Electronic Colloquium on Computational Complexity, Report No. 103 (2018)

Relative Error Tensor Low Rank Approximation

Zhao Song* David P. Woodruff Peilin Zhong!
zhaos@utexas.edu dpwoodru@us.ibm.com peilin.zhong@columbia.edu
UT-Austin IBM Almaden Columbia University
Abstract

We consider relative error low rank approximation of tensors with respect to the Frobenius
norm. Namely, given an order-q tensor A € Rn?zlni, output a rank-k tensor B for which
|A— B|% < (1 + ¢€)OPT, where OPT = infranik 4 ||[A — A’||%. Despite much success on
obtaining relative error low rank approximations for matrices, no such results were known for
tensors for arbitrary (1+¢)-approximations. One structural issue is that there may be no rank-%
tensor Ay achieving the above infinum. Another, computational issue, is that an efficient relative
error low rank approximation algorithm for tensors would allow one to compute the rank of a
tensor, which is NP-hard. We bypass these two issues via (1) bicriteria and (2) parameterized
complexity solutions:

1. We give an algorithm which outputs a rank k' = O((k/e)?™!) tensor B for which [|A —
B||%2 < (14¢€) OPT in nnz(A) +n-poly(k/e€) time in the real RAM model, whenever either
Ay, exists or OPT > 0. Here nnz(A) denotes the number of non-zero entries in A. If both
Ay does not exist and OPT = 0, then B instead satisfies |4 — B||% < «, where v is any
positive, arbitrarily small function of n.

2. We give an algorithm for any § > 0 which outputs a rank k tensor B for which ||A—B|% <
(14¢) OPT and runs in (nnz(A) +npoly(k/e) +exp(k?/e)) -n’ time in the unit cost RAM
model, whenever OPT > 2-0("") and there is a rank-k tensor B = Zle Uu; ® v; ® w; for
which |4 — B||2 < (1+ ¢/2) OPT and w2, |[vil2, lwsll2 < 20", If OPT < 2-2(n®),
then B instead satisfies | A — B||2, < 272",

Our first result is polynomial time, and in fact input sparsity time, in n,k, and 1/e, for any
k> 1 and any 0 < € < 1, while our second result is fixed parameter tractable in k and 1/e. For
outputting a rank-k tensor, or even a bicriteria solution with rank-C'k for a certain constant
C > 1, we show a 22" ") time lower bound under the Exponential Time Hypothesis.

Our results are based on an “iterative existential argument”, and also give the first relative
error low rank approximations for tensors for a large number of error measures for which nothing
was known. In particular, we give the first relative error approximation algorithms on tensors
for: column row and tube subset selection, entrywise £,-low rank approximation for 1 < p < 2,
low rank approximation with respect to sum of Euclidean norms of faces or tubes, weighted low
rank approximation, and low rank approximation in distributed and streaming models. We also
obtain several new results for matrices, such as nnz(A)-time CUR decompositions, improving
the previous nnz(A) logn-time CUR decompositions, which may be of independent interest.

*Work done while visiting IBM Almaden, and supported in part by UTCS TAship (CS361 Spring 17 Introduction
to Computer Security).
TSupported in part by Simons Foundation, and NSF CCF-1617955.

ISSN 1433-8092

Contents

1 Introduction 4
1.1 OurResults 6
1.2 Our Techniques e 9
1.3 Other Low Rank Approximation Algorithms Following Our Framework. 11
1.4 Comparison to [BCVI4] 16
1.5 An Algorithm and a Roadmap 16

A Notation 17
Preliminaries 19
B.1 Subspace Embeddings and Approximate Matrix Product 20
B.2 Tensor CURT decomposition 20
B.3 Polynomial system verifier oL 24
B.4 Lower bound on the cost of a polynomial system 25
B.5 Frobenius norm and /5 relaxation Lo 25
B.6 CountSketch and Gaussian transforms 26
B.7 Cauchy and p-stable transforms 27
B.8 Leverage scores e 28
B.9 Lewis weights 28
B.10 TENSORSKETCH o vt it e et e e e e e e e e e 30

C Frobenius Norm for Arbitrary Tensors 31
C.1 (1 + e)-approximate low-rank approximation 31
C.2 Imput sparsity reduction L 35
C.3 Tensor multiple regression 37
C.4 Bicriteria algorithms oo 38

C.4.1 Solving a small regression problem 38

C.4.2 Algorithm I 40

C.4.3 poly(k)-approximation to multiple regression 44

C.4.4 Algorithm IT 46

C.5 Generalized matrix row subset selection 47

C.6 Column, row, and tube subset selection, (1 + €)-approximation 51

C.7 CURT decomposition, (1 + €)-approximation 53

C.7.1 Properties of leverage score sampling and BSS sampling 53

C.7.2 Row sampling for linear regression 54

C.7.3 Leverage scores for multiple regression 56
C.7.4 Sampling columns according to leverage scores implicitly, improving polyno-

mial running time to nearly linear running time 58

C.7.5 Input sparsity time algorithm o0 61

C.7.6 Optimal sample complexity algorithm 63

C.8 Face-based selection and decomposition 64

C.8.1 Column-row, column-tube, row-tube face subset selection 64

C.8.2 CURT decomposition i 67

C.9 Solving small problems 69

C.10 Extension to general ¢g-th order tensors 70

C.10.1 Fast sampling of columns according to leverage scores, implicitly 70

(C.10.2 General iterative existential proof L. 73

C.10.3 General input sparsity reduction 74
C.10.4 Bicriteria algorithm 74
C.10.5 CURT decomposition i 75
C.11 Matrix CUR decomposition 76
C.11.1 Algorithm 76
C.11.2 Stronger property achieved by leverage scores 78

D Entry-wise /; Norm for Arbitrary Tensors 82
D.1 Facts e 82
D.2 Existence results 83
D.3 Polynomial in k size reduction Lo 86
D.4 Solving small problems 90
D.5 Bicriteria algorithms oo 91
D.5.1 Input sparsity time Lo 91
D.5.2 TImproving cubic rank to quadraticrank 93

D.6 Algorithms 95
D.6.1 Illput sparsity time algorithm oL 95
D.6.2 O(k%?)-approximation algorithm 97

D.7 CURT decomposition e 97
E Entry-wise ¢, Norm for Arbitrary Tensors, 1 <p <2 101
E.1 Existence results for matrix case Lo 101
E.2 Existence results 102
E.3 Polynomial in k size reduction L L 105
E.4 Solving small problems 107
E.5 Bicriteria algorithm oo 107
E.6 Algorithms 109
E.7 CURT decomposition e 109
F Robust Subspace Approximation (Asymmetric Norms for Arbitrary Tensors) 112
F.1 Preliminaries e 112
F.2 /¢;-Frobenius (a.k.a f1-fo-fa) norm 112
F.2.1 Definitions e 112
F.2.2 Sampling and rescaling sketches o0 113
F.2.3 No dilation and no contraction 114
F.2.4 Oblivious sketches, MSKETCH 116
F.2.5 Running time analysis 117
F.2.6 Algorithms 118

F.3 El—ﬁl—fg 1010 510 125
F.3.1 Definitions e 125
F.3.2 Projection via Gaussians 126
F.3.3 Reduction, projection to high dimension 128
F.3.4 Existenceresults 129
F.3.5 Running time analysis 131
F.3.6 Algorithms 132

G Weighted Frobenius Norm for Arbitrary Tensors 134

G.1 Definitions and Facts 134
G.2 r distinct faces in each dimension 135
G.3 r distinct columns, rows and tubes 139
G.4 r distinct columns and rTows L. 141

H Hardness 145
H.1 Definitions e 145
H.2 Symmetric tensor eigenvalue L L 146
H.3 Symmetric tensor singular value, spectral norm and rank-1 approximation 147
H.4 Tensor rank is hard to approximate 149
H.4.1 Cover number e 150

H.4.2 Properties of 3SAT instances 151

H.4.3 Reduction e 153

H.5 Hardness result for robust subspace approximation 163
H.6 Extending hardness from matrices to tensors 166
H.6.1 Entry-wise /1 norm and ¢1-f1-fo norm 167

H.6.2 £41-fo-fo morm 168

I Hard Instance 170
1.1 Frobenius CURT decomposition for 3rd order tensor 170

1.2 General Frobenius CURT decomposition for ¢-th order tensor 172

J Distributed Setting 175
K Streaming Setting 179
L Extension to Other Tensor Ranks 183
L.1 Tensor Tucker rank e 183
L.1.1 Definitions 183

L.1.2 Algorithm 183

L.2 Tensor Train rank e 186
L.2.1 Definitions e e 186

L.2.2 Algorithm 186

M Acknowledgments 190
References 191

1 Introduction

Low rank approximation of matrices is one of the most well-studied problems in randomized numer-
ical linear algebra. Given an n X d matrix A with real-valued entries, we want to output a rank-k
matrix B for which ||A— B]| is small, under a given norm. While this problem can be solved exactly
using the singular value decomposition for some norms like the spectral and Frobenius norms, the
time complexity is still min(nd“~!, dn“~!), where w &~ 2.376 is the exponent of matrix multiplication
[Str69, CW87, Will2|. This time complexity is prohibitive when n and d are large. By now there
are a number of approximation algorithms for this problem, with the Frobenius norm ! being one of
the most common error measures. Initial solutions [FKV04, AMO07] to this problem were based on
sampling and achieved additive error in terms of €|| A|| , where € > 0 is an approximation parameter,
which can be arbitrarily larger than the optimal cost OPT = minankx 5|4 — BH% Since then a
number of solutions based on the technique of oblivious sketching [Sar06, CW13, MM13, NN13| as
well as sampling based on non-uniform distributions [DMMO06b, DMMO06a, DMMO08, DMIMW12],
have been proposed which achieve the stronger notion of relative error, namely, which output a rank-
k matrix B for which ||A— B||% < (1+¢) OPT with high probability. It is now known how to output
a factorization of such a B = U-V, where U is n xk and V' is k xd, in nnz(A)+ (n+d) poly(k/e) time
[CW13, MM13, NN13|. Such an algorithm is optimal, up to the poly(k/e¢) factor, as any algorithm
achieving relative error must read almost all of the entries.

Tensors are often more useful than matrices for capturing higher order relations in data. Com-
puting low rank factorizations of approximations of tensors is the primary task of interest in
a number of applications, such as in psychology|Kro83|, chemometrics [Paa00, SBG04|, neuro-
science [AAB107, KB09, CLK"15|, computational biology [CV15, SC15|, natural language pro-
cessing [CYYM14, LZBJ14, LZMB15, BNR" 15|, computer vision [VT02, WA03, SH05, HPS05,
HDO08, AFALGTL09, PLY10, LFC*16, CLZ17|, computer graphics [VT04, WWS*05, Vas09], secu-
rity [ACKY05, ACY06, KBO6|, cryptography [FS99, Sch12, KYFD15, SHW 16| data mining [KS08,
RST10, KABO10, Mgr11], machine learning applications such as learning hidden Markov models,
reinforcement learning, community detection, multi-armed bandit, ranking models, neural network,
Gaussian mixture models and Latent Dirichlet allocation [MR05, AFHT12, HK13, ALB13, ABSV14,
AGH'14, AGHK14, BCV14, JO14a, GHK15, PBLJ15, JSA15, ALA16, AGMR16, ZSJ*17], pro-
gramming languages [RTP16], signal processing [Wes94, DLDM98, Com09, CMDL™ 15|, and other
applications [YCS11, LMWY13, OS14, ZCZJ14, STLS14, YCS16, RNSS16].

Despite the success for matrices, the situation for order-g tensors for ¢ > 2 is much less
understood. There are a number of works based on alternating minimization [CC70, Har70,
FMPS13, FT15, ZG01, BS15] gradient descent or Newton methods [ES09, ZG01], methods based
on the Higher-order SVD (HOSVD) [LMV00a| which provably incur Q(y/n)-inapproximability for
Frobenius norm error [LMVO0Ob|, the power method or orthogonal iteration method [LMVO00b],
additive error guarantees in terms of the flattened (unfolded) tensor rather than the original
tensor [MMDOS]|, tensor trains [Osell]|, the tree Tucker decomposition [OT09], or methods spe-
cialized to orthogonal tensors [KM11, AGH"14, MHG15, WTSA15, WA16, SWZ16|]. There are
also a number of works on the problem of tensor completion, that is, recovering a low rank
tensor from missing entries [WMO01, AKDM10, TSHK11, LMWY13, MHWG14, JO14b, BM16].
There is also another line of work using the sum of squares (SOS) technique to study tensor
problems [BKS15, GM15, HSS15, HSSS16, MSS16, PS17, SS17|, other recent work on tensor
PCA [All12b, All12a, RM14, JMZ15, ADGM16, ZX17|, and work applying smoothed analysis to
tensor decomposition [BCMV14]. Several previous works also consider more robust norms than

'Recall the Frobenius norm ||Al|r of a matrix A is (321, Z?:I A?,j)l/z,

the Frobenius norm for tensors, e.g., the R; norm (¢1-f2-f2 norm in our work) [HDO§|, ¢;-PCA
[PLY10], entry-wise ¢; regularization [GGH14|, M-estimator loss [YFS16], weighted approximation
[Paa97, TK11, LRHG13|, tensor-CUR [OST08, MMDO08, CC10, FMMN11, FT15], or robust tensor
PCA [GQ14, LFC*16, CLZ17].

Some of the above works, such as ones based on the tensor power method or alternating min-
imization, require incoherence or orthogonality assumptions. Others, such as those based on the
simultaneous SVD, require an assumption on the minimum singular value. See the monograph of
Moitra [Moil4] for further discussion. Unlike the situation for matrices, there is no work for tensors
that is able to achieve the following natural relative error guarantee: given a g-th order tensor
A e R™" and an arbitrary accuracy parameter € > 0, output a rank-k tensor B for which

IA = B|% < (1+¢) OPT, (1)

where OPT = inf,anck p [|[A — B'||%, and where recall the rank of a tensor B is the minimal integer
k for which B can be expressed as Zle u; ® v; ® w;. A third order tensor, for example, has rank
which is an integer in {0,1,2,...,n%}. We note that [BCV14] is able to achieve a relative error
5-approximation for third order tensors, and an O(q)-approximation for ¢g-th order tensors, though
it cannot achieve a (1 + €)-approximation. We compare our work to [BCV14] in Section 1.4 below.

For notational simplicity, we will start by assuming third order tensors with all dimensions of
equal size, but we extend all of our main theorems below to tensors of any constant order ¢ > 3 and
dimensions of different sizes.

The first caveat regarding (1) for tensors is that an optimal rank-k solution may not even exist!
This is a well-known problem for tensors (see, e.g., [KHL89, Paa00, KDS08, Ste06, Ste08| and more
details in section 4 of [DSLO08§|), for which for any rank-k tensor B, there always exists another
rank-k tensor B’ for which ||A — B'||% < ||[A — B||%. If OPT = 0, then in this case for any rank-k
tensor B, necessarily ||A— B||% > 0, and so (1) cannot be satisfied. This fact was known to algebraic
geometers as early as the 19th century, which they refer to as the fact that the locus of r-th secant
planes to a Segre variety may not define a (closed) algebraic variety [DSL08, Lan12|. It is also known
as the phenomenon underlying the concept of border rank?*|Bin80, Bin86, BCS97, Knu98, Lan06|. In
this case it is natural to allow the algorithm to output an arbitrarily small v > 0 amount of additive
error. Note that unlike several additive error algorithms for matrices, the additive error here can in
fact be an arbitrarily small positive function of n. If, however, OPT > 0, then for any ¢ > 0, there
exists a rank-k tensor B for which [|A — B||% < (1+4¢€) OPT, and in this case we should still require
the algorithm to output a relative-error solution. If an optimal rank-k solution B exists, then as for
matrices, it is natural to require the algorithm to output a relative-error solution.

Besides the above definitional issue, a central reason that (1) has not been achieved is that
computing the rank of a third order tensor is well-known to be NP-hard [Has90, HL13|. Thus, if
one had such a polynomial time procedure for solving the problem above, one could determine the
rank of A by running the procedure on each k € {0,1,2,...,n%}, and check for the first value of k
for which ||A — B||% = 0, thus determining the rank of A. However, it is unclear if approximating
the tensor rank is hard. This question will also be answered in this work.

The main question which we address is how to define a meaningful notion of (1) for the case
of tensors and whether it is possible to obtain provably efficient algorithms which achieve this
guarantee, without any assumptions on the tensor itself. Besides (1), there are many other notions
of relative error for low rank approximation of matrices for which provable guarantees for tensors
are unknown, such as tensor CURT, R; norm, and the weighted and ¢; norms mentioned above.
Our goal is to provide a general technique to obtain algorithms for many of these variants as well.

2https://en.wikipedia.org/wiki/Tensor_rank_decomposition#Border_rank

https://en.wikipedia.org/wiki/Tensor_rank_decomposition#Border_rank

1.1 Owur Results

To state our results, we first consider the case when a rank-k solution Ay exists, that is, there exists
a rank-k tensor Ay for which ||A — Ax||% = OPT.

