

1
S1‖22.

136

Let Û1 denote the optimal solution of the sketch problem,

Û1 = arg min
U1∈Rn×k

n∑

i=1

‖U i1Z1DW i
1
S1 −Ai1DW i

1
S1‖22.

By properties of S1([RSW16]), plugging Û ∈ Rn×k into the original problem, we obtain,

n∑

i=1

‖Û i1Z1DW i
1
−Ai1DW i

1
‖22 ≤ (1 + ε) OPT .

Note that Û1 ∈ Rn×k also has the following form. For each i ∈ [n],

Û i1 = Ai1DW i
1
S1(Z1DW i

1
S1)†

= Ai1DW i
1
S1(Z1DW i

1
S1)>((Z1DW i

1
S1)(Z1DW i

1
S1)>)−1.

Note that W1 has r distinct rows. Thus, we only have r distinct DW i
1
. This implies that there are r

distinct matrices Z1DW i
1
S1 ∈ Rk×s1 . Using the definition of g1,j , for j ∈ [r], for each i ∈ g1,j ⊂ [n],

we have

Û i1 = Ai1DW i
1
S1(Z1DW i

1
S1)†

= Ai1DW j
1
S1(Z1DW j

1
S1)† by W i

1 = W j
1 ,

which means we only need to write down r different Z1DW j
1
S1. For each k × s1 matrix Z1DW j

1
S1,

we create k × s1 variables to represent it. Thus, we need to create rks1 variables to represent r
matrices,

{Z1DW 1
1
S1, Z1DW 2

1
S1, · · · , Z1DW r

1
S1}.

For simplicity, let P1,i ∈ Rk×s1 denote Z1DW i
1
S1. Then we can rewrite Û i ∈ Rk as follows,

Û i1 = Ai1DW i
1
S1P

>
1,i(P1,iP

>
1,i)
−1.

If P1,iP
>
1,i ∈ Rk×k has rank k, then we can use Cramer’s rule (Lemma G.1) to write down the inverse

of P1,iP
>
1,i. However, vector W i

1 could have many zero entries. Then the rank of P1,iP
>
1,i can be

smaller than k. There are two different ways to solve this issue.
One way is by using the argument from [RSW16], which allows us to assume that P1,iP

>
1,i ∈ Rk×k

has rank k.
The other way is straightforward: we can guess the rank. There are k possibilities. Let ti ≤ k

denote the rank of P1,i. Then we need to figure out a maximal linearly independent subset of rows
of P1,i. There are 2O(k) possibilities. Next, we need to figure out a maximal linearly independent
subset of columns of P1,i. We can also guess all the possibilities, which is at most 2O(k). Because
we have r different P1,i, the total number of guesses we have is at most 2O(rk). Thus, we can write
down (P1,iP

>
1,i)
−1 according to Cramer’s rule.

After Û1 is obtained, we will fix Û1 and U∗3 in the next round. We consider the flattening of the
tensor along the second direction,

min
U2∈Rn×k

‖(U2Z2 −A2) ◦W2‖2F ,

137

where n×n2 matrix A2 is obtained by flattening tensor A along the second dimension, k×n2 matrix
Z2 denotes Û>1 � U∗>3 , and n× n2 matrix W2 is obtained by flattening tensor W along the second
dimension. For each i ∈ [n], let W i

2 denote the i-th row of n × n2 matrix W2. For each i ∈ [n],
let DW i

1
denote the diagonal matrix which has size n2 × n2 and for which each entry is from vector

W i
2 ∈ Rn2 . Without loss of generality, we can assume the first r rows of W2 are distinct. We can

rewrite the objective function along the second dimension as a sum of multiple regression problems.
For any n× k matrix U2,

‖(U2Z2 −A2) ◦W2‖2F =
n∑

i=1

‖U i2Z2DW i
2
−Ai2DW i

2
‖22. (73)

Based on the observation thatW2 has r distinct rows, we can group the n rows ofW 2 into r groups.
We use g2,1, g2,2, · · · , g2,r to denote r sets of indices such that, for each i ∈ g2,j , W i

2 = W j
2 . Thus we

obtain,

‖(U2Z2 −A2) ◦W2‖2F =

n∑

i=1

‖U i2Z2DW i
2
−Ai2DW i

2
‖22

=

r∑

j=1

∑

i∈g2,j

‖U i2Z2DW i
2
−Ai2DW i

2
‖22.

We can sketch the objective function by choosing a Gaussian sketch S2 ∈ Rn2×s2 with s2 = O(k/ε).
Let Û2 denote the optimal solution to the sketch problem. Then Û2 has the form, for each i ∈ [n],

Û i2 = Ai2DW i
2
S2(Z2DW i

2
S2)†.

Similarly as before, we only need to write down r different matrices Z2DW i
2
S1, and for each of

them, create k × s2 variables. Let P2,i ∈ Rk×s2 denote Z2DW i
2
S2. By our guessing argument, we

can obtain Û2.
In the last round, we fix Û1 and Û2. We then write down Û3. Overall, by creating l = O(rk2/ε)

variables, we have rational polynomials Û1(x), Û2(x), Û3(x). Putting it all together, we can write
this objective function,

min
x∈Rl

‖(Û1(x)⊗ Û2(x)⊗ Û3(x)−A) ◦W‖2F .

s.t. h1,i(x) 6= 0, ∀i ∈ [r].

h2,i(x) 6= 0, ∀i ∈ [r].

h3,i(x) 6= 0, ∀i ∈ [r].

where h1,i(x) denotes the denominator polynomial related to a full rank sub-block of P1,i(x). By
a perturbation argument in Section 4 in [RSW16], we know that the h1,i(x) are nonzero. By
a similar argument as in Section 5 in [RSW16], we can show a lower bound on the cost of the
denominator polynomial h1,i(x). Thus we can create new bounded variables xl+1, · · · , x3r+l to
rewrite the objective function,

138

min
x∈Rl+3r

q(x)/p(x).

s.t. h1,i(x)xl+i = 0, ∀i ∈ [r].

h2,i(x)xl+r+i = 0, ∀i ∈ [r].

h3,i(x)xl+2r+i = 0,∀i ∈ [r].

p(x) =

r∏

i=1

h2
1,i(x)h2

2,i(x)h2
3,i(x)

Note that the degree of the above system is poly(kr) and all the equality constraints can be merged
into one single constraint. Thus, the number of constraints is O(1). The number of variables is
O(rk2/ε).

Using Theorem B.11 and a similar argument from Section 5 of [RSW16], we have that the
minimum nonzero cost is at least 2−n

δ2Õ(rk2/ε) . Combining the binary search explained in Sec-
tion C(similar techniques also can be found in Section 6 of [RSW16]) with the lower bound we
obtained, we can find the solution for the original problem in time,

(nnz(A) + nnz(W) + n2Õ(rk2/ε))nO(δ).

G.3 r distinct columns, rows and tubes

Lemma G.3. Let W ∈ Rn×n×n denote a tensor that has r distinct columns and r distinct rows,
then W has
(I) r distinct column-tube faces.
(II) r distinct row-tube faces.

Proof. Proof of Part (I). Without loss of generality, we consider the first (which is the bottom one)
column-row face. Assume it has r distinct rows and r distinct columns. We can re-order all the
column-tube faces to make sure that all the n columns in the bottom face have been split into r
continuous disjoint groups Ci, e.g., {C1, C2, · · · , Cr} = [n]. Next, we can re-order all the row-tube
faces to make sure that all the n rows in the bottom face have been split into r continuous disjoint
groups Ri, e.g., {R1, R2, · · · , Rr} = [n]. Thus, the new bottom face can be regarded as r×r groups,
and the number in each position of the same group is the same.

Suppose that the tensor has r+ 1 distinct column-tube faces. By the pigeonhole principle there
exist two different column-tube faces belonging to the same group Ci, for some i ∈ [r]. Note that
these two column-tube faces are the same by looking at the bottom (column-row) face. Since they
are distinct faces, there must exist one row vector v which is not in the bottom (column-row) face,
and it has a different value in coordinates belong to group Ci. Note that, considering the bottom
face, for each row vector, it has the same value over coordinates belonging to group Ci. But v has
different values in coordinates belong to group Ci. Also, note that the bottom (column-row) face
also has r distinct rows, and v is not one of them. This means there are at least r + 1 distinct
rows, which contradicts that there are r distinct rows in total. Thus, there are at most r distinct
column-tube faces.

Proof of Part (II). It is similar to Part (I).

139

(W1)i,(j−1)n+l = Wi,j,l

(W2)j,(l−1)n+i = Wi,j,l

(W3)l,(i−1)n+j = Wi,j,l

Figure 7: Let W denote a tensor that has columns(red), rows(green) and tubes(blue). For each
i ∈ [3], let Wi denote the matrix obtained by flattening tensor W along the i-th dimension.

C1 C2 C3

R1

R2

R3

W∗,∗,1 W∗,∗,2

· · · · · ·

W∗,∗,n

Figure 8: Each face W∗,∗,i is a column-row face. W∗,∗,1 is the bottom column-row face. r = 3. The
blue blocks represent column-tube faces, the red blocks represent column-tube faces.

Corollary G.4. Let W ∈ Rn×n×n denote a tensor that has r distinct columns, r distinct rows, and
r distinct rubes. Then W has r distinct column-tube faces, r distinct row-tube faces, and r distinct
column-row faces.

Proof. This follows by applying Lemma G.3 twice.

140

Thus, we obtain the same result as in Theorem G.2 by changing the assumption from r distinct
faces in each dimension to r distinct columns, r distinct rows and r distinct tubes.

G.4 r distinct columns and rows

The main difference between Theorem G.2 and Theorem G.5 is the running time. The first one
takes 2Õ(rk2/ε) time and the second one is slightly longer, 2Õ(r2k2/ε). By Lemma G.3, r distinct
columns in two dimensions implies r distinct faces in two of the three kinds of faces. Thus, the
following theorem also holds for r distinct columns in two dimensions.

Algorithm 38 Weighted Tensor Low-rank Approximation Algorithm when the Weighted Tensor
has r Distinct Faces in Each of the Two Dimensions.
procedure WeightedRDistinctFacesIn2Dimensions(A,W, n, r, k, ε) . Theorem G.5

for j = 1→ 3 do
sj ← O(k/ε).
Choose a sketching matrix Sj ∈ Rn2×sj .
if j 6= 3 then

for i = 1→ r do
Create k × s1 variables for matrix Pi,j ∈ Rk×sj .

end for
end if
for i = 1→ n do

Write down (Ûj)
i = AjiDW j

1
SjP

>
j,i(Pj,iP

>
j,i)
−1.

end for
end for
Form ‖W ◦ (Û1 ⊗ Û2 ⊗ Û3 −A)‖2F .
Run polynomial system verifier.
return U1, U2, U3

end procedure

Theorem G.5. Given a 3rd order n×n×n tensor A and an n×n×n tensor W of weights with r
distinct faces in two dimensions (out of three dimensions) such that each entry can be written using
O(nδ) bits for some δ > 0, define OPT = infrank−k Ak‖W ◦ (Ak − A)‖2F . For any k ≥ 1 and any
0 < ε < 1.

(I) If OPT > 0, and there exists a rank-k Ak = U∗1 ⊗U∗2 ⊗U∗3 tensor (with size n× n× n) such
that ‖W ◦ (Ak − A)‖2F = OPT, and maxi∈[3] ‖U∗i ‖F ≤ 2O(nδ), then there exists an algorithm that
takes (nnz(A) + nnz(W) + n2Õ(r2k2/ε))nO(δ) time in the unit cost RAM model with words of size
O(log n) bits11 and outputs three n× k matrices U1, U2, U3 such that

‖W ◦ (U1 ⊗ U2 ⊗ U3 −A)‖2F ≤ (1 + ε) OPT (74)

holds with probability 9/10.
(II) If OPT > 0, Ak does not exist, and there exist three n × k matrices U ′1, U

′
2, U

′
3 where each

entry can be written using O(nδ) bits and ‖W ◦ (U ′1 ⊗ U ′2 ⊗ U ′3 − A)‖2F ≤ (1 + ε/2) OPT, then we
can find U, V,W such that (74) holds.

11The entries of A and W are assumed to fit in nδ words.

141

(III) If OPT = 0, Ak exists, and there exists a solution U∗1 , U
∗
2 , U

∗
3 such that each entry of the

matrix can be written using O(nδ) bits, then we can obtain (74).
(IV) If OPT = 0, and there exist three n × k matrices U1, U2, U3 such that maxi∈[3] ‖U∗i ‖F ≤

2O(nδ) and

‖W ◦ (U1 ⊗ U2 ⊗ U3 −A)‖2F ≤ (1 + ε) OPT +2−Ω(nδ), (75)

then we can output U1, U2, U3 such that (75) holds.
(V) Further if Ak exists, we can output a number Z for which OPT ≤ Z ≤ (1 + ε) OPT.
For all the cases, the algorithm succeeds with probability at least 9/10.

Proof. By Lemma G.3, we have W has r distinct column-tube faces and r distinct row-tube faces.
By Claim G.7, we know that W has R = 2O(r log r) distinct column-row faces.

We use the same approach as in proof of Theorem G.2 (which is also similar to Section 8 of
[RSW16]) to create variables, write down the polynomial systems and add not equal constraints.
Instead of having 3r distinct denominators as in the proof of Theorem G.2, we have 2r +R.

We create l = O(rk2/ε) variables for {Z1DW 1
1
S1, Z1DW 2

1
S1, · · · , Z1DW r

1
S1}. Then we can write

down Û1 with r distinct denominators gi(x). Each gi(x) is non-zero in an optimal solution using
the perturbation argument in Section 4 in [RSW16]. We create new variables x2l+i to remove
the denominators gi(x), ∀i ∈ [r]. Then the entries of Û1 are polynomials as opposed to rational
functions.

We create l = O(rk2/ε) variables for {Z2DW 1
2
S2, Z2DW 2

2
S2, · · · , Z2DW r

2
S2}. Then we can write

down Û2 with r distinct denominators gr+i(x). Each gr+i(x) is non-zero in an optimal solution using
the perturbation argument in Section 4 in [RSW16]. We create new variables x2l+r+i to remove
the denominators gr+i(x), ∀i ∈ [r]. Then the entries of Û2 are polynomials as opposed to rational
functions.

Using Û1 and Û2 we can express Û3 with R distinct denominators fi(x), which are also non-zero
by using the perturbation argument in Section 4 in [RSW16], and using that W3 has at most this
number of distinct rows. Finally we can write the following optimization problem,

min
x∈R2l+2r

p(x)/q(x)

s.t. gi(x)x2l+i − 1 = 0,∀i ∈ [r]

gr+i(x)x2l+r+i − 1 = 0,∀i ∈ [r]

f2
j (x) 6= 0,∀j ∈ [R]

q(x) =

R∏

j=1

f2
j (x)

We then determine if there exists a solution to the above semi-algebraic set in time

(poly(k, r)R)O(rk2/ε) = 2Õ(r2k2/ε).

Using similar techniques from Section 5 of [RSW16], we can show a lower bound on the cost similar
to Section 8.3 of [RSW16], namely, the minimum nonzero cost is at least

2−n
δ2Õ(r2k2/ε)

.

142

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

W∗,∗,1 W∗,∗,2

· · · · · ·

W∗,∗,n

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

W∗,∗,1 W∗,∗,2

· · · · · ·

W∗,∗,n

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

W∗,∗,1 W∗,∗,2

· · · · · ·

W∗,∗,n

Figure 9: Each face W∗,∗,i is a column-row face. W∗,∗,1 is the bottom column-row face. r = 3. The
blue blocks represent |C3| column-tube faces. The green blocks represet |R3| row-tube faces. In
each column-row face, the intersection between blue faces and green faces is a size |R3|× |C3| block,
and all the entries in this block are the same.

Combining the binary search explained in Section C (a similar techniques also can be found in
Section 6 of [RSW16]) with the lower bound we obtained, we can find a solution for the original
problem in time

(nnz(A) + nnz(W) + n2Õ(r2k2/ε))nO(δ).

Remark G.6. Note that the running time for the Frobenius norm and for the `1 norm are of the
form poly(n) + exp(poly(k/ε)) rather than poly(n) · exp(k/ε). The reason is, we can use an input
sparsity reduction to reduce the size of the objective function from poly(n) to poly(k).

Claim G.7. Let W ∈ R denote a third order tensor that has r distinct columns and r distinct rows.
Then it has 2O(r log r) distinct column-row faces.

143

Proof. By similar arguments as in the proof of Lemma G.3, the bottom (column-row) face can be
split into r groups C1, C2, · · · , Cr based on r columns, and split into r groups R1, R2, · · · , Rr based
on rows. Thus, the bottom (column-row) face can be regarded as having r × r groups, and the
number in each position of the same group is the same.

We can assume that all the r2 blocks in the bottom column-row face have the same size. Other-
wise, we can expand the tensor to the situation that all the r2 blocks have the same size. Because
this small tensor is a sub-tensor of the big tensor, if the big tensor has at most t distinct column-row
faces, then the small tensor has at most t distinct column-row faces.

By Lemma G.3, we know that the tensor W has at most r distinct column-tube faces and row-
tube faces. Because it has r distinct column-tube faces, then all the faces belonging to coordinates
in Cr are the same. Thus, all the columns belonging to Cr and in the second column-row face are
the same. Similarly, we have that all the rows belonging to Rr and in the second column-row face
are the same. Thus we have that all the entries in block CR ∪ Rr and in the second column-row
faces are the same. Further, we can conclude, for every column-row face, for every Ci ∪ Rj block,
all the entries in the same block are the same.

The next observation is, if there exist r2 +1 different values in the tensor, then there exist either
r distinct columns or r distinct rows. Indeed, otherwise since we have r distinct columns, each
column has at most r distinct entries given our bound on the nunber of distinct rows. Thus, the r
distinct columns could have at most r2 distinct entries in total, a contradiction.

For each column-row face, there are at most r2 blocks, and the value in each block can have at
most r2 possibilities. Thus, overall we have at most (r2)r

2
= 2O(r2 log r) column-row faces.

By using different argument, we can improve the above bound. Note that we already show in
each column-row face of a tensor, it has r2 blocks, and all the values in each block have to be the
same. Since we have r distinct rows, we can fix the those r distinct rows. If we copy row v into
one row of Ri, then we have to copy row v into every row of Ri. This is because if Ri contains two
distinct rows, then there must exist a block Cj for which the entries in block Ri ∪Cj are not all the
same. Thus, for each row group, all the rows in that group are the same.

Now, for each column-row face, consider the leftmost r blocks, R1 ∪ C1, R2 ∪ C1, · · · , Rr ∪ C1.
There are at most r possible values in each block, because we have r distinct rows in total. Overall
the total number of possibilities for the leftmost r blocks is at most (r)r = 2O(r log r). Once the
leftmost r blocks are determined, the remaining r(r − 1) are also determined. This completes the
proof.

Also, notice that there is an example that has 2Ω(r log r) distinct column-row faces. For the
bottom column-row faces, there are r × r blocks for which all the blocks have the same size, the
blocks on the diagonal have all 1s, and all the other blocks contain 0s everywhere. For the later
column-row faces, we can arbitrarily permute this block diagonal matrix, and the total number of
possibilities is Ω(r!) ≥ 2Ω(r log r).

144

H Hardness

We first provide definitions and results for some fundamental problems in Section H.1. Section H.2
presents our hardness result for the symmetric tensor eigenvalue problem. Section H.3 presents
our hardness results for symmetric tensor singular value problems, computing tensor spectral norm,
and rank-1 approximation. We improve Håstad’s NP-hardness[Hås90] result for tensor rank in
Section H.4. We also show a better hardness result for robust subspace approximation in Section H.5.
Finally, we discuss several other tensor hardness results that are implied by matrix hardness results
in Section H.6.

H.1 Definitions

We first provide the definitions for 3SAT , ETH , MAX-3SAT , MAX-E3SAT and then state some
fundamental results related to those definitions.

Definition H.1 (3SAT problem). Given n variables and m clauses in a conjunctive normal form
CNF formula with the size of each clause at most 3, the goal is to decide whether there exists an
assignment to the n Boolean variables to make the CNF formula be satisfied.

Hypothesis H.2 (Exponential Time Hypothesis (ETH) [IPZ98]). There is a δ > 0 such that the
3SAT problem defined in Definition H.1 cannot be solved in O(2δn) time.

Definition H.3 (MAX-3SAT). Given n variables andm clauses, a conjunctive normal form CNF for-
mula with the size of each clause at most 3, the goal is to find an assignment that satisfies the largest
number of clauses.

We use MAX-E3SAT to denote the version of MAX-3SAT where each clause contains exactly 3
literals.

Theorem H.4 ([Hås01]). For every δ > 0, it is NP-hard to distinguish a satisfiable instance of
MAX-E3SAT from an instance where at most a 7/8 + δ fraction of the clauses can be simultaneously
satisfied.

Theorem H.5 ([Hås01, MR10]). Assume ETH holds. For every δ > 0, there is no 2o(n
1−o(1)) time

algorithm to distinguish a satisfiable instance of MAX-E3SAT from an instance where at most a
fraction 7/8 + δ of the clauses can be simultaneously satisfied.

We use MAX-E3SAT(B) to denote the restricted special case of MAX-3SAT where every variable
occurs in at most B clauses. Håstad [Hås00] proved that the problem is approximable to within
a factor 7/8 + 1/(64B) in polynomial time, and that it is hard to approximate within a factor
7/8 + 1/(logB)Ω(1). In 2001, Trevisan improved the hardness result,

Theorem H.6 ([Tre01]). Unless RP=NP, there is no polynomial time (7/8 + 5/
√
B)-approximate

algorithm for MAX-E3SAT(B) .

Theorem H.7 ([Hås01, Tre01, MR10]). Unless ETH fails, there is no 2o(n
1−o(1)) time (7/8+5/

√
B)-

approximate algorithm for MAX-E3SAT(B) .

Theorem H.8 ([LMS11]). Unless ETH fails, there is no 2o(n) time algorithm for the Independent
Set problem.

Definition H.9 (MAX-CUT decision problem). Given a positive integer c∗ and an unweighted graph
G = (V,E) where V is the set of vertices of G and E is the set of edges of G, the goal is to determine
whether there is a cut of G that has at least c∗ edges.

145

Note that Feige’s original assumption[Fei02] states that there is no polynomial time algorithm
for the problem in Assumption H.10. We do not know of any better algorithm for the problem in
Assumption H.10 and have consulted several experts12 about the assumption who do not know a
counterexample to it.

Assumption H.10 (Random Exponential Time Hypothesis). Let c > ln 2 be a constant. Consider
a random 3SAT formula on n variables in which each clause has 3 literals, and in which each of the
8n3 clauses is picked independently with probability c/n2. Then any algorithm which always outputs
1 when the random formula is satisfiable, and outputs 0 with probability at least 1/2 when the random
formula is unsatisfiable, must run in 2c

′n time on some input, where c′ > 0 is an absolute constant.

The 4SAT-version of the above random-ETH assumption has been used in [GL04] and [RSW16]
(Assumption 1.3).