We first give a poly(n, k, 1/¢)-time (1 + €)-relative error approximation algorithm for any 0 <
€ < 1 and any k > 1, but allow the output tensor B to be of rank O((k/e)?) (for general g-order
tensors, the output rank is O((k/€)?~1), whereas we measure the cost of B with respect to rank-k
tensors. Formally, [|[A — B||% < (1 + €)||A — Ag||%. In fact, our algorithm can be implemented in
nnz(A) +n-poly(k/e) time in the real-RAM model, where nnz(A) is the number of non-zero entries
of A. Such an algorithm is optimal for any relative error algorithm, even bicriteria ones.

If Ay, does not exist, then our output B instead satisfies |A — B||% < (1 + €) OPT ++, where ~
is an arbitrarily small additive error. Since 7y is arbitrarily small, (1 4 ¢) OPT +~ is still a relative
error whenever OPT > 0. Our theorem is as follows.

Theorem 1.1 (A Version of Theorem C.9, bicriteria). Given a 3rd order tensor A € R™*™*™ if Ay
exists then there is a randomized algorithm running in nnuz(A) + n - poly(k/e€) time which outputs a
(factorization of a) rank-O(k?/€?) tensor B for which |A— B||% < (1+¢)||A— Ax||%. If Ay does not
exist, then the algorithm outputs a rank-O(k?/€®) tensor B for which |A — B||% < (1 +¢€) OPT +,
where v > 0 s an arbitrarily small positive function of n. In both cases, the success probability is
at least 2/3.

One of the main applications of matrix low rank approximation is parameter reduction, as one
can store the matrix using fewer parameters in factored form or more quickly multiply by the
matrix if given in factored form, as well as remove directions that correspond to noise. In such
applications, it is not essential that the low rank approximation have rank exactly k, since one still
has a significant parameter reduction with a matrix of slightly larger rank. This same motivation
applies to tensor low rank approximation; we obtain both space and time savings by representing
a tensor in factored form, and in such applications bicriteria applications suffice. Moreover, the
extremely efficient nnz(A) + n - poly(k/e) time algorithm we obtain may outweigh the need for
outputting a tensor of rank exactly k. Bicriteria algorithms are common for coping with hardness;
see e.g., results on robust low rank approximation of matrices [DV07, FFSS07, CW1b5al, sparse
recovery |[CKPS16], clustering [MMSW15, HT'16], and approximation algorithms more generally.

We note that there are other applications, such as unique tensor decomposition in the method
of moments, see, e.g., [BCV14|, where one may have a hard rank constraint of k for the output.
However, in such applications the so-called Tucker decomposition is still a useful dimensionality-
reduction analogue of the SVD and our techniques for proving Theorem 1.1 can also be used for
obtaining Tucker decompositions, see Section L.

We next consider the case when the rank parameter k is small, and we try to obtain rank-k
solutions which are efficient for small values of k. As before, we first suppose that A exists.

If Ay = Ele u; @ v; @w; and the norms ||ug|2, ||vi|2, and ||w]|2 are bounded by 2P°Y (™) we can
return a rank-k solution B for which ||A — B||% < (14€)||A— Ag||%+27 P in f(k,1/¢)-poly(n)
time in the standard unit cost RAM model with words of size O(logn) bits. Thus, our algorithm
is fized parameter tractable in k and 1/e, and in fact remains polynomial time for any values of
k and 1/e for which k?/e = O(logn). This is motivated by a number of low rank approximation
applications in which k is typically small. The additive error of 2~ poly(n) ig only needed in order
to write down our solution B in the unit cost RAM model, since in general the entries of B may
be irrational, even if the entries of A are specified by poly(n) bits. If instead we only want to
output an approximation to the value ||A — A%, then we can output a number Z for which
OPT < Z < (1+ ¢€) OPT, that is, we do not incur additive error.

When Aj, does not exist, there still exists a rank-k tensor A for which ||A — EH% < OPT +7.
We require there exists such a A for which if A = Zle u; ® v; ® w;, then the norms ||u;l|2, ||vill2,
and ||w;||2 are bounded by 2P (),

The assumption in the previous two paragraphs that the factors of Ay and of A have norm
bounded by 2P°¥(") is necessary in certain cases, e.g., if OPT = 0 and we are to write down the
factors in poly(n) time. An abridged version of our theorem is as follows.

Theorem 1.2 (Combination of Theorem C.1 and C.2, rank-k). Given a 3rd order tensor A €
R for any 6 > 0, if Ay, = Zle u; QU Qw; exists and each of ||u;||2, ||vill2, and ||w;||2 is bounded
by 2°(0) | then there is a randomized algorithm running in O(nnz(A) +npoly(k,1/e) + 20(k?/€)) . pd
time in the unit cost RAM model with words of size O(logn) bits®, which outputs a (factorization
of a) rank-k tensor B for which |A— B||% < (1+¢€)||A— Ag||% + 2-0(") " Purther, we can output a
number Z for which OPT < Z < (14€) OPT in the same amount of time. When Ay, does not exist, if
there exists a rank-k tensor A for which || A— gHF < OPT42-90"") gnd A = Zle U; QU; QW; 18 such
that the norms |[usl|2, |lvill2, and [Jws[|2 are bounded by 20("°) then we can output a (factorization
of a) rank-k tensor A for which ||A — A||% < (14 €) OPT 42" ol ")

Our techniques for proving Theorem 1.1 and Theorem 1.2 open up avenues for many other
problems in linear algebra on tensors. We now define the problems and state our results for them.

There is a long line of research on matrix column subset selection and CUR decomposition
[DMMO08, BMD09, DR10, BDM11, FEGK13, BW14, WS15, ABF™16, SWZ17| under operator,
Frobenius, and entry-wise #1 norm. It is natural to consider tensor column subset selection or tensor-
CURT*, however most previous works either give error bounds in terms of the tensor flattenings
[DMMO8], assume the original tensor has certain properties [OST08, FT15, TM17]|, consider the
exact case which assumes the tensor has low rank [CC10], or only fit a high dimensional cross-shape
to the tensor rather than to all of its entries [FMMN11]. Such works are not able to provide a (1+¢)-
approximation guarantee as in the matrix case without assumptions. We consider tensor column,
row, and tube subset selection, with the goal being to find three matrices: a subset C' € R™*¢ of
columns of A, a subset R € R™ " of rows of A, and a subset T' € R™*? of tubes of A, such that
there exists a tensor U € R"%! for which

IU(C, R, T) = Alle < al| A — Alle + 7, (2)

where v = 0 if A, exists and v = 27 P°W(") otherwise, & > 1 is the approximation ratio, ¢ is either
Frobenius norm or Entry-wise ¢1 norm, and U(C, R, T) = >2¢_; > 7, S Uiji-Ci®R;@Ty. In
tensor CURT decomposition, we also want to output U.

We provide a (nearly) input sparsity time algorithm for this, together with an alternative input
sparsity time algorithm which chooses slightly larger factors C, R, and T'.

To do this, we combine Theorem 1.1 with the following theorem which, given a factorization of
a rank-k tensor B, obtains C', U, R, and T in terms of it:

Theorem 1.3 (Combination of Theorem C.40 and C.41, |||| p-norm, CURT decomposition). Given a
3rd order tensor A € R™™" letk > 1, and let Ug, Vg, W € R™ ¥ be given. There is an algorithm
running in O(nnz(A) logn)+O0(n2) poly(k, 1/€) time (respectively, O(nnz(A))+npoly(k,1/€) time)
which outputs a subset C € R™™ ¢ of columns of A, a subset R € R™ " of rows of A, a subset T € R™"*!
of tubes of A, together with a tensor U € RE™ with rank(U) = k such that ¢ = r =t = O(k/e)
(respectively, c =r =t = O(klogk+k/e)), and |[U(C, R, T) — A||% < (1+¢)|[Up @ Vs @ Wp — Al|%
holds with probability at least 9/10.

3The entries of A are assumed to fit in n® words.
4T denotes the tube which is the column in 3rd dimension of tensor.

Combining Theorems 1.2 and 1.3 (with B being a (1 + O(e))-approximation to A) we achieve
Equation (2) with a = (1 + ¢€) and & = F with the optimal number of columns, rows, tubes, and
rank of U (we mention our matching lower bound later), though the running time has an 20(k?/€)
term in it. We note that instead combining Theorem 1.1 and Theorem 1.3 gives a bicriteria result
for CURT without a 20**/9) term in the running time, though it is suboptimal in the number of
columns, rows, tubes, and rank of U.

We also obtain several algorithms for tensor entry-wise £, norm low-rank approximation, as well
as results for asymmetric tensor norms, which are natural extensions of the matrix #1-f» norm. Here,

for a tensor A, [[All = Y,(55; 4 (Aij0)2)7 and [Ally = 32,5 (C4 (A)27

Theorem 1.4 (Combination of Theorem D.14 (||||;-norm), Theorem E.9 (||||,-norm, p € (0,1))
Theorem F.23 (||||,-norm or £;-fo-f5), Theorem F.37 (||||,-norm or ¢1-¢1-¢s)). Given a 3rd order
tensor A € R™"™" for any k > 1, let r = 6(1{:2) If Ay exists then there is an algorithm which
runs in nnz(A) - t + O(n) poly(k) time and outputs a (factorization of a) rank-r tensor B for
which |B — All¢ < poly(k,logn) - ||Ar — All¢ holds. If Ay does not exist, we have |B — All¢ <
poly(k,logn)-OPT +~, where v is an arbitrarily small positive function of n. The success probability
is at least 9/10. For £ =1 orp, t = O(k); for £ = v, t = O(1); for £ =u, t = O(n).

As in the case of Frobenius norm, we can get rank-k and CURT algorithms for the above norms.
Our results for asymmetric norms can be extended to €,-f2-f2, £,,-€,,-(2, and families of M-estimators.
We also obtain the following result for weighted tensor low-rank approximation.

Theorem 1.5 (Informal Version of Theorem G.5, weighted). Suppose we are given a third order
tensor A € R™"™ " qs well as a tensor W € R™ ™ ™ with r distinct rows and r distinct columns.
Suppose there is a rank-k tensor A" € R™™ ™ for which |W o (A’ — A)||% = OPT and one can write
A = Zle u; @ v; @ w; for ||luill2, ||vill2, and ||w;||2 bounded by 2" Then there is an algorithm
running in (nnz(A) + nnz(W) 4+ n200**/9) .08 time and outputting n x k matrices Uy, Us, Us for
which |[W o (U @ Uy @ Us — A)||2F < (1+¢€) OPT with probability at least 2/3.

We next strengthen Hastad’s NP-hardness to show that even approximating tensor rank is hard
(we note at the time of Hastad’s NP-hardness, there was no PCP theorem available; nevertheless
we need to do additional work here):

Theorem 1.6 (Informal Version of Theorem H.42). Let ¢ > 3. Unless the Exponential Time
Hypothesis (ETH) fails, there is an absolute constant co > 1 for which distinguishing if a tensor in

25k1_0(1)

R™ has rank at most k, or at least cq - k, requires time, for a constant § > 0.

Under random-ETH [Fei02, GL04, RSW16], an average case hardness assumption for 3SAT | we
can replace the k2=°() in the exponent above with a k. We also obtain hardness in terms of e:

Theorem 1.7 (Informal Version of Corollary H.22). Let ¢ > 3. Unless ETH fails, there is no

algorithm running in 20(1/€Y) yime which, given a tensor A € R™, outputs a rank-1 tensor B for

which ||[A — B||% < (1 +¢€) OPT.

As a side result worth stating, our analysis improves the best matrix CUR decomposition algo-
rithm under Frobenius norm [BW14|, providing the first optimal nnz(A)-time algorithm:

Theorem 1.8 (Informal Version of Theorem C.48, Matrix CUR decomposition). There is an algo-
rithm, which given a matriz A € R4 and an integer k > 1, runs in O(nnz(A))+(n+d) poly(k, 1/¢)
time and outputs three matrices: C € R" ¢ containing ¢ columns of A, R € R™® containing r
rows of A, and U € R" with rank(U) = k for which r = ¢ = O(k/e) and |CUR — A||% <
(1+ €) minank—k A, |4k — Al|%, holds with probability at least 9/10.

1.2 Owur Techniques

Many of our proofs, in particular those for Theorem 1.1 and Theorem 1.2, are based on what we
call an “iterative existential proof”, which we then turn into an algorithm in two different ways
depending if we are proving Theorem 1.1 or Theorem 1.2.

Henceforth, we assume A; exists; otherwise replace Ay with a suitably good tensor A in what
follows. Since Ay = Zle Ur ® V¥ @ Wi, we can create three n x k matrices U*, V*, and W*
whose columns are the vectors U/, V;*, and W}*, respectively. Now we consider the three different
flattenings (or unfoldings) of Ay, which express Ay as an n x n? matrix. Namely, by thinking of Ay
as the sum of outer products, we can write the three flattenings of A as U*-Z1, V*-Z5, and W*- Z3,

where the rows of Z; are vec(V;* @ W;*) ¢ (For simplicity, we write Z; = (V*T @W*T). 7), the rows

of Zy are vec(U} ® W), and the rows of Z3 are vec(U; @ V*), for ¢ € [k] o {1,2,...,k}. Letting

the three corresponding flattenings of the input tensor A be Ai, As, and As, by the symmetry of
the Frobenius norm, we have ||A — B||% = ||A1 — U*Z1||% = ||A2 — V* Zs||% = || A5 — W* Z5]%.

Let us consider the hypothetical regression problem ming |41 — UZ;|%. Note that we do not
know Z1, but we will not need to. Let r = O(k/e), and suppose S is an n? x r matrix of i.i.d.
normal random variables with mean 0 and variance 1/r, denoted N(0,1/r). Then by standard
results for regression (see, e.g., [Wool4] for a survey), if U is the minimizer to the smaller regression
problem U = argming||UZ,5; — A151]|%, then

141 = UZ1||% < (1 + miny[| Ay — UZ |3 (3)

Moreover,(/j = Alsl(lel)T. Although we do not know know Z7, this implies U is in the column
span of A1S51, which we do know, since we can flatten A to compute A; and then compute A1.57.
Thus, this hypothetical regression argument gives us an existential statement - there exists a good
rank-k matrix U in the column span of A1.57. We could similarly define V= AQSQ(ZQSQ) and
W= A3S3(Z353)1 as solutions to the analogous regression problems for the other two flattenings
of A, which are in the column spans of 4359 and A3S3, respectively. Given A1S71, AsSs, and A3Ss3,
which we know, we could hope there is a good rank-k tensor in the span of the rank-1 tensors

{(A151)a @ (A252)p @ (A353)c}ap,eelr- (4)

However, an immediate issue arises. First, note that our hypothetical regression problem guarantees
that || A1 — UZlHF (1+¢€)|]A — Ag||%, and therefore since the rows of Z; are of the special form
vec(V;* @ W), we can perform a “retensorization” to create a rank-k tensor B =), U; ® VoW
from the matrix UZ; for which ||A — B||% < (1+¢€)||A — Ag||%. While we do not know U, since it
is in the column span of A;Sy, it implies that B is in the span of the rank-1 tensors {(AlSl)
V' @ W kel beelk)- Analogously, we have that there is a good rank-k tensor B in the span of the
rank-1 tensors {U; ® (A252)s @ W b4 celr pe[r]> and a good rank-k tensor B in the span of the rank-1
tensors {Uy ® Vi ® (A353)c}apefk],cer]- However, we do not know U* or V*, and it is not clear
there is a rank-k tensor B for which simultaneously its first factors are in the column span of A1571,
its second factors are in the column span of A2Ss, and its third factors are in the column span of
A3Ss, i.e., whether there is a good rank-k tensor B in the span of rank-1 tensors in (4).

We fix this by an iterative argument. Namely, we first compute 4157, and write U= A1S1(Z,81)T.
We now redefine Zy with respect to U , so the rows of Zy are Vec(ﬁi ®@ W) for i € [k], and consider

SFor simplicity, we define UQ V @ W = Zle U; ® V; ® W;, where Uj; is the i-th column of U.

Svec(V;* ® W) denotes a row vector that has length ning where V;* has length n; and W;* has length n.

T(V*T @ W*T) denotes a k x ning matrix where the i-th row is vec(V;* ® W;*), where length n; vector V;* is the
i-th column of n1 X k matrix V*, and length ny vector W is the i-th column of ny x k matrix W*, Vi € [k].

2

the regression problem miny |4y — VZQH%. While we do not know Zs, if Sy is an n® x r matrix of

i.i.d. Gaussians, we again have the statement that V = AQSQ(ZQSQ)T satisfies

|4 = VZ||3 < (1+ €)miny||As — VZ3|% by the regression guarantee with Gaussians
< (1+€)||Ay — V*Zy||% since V* is no better than the minimizer V
= (1+¢)|| A, — UZ1||3 by retensorizing and flattening along a different dimension
< (1+e)’ming|| A1 — UZ|)% by (3)
= (14 ¢)?||A — Ag||% by definition of Z; .