H.2 Symmetric tensor eigenvalue

Definition H.11 (Tensor Eigenvalue [HL13]). An eigenvector of a tensor A ∈ Rn×n×n is a nonzero
vector x ∈ Rn such that

n∑

i=1

n∑

j=1

Ai,j,kxixj = λxk,∀k ∈ [n]

for some λ ∈ R, which is called an eigenvalue of A.

Theorem H.12 ([N+03]). Let G = (V,E) on v vertices have stability number (the size of a maxi-
mum independent set) α(G). Let n = v+ v(v−1)

2 and Sn−1 = {(x, y) ∈ Rv×Rv(v−1)/2 : ‖x‖22 +‖y‖22 =
1}. Then,

√
1− 1

α(G)
= 3
√

3/2 max
(x,y)∈Sn−1

∑

i<j,(i,j)/∈E

xixjyi,j .

For any graph G(V,E), we can construct a symmetric tensor A ∈ Rn×n×n. For any 1 ≤ i < j <
k ≤ v, let

Ai,j,k =

{
1 1 ≤ i < j ≤ v, k = v + φ(i, j), (i, j) /∈ E,
0 otherwise,

where φ(i, j) = (i− 1)v− i(i− 1)/2 + j − i is a lexicographical enumeration of the v(v− 1)/2 pairs
i < j. For the other cases i < k < j, · · · , k < j < i, we set

Ai,j,k = Ai,k,j = Aj,i,k = Aj,k,i = Ak,i,j = Ak,j,i.

If two or more indices are equal, we set Ai,j,k = 0. Thus tensor T has the following property,

A(z, z, z) = 6
∑

i<j,(i,j)/∈E

xixjyi,j ,

where z = (x, y) ∈ Rn.
12Personal communication with Russell Impagliazzo and Ryan Williams.

146

Thus, we have

λ = max
z∈Sn−1

A(z, z, z) = max
(x,y)∈Sn−1

6
∑

i<j,(i,j)/∈E

xixjyi,j .

Furthermore, λ is the maximum eigenvalue of A.

Theorem H.13. Unless ETH fails, there is no 2o(
√
n) time to approximate the largest eigenvalue of

an n-dimensional symmetric tensor within (1±Θ(1/n)) relative error.

Proof. The additive error is at least

√
1− 1/v −

√
1− 1/(v − 1) =

1/(v − 1)− 1/v√
1− 1/v +

√
1− 1/(v − 1)

& 1/(v − 1)− 1/v ≥ 1/v2.

Thus, the relative error is (1 ± Θ(1/v2)). By the definition of n, we know n = Θ(v2). Assuming
ETH , there is no 2o(v) time algorithm to compute the clique number of G. Because the clique
number of G is α(G), there is no 2o(v) time algorithm to compute α(G). Furthermore, there is no
2o(v) time algorithm to approximate the maximum eigenvalue within (1 ± Θ(1/v2)) relative error.
Thus, we complete the proof.

Corollary H.14. Unless ETH fails, there is no polynomial running time algorithm to approximate
the largest eigenvalue of an n-dimensional tensor within (1±Θ(1/ log2+γ(n))) relative-error, where
γ > 0 is an arbitrarily small constant.

Proof. We can apply a padding argument here. According to Theorem H.13, there is a d-dimensional
tensor such that there is no 2o(

√
d) time algorithm that can give a (1 + Θ(1/d)) relative error

approximation. If we pad 0s everywhere to extend the size of the tensor to n = 2d
(1−γ′)/2 , where

γ′ > 0 is a sufficiently small constant, then poly(n) = 2o(
√
d), so d = log2+O(γ′)(n). Thus, it means

that there is no polynomial running time algorithm which can output a (1 + 1/(log2+γ))-relative
approximation to the tensor which has size n.

H.3 Symmetric tensor singular value, spectral norm and rank-1 approximation

[HL13] defines two kinds of singular values of a tensor. In this paper, we only consider the following
kind:

Definition H.15 (`2 singular value in [HL13]). Given a 3rd order tensor A ∈ Rn1×n2×n3, the
number σ ∈ R is called a singular value and the nonzero u ∈ Rn1 ,v ∈ Rn2,w ∈ Rn3 are called
singular vectors of A if

n2∑

j=1

n3∑

k=1

Ai,j,kvjwk = σui,∀i ∈ [n1]

n1∑

i=1

n3∑

k=1

Ai,j,kuiwk = σvj ,∀j ∈ [n2]

n1∑

i=1

n2∑

j=1

Ai,j,kuivj = σwk,∀k ∈ [n3].

147

Definition H.16 (Spectral norm [HL13]). The spectral norm of a tensor A is:

‖A‖2 = sup
x,y,z 6=0

|A(x, y, z)|
‖x‖2‖y‖2‖z‖2

Notice that the spectral norm is the absolute value of either the maximum value of A(x,y,z)
‖x‖2‖y‖2‖z‖2

or the minimum value of it. Thus, it is an `2-singular value of A. Furthermore, it is the maximum
`2-singular value of A.

Theorem H.17 ([Ban38]). Let A ∈ Rn×n×n be a symmetric 3rd order tensor. Then,

‖A‖2 = sup
x,y,z 6=0

A(x, y, z)

‖x‖2‖y‖2‖z‖2
= sup

x 6=0

|A(x, x, x)|
‖x‖32

.

It means that if a tensor is symmetric, then its largest eigenvalue is the same as its largest
singular value and its spectral norm. Then, by combining with Theorem H.13, we have the following
corollary:

Corollary H.18. Unless ETH fails,

1. There is no 2o(
√
n) time algorithm to approximate the largest singular value of an n-dimensional

symmetric tensor within (1 + Θ(1/n)) relative-error.

2. There is no 2o(
√
n) time algorithm to approximate the spectral norm of an n-dimensional sym-

metric tensor within (1 + Θ(1/n)) relative-error.

By Corollary H.14, we have:

Corollary H.19. Unless ETH fails,

1. There is no polynomial time algorithm to approximate the largest singular value of an n-
dimensional tensor within (1 + Θ(1/ log2+γ(n))) relative-error, where γ > 0 is an arbitrarily
small constant.

2. There is no polynomial time algorithm to approximate the spectral norm of an n-dimensional
tensor within (1+Θ(1/ log2+γ(n))) relative-error, where γ > 0 is an arbitrarily small constant.

Now, let us consider Frobenius norm rank-1 approximation.

Theorem H.20 ([Ban38]). Let A ∈ Rn×n×n be a symmetric 3rd order tensor. Then,

min
σ≥0,‖u‖2=‖v‖2=‖w‖2=1

‖A− σu⊗ v ⊗ w‖F = min
λ≥0,‖v‖2=1

‖A− λv ⊗ v ⊗ v‖F .

Furthermore, the optimal σ and λ may be chosen to be equal.

Notice that

‖A− σu⊗ v ⊗ w‖2F = ‖A‖2F − 2σA(u, v, w) + σ2‖u⊗ v ⊗ w‖2F .
Then, if ‖u‖2 = ‖v‖2 = ‖w‖2 = 1, we have:

‖A− σu⊗ v ⊗ w‖2F = ‖A‖2F − 2σA(u, v, w) + σ2.

When A(u, v, w) = σ, then the above is minimized.
Thus, we have:

min
σ≥0,‖u‖2=‖v‖2=‖w‖2=1

‖A− σu⊗ v ⊗ w‖2F + ‖A‖22 = ‖A‖2F .

It is sufficient to prove the following theorem:

148

Theorem H.21. Given A ∈ Rn×n×n, unless ETH fails, there is no 2o(
√
n) time algorithm to compute

u′, v′, w′ ∈ Rn such that

‖A− u′ ⊗ v′ ⊗ w′‖2F ≤ (1 + ε) min
u,v,w∈Rn

‖A− u⊗ v ⊗ w‖2F ,

where ε = O(1/n2).

Proof. Let A ∈ Rn×n×n be the same hard instance mentioned in Theorem H.12. Notice that
each entry of A is either 0 or 1. Thus, minu,v,w∈Rn ‖A − u ⊗ v ⊗ w‖2F ≤ ‖A‖2F . Notice that
Theorem H.12 also implies that it is hard to distinguish the two cases ‖A‖2 ≤ 2

√
2/3 ·

√
1− 1/c or

‖A‖2 ≥ 2
√

2/3 ·
√

1− 1/(c+ 1) where c is an integer which is no greater than
√
n. So the difference

between (2
√

2/3 ·
√

1− 1/c)2 and (2
√

2/3 ·
√

1− 1/(c+ 1))2 is at least Θ(1/n). Since ‖A‖2F is at
most n (see construction of A in the proof of Lemma H.12), Θ(1/n) is an ε = O(1/n2) fraction of
minu,v,w∈Rn ‖A− u⊗ v ⊗ w‖2F . Because

min
u,v,w∈Rn

‖A− u⊗ v ⊗ w‖2F + ‖A‖22 = ‖A‖2F ,

if we have a 2o(
√
n) time algorithm to compute u′, v′, w′ ∈ Rn such that

‖A− u′ ⊗ v′ ⊗ w′‖2F ≤ (1 + ε) min
u,v,w∈Rn

‖A− u⊗ v ⊗ w‖2F

for ε = O(1/n2), it will contradict the fact that we cannot distinguish whether ‖A‖2 ≤ 2
√

2/3 ·√
1− 1/c or ‖A‖2 ≥ 2

√
2/3 ·

√
1− 1/(c+ 1).

Corollary H.22. Given A ∈ Rn×n×n, unless ETH fails, for any ε for which 1
2 ≥ ε ≥ c/n2 where c

is any constant, there is no 2o(ε
−1/4) time algorithm to compute u′, v′, w′ ∈ Rn such that

‖A− u′ ⊗ v′ ⊗ w′‖2F ≤ (1 + ε) min
u,v,w∈Rn

‖A− u⊗ v ⊗ w‖2F .

Proof. If ε = Ω(1/n2), it means that n = Ω(1/
√
ε). Then, we can construct a hard instance B

with size m ×m ×m where m = Θ(1/
√
ε), and we can put B into A, and let A have zero entries

elsewhere. Since B is hard, i.e., there is no 2o(m
−1/2) = 2o(ε

−1/4) running time to compute a rank-1
approximation to B, this means there is no 2o(ε

−1/4) running time algorithm to find an approximate
rank-1 approximation to A.

Corollary H.23. Unless ETH fails, there is no polynomial time algorithm to approximate the best
rank-1 approximation of an n-dimensional tensor within (1 + Θ(1/ log2+γ(n))) relative-error, where
γ > 0 is an arbitrarily small constant.

Proof. We can apply a padding argument here. According to Theorem H.21, there is a d-dimensional
tensor such that there is no 2o(

√
d) time algorithm which can give a (1 + Θ(1/d4)) relative approxi-

mation. Then, if we pad with 0s everywhere to extend the size of the tensor to n = 2d
(1−γ′)/2 where

γ′ > 0 is a sufficiently small constant, then poly(n) = 2o(
√
d), and d4 = log2+O(γ′)(n). Thus, it

means that there is no polynomial time algorithm which can output a (1+1/(log2+γ))-relative error
approximation to the tensor which has size n.

H.4 Tensor rank is hard to approximate

This section presents the hardness result for approximating tensor rank under ETH . According
to our new result, we notice that not only deciding the tensor rank is a hard problem, but also
approximating the tensor rank is a hard problem. This therefore strengthens Håstad’s NP-Hadness
[Hås90] for computing tensor rank.

149

x1

x2

x3

x4

x5

x6

x7

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

Figure 10: Cover number. For a 3SAT instance with n variables and m clauses, we can draw a
bipartite graph which has n nodes on the left and m nodes on the right. Each node (blue) on the
left corresponds to a variable xi, each node (green) on the right corresponds to a clause Cj . If either
xi or xi belongs to clause Cj , then we draw a line between these two nodes. Consider an input
string y ∈ {0, 1}7. There exists some unsatisfied clauses with respect to this input string y. For
for example, let C1, C2 and C3 denote those unsatisfied clauses. We want to pick a smallest set of
nodes on the left partition of the graph to guarantee that for each unsatisfied clause in the right
partition, there exists a node on the left to cover it. The cover number is defined to be the smallest
such number over all possible input strings.

H.4.1 Cover number

Before getting into the details of the reduction, we provide a definition of an important concept
called the “cover number” and discuss the cover number for the MAX-E3SAT(B) problem.

Definition H.24 (Cover number). For any 3SAT instance S with n variables and m clauses, we
are allowed to assign one of three values {0, 1, ∗} to each variable. For each clause, if one of the
literals outputs true, then the clause outputs true. For each clause, if the corresponding variable of
one of the literals is assigned to ∗, then the clause outputs true. We say y ∈ {0, 1}n is a string, and
z ∈ {0, 1, ∗}n is a star string. For an instance S, if there exists a string y ∈ {0, 1}n that causes all
the clauses to be true, then we say that S is satisfiable, otherwise it is unsatisfiable. For an instance
S, let ZS denote the set of star strings which cause all of the clauses of S to be true. For each star
string z ∈ {0, 1, ∗}n, let star(z) denote the number of ∗s in the star-string z. We define the “cover
number” of instance S to be

cover-number(S) = min
z∈ZS

star(z).

Notice that for a satisfiable 3SAT instance S, the cover number p is 0. Also, for any unsatisfiable
3SAT instance S, the cover number p is at least 1. This is because for any input string, there exists
at least one clause which cannot be satisfied. To fix that clause, we have to assign ∗ to a variable

150

belonging to that clause. (Assigning ∗ to a variable can be regarded as assigning both 0 and 1 to a
variable)

Lemma H.25. Let S denote a MAX-E3SAT(B) instance with n variables and m clauses and S
suppose S is at most 7/8 +A satisfiable, where A ∈ (0, 1/8). Then the cover number of S is at least
(1/8−A)m/B.

Proof. For any input string y ∈ {0, 1}n, there exists at least (1/8 − A)m clauses which are not
satisfied. Since each variable appears in at most B clauses, we need to assign ∗ to at least (1/8 −
A)m/B variables. Thus, the cover number of S is at least (1/8−A)m/B.

We say x1, x2, · · · , xn are variables and x1, x1, x2, x2, · · · , xn, xn are literals.

Definition H.26. For a list of clauses C and a set of variables P , if for each clause, there exists
at least one literal such that the corresponding variable of that literal belongs to P , then we say P
covers L.

H.4.2 Properties of 3SAT instances

Fact H.27. For any 3SAT instance S with n variables and m = Θ(n) clauses, let c > 0 denote a
constant. If S is (1−c)m satisfiable, then let y ∈ {0, 1}n denote a string for which S has the smallest
number of unsatisfiable clauses. Let T denote the set of unsatisfiable clauses and let b denote the
number of variables in T . Then Ω((cm)1/3) ≤ b ≤ O(cm).

Proof. Note that in S, there is no duplicate clause. Let T denote the set of unsatisfiable clauses by
assigning string y to S. First, we can show that any two literals xi, xi cannot belong to T at the
same time. If xi and xi belong to the same clause, then that clause must be an “always” satisfiable
clause. If xi and xi belong to different clauses, then one of the clauses must be satisfiable. This
contradicts the fact that that clause belongs to T . Thus, we can assume that literals x1, x2, · · · , xb
belong to T .

There are two extreme cases: one is that each clause only contains three literals and each literal
appears in exactly one clause in T . Then b = 3cm. The other case is that each clause contains
3 literals, and each literal appears in as many clauses as possible. Then

(
b
3

)
= cm, which gives

b = Θ((cm)1/3).

Lemma H.28. For a random 3SAT instance, with probability 1−2−Ω(logn log logn) there is no literal
appearing in at least log n clauses.

Proof. By the property of random 3SAT , for any literal x and any clause C, the probability that x
appears in C is 3

2n , i.e., Pr[x ∈ C] = 3
2n = Θ(1/n). Let p denote this probability. For any literal x,

151

the probability of x appearing in at least log n clauses (out of m clauses) is

Pr[x appearing in ≥ log n clauses]

=

m∑

i=logn

(
m

i

)
pi(1− p)m−i

=

m/2∑

i=logn

(
m

i

)
pi(1− p)m−i +

m∑

i=m/2

(
m

i

)
pi(1− p)m−i

≤
m/2∑

i=logn

(em/i)ipi +
m∑

i=m/2

(
m

i

)
pi by (1− p) ≤ 1,

(
m

i

)
≤ (em/i)i

≤ (Θ(1/ log n))logn + 2 · (2e)m/2 ·Θ(1/n)m/2

≤ 2−Ω(logn·log logn).

Taking a union bound over all the literals, we complete the proof,

Pr[@ x appearing in ≥ log n clauses] ≥ 1− 2−Ω(logn log logn).

Lemma H.29. For a sufficiently large constant c′ > 0 and a constant c > 0, for any random
3SAT instance which has n variables and m = c′n clauses, suppose it is (1− c)m satisfiable. Then
with probability 1 − 2−Ω(logn log logn), for all input strings y, among the unsatisfied clauses, each
literal appears in O(log n) places.

Proof. This follows by Lemma H.28.

Next, we show how to reduce the O(log n) to O(1).

Lemma H.30. For a sufficiently large constant c, for any random 3SAT instance that has n variables
and m = cn clauses, for any constant B ≥ 1, b ∈ (0, 1), with probability at least 1− 9m

Bbn , there exist
at least (1− b)m clauses such that each variable (in these (1− b)m clauses) only appears in at most
B clauses (out of these (1− b)m clauses).

Proof. For each i ∈ [m], we use zi to denote the indicator variable such that it is 1, if for each
variable in the ith clause, it appears in at most a clauses. Let B ∈ [1,∞) denote a sufficiently large
constant, which we will decide upon later.

For each variable x, the probability of it appearing in the i-th clause is 3
n . Then we have

E[# clauses that contain x] =
m∑

i=1

E[i-th clause contains x] =
3m

n

By Markov’s inequality,

Pr[# clauses that contain x ≥ a] ≤ E[# clauses that contain x]/B =
3m

Bn

152

By a union bound, we can compute E[zi] ,

E[zi] = Pr[zi = 1]

≥ 1− 3 Pr[one variable in i-th clause appearing ≥ B clauses]

≥ 1− 9m

Bn
.

Furthermore, we have

E[z] = E[
m∑

i=1

zi] =
m∑

i=1

E[zi] ≥ (1− 9m

Bn
)m.

Note that z ≤ m. Thus E[z] ≤ m. Let b ∈ (0, 1) denote a sufficiently small constant. We can show

Pr[m− z ≥ bm] ≤ E[m− z]
bm

=
m−E[z]

bm

≤ m− (1− 9m
Bn)m

bm

=
9m

Bbn
.

This implies that with probability at least 1 − 9m
Bbn , we have m − z ≤ bm. Notice that in random-

ETH , m = cn for a constant c. Thus, by choosing a sufficiently large constant B (which is a
function of c, b), we can obtain arbitrarily large constant success probability.

H.4.3 Reduction

We reduce 3SAT to tensor rank by following the same construction in [Hås90]. To obtain a stronger
hardness result, we use the property that each variable only appears in at most B (some constant)
clauses and that the cover number of an unsatisfiable 3SAT instance is large. Note that both MAX-
E3SAT(B) instances and random-ETH instances have that property. Also each MAX-E3SAT(B) is
also a 3SAT instance. Thus if the reduction holds for 3SAT , it also holds for MAX-E3SAT(B) , and
similarly for random-ETH .

Recall the definition of 3SAT : 3SAT is the problem of given a Boolean formula of n variables
in CNF form with at most 3 variables in each of the m clauses, is it possible to find a satisfying
assignment to the formula? We say x1, x2, · · · , xn are variables and x1, x1, x2, x2, · · · , xn, xn are
literals. We transform this to the problem of computing the rank of a tensor of size n1 × n2 × n3

where n1 = 2 +n+ 2m, n2 = 3n and n3 = 3n+m. T has the following n3 column-row faces, where
each of the faces is an m1 × n2 matrix,

• n variable matrices Vi ∈ Rn1×n2 . It has a 1 in positions (1, 2i− 1) and (2, 2i) while all other
elements are 0.

• n help matrices Si ∈ Rn1×n2 . It has a 1 position in (1, 2n+ i) and is 0 otherwise.

• n help matrices Mi ∈ Rn1×n2 . It has a 1 in positions (1, 2i− 1), (2 + i, 2i) and (2 + i, 2n+ i)
and is 0 otherwise.

153

Vi

2i− 1
2i

1
1

2n n

2

n

2m

Si

2n+ i

1

2n n

2

n

2m

Mi

2i− 1
2i 2n+ i

1

1 1

2n n

2

n

2m

Cl

ul,1

ul,1 − ul,2

ul,1 − ul,3

2n n

2

n

2m

Figure 11: There are 3n + m column-row faces, Vi,∀i ∈ [n], Si,∀i ∈ [n], Mi,∀i ∈ [n], Cl,∀l ∈ [m].
In face Cl, each ul,j is either xi or xi where xi = e2i−1 and xi = e2i−1 + e2i.

• m clause matrices Cl ∈ Rn1×n2 . Suppose the clause cl contains the literals ul,1, ul,2 and ul,3.
For each j ∈ [3], ul,j ∈ {x1, x2, · · · , xn, x1, x2, · · · , xn}. Note that xi, xi are the literals of the
3SAT formula. We can also think of xi, xi as length 3n vectors. Let xi denote the vector that
has a 1 in position 2i− 1, i.e., xi = e2i−1. Let xi denote the vector that has a 1 in positions
2i− 1 and 2i, xi = e2i−1 + e2i.

– Row 1 is the vector ul,1 ∈ R3n,

– Row 2 + n+ 2l − 1 is the vector ul,1 − ul,2 ∈ R3n,

– Row 2 + n+ 2l is the vector ul,1 − ul,3 ∈ R3n.

154

First, we can obtain Lemma H.31 which follows by Lemma 2 in [Hås90]. For completeness, we
provide a proof.

Lemma H.31. If the formula is satisfiable, then the constructed tensor has rank at most 4n+ 2m.

Proof. We will construct 4n+ 2m rank-1 matrices V (1)
i , V

(2)
i , S(1)

i , M (1)
i , C(1)

l and C(2)
l . Then the

goal is to show that for each matrix in the set

{V1, V2, · · · , Vn, S1, S2, · · · , Sn,M1,M2, · · · ,Mn, C1, C2, · · · , Cm},

it can be written as a linear combination of these constructed matrices.

• Matrices V (1)
i and V (2)

i . V (1)
i has the first row equal to xi iff αi = 1 and otherwise xi. All the

other rows are 0. We set V (2)
i = Vi − V (1)

i .

• Matrices S(1)
i . S(1)

i = Si.

• Matrices M (1)
i .

M
(1)
i =

{
Mi − V (1)

i if αi = 1

Mi − V (1)
i − Si if αi = 0

• Matrices C(1)
l and C(2)

l . Let xi = αi be the assignment that makes the clause cl true. Then
Cl − V (1)

i has rank 2, since either it has just two nonzero rows (in the case where xi is the
first variable in the clause) or it has three nonzero rows of which two are equal. In both cases
we just need two additional rank 1 matrices.