Now we can retensorize V Z; to obtain a rank-k tensor B for which ||A — B|% = || A2 — IA/Z2||% <
(1+ €)?||A — Ag||%. Note that since the columns of V are in the span of 4555, and the rows of Z;
are vee(U; @ W) for i € [k], where the columns of U are in the span of A1y, it follows that B is
in the span of rank-1 tensors {(A151), ® (A4252), ® ‘/}c}a’bg[r]’ce[kz}.

Suppose we now redefine Z3 so that it is now an r* x n® matrix with rows vec((A41.51)q® (A252)p)
for all pairs a,b € [r], and consider the regression problem minyy ||A3 — W Z3||%. Now observe that
since we know Z3, and since we can form Ag by flattening A, we can solve for W € R ip
polynomial time by solving a regression problem. Retensorizing W Zs to a tensor B, it follows
that we have found a rank-r? = O(k?/€?) tensor B for which |4 — B||% < (1 + €)?||A — A% =
(14 O(e))||A — Agl|%, and the result follows by adjusting € by a constant factor.

To obtain the nnz(A)+n poly(k/e) running time guarantee of Theorem 1.1, while we can replace
Sp and So with compositions of a sparse CountSketch matrix and a Gaussian matrix (see chapter 2 of
[Woo14]| for a survey), enabling us to compute A;S; and A3Ss in nnz(A)+n poly(k/e) time, we still
need to solve the regression problem minyy || A3—W Z3||% quickly, and note that we cannot even write
down Z3 without spending ?n? time. Here we use a different random matrix S3 called TensorSketch,
which was introduced in [Pagl3, PP13|, but for which we will need the stronger properties of a
subspace embedding and approximate matrix product shown to hold for it in [ANWI14]|. Given
the latter properties, we can instead solve the regression problem minyy ||A3S3 — WZgSgH%a, and
importantly A3S3 and Z3S3 can be computed in nnz(A) + npoly(k/e) time. Finally, this small
problem can be solved in n poly(k/e) time.

If we want to output a rank-k solution as in Theorem 1.2, then we need to introduce indeter-
minates at several places in the preceding argument and run a generic polynomial optimization
procedure which runs in time exponential in the number of indeterminates. Namely, we write U as
A151X1, where X7 is an r X k matrix of indeterminates, we write V as AsS55X5, where Xo isan rx k
matrix of indeterminates, and we write W as A3S3X3, where X3 is an r X k matrix of indeterminates.
When executing the above iterative argument, we let the rows of Z; be the vectors vec(V* @ W),
the rows of Z be the vectors vec(U; ® W), and the rows of Z3 be the vectors vec(U; ® V;). Then
U is a (14 ¢)-approximate minimizer to miny ||A; — UZi||p, while V is a (1 + €)-approximate min-
imizer to miny ||A2 — V 23|/, while Wis a (1 4 €)-approximate minimizer to minyy || As — W Zs|| p.
Note that by assigning X1 = (Z151)7, Xo = (Z252)1, and X3 = (Z353)T, it follows that the rank-k
tensor B = Zle(Allel)i & (AQSQXQ)i &® (A353X3)1 satisfies HA — BH% < (1 + 6)3||A — AkH%, as
desired. Note that here the rows of Z, are a function of X7, while the rows of Z3 are a function
of both X; and X5. What is important for us though is that it suffices to minimize the degree-6
polynomial za7b7ce[n](Zle(Allel)a,i'(A252X2)b,i'(A353X3)c,i_Aa,b,c)27 over the 3rk = O(k?/¢)
indeterminates X1, Xo, X3, since we know there exists an assignment to X7, X9, and X3 providing
a (14 O(e))-approximate solution, and any solution X, X2, and X3 found by minimizing the above
polynomial will be no worse than that solution. This polynomial can be minimized up to additive
2~ Poly(n) additive error in poly(n) time [Ren92a, BPR9I6| assuming the entries of U*, V*, and W*

10

are bounded by 2P°W (") as assumed in Theorem 1.2. Similar arguments can be made for obtaining
a relative error approximation to the actual value OPT as well as handling the case when A; does
not exist.

To optimize the running time to nnz(A), we can choose CountSketch matrices 17, T, T3 of t =
poly(k,1/€e) x n dimensions and reapply the above iterative argument. Then it suffices to minimize
this small size degree-6 polynomial Za,b,ce[t}(Zf:l(TlAlSle)a,i (T2 A252X2)p - (T3A353X3)ci —
(A(Th, T3, Tg))a7b7c)2, over the 3rk = O(k?/e) indeterminates X1, X2, X3. Outputting A5 X1,
A9S5 X5, A3S3X3 then provides a (1 + €)-approximate solution.

Our iterative existential argument provides a general framework for obtaining low rank approx-
imation results for tensors for many other error measures as well.

1.3 Other Low Rank Approximation Algorithms Following Our Framework.

Column, row, tube subset selection, and CURT decomposition. In tensor column, row,
tube subset selection, the goal is to find three matrices: a subset C of columns of A, a subset
R of rows of A, and a subset T of tubes of A, such that there exists a small tensor U for which
|U(C, R, T)— A||% < (1+¢€) OPT. We first choose two Gaussian matrices S; and Sy with s; = sy =
O(k/e) columns, and form a matrix Z} € R(152)%7* with (i, j)-th row equal to the vectorization
of (A151); ® (A2S52);. Motivated by the regression problem minyy ||As — W Z5||p, we sample dz =
O(s1s2/€) columns from Az and let D3 denote this selection matrix. There are a few ways to
do the sampling depending on the tradeoff between the number of columns and running time,
which we describe below. Proceeding iteratively, we write down Zj by setting its (4, j)-th row to
the vectorization of (A4151); ® (A3D3);. We then sample do = O(s1d3/€) columns from Ay and
let Dy denote that selection matrix. Finally, we define Z] by setting its (i,j)-th row to be the
vectorization of (A2D3); ® (AsD3);. We obtain C = A1D;, R = AyDy and T = AzD3. For the
sampling steps, we can use a generalized matrix column subset selection technique, which extends a
column subset selection technique of [BW14] in the context of CUR decompositions to the case when
C is not necessarily a subset of the input. This gives O(nnz(A4)logn) + O(n?) poly(k,1/¢) time.
Alternatively, we can use a technique we develop called tensor leverage score sampling described
below, yielding O(nnz(A)) + npoly(k,1/€) time.

A body of work in the matrix case has focused on finding the best possible number of columns
and rows of a CUR decomposition, and we can ask the same question for tensors. It turns out
that if one is given the factorization Zle(UB)i ® (Vg)i ® (Wp); of a rank-k tensor B € R™*™m*n
with Ug, Vg, W € R™¥ then one can find a set C of O(k/e) columns, a set R of O(k/¢) rows,
and a set T of O(k/e) tubes of A, together with a rank-k tensor U for which |U(C, R,T) — A|j% <
(1+ €)||A — BJ||%. This is based on an iterative argument, where the initial sampling (which needs
to be our generalized matrix column subset selection rather than tensor leverage score sampling
to achieve optimal bounds) is done with respect to VBT ® W; , and then an iterative argument is
carried out. Since we show a matching lower bound on the number of columns, rows, tubes and
rank of U, these parameters are tight. The algorithm is efficient if one is given a rank-k tensor B
which is a (1 4+ O(e))-approximation to A; if not then one can use Theorem C.2 and and this step
will be exponential time in k. If one just wants O(k log k + k/¢) columns, rows, and tubes, then one
can achieve O(nnz(A)) + npoly(k, 1/¢) time, if one is given B.

Column-row, row-tube, tube-column face subset selection, and CURT decomposition.
In tensor column-row, row-tube, tube-column face subset selection, the goal is to find three tensors:
a subset C' € RE*™ ™ of row-tube faces of A, a subset R € R™ ™" of tube-column faces of A,
and a subset T' € R™¥"*! of column-row faces of A, such that there exists a tensor U € Rinxenxrn

11

with small rank for which |[U(T1,C2, R3) — Al|% < (1 + €) OPT, where Ty € R™" denotes the
matrix obtained by flattening the tensor T along the first dimension, Co € R™*“* denotes the
matrix obtained by flattening the tensor C' along the second dimension, and Rs € R™ "™ denotes
the matrix obtained by flattening the tensor T along the third dimension.

We solve this problem by first choosing two Gaussian matrices S; and Sy with s1 = s =
O(k/e€) columns, and then forming matrix Us € R™**1%2 with (4, j)-th column equal to (A;S1)i,
as well as matrix V3 € R™#1%2 with (4, j)-th column equal to (A2S2);. Inspired by the regression
problem miny, cgnxs,ss ||[V3 - (WT @ UJ') — As|, we sample d3 = O(s152/€) rows from Ay and let
D3 € R™™ denote this selection matrix. In other words, D3 selects d3 tube-column faces from
the original tensor A. Thus, we obtain a small regression problem: miny, ||D3Vs - (W' o Uj) —
D3 As||p. By retensorizing the objective function, we obtain the problem minyy [|[Us® (D3V3) @ W —
A(I,Ds,I)||r. Flattening the objective function along the third dimension, we obtain miny |W -
(U ®(D3V3) ") — (A(I, D3, I))3||» which has optimal solution (A(I, D3, I))3(U; ® (D3V3)T)T. Let
W’ denote A(I, D3, I))s. In the next step, we fix Wy = W/(U] ® (D3V3)")" and Uy = Us, and
consider the objective function miny ||Us - (VT ® W) — Ay||p. Applying a similar argument, we
obtain V' = (A(Dg,I,1))y and U’ = (A(I,1,D1)1). Let C denote A(D2, I,I), R denote A(I, D3, I),
and T denote A(I,I,D;). Overall, this algorithm selects poly(k,1/¢) faces from each dimension.

Similar to our column-based CURT decomposition, our face-based CURT decomposition has
the property that if one is given the factorization Zle(UB)i ® (V)i ® (Wpg); of a rank-k tensor
B € R with Ug, Vg, Wi € R™* which is a (1+O(¢))-approximation to A, then one can find a
set C of O(k/e) row-tube faces, a set R of O(k/¢€) tube-column faces, and a set T" of O(k/€) column-
row faces of A, together with a rank-k tensor U for which ||U(T}, Cs, Rs) — A||% < (14 ¢€) OPT.

Tensor multiple regression and tensor leverage score sampling. In the above we need to
consider standard problems for matrices in the context of tensors. Suppose we are given a matrix
A € Rm*m2m3 and a matrix B = (VI @ WT) € R¥*"2m with rows (V; ® W;) for an ny x k matrix
V and ns x k matrix W. Using TENSORSKETCH [Pagl3, PP13, ANW14] one can solve multiple
regression ming |[UB— A||r without forming B in O(na+ns) poly(k, 1/€) time, rather than the naive
O(nang) poly(k,1/€) time. However, this does not immediately help us if we would like to sample
columns of such a matrix B proportional to its leverage scores. Even if we apply TENSORSKETCH
to compute a k x k change of basis matrix R in O(ng + ng) poly(k,log(nans)) time, for which the
leverage scores of B are (up to a constant factor) the squared column norms of R~!B, there are
still nong leverage scores and we cannot write them all down! Nevertheless, we show we can still
sample by them by using that the matrix of interest is formed via a tensor product, which can be
rewritten as a matrix multiplication which we never need to explicily materialize. In more detail, for
the i-th row e;R~ of R~ we create a matrix V'? by scaling each of the columns of VT entrywise
by the entries of z. The squared norms of e;R~' B are exactly the squared entries of (V,")WT. We
cannot compute this matrix product, but we can first sample a column of it proportional to its
squared norm and then sample an entry in that column proportional to its square. To sample a
column, we compute G(V'H)WT for a Gaussian matrix G with O(log n3) rows by computing G- V',
then computing (G- V%) - W, which is O(ng + n3) poly(k, log(nans)) total time. After sampling a
column, we compute the column exactly and sample a squared entry. We do this for each i € [k],
first sampling an ¢ proportional to]\GV/iWT|]%, then running the above scheme on that i. The
poly(logn) factor in the running time can be replaced by poly(k) if one wants to avoid a poly(logn)
dependence in the running time.

12

Entry-wise /; low-rank approximation. We consider the problem of entrywise ¢;-low rank
approximation of an n x n x n tensor A, namely, the problem of finding a rank-% tensor B for which
|A — BJ|1 < poly(k,logn)OPT, where OPT = infyankr 5|4 — Blj1, and where for a tensor A,
|Al[1 = >, k [Aijkl Our iterative existential argument can be applied in much the same way as
for the Frobenius norm. We iteratively flatten A along each of its three dimensions, obtaining A1, Ao,
and As as above, and iteratively build a good rank-k solution B of the form (4151 X7)® (A4252X2)®
(A3S53X3), where now the S; are matrices of i.i.d. Cauchy random variables or sparse matrices of
Cauchy random variables and the X; are O(klogk) x k matrices of indeterminates. For a matrix
C and a matrix S of i.i.d. Cauchy random variables with k columns, it is known [SWZ17| that the
column span of C'S contains a poly(klog n)-approximate rank-k space with respect to the entrywise
¢1-norm for C. In the case of tensors, we must perform an iterative flattening and retensorizing
argument to guarantee there exists a tensor B of the form above. Also, if we insist on outputting a
rank-k solution as opposed to a bicriteria solution, ||(A151X1) ® (A252X2) ® (A353X3) — Al|1 is not
a polynomial of the X;, and if we introduce sign variables for the n® absolute values, the running
time of the polynomial solver will be 2# of variables 29" We perform additional dimensionality
reduction by Lewis weight sampling [CP15| from the flattenings to reduce the problem size to

poly(k). This small problem still has 6(k3) sign variables, and to obtain a 20(*?) running time we
relax the reduced problem to a Frobenius norm problem, mildly increasing the approximation factor
by another poly(k) factor.

Combining the iterative existential argument with techniques in [SWZ17|, we also obtain an ¢;
CURT decomposition algorithm (which is similar to the Frobenius norm result in Theorem 1.3),
which can find O(k) columns, O(k) rows, O(k) tubes, and a tensor U. Our algorithm starts from
a given factorization of a rank-k tensor B = Up ® Vp ® Wp found above. We compute a sampling
and rescaling diagonal matrix Dy according to the Lewis weights of matrix By = (V];r ® Wg), where
Dy has 6(l<:) nonzero entries. Then we iteratively construct Bo, D2, Bs and Ds. Finally we have
C = A1 Dy (selecting O(k) columns from A), R = Ay Dy (selecting O(k) rows from A), T = A3Ds
(selecting O(k) tubes from A) and tensor U = ((B1D1)!) @ ((B2D2)1) @ ((BsD3)1).

We have similar results for entry-wise £,, 1 < p < 2, via analogous techniques.

{1-l9-05 low-rank approximation (sum of Euclidean norms of faces). For an n x n x n
tensor A, in f1-f2-f9 low rank approximation we seek a rank-k tensor B for which [|[A — B, <
poly(k,logn) OPT, where OPT = inf ok B ||A — Bll» and where ||A|l, = Zi(Zj,k(AiJ,k)Q)% for
a tensor A. This norm is asymmetric, i.e., not invariant under permutations to its coordinates,
and we cannot flatten the tensor along each of its dimensions while preserving its cost. Instead,
we embed the problem to a new problem with a symmetric norm. Once we have a symmetric
norm, we apply an iterative existential argument. We choose an oblivious sketching matrix (the
M-Sketch in [CW15b]) S € R**™ with s = poly(k,logn), and reduce the original problem to
|IS(A — B)||y, by losing a small approximation factor. Because s is small, we can then turn the
{1 part of the problem to f2 by losing another /s in the approximation, so that now the problem
is a Frobenius norm problem. We then apply our iterative existential argument to the problem
1S(XF U @ (A355X3); ® (A353X3); — A)|| where U* is a fixed matrix and A = SA, and output

a bicriteria solution.

01-£1-¢5 low-rank approximation (sum of Euclidean norms of tubes). For an nxnxn tensor
A, in the ¢1-£1-f3 low rank approximation problem we seck a rank-k tensor B for which ||A— B|,, <

poly(k,logn) OPT, where OPT = inf,ankk B ||4A — Bl|l, and ||All, = Zi,j(zk(Ai,j,k)z)%~ The main
difficulty in this problem is that the norm is asymmetric, and we cannot flatten the tensor along all

13

three dimensions. To reduce the problem to a problem with a symmetric norm, we choose random
Gaussian matrices S € R"*® with s = O(n). By Dvoretzky’s theorem [Dvo61], for all tensors A,
|AS||1 =~ || A||w, which reduces our problem to min ki B ||(A— B)S||1. Via an iterative existential
argument, we obtain a generalized version of entrywise ¢; low rank approximation, ||((A\151X1) ®
(439, X5) ® (A355X3) — A)S||1, where A = AS is an n x n x s size tensor. Finally, we can either
use a polynomial system solver to obtain a rank-k solution, or output a bicriteria solution.