Once the 3SAT instance S is unsatisfiable, then its cover number is at least 1. For each unsatis-
fiable 3SAT instance S with cover number p, we can show that the constructed tensor has rank at
most 4n+ 2m+O(p) and also has rank at least 4n+ 2m+ Ω(p). We first prove an upper bound,

Lemma H.32. For a 3SAT instance S, let y ∈ {0, 1} denote a string such that S(y) has a set L that
contains unsatisfiable clauses. Let p denote the smallest number of variables that cover all clauses
in L. Then the constructed tensor T has rank at most 4n+ 2m+ p.

Proof. Let y denote a length-n Boolean string (α1, α2, · · · , αn). Based on the assignment y, all the
clauses of S can be split into two sets: L contains all the unsatisfied clauses and L contains all the
satisfied clauses. We use set P to denote a set of variables that covers all the clauses in set L. Let
p = |P |. We will construct 4n+ 2m+ p rank-1 matrices V (1)

i , V
(2)
i , S(1)

i , M (1)
i , ∀i ∈ [n], C(1)

l , C(2)
l ,

∀l ∈ [m], and V (3)
j , ∀j ∈ P . Then the goal is to show that the Vi, Si,Mi and Cl can be written as

linear combinations of these constructed matrices.

• Matrices V (1)
i and V

(2)
i . V (1)

i has first row equal to xi iff αi = 1 and otherwise xi. All the
other rows are 0. We set V (2)

i = Vi − V (1)
i .

• Matrices V (3)
j . For each j ∈ P , V (3)

j has the first row equal to xi iff αi = 0 and otherwise xi.

• Matrices S(1)
i . S(1)

i = Si.

155

V
(1)
i xi = 1

2i− 1

1

2n n

2

n

2m

V
(2)
i xi = 12i

1

2n n

2

n

2m

M
(1)
i xi = 12i 2n+ i

1 1

2n n

2

n

2m

V
(1)
i xi = 0

2i− 1
2i

1 1

2n n

2

n

2m

V
(2)
i xi = 02i

−1
1

2n n

2

n

2m

M
(1)
i xi = 02i 2n+ i

−1 −1

1 1

2n n

2

n

2m

Figure 12: Two possibilities for V (1)
i , ∀i ∈ [n], V (2),∀i ∈ [n], M (1)

i , ∀i ∈ [n].

• Matrices M (1)
i .

M
(1)
i =

{
Mi − V (1)

i if αi = 1

Mi − V (1)
i − Si if αi = 0

• Matrices C(1)
l and C(2)

l .

– For each l /∈ L, clause cl is satisfied according to assignment y. Let xi = αi be the
assignment that makes the clause cl true. Then Cl − V (1)

i has rank 2, since either it has
just two nonzero rows (in the case where xi is the first variables in the clause) or it has
three nonzero rows of which two are equal. In both cases we just need two additional
rank 1 matrices.

– For each l ∈ L. It means clause cl is unsatisfied according to assignment y. Let xj1 = αj1 ,
xj2 = αj2 , xj3 = αj3 be an assignment that makes the clause cl false. In other words,
one of j1, j2, j3 must be P according to the definition that P covers L. Then matrix
Cl − V (3)

j1
has rank 2, since either it has just two nonzero rows (in the case where xj1 is

the first variables in the clause) or it has three nonzero rows of which two are equal. In
both cases we just need two additional rank 1 matrices.

156

Ṽi, i ∈ [n]

S̃i, i ∈ [n]

M̃i, i ∈ [n]

C̃l, l ∈ [m]

1

1

1

1 βi,1

βi,2

βi,1

βi,2

(1 + γl,1 + γl,2)ul,1 − γl,1ul,2 − γl,2ul,3
(γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3

2i-1 2i 2n+ i

2n n

Figure 13: Ṽi,S̃i,M̃i,C̃l.

We finish the proof by taking the P that has the smallest size.

Further, we have:

Corollary H.33. For a 3SAT instance S, let p denote the cover number of S, then the constructed
tensor T has rank at most 4n+ 2m+ p.

Proof. This follows by applying Lemma H.32 to all the input strings and the definition of cover
number (Definition H.24).

We can split the tensor T ∈ R(2+n+3m)×3n×(3n+m) into two sub-tensors, one is T1 ∈ R2×3n×(3n+m)

(that contains the first two row-tube faces of T and linear combination of the remaining 2m row-
tube faces of T), and the other is T2 ∈ R(n+2m)×3n×(3n+m) (that contains the next n+ 2m row-tube
faces of T). We first analyze the rank of T1 and then analyze the rank of T2.

Claim H.34. The rank of T2 is n+ 2m.

Proof. According to Figure 11, the nonzero rows are distributed in n+m fully separated sub-tensors.
It is obvious that the rank of each one of those n sub-tensors is 1, and the rank of each of those m
sub-tensors is 2. Thus, overall, the rank T2 is n+ 2m.

To make sure rank(T) = rank(T1) + rank(T2), the T1 ∈ R2×3n×(3n+m) can be described as the
following 3n+m column-row faces, and each of the faces is a 2× 3n matrix.

• Matrices Ṽi, ∀i ∈ [n]. The two rows are from the first two rows of Vi in Figure 11, i.e., the
first row is e2i−1 and the second row is e2i.

• Matrices S̃i, ∀i ∈ [n]. The two rows are from the first two rows of Si in Figure 11, i.e., the
first row is e2n+i and the second row is zero everywhere else.

• Matrices M̃i,∀i ∈ [n]. The first row is e2i−1 + βi,1(e2i + e2n+i), while the second row is
βi,2(e2i + e2n+i).

• Matrices C̃l, ∀i ∈ [m]. The first row is (1 + γl,1 + γl,2)ul,1 − γl,1ul,2 − γl,2ul,3 and the second is
(γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3,

157

Ai, i ∈ [n]

An+i, i ∈ [p]

1

1

unknown

1 βi,1

βi,2

unknown

βi,2

2i-1 2i 2n+ i

2n p

B2i−1, i ∈ [p]

B2i, i ∈ [p]

B2i−1, i ∈ [n]\[p]

B2i, i ∈ [n]\[p]

B2n+i, i ∈ [p]

1 1

1

βi,1

βi,2

1

1

unknown

βi,2

i(≤ p) i(> p) n+ i

n p

Figure 14: There are n + p matrices Ai ∈ R2×(2n+p), ∀i ∈ [n + p] and 2n + p matrices Bi ∈
R2×(n+p),∀i ∈ [2n+p]. Tensor A and tensor B represet the same tensor, and for each i ∈ [n+p], j ∈
[2], l ∈ [2n+ p], (Ai)j,l = (Bl)j,i.

where for each i ∈ [3n], we use vector ei to denote a length 3n vector such that it only has a 1 in
position i and 0 otherwise. β, γ are variables. The goal is to show a lower bound for,

rank
β,γ

(T1).

Lemma H.35. Let P denote the set {i | the second row of matrix M̃i is nonzero, ∀i ∈ [n]}. Then
the rank of T1 is at least 3n+ |P |.

Proof. We define p = |P |. Without loss of generality, we assume that for each i ∈ [p], the second
row of matrix M̃i is nonzero.

Notice that matrices Ṽi, S̃i, M̃i have size 2× 3n, but we only focus on the first 2n+ p columns.
Thus, we have n+ p column-row faces (from the 3rd dimension) Aj ∈ R2×(2n+p),

• Aj , 1 ≤ j ≤ n, Aj is the first 2n+p columns of Ṽj−
∑n

i=1 αi,jS̃i ∈ R2×3n, where αi,j are some
coefficients.

• An+j , 1 ≤ j ≤ p, Aj is the first 2n + p columns of M̃j −
∑n

i=1 αi,n+jS̃i ∈ R2×3n, where αi,j
are some coefficients.

Consider the first 2n + p column-tube faces (from 2nd dimension), Bj , ∀j ∈ [2n + p], of T1.
Notice that these matrices have size 2× (n+ p).

• B2i−1, 1 ≤ i ≤ p, it has a 1 in positions (1, i) and (1, n+ i).

• B2i, 1 ≤ i ≤ p, it has βi,1 in position (1, n+ i), 1 in position (2, i) and βi,2 in position (2, n+ i).

• B2i−1, p+ 1 ≤ i ≤ n, it has 1 in position (1, i).

158

• B2i, p+ 1 ≤ i ≤ n, it has 1 in position (2, i).

• B2n+i, 1 ≤ i ≤ p, the first row is unknown, the second row has βi,2 in position in (2, n+ i).

It is obvious that the first 2n matrices are linearly independent, thus the rank is at least 2n. We
choose the first 2n matrices as our basis. For B2n+1, we try to write it as a linear combination of
the first 2n matrices {Bi}i∈[2n]. Consider the second row of B2n+1. The first n positions are all
0. The matrices B2i all have disjoint support for the second row of the first n columns. Thus, the
matrices B2i should not be used. Consider the second row of B2i−1, ∀i ∈ [n]. None of them has a
nonzero value in position n+1. Thus B2n+1 cannot be written as a linear combination of of the first
2n matrices. Thus, we can show for any i ∈ [p], B2n+i cannot be written as a linear combination
of matrices {Bi}i∈[2n]. Consider the p matrices {B2n+i}i∈[p]. Each of them has a different nonzero
position in the second row. Thus these matrices are all linearly independent. Putting it all together,
we know that the rank of matrices {Bi}i∈[2n+p] is at least 2n+ p.

Next, we consider another special case when βi,2 = 0, for all i ∈ [n]. If we subtract βi,1 times S̃i
from M̃i and leave the other column-row faces (from the 3rd dimension) as they are, and we make
all column-tube faces(from the 2nd dimension) for j > 2n identically 0, then all other choices do not
change the first 2n column-tube faces (from the 2nd dimension) and make some other column-tube
faces (from the 2nd dimension) nonzero. Such a choice could clearly only increase the rank of T .
Thus, we obtain,

rank(T) = 2n+ 2m+ min rank(T3),

where T3 is a tensor of size 2 × 2n × (2n + m) given by the following column-row faces (from 3rd
dimension) Ai, ∀i ∈ [2n+m] and each matrix has size 2× 2n (shown in Figure 15).

• Ai, i ∈ [n], the first 2n columns of Ṽi.

• An+i, i ∈ [n], the first 2n columns of M̃i. The first row is e2i−1 + βi,1e2i, and the second row
is 0.

• A2n+l, l ∈ [m], the first 2n columns of C̃l. The first row is (1+γl,1 +γl,2)ul,1−γl,1ul,2−γl,2ul,3,
and the second row is (γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3.

We can show

Lemma H.36. Let p denote the cover number of the 3SAT instance. T3 has rank at least 2n+Ω(p).

Proof. First, we can show that all matrices An+i−Ai and An+i (for all i ∈ [n]) are in the expansion
of tensor T3. Thus, the rank of T3 is at least 2n.

We need the following claim:

Claim H.37. For any l ∈ [m], if A2n+l can be written as a linear combination of {An+i −Ai}i∈[n]

and {An+i}i∈[n], then the second row of A2n+l is 0, and the first row of one of the An+i is ui where
ui is one of the literals appearing in clause cl.

Proof. We prove this for the second row first. For each l ∈ [m], we consider the possibility of using
all matrices An+i − Ai and An+i to express matrix A2n+l. If the second row of A2n+l is nonzero,
then it must have a nonzero entry in an odd position. But there is no nonzero in an odd position
of the second row of any of matrices An+i −Ai and An+i.

159

Ai, i ∈ [n]

An+i, i ∈ [n]

A2n+l, l ∈ [m]

1

1

1 βi,1

(1 + γl,1 + γl,2)ul,1 − γl,1ul,2 − γl,2ul,3
(γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3

2i-1 2i

2n

Figure 15: For any i ∈ [n], βi,1 ∈ R, for any l ∈ [m], γl,1, γl,2 ∈ R, for any l ∈ [m], if the first literal
of clause l is xj , then row vector ul,1 = e2i−1 ∈ R2n; if the first literal of clause l is xj , then row
vector ul,1 = e2i−1 + e2i ∈ R2n.

For the first row. It is obvious that the first row of A2n+l must have at least one nonzero
position, for any γl,1, γl,2. Let uj be a literal belonging to the variable xi which appears in the first
row of A2n+l with a nonzero coefficient. Since only An+i of all the other An+s,∀s ∈ [n] matrices
has nonzero elements in either of the positions (1, 2i − 1) or (1, 2i), then An+i must be used to
cancel these elements. Thus, the first row of An+i must be a multiple of uj and since the element
in position (1, 2i− 1) of An+i is 1, this multiple must be 1.

Note that matrices Ai,∀i ∈ [n] have the property that, for any matrix in {An+1, · · · , A2n+m}, it
cannot be written as the linear combination of matrices Ai,∀i ∈ [n]. Let Ã ∈ R(n+m)×2n denote a
matrix that consists of the first rows of {An+1, · · · , A2n+m}. According to the property of matrices
Ai, ∀i ∈ [n], and that the rank of a tensor is always greater than or equal to the rank of any
sub-tensor, we know that

rank(T3) ≥ n+ min rank(Ã).

Claim H.38. For a 3SAT instance S, for any input string y ∈ {0, 1}n, set β∗,1 to be the entry-wise
flipping of y, (I) if the clause l is satisfied, then the (n+ l)-th row of Ã ∈ R(n+m)×2n can be written
as a linear combination of the first n rows of Ã. (II) if the clause l is unsatisfied, then the (n+ l)-th
row of Ã cannot be written as a linear combination of the first n rows of Ã.

Proof. Part (I), consider a clause l which is satisfied with input string y. Then there must exist a
variable xi belonging to clause l (either literal xi or literal xi) and one of the following holds: if xi
belongs to clause l, then αi = 1; if xi belongs to clause l, then αi = 0. Suppose clause l contains
literal xi. The other case can be proved in a similar way. We consider the (n + l)-th row. One of
the following assignments (0, 0), (−1, 0), (0,−1) to γl,1, γl,1 is going to set the (n+ l)-th row of Ã to
be vector e2i−1. We consider the i-th row of Ã. Since we set αi = 1, then we set βi,1 = 0, it follows
that the i-th row of A becomes e2i−1. Therefore, the (n+ l)-th row of Ã can be written as a linear
combination of Ã.

Part (II), consider a clause l which is unsatisfied with input string y. Suppose that clause
contains three literals xi1 , xi2 , xi3 (the other seven possibilities can be proved in a similar way).
Then for input string y, we have αi1 = 0, αi2 = 0 and αi3 = 0, otherwise this clause l is satisfied.
Consider i1-th row of Ã. It becomes e2i1−1 + e2i1 . Similarly for the i2-th row and i3-th row.
Consider the (n + l)-th row. We can observe that all of positions 2i1, 2i2, 2i3 must be 0. Any

160

linear combination formed by the i1, i2, i3-th row of Ã must have one nonzero in one of positions
2i1, 2i2, 2i3. However, if we consider the (n+ l)-th row of Ã, one of the positions 2i1, 2i2, 2i3 must
be 0. Also, the remaining n− 3 of the first n rows of Ã also have 0 in positions 2i1, 2i2, 2i3. Thus,
we can show that the (n + l)-th row of Ã cannot be written as a linear combination of the first n
rows. Similarly, for the other seven cases.

Note that in order to make sure as many as possible rows in n + 1, · · · , n + m can be written
as linear combinations of the first n rows of Ã, the βi,1 should be set to either 0 or 1. Also each
possibility of input string y is corresponding to a choice of βi,1. According to the above Claim H.38,
let l0 denote the smallest number of unsatisfied clauses over the choices of all the 2n input strings.
Then over all choices of β, γ, there must exist at least l0 rows of Ãn+1, · · · Ãn+m, such that each of
those rows cannot be written as the linear combination of the first n rows.

Claim H.39. Let Ã ∈ R(n+m)×2n denote a matrix that consists of the first rows of An+i,∀i ∈ [n]
and An+l,∀l ∈ [m]. Let p denote the cover number of 3SAT instance. Then min rank(Ã) ≥ n+Ω(p).

Proof. For any choices of {βi,1}i∈[n], there must exist a set of rows out of the next m rows such that,
each of those rows cannot be written as a linear combination of the first n rows. Let L denote the
set of those rows. Let t denote the maximum size set of disjoint rows from L. Since those t rows in
L all have disjoint support, they are always linearly independent. Thus the rank is at least n+ t.

Note that each row corresponds to a unique clause and each clause corresponds to a unique row.
We can just pick an arbitrary clause l in L, then remove the clauses that are using the same literal
as clause l from L. Because each variable occurs in at most B clauses, we only need to remove at
most 3B clauses from L. We repeat the procedure until there is no clause L. The corresponding
rows of all the clauses we picked have disjoint supports, thus we can show a lower bound for t,

t ≥ |L|/(3B) ≥ l0/(3B) ≥ p/(9B) & p,

where the second step follows by |L| ≥ l0, the third step follows 3l0 ≥ p, and the last step follows
by B is some constant.

Thus, putting it all together, we complete the proof.

Now, we consider a general case when there are q different i ∈ [n] satisfying that βi,2 6= 0.
Similar to tensor T3, we can obtain T4 such that,

rank(T) = 2n+ 2m+ min rank(T4)

where T4 is a tensor of size 2 × 2n × (2n + m) given by the following column-row faces (from 3rd
dimension) Ai, ∀i ∈ [2n+m] and each matrix has size 2× 2n (shown in Figure 16).

• Ai, i ∈ [n], the first 2n columns of Ṽi.

• An+i, i ∈ [q], the first 2n columns of M̃i. The first row is e2i−1 + βi,1e2i, and the second row
is βi,2e2i.

• An+i, i ∈ {q + 1, · · · , n}, the first 2n columns of M̃i. The first row is e2i−1 + βi,1e2i, and the
second row is 0.

• A2n+l, l ∈ [m], the first 2n columns of C̃l. The first row is (1+γl,1 +γl,2)ul,1−γl,1ul,2−γl,2ul,3,
and the second row is (γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3.

161

Ai, i ∈ [n]

An+i, i ∈ [q]

An+i, i ∈ [n]\[q]

A2n+l, l ∈ [m]

1

1

1 βi,1

βi,2

1 βi,1

(1 + γl,1 + γl,2)ul,1 − γl,1ul,2 − γl,2ul,3
(γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3

2i-1 2i

2n

Figure 16: For any i ∈ [n], βi,1 ∈ R. For any i ∈ [q], βi,2 ∈ R. For any l ∈ [m], γl,1, γl,2 ∈ R. For
any l ∈ [m], if the first literal of clause l is xj , then row vector ul,1 = e2i−1 ∈ R2n; if the first literal
of clause l is xj , then row vector ul,1 = e2i−1 + e2i ∈ R2n.

Note that modifying q entries(from Figure 15 to Figure 16) of a tensor can only decrease the rank
by q, thus we obtain

Lemma H.40. Let q denote the number of i such that βi,2 6= 0, and let p denote the cover number
of the 3SAT instance. Then T4 has rank at least 2n+ Ω(p)− q.

Combining the two perspectives we have

Lemma H.41. Let p denote the cover number of an unsatisfiable 3SAT instance. Then the tensor
has rank at least 4n+ 2m+ Ω(p).

Proof. Let q denote the q in Figure 16. From one perspective, we know that the tensor has rank
at least 4n+ 2m+ Ω(p)− q. From another perspective, we know that the tensor has rank at least
4n+ 2m+ q. Combining them together, we obtain the rank is at least 4n+ 2m+ Ω(p)/2, which is
still 4n+ 2m+ Ω(p).

Theorem H.42. Unless ETH fails, there is a δ > 0 and an absolute constant c0 > 1 such that the
following holds. For the problem of deciding if the rank of a q-th order tensor, q ≥ 3, with each
dimension n, is at most k or at least c0k, there is no 2δk

1−o(1) time algorithm.

Proof. The reduction can be split into three parts.13 The first part reduces the MAX-3SAT problem
to the MAX-E3SAT problem by [MR10]. For each MAX-3SAT instance with size n, the correspond-
ing MAX-E3SAT instance has size n1+o(1). The second part is by reducing the MAX-E3SAT prob-
lem to MAX-E3SAT(B) by [Tre01]. For each MAX-E3SAT instance with size n, the corresponding
MAX-E3SAT(B) instance has size Θ(n) when B is a constant. The third part is by reducing the
MAX-E3SAT(B) problem to the tensor problem. Combining Theorem H.7, Lemma H.25 with this
reduction, we complete the proof.

Theorem H.43. Unless random-ETH fails, there is an absolute constant c0 > 1 for which any
deterministic algorithm for deciding if the rank of a q-th order tensor is at most k or at least c0k,
requires 2Ω(k) time.

Proof. This follows by combining the reduction with random-ETH and Lemma H.30.
13The first two parts are accomplished by personal communication with Dana Moshkovitz and Govind Ramnarayan.

162

Note that, if BPP = P then it also holds for randomized algorithms which succeed with prob-
ability 2/3.

Indeed, we know that any deterministic algorithm requires 2Ω(n) running time on tensors that
have size n×n×n. Let g(n) denote a fixed function of n, and g(n) = o(n). We change the original
tensor from size n×n×n to 2g(n)×2g(n)×2g(n) by adding zero entries. Then the number of entries in
the new tensor is 23g(n) and the deterministic algorithm still requires 2Ω(n) running time on this new
tensor. Assume there is a randomized algorithm that runs in 2cg(n) time, for some constant c > 3.
Then considering the size of this new tensor, the deterministic algorithm is a super-polynomial time
algorithm, but the randomized algorithm is a polynomial time algorithm. Thus, by assuming BPP
= P, we can rule out randomized algorithms, which means Theorem H.43 also holds for randomized
algorithms which succeed with probability 2/3.

We provide some some motivation for the BPP = P assumption: this is a standard conjecture
in complexity theory, as it is implied by the existence of strong pseudorandom generators or if any
problem in deterministic exponential time has exponential size circuits [IW97].

H.5 Hardness result for robust subspace approximation

This section improves the previous hardness for subspace approximation [CW15a] from 1±1/poly(d)
to 1± 1/poly(log d). (Note that, we provide the algorithmic results for this problem in Section F.)

Lemma H.44 ([Dem14]). For any graph G with n nodes, m edges, for which the maximum degree
in graph G is d, there exists a d-regular graph G′ with 2nd − 2m nodes such that the clique size of
G′ is the same as the clique size of G.

Proof. First we create d copies of the original graph G. For each i ∈ [n], let vi,1, vi,2, · · · , vi,d denote
the set of nodes in G′ that are corresponding to vi in G. Let dvi denote the degree of node vi in
graph G. In graph G′, we create d− dvi new nodes v′i,1, v

′
i,2, · · · , v′i,dvi and connect each of them to

all of the v1, v2, · · · , vd. Therefore, 1. For each i ∈ [n], j ∈ [dvi], node v′i,j has degree d. 2. For each
i ∈ [n], j ∈ [d], node vi,j has degree dvi (from the original graph), and d−dvi degree (from the edges
to all the v′i,1, v

′
i,2, · · · , v′i,dvi). Thus, we proved the graph G is d-regular.

The number of nodes in the new graph G′ is,

nd+
n∑

i=1

(d− dvi) = 2nd−
n∑

i=1

dvi = 2nd− 2m.

It remains to show the clique size is the same in graph G and G′. Since we can always reorder the
indices for all the nodes, without loss of generality, let us assume the the first k nodes v1, v2, · · · , vk
forms a k-clique that has the largest size. It is obvious that the clique size k′ in graph G′ is at least
k, since we make k copies of the original graph and do not delete any edges and nodes. Then we just
need to show k′ ≤ k. By the property of the construction, the node in one copy does not connect
to a node in any other copy. Consider the new nodes we created. For each node v′i,j , consider
the neighbors of this node. None of them share a edge. Combining the above two properties gives
k′ ≤ k. Thus, we finish the proof.

Theorem H.45 (Theorem 2.6 in [GJS76]). Any n variable m clauses 3SAT instance can be reduced
to a graph G with 24m vertices, which is an instance of 10m-independent set. Furthermore G is a
3-regular graph.

We give the proof for completeness here.

163

u u1

u2

u3

u4

u5

Figure 17: In the original graph G, vertex u has degree 2. We create 5 new “artificial” vertices for
u to guarantee that the new graph G′ is 3-regular. This construction was suggested to us by Syed
Mohammad Meesum.

Proof. Define oi to be the number of occurrences of {xi, xi} in the m clauses. For each variable
xi, we construct 2oi vertices, namely vi,1, vi,2, · · · , vi,2oi . We make these 2oi vertices be a circuit,
i.e., there are 2oi edges: (vi,1, vi,2), (vi,2, vi,3), · · · , (vi,2oi−1, vi,2oi), (vi,2oi , vi,1). For each clause with
3 literals a, b, c, we create 3 vertices va, vb, vc where they form a triangle, i.e., there are edges
(va, vb), (vb, vc), (vc, va). Furthermore, assume a is the jth occurrence of xi (occurrence of xi means
a = xi or a = xi). Then if a = xi, we add edge (va, vi,2j), otherwise we add edge (va, vi,2j−1).

Thus, we can see that every vertex in the triangle corresponding to a clause has degree 3, half
of vertices of the circuit corresponding to variable xi have degree 3 and the other half have degree
2. Notice that the maximum independent set of a 2oi circuit is at most oi, and the maximum
independent set of a triangle is at most 1. Thus, the maximum independent set of the whole graph
has size at most m+

∑n
i=1 oi = m+ 3m = 4m. Another observation is that if there is a satisfiable

assignment for the 3SAT instance, then we can choose a 4m-independent set in the following way:
if xi is true, then we choose all the vertices in set {vi,1, vi,3, · · · , vi,2j−1, · · · vi,2oi−1}; otherwise, we
choose all the vertices in set {vi,2, vi,4, · · · , vi,2j , · · · vi,2oi}. For a clause with literals a, b, c: if a is
satisfied, it means that vi,t which connected to va is not chosen in the independent set, thus we can
pick va.

The issue remaining is to reduce the above graph to a 3 regular graph. Notice that there are ex-
actly

∑n
i=1 oi = 3m vertices which have degree 2. For each of this kind of vertex u, we construct 5 ad-

ditional vertices u1, u2, u3, u4, u5 and edges (u1, u2), (u2, u3), (u3, u4), (u4, u5), (u5, u1), (u2, u4), (u3, u5)
and (u1, u). Because we can always choose exactly two vertices among u1, u2, · · · , u5 no matter we
choose vertex u or not, the value of the maximum independent set will increase the size by exactly
2
∑n

i=1 oi = 6m.
To conclude, we construct a 3-regular graph reduced from a 3SAT instance. The graph has ex-

actly 24m vertices. Furthermore, if the 3SAT instance is satisfiable, the graph has 10m-independent
set. Otherwise, it does not have a 10m-independent set.

Corollary H.46. There is a constant 0 < c < 1, such that for any ε > 0, there is no O(2n
1−ε

)
time algorithm which can solve k-clique for an n-vertex (n − 3)-regular graph where k = cn unless
ETH fails.

Proof. According to Theorem H.45, for a given n variable m = O(n) clauses 3SAT instance, we
can reduce it to a 3-regular graph with 24m vertices which is a 10m-independent set instance. If

164

1− 1
B1

1− 1
B1

1− 1
B1

1− 1
B1

1− 1
B1

c
r
√
B1

c
r
√
B1

c
r
√
B1

c
r
√
B1

c
r
√
B1

c
r
√
B1

c
r
√
B1

c
r
√
B1

c
r
√
B1

c
r
√
B1

1

2

3

4

5

Figure 18: The left graph has 5 nodes, and we convert it into a 5× 5 symmetric matrix.

there exists ε > 0 such that we have an algorithm with running time O(2(24m)1−ε
) which can solve

10m-clique for a 24m− 3 regular graph with 24m vertices, then we can solve the 3SAT problem in
O(2n

1−ε′
) time, where ε′ = Θ(ε). Thus, it contradicts ETH .

Definition H.47. Let V be a k-dimensional subspace of Rd, represented as the column span of a
d× k matrix with orthonormal columns. We abuse notation and let V be both the subspace and the
corresponding matrix. For a set Q of points, let

c(Q,V) =
∑

q∈Q
d(q, V)p =

∑

q∈Q
‖q>(I − V V >)‖p2 =

∑

q∈Q
(‖q‖2 − ‖q>V ‖2)p/2,

be the sum of p-th powers of distances of points in Q, i.e., ‖Q−QV V >‖v with associatedM(x) = |x|p.

Lemma H.48. For any k ∈ [d], the k-dimensional subspaces V which minimize c(E, V) are exactly
the

(
n
k

)
subspaces formed by taking the span of k distinct standard unit vectors ei, i ∈ [d]. The cost

of any such V is d− k.

Theorem H.49. Given a set Q of poly(d) points in Rd, for a sufficiently small ε = 1/poly(d), it
is NP-hard to output a k-dimensional subspace V of Rd for which c(Q,V) ≤ (1 + ε)c(Q,V ∗), where
V ∗ is the k-dimensional subspace minimizing the expression c(Q,V), that is c(Q,V) ≥ c(Q,V ∗) for
all k-dimensional subspaces V .

Theorem H.50. For a sufficiently small ε = 1/ poly(log(d)), there exist 1 ≤ k ≤ d, unless
ETH fails, there is no algorithm that can output a k-dimensional subspace V of Rd for which
c(Q,V) ≤ (1 + ε)c(Q,V ∗), where V ∗ is the k-dimensional subspace minimizing the expression
c(Q,V), that is c(Q,V) ≥ c(Q,V ∗) for all k-dimensional subspaces V .

Proof. The reduction is from the clique problem of d-vertices (d − 3)-regular graph. We construct
the hard instance in the same way as in [CW15a]. Given a d-vertes (d− 3)-regular graph graph G,
let B1 = dα, B2 = dβ where β > α ≥ 1 are two sufficiently large constants. Let c be such that

(1− 1/B1)2 + c2/B1 = 1.

165

We construct a d × d matrix A as the following: ∀i ∈ [d], let Ai,i = 1 − 1/B1 and ∀i 6= j, Ai,j =
Aj,i = c/

√
B1r if (i, j) is an edge in G, and Ai,j = Aj,i = 0 otherwise. Let us construct A′ ∈ R2d×d

as follows:

A′ =

[
A

B2 · Id

]
,

where Id ∈ Rd is a d× d identity matrix.

Claim H.51 (In proof of Theorem 54 in [CW15a]). Let V ′ ∈ Rd×k satisfy that

c(A′, V ′) ≤ (1 + 1/dγ)c(A′, V ∗),

where A′ is constructed as the above corresponding to the given graph G, and γ > 1 is a sufficiently
large constant, V ∗ is the optimal solution which minimizes c(A′, V). Then if G has a k-Clique ,
given V ′, there is a poly(d) time algorithm which can find the clique which has size at least k.

Now, to apply ETH here, we only need to apply a padding argument. We can construct a matrix
A′′ ∈ RN×d as follows:

A′′ =




A′

A′

· · ·
A′


 .

Basically, A′′ contains N/(2d) copies of A′ where N = 2d
1−α , and 0 < α is a constant which can be

arbitrarily small. Notice that ∀V ∈ Rd×k,

c(V,A′′) =
∑

q∈A′′
d(q, V)p = N/(2d)

∑

q∈A′
d(q, V)p = N/(2d)c(V,A′).

So if V ′′ gives a (1 + 1/dγ) approximation to A′′, it also gives a (1 + 1/dγ) approximation to A′.
So if we can find V ′′ in poly(N, d) time, we can output a k-Clique of G in poly(N, d) time. But
unless ETH fails, for a sufficiently small constant α′ > 0 there is no poly(N, d) = O(2d

1−α′
) time

algorithm that can output a k-Clique of G. It means that there is no poly(N, d) time algorithm
that can compute a (1 + 1/dγ) = (1 + 1/ poly(log(N))) approximation to A′′. To make A′′ be a
square matrix, we can just pad with 0s to make the size of A′′ be N ×N . Thus, we can conclude,
unless ETH fails, there is no polynomial algorithm that can compute a (1 + 1/ poly(log(N))) rank-k
subspace approximation to a point set with size N .

H.6 Extending hardness from matrices to tensors

In this section, we briefly state some hardness results which are implied by hardness for matrices.
The intuition is that, if there is a hard instance for the matrix problem, then we can always construct
a tensor hard instance for the tensor problem as follos: the first face of the tensor is the hard instance
matrix and it has all 0s elsewhere. We can prove that the optimal tensor solution will always fit the
first face and will have all 0s elsewhere. Then the optimal tensor solution gives an optimal matrix
solution.

166

H.6.1 Entry-wise `1 norm and `1-`1-`2 norm

In the following we will show that the hardness for entry-wise `1 norm low rank matrix approximation
implies the hardness for entry-wise `1 norm low rank tensor approximation and asymmetric tensor
norm (`1-`1-`2) low rank tensor approximation problems.

Theorem H.52 (Theorem H.13 in [SWZ17]). Unless ETH fails, for an arbitrarily small constant
γ > 0, given some matrix A ∈ Rn×n, there is no algorithm that can compute x̂, ŷ ∈ Rn s.t.

‖A− x̂ŷ>‖1 ≤
(

1 +
1

log1+γ(n)

)
min
x,y∈Rn

‖A− xy>‖1,

in poly(n) time.

We can get the hardness for tensors directly.

Theorem H.53. Unless ETH fails, for an arbitrarily small constant γ > 0, given some tensor
A ∈ Rn×n×n,

1. there is no algorithm that can compute x̂, ŷ, ẑ ∈ Rn s.t.

‖A− x̂⊗ ŷ ⊗ ẑ‖1 ≤
(

1 +
1

log1+γ(n)

)
min

x,y,z∈Rn
‖A− x⊗ y ⊗ z‖1,

in poly(n) time.

2. there is no algorithm can compute x̂, ŷ, ẑ ∈ Rn s.t.

‖A− x̂⊗ ŷ ⊗ ẑ‖u ≤
(

1 +
1

log1+γ(n)

)
min

x,y,z∈Rn
‖A− x⊗ y ⊗ z‖u,

in poly(n) time.

Proof. Let matrix Â ∈ Rn×n be the hard instance in Theorem H.52. We construct tensor A ∈
Rn×n×n as follows: ∀i, j, l ∈ [n], l 6= 1 we let Ai,j,1 = Âi,j , Ai,j,l = 0.

Suppose x̂, ŷ, ẑ ∈ Rn satisfies

‖A− x̂⊗ ŷ ⊗ ẑ‖1 ≤
(

1 +
1

log1+γ(n)

)
min

x,y,z∈Rn
‖A− x⊗ y ⊗ z‖1.

Then letting z′ = (1, 0, 0, · · · , 0)>, we have

‖A− x̂⊗ ŷ ⊗ z′‖1 ≤ ‖A− x̂⊗ ŷ ⊗ ẑ‖1 ≤
(

1 +
1

log1+γ(n)

)
min

x,y,z∈Rn
‖A− x⊗ y ⊗ z‖1.

The first inequality follows since ∀i, j, l ∈ [n], l 6= 1, we have Ai,j,l = 0. Let

x∗, y∗ = arg min
x,y∈Rn

‖Â− xy>‖1.

Then

‖A− x̂⊗ ŷ ⊗ z′‖1 ≤
(

1 +
1

log1+γ(n)

)
‖A− x̂⊗ ŷ ⊗ ẑ‖1 ≤

(
1 +

1

log1+γ(n)

)
‖A− x∗ ⊗ y∗ ⊗ z′‖1.

167

Thus, we have

‖Â− x̂ŷ>‖1 ≤
(

1 +
1

log1+γ(n)

)
‖Â− x∗(y∗)>‖1.

Combining with Theorem H.52, we know that unless ETH fails, there is no poly(n) running time
algorithm which can output

‖A− x̂⊗ ŷ ⊗ ẑ‖1 ≤
(

1 +
1

log1+γ(n)

)
min

x,y,z∈Rn
‖A− x⊗ y ⊗ z‖1.

Similarly, we can prove that if x̃, ỹ, z̃ ∈ Rn satisfies:

‖A− x̃⊗ ỹ ⊗ z̃‖u ≤
(

1 +
1

log1+γ(n)

)
min

x,y,z∈Rn
‖A− x⊗ y ⊗ z‖u,

then

‖Â− x̃ỹ>‖1 ≤
(

1 +
1

log1+γ(n)

)
‖Â− x∗(y∗)>‖1.

We complete the proof.

Corollary H.54. Unless ETH fails, for arbitrarily small constant γ > 0,

1. there is no algorithm that can compute (1+ε) entry-wise `1 norm rank-1 tensor approximation
in 2O(1/ε1−γ) running time. (‖ · ‖1-norm is defined in Section D)

2. there is no algorithm that can compute (1 + ε) `u-norm rank-1 tensor approximation in
2O(1/ε1−γ) running time. (‖ · ‖u-norm is defined in Section F.3)

H.6.2 `1-`2-`2 norm

Theorem H.55. Unless ETH fails, for arbitrarily small constant γ > 0, given some tensor A ∈
Rn×n×n, there is no algorithm can compute Û , V̂ , Ŵ ∈ Rn×k s.t.

‖A− Û ⊗ V̂ ⊗ Ŵ‖v ≤
(

1 +
1

poly(log n)

)
min

U,V,W∈Rn×k
‖A− U ⊗ V ⊗W‖v,

in poly(n) running time. (‖ · ‖v-norm is defined in Section F.2)

Proof. Let matrix Â ∈ Rn×n be the hard instance in Theorem H.50. We construct tensor A ∈
Rn×n×n as follows: ∀i, j, l ∈ [n], l 6= 1 we let Ai,j,1 = Âi,j , Ai,j,l = 0.

Suppose Û , V̂ , Ŵ ∈ Rn×k satisfies

‖A− Û ⊗ V̂ ⊗ Ŵ‖v ≤
(

1 +
1

poly(log n)

)
min

U,V,W∈Rn×k
‖A− U ⊗ V ⊗W‖v.

Let W ′ ∈ Rn×k be the following:

W ′ =




1 1 · · · 1
0 0 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0



,

168

then we have

‖A− Û ⊗ V̂ ⊗W ′‖v ≤ ‖A− Û ⊗ V̂ ⊗ Ŵ‖v ≤
(

1 +
1

poly(log n)

)
min

U,V,W∈Rn×k
‖A− U ⊗ V ⊗W‖v.

The first inequality follows since ∀i, j, l ∈ [n], l 6= 1, we have Ai,j,l = 0. Let

U∗, V ∗ = arg min
U,V ∈Rn×k

‖Â− UV >‖v.

Then

‖A− Û ⊗ V̂ ⊗W ′‖v ≤
(

1 +
1

poly(log n)

)
‖A− Û ⊗ V̂ ⊗ Ŵ‖v

≤
(

1 +
1

poly(log n)

)
‖A− U∗ ⊗ V ∗ ⊗W ′‖v.

Thus, we have

‖Â− Û V̂ >‖v ≤
(

1 +
1

poly(log n)

)
‖Â− U∗(V ∗)>‖v.

Combining with Theorem H.50, we know that unless ETH fails, there is no poly(n) time algorithm
which can output

‖A− Û ⊗ V̂ ⊗ Ŵ‖v ≤
(

1 +
1

poly(log n)

)
min

U,V,W∈Rn×k
‖A− U ⊗ V ⊗W‖v.

169

I Hard Instance

This section provides some hard instances for tensor problems.

I.1 Frobenius CURT decomposition for 3rd order tensor

In this section we will prove that a relative-error Tensor CURT is not possible unless C has Ω(k/ε)
columns from A, R has Ω(k/ε) rows from A, T has Ω(k/ε) tubes from A and U has rank Ω(k).

We use a similar construction from [BW14, BDM11, DR10] and extend it to the tensor setting.

Theorem I.1. There exists a tensor A ∈ Rn×n×n with the following property. Consider a factoriza-
tion CURT, with C ∈ Rn×c containing c columns of A, R ∈ Rn×r containing r rows of A, T ∈ Rn×t
containing r tubes of A, and U ∈ Rc×r×t, such that

∥∥∥∥∥∥
A−

n∑

i=1

n∑

j=1

n∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl

∥∥∥∥∥∥

2

F

≤ (1 + ε)‖A−Ak‖2F .

Then, for any ε < 1 and any k ≥ 1,

c = Ω(k/ε), r = Ω(k/ε), t = Ω(k/ε) and rank(U) ≥ k/3.

Proof. For any i ∈ [d], let ei ∈ Rd denote the i-th standard basis vector. For α > 0 and integer
d > 1, consider the matrix D ∈ R(d+1)×(d+1),

D =
[
e1 + αe2 e1 + αe3 · · · e1 + αed+1 0

]

=




1 1 · · · 1 0
α 0

α 0
. . .

...
α 0




We construct matrix B ∈ R(d+1)k/3×(d+1)k/3 by repeating matrix D k/3 times along its main
diagonal,

B =




D
D

. . .
D




Let m = (d+ 1)k/3. We construct a tensor A ∈ Rn×n×n with n = 3m by repeating matrix B three
times in the following way,

A1,j,l = Bj,l, ∀j, l ∈ [m]× [m]

Am+i,m+1,m+l = Bi,l,∀i, l ∈ [m]× [m]

A2m+i,2m+j,2m+1 = Bi,j ,∀j, i ∈ [m]× [m]

and 0 everywhere else. We first state some useful properties for matrix D,

D>D =

[
1d1
>
d + α2Id 0

0 0

]
∈ R(d+1)×(d+1)

170

where

σ2
1(D) = d+ α2,

σ2
i (D) = α2, ∀i = 2, · · · , d

σ2
d+1(D) = 0.

By definition of matrix B, we can obtain the following properties,

σ2
i (B) = d+ α2, ∀i = 1, · · · , k/3
σ2
i (B) = α2, ∀i = k/3 + 1, · · · , dk/3
σ2
i (B) = 0, ∀i = dk + 1, · · · , dk/3 + k/3

By definition of A, we can copy B into three disjoint n×n×n sub-tensors on the main diagonal of
tensor A. Thus, we have

σ2
i (A) = d+ α2, ∀i = 1, · · · , k
σ2
i (A) = α2, ∀i = k + 1, · · · , dk
σ2
i (A) = 0, ∀i = dk + 1, · · · , dk + k

Let A(k) denote the best rank-k approximation to A, and let D1 denote the best rank-1 approxima-
tion to D. Using the above properties, for any k ≥ 1, we can compute ‖A−A(k)‖2F ,

‖A−Ak‖2F = k‖D −D1‖2F = k(d− 1)α2. (76)

Suppose we have a CUR decomposition with c′ = o(k/ε) columns, r′ = o(k/ε) rows or t′ = o(k/ε)
tubes. Since the tensor is equivalent by looking through any of the 3 dimensions/directions, we just
need to show why the cost will be at least (1 + ε)‖A − Ak‖2F if we choose t = o(k/ε) columns and
t = o(k/ε) rows.

Let C ∈ Rn×c denote the optimal solution. Then it should have the following form,

C =



C1

C2

C3




where C1 ∈ Rm×c1 contains c1 columns from A1:m,1:m,1:m ∈ Rm×m×m, C2 ∈ Rm×c2 contains
c2 columns from Am+1:2m,m+1:2m,m+1:2m ∈ Rm×m×m, C3 ∈ Rm×c3 contains c3 columns from
A2m+1:3m,2m+1:3m,2m+1:3m ∈ Rm×m×m.

Let R ∈ Rn×r denote the optimal solution. Then it should have the following form,

R =



R1

R2

R3




‖A−A(CC†, RR†, I)‖2F ≥ ‖B −R1R
†
1B‖2F + ‖B − C2C

†
2B‖2F + ‖B> − C3C

†
3B
>‖2F . (77)

By the analysis in Proposition 4 of [DV06], we have

‖B −R1R
†
1B‖2F ≥ (k/3)(1 + b · α)‖D −D(1)‖2F . (78)

171

and

‖B − C2C
†
2B‖2F ≥ (k/3)(1 + b · α)‖D −D(1)‖2F . (79)

Let C3 ∈ Rm×c3 contain any c3 columns from B>. Note that C3 contains c3(≤ t) columns from
B>, equivalently C>2 contains c2 rows from B. Recall that B contains k copies of D ∈ R(d+1)×(d+1)

along its main diagonal. Even if we choose t columns of B>, the cost is at least

‖B> − C3C
†
3B
>‖2F ≥ (k/3)‖D −D(t)‖2F ≥ (k/3)(d− t)α2. (80)

Combining Equations (76), (77), (78), (79), (80), α = ε gives,

‖A− CC†A‖2F
‖A−A(k)‖2F

≥ ‖B −R1R
†
1B‖2F + ‖B − C2C

†
2B‖2F + ‖B> − C3C

†
3B
>‖2F

‖A−A(k)‖2F
by Eq. (77)

≥ ‖B −R1R
†
1B‖2F + ‖B − C2C

†
2B‖2F + ‖B> − C3C

†
3B
>‖2F

k(d− 1)α2
by Eq. (76)

≥ 2(k/3)(1 + bε)(d− 1)ε2 + (k/3)(d− t)ε2
k(d− 1)ε2

by Eq. (78),(79),(80) and α = ε

=
k(d− 1)ε2 + (k/3)(−t+ 1)ε2 + 2(k/3)bε(d− 1)ε2

k(d− 1)ε2

= 1 +
(k/3)ε2(2bε(d− 1)− t+ 1)

k(d− 1)ε2

= 1 +
2bε(d− 1)− t+ 1

3(d− 1)

≥ 1 + (b/3)ε by 2t ≤ bε(d− 1)/2

≥ 1 + ε. by b > 3.

which gives a contradiction.

I.2 General Frobenius CURT decomposition for q-th order tensor

In this section, we extend the hard instance for 3rd order tensors to q-th order tensors.

Theorem I.2. For any constant q ≥ 1, there exists a tensor A ∈ Rn×n×···×n with the following
property. Define

OPT = min
rank−k Ak∈Rc1×c2×···×cq

‖A−Ak‖2F .