Weighted low-rank approximation. We also consider weighted low rank approximation. Given
ann X n xn tensor A and an n X n X n tensor W of weights, we want to find a rank-k tensor
B for which [|[W o (A — B)||2 < (1 + ¢) OPT, where OPT = infranik g ||W o (A — B)||% and
where for a tensor A, W o Alp = (3, ;4 I/Vi%j’kA?’j’k)%. We provide two algorithms based on
different assumptions on the weight tensor W. The first algorithm assumes that W has r distinct
faces on each of its three dimensions. We flatten A and W along each of its three dimensions,
obtaining Aj, As, As and Wi, Wy, W3. Because each W; has r distinct rows, combining the “guess
a sketch” technique from [RSW16| with our iterative argument, we can create matrices Uy, Us, and
Us in terms of O(rk?/e) total indeterminates and for which a solution to the objective function
|W o (Zle(Ul)i ® (Uz); ® (Us); — A)||%, together with O(r) side constraints, gives a (1 + €)-
approximation. We can solve the latter problem in poly(n) - 20(rk?/€) time. Our second algorithm
assumes W has r distinct faces in two dimensions. Via a pigeonhole argument, the third dimension
will have at most 200" distinct faces. We again use O(rk?/e) variables to express U; and Us, but
now express Us in terms of these variables, which is necessary since W3 could have an exponential
number of distinct rows, ultimately causing too many variables needed to express Us directly. We
again arrive at the objective function |[W o (335 (U1); ® (Uz); ® (Us)i — A)||%, but now have 20(")
side constraints, coming from the fact that Us is a rational function of the variables created for U;

and U and we need to clear denominators. Ultimately, the running time is 90(r%k?/e),

Computational Hardness. Our 20k time hardness for c-approximation in Theorem H.42
is shown via a reduction from approximating MAX-3SAT to approximating MAX-E3SAT, where the
latter problem has the property that each clause in the satisfiability instance has exactly 3 literals (in
MAX-3SAT some clauses may have 2 literals). Then, a reduction [Tre01| from approximating MAX-
E3SAT to approximating MAX-E3SAT(B) is performed, for a constant B which provides an upper
bound on the number of clauses each literal can occur in. Given an instance ¢ to MAX-E3SAT(B),
we create a 3rd order tensor T" as Hastad does using ¢ [Has90]. While Hastad’s reduction guarantees
that the rank of T is at most r if ¢ is satisfiable, and at least r + 1 otherwise, we can show that if ¢
is not satisfiable then its rank is at least the minimal size of a set of variables which is guaranteed
to intersect every unsatisfied clause in any unsatisfiable assignment. Since if ¢ is not satisfiable,
there are at least a linear fraction of clauses in ¢ that are unsatisfied under any assignment by
the inapproximability of MAX-E3SAT(B), and since each literal occurs in at most B clauses for a
constant B, it follows that the rank of T" when ¢ is not satisfiable is at least cor for a constant
¢p > 1. Further, under ETH , our reduction implies one cannot approximate MAX-E3SAT(B), and
thus approximate the rank of a tensor up to a factor ¢g, in less than 20k =M time. We need the
near-linear size reduction of MAX-3SAT to MAX-E3SAT of [MR10] to get our strongest result.

The 2%(/¢"") time hardness for (1 + e)-approximation for rank-1 tensors in Theorem H.21
strengthens the NP-hardness for rank-1 tensor computation in Section 7 of [HL13|, where instead
of assuming the NP-hardness of the Clique problem, we assume ETH . Also, the proof in [HL13] did
not explicitly bound the approximation error; we do this for a poly(1/¢)-sized tensor (which can be

14

Algorithm 1 Main Meta-Algorithm

1: procedure TENSORLOWRANKAPPROXBICRITERIA(A, n, k, €) > Theorem 1.1
2 Choose sketching matrices S2,53(Composition of Gaussian and CountSketch.)

3 Choose sketching matrices T5,T5(CountSketch.)

4: Compute T A9S5,, T3A3S53.

5: Construct V by setting (i,)-th column to be (A2S55);.

6 Construct W by setting (4, j)-th column to be (A3S53);.

7 Construct matrix B by setting (7, j)-th row of B is vectorization of (T5A4252); ® (T5A353);.
8 Solve ming |UB — (A(I, T2, T3))1||%-

9: return (7, 17, and W.

10: end procedure

11: procedure TENSORLOWRANKAPPROX(A,n, k, €) > Theorem 1.2
12: Choose sketching matrices S1,52,53(Composition of Gaussian and CountSketch.)

13: Choose sketching matrices T7,7,73(CountSketch.)

14: Compute T1A4151, T A3Sy, T53A3S53.

15: Solve minXl,X%X?, H(TlAllel) ® (TQAQSQXQ) ® (T3A3S3X3) — A(Tl, T, Tg)”i—v

16: return A151X1, AQSQXQ, and A3S53X3.

17: end procedure

padded with Os to a poly(n)-sized tensor) to rule out (1 + €)-approximation in 201/ time.
The same hard instance above shows, assuming ETH , that 241/ <) time is necessary for (1+¢)-
approximation to the spectral norm of a symmetric rank-1 tensor (see Section H.2 and Section H.3).
Assuming ETH | the 21/ hardness [SWZ17] for matrix ¢1-low rank approximation gives the
same hardness for tensor entry-wise ¢1 and ¢1-f1-f5 low rank approximation. Also, under ETH , we
strengthen the NP-hardness in [CW15a] to a 21/¢" hardness for £1-£a-low rank approximation of

a matrix, which gives the same hardness for tensor £1-f2-f5 low rank approximation.

Hard Instance. We extend the previous matrix CUR hard instance [BW14] to 3rd order tensors
by planting multiple rotations of the hard instance for matrices into a tensor. We show C' must
select Q(k/€) columns from A, R must select Q(k/€) rows from A, and T must select Q(k/€) tubes
from A. Also the tensor U must have rank at least k. This generalizes to ¢-th order tensors.

Optimal matrix CUR decomposition. We also improve the nnz(A) log n+(n+d) poly(logn, k,
1/€) running time of [BW14] for CUR decomposition of A € R™ 9 to nnz(A) + (n + d) poly(k, 1/¢),
while selecting the optimal number of columns, rows, and a rank-k matrix U. Using [CW13, MM13,
NN13], we find a matrix U with k orthonormal columns in nnz(A) + npoly(k/e) time for which
miny |UV — AL < (1+¢€)||A — Ag|%. Let 51 = O(k/€%) and S; € R*1*" be a sampling/rescaling
matrix by the leverage scores of U. By strengthening the affine embedding analysis of [CW13] to
leverage score sampling (the analysis of [CW13] gives a weaker analysis for affine embeddings using
leverage scores which does not allow approximation in the sketch space to translate to approximation
in the original space), with probability at least 0.99, for all X’ which satisfy ||S;UX’ — S1A|% <
(1+¢€) miny [|S1UX — S A||, we have |[UX'— A||% < (14€) miny |UX — A||%, where € = 0.0001¢.
Applying our generalized row subset selection procedure, we can find Y, R for which HSlﬁ YR —
S1Al% < (1 + €)miny 150X — Sy Al|%, where R contains O(k/€') = O(k/e) rescaled rows of
S1A. A key point is that rescaled rows of S A are also rescaled rows of A. Then, |[UY R — A% <
(14 ¢)miny |[UX — Al%. Finding Y, R can be done in dpoly(s;/e) = dpoly(k/e) time. Now set

15

v = YR. We can choose Sy to be a /s\ampling/rescaling matrix, and then find C,Z for which
|CZV Sy — ASs||% < (1 + ¢)miny || XV Sy — AS2||% in a similar way, where C' contains O(k/e)
rescaled columns of ASs, and thus also of A. We thus have [|[CZY R— A||% < (1+O(e))||A — Ag||%.

Distributed and streaming settings. Since our algorithms use linear sketches, they are imple-
mentable in distributed and streaming models. We use random variables with limited independence
to succinctly store the sketching matrices [CW13, KVW14, KN14, Wool4, SWZ17].

Extension to other notions of tensor rank. This paper focuses on the standard CP rank, or
canonical rank, of a tensor. As mentioned, due to border rank issues, the best rank-k solution does
not exist in certain cases. There are other notions of tensor rank considered in some applications
which do not suffer from this problem, e.g., the tucker rank [KC07, PC08, MH09, ZW13, YC14],
and the train rank [Osell, OTZ11, ZWZ16, PTBD16|). We also show observe that our techniques
can be applied to these notions of rank.

1.4 Comparison to [BCV14]

In [BCV14], the authors show for a third order n; x ng x ng tensor A how to find a rank-k tensor B
for which ||A— BJ||% < 5OPT in poly(ninans) exp(poly(k)) time. They generalize this to g-th order
tensors to find a rank-k tensor B for which ||A—B|% = O(q) OPT in poly(nins - - - ng) exp(poly(gk))
time.

In contrast, we obtain a rank-k tensor B for which |4 — B||% < (1 +¢) OPT in nnz(A) + n -
poly(k/e) +exp((k?/¢) poly(q)) time for every order ¢. Thus, we obtain a (1 +¢) instead of an O(q)
approximation. The O(q) approximation in [BCV14] seems inherent since the authors apply triangle
inequality ¢ times, each time losing a constant factor. This seems necessary since their argument
is based on the span of the top k principal components in the SVD in each flattening separately
containing a good space to project onto for a given mode. In contrast, our iterative existential
argument chooses the space to project onto in successive modes adaptively as a function of spaces
chosen for previous modes, and thus we obtain a (1 + €)?@ = (1 + O(eq))-approximation, which
becomes a (1 + €)-approximation after replacing € with €¢/g. Also, importantly, our algorithm runs
in nnz(A) + n - poly(k/e€) + exp((k?/€) poly(q)) time and there are multiple hurdles we overcome to
achieve this, as described in Section 1.2 above.

1.5 An Algorithm and a Roadmap

Roadmap Section A introduces notation and definitions. Section B includes several useful tools.
We provide our Frobenius norm low rank approximation algorithms in Section C. Section C.10
extends our results to general g-th order tensors. Section D has our results for entry-wise ¢; norm
low rank approximation. Section E has our results for entry-wise £, norm low rank approximation.
Section G has our results for weighted low rank approximation. Section F has our results for
asymmetric norm low rank approximation algorithms. We present our hardness results in Section H
and Section I. Section J and Section K extend the results to distributed and streaming settings.
Section L extends our techniques from tensor rank to other notions of tensor rank including tensor
tucker rank and tensor train rank.

16

Figure 1: A 3rd order tensor with size 8 x 8 x 8.

A Notation

For an n € Ny, let [n] denote the set {1,2,--- ,n}.

For any function f, we define O(f) to be f - log®M(f). In addition to O(-) notation, for two
functions f, g, we use the shorthand f < g (resp. 2) to indicate that f < Cg (resp. >) for an
absolute constant C. We use f = g to mean cf < g < Cf for constants ¢, C.

For a matrix A, we use ||Al|2 to denote the spectral norm of A. For a tensor A, let ||A| and
|All2 (which we sometimes use interchangeably) denote the spectral norm of tensor A,

Alz,y, z
Al = sup @I
220 2] -yl - [I=]l

Let ||A||r denote the Frobenius norm of a matrix/tensor A, i.e., ||Al|r is the square root of sum of
squares of all the entries of A. For 1 < p < 2, we use ||A||, to denote the entry-wise £,-norm of
a matrix/tensor A, i.e., ||A[|, is the p-th root of the sum of p-th powers of the absolute values of
the entries of A. ||Al|; will be an important special case of ||Al|,, which corresponds to the sum of
absolute values of all of the entries.

Let nnz(A) denote the number of nonzero entries of A. Let det(A) denote the determinant of a
square matrix A. Let AT denote the transpose of A. Let AT denote the Moore-Penrose pseudoinverse
of A. Let A~! denote the inverse of a full rank square matrix.

For a 3rd order tensor A € R™"*" its z-mode fibers are called column fibers (z = 1), row
fibers (z = 2) and tube fibers (z = 3). For tensor A, we use A, j; to denote its (j,)-th column, we
use A; . to denote its (,1)-th row, and we use A; ;. to denote its (i, j)-th tube.

A tensor A is symmetric if and only if for any ¢,7,k, Aijr = Aikj = Ajik = Ajki = Akij =
Ak,j,i~

For a tensor A € R™*"2X"3 we use T to denote rotation (3 dimensional transpose) so that
AT € R®>Xmxn2 For a tensor A € RM*"2X"3 and matrix B € R™*¥ we define the tensor-matrix
dot product to be A - B € Rmxn2xk,

17

B ||

Figure 2: Flattening. We flatten a third order 4 x 4 x 4 tensor along the 1st dimension to obtain a
4 x 16 matrix. The red blocks correspond to a column in the original third order tensor, the blue
blocks correspond to a row in the original third order tensor, and the green blocks correspond to a
tube in the original third order tensor.

We use ® to denote outer product, o to denote entrywise product, and - to denote dot product.
Given two column vectors u,v € R”, let u®@v € R"*™ and (v ®v); j = u; - vy, ulv = Yo uiv; €R
and (uov); = u;v;.

Definition A.1 (® product for vectors). Given g vectors uy € R™, ug € R", ..., u, € R™, we

use u] @ uz ® -+ - @ uq to denote an ny X ng X --- X ng tensor such that, for each (J1,J2, ,jq) €
[n1] X [ng] x -+ X [ng],

(ur @ ug @ - -+ @ tg)jy o, o jg = (W1) s (U2) 5 - - (Ug) iy
where (u;)j, denotes the ji-th entry of vector u;.

Definition A.2 (vec(), convert tensor into a vector). Given a tensor A € R™M*"2XXNa et
vec(A) € RVIT=m be o row vector, such that the t-th entry of vec(A) is Ajy o j, where t =
(jl - 1) ;‘]:2 n; + (]2 - 1) ;'113 ng+ -+ (jq—l - 1)nq + Jg-
1 3
For example if u = [2] ,v=|4]| then vec(u®@v)=1[3 4 5 6 8 10].
)

Definition A.3 (® product for matrices). Given q matrices Uy € RM*k U, € Rk ... U, €
Rk we use U1 QUas @ -+ @ Uy to denote an n1 X ng X --- X ng tensor which can be written as,

k
U1@Uz2®- @U; = Z(Ul)i @ (Us)i @ -+ ® (Uy); € RMXM2XXNa
i=1

where (U;); denotes the i-th column of matriz U; € R™*k,
Definition A.4 (® product for matrices). Given q matrices Uy € RF*™ Uy € RFX72 ... U, €
RkX”‘Z, we use U1 ©OU®- - -OUy to denote a kag-:l n; matriz where the i-th row of U1 ©U2©- - -OU,
is the vectorization of (Uy)' @ (U2)' ® -+ ® (U,)", i.e.,
vec((Un)! @ (U)! @ -+ @ (Uy)!)
2 2 o 2
UyoUy &0 Uq — Vec((Ul) ® (UQ) ® ® (Uq)) e kanj-:lnj'

vee((Uy)* @ (U.2)k ® - ® (Ug)F)

where (U;)* € R denotes the i-th row of matriz U; € R¥*1i,

18

Definition A.5 (Flattening vs unflattening/retensorizing). Suppose we are given three matrices
UecRWF Ve Ryur, WeR®BXE Let tensor A € RM*"2X7 denote U RV @ W. Let Ay €
R™ X127 denote a matriz obtained by flattening tensor A along the 1st dimension. Then A1 = U- B,
where B=V T @W T € RF*"2m3 denotes the matriz for which the i-th row is vec(V; @ W;), Vi € [k].
We let the “flattening” be the operation that obtains A1 by A. Given Ay = U - B, we can obtain
tensor A by unflattening/retensorizing A1. We let “retensorization” be the operation that obtains A
from Ay. Similarly, let As € R™2*™™ denote a matriz obtained by flattening tensor A along the
2nd dimension, so Ay =V - C, where C = W' @ U € RF*™Mns denotes the matriz for which the
i-th row is vec(W; @ U;), Vi € [k]. Let Az € R"*™"2 denote a matriz obtained by flattening tensor
A along the 3rd dimension. Then, A3 =W - D, where D =UT @V T € RF*™M"2 denotes the matriz
for which the i-th row is vec(U; ® V;),Vi € [k].