Consider a q-th order factorization CURT, with C1 ∈ Rn×c1 containing c columns from the 1st
dimension of A, C2 ∈ Rn×c2 containing c2 columns from the 2nd dimension of A, · · · , Cq ∈ Rn×cq
containing cq columns from the q-th dimension of A and a tensor U ∈ Rc1×c2×···×cq , such that

∥∥∥∥∥∥
A−

n∑

i1=1

n∑

i2=1

· · ·
n∑

iq=1

Ui1,i2,··· ,iq · C1,i1 ⊗ C2,i2 ⊗ · · · ⊗ Cq,iq

∥∥∥∥∥∥

2

F

≤ (1 + ε) OPT .

There exists a constant c′ < 1 such that for any ε < c′ and any k ≥ 1,

c1 = Ω(k/ε), c2 = Ω(k/ε), · · · , cq = Ω(k/ε) and rank(U) ≥ c′k.

172

Proof. We use the same matrixD ∈ R(d+1)×(d+1) as the proof of Theorem I.1. Then we can construct
matrix B ∈ R(d+1)k/q×(d+1)k/q by repeating matrix D k/q times along the its main diagonal,

B =




D
D

. . .
D




Let m = (d+ 1)/q. We construct a tensor A ∈ Rn×n×···×n with n = qm by repeating the matrix q
times in the following way,

A[1:m],[1:m],1,1,1,··· ,1,1 = B,

Am+1,[m+1:2m],[m+1:2m],m+1,m+1,··· ,m+1,m+1 = B>,

A2m+1,2m+1,[2m+1:3m],[2m+1:3m],2m+1,··· ,2m+1,2m+1 = B,

A3m+1,3m+1,3m+1,[3m+1:4m],[3m+1:4m],··· ,2m+1,3m+1 = B>,

· · · · · · · · ·
A(q−2)m+1,(q−2)m+1,(q−2)m+1,(q−2)m+1,(q−2)m+1,··· ,[(q−2)m+1:(q−1)m],[(q−2)m+1:(q−1)m] = B,

A[(q−1)m+1:qm],(q−1)m+1,(q−1)m+1,(q−1)m+1,(q−1)m+1,··· ,(q−1)m+1,[(q−1)m+1:qm] = B>,

where there are q/2 Bs and q/2 B>s on the right when q is even, and there are (q + 1)/2 Bs and
(q − 1)/2 Bs on the right when q is odd. Note that this tensor A is equivalent if we look through
any of the q dimensions/directions. Similarly as before, we have

‖A−A(k)‖2F = k‖D −D(1)‖2F = k(d− 1)α2.

Suppose there is a general CURT decomposition (of this q-th order tensor), with c1 = c2 = · · · cq =
o(k/ε) columns from each dimension. Let C1 ∈ Rn×c1 , C2 ∈ Rn×c2 , · · · , Cq ∈ Rn×cq denote the
optimal solution. Then the Ci should have the following form,

C1 =




C1,1

C1,2

. . .
C1,q


 , C2 =




C2,1

C2,2

. . .
C2,q


 , · · · , Cq =




Cq,1
Cq,2

. . .
Cq,q




(In the rest of the proof, we focus on the case when q is even. Similarly, we can show the same
thing when q is odd.) We have

‖A−A(C1C
†
1, C2C

†
2, · · · , CqC†q)‖2F

≥
q/2∑

i=1

‖B − C2i−1,2i−1C
†
2i−1,2i−1B‖2F + ‖B> − C2i,2iC

†
2i,2iB

>‖2F

≥ (q/2)
(
(k/q)(1 + bα)‖D −D(1)‖2F + (k/q)(d− t)α2

)

= (q/2)
(
(k/q)(1 + bα)(d− 1)α2 + (k/q)(d− t)α2

)

where the second inequality follows by Equations (79) and (80), and the third step follows by
‖D −D(1)‖2F = (d− 1)α2.

173

Putting it all together, we have

‖A−A(C1C
†
1, C2C

†
2, · · · , CqC†q)‖2F

‖A−A(k)‖2F

≥ (q/2)
(
(k/q)(1 + bα)(d− 1)α2 + (k/q)(d− t)α2

)

k(d− 1)α2

=
k(d− 1)α2 + (k/2)bα(d− 1)α2 + (k/q)(−t+ 1)α2

k(d− 1)α2

= 1 +
(k/2)bα(d− 1)α2 + (k/q)(−t+ 1)α2

k(d− 1)α2

≤ 1 +
(k/3)bα(d− 1)α2

k(d− 1)α2

= 1 + (b/3)ε by ε = α

> 1 + ε by b > 3.

which leads to a contradiction. Similarly we can show the rank is at least Ω(k).

174

J Distributed Setting

Input data to large-scale machine learning and data mining tasks may be distributed across different
machines. The communication cost becomes the major bottleneck of distributed protocols, and so
there is a growing body of work on low rank matrix approximations in the distributed model [TD99,
QOSG02, BCL05, BRB08, MBZ10, FEGK13, PMvdG+13, KVW14, BKLW14, BLS+16, BWZ16,
WZ16, SWZ17] and also many other machine learning problems such as clustering, boosting, and
column subset selection [BBLM14, BLG+15, ABW17]. Thus, it is natural to ask whether our algo-
rithm can be applied in the distributed setting. This section will discuss the distributed Frobenius
norm low rank tensor approximation protocol in the so-called arbitrary-partition model (see, e.g.
[KVW14, BWZ16]).

In the following, we extend the definition of the arbitrary-partition model [KVW14] to fit our
tensor setting.

Definition J.1 (Arbitrary-partition model [KVW14]). There are s machines, and the ith machine
holds a tensor Ai ∈ Rn×n×n as its local data tensor. The global data tensor is implicit and is denoted
as A =

∑s
i=1Ai. Then, we say that A is arbitrarily partitioned into s matrices distributed in the s

machines. In addition, there is also a coordinator. In this model, the communication is only allowed
between the machines and the coordinator. The total communication cost is the total number of
words delivered between machines and the coordinator. Each word has O(log(sn)) bits.

Now, let us introduce the distributed Frobenius norm low rank tensor approximation problem
in the arbitrary partition model:

Definition J.2 (Arbitrary-partition model Frobenius norm rank-k tensor approximation). Tensor
A ∈ Rn×n×n is arbitrarily partitioned into s matrices A1, A2, · · · , As distributed in s machines
respectively, and ∀i ∈ [s], each entry of Ai is at most O(log(sn)) bits. Given tensor A, k ∈ N+ and
an error parameter 0 < ε < 1, the goal is to find a distributed protocol in the model of Definition J.1
such that

1. Upon termination, the protocol leaves three matrices U∗, V ∗,W ∗ ∈ Rn×k on the coordinator.

2. U∗, V ∗,W ∗ satisfies that
∥∥∥∥∥

k∑

i=1

U∗i ⊗ V ∗i ⊗W ∗i −A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k A′

‖A′ −A‖2F .

3. The communication cost is as small as possible.

Theorem J.3. Suppose tensor A ∈ Rn×n×n is distributed in the arbitrary partition model (See
Definition J.1). There is a protocol(in Algorithm 39) which solves the problem in Definition J.2
with constant success probability. In addition, the communication complexity of the protocol is
s(poly(k/ε) +O(kn)) words.

Proof. Correctness. The correctness is implied by Algorithm 2 and Algorithm 3 (Theorem C.1.)
Notice that A1 =

∑s
i=1Ai,1, A2 =

∑s
i=1Ai,2, A3 =

∑s
i=1Ai,3, which means that

Y1 = T1A1S1, Y2 = T2A2S2, Y3 = T3A3S3,

and

C = A(T1, T2, T3).

175

According to line 23,

X∗1 , X
∗
2 , X

∗
3 = arg min

X1,X2,X3

∥∥∥∥∥∥

k∑

j=1

(Y1X1)j ⊗ (Y2X2)j ⊗ (Y3X3)j − C

∥∥∥∥∥∥
F

.

According to Lemma C.3, we have
∥∥∥∥∥∥

k∑

j=1

(T1A1S1X
∗
1)j ⊗ (T2A2S2X

∗
2)j ⊗ (T3A3S3X

∗
3)j −A(T1, T2, T3)

∥∥∥∥∥∥

2

F

≤(1 +O(ε)) min
X1,X2,X3

∥∥∥∥∥∥

k∑

j=1

(A1S1X1)j ⊗ (A2S2X2)j ⊗ (A3Y3X3)j −A

∥∥∥∥∥∥

2

F

≤(1 +O(ε)) min
U,V,W

∥∥∥∥∥
k∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

2

F

,

where the last inequality follows by the proof of Theorem C.1. By scaling a constant of ε, we
complete the proof of correctness.

Communication complexity. Since S1, S2, S3 are w1-wise independent, and T1, T2, T3 are
w2-wise independent, the communication cost of sending random seeds in line 5 is O(s(w1 + w2))
words, where w1 = O(k), w2 = O(1) (see [KVW14, CW13, Woo14, KN14]). The communication
cost in line 18 is s · poly(k/ε) words due to T1Ai,1S1, T2Ai,2S2, T3Ai,3S3 ∈ Rpoly(k/ε)×O(k/ε) and
Ci = Ai(T1, T2, T3) ∈ Rpoly(k/ε)×poly(k/ε)×poly(k/ε).

Notice that, since ∀i ∈ [s] each entry of Ai has at most O(log(sn)) bits, each entry of Y1, Y2, Y3, C
has at most O(log(sn)) bits. Due to Theorem J.7, each entry of X∗1 , X∗2 , X∗3 has at most O(log(sn))
bits, and the sizes of X∗1 , X∗2 , X∗3 are poly(k/ε) words. Thus the communication cost in line 24 is
s · poly(k/ε) words.

Finally, since ∀i ∈ [s], U∗i , V
∗
i ,W

∗
i ∈ Rn×k, the communication here is at most O(skn) words.

The total communication cost is s(poly(k/ε) +O(kn)) words.

Remark J.4. If we slightly change the goal in Definition J.2 to the following: the coordinator does
not need to output U∗, V ∗,W ∗, but each machine i holds U∗i , V

∗
i ,W

∗
i such that U∗ =

∑s
i=1 U

∗
i , V

∗ =∑s
i=1 V

∗
i ,W

∗ =
∑s

i=1W
∗
i , then the protocol shown in Algorithm 39 does not have to do the line 28.

Thus the total communication cost is at most s · poly(k/ε) words in this setting.

Remark J.5. Algorithm 39 needs exponential in poly(k/ε) running time since it solves a polynomial
solver in line 23. Instead of solving line 23, we can solve the following optimization problem:

α∗ = arg min
α∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · (Y1)i ⊗ (Y2)j ⊗ (Y3)l − C

∥∥∥∥∥∥
F

.

Since it is actually a regression problem, it only takes polynomial running time to get α∗. And
according to Lemma C.5,

s1∑

i=1

s2∑

j=1

s3∑

l=1

α∗i,j,l · (Y1)i ⊗ (Y2)j ⊗ (Y3)l

176

Algorithm 39 Distributed Frobenius Norm Low Rank Approximation Protocol
1: procedure DistributedFnormLowRankApproxProtocol(A,ε,k,s)
2: A ∈ Rn×n×n was arbitrarily partitioned into s matrices A1, · · · , As ∈ Rn×n×n on s machines.
3: Coordinator Machines i
4: Chooses a random seed.
5: Sends it to all machines.
6: −−−−−−−−− >
7: si ← O(k/ε), ∀i ∈ [3].
8: Agree on Si ∈ Rn2×si , ∀i ∈ [3]
9: which are w1-wise independent random

10: N(0, 1/si) Gaussian matrices.
11: ti ← poly(k/ε), ∀i ∈ [3].
12: Agree on Ti ∈ Rti×n, ∀i ∈ [3]
13: which are w2-wise independent random
14: sparse embedding matrices.
15: Compute Yi,1 ← T1Ai,1S1,
16: Yi,2 ← T2Ai,2S2, Yi,3 ← T3Ai,3S3.
17: Send Yi,1, Yi,2, Yi,3 to the coordinator.
18: Send Ci ← Ai(T1, T2, T3) to the coordinator.
19: < −−−−−−−−−
20: Compute Y1 ←

s∑
i=1
Yi,1, Y2 ←

s∑
i=1
Yi,2,

21: Y3 ←
s∑
i=1
Yi,3, C ←

s∑
i=1
Ci.

22: Compute X∗1 , X∗2 , X∗3 by solving
23: min

X1,X2,X3

‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖F
24: Send X∗1 , X∗2 , X∗3 to machines.
25: −−−−−−−−− >
26: Compute U∗i ← Ai,1S1X

∗
1 ,

27: V ∗i ← Ai,2S2X
∗
2 , W

∗
i ← Ai,3S3X

∗
3 .

28: Send U∗i , V
∗
i ,W

∗
i to the coordinator.

29: < −−−−−−−−−
30: Compute U∗ ←∑s

i=1 U
∗
i .

31: Compute V ∗ ←∑s
i=1 V

∗
i .

32: Compute W ∗ ←∑s
i=1W

∗
i .

33: return U∗, V ∗, W ∗.
34: end procedure

gives a rank-O(k3/ε3) bicriteria solution.
Further, similar to Theorem C.8, we can solve

min
U∈Rn×s2s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

Ui+s1(j−1) ⊗ (Y2)i ⊗ (Y3)j − C

∥∥∥∥∥∥
F

,

where C =
∑

iAi(I, T2, T3). Thus, we can obtain a rank-O(k2/ε2) in polynomial time.

Remark J.6. If we select sketching matrices S1, S2, S3, T1, T2, T3 to be random Cauchy matrices,

177

then we are able to compute distributed entry-wise `1 norm rank-k tensor approximation (see The-
orem D.17). The communication cost is still s(poly(k/ε) + O(kn)) words. If we only require a
bicriteria solution, then it only needs polynomial running time.

Using similar techniques as in the proof of Theorem C.45, we can obtain:

Theorem J.7. Let maxi{ti, di} ≤ n. Given a t1 × t2 × t3 tensor A and three matrices: a t1 × d1

matrix T1, a t2 × d2 matrix T2, and a t3 × d3 matrix T3. For any δ > 0, if there exists a solution to

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i −A
∥∥∥∥∥

2

F

:= OPT,

and each entry of Xi can be expressed using O(log n) bits, then there exists an algorithm that
takes poly(log n) · 2O(d1k+d2k+d3k) time and outputs three matrices: X̂1, X̂2, and X̂3 such that
‖(T1X̂1)⊗ (T2X̂2)⊗ (T3X̂3)−A‖2F = OPT.

178

K Streaming Setting

One of the computation models which is closely related to the distributed model of computation is
the streaming model. There is a growing line of work in the streaming model. Some problems are
very fundamental in the streaming model such like Heavy Hitters [LNNT16, BCI+16, BCIW16], and
streaming numerical linear algebra problems [CW09]. Streaming low rank matrix approximation
has been extensively studied by previous work like [CW09, KL11, GP14, Lib13, KLM+14, BWZ16,
SWZ17]. In this section, we show that there is a streaming algorithm which can compute a low
rank tensor approximation.

In the following, we introduce the turnstile streaming model and the turnstile streaming tensor
Frobenius norm low rank approximation problem. The following gives a formal definition of the
computation model we study.

Definition K.1 (Turnstile model). Initially, tensor A ∈ Rn×n×n is an all zero tensor. In the
turnstile streaming model, there is a stream of update operations, and the ith update operation is in
the form (xi, yi, zi, δi) where xi, yi, zi ∈ [n], and δi ∈ R has O(log n) bits. Each (xi, yi, zi, δi) means
that Axi,yi,zi should be incremented by δi. And each entry of A has at most O(log n) bits at the end
of the stream. An algorithm in this computation model is only allowed one pass over the stream. At
the end of the stream, the algorithm stores a summary of A. The space complexity of the algorithm
is the total number of words required to compute and store this summary while scanning the stream.
Here, each word has at most O(log(n)) bits.

The following is the formal definition of the problem.

Definition K.2 (Turnstile model Frobenius norm rank-k tensor approximation). Given tensor
A ∈ Rn×n×n, k ∈ N+ and an error parameter 1 > ε > 0, the goal is to design an algorithm in the
streaming model of Definition K.1 such that

1. Upon termination, the algorithm outputs three matrices U∗, V ∗,W ∗ ∈ Rn×k.

2. U∗, V ∗,W ∗ satisft that

∥∥∥∥∥
k∑

i=1

U∗i ⊗ V ∗i ⊗W ∗i −A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k A′

‖A′ −A‖2F .

3. The space complexity of the algorithm is as small as possible.

Theorem K.3. Suppose tensor A ∈ Rn×n×n is given in the turnstile streaming model (see Defi-
nition K.1), there is an streaming algorithm (in Algorithm 40) which solves the problem in Defi-
nition K.2 with constant success probability. In addition, the space complexity of the algorithm is
poly(k/ε) +O(nk/ε) words.

Proof. Correctness. Similar to the distributed protocol, the correctness of this streaming algorithm
is also implied by Algorithm 2 and Algorithm 3 (Theorem C.1.) Notice that at the end of the stream
V1 = A1S1 ∈ Rn×s1 , V2 = A2S2 ∈ Rn×s2 , V3 = A3S3 ∈ Rn×s3 , C = A(T1, T2, T3) ∈ Rt1×t2×t3 . It also
means that

Y1 = T1A1S1, Y2 = T2A2S2, Y3 = T3A3S3.

179

According to line 26 of procedure TurnstileStreaming,

X∗1 , X
∗
2 , X

∗
3 = arg min

X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥∥∥∥

k∑

j=1

(Y1X1)j ⊗ (Y2X2)j ⊗ (Y3X3)j − C

∥∥∥∥∥∥
F

According to Lemma C.3, we have
∥∥∥∥∥∥

k∑

j=1

(Y1X1)j ⊗ (Y2X2)j ⊗ (Y3X3)j − C

∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥

k∑

j=1

(T1A1S1X
∗
1)j ⊗ (T2A2S2X

∗
2)j ⊗ (T3A3S3X

∗
3)j −A(T1, T2, T3)

∥∥∥∥∥∥

2

F

≤ (1 +O(ε)) min
X1,X2,X3

∥∥∥∥∥∥

k∑

j=1

(A1S1X1)j ⊗ (A2S2X2)j ⊗ (A3Y3X3)j −A

∥∥∥∥∥∥

2

F

≤ (1 +O(ε)) min
U,V,W

∥∥∥∥∥
k∑

i=1

Ui ⊗ Vi ⊗Wi −A
∥∥∥∥∥

2

F

,

where the last inequality follows by the proof of Theorem C.1. By scaling a constant of ε, we
complete the proof of correctness.

Space complexity. Since S1, S2, S3 are w1-wise independent, and T1, T2, T3 are w2-wise inde-
pendent, the space needed to construct these sketching matrices in line 3 and line 5 of procedure
TurnstileStreaming is O(w1 + w2) words, where w1 = O(k), w2 = O(1) (see [KVW14, CW13,
Woo14, KN14]). The cost to maintain V1, V2, V3 is O(nk/ε) words, and the cost to maintain C is
poly(k/ε) words.

Notice that, since each entry of A has at most O(log(sn)) bits, each entry of Y1, Y2, Y3, C has at
most O(log(sn)) bits. Due to Theorem J.7, each entry of X∗1 , X∗2 , X∗3 has at most O(log(sn)) bits,
and the sizes of X∗1 , X∗2 , X∗3 are poly(k/ε) words. Thus the space cost in line 26 is poly(k/ε) words.

The total space cost is poly(k/ε) +O(nk/ε) words.

Remark K.4. In the Algorithm 40, for each update operation, we need O(k/ε) time to maintain
matrices V1, V2, V3, and we need poly(k/ε) time to maintain tensor C. Thus the update time is
poly(k/ε). At the end of the stream, the time to compute

X∗1 , X
∗
2 , X

∗
3 = arg min

X1,X2,X3∈RO(k/ε)×k

∥∥∥∥∥∥

k∑

j=1

(Y1X1)j ⊗ (Y2X2)j ⊗ (Y3X3)j − C

∥∥∥∥∥∥
F

,

is exponential in poly(k/ε) running time since it should use a polynomial system solver. Instead of
computing the rank-k solution, we can solve the following:

α∗ = arg min
α∈Rs1×s2×s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · (Y1)i ⊗ (Y2)j ⊗ (Y3)l − C

∥∥∥∥∥∥
F

180

Algorithm 40 Turnstile Frobenius Norm Low Rank Approximation Algorithm
1: procedure TurnstileStreaming(k,S)
2: s1 ← s2 ← s3 ← O(k/ε).
3: Construct sketching matrices Si ∈ Rn2×si ,∀i ∈ [3] where entries of S1, S2, S3 are w1-wise

independent random N(0, 1/si) Gaussian variables.
4: t1 ← t2 ← t3 ← poly(k/ε).
5: Construct sparse embedding matrices Ti ∈ Rti×n, ∀i ∈ [3] where entries are w2-wise inde-

pendent.
6: Initialize matrices:
7: Vi ← {0}n×si ,∀i ∈ [3].
8: C ← {0}t1×t2×t3
9: for i ∈ [l] do

10: Receive update operation (xi, yi, zi, δi) from the data stream S.
11: for r = 1→ s1 do
12: (V1)xi,r ← (V1)xi,r + δi · (S1)(yi−1)n+zi,r

.
13: end for
14: for r = 1→ s2 do
15: (V2)yi,r ← (V2)yi,r + δi · (S2)(zi−1)n+xi,r

.
16: end for
17: for r = 1→ s3 do
18: (V3)zi,r ← (V3)zi,r + δi · (S3)(xi−1)n+yi,r

.
19: end for
20: for r = 1→ t1, p = 1→ t2, q = 1→ t3 do
21: Cr,p,q ← Cr,p,q + δi · (T1)r,xi(T2)p,yi(T3)q,zi .
22: end for
23: end for
24: Compute Y1 ← T1V1, Y2 ← T2V2, Y3 ← T3V3.
25: Compute X∗i ∈ Rsi×k,∀i ∈ [3] by solving
26: min

X1,X2,X3

‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖F
27: Compute U∗ ← V1X

∗
1 , V

∗ ← V2X
∗
2 , W

∗ ← V3X
∗
3 .

28: return U∗, V ∗,W ∗

29: end procedure

which will then give

s1∑

i=1

s2∑

j=1

s3∑

l=1

α∗i,j,l · (Y1)i ⊗ (Y2)j ⊗ (Y3)l

to be a rank-O(k3/ε3) bicriteria solution.
Further, similar to Theorem C.8, we can solve

min
U∈Rn×s2s3

∥∥∥∥∥∥

s1∑

i=1

s2∑

j=1

Ui+s1(j−1) ⊗ (Y2)i ⊗ (Y3)j − C

∥∥∥∥∥∥
F

where C =
∑

iAi(I, T2, T3). Thus, we can obtain a rank-O(k2/ε2) in polynomial time.

181

Remark K.5. If we choose S1, S2, S3, T1, T2, T3 to be random Cauchy matrices, then we are able
to apply the entry-wise `1 norm low rank tensor approximation algorithm (see Theorem D.17) in
turnstile model.

182

L Extension to Other Tensor Ranks

The tensor rank studied in the previous sections is also called the CP rank or canonical rank. The
tensor rank can be thought of as a direct extension of the matrix rank. We would like to point
out that there are other definitions of tensor rank, e.g., the tucker rank and train rank. In this
section we explain how to extend our proofs to other notions of tensor rank. Section L.1 provides
the extension to tucker rank, and Section L.2 provides the extension to train rank.

L.1 Tensor Tucker rank

Tensor Tucker rank has been studied in a number of works [KC07, PC08, MH09, ZW13, YC14]. We
provide the formal definition here:

L.1.1 Definitions

Definition L.1 (Tucker rank). Given a third order tensor A ∈ Rn×n×n, we say A has tucker rank k
if k is the smallest integer such that there exist three matrices U, V,W ∈ Rn×k and a (small) tensor
C ∈ Rk×k×k satisfying

Ai,j,l =

k∑

i′=1

k∑

j′=1

k∑

l′=1

Ci′,j′,l′Ui,i′Vj,j′Wl,l′ , ∀i, j, l ∈ [n]× [n]× [n],

or equivalently,

A = C(U, V,W).

L.1.2 Algorithm

Algorithm 41 Frobenius Norm Low (Tucker) Rank Approximation

1: procedure FLowTuckerRankApprox(A,n, k, ε) . Theorem L.2
2: s1 ← s2 ← s3 ← O(k/ε).
3: t1 ← t2 ← t3 ← poly(k, 1/ε).
4: Choose sketching matrices S1 ∈ Rn2×s1 , S2 ∈ Rn2×s2 , S3 ∈ Rn2×s3 . . Definition B.18
5: Choose sketching matrices T1 ∈ Rt1×n, T2 ∈ Rt2×n, T3 ∈ Rt3×n.
6: Compute AiSi,∀i ∈ [3].
7: Compute TiAiSi, ∀i ∈ [3].
8: Compute B ← A(T1, T2, T3).
9: Create variables for Xi ∈ Rsi×k,∀i ∈ [3].

10: Create variables for C ∈ Rk×k×k.
11: Run a polynomial system verifier for ‖C((Y1X1), (Y2X2), (Y3X3))−B‖2F .
12: return C,A1S1X1, A2S2X2, and A3S3X3.
13: end procedure

Theorem L.2. Given a third order tensor A ∈ Rn×n×n, for any k ≥ 1 and ε ∈ (0, 1), there exists
an algorithm which takes O(nnz(A)) + n poly(k, 1/ε) + 2O(k2/ε+k3) time and outputs three matrices
U, V,W ∈ Rn×k, and a tensor C ∈ Rk×k×k for which

‖C(U, V,W)−A‖2F ≤ (1 + ε) min
tucker rank−k Ak

‖Ak −A‖2F

183

holds with probability 9/10.

Proof. We define OPT to be

OPT = min
tucker rank−k A′

‖A′ −A‖2F .

Suppose the optimal Ak = C∗(U∗, V ∗,W ∗). We fix C∗ ∈ Rk×k×k, V ∗ ∈ Rn×k and W ∗ ∈ Rn×k.
We use V ∗1 , V ∗2 , · · · , V ∗k to denote the columns of V ∗ and W ∗1 ,W ∗2 , · · · ,W ∗k to denote the columns
of W ∗.

We consider the following optimization problem,

min
U1,··· ,Uk∈Rn

‖C∗(U, V ∗,W ∗)−A‖2F ,

which is equivalent to

min
U1,··· ,Uk∈Rn

‖U · C∗(I, V ∗,W ∗)−A‖2F ,

because C∗(U, V ∗,W ∗) = U · C∗(I, V ∗,W ∗) according to Definition A.6.
Recall that C∗(I, V ∗,W ∗) denotes a k × n × n tensor. Let (C∗(I, V ∗,W ∗))1 denote the ma-

trix obtained by flattening C∗(I, V ∗,W ∗) along the first dimension. We use matrix Z1 to denote
(C∗(I, V ∗,W ∗))1 ∈ Rk×n2 . Then we can obtain the following equivalent objective function,

min
U∈Rn×k

‖UZ1 −A1‖2F .

Notice that minU∈Rn×k ‖UZ1 −A1‖2F = OPT, since Ak = U∗Z1.
Let S>1 ∈ Rs1×n2 be the sketching matrix defined in Definition B.18, where s1 = O(k/ε). We

obtain the following optimization problem,

min
U∈Rn×k

‖UZ1S1 −A1S1‖2F .

Let Û ∈ Rn×k denote the optimal solution to the above optimization problem. Then Û =
A1S1(Z1S1)†. By Lemma B.22 and Theorem B.23, we have

‖ÛZ1 −A1‖2F ≤ (1 + ε) min
U∈Rn×k

‖UZ1 −A1‖2F = (1 + ε) OPT,

which implies
∥∥∥C∗(Û , V ∗,W ∗)−A

∥∥∥
2

F
≤ (1 + ε) OPT .

To write down Û1, · · · , Ûk, we use the given matrix A1, and we create s1 × k variables for matrix
(Z1S1)†.

As our second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and we convert tensor A into matrix A2.
Let matrix Z2 denote (C∗(Û , I,W ∗))2 ∈ Rk×n2 . We consider the following objective function,

min
V ∈Rn×k

‖V Z2 −A2‖2F ,

for which the optimal cost is at most (1 + ε) OPT.

184

Let S>2 ∈ Rs2×n2 be a sketching matrix defined in Definition B.18, where s2 = O(k/ε). We
sketch S2 on the right of the objective function to obtain a new objective function,

min
V ∈Rn×k

‖V Z2S2 −A2S2‖2F .

Let V̂ ∈ Rn×k denote the optimal solution to the above problem. Then V̂ = A2S2(Z2S2)†. By
Lemma B.22 and Theorem B.23, we have,

‖V̂ Z2 −A2‖2F ≤ (1 + ε) min
V ∈Rn×k

‖V Z2 −A2‖2F ≤ (1 + ε)2 OPT,

which implies
∥∥∥C∗(Û , V̂ ,W ∗)−A

∥∥∥
2

F
≤ (1 + ε)2 OPT .

To write down V̂1, · · · , V̂k, we need to use the given matrix A2 ∈ Rn2×n, and we need to create
s2 × k variables for matrix (Z2S2)†.

As our third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k. We convert tensor A ∈ Rn×n×n
into matrix A3 ∈ Rn2×n. Let matrix Z3 denote (C∗(Û , V̂ , I))3 ∈ Rk×n2 . We consider the following
objective function,

min
W∈Rn×k

‖WZ3 −A3‖2F ,

which has optimal cost at most (1 + ε)2 OPT.
Let S>3 ∈ Rs3×n2 be a sketching matrix defined in Definition B.18, where s3 = O(k/ε). We

sketch S3 on the right of the objective function to obtain a new objective function,

min
W∈Rn×k

‖WZ3S3 −A3S3‖2F .

Let Ŵ ∈ Rn×k denote the optimal solution of the above problem. Then Ŵ = A3S3(Z3S3)†. By
Lemma B.22 and Theorem B.23, we have,

‖ŴZ3 −A3‖2F ≤ (1 + ε) min
W∈Rn×k

‖WZ3 −A3‖2F ≤ (1 + ε)3 OPT .

Thus, we have

min
X1,X2,X3

‖C∗((A1S1X1), (A2S2X2), (A3S3X3))−A‖2F ≤ (1 + ε)3 OPT .

Let V1 = A1S1, V2 = A2S2, and V3 = A3S3.We then apply Lemma C.3, and we obtain V̂1, V̂2, V̂3, B.
We then apply Theorem C.45. Correctness follows by rescaling ε by a constant factor.

Running time. Due to Definition B.18, the running time of line 7 (Algorithm 41) is O(nnz(A))+
n poly(k, 1/ε). Due to Lemma C.3, line 7 and 8 can be executed in nnz(A) + n poly(k, 1/ε) time.
The running time of line 11 is given by Theorem C.45. (For simplicity, we ignore the bit complexity
in the running time.)

185

L.2 Tensor Train rank

L.2.1 Definitions

The tensor train rank has been studied in several works [Ose11, OTZ11, ZWZ16, PTBD16]. We
provide the formal definition here.

Definition L.3 (Tensor Train rank). Given a third order tensor A ∈ Rn×n×n, we say A has train
rank k if k is the smallest integer such that there exist three tensors U ∈ R1×n×k, V ∈ Rk×n×k,
W ∈ Rk×n×1 satisfying:

Ai,j,l =

1∑

i1=1

k∑

i2=1

k∑

i3=1

1∑

i4=1

Ui1,i,i2Vi2,j,i3Wi3,l,i4 ,∀i, j, l ∈ [n]× [n]× [n],

or equivalently,

Ai,j,l =
k∑

i2=1

k∑

i3=1

(U2)i,i2(V2)j,i2+k(i3−1)(W2)l,i3 ,

where V2 ∈ Rn×k2 denotes the matrix obtained by flattening the tensor U along the second dimension,
and (V2)i,i1+k(i2−1) denotes the entry in the i-th row and i1 +k(i2−1)-th column of V2. We similarly
define U2,W2 ∈ Rn×k.

Algorithm 42 Frobenius Norm Low (Train) rank Approximation

1: procedure FLowTrainRankApprox(A,n, k, ε) . Theorem L.4
2: s1 ← s3 ← O(k/ε).
3: s2 ← O(k2/ε).
4: t1 ← t2 ← t3 ← poly(k, 1/ε).
5: Choose sketching matrices S1 ∈ Rn2×s1 , S2 ∈ Rn2×s2 , S3 ∈ Rn2×s3 . . Definition B.18
6: Choose sketching matrices T1 ∈ Rt1×n, T2 ∈ Rt2×n, T3 ∈ Rt3×n.
7: Compute AiSi,∀i ∈ [3].
8: Compute TiAiSi, ∀i ∈ [3].
9: Compute B ← A(T1, T2, T3).

10: Create variables for X1 ∈ Rs1×k.
11: Create variables for X3 ∈ Rs3×k.
12: Create variables for X2 ∈ Rs2×k2 .
13: Create variables for C ∈ Rk×k×k.
14: Run polynomial system verifier for ‖∑k

i2=1

∑k
i3=1(Y1X1)i2(Y2X2)i2+k(i3−1)(Y3X3)i3 −B‖2F .

15: return A1S1X1, A2S2X2, and A3S3X3.
16: end procedure

L.2.2 Algorithm

Theorem L.4. Given a third order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), there exists
an algorithm which takes O(nnz(A)) + n poly(k, 1/ε) + 2O(k4/ε) time and outputs three tensors U ∈
R1×n×k, V ∈ Rk×n×k, W ∈ Rk×n×1 such that

∥∥∥∥∥∥

k∑

i=1

k∑

j=1

(U2)i ⊗ (V2)i+k(j−1) ⊗ (W2)j −A

∥∥∥∥∥∥

2

F

≤ (1 + ε) min
train rank−k Ak

‖Ak −A‖2F

186

holds with probability 9/10.

Proof. We define OPT as

OPT = min
train rank−k A′

‖A′ −A‖2F .

Suppose the optimal

Ak =

k∑

i=1

k∑

j=1

U∗i ⊗ V ∗i+k(j−1) ⊗W ∗j .

We fix V ∗ ∈ Rn×k2 and W ∗ ∈ Rn×k. We use V ∗1 , V ∗2 , · · · , V ∗k2 to denote the columns of V ∗, and
W ∗1 ,W

∗
2 , · · · ,W ∗k to denote the columns of W ∗.

We consider the following optimization problem,

min
U∈Rn×k

∥∥∥∥∥∥

k∑

i=1

k∑

j=1

Ui ⊗ V ∗i+k(j−1) ⊗W ∗j −A

∥∥∥∥∥∥

2

F

,

which is equivalent to

min
U∈Rn×k

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

U ·




k∑
j=1

V ∗1+k(j−1) ⊗W ∗j
k∑
j=1

V ∗2+k(j−1) ⊗W ∗j
· · ·

k∑
j=1

V ∗k+k(j−1) ⊗W ∗j




−A

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

F

.

Let A1 ∈ Rn×n2 denote the matrix obtained by flattening the tensor A along the first dimension.
We use matrix Z1 ∈ Rk×n2 to denote




k∑
j=1

vec(V ∗1+k(j−1) ⊗W ∗j)

k∑
j=1

vec(V ∗2+k(j−1) ⊗W ∗j)

· · ·
k∑
j=1

vec(V ∗k+k(j−1) ⊗W ∗j)




.

Then we can obtain the following equivalent objective function,

min
U∈Rn×k

‖UZ1 −A1‖2F .

Notice that minU∈Rn×k ‖UZ1 −A1‖2F = OPT, since Ak = U∗Z1.
Let S>1 ∈ Rs1×n2 be a sketching matrix defined in Definition B.18, where s1 = O(k/ε). We

obtain the following optimization problem,

min
U∈Rn×k

‖UZ1S1 −A1S1‖2F .

187

Let Û ∈ Rn×k denote the optimal solution to the above optimization problem. Then Û =
A1S1(Z1S1)†. By Lemma B.22 and Theorem B.23, we have

‖ÛZ1 −A1‖2F ≤ (1 + ε) min
U∈Rn×k

‖UZ1 −A1‖2F = (1 + ε) OPT,

which implies
∥∥∥∥∥∥

k∑

i=1

k∑

j=1

Ûi ⊗ V ∗i+k(j−1) ⊗W ∗j −A

∥∥∥∥∥∥

2

F

≤ (1 + ε) OPT .

To write down Û1, · · · , Ûk, we use the given matrix A1, and we create s1 × k variables for matrix
(Z1S1)†.

As our second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and we convert the tensor A into matrix
A2. Let matrix Z2 ∈ Rk2×n2 denote the matrix where the (i, j)-th row is the vectorization of
Ûi ⊗W ∗j . We consider the following objective function,

min
V ∈Rn×k

‖V Z2 −A2‖2F ,

for which the optimal cost is at most (1 + ε) OPT.
Let S>2 ∈ Rs2×n2 be a sketching matrix defined in Definition B.18, where s2 = O(k2/ε). We

sketch S2 on the right of the objective function to obtain the new objective function,

min
V ∈Rn×k

‖V Z2S2 −A2S2‖2F .

Let V̂ ∈ Rn×k denote the optimal solution of the above problem. Then V̂ = A2S2(Z2S2)†. By
Lemma B.22 and Theorem B.23, we have,

‖V̂ Z2 −A2‖2F ≤ (1 + ε) min
V ∈Rn×k

‖V Z2 −A2‖2F ≤ (1 + ε)2 OPT,

which implies
∥∥∥∥∥∥

k∑

i=1

k∑

j=1

Ûi ⊗ V̂i+k(j−1) ⊗W ∗ −A

∥∥∥∥∥∥

2

F

≤ (1 + ε)2 OPT .

To write down V̂1, · · · , V̂k, we need to use the given matrix A2 ∈ Rn2×n, and we need to create
s2 × k variables for matrix (Z2S2)†.

As our third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k. We convert tensor A ∈ Rn×n×n
into matrix A3 ∈ Rn2×n. Let matrix Z3 ∈ Rk×n2 denote




∑k
i=1 vec(Ûi ⊗ V̂i+k·0)∑k
i=1 vec(Ûi ⊗ V̂i+k·1)

· · ·∑k
i=1 vec(Ûi ⊗ V̂i+k·(k−1))


 .

We consider the following objective function,

min
W∈Rn×k

‖WZ3 −A3‖2F ,

188

which has optimal cost at most (1 + ε)2 OPT.
Let S>3 ∈ Rs3×n2 be a sketching matrix defined in Definition B.18, where s3 = O(k/ε). We

sketch S3 on the right of the objective function to obtain a new objective function,

min
W∈Rn×k

‖WZ3S3 −A3S3‖2F .

Let Ŵ ∈ Rn×k denote the optimal solution of the above problem. Then Ŵ = A3S3(Z3S3)†. By
Lemma B.22 and Theorem B.23, we have,

‖ŴZ3 −A3‖2F ≤ (1 + ε) min
W∈Rn×k

‖WZ3 −A3‖2F ≤ (1 + ε)3 OPT .

Thus, we have

min
X1,X2,X3

∥∥∥∥∥∥

k∑

i=1

k∑

j=1

(A1S1X1)i ⊗ (A2S2X2)i+k(j−1) ⊗ (A3S3X3)j −A

∥∥∥∥∥∥

2

F

≤ (1 + ε)3 OPT .

Let V1 = A1S1, V2 = A2S2, and V3 = A3S3.We then apply Lemma C.3, and we obtain V̂1, V̂2, V̂3, B.
We then apply Theorem C.45. Correctness follows by rescaling ε by a constant factor.

Running time. Due to Definition B.18, the running time of line 7 (Algorithm 42) is O(nnz(A))+
n poly(k, 1/ε). Due to Lemma C.3, lines 8 and 9 can be executed in nnz(A) + n poly(k, 1/ε) time.
The running time of 2O(k4/ε) comes from running Theorem C.45 (For simplicity, we ignore the bit
complexity in the running time.)

189

M Acknowledgments

The authors would like to thank Udit Agarwal, Alexandr Andoni, Arturs Backurs, Saugata Basu,
Lijie Chen, Xi Chen, Thomas Dillig, Yu Feng, Rong Ge, Daniel Hsu, Chi Jin, Ravindran Kannan, J.
M. Landsberg, Qi Lei, Fu Li, Syed Mohammad Meesum, Ankur Moitra, Dana Moshkovitz, Cameron
Musco, Richard Peng, Eric Price, Govind Ramnarayan, Ilya Razenshteyn, James Renegar, Rocco
Servedio, Tselil Schramm, Clifford Stein, Wen Sun, Yining Wang, Zhaoran Wang, Wei Ye, Huacheng
Yu, Huan Zhang, Kai Zhong, David Zuckerman for useful discussions.

190

References

[AAB+07] Evrim Acar, Canan Aykut-Bingöl, Haluk Bingol, Rasmus Bro, and Bülent Yener.
Multiway analysis of epilepsy tensors. In Proceedings 15th International Conference
on Intelligent Systems for Molecular Biology (ISMB) & 6th European Conference on
Computational Biology (ECCB), Vienna, Austria, July 21-25, 2007, pages 10–18,
2007.

[ABF+16] Jason Altschuler, Aditya Bhaskara, Gang Fu, Vahab Mirrokni, Afshin Rostamizadeh,
and Morteza Zadimoghaddam. Greedy column subset selection: New bounds and
distributed algorithms. In International Conference on Machine Learning (ICML).
https://arxiv.org/pdf/1605.08795, 2016.

[ABSV14] Pranjal Awasthi, Avrim Blum, Or Sheffet, and Aravindan Vijayaraghavan. Learning
mixtures of ranking models. In Advances in Neural Information Processing Systems
(NIPS). https://arxiv.org/pdf/1410.8750, 2014.

[ABW17] Pranjal Awasthi, Maria-Florina Balcan, and Colin White. General and robust
communication-efficient algorithms for distributed clustering. In arXiv preprint.
https://arxiv.org/pdf/1703.00830, 2017.

[AÇKY05] Evrim Acar, Seyit A Çamtepe, Mukkai S Krishnamoorthy, and Bülent Yener. Mod-
eling and multiway analysis of chatroom tensors. In International Conference on
Intelligence and Security Informatics, pages 256–268. Springer, 2005.

[ACY06] Evrim Acar, Seyit A Camtepe, and Bülent Yener. Collective sampling and analysis
of high order tensors for chatroom communications. In International Conference on
Intelligence and Security Informatics, pages 213–224. Springer, 2006.

[ADGM16] Anima Anandkumar, Yuan Deng, Rong Ge, and Hossein Mobahi. Homotopy analysis
for tensor pca. In arXiv preprint. https://arxiv.org/pdf/1610.09322, 2016.

[AFdLGTL09] Santiago Aja-Fernández, Rodrigo de Luis Garcia, Dacheng Tao, and Xuelong Li.
Tensors in image processing and computer vision. Springer Science & Business Me-
dia, 2009.

[AFH+12] Anima Anandkumar, Dean P Foster, Daniel J Hsu, Sham M Kakade, and Yi-Kai
Liu. A spectral algorithm for latent dirichlet allocation. In Advances in Neural
Information Processing Systems(NIPS), pages 917–925. https://arxiv.org/pdf/
1204.6703, 2012.

[AGH+14] Animashree Anandkumar, Rong Ge, Daniel J. Hsu, Sham M. Kakade, and Matus
Telgarsky. Tensor decompositions for learning latent variable models. In Journal of
Machine Learning Research, volume 15(1), pages 2773–2832. https://arxiv.org/
pdf/1210.7559, 2014.

[AGHK14] Animashree Anandkumar, Rong Ge, Daniel J Hsu, and Sham M Kakade. A tensor
approach to learning mixed membership community models. In Journal of Machine
Learning Research, volume 15(1), pages 2239–2312. https://arxiv.org/pdf/1302.
2684, 2014.

191

https://arxiv.org/pdf/1605.08795
https://arxiv.org/pdf/1410.8750
https://arxiv.org/pdf/1703.00830
https://arxiv.org/pdf/1610.09322
https://arxiv.org/pdf/1204.6703
https://arxiv.org/pdf/1204.6703
https://arxiv.org/pdf/1210.7559
https://arxiv.org/pdf/1210.7559
https://arxiv.org/pdf/1302.2684
https://arxiv.org/pdf/1302.2684

[AGKM12] Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Computing a
nonnegative matrix factorization - provably. In Proceedings of the 44th Symposium
on Theory of Computing Conference (STOC), New York, NY, USA, May 19 - 22,
2012, pages 145–162. https://arxiv.org/pdf/1111.0952, 2012.

[AGMR16] Sanjeev Arora, Rong Ge, Tengyu Ma, and Andrej Risteski. Provable learning of
noisy-or networks. In Proceedings of the 49th Annual Symposium on the Theory of
Computing (STOC). ACM, https://arxiv.org/pdf/1612.08795, 2016.

[AKDM10] E. Acar, T. G. Kolda, D. M. Dunlavy, and M. Morup. Scalable Tensor Factorizations
for Incomplete Data. In arXiv preprint. https://arxiv.org/pdf/1005.2197, 2010.

[AKO11] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms
via precision sampling. In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 363–372. IEEE, https://arxiv.org/pdf/1011.
1263, 2011.

[ALA16] Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Rein-
forcement learning of POMDPs using spectral methods. In 29th Annual Conference
on Learning Theory (COLT), pages 193–256. https://arxiv.org/pdf/1602.07764,
2016.

[ALB13] Mohammad Gheshlaghi Azar, Alessandro Lazaric, and Emma Brunskill. Sequential
transfer in multi-armed bandit with finite set of models. In Advances in Neural
Information Processing Systems(NIPS), pages 2220–2228. https://arxiv.org/pdf/
1307.6887, 2013.