Definition A.6 ((-,-,-) operator for tensors and matrices). Given tensor A € R™*"2X"3 qnd three
matrices By € RM*4 By € R™*% By ¢ R™X9 e define tensors A(By,I,I) € Raxn2xns,
A(I, By, I) € Rmxd2xns = A([] B3) € RUuXm2Xds - A(By, By, I) € RUWX%2Xns - A(By By, Bs) €
R xd2xds s follows,

ni
AByL L Dige = Y A ji(B)is, V(i, 4, 1) € [d] X [n2] X [ng]
n2
A(I, By, Dijy = > Aijra(Ba)jrj, V(i,,1) € [n1] X [d2] x [n3]
n3
A(II,Bs)iji = Y Asju(Bs)ry, (i, 7,1) € [n1] x [n2] x [ds]
=1
ni no
A(B1,Ba, Dijye = > Ay a(B1)iri(Ba2)y s V(i j,1) € [di] x [do] x [ng]
i'=1j'=1

ny mn2 N3

A(B1, By, Ba)ijs = > Y Avjru(B1)ii(Ba)j(B)ra, (i, 4,1) € [di] x [do] x [ds]
i'=14'=11=1
Note that B] A = A(By,I,I), ABs = A(I,I,Bs) and B] AB3 = A(Bi,I,B3). In our pa-
per, if Vi € [3], B; is either a rectangular matrix or a symmetric matrix, then we sometimes use
A(B1, By, B3) to denote A(B], By , By) for simplicity. Similar to the (-,-,-) operator on 3rd order
tensors, we can define the (-,-,--- ,-) operator on higher order tensors.

For the matrix case, I’IliIkl A/HA — A'||% always exists. However, this is not true for ten-
rank —

sors [DSLO8|. For convenience, we redefine the notation of OPT and min.
Definition A.7. Given tensor A € R™"*"2X"3 [> 0, if Ell%) |A— A’||% does not exist, then we
rank — !
define OPT = klnf}'C N |A— A'||% +7 for sufficiently small v > 0, which can be an arbitrarily small
rank — !

positive function of n. We let IIllIl HA A'||% be the value of OPT, and we let argmin ||[A—A’||%
rank — rank —k A’

be a rank —k tensor Ay € R’“X”?Xm which satisfies ||A — Ag||% = OPT.

B Preliminaries

Section B.1 provides the definitions for Subspace Embeddings and Approximate Matrix Product.
We introduce the definition for Tensor-CURT decomposition in Section B.2. Section B.3 presents

19

Tensor Column Row Tube

2

Figure 3: A 3rd order tensor contains n? columns, n? rows, and n? tubes.

a tool which we call a “polynomial system verifier”. Section B.4 introduces a tool which is able to
determine the minimum nonzero value of the absolute value of a polynomial evaluated on a set,
provided the polynomial is never equal to 0 on that set. Section B.5 shows how to relax an ¢, problem
to an #9 problem. We provide definitions for CountSketch and Gaussian transforms in Section B.6.
We present Cauchy and p-stable transforms in Section B.7. We introduce leverage scores and Lewis
weights in Section B.8 and Section B.9. Finally, we explain an extension of CountSketch, which is
called TENSORSKETCH in Section B.10.

B.1 Subspace Embeddings and Approximate Matrix Product

Definition B.1 (Subspace Embedding). A (1 & €) l3-subspace embedding for the column space of
an n x d matriz A is a matriz S for which for all x € R, ||SAz||2 = (1 4)| Az||3.

Definition B.2 (Approximate Matrix Product). Let 0 < e < 1 be a given approzimation parameter.
Given matrices A and B, where A and B each have n rows, the goal is to output a matriz C so
that ||AT B —C||r < €| Al|p||Bl|r. Typically C has the form AT STSB, for a random matriz S with
a small number of rows. See, e.g., Lemma 32 of [CW13] for a number of example matrices S with
O(e™2) rows for which this property holds.

B.2 Tensor CURT decomposition

We first review matrix CUR decompositions:

Definition B.3 (Matrix CUR, exact). Given a matriz A € R"*? we choose C € R"™ ¢ to be a
subset of columns of A and R € R"™™™ to be a subset of rows of A. If there exists a matriz U € Re*"
such that A can be written as,

CUR = A,

then we say C,U, R is matriz A’s CUR decomposition.

20

Tensor A column-row face

Tensor A column-tube face

Tensor A row-tube face

Figure 4: A third order tensor has three types of faces: the column-row faces, the column-tube
faces, and the row-tube faces

21

Definition B.4 (Matrix CUR, approximate). Given a matriz A € R™ 9, a parameter k > 1, an
approzimation ratio o > 1, and a norm ||||¢, we choose C' € R"*¢ to be a subset of columns of A
and R € R™™ to be a subset of rows of A. Then if there exists a matriz U € R*" such that,

ICUR — Alle <o min A — Alle,

A, |
where ||||¢ can be operator norm, Frobenius norm or Entry-wise €1 norm, we say that C,U, R is ma-

triz A’s approzimate CUR decomposition, and sometimes just refer to this as a CUR decomposition.

Definition B.5 (|Boull|). Given matriz A € R™*", integer k, and matriz C € R™*" with r > k,
we define the matriz Hgk(A) € R™*"™ to be the best approxzimation to A (under the {-norm) within
the column space of C of rank at most k; so, H%k(A) € R™ ™ minimizes the residual ||A — ﬁHg,

over all A € R™<" in the column space of C of rank at most k.
We define the following notion of tensor-CURT decomposition.

Definition B.6 (Tensor CURT, exact). Given a tensor A € R™M*"2X"3 e choose three sets of
pair of coordinates Sy C [na] X [n3], S2 C [n1] x [ns], Ss C [n1] X [ng]. We define ¢ = |S1|, r = |So|
and t = |Ss|. Let C € R™*¢ denote a subset of columns of A, R € R"2*" denote a subset of rows
of A, and T € R™*t denote a subset of tubes of A. If there exists a tensor U € R*™ such that A
can be written as

(©-THT-RHT-CT)" =4,
or equivalently,
UC,R,T)=A,

or equivalently,

c T t
\V/(Z,],l) € [nl] X [n2] X [n3]aAi,j,l = Z Z Z Uul,UQ,u;gCi,ule,UQTl,ug,

u1=1u2=1wu3z=1
then we say C,U, R, T is tensor A’s CURT decomposition.

Definition B.7 (Tensor CURT, approximate). Given a tensor A € R™*"2X"3 for some k > 1,
for some approzimation o > 1, for some norm ||||¢, we choose three sets of pair of coordinates
S1 C [ng] x [n3],S2 C [n1] x [n3],S3 C [n1] X [n2]. We define ¢ = |Si|, r = |S2| and t = |S3|. Let
C € R™*¢ denote a subset of columns of A, R € R™*" denote a subset of rows of A, and T € R™3*t
denote a subset of tubes of A. If there exists a tensor U € Rt such that
IU(C,R,T) = Alle <a_ min - [|A; — A,
rank —k Ag
where ||||¢ is operator norm, Frobenius norm or Entry-wise {1 norm, then we refer to C,U,R,T as

an approximate CUR decomposition of A, and sometimes just refer to this as a CURT decomposition

of A.

Recently, [TM17] studied a very different face-based tensor-CUR decomposition, which selects
faces from tensors rather than columns. To achieve their results, [TM17] need to make several
incoherence assumptions on the original tensor. Their sample complexity depends on logn, and
they only sample two of the three dimensions. We will provide more general face-based tensor
CURT decompositions.

22

Tensor Selecting a subset of columns

Tensor Selecting a subset of rows
Tensor Selecting a subset of tubes

Figure 5: Column subset selection, row subset selection and tube subset selection.

Definition B.8 (Tensor (face-based) CURT, exact). Given a tensor A € R™*"2X"3 e choose
three sets of coordinates S1 C [n1], S2 C [n2],S3 C [n3]. We define ¢ = |Si|, r = |S2| and t = |S3|.
Let C € Re*"2%"3 denote a subset of row-tube faces of A, R € R™*"*"3 denote a subset of column-
tube faces of A, and T € R™>"2%t denote a subset of column-row faces of A. Let Co € R™2X¢n3

23

denote the matriz obtained by flattening the tensor C' along the second dimension. Let Rg € R™3*™™
denote the matriz obtained by flattening the tensor R along the third dimension. Let Ty € R xtn2
denote the matriz obtained by flattening the tensor T along the first dimension. If there exists a
tensor U € RIm2Xensxrnt gych that A can be written as

tna cn3 rni

DD Uiju(T)i @ (Ca)i @ (Rs); = A,

i=1 j=1 I=1

U(Tla 027 R3) = A7

or equivalently,

tn1 cnz rng

V(i 5 1) € [a] x [ng] x [ng], Aiju = ZZZUi,j,l(Tl)i’,i(CQ)j/,j(R3)l’,la

i=1 j=1 I=1
then we say C,U, R, T is tensor A’s (face-based) CURT decomposition.

Definition B.9 (Tensor (face-based) CURT, approximate). Given a tensor A € R™*"2X13 - for
some k > 1, for some approzimation o > 1, for some norm ||||¢,we choose three sets of coordinates
S1 C [n1],S2 C [na],S3 C [n3]. We define ¢ = |Si|, = |S2| and t = |S3|. Let C € Rex"2xns
denote a subset of row-tube faces of A, R € R™*"*"3 denote a subset of column-tube faces of A,
and T € R™MX"2Xt denote a subset of column-row faces of A. Let Coy € R™X denote the matriz
obtained by flattening the tensor C along the second dimension. Let Ry € R™*™1 denote the
matriz obtained by flattening the tensor R along the third dimension. Let T} € R™*!"2 denote
the matriz obtained by flattening the tensor T along the first dimension. If there exists a tensor
U € Rinzxensxrni gy ch that

IU(T1,C2, Bs) = Alle <o min |4 — Alle,

Ag ’
where ||||¢ is operator norm, Frobenius norm or Entry-wise £1 norm, then we refer to C,U, R, T as
an approzimate CUR decomposition of A, and sometimes just refer to this as a (face-based) CURT
decomposition of A.

B.3 Polynomial system verifier

We use the polynomial system verifiers independently developed by Renegar [Ren92a, Ren92b| and
Basu et al. [BPR96].

Theorem B.10 (Decision Problem [Ren92a, Ren92b, BPR96]). Given a real polynomial system
P(x1,29, -+ ,xy) having v variables and m polynomial constraints fi(x1,x2, - ,2y)A;0,Vi € [m],
where A; is any of the “standard relations” {>,>,=,#,<,<}, let d denote the maximum degree
of all the polynomial constraints and let H denote the maximum bitsize of the coefficients of all the

polynomial constraints. Then in
(md)°™) poly(H),

time one can determine if there exists a solution to the polynomial system P.

Recently, this technique has been used to solve a number of low-rank approximation and matrix
factorization problems [AGKM12, Moil3, CW15a, BDL16, RSW16, SWZ17|.

24

A subset of rows

P
P,

Tensor A subset of columns A subset of tubes

Figure 6: An example tensor CURT decomposition.

B.4 Lower bound on the cost of a polynomial system

An important result we use is the following lower bound on the minimum value attained by a
polynomial restricted to a compact connected component of a basic closed semi-algebraic subset of
RY.

Theorem B.11 ([JPT13|). Let T = {x € R"|fi(x) > 0,---, fo(x) >0, foy1(x) =0, , fr(2z) =
0} be defined by polynomials fi,--- , fmm € Zlz1, -+ ,Ty] with n > 2, degrees bounded by an even
integer d, and coefficients of absolute value at most H, and let C' be a compact connected (in the
topological sense) component of T. Let g € Z[x1,--- ,x,] be a polynomial of degree at most d and
coefficients of absolute value bounded by H. Then, the minimum value that g takes over C satisfies
that if it is not zero, then its absolute value is greater than or equal to

(24—1)/2ﬁdv)—v2“d”
where H = max{H,2v + 2m}.

While the above theorem involves notions from topology, we shall apply it in an elementary way.
Namely, in our setting 7" will be bounded and so every connected component, which is by definition
closed, will also be bounded and therefore compact. As the connected components partition 7" the
theorem will just be applied to give a global minimum value of g on T" provided that it is non-zero.

B.5 Frobenius norm and /¢, relaxation

Theorem B.12 (Generalized rank-constrained matrix approximations, Theorem 2 in [FTO07]).
Given matrices A € R™? B € R™P, and C € R, let the SVD of B be B = UBZBVBT and
the SVD of C be C = UCZCVJ. Then,

BN (UpUL AVeCL),CT = argmin ||A — BXC||p,
rank —k X€RPXq

where (UBUgAVCVJ)k € RP*Y 4s of rank at most k and denotes the best rank-k approzimation to
UBUEAVCVCT € RP*% i Frobenius norm.

25

Claim B.13 ({5 relaxation of £,-regression). Let p € [1,2). For any A € R™*? and b € R", define
x* = argmin||Az — b||, and 2’ = argmin|| Az — b||z. Then,
zER? zER?

142" — b, < ||Az" — b}, < nt/P7H2 - | Az" — bl
Claim B.14 ((Matrix) Frobenius norm relaxation of ¢)-low rank approximation). Let p € [1,2) and
for any matriz A € R4, define A* = argmin ||B— A|, and A’ = argmin ||B — A| .

rank —k BERnxd rank —k BeRnxd
Then

14" = All < |4 = All < (nd)/P~12) 4% — Al

Claim B.15 ((Tensor) Frobenius norm relaxation of £)-low rank approximation). Let p € [1,2) and
for any matrix A € R™M*"2XN3 " define

A" = arg min | B —Allp
rank —k BERM™1Xn2%Xn3
and
A= arg min |B — AllF.
rank —k BER™1Xn2xXng
Then

14" — Allp < 14" = Allp < (nangns)/P~1 2| A% — A

B.6 CountSketch and Gaussian transforms

Definition B.16 (Sparse embedding matrix or CountSketch transform). A CountSketch transform
is defined to be Il = o-®D € R™*™. Here, o is a scalar, D is an n X n random diagonal matriz with
each diagonal entry independently chosen to be +1 or —1 with equal probability, and ® € {0,1}™*™
is an m X n binary matriz with ®5;),; = 1 and all remaining entries 0, where h : [n] — [m] is a
random map such that for each i € [n], h(i) = j with probability 1/m for each j € [m]. For any
matriv A € R™? TIA can be computed in O(nnz(A)) time. For any tensor A € R**dxdz 1A
can be computed in O(nnz(A)) time. Let 111,115,113 denote three CountSktech transforms. For any
tensor A € R™M>m2xn3 = A(T1y, I1p, II3) can be computed in O(nnz(A)) time.

If the above scalar o is not specified in the context, we assume the scalar o to be 1.

Definition B.17 (Gaussian matrix or Gaussian transform). Let S = o - G € R"™" where o
is a scalar, and each entry of G € R™*™ is chosen independently from the standard Gaussian
distribution. For any matriz A € R"*? S A can be computed in O(m-nnz(A)) time. For any tensor
A e Rdixdz G A can be computed in O(m -nnz(A)) time.

If the above scalar o is not specified in the context, we assume the scalar o to be 1/y/m. In
most places, we can combine CountSketch and Gaussian transforms to achieve the following:

Definition B.18 (CountSketch + Gaussian transform). Let S’ = SU, where II € R™™ is the
CountSketch transform (defined in Definition B.16) and S € R™*! is the Gaussian transform (de-
fined in Definition B.17). For any matriz A € R"9 S'A can be computed in O(nnz(A) + dtm*~2)
time, where w is the matriz multiplication exponent.

26

Lemma B.19 (Affine Embedding - Theorem 39 in [CW13]). Given matrices A € R"™" B € R™*4
and rank(A) = k, let m = poly(k/e), S € R™*™ be a sparse embedding matriz (Definition B.16)
with scalar o = 1. Then with probability at least 0.999, VX € R™*? we have

(1-€) - |AX = Bl < IS(AX = B)|F < (1 +¢)||AX - BJ%.

vm o
where G € R"™" is a random matriz where each entry is an i.i.d Gaussian N(0,1). Then with

probability at least 0.998, S satisfies (1 &+ 1/8) Subspace Embedding (Definition B.1) for any fized
matriz C € R™ ¥ and it also satisfies O(r\/e/k) Approzimate Matriz Product (Definition B.2) for
any fixed matriz A and B which has the same number of rows.

Lemma B.20 (see, e.g., Lemma 10 in version 1 of [BWZ16]®). Let m = Q(k/e), S = -~ - G
).

Lemma B.21 (see, e.g., Lemma 11 in version 1 of [BWZ16]®). Let m = Q(k? + k/¢), Il € R™*",
where 11 is a sparse embedding matriz (Definition B.16) with scalar o = 1, then with probability at
least 0.998, S satisfies (141/8) Subspace Embedding (Definition B.1) for any fived matriz C € R™**,
and it also satisfies O(\/e/ilc) Approzimate Matrixz Product (Definition B.2) for any fized matriz A
and B which has the same number of rows.

Lemma B.22 (see, e.g., Lemma 12 in version 1 of [BWZ16]%). Let mg = Q(k? + k/e), II € R™2*",
where 11 is a sparse embedding matriz (Definition B.16) with scalar o = 1. Let my = Q(k/e),

S = \/% - G, where G € R™*™M2 4s g random matriz where each entry is an i.i.d Gaussian
N(0,1). Let S" = SII. Then with probability at least 0.99, S is a (1 + 1/3) Subspace Embedding
(Definition B.1) for any fired matriz C € R™ k. and it also satisfies O(\/€/k) Approzimate Matriz

Product (Definition B.2) for any fized matriz A and B which have the same number of rows.