[All12a] Genevera Allen. Sparse higher-order principal components analysis. In AISTATS,
volume 15, 2012.

[All12b] Genevera I Allen. Regularized tensor factorizations and higher-order principal com-
ponents analysis. In arXiv preprint. https://arxiv.org/pdf/1202.2476, 2012.

[AM07] Dimitris Achlioptas and Frank McSherry. Fast computation of low-rank matrix
approximations. J. ACM, 54(2):9, 2007.

[ANW14] Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings for the
polynomial kernel. In Advances in Neural Information Processing Systems(NIPS),
pages 2258–2266, 2014.

[Ban38] Stefan Banach. Über homogene polynome in (l2). Studia Mathematica, 7(1):36–44,
1938.

[BBC+17] Jaroslaw Blasiok, Vladimir Braverman, Stephen R Chestnut, Robert Krauthgamer,
and Lin F Yang. Streaming symmetric norms via measure concentration. In Pro-
ceedings of the 49th Annual Symposium on the Theory of Computing(STOC). ACM,
https://arxiv.org/pdf/1511.01111, 2017.

[BBLM14] MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab Mirrokni.
Distributed balanced clustering via mapping coresets. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 2591–2599, 2014.

192

https://arxiv.org/pdf/1111.0952
https://arxiv.org/pdf/1612.08795
https://arxiv.org/pdf/1005.2197
https://arxiv.org/pdf/1011.1263
https://arxiv.org/pdf/1011.1263
https://arxiv.org/pdf/1602.07764
https://arxiv.org/pdf/1307.6887
https://arxiv.org/pdf/1307.6887
https://arxiv.org/pdf/1202.2476
https://arxiv.org/pdf/1511.01111

[BCI+16] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu
Wang, and David P Woodruff. Bptree: an `2 heavy hitters algorithm using constant
memory. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (PODS). https://arxiv.org/pdf/1603.00759,
2016.

[BCIW16] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, and David P Woodruff.
Beating countsketch for heavy hitters in insertion streams. In Proceedings of the
48th Annual Symposium on the Theory of Computing (STOC). https://arxiv.
org/pdf/1511.00661, 2016.

[BCKY16] Vladimir Braverman, Stephen R Chestnut, Robert Krauthgamer, and Lin F Yang.
Sketches for matrix norms: Faster, smaller and more general. In arXiv preprint.
https://arxiv.org/pdf/1609.05885, 2016.

[BCL05] Zheng-Jian Bai, Raymond H Chan, and Franklin T Luk. Principal component anal-
ysis for distributed data sets with updating. In Advanced Parallel Processing Tech-
nologies, pages 471–483. Springer, 2005.

[BCMV14] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan.
Smoothed analysis of tensor decompositions. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, pages 594–603. ACM, https://arxiv.
org/pdf/1311.3651, 2014.

[BCS97] Peter Bürgisser, Michael Clausen, and Amin Shokrollahi. Algebraic complexity the-
ory, volume 315. Springer Science & Business Media, 1997.

[BCV14] Aditya Bhaskara, Moses Charikar, and Aravindan Vijayaraghavan. Uniqueness of
tensor decompositions with applications to polynomial identifiability. In 27th Annual
Conference on Learning Theory (COLT), pages 742–778. https://arxiv.org/pdf/
1304.8087, 2014.

[BDL16] Amitabh Basu, Michael Dinitz, and Xin Li. Computing approximate PSD factor-
izations. In arXiv preprint. https://arxiv.org/pdf/1602.07351, 2016.

[BDM11] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near optimal column-
based matrix reconstruction. In IEEE 52nd Annual Symposium on Foundations of
Computer Science (FOCS), 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 305–314. https://arxiv.org/pdf/1103.0995, 2011.

[Bin80] Dario Bini. Border rank of a p × q × 2 tensor and the optimal approximation of a
pair of bilinear forms. Automata, languages and programming, pages 98–108, 1980.

[Bin86] Dario Bini. Border rank of m × n × (mn-q) tensors. Linear Algebra and Its Appli-
cations, 79:45–51, 1986.

[BKLW14] Maria-Florina Balcan, Vandana Kanchanapally, Yingyu Liang, and David Woodruff.
Improved distributed principal component analysis. In Advances in Neural Informa-
tion Processing Systems (NIPS). https://arxiv.org/pdf/1408.5823, 2014.

[BKS15] Boaz Barak, Jonathan A Kelner, and David Steurer. Dictionary learning and tensor
decomposition via the sum-of-squares method. In Proceedings of the Forty-Seventh

193

https://arxiv.org/pdf/1603.00759
https://arxiv.org/pdf/1511.00661
https://arxiv.org/pdf/1511.00661
https://arxiv.org/pdf/1609.05885
https://arxiv.org/pdf/1311.3651
https://arxiv.org/pdf/1311.3651
https://arxiv.org/pdf/1304.8087
https://arxiv.org/pdf/1304.8087
https://arxiv.org/pdf/1602.07351
https://arxiv.org/pdf/1103.0995
https://arxiv.org/pdf/1408.5823

Annual ACM on Symposium on Theory of Computing (STOC), pages 143–151.
ACM, https://arxiv.org/pdf/1407.1543, 2015.

[BLG+15] Aurélien Bellet, Yingyu Liang, Alireza Bagheri Garakani, Maria-Florina Balcan,
and Fei Sha. A distributed frank-wolfe algorithm for communication-efficient sparse
learning. In Proceedings of the 2015 SIAM International Conference on Data Mining
(ICDM), pages 478–486. SIAM, https://arxiv.org/pdf/1404.2644, 2015.

[BLS+16] Maria-Florina Balcan, Yingyu Liang, Le Song, David Woodruff, and Bo Xie. Com-
munication efficient distributed kernel principal component analysis. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 725–734. ACM, https://arxiv.org/pdf/1503.06858,
2016.

[BM16] Boaz Barak and Ankur Moitra. Noisy tensor completion via the sum-of-squares
hierarchy. In Proceedings of the 29th Conference on Learning Theory, COLT 2016,
New York, USA, June 23-26, 2016, pages 417–445. https://arxiv.org/pdf/1501.
06521, 2016.

[BMD09] Christos Boutsidis, Michael W Mahoney, and Petros Drineas. An improved approx-
imation algorithm for the column subset selection problem. In Proceedings of the
twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
968–977. Society for Industrial and Applied Mathematics, https://arxiv.org/pdf/
0812.4293, 2009.

[BNR+15] Guillaume Bouchard, Jason Naradowsky, Sebastian Riedel, Tim Rocktäschel, and
Andreas Vlachos. Matrix and tensor factorization methods for natural language
processing. In ACL (Tutorial Abstracts), pages 16–18, 2015.

[Bou11] Christos Boutsidis. Topics in matrix sampling algorithms. In Ph.D. Thesis. arXiv
preprint. https://arxiv.org/pdf/1105.0709, 2011.

[BPR96] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. On the combinatorial and
algebraic complexity of quantifier elimination. J. ACM, 43(6):1002–1045, 1996.

[BRB08] Yann-Ael Le Borgne, Sylvain Raybaud, and Gianluca Bontempi. Distributed prin-
cipal component analysis for wireless sensor networks. Sensors, 2008.

[BS15] Srinadh Bhojanapalli and Sujay Sanghavi. A new sampling technique for tensors.
In arXiv preprint. https://arxiv.org/pdf/1502.05023, 2015.

[BSS12] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan spar-
sifiers. In SIAM Journal on Computing, volume 41(6), pages 1704–1721. https:
//arxiv.org/pdf/0808.0163, 2012.

[BW14] Christos Boutsidis and David P Woodruff. Optimal cur matrix decompositions. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC),
pages 353–362. ACM, https://arxiv.org/pdf/1405.7910, 2014.

[BWZ16] Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal compo-
nent analysis in distributed and streaming models. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 236–249. ACM,
https://arxiv.org/pdf/1504.06729, 2016.

194

https://arxiv.org/pdf/1407.1543
https://arxiv.org/pdf/1404.2644
https://arxiv.org/pdf/1503.06858
https://arxiv.org/pdf/1501.06521
https://arxiv.org/pdf/1501.06521
https://arxiv.org/pdf/0812.4293
https://arxiv.org/pdf/0812.4293
https://arxiv.org/pdf/1105.0709
https://arxiv.org/pdf/1502.05023
https://arxiv.org/pdf/0808.0163
https://arxiv.org/pdf/0808.0163
https://arxiv.org/pdf/1405.7910
https://arxiv.org/pdf/1504.06729

[CC70] J Douglas Carroll and Jih-Jie Chang. Anaylsis of individual differences in mul-
tidimensional scaling via an n-way generalization of eckart-young decomposition.
Psychometrika, 35(3):283–319, 1970.

[CC10] Cesar F Caiafa and Andrzej Cichocki. Generalizing the column–row matrix decom-
position to multi-way arrays. Linear Algebra and its Applications, 433(3):557–573,
2010.

[CDMI+13] Kenneth L Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney,
Xiangrui Meng, and David P Woodruff. The fast cauchy transform and faster ro-
bust linear regression. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 466–477. Society for Industrial
and Applied Mathematics, https://arxiv.org/pdf/1207.4684, 2013.

[CEM+15] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approxima-
tion. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing (STOC), pages 163–172. ACM, https://arxiv.org/pdf/1410.6801,
2015.

[CKPS16] Xue Chen, Daniel M. Kane, Eric Price, and Zhao Song. Fourier-sparse interpola-
tion without a frequency gap. In IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,
New Jersey, USA, pages 741–750, 2016.

[Cla05] Kenneth L Clarkson. Subgradient and sampling algorithms for `1 regression. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms
(SODA), pages 257–266, 2005.

[CLK+15] Fengyu Cong, Qiu-Hua Lin, Li-Dan Kuang, Xiao-Feng Gong, Piia Astikainen, and
Tapani Ristaniemi. Tensor decomposition of eeg signals: a brief review. Journal of
neuroscience methods, 248:59–69, 2015.

[CLM+15] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng,
and Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science (ITCS), pages
181–190. ACM, https://arxiv.org/pdf/1408.5099, 2015.

[CLZ17] Longxi Chen, Yipeng Liu, and Ce Zhu. Iterative block tensor singular value thresh-
olding for extraction of low rank component of image data. In ICASSP 2017, 2017.

[CMDL+15] Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao,
Cesar Caiafa, and Huy Anh Phan. Tensor decompositions for signal processing ap-
plications: From two-way to multiway component analysis. IEEE Signal Processing
Magazine, 32(2):145–163, 2015.

[CNW15] Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal approximate
matrix product in terms of stable rank. In Proceedings of the 43rd International
Colloquium on Automata, Languages and Programming (ICALP), Rome, Italy, July
12-15, 2016. https://arxiv.org/pdf/1507.02268, 2015.

195

https://arxiv.org/pdf/1207.4684
https://arxiv.org/pdf/1410.6801
https://arxiv.org/pdf/1408.5099
https://arxiv.org/pdf/1507.02268

[Com09] P. Comon. Tensor Decompositions, State of the Art and Applications. ArXiv e-
prints, 2009.

[CP15] Michael B. Cohen and Richard Peng. `p row sampling by lewis weights. In Pro-
ceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting (STOC), STOC ’15, pages 183–192, New York, NY, USA, 2015. https:
//arxiv.org/pdf/1412.0588.

[CV15] Nicoló Colombo and Nikos Vlassis. Fastmotif: spectral sequence motif discovery.
Bioinformatics, pages 2623–2631, 2015.

[CW87] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic pro-
gressions. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 1–6. ACM, 1987.

[CW09] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the stream-
ing model. In Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 205–214,
2009.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and re-
gression in input sparsity time. In Symposium on Theory of Computing Con-
ference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 81–90. https:
//arxiv.org/pdf/1207.6365, 2013.

[CW15a] Kenneth L Clarkson and David P Woodruff. Input sparsity and hardness for robust
subspace approximation. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (FOCS), pages 310–329. IEEE, https://arxiv.org/pdf/1510.
06073, 2015.

[CW15b] Kenneth L Clarkson and David P Woodruff. Sketching for m-estimators: A unified
approach to robust regression. In Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 921–939. SIAM, 2015.

[CYYM14] Kai-Wei Chang, Scott Wen-tau Yih, Bishan Yang, and Chris Meek. Typed tensor
decomposition of knowledge bases for relation extraction. In Empirical Methods in
Natural Language Processing (EMNLP), pages 1568–1579, 2014.

[DDH+09] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Ma-
honey. Sampling algorithms and coresets for `p regression. SIAM Journal on Com-
puting, 38(5):2060–2078, 2009.

[Dem14] Erik Demaine. Algorithmic lower bounds: Fun with hardness proofs, lecture 13. In
MIT Course 6.890, 2014.

[DLDM98] Lieven De Lathauwer and Bart De Moor. From matrix to tensor: Multilinear algebra
and signal processing. In Institute of Mathematics and Its Applications Conference
Series, volume 67, pages 1–16. Citeseer, 1998.

[DMIMW12] Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff.
Fast approximation of matrix coherence and statistical leverage. Journal of Machine
Learning Research, 13(Dec):3475–3506, 2012.

196

https://arxiv.org/pdf/1412.0588
https://arxiv.org/pdf/1412.0588
https://arxiv.org/pdf/1207.6365
https://arxiv.org/pdf/1207.6365
https://arxiv.org/pdf/1510.06073
https://arxiv.org/pdf/1510.06073

[DMM06a] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling
and relative-error matrix approximation: Column-based methods. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
9th International Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems, APPROX 2006 and 10th International Workshop on Random-
ization and Computation, RANDOM 2006, Barcelona, Spain, August 28-30 2006,
Proceedings, pages 316–326, 2006.

[DMM06b] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling
and relative-error matrix approximation: Column-row-based methods. In Algorithms
- ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-
13, 2006, Proceedings, pages 304–314, 2006.

[DMM08] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error CUR
matrix decompositions. SIAM J. Matrix Analysis Applications, 30(2):844–881, 2008.

[DR10] Amit Deshpande and Luis Rademacher. Efficient volume sampling for row/column
subset selection. In 2010 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 329–338. IEEE, https://arxiv.org/pdf/1004.4057, 2010.

[DSL08] Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-
rank approximation problem. SIAM Journal on Matrix Analysis and Applications,
30(3):1084–1127, 2008.

[DV06] Amit Deshpande and Santosh Vempala. Adaptive sampling and fast low-rank matrix
approximation. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 292–303. Springer, 2006.

[DV07] Amit Deshpande and Kasturi R. Varadarajan. Sampling-based dimension reduction
for subspace approximation. In Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages
641–650, 2007.

[Dvo61] AP Dvoredsky. Some results on convex bodies and banach spaces. In Proc. Internat.
Sympos. Linear Spaces (Jerusalem, 1960), pages 123–160, 1961.

[DW17] Huaian Diao and David P. Woodruff. Kronecker product and spline regression.
manuscript, 2017.

[ES09] Lars Eldén and Berkant Savas. A newton-grassmann method for computing the
best multilinear rank-(r1,r2,r3) approximation of a tensor. SIAM J. Matrix Analysis
Applications, 31(2):248–271, 2009.

[FEGK13] Ahmed K Farahat, Ahmed Elgohary, Ali Ghodsi, and Mohamed S Kamel. Dis-
tributed column subset selection on mapreduce. In 2013 IEEE 13th International
Conference on Data Mining (ICDM), pages 171–180. IEEE, 2013.

[Fei02] Uriel Feige. Relations between average case complexity and approximation com-
plexity. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing(STOC), pages 534–543. ACM, 2002.

197

https://arxiv.org/pdf/1004.4057

[FFSS07] Dan Feldman, Amos Fiat, Micha Sharir, and Danny Segev. Bi-criteria linear-time
approximations for generalized k-mean/median/center. In Proceedings of the 23rd
ACM Symposium on Computational Geometry, Gyeongju, South Korea, June 6-8,
2007, pages 19–26, 2007.

[FKV04] Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms
for finding low-rank approximations. J. ACM, 51(6):1025–1041, 2004.

[FMMN11] Shmuel Friedland, V Mehrmann, A Miedlar, and M Nkengla. Fast low rank approx-
imations of matrices and tensors. Electron. J. Linear Algebra, 22(10311048):462,
2011.

[FMPS13] Shmuel Friedland, Volker Mehrmann, Renato Pajarola, and Susanne K. Suter. On
best rank one approximation of tensors. Numerical Lin. Alg. with Applic., 20(6):942–
955, 2013.

[FS99] Roger Fischlin and Jean-Pierre Seifert. Tensor-based trapdoors for cvp and their
application to public key cryptography. Cryptography and Coding, pages 801–801,
1999.

[FT07] Shmuel Friedland and Anatoli Torokhti. Generalized rank-constrained matrix ap-
proximations. SIAM Journal on Matrix Analysis and Applications, 29(2):656–659,
2007.

[FT15] Shmuel Friedland and Venu Tammali. Low-rank approximation of tensors. In Numer-
ical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory,
pages 377–411. Springer, 2015.

[GGH14] Quanquan Gu, Huan Gui, and Jiawei Han. Robust tensor decomposition with gross
corruption. In Advances in Neural Information Processing Systems(NIPS), pages
1422–1430, 2014.

[GHK15] Rong Ge, Qingqing Huang, and Sham M Kakade. Learning mixtures of gaussians in
high dimensions. In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing (STOC), pages 761–770. ACM, https://arxiv.org/pdf/
1503.00424, 2015.

[GJS76] Michael R Garey, David S. Johnson, and Larry Stockmeyer. Some simplified np-
complete graph problems. Theoretical computer science, 1(3):237–267, 1976.

[GL04] Andreas Goerdt and André Lanka. An approximation hardness result for bipartite
clique. In Electronic Colloquium on Computational Complexity, Report, volume 48.
https://eccc.weizmann.ac.il/report/2004/048/, 2004.

[GM15] Rong Ge and Tengyu Ma. Decomposing overcomplete 3rd order tensors using sum-
of-squares algorithms. In The 18th. International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (APPROX’2015), and the 19th.
International Workshop on Randomization and Computation (RANDOM’2015).
https://arxiv.org/pdf/1504.05287, 2015.

[GP14] Mina Ghashami and Jeff M Phillips. Relative errors for deterministic low-rank matrix
approximations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium

198

https://arxiv.org/pdf/1503.00424
https://arxiv.org/pdf/1503.00424
https://eccc.weizmann.ac.il/report/2004/048/
https://arxiv.org/pdf/1504.05287

on Discrete Algorithms (SODA), pages 707–717. Society for Industrial and Applied
Mathematics, https://arxiv.org/pdf/1307.7454, 2014.

[GQ14] Donald Goldfarb and Zhiwei Qin. Robust low-rank tensor recovery: Models and
algorithms. SIAM Journal on Matrix Analysis and Applications, 35(1):225–253,
2014.

[Har70] Richard A Harshman. Foundations of the parafac procedure: Models and conditions
for an “explanatory” multi-modal factor analysis. ., 1970.

[Hås90] Johan Håstad. Tensor rank is np-complete. Journal of Algorithms, 11(4):644–654,
1990.

[Hås00] Johan Håstad. On bounded occurrence constraint satisfaction. Information Process-
ing Letters, 74(1-2):1–6, 2000.

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM
(JACM), 48(4):798–859, 2001.

[HD08] Heng Huang and Chris Ding. Robust tensor factorization using r 1 norm. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8. IEEE,
2008.

[HK13] Daniel Hsu and Sham M Kakade. Learning mixtures of spherical gaussians: mo-
ment methods and spectral decompositions. In Proceedings of the 4th confer-
ence on Innovations in Theoretical Computer Science(ITCS), pages 11–20. ACM,
https://arxiv.org/pdf/1206.5766, 2013.

[HL13] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. In
Journal of the ACM (JACM), volume 60(6), page 45. https://arxiv.org/pdf/
0911.1393, 2013.

[HPS05] Tamir Hazan, Simon Polak, and Amnon Shashua. Sparse image coding using a
3d non-negative tensor factorization. In Tenth IEEE International Conference on
Computer Vision(ICCV), volume 1, pages 50–57. IEEE, 2005.

[HSS15] Samuel B Hopkins, Jonathan Shi, and David Steurer. Tensor principal component
analysis via sum-of-square proofs. In 28th Annual Conference on Learning Theory
(COLT), pages 956–1006. https://arxiv.org/pdf/1507.03269, 2015.

[HSSS16] Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spectral
algorithms from sum-of-squares proofs: tensor decomposition and planted sparse
vectors. In Proceedings of the 48th Annual Symposium on the Theory of Computing.
ACM, https://arxiv.org/pdf/1512.02337, 2016.

[HT16] Daniel Hsu and Matus Telgarsky. Greedy bi-criteria approximations for k-medians
and k-means. arXiv preprint arXiv:1607.06203, 2016.

[IPZ98] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? In Proceedings. 39th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 653–662. IEEE, 1998.

199

https://arxiv.org/pdf/1307.7454
https://arxiv.org/pdf/1206.5766
https://arxiv.org/pdf/0911.1393
https://arxiv.org/pdf/0911.1393
https://arxiv.org/pdf/1507.03269
https://arxiv.org/pdf/1512.02337

[IW97] Russell Impagliazzo and Avi Wigderson. P= BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing (STOC), pages 220–229. ACM, 1997.

[JMZ15] Bo Jiang, Shiqian Ma, and Shuzhong Zhang. Tensor principal component analysis
via convex optimization. Mathematical Programming, 150(2):423–457, 2015.

[JO14a] Prateek Jain and Sewoong Oh. Learning mixtures of discrete product distribu-
tions using spectral decompositions. In 27th Annual Conference on Learning Theory
(COLT), pages 824–856. https://arxiv.org/pdf/1311.2972, 2014.

[JO14b] Prateek Jain and Sewoong Oh. Provable tensor factorization with missing data.
In Advances in Neural Information Processing Systems (NIPS), pages 1431–1439.
https://arxiv.org/pdf/1406.2784, 2014.

[JPT13] Gabriela Jeronimo, Daniel Perrucci, and Elias Tsigaridas. On the minimum of a
polynomial function on a basic closed semialgebraic set and applications. SIAM
Journal on Optimization, 23(1):241–255, 2013.

[JSA15] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-
convexity: Guaranteed training of neural networks using tensor methods. In arXiv
preprint. https://arxiv.org/pdf/1506.08473, 2015.

[KABO10] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. Mul-
tiverse recommendation: n-dimensional tensor factorization for context-aware col-
laborative filtering. In Proceedings of the fourth ACM conference on Recommender
systems, pages 79–86. ACM, 2010.

[KB06] Tamara Kolda and Brett Bader. The tophits model for higher-order web link analysis.
In Workshop on link analysis, counterterrorism and security, volume 7, pages 26–29,
2006.

[KB09] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications.
SIAM Review, 51(3):455–500, 2009.

[KC07] Yong-Deok Kim and Seungjin Choi. Nonnegative tucker decomposition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)., pages 1–8. IEEE,
2007.

[KDS08] Wim P Krijnen, Theo K Dijkstra, and Alwin Stegeman. On the non-existence
of optimal solutions and the occurrence of “degeneracy” in the candecomp/parafac
model. Psychometrika, 73(3):431–439, 2008.