Theorem B.23 (Theorem 36 in [CW13]). Given A € R™*¥ B € R™*? suppose S € R™*™ is such
that S is a (1+ %) Subspace Embedding for A, and satisfies O(+/€/k) Approximate Matriz Product
for matrices A and C where C with n rows, where C' depends on A and B. If

X =arg min ||SAX — SB|? ,
g CRAxd | 17
then

v 2 : 2
|AX = BI} < 1+ min [AX - B,

B.7 Cauchy and p-stable transforms

Definition B.24 (Dense Cauchy transform). Let S = o - C' € R™*" where o is a scalar, and each

entry of C' € R™*™ js chosen independently from the standard Cauchy distribution. For any matric
A cR™4 SA can be computed in O(m - nnz(A)) time.

Definition B.25 (Sparse Cauchy transform). Let II = o - SC € R™ ™ where o is a scalar,
S € R™*™ has each column chosen independently and uniformly from the m standard basis vectors
of R™, and C' € R™" is a diagonal matrixz with diagonals chosen independently from the standard
Cauchy distribution. For any matriz A € R™ 4, TIA can be computed in O(nnz(A)) time. For
any tensor A € R™4xd TIA can be computed in O(nnz(A)) time. Let T} € R™>*™ Ty €
R™2xn2 I3 € R™3%"3 denote three sparse Cauchy transforms. For any tensor A € R™M>n2xn3
A(IT, 1o, I13) € R™*™2X™3 can be computed in O(nnz(A)) time.

8 https://arxiv.org/pdf/1504.06729v1. pdf

27

https://arxiv.org/pdf/1504.06729v1.pdf

Definition B.26 (Dense p-stable transform). Let p € (1,2). Let S = o - C € R™*", where 0 is a
scalar, and each entry of C' € R™*™ is chosen independently from the standard p-stable distribution.
For any matriv A € R™ SA can be computed in O(mnnz(A)) time.

Definition B.27 (Sparse p-stable transform). Let p € (1,2). Let Il = o - SC € R™*" where o is a
scalar, S € R™*™ has each column chosen independently and uniformly from the m standard basis
vectors of R™, and C € R™™™ is a diagonal matriz with diagonals chosen independently from the
standard p-stable distribution. For any matriv A € R™4 TIA can be computed in O(nnz(A)) time.
For any tensor A € R™ 4%z T[A can be computed in O(nnz(A)) time. Let II; € R™>™ I, €
R™2xn2 I3 € R™3*" denote three sparse p-stable transforms. For any tensor A € R™>n2xns
A(IIy, g, II3) € R™MX™2XM3 cqn be computed in O(nnz(A)) time.

B.8 Leverage scores

Definition B.28 (Leverage scores). Let U € R™** have orthonormal columns, and let p; = u? /k,
where u? = |le] U||3 is the i-th leverage score of U.

Definition B.29 (Leverage score sampling). Given A € R™ % with rank k, let U € R™* be an
orthonormal basis of the column space of A, and for each i let p; be the squared row norm of the i-th
row of U, i.e., the i-th leverage score. Let k - p; denote the i-th leverage score of U scaled by k. Let
B >0 be a constant and ¢ = (q1,- - ,qn) denote a distribution such that, for each i € [n], ¢; > Pp;.
Let s be a parameter. Construct an n X s sampling matrix B and an s X s rescaling matriz D as
follows. Initially, B = 0™ and D = 0°*%. For each column j of B, D, independently, and with
replacement, pick a row index i € [n] with probability q;, and set B;j =1 and Dj;; = 1/,/q;5. We
denote this procedure LEVERAGE SCORE SAMPLING according to the matriz A.

B.9 Lewis weights

We follow the exposition of Lewis weights from [CP15].

Definition B.30. For a matriz A, let a; denote the i™ row of A, where a;(= (A)T) is a column
vector. The statistical leverage score of a row a; is

def _ _
7i(A) = o] (ATA)Ma; = [(ATA) a3,

For a matriz A and norm p, the £, Lewis weights w are the unique weights such that for each row i
we have

w; = Ti(Wl/Qil/pA).
or equivalently,
aj (ATW=2/PA)=lg; = w?/p.

Lemma B.31 (Lemma 2.4 of [CP15] and Lemma 7 of [CLM*15|). Given a matriz A € R™*¢,
n > d, for any constant C' > 0,4 > p > 1, there is an algorithm which can compute C-approximate

¢, Lewis weights for every row i of A in O((nnz(A) + d“logd)logn) time, where w < 2.373 is the
matriz multiplication exponent[Str69, CW87, Will2].

28

Lemma B.32 (Theorem 7.1 of [CP15]). Given matriz A € R4 (n > d) with €, (4 > p > 1) Lewis
weights w, for any set of sampling probabilities p;, Y . pi = N,

if S € RVX™ has each row chosen independently as the it standard basis vector, multiplied by 1/p21/p,
with probability p;/N. Then, overall with probability at least 0.999,

1
vz € RY, || Al < |[S A} < 2] A2

Furthermore, if p = 1, N = O(dlogd). If1 < p < 2, N = O(dlogdloglogd). If2 < p < 4,
N = O(dP/?log d).

Lemma B.33. Given matriz A € R™? (n > d), there is an algorithm to compute a diagonal matriz
D = SS; with N nonzero entries in O(npoly(d)) time such that, with probability at least 0.999, for
all z € RY

1
101D Azlp < Azl < 10[.D Az,

where S, Sy are two sampling/rescaling matrices. Furthermore, if p = 1, then N = O(dlogd). If
1 <p<2, then N =0(dlogdloglogd). If2 < p < 4, then N = O(d?/?logd).

Given a matrix A € R™? (n > d), by Lemma B.32 and Lemma B.31, we can compute a
sampling /rescaling matrix S in O((nnz(A) + d“logd)logn) time with O(d) nonzero entries such
that

1
vz € RY, || Al < ||S A} < 2] Asl2

Sometimes, poly(d) is much smaller than logn. In this case, we are also able to compute such a
sampling /rescaling matrix S in n poly(d) time in an alternative way.

To do so, we run one of the input sparsity ¢, embedding algorithms (see e.g., [MM13]) to compute
a well conditioned basis U of the column span of A in n poly(d/e) time. By sampling according to the
well conditioned basis (see e.g. [Cla05, DDHT09, Woo14]), we can compute a sampling/rescaling
matrix S; such that (1 — €)||Az|b < [|S1Az||h < (1 + ¢)||Az||) where € € (0,1) is an arbitrary
constant. Notice that S; has poly(d/e) nonzero entries, and thus S; A has size poly(d/e). Next, we
apply Lewis weight sampling according to S1A, and we obtain a sampling/rescaling matrix S for
which

1 1
Vo € RY (1= 2)lIS1Ax|p < [SS1Az]lf < (1+ 3)lIS1 Az},
This implies that
1
vz e RY, FllAz[} < [[9S1Az(f < 2| Az},

Note that SS; is still a sampling/rescaling matrix according to A, and the number of non-zero
entries is O(d). The total running time is thus n poly(d/e), as desired.

29

B.10 TENSORSKETCH

Let ¢(v1,v2, -+ ,vq) denote the function that maps g vectors(u; € R™) to the []?_; n;-dimensional
vector formed by v1 ® v2 ® - -+ ® uy.

We first give the definition of TENSORSKETCH. Similar definitions can be found in previous
work [Pagl3, PP13, ANW14, WTSA15|.

Definition B.34 (TENSORSKETCH [Pagl3|). Given q points vi,va,--- ,v, where for each i €
[q),vi € R™, let m be the target dimension. The TENSORSKETCH transform is specified using
q 3-wise independent hash functions, hy,--- , hq, where for each i € [q], h; : [n;] = [m], as well as q
4-wise independent sign functions si,--- ,sq, where for each i € [q], s; : [n;] — {—1,+1}.
TENSORSKETCH applied to vy, --- ,vq is then COUNTSKETCH applied to ¢(v1,- -+ ,vq) with hash
function H : [[]%_, n;] — [m] and sign functions S : [[[{_, ni] — {—1,+1} defined as follows:

H(iy, -+ ,ig) = hi(i1) + ha(s2) 4+ -+ - + hy(iy) (mod m),
and

S(i1, -+ ,iq) = s1(i1) - s2(iz) -+ $q(iq)-

Using the Fast Fourier Transform, TENSORSKETCH (v1, - - - ,vq) can be computed in O(Y_1_, (nnz(v;)+
mlogm)) time.

Note that Theorem 1 in [ANW14] only defines ¢(v) =v® v ®--- ® v. Here we state a stronger
version of Theorem 1 than in [ANW14], though the proofs are identical; a formal derivation can be
found in [DW17].

Theorem B.35 (Generalized version of Theorem 1 in [ANW14]). Let S be the ([[{_; ni) x m matriz
such that TENSORSKETCH (v, v2, -+ ,Uq) is ¢(v1,v2,- -+ ,0q)S for a randomly selected TENSORS-
KETCH. The matriz S satisfies the following two properties.

Property I (Approzimate Matriz Product). Let A and B be matrices with [[{_, n; rows. For
m > (2 + 39)/(e25), we have

Pr||ATSSTB ~ ATB||% < €||A|F] BIE] > 1 - 6.

Property II (Subspace Embedding). Consider a fived k-dimensional subspace V. If m > k?(2 +
39)/(€%5), then with probability at least 1 — 6, ||zS||2 = (1 £ €)||z||2 simultaneously for all x € V.

30

C Frobenius Norm for Arbitrary Tensors

Section C.1 presents a Frobenius norm tensor low-rank approximation algorithm with (1 + €)-
approximation ratio. Section C.2 introduces a tool which is able to reduce the size of the objective
function from n? to poly(k,1/¢). Section C.3 introduces a new problem called tensor multiple
regression. Section C.4 presents several bicriteria algorithms. Section C.5 introduces a powerful
tool which we call generalized matrix row subset selection. Section C.6 presents an algorithm that
is able to select a batch of columns, rows and tubes from a given tensor, and those samples are
also able to form a low-rank solution. Section C.7 presents several useful tools for tensor problems,
and also two (1 + ¢€)-approximation CURT decomposition algorithms: one has the optimal sample
complexity, and the other has the optimal running time. Section C.9 shows how to solve the problem
if the size of the objective function is small. Section C.10 extends several techniques from 3rd order
tensors to general g-th order tensors, for any ¢ > 3. Finally, in Section C.11 we also provide a new
matrix CUR decomposition algorithm, which is faster than [BW14].

For simplicity of presentation, we assume Ay exists in theorems (e.g., Theorem C.1) which
concern outputting a rank-k solution, as well as the theorems (e.g., Theorem C.7, Theorem C.8,
Theorem C.13) which concern outputting a bicriteria solution (the output rank is larger than k).
For each of the bicriteria theorems, we can obtain a more detailed version when A; does not exist,
like Theorem 1.1 in Section 1 (by instead considering a tensor sufficiently close to Ay in objective
function value). Note that the theorems for column, row, tube subset selection Theorem C.20 and
Theorem C.21 also belong to this first category. In the second category, for each of the rank-k
theorems we can obtain a more detailed version handling all cases, even when A does not exist,
like Theorem 1.2 in Section 1 (by instead considering a tensor sufficiently close to Ay in objective
function value).

Several other tensor results or tools (e.g., Theorem C.4, Lemma C.3, Theorem C.40, Theorem
C.41, Theorem C.14, Theorem C.46) that we build in this section do not belong to the above two
categories. It means those results do not depend on whether Aj exists or not and whether OPT is
Zero or not.

C.1 (1 + e)-approximate low-rank approximation

Algorithm 2 Frobenius Norm Low-rank Approximation

1: procedure FLOWRANKAPPROX(A,n, k, €) > Theorem C.1
2 S1 (—SQ%Sg%O(k)/Q.

3: Choose sketching matrices Sy €]R"2X51, Sy € R”2X52, Sy € R X3, > Definition B.18
4 Compute A;S;,Vi € [3].

5 Y1,Y5, Y3, C < FINPUTSPARSITYREDUCTION(A, A1S1, A2S2, A3Ss3,n, s1, 2, 3, k, €). >

Algorithm 3
6 Create variables for X; € R%*¥ i € [3].
7: Run polynomial system verifier for ||(Y1X1) ® (Y2X2) ® (Y3X3) — C|%.
8 return A131X1, AQSQXQ, and A3S53X3.
9: end procedure

Theorem C.1. Given a 3rd order tensor A € R™ ™" for any k > 1,e € (0,1), there exists
an algorithm which takes O(nnz(A)) 4+ npoly(k,1/€) + 200/ time and outputs three matrices

31

UeR™k vV eR™E W € R™F such that

k
Y UieV,aW,—A
=1

<(1+9 min [4c— Al
F

holds with probability 9/10.
Proof. Given any tensor A € R™*"2X"3 we define three matrices A; € R™M*"2m3 A, € R"2*X"3M A3 €
R™*mn2 guch that, for any i € [n1],j € [na],l € [n3],
Aiji = (A1)i -1y ms+t = (A2)j,0-1)m+i = (A3)1,(i—1)no+5-
We define OPT as

OPT = mln HA Al%.
ran
Suppose the optimal A, = U* @ V* @ W*. We fix V* € R and W* € R™*. We use
Vi, Vo', -+, Vi' to denote the columns of V* and Wi, W5, --- W} to denote the columns of W*.
We consider the following optimization problem,

& 2
Ul,..n}zijfew ZUZ- @ VE@W' - A|
i=1 F
which is equivalent to
* * 2
Vi@ Wy
min U Uy -+ Uy V2®W2 —A
Uy, Ug€R™
Vi@ Wi .
vee(Vi" @ WY)
We use matrix Z; to denote VeC(VQ. ® ws) € R¥*"* and matrix U to denote [Ul Uy --- Uk].

vec(Vy @ W)
Then we can obtain the following equivalent objective function,

min HUZI - AIH%‘
UERnxk

Notice that mingcgnxk |[UZ1 — A1||% = OPT, since Ay = U*Z;.
Let S| € R51%7* be a sketching matrix defined in Definition B.18, where s; = O(k/¢). We
obtain the following optimization problem,

min ”Ulel AlSlﬂ%
UeRnmx

Let U € R™* denote the optimal solution to the above optimization problem. Then U =
AlSl(ZlSl)T. By Lemma B.22 and Theorem B.23, we have

02— Arlfh < (14¢) min |UZ2 = Ailf} = (1+) OPT,

32

which implies

k
Y U;o Vi @W; — Al <(1+¢)OPT.
i=1 F
To write down 171, e ,ﬁk, we use the given matrix Ay, and we create sy X k variables for matrix

(Z15)1.
As our second step, we fix U € R™* and W* € R** and we convert tensor A into matrix As.
vec(Uy ® W)

73 *
Let matrix Z5 denote vee(Uz ® W) . We consider the following objective function,

vee(Up @ W)

. . 2
yoin [V Z2 — Asf,

for which the optimal cost is at most (1 + €) OPT.
Let S, € R%2%"* he a sketching matrix defined in Definition B.18, where sy = O(k/€). We
sketch S5 on the right of the objective function to obtain the new objective function,

min ||VZ252 — AQSQHF
VeRnX

Let V € R™F denote the optimal solution of the above problem. Then V= AQSQ(ZQSQ)T. By
Lemma B.22 and Theorem B.23, we have,

IV Z5 — As||% < (146 min [[VZ; — Ao < (1+¢)? OPT,
VeR

which implies

Q>
<>

F— Al <(1+€¢?0PT.

k
i=1 F
To write down \71, e ,‘7;6, we need to use the given matrix As € R"QX”, and we need to create
s9 x k variables for matrix (Z55)%.
As our third step, we fix the matrices U € R™* and V € R™*¥. We convert tensor A € R?Xn*n
Vec(U1 ® V1)
vec(UQ ® Vg)

into matrix A3 € R" X", Let matrix Z3 denote . We consider the following objective

vee(Uy @ Vi)

function,

min [|WZ3 — A][3,
WeRnxk

which has optimal cost at most (1 + €)2 OPT.
Let S5 € R%3%7* be a sketching matrix defined in Definition B.18, where s3 = O(k/¢). We
sketch S3 on the right of the objective function to obtain a new objective function,

min ||WZ3S3 — A3S5|%.
WeRnX

33

Let W € R denote the optimal solution of the above problem. Then W = A3S83(Z353)T. By
Lemma B.22 and Theorem B.23, we have,

W Zs — A% < (1+€) min [[WZ5 — As][% < (1+€)* OPT.
WeR™*

Thus, we have

k 2

Z(Allel)i &® (AQSQXQ)i ® (AgSng)i — A
i=1

< (14¢)>*OPT.
F

min
X1,X2,X3

Let Vi = A151, Vo = A5, V3 = A3S3, we then apply Lemma C.3, and we obtain 171, 172, ‘73, C. We
then apply Theorem C.45. Correctness follows by rescaling € by a constant factor.

Running time. Due to Definition B.18, the running time of line 4 is O(nnz(A)) + npoly(k).
The running time of line 5 is shown by Lemma C.3, and the running time of line 7 is shown by
Theorem C.45. O

Theorem C.2. Suppose we are given a 3rd order n X n X n tensor A such that each entry can be
written using n® bits, where § > 0 is a given, value which can be arbitrarily small (e.g., we could have
n? being O(logn)). Define OPT = inf ank AN Ax — Al|%. For any k > 1, and for any 0 < € < 1,
define n% = O(n%20*/9)) (1) If OPT > 0, and there exists a rank-k A, = U* @ V* @ W* tensor,
with size n X n x n, such that ||Ay — A|% = OPT, and max(|U*||g, |V*||r, [W*||r) < 20("6/), then
there exists an algorithm that takes (nnz(A)+n poly(k, 1/€)+2°0%*/9\n? time in the unit cost RAM
model with word size O(logn) bits’ and outputs three n x k matrices U, V,W such that

U@V @W — All% < (14 ¢€) OPT (5)

holds with probability 9/10, and each entry of each of U, VW fits in nd bits.

(IT) If OPT > 0, and Ay, does not exist, and there exist three n x k matrices U', V', W' for which
max(|U ||, |Vl |W/|[7) < 200°) and ||U' @ V' @ W’ — A|% < (1+ ¢/2) OPT, then we can find
U, V,W such that (5) holds.

(IT1) If OPT = 0 and Ay, does exist, and there exists a solution U*,V* W* such that each entry
can be written by n® bits, then we can obtain (5).

(IV) If OPT = 0, and there exist three nxk matrices U, V, W such that max(||U||r, |V e, |W | r)
< 20(”6l) and

’

[0V &W = Al < (146 OPT+27%0") = 2-000%), (6)

then we can output U, V, W such that (6) holds.
Further if Ay exists, we can output a number Z for which OPT < Z < (1+4¢€) OPT. For all the
cases above, the algorithm runs in the same time as (I) and succeeds with probability at least 9/10.

Proof. This follows by the discussion in Section 1, Theorem C.1 and Theorem C.45 in Section C.9.
Part (I) Suppose 6 > 0 and Ay = U*@V*@ W™ exists and each of ||[U*|| g, [|V*||F, and ||W*||F is

bounded by 20(n") We assume the computation model is the unit cost RAM model with words of
size O(logn) bits, and allow each number of the input tensor A to be written using n® bits. For the

9The entries of A are assumed to fit in n’ words.

34

case when OPT is nonzero, using the proof of Theorem C.1 and Theorems C.45, B.11, there exists a

lower bound on the cost OPT, which is at least 2*0("6)20(162/6). We can round each entry of matrices
U*,V*,W* to be an integer expressed using O(n®) bits to obtain U’, V/,W’. Using the triangle
inequality and our lower bound on OPT, it follows that U’, V', W' provide a (1 + €)-approximation.

Thus, applying Theorem C.1 by fixing U’, V/, W’ and using Theorem C.45 at the end, we can
output three matrices U, V, W, where each entry can be written using nd bits, so that we satisfy
U@V @W — A|% < (1+¢) OPT.

For the running time, since each entry of the input is bounded by n® bits, due to Theorem C.1,
we need (nnz(A) + npoly(k/e)) - nd time to reduce the size of the problem to poly(k/¢) size (with
each number represented using O(n?) bits). According to Theorem C.45, the running time of using
a polynomial system verifier to get the solution is 20(k2/0)p0(") = 90(+*/)0() time. Thus the
total running time is (nnz(A) + npoly(k/e))nd + 20(-*/€) . nO),

Part (II) is similar to Part (I). Part (III) is trivial to prove since there exists a solution which
can be written down in the bit model, so we obtain a (1 + €)-approximation. Part (IV) is also very
similar to Part (II).

O
C.2 Input sparsity reduction
Algorithm 3 Reducing the Size of the Objective Function from poly(n) to poly(k)

1: procedure FINPUTSPARSITYREDUCTION(A, Vi, Vi, V3, n, by, b, b3, k, €) > Lemma C.3
2: €1 < cg < c3 < poly(k, 1/e).

3: Choose sparse embedding matrices T7 € R1*™, Ty € R2*"™ T3 € R®*™ > Definition B.16
1 Vi« T,V; e Rxbi i e [3).

5 C + A(Tl,TQ,Tg) € Rexeaxes,

6 return 171, 172, 173 and C.

7: end procedure

Lemma C.3. Let poly(k,1/€) > bibobs > k. Given a tensor A € R™ "™ ™ and three matrices
Vi € R0V, € R™X02) and Vs € R™¥Y3 | there exists an algorithm that takes O(nnz(A)+nnz(Vy) +
nnz(Vz) + nnz(V3)) = O(nnz(A) + npoly(k/e€)) time and outputs a tensor C € R*2X%S qnd three
matrices Vi € Re1xbr Vo € R2%b2 gnd Vs € R with ¢) = ¢y = c3 = poly(k,1/€), such that with
probability at least 0.99, for all a > 0, X1, X| € RM*F X, X1 € R2*F X3, X, € RP*F satisfy that,

2 2

k k
Y (ixX])s @ (1oX5)i ® (VaX4); — C|| < a Y (ViXy); @ (VaXa)i ® (VaXs)i — C|
1=1 F =1 F
then,
k 2 k 2
D X1 ® (VaXs)i ® (VaXg)i — A < (1+ea|d (ViXy); @ (VaXa); @ (VaXs); — A
i=1 F i=1 F

Proof. Let X; € R®¥k Xy € Rb2¥k X3 € RB>¥F First, we define Z; = ((1aX2)" © (13X3)7) €
RF*"* (Note that, for each i € [k], the i-th row of matrix Z; is vec((VaX2); @ (V3X3);).) Then, by

35

flattening we have

k

ST (X1)i @ (VaXa)i @ (V3X3); — A
=1

= |ViX1 - Z1 — Au| %
F

We choose a sparse embedding matrix (Definition B.16) 71 € R“*" with ¢; = poly(k, 1/¢) rows.
Since V; has b; < poly(k/e) columns, according to Lemma B.19 with probability 0.999, for all
X; € Rhixk, 7 ¢ RF*7*)

(1 — e)HV1X12 — Al”%v S ||T1V1X12 — T1A1||%v é (1 + E)HV1X1Z — Al”%

Therefore, we have

k 2

S (ViX1)i @ (VaXa); ® (VaXs); — A
=1

|ITWViX: - Z) — TV AL ||% = (1 +€)

F

Second, we unflatten matrix T3 4; € R xn? ¢4 obtain a tensor A’ € REX™*" Then we flatten A’
along the second direction to obtain Ay € R™"*1" We define Z; = (T1V1X1)T ® (Vng)—r € Rkxan,
Then, by flattening,

1VaXy - Zy — Ao|F = [|TAVAX1 - Z1 — T1 ALl
k

Z(Vle)i ® (VoX2);i ® (V3X3); — A
i—1

2
=(1x¢)

F

We choose a sparse embedding matrix (Definition B.16) Th € R®*" with co = poly(k, 1/¢) rows.
Then according to Lemma B.19 with probability 0.999, for all Xy € Rk 7 ¢ Rkxein

(1 — E)HVQXQZ — AQ”%“ E ||T2V2XQZ — T2A2||%‘ S (1 + E)HVQXQZ — AQH%‘
Therefore, we have

| ToVoXs - Zs — Todo||f = (1 £ €)[[VaXs - Zo — Asl|F
k

S (ViX1)i @ (VaXa); ® (VaX3); — A
=1

= (1+e¢)?

F

Third, we unflatten matrix ThbAs € R2*4" to obtain a tensor A”(= A(T1,Ts, I)) € Rerxe2xn,
Then we flatten tensor A” along the last direction (the third direction) to obtain matrix Az €
R™*¢1¢2 We define Z3 = (T1V1X1) " ® (TVoX3) " € RF*€1¢2, Then, by flattening, we have

1VsX3 - Zs — As||F = || TV Xa - Za — To Asl|7
k

Z(Vle)z & (VQXQ)i & (Vng)l - A
=1

= (14e¢)?

F

We choose a sparse embedding matrix (Definition B.16) T3 € R%*™ with c3 = poly(k, 1/¢) rows.
Then according to Lemma B.19 with probability 0.999, for all X3 € Rb** 7 ¢ RFxcicz,

(1—e)|VsX3Z — As||% < | T3V X3Z — T3As||[7 < (1+€)||VaX3Z — As| 3.

36

Therefore, we have

2

k
HT3V3X3 - J3 — T3A3||% = (1 + 6)3 Z(Vle)Z & (V2X2)7j (= (V3X3)Z — A
i=1 F
Note that
k 2
IT5VsXs - Zs — T3As||} = || D (Vi X1); @ (TaVaXa)i ® (T3VsXs) — A(T1, T, T3)||
i=1 F
and thus, we have VX; € RU¥F X, € Ri2¥F X3 € Rbs¥F
k 2
D (TiViXy)s @ (TeVaXa)i @ (TsVaXs); — A(Ty, Ty, Th)
i=1 F
% 2
=(1£e?*|) (ViX1); ® (VaXa); ® (V3X3); — A
i=1 F
Let ‘7; denote T;V;, for each i € [3]. Let C' € R1*%2*% denote A(T1,T5,T3). For a > 1, if
k 2 k 2
SThX])s @ (VaXg)i ® (V3X5); — C|| < o> (hX1)s @ (VaXa)i ® (V3X3) — C||
=1 F =1 F
then
& 2
Y (MiX))i© (1oXh); @ (V3X3); = C
i=1 F
1 i ’
v/ i v/ 7 v/
Sa-oe ;(Vle)@ (VaX3); @ (VaX3); — C)
& 2
< oS Tix)© (TXa) @ (FaXa)i - ©
> (1 _ 6)3 : 1A1)q 242) 34A3)¢
=1 F
1+ 2
+ €
< 1= 3" D> (ViX1); @ (VaXa); ® (V3X3); — C
i=1 F

By rescaling € by a constant, we complete the proof of correctness.

Running time. According to Section B.6, for each ¢ € [3], T;V; can be computed in O(nnz(V;))
time, and A(71,T%,T3) can be computed in O(nnz(A)) time.
By the analysis above, the proof is complete. O

C.3 Tensor multiple regression

Theorem C.4. Given matrices A € RdX”Q, UV eR"™F let B e REX7? denote UT @ V1. There
exists an algorithm that takes O(nnz(A) + nnz(U) + nnz(V) + dpoly(k, 1/¢€)) time and outputs a
matriz W' € Rk such that,

IW'B= A} < (149 min [WB = Al

37

Algorithm 4 Frobenius Norm Tensor Multiple Regression

1: procedure FTENSORMULTIPLEREGRESSION(A, U, V., d, n, k) > Theorem C.4
2 s < O(k* + k/e).

3 Choose S € R"*$ to be a TENSORSKETCH. > Definition B.34
4: Compute A - S.

5: Compute B - S. >B=UToVT
6: W < (AS)(BS)T

7 return W.

8: end procedure

Proof. We choose a TENSORSKETCH (Definition B.34) S € R %5 to reduce the problem to a smaller
problem,

min ||[WBS — AS|%.
WeRdxk

Let W’ denote the optimal solution to the above problem. Following a similar proof to that in
Section C.7.3, if S'is a (14-1/2)-subspace embedding and satisfies M—approximate matrix product,
then W' provides a (1 + €)-approximation to the original problem. By Theorem B.35, we have
s = O(k* + k/e).

Running time. According to Definition B.34, BS can be computed in O(nnz(U) + nnz(V)) +
poly(k/e€) time. Notice that each row of S has exactly 1 nonzero entry, thus AS can be computed
in O(nnz(A)) time. Since BS € R¥*¢ and AS € R¥* miny, cgaxs ||WBS — AS||% can be solved in
dpoly(sk) = dpoly(k/e) time. O

C.4 Bicriteria algorithms
C.4.1 Solving a small regression problem

Lemma C.5. Given tensor A € R™ ™ " and three matrices U € R™51, V € R"*%2 gnd W €
R™*53 - there exists an algorithm that takes O(nnz(A) + npoly(s1, 2, s3,1/€)) time and outputs
o/ € RS1%52%83 gych that

2 2
S1 S2 83 S1 S 83

DD aj UieVieW, - A < (1+e —min DI D i UivV;oW, - A

i=1 j=1[=1 F i=1 j=1 [=1 F

holds with probability at least .99.

Proof. We define b € R™ to be the vector where the i+ (j — 1)n+ (I — 1)n2-th entry of b is Aiji1. We
define A € R"°*515255 {0 be the matrix where the (i+ (j — 1)n+ (I —1)n2, i + (' — 1)sa + (I — 1)s2s3)
entry is Uy ; - Vi j - Wy ;. This problem is equivalent to a linear regression problem,

: e _~2
cin Az = b3,

where A € R”sXSlS?SB,g € R™. Thus, it can be solved fairly quickly using recent work [CW13,
MM13, NN13|. However, the running time of this naively is Q(n?), since we have to write down
each entry of A. In the next few paragraphs, we show how to improve the running time to nnz(A) +

n pOIY(Sla 52, 83)'

38

Since o € R81%52%83 oy can be always written as o = X1 ® Xo ® X3, where X; € R$1%515283 X, €
R$2%515283 X4 ¢ R93X515253 e have

2
S1 S22 83
. . 2
min E g g a1 Ui @V, @ W — Al = min [(UX1) ® (VX)) ® (WX3) — Allp.
aeRsl XsgXs3 - - X16R51X515253
=1]21 =1 F X26R32X313283
X3ER53%515253

By Lemma C.3, we can reduce the problem size n X n X n to a smaller problem that has size
t1 X tg X tg,

2
515253
X H)l(inX Z (TlUXl)z & (TQVXQ)z (29 (TgWXg)z — A(Tl, TQ, Tg)
R CIRE N |t P

where T} € R1L*" T, € R2X" Ty € RBX") =ty = t3 = poly(sys2s3/e). Notice that

2
518983
min > (MUXq)i ® (ToV Xa)s @ (TsW X3); — A(Th, Tp, Ts)
1,A2,A3 i=1 F
2
s1 So 83
= min YYD aig- (MU) @ (TV); @ (TsW), — A(Ty, To, Ts)
aeRT2E T o 1= »
Let
2

52

S1 53
o) = argmin ||y N B ai (TU)i @ (BV); @ (W) — AT, T, Ts)|
Q€RIX2X3 iy =1 1=1 r

then we have

2 2
S1 S22 83 52

ZZZa;jJ'Ui®Vj®VVl—A <(1+4+€ min izli?a%]l Ui VoW, — A

. . _ a6R91><92><93
i=1 j=1 [=1 F i=1 j=1 P

Again, according to Lemma C.3, the total running time is then O(nnz(A) + npoly(si, 2, 3, 1/€)).
0l

Lemma C.6. Given tensor A € R™ "™ " and two matrices U € R"** V € R™5 with rank(U) =
ri,rank(V) = ro, let Ty € RWX" Ty € R2*™ he two sparse embedding matrices (Definition B.16)
with t; = poly(r1/€),ta = poly(ra/e€). Then with probability at least 0.99, VX € R™*5,

1=l VeX A< |TMUTY X - AT, T,)| <(1+o|lUsV e X — Al

Proof. Let X € R™5, We define Z; = (VT © XT) € R**"*. We choose a sparse embedding matrix
(Definition B.16) Ty € R""*™ with ¢; = poly(r;/€) rows. According to Lemma B.19 with probability
0.999, for all Z € RSX"*

(1=e|UZ - A} < WU Z — Ti A7 < (14 €)|TWUZ — A7

39

It means that
(1—oUZ1 — A} < |TWUZy — Ti A1 ||} < (1 +)| TWU Z1 — Aq)3.

Second, we unflatten matrix T A; € R1X" to obtain a tensor A’ € RAX™Xn Then we flatten A’
along the second direction to obtain A € R"*%1" We define Zo = ((T3U)T ® X T) € R**!1", Then,
by flattening,

IV Zy = A7 = |10 - Z1 - TiAW|[E = 1+) |U@ V @ X — A|lE.