[KHL89] JB Kruskal, RA Harshman, and ME Lundy. How 3-mfa data can cause degenerate
parafac solutions, among other relationships. Multiway data analysis, pages 115–121,
1989.

[KL11] J. Kelner and A. Levin. Spectral sparsification in the semi-streaming setting. In
Symposium on Theoretical Aspects of Computer Science (STACS), 2011.

[KLM+14] Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron
Sidford. Single pass spectral sparsification in dynamic streams. In 2014 IEEE 55th

200

https://arxiv.org/pdf/1311.2972
https://arxiv.org/pdf/1406.2784
https://arxiv.org/pdf/1506.08473

Annual Symposium on Foundations of Computer Science (FOCS), pages 561–570.
IEEE, https://arxiv.org/pdf/1407.1289, 2014.

[KM11] Tamara G Kolda and Jackson R Mayo. Shifted power method for computing tensor
eigenpairs. SIAM Journal on Matrix Analysis and Applications, 32(4):1095–1124,
2011.

[KN14] Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. In
Journal of the ACM (JACM), volume 61(1), page 4. https://arxiv.org/pdf/1012.
1577, 2014.

[Knu98] Donald E. Knuth. The art of computer programming, vol. 2 : seminumerical algo-
rithms, 1998.

[Kro83] Pieter M Kroonenberg. Three-mode principal component analysis: Theory and ap-
plications, volume 2. DSWO press, 1983.

[KS08] Tamara G Kolda and Jimeng Sun. Scalable tensor decompositions for multi-aspect
data mining. In Eighth IEEE International Conference on Data Mining (ICDM),
pages 363–372. IEEE, 2008.

[KVW14] Ravindran Kannan, Santosh S Vempala, and David P Woodruff. Principal compo-
nent analysis and higher correlations for distributed data. In Proceedings of The
27th Conference on Learning Theory (COLT), pages 1040–1057, 2014.

[KYFD15] Liwei Kuang, Laurence Yang, Jun Feng, and Mianxiong Dong. Secure tensor decom-
position using fully homomorphic encryption scheme. IEEE Transactions on Cloud
Computing, 2015.

[Lan06] J Landsberg. The border rank of the multiplication of 2× 2 matrices is seven. In
Journal of the American Mathematical Society, volume 19(2), pages 447–459, 2006.

[Lan12] Joseph M Landsberg. Tensors: geometry and applications, volume 128. Amer-
ican Mathematical Society Providence, RI, USA., http://www.math.tamu.edu/
~joseph.landsberg/Tbookintro.pdf, 2012.

[LFC+16] Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan.
Tensor robust principal component analysis: Exact recovery of corrupted low-rank
tensors via convex optimization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5249–5257, 2016.

[Lib13] Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD), pages 581–588. ACM, 2013.

[LMS11] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. In Bull. EATCS 105, pages 41–72, 2011.

[LMV00a] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular
value decomposition. SIAM J. Matrix Analysis Applications, 21(4):1253–1278, 2000.

[LMV00b] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1
and rank-(R1, R2, · · · , Rn) approximation of higher-order tensors. SIAM J. Matrix
Analysis Applications, 21(4):1324–1342, 2000.

201

https://arxiv.org/pdf/1407.1289
https://arxiv.org/pdf/1012.1577
https://arxiv.org/pdf/1012.1577
http://www.math.tamu.edu/~joseph.landsberg/Tbookintro.pdf
http://www.math.tamu.edu/~joseph.landsberg/Tbookintro.pdf

[LMWY13] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion for
estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell.,
35(1):208–220, 2013.

[LNNT16] Kasper Green Larsen, Jelani Nelson, Huy L Nguyen, and Mikkel Thorup. Heavy hit-
ters via cluster-preserving clustering. In Foundations of Computer Science (FOCS),
2016 IEEE 57th Annual Symposium on, pages 61–70. IEEE, https://arxiv.org/
pdf/1604.01357, 2016.

[LRHG13] Ben London, Theodoros Rekatsinas, Bert Huang, and Lise Getoor. Multi-relational
learning using weighted tensor decomposition with modular loss. In arXiv preprint.
https://arxiv.org/abs/1303.1733, 2013.

[LZBJ14] Tao Lei, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. Low-rank tensors for
scoring dependency structures. In Association for Computational Linguistics(ACL),
Best student paper award, 2014.

[LZMB15] Tao Lei, Yuan Zhang, Alessandro Moschitti, and Regina Barzilay. High-order low-
rank tensors for semantic role labeling. In In Proceedings of the 2015 Conference
of the North America Chapter of the Association For Computational Linguistics–
Human Language Technologies (NAACLHLT 2015. Citeseer, 2015.

[MBZ10] Sergio V Macua, Pavle Belanovic, and Santiago Zazo. Consensus-based distributed
principal component analysis in wireless sensor networks. In Signal Processing Ad-
vances in Wireless Communications (SPAWC), 2010 IEEE Eleventh International
Workshop on, pages 1–5. IEEE, 2010.

[MH09] Morten Mørup and Lars Kai Hansen. Sparse coding and automatic relevance de-
termination for multi-way models. In SPARS’09-Signal Processing with Adaptive
Sparse Structured Representations, 2009.

[MHG15] Cun Mu, Daniel Hsu, and Donald Goldfarb. Successive rank-one approximations
for nearly orthogonally decomposable symmetric tensors. SIAM Journal on Matrix
Analysis and Applications, 36(4):1638–1659, 2015.

[MHWG14] Cun Mu, Bo Huang, John Wright, and Donald Goldfarb. Square deal: Lower bounds
and improved relaxations for tensor recovery. In The Thirty-first International Con-
ference on Machine Learning (ICML), pages 73–81. https://arxiv.org/pdf/1307.
5870, 2014.

[MM13] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings in
input-sparsity time and applications to robust linear regression. In Proceedings of
the forty-fifth annual ACM symposium on Theory of computing, pages 91–100. ACM,
https://arxiv.org/pdf/1210.3135, 2013.

[MMD08] Michael W Mahoney, Mauro Maggioni, and Petros Drineas. Tensor-cur decompo-
sitions for tensor-based data. SIAM Journal on Matrix Analysis and Applications,
30(3):957–987, 2008.

[MMSW15] Konstantin Makarychev, Yury Makarychev, Maxim Sviridenko, and Justin Ward. A
bi-criteria approximation algorithm for k means. arXiv preprint arXiv:1507.04227,
2015.

202

https://arxiv.org/pdf/1604.01357
https://arxiv.org/pdf/1604.01357
https://arxiv.org/abs/1303.1733
https://arxiv.org/pdf/1307.5870
https://arxiv.org/pdf/1307.5870
https://arxiv.org/pdf/1210.3135

[Moi13] Ankur Moitra. An almost optimal algorithm for computing nonnegative rank. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), New Orleans, Louisiana, USA, January 6-8, 2013, pages 1454–1464.
https://arxiv.org/pdf/1205.0044, 2013.

[Moi14] Ankur Moitra. Algorithmic Aspects of Machine Learning. Cambridge University
Press, 2014.

[Mør11] Morten Mørup. Applications of tensor (multiway array) factorizations and decompo-
sitions in data mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 1(1):24–40, 2011.

[MR05] Elchanan Mossel and Sébastien Roch. Learning nonsingular phylogenies and hidden
markov models. In Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing (STOC), pages 366–375. ACM, https://arxiv.org/pdf/cs/
0502076, 2005.

[MR10] Dana Moshkovitz and Ran Raz. Two-query pcp with subconstant error. In Journal
of the ACM (JACM), volume 57(5), page 29. A preliminary version appeared in the
Proceedings of The 49th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 08), FOCS 08 Best paper award, https://eccc.weizmann.ac.il/
eccc-reports/2008/TR08-071/, 2010.

[MSS16] Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-time tensor decomposi-
tions with sum-of-squares. In Foundations of Computer Science (FOCS), 2016 IEEE
57th Annual Symposium on, pages 438–446. IEEE, https://arxiv.org/pdf/1610.
01980, 2016.

[MW10] Morteza Monemizadeh and David P Woodruff. 1-pass relative-error lp-sampling with
applications. In Proceedings of the twenty-first annual ACM-SIAM symposium on
Discrete Algorithms, pages 1143–1160. SIAM, 2010.

[N+03] Yurii Nesterov et al. Random walk in a simplex and quadratic optimization over
convex polytopes. CORE, 2003.

[NN13] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra al-
gorithms via sparser subspace embeddings. In 2013 IEEE 54th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 117–126. IEEE, https:
//arxiv.org/pdf/1211.1002, 2013.

[NW14] Jelani Nelson and David P. Woodruff. Personal communication. ., 2014.

[OS14] Sewoong Oh and Devavrat Shah. Learning mixed multinomial logit model from
ordinal data. In Advances in Neural Information Processing Systems (NIPS), pages
595–603. https://arxiv.org/pdf/1411.0073, 2014.

[Ose11] Ivan V. Oseledets. Tensor-train decomposition. SIAM J. Scientific Computing,
33(5):2295–2317, 2011.

[OST08] Ivan V Oseledets, DV Savostianov, and Eugene E Tyrtyshnikov. Tucker dimension-
ality reduction of three-dimensional arrays in linear time. SIAM Journal on Matrix
Analysis and Applications, 30(3):939–956, 2008.

203

https://arxiv.org/pdf/1205.0044
https://arxiv.org/pdf/cs/0502076
https://arxiv.org/pdf/cs/0502076
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-071/
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-071/
https://arxiv.org/pdf/1610.01980
https://arxiv.org/pdf/1610.01980
https://arxiv.org/pdf/1211.1002
https://arxiv.org/pdf/1211.1002
https://arxiv.org/pdf/1411.0073

[OT09] Ivan V Oseledets and Eugene E Tyrtyshnikov. Breaking the curse of dimensionality,
or how to use svd in many dimensions. SIAM Journal on Scientific Computing,
31(5):3744–3759, 2009.

[OTZ11] Ivan Oseledets, Eugene Tyrtyshnikov, and Nickolai Zamarashkin. Tensor-train ranks
for matrices and their inverses. Computational Methods in Applied Mathematics
Comput. Methods Appl. Math., 11(3):394–403, 2011.

[Paa97] Pentti Paatero. A weighted non-negative least squares algorithm for three-
way “parafac” factor analysis. Chemometrics and Intelligent Laboratory Systems,
38(2):223–242, 1997.

[Paa00] Pentti Paatero. Construction and analysis of degenerate parafac models. Journal of
chemometrics, 14(3):285–299, 2000.

[Pag13] Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computa-
tion Theory (TOCT), 5(3):9, 2013.

[PBLJ15] Anastasia Podosinnikova, Francis Bach, and Simon Lacoste-Julien. Rethinking lda:
moment matching for discrete ica. In Advances in Neural Information Processing
Systems(NIPS), pages 514–522. https://arxiv.org/pdf/1507.01784, 2015.

[PC08] Anh Phan and Andrzej Cichocki. Fast and efficient algorithms for nonnegative tucker
decomposition. Advances in Neural Networks-ISNN 2008, pages 772–782, 2008.

[PLY10] Yanwei Pang, Xuelong Li, and Yuan Yuan. Robust tensor analysis with l1-norm.
IEEE Transactions on Circuits and Systems for Video Technology, 20(2):172–178,
2010.

[PMvdG+13] Jack Poulson, Bryan Marker, Robert A van de Geijn, Jeff R Hammond, and
Nichols A Romero. Elemental: A new framework for distributed memory dense ma-
trix computations. ACM Transactions on Mathematical Software (TOMS), 39(2):13,
2013.

[PP13] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit
feature maps. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining(KDD), pages 239–247. ACM, 2013.

[PS17] Aaron Potechin and David Steurer. Exact tensor completion with sum-of-squares.
In arXiv preprint. https://arxiv.org/pdf/1702.06237, 2017.

[PTBD16] Ho N Phien, Hoang D Tuan, Johann A Bengua, and Minh N Do. Efficient tensor
completion: Low-rank tensor train. In arXiv preprint. https://arxiv.org/pdf/
1601.01083, 2016.

[QOSG02] Yongming Qu, George Ostrouchov, Nagiza Samatova, and Al Geist. Principal com-
ponent analysis for dimension reduction in massive distributed data sets. In Pro-
ceedings of IEEE International Conference on Data Mining (ICDM), 2002.

[Ren92a] James Renegar. On the computational complexity and geometry of the first-order
theory of the reals, part I: introduction. preliminaries. the geometry of semi-algebraic
sets. the decision problem for the existential theory of the reals. J. Symb. Comput.,
13(3):255–300, 1992.

204

https://arxiv.org/pdf/1507.01784
https://arxiv.org/pdf/1702.06237
https://arxiv.org/pdf/1601.01083
https://arxiv.org/pdf/1601.01083

[Ren92b] James Renegar. On the computational complexity and geometry of the first-order
theory of the reals, part II: the general decision problem. preliminaries for quantifier
elimination. J. Symb. Comput., 13(3):301–328, 1992.

[RM14] Emile Richard and Andrea Montanari. A statistical model for tensor pca. In Ad-
vances in Neural Information Processing Systems, pages 2897–2905. https://arxiv.
org/pdf/1411.1076, 2014.

[RNSS16] Avik Ray, Joe Neeman, Sujay Sanghavi, and Sanjay Shakkottai. The search problem
in mixture models. In arXiv preprint. https://arxiv.org/pdf/1610.00843, 2016.

[RST10] Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization
for personalized tag recommendation. In Proceedings of the third ACM international
conference on Web search and data mining(WSDM), pages 81–90. ACM, 2010.

[RSW16] Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approxi-
mations with provable guarantees. In Proceedings of the 48th Annual Symposium on
the Theory of Computing (STOC), 2016.

[RTP16] Thomas Reps, Emma Turetsky, and Prathmesh Prabhu. Newtonian program analy-
sis via tensor product. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages(POPL), volume 51:1, pages
663–677. ACM, 2016.

[RV09] Mark Rudelson and Roman Vershynin. Smallest singular value of a random rectan-
gular matrix. Communications on Pure and Applied Mathematics, 62(12):1707–1739,
2009.

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via random
projections. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS) , 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 143–
152, 2006.

[SBG04] Age K. Smilde, Rasmus Bro, and Paul Geladi. Multi-way Analysis with Applications
in the Chemical Sciences. Wiley, 2004.

[SC15] Jimin Song and Kevin C Chen. Spectacle: fast chromatin state annotation using
spectral learning. Genome biology, 16(1):33, 2015.

[Sch12] Leonard J Schulman. Cryptography from tensor problems. In IACR Cryptology
ePrint Archive, volume 2012, page 244. https://eprint.iacr.org/2012/244, 2012.

[SH05] Amnon Shashua and Tamir Hazan. Non-negative tensor factorization with appli-
cations to statistics and computer vision. In Proceedings of the 22nd international
conference on Machine learning(ICML), pages 792–799. ACM, 2005.

[SHW+16] Mao Shaowu, Zhang Huanguo, Wu Wanqing, Zhang Pei, Song Jun, and Liu Jinhui.
Key exchange protocol based on tensor decomposition problem. China Communi-
cations, 13(3):174–183, 2016.

[SS17] Tselil Schramm and David Steurer. Fast and robust tensor decomposition with
applications to dictionary learning. manuscript, 2017.

205

https://arxiv.org/pdf/1411.1076
https://arxiv.org/pdf/1411.1076
https://arxiv.org/pdf/1610.00843
https://eprint.iacr.org/2012/244

[Ste06] Alwin Stegeman. Degeneracy in candecomp/parafac explained for p × p × 2 arrays
of rank p+1 or higher. Psychometrika, 71(3):483–501, 2006.

[Ste08] Alwin Stegeman. Low-rank approximation of generic p × q × 2 arrays and diverging
components in the candecomp/parafac model. SIAM Journal on Matrix Analysis
and Applications, 30(3):988–1007, 2008.

[STLS14] Marco Signoretto, Dinh Quoc Tran, Lieven De Lathauwer, and Johan A. K. Suykens.
Learning with tensors: a framework based on convex optimization and spectral
regularization. Machine Learning, 94(3):303–351, 2014.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, 1969.

[SWZ16] Zhao Song, David P. Woodruff, and Huan Zhang. Sublinear time orthogonal tensor
decomposition. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems (NIPS) 2016, December 5-10,
2016, Barcelona, Spain, pages 793–801, 2016.

[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with
entrywise `1-norm error. In Proceedings of the 49th Annual Symposium on the Theory
of Computing (STOC). ACM, https://arxiv.org/pdf/1611.00898, 2017.

[TD99] Françoise Tisseur and Jack Dongarra. A parallel divide and conquer algorithm for the
symmetric eigenvalue problem on distributed memory architectures. SIAM Journal
on Scientific Computing, 20(6):2223–2236, 1999.

[TK11] Petr Tichavsky and Zbyněk Koldovsky. Weight adjusted tensor method for blind sep-
aration of underdetermined mixtures of nonstationary sources. IEEE Transactions
on Signal Processing, 59(3):1037–1047, 2011.

[TM17] Davoud Ataee Tarzanagh and George Michailidis. Fast monte carlo algorithms for
tensor operations. In arXiv preprint. https://arxiv.org/pdf/1704.04362, 2017.

[Tre01] Luca Trevisan. Non-approximability results for optimization problems on bounded
degree instances. In Proceedings of the thirty-third annual ACM symposium on The-
ory of computing (STOC), pages 453–461. ACM, 2001.

[TSHK11] Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, and Hisashi Kashima. Statistical per-
formance of convex tensor decomposition. In Advances in Neural Information Pro-
cessing Systems 24: 25th Annual Conference on Neural Information Processing Sys-
tems (NIPS). Proceedings of a meeting held 12-14 December 2011, Granada, Spain.,
pages 972–980, 2011.

[Vas09] M Alex O Vasilescu. A multilinear (tensor) algebraic framework for computer graph-
ics, computer vision, and machine learning. PhD thesis, Citeseer, 2009.

[VT02] M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis of image en-
sembles: Tensorfaces. In European Conference on Computer Vision, pages 447–460.
Springer, 2002.

206

https://arxiv.org/pdf/1611.00898
https://arxiv.org/pdf/1704.04362

[VT04] M Alex O Vasilescu and Demetri Terzopoulos. Tensortextures: Multilinear image-
based rendering. In ACM Transactions on Graphics (TOG), volume 23:3, pages
336–342. ACM, 2004.

[WA03] Hongcheng Wang and Narendra Ahuja. Facial expression decomposition. In Com-
puter Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages
958–965. IEEE, 2003.

[WA16] Yining Wang and Animashree Anandkumar. Online and differentially-private tensor
decomposition. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems (NIPS) 2016, December 5-10,
2016, Barcelona, Spain. https://arxiv.org/pdf/1606.06237, 2016.

[Wes94] Carl-Fredrik Westin. A tensor framework for multidimensional signal processing.
PhD thesis, Linköping University Electronic Press, 1994.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-
winograd. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing (STOC), pages 887–898. ACM, 2012.

[WM01] B. Walczak and DL Massart. Dealing with missing data: Part i. Chemometrics and
Intelligent Laboratory Systems, 58(1):15–27, 2001.

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations
and Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

[WS15] Yining Wang and Aarti Singh. Column subset selection with missing data via ac-
tive sampling. In The 18th International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 1033–1041, 2015.

[WTSA15] Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast
and guaranteed tensor decomposition via sketching. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 991–999. https://arxiv.org/pdf/1506.
04448, 2015.

[WWS+05] Hongcheng Wang, Qing Wu, Lin Shi, Yizhou Yu, and Narendra Ahuja. Out-of-core
tensor approximation of multi-dimensional matrices of visual data. ACM Transac-
tions on Graphics (TOG), 24(3):527–535, 2005.

[WZ16] David P Woodruff and Peilin Zhong. Distributed low rank approximation of implicit
functions of a matrix. In 32nd IEEE International Conference on Data Engineering
(ICDE). https://arxiv.org/pdf/1601.07721, 2016.

[YC14] Tatsuya Yokota and Andrzej Cichocki. Multilinear tensor rank estimation via sparse
tucker decomposition. In Soft Computing and Intelligent Systems (SCIS), 2014 Joint
7th International Conference on and Advanced Intelligent Systems (ISIS), 15th In-
ternational Symposium on, pages 478–483. IEEE, 2014.

[YCRM16] Jiyan Yang, Yin-Lam Chow, Christopher Ré, and Michael W Mahoney. Weighted
sgd for `p regression with randomized preconditioning. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
558–569. Society for Industrial and Applied Mathematics, https://arxiv.org/pdf/
1502.03571, 2016.

207

https://arxiv.org/pdf/1606.06237
https://arxiv.org/pdf/1506.04448
https://arxiv.org/pdf/1506.04448
https://arxiv.org/pdf/1601.07721
https://arxiv.org/pdf/1502.03571
https://arxiv.org/pdf/1502.03571

[YCS11] Yusuf Kenan Yilmaz, Ali Taylan Cemgil, and Umut Simsekli. Generalised coupled
tensor factorisation. In Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011. Proceedings of
a meeting held 12-14 December 2011, Granada, Spain., pages 2151–2159, 2011.

[YCS16] Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Solving a mixture of many
random linear equations by tensor decomposition and alternating minimization. In
arXiv preprint. https://arxiv.org/pdf/1608.05749, 2016.

[YFS16] Yuning Yang, Yunlong Feng, and Johan AK Suykens. Robust low-rank tensor re-
covery with regularized redescending m-estimator. IEEE transactions on neural
networks and learning systems, 27(9):1933–1946, 2016.

[ZCZJ14] Yuchen Zhang, Xi Chen, Denny Zhou, and Michael I Jordan. Spectral methods
meet em: A provably optimal algorithm for crowdsourcing. In Advances in Neu-
ral Information Processing Systems (NIPS), pages 1260–1268. https://arxiv.org/
pdf/1406.3824, 2014.

[ZG01] Tong Zhang and Gene H. Golub. Rank-one approximation to high order tensors.
SIAM J. Matrix Analysis Applications, 23(2):534–550, 2001.

[ZSJ+17] Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, and Inderjit S. Dhillon.
Recovery guarantees for one-hidden-layer neural networks. manuscript, 2017.

[ZW13] Syed Zubair and Wenwu Wang. Tensor dictionary learning with sparse tucker de-
composition. In Digital Signal Processing (DSP), 2013 18th International Conference
on, pages 1–6. IEEE, 2013.

[ZWZ16] Junyu Zhang, ZaiwenWen, and Yin Zhang. Subspace methods with local refinements
for eigenvalue computation using low-rank tensor-train format. Journal of Scientific
Computing, pages 1–22, 2016.

[ZX17] Anru Zhang and Dong Xia. Guaranteed tensor pca with optimality in statistics and
computation. In arXiv preprint. https://arxiv.org/pdf/1703.02724, 2017.

208
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://arxiv.org/pdf/1608.05749
https://arxiv.org/pdf/1406.3824
https://arxiv.org/pdf/1406.3824
https://arxiv.org/pdf/1703.02724