We choose a sparse embedding matrix (Definition B.16) T, € R™2*" with t5 = poly(ra/€) rows.
Then according to Lemma B.19 with probability 0.999, for all Z € R$¥t1",

1=ollVZ = A} < ITVZ — T Ay} < (14 6)|VZ — Ayf3.
Thus,
1TV - Zs = T Ap|b = 1+’ |UV ® X — A}
After rescaling € by a constant, with probability at least 0.99, VX € R™*%,

1-e|lUVeX -AR<|TWUTY @X — AT, T, |2 <1+e|lUV X — Al

O
C.4.2 Algorithm I
We start with a slightly unoptimized bicriteria low rank approximation algorithm.
Algorithm 5 Frobenius Norm Bicriteria Low Rank Approximation Algorithm, rank-O(k3/e3)
1: procedure FTENSORLOWRANKBICRITERIACUBICRANK(A, n, k) > Theorem C.7
2 s1 < 82 < s3 < O(k/e).
3 t1 ¢ 1o < t3 < poly(k:/e).
4: Choose S; € R™**5i to be a Sketching matrix, Vi € [3]. > Definition B.18
5: Choose T; € R%*" to be a Sketching matrix, Vi € [3]. > Definition B.16
6 Compute U + 17 - (Al . Sl), VT (AQ . SQ), W« T3 - (Ag . 83)
7 Compute C < A(T1,T,T3).
8 X < FTENSORREGRESSION(C, U, V, W, t1, s1, ta, 2, t3, 53). > Linear regression

9: return X(Alsl, AQSQ, A353).
10: end procedure

Theorem C.7. Given a 3rd order tensor A € RV for any k > 1,e € (0,1), let r = O(k3/€3).
There exists an algorithm that takes O(nnz(A) + npoly(k,1/€)) time and outputs three matrices
UeR™ VeR™ W eR"™ such that

2
<(1+ min Ay, — Al
<(1+¢) P kH k 7

ran
F

iUi®W®Wi_A

i=1

holds with probability 9/10.

40

Proof. At the end of Theorem C.1, we need to run a polynomial system verifier. This is why we
obtain exponential in k£ running time. Instead of running the polynomial system verifier, we can use
Lemma C.5. This reduces the running time to be polynomial in all parameters: n, k, 1/e. However,
the output tensor has rank (k/e)® (Here we mean that we do not obtain a better decomposition than
(k/€)® components). According to Section B.6, for each i, A;S; can be computed in O(nnz(A)) +
npoly(k/e) time. Then T;(A;S;) can be computed in n poly(k,1/¢) time and A(T1,T5,T3) also can
be computed in O(nnz(A)) time. The running time for the regression is poly(k/e). O

Now we present an optimized bicriteria algorithm.

Algorithm 6 Frobenius Norm Low Rank Approximation Algorithm, rank-O(k?/e?)

1: procedure FTENSORLOWRANKBICRITERIAQUADRATICRANK(A, n, k) > Theorem C.8
2 81<—SQ<—O(1€/6).

3 Choose S; € R™ %5 to be a sketching matrix, Vi € [3)]. > Definition B.18
4: Compute Aq - 51, Ag - 5.

5: Form ﬁ by using A; 57 according to Equation (9).

6 Form V by using 425, according to Equation (10)

7

8

9

W <—FTENSORMULTIPLEREGRESSION(A U V n,m, $152). > Algorithm 4

: return U7 V, W,

: end procedure
10: procedure FTENSORLOWRANKBICRITERIAQUADRATICRANK(A, n, k) > Theorem C.8
11: s1 4 s2 < O(k/e).
12: t1 to < poly(k/e).
13: Choose S; € R™ *% to be a Sketching matrix, Vi € [2]. > Definition B.18
14: Choose T; € RE*™ to be a Sketching matrix, Vi € [2]. > Definition B.16

15: Form U by using A;S; according to Equation (9).
16: Form V by using A5 according to Equation (10).
17: Compute C + A(Tl,TQ,I) > C € Rirxtaxn
18: Compute B (MO o (TuV)T.
19: W < argmin |XB — Cs]%.
XeRmo1%2
20: return U, V,W.
21: end procedure

Theorem C.8. Given a 3rd order tensor A € R™™ " for any k > 1,¢ € (0,1), let r = O(k?/€?).
There ezists an algorithm that takes O(nnz(A) + npoly(k,1/€)) time and outputs three matrices
UeR™ VeR"™ W eR"™ such that

2

<(1+¢) mln HAk—AHF

iUZ@‘fZ@WZ_AF rank —k

i=1

holds with probability 9/10.

Note that there are two different ways to implement algorithm FTENSORLOWRANKBICRITE-
RIAQUADRATICRANK. We present the proofs for both of them here.
Approach 1.

41

Proof. Let OPT = l1(111}1€1A |Ax — A||%. According to Theorem C.1, we know that there exists a
rank — k
sketching matrix S5 € R %53 where s3 = O(k/e), such that

k
D (A181X1); @ (A28, X2); ® (A3S93X3), — A
=1

min

< (14¢)OPT
X1€Rs1%k XpeRo2%k X3eRo3 %k <(+9

F

Now we fix an [and we have:

(A151X1); ® (A252X2); @ (A393X3);

52

=<Zl:(/4151)i(X1)u>® D (A28);(X2)j | © (A395X3)

i=1 j=1
81 S22
=3) (A181)i ® (A25%); ® (A3S3X3)i(X1)ia(X2)j0
i=1 j=1
Thus, we have
2
S1 S2 k
min DD (A181)i ® (4259); ® (Z(Agsgxg)l(xl)i,l(xg)jo — Al <(146¢O0PT. (7)
1,A2,A3 - -
i=1 j=1 =1 F

We use matrices A1.57 € R™"*51 and A9S55 € R™*%2 to construct a matrix B € Rs152X1% i the
following way: each row of B is the vector corresponding to the matrix generated by the ® product
between one column vector in 4157 and the other column vector in AsSs, i.e.,

BHU=DS — vec((A181); ® (A252)5), Vi € [s1], € [sa], (8)

where (A;571); denotes the i-th column of A;S; and (A2S2); denote the j-th column of A3Ss.
We create matrix U € R"*%152 by copying matrix A;S7 so times, i.e.,

U=[A8 A4S - A8 (9)

We create matrix 1V € RnXs182 by copying the i-th column of A5S5 a total of s; times, into columns
(i —1)s1,--- ,isy of V, for each i € [s2], i.e.,

V=[(A25)1 -+ (A25)1 (A28)2 -+ (A2S2)2 -+ (A2S2)s, -+ (A2S2)s]. (10)
Thus, we can use U and V to represent B,
B=(UToVT) eRrssx,
According to Equation (7), we have:

min ||WB — A3|% < (1+¢) OPT.
WeRnXSlsz

Next, we want to find matrix W € R"™*5152 by solving the following optimization problem,

min ||WB — A3|/%.
WeRnxslsQ

42

Note that B has size sis3 x n?. Naively writing down B already requires €2(n?) time. In or-

der to achieve nearly linear time in n, we cannot write down B. We choose S3 € R™"2%53 to
be a TENSORSKETCH (Definition B.34). In order to solve multiple regression, we need to set
s3 = O((s152)% + (s1s2)/€). Let W denote the optimal solution to |[WBSs — A3Ss]|%. Then
W = (A353)(BS3)!. Since each row of S3 has exactly 1 nonzero entry, A3Ss can be computed in
O(nnz(A)) time. Since B = (U ® V), according to Definition B.34, BS3 can be computed in
npoly(sisa/€) = npoly(k/e) time. By Theorem C.4, we have

IWB — A3 < (1+¢) min [WB— A3}
WeRnXsl s9

Thus, we have
U@V oW — A|% < (1+¢) OPT.

According to Definition B.18, A;57, A255 can be computed in O(nnz(A) + poly(k/€)) time. Te total
running time is thus O(nnz(A) + poly(k/e€)). O

Approach II.
Proof. Let OPT = linilI;A | Ax, — Al|%. Choose sketching matrices (Definition B.18) S; € R”zxsl,
rank —k Ag

Sy € R™*s2 Ga e R 3 and sketching matrices (Definition B.16) Ty € Ri1*" and T, € Rf2*n
with 81 = s9 = s3 = O(k/¢€),t1 = to = poly(k/e). We create matrix U € R™*51%2 hy copying matrix
A5 s9 times, i.e.,

U=[A1S1 ASi - A1),

We create matrix 1V € RPxs152 by copying the i-th column of A5Ss a total of s; times, into columns
(i —1)s1,--- ,isy of V, for each i € [s2], i.e.,

V= [(A252)1 -++ (A252)1 (A2S2)2 -+ (A2S2)2 -+ (A2S2)sy -+ (A252)s,]-
As we proved in Approach I, we have

min [[U®V®X - A|% < (1+¢ OPT.
XGRHX51S2

Let B = (T0)T @ (TaV)T) € Rs1s2xtit2 _and flatten A(T7, Ty, I) along the third direction to obtain
Cs € R™¥tit2 et

W = argmin ITVU @ ToV @ X — A(Ty, Ty, I)||% = argmin || XB — Cs||3.
XeRnXs152 X cRnX5152

Let

W* = argmin |[U®V @ X — Al[3.
XGR"IXSIS2

43

According to Lemma C.6,
1TV oW - A%
1 ~ o~

1 ~ ~
< IMU TV oW - AT To. D}
1—|—e

||U® VoW —Al%
ﬂ+)

— €

< OPT.

According to Definition B.18, A;S1, A2S2 can be computed in O(nnz(A) + poly(k/e)) time.
The total running time is thus O(nnz(A) + poly(k/e)). Since T1,T5 are sparse embedding matrices,
T\U, T»V can be computed in O(nnz(A)+poly(k/e)) time. The total running time is in O(nnz(A)+
poly(k/e)). O

Theorem C.9. Given a 3rd order tensor A € R™ ™" for any k > 1 and any 0 < € < 1, if Ay
exists then there is a randomized algorithm running in nnz(A) + n - poly(k/e€) time which outputs a
rank-O(k? /€%) tensor B for which |A — B||% < (1 + ¢€)||A — Agl|%. If Ay does not exist, then the
algorithm outputs a rank-O(k?/€?) tensor B for which ||A — B||% < (1 + ¢€) OPT 4+, where 7 is an
arbitrarily small positive function of n. In both cases, the algorithm succeeds with probability at least

9/10.
Proof. If Ay exists, then the proof directly follows the proof of Theorem C.1 and Theorem C.8. If
Ay, does not exist, then for any v > 0, there exist U* € R™* V* ¢ R**¥ W* ¢ R*** such that

1
I0* oV oW —Alp < nf | [lA— AE+ .

Then we just regard U* ® V* @ W* as the “best” rank k approximation to A, and follow the same
argument as in the proof of Theorem C.1 and the proof of Theorem C.8. We can finally output a
tensor B € R™ ™" with rank-O(k?/e?) such that

IB-Alp < 1+oU @V oW - A}
1
< (1+6)< 1nf HA Alf+ = 107 >
< i — A
< (1+e inf HA Al +7
where the first inequality follows by the proof of Theorem C.1 and the proof of theorem C.8. The

second inequality follows by our choice of U*, V*, W*. The third inequality follows since 1 + € < 2
and v > 0. 0l

C.4.3 poly(k)-approximation to multiple regression

Lemma C.10 ((1.4) and (1.9) in [RV09]). Let s > k. Let U € R™* denote a matriz that has
orthonormal columns, and S € R**™ denote an i.i.d. N(0,1/s) Gaussian matriz. Then SU is also
an s x k i.i.d. Gaussian matriz with each entry draw from N(0,1/s), and furthermore, we have with
arbitrarily large constant probability,

Omax(SU) = O(1) and omin(SU) = Q(1/y/s).

44

Proof. Note that /s — vk — 1 = ﬁ = Q(1//5). O

Lemma C.11. Given matrices A € R™* B e R™*4 let S € R**™ denote a standard Gaussian

N(0,1) matriz with s = k. Let X* = min ||AX — B||p. Let X' = min d||SAX — SB||p. Then,
XeRkX

XEeRkxd
we have that

|AX' = Bllr < ORI AX" — B,
holds with probability at least 0.99.

Proof. Let X* € R¥*? denote the optimal solution such that

”AX* — BHF = min HAX - BHF
XecRkXxd

Consider a standard Gaussian matrix S € RF*" scaled by 1/v/k with exactly k rows. Then for
any X € R¥*4 by the triangle inequality, we have

ISAX — SB|p < ||SAX — SAX™||p + ||SAX* — SB||F,
and
ISAX — SB|p > ||SAX — SAX™||p — ||SAX* — SB||F.

We first show how to bound ||SAX — SAX*||r, and then show how to bound ||SAX™* — SB||F.
Note that Lemma C.10 implies the following result,
Claim C.12. For any X € R with probability 0.999, we have
1
VEk

Proof. First, we can write A = UR € R™* where U € R"** has orthonormal columns and R €
RF¥E Tt gives,

[AX — AX™[|F S ISAX — SAX"|[r S [AX — AXT|[p.

|SAX — SAX* || = | SU(RX — RX")|F-

Second, applying Lemma C.10 to SU € R***¥ completes the proof. 0

Using Markov’s inequality, for any fixed matrix AX* — B, choosing a Gaussian matrix S, we
have that

ISAX* — SB|} = O(||AX* - B||%)
holds with probability at least 0.999. This is equivalent to
ISAX™ — SB|r = O(|AX™ — Bl|F), (11)

holding with probability at least 0.999.

45

Let X’ = argmin|[SAX — SB||r. Putting it all together, we have

X ERkxd
IAX" — Bl|r
< AX' = AX||p + |AX™ — Bl F by triangle inequality
< O(Wk)|SAX' — SAX*||p + |AX* — B||r by Claim C.12

< OWVE)||SAX' — SB|r + OWWk)||SAX* — SB|r + ||AX* — Bl by triangle inequality
< O(WVE)||SAX* — SB||r + O(VE)|SAX* — SB||r + |AX* — B||r by definition of X’
< OWE)||AX* — B|r. by Equation (11)

C.4.4 Algorithm II

Theorem C.13. Given a 3rd order tensor A € R™ "™ " for any k > 1, let r = k?. There exists
an algorithm which takes O(nnz(A)k) + npoly(k) time and outputs three matrices U, V, W &€ R"*"
such that,

ZU1®V2®WZ‘—A

=1

<poly(k) min [A"— Al
F

holds with probability 9/10.
Proof. Let OPT = {{nukl) |A" — Al p, we fix V* € R™F TW* € R"*¥ to be the optimal solution of
rank — !

the original problem. We use Z; = (V*T @ W*T) € R¥*"” to denote the matrix where the i-th row
is the vectorization of V;* @ W*. Let A; € R™*"* denote the matrix obtained by flattening tensor
A € R™™ ™ along the first direction. Then, we have

Choosing an N(0,1/k) Gaussian sketching matrix S; € R" %51 with s; = k, we can obtain the
smaller problem,

min ”Ulel - A151HF
UcRnxk

Define U = A151(Z151)t. Define @ = O(vVk). By Lemma C.11, we have
||[/jZI - AIHF S aOPT.

Second, we fix U and W*. Define Zs, Ay similarly as above. Choosing an N (0,1/k) Gaussian
sketching matrix So € R X2 with s9 = k, we can obtain another smaller problem,

min ||VZQSQ - AQSQ”F.
VeRnxk

Define V = A985(Z555)". By Lemma C.11 again, we have

IV Zy — Ag||p < a®> OPT.

46

Thus, we now have

i A181 X1 @ 4355 Xo @ W — Allp < o2 OPT
XS{IQI}WH 151X1 ® A255X5 ® lr <a

We use a similar idea as in the proof of Theorem C.8. We create matrix U € Rvxs1s2 by copying
matrix A1S7 so times, i.e.,

U=[A4S ASi - A8,

We create matrix V € R"*#1%2 by copying the i-th column of A5, a total of s; times, into columns
(i —1)s1,--- ,isy of V, for each i € [s2], i.e.,

V=[(A282)1 -+ (A252)1 (A2S2)2 -+ (A252)2 -+ (A2S2)s, c-- (A2S52)s,] -
We have

min UV ®X — Al|lp < a?OPT.
XeRnXSlS2

Choose T; € R!*™ to be a sparse embedding matrix (Definition B.16) with t; = poly(k/e), for
each i € [2]. By applying Lemma C.6, we have, if W’ satisfies,

U @ TV @W' — ATy, To, D|lp = min |10 QT ®X — ATy, Te,)| »

XeRnXslsQ

then,

UV QW — Alp < (1+¢) min U@V ®X—A|r<(1+ea0OPT.
€n><5152

Thus, we only need to solve

min |10 @ oV @ X — ATy, Ty, 1) || .
XeRnXsls2

which is similar to the proof of Theorem C.8. Therefore, we complete the proof of correctness. For
the running time, 4157, A2S2 can be computed in O(nnz(A)k) time, 71U, T5V can be computed in
npoly(k) time. The final regression problem can be computed in n poly(k) running time. O

C.5 Generalized matrix row subset selection

Note that in this section, the notation H% i 18 given in Definition B.5.

Theorem C.14. Given matrices A € R™™ and C € R™* there exists an algorithm which takes
O(nnz(A)logn)+(m+n) poly(k, 1/€) time and outputs a diagonal matriz D € R™*"™ with d = O(k/€)
nonzeros (or equivalently a matriz R that contains d = O(k/e) rescaled rows of A) and a matrix

U € RF*? gych that

|CUDA — A|%2 < (1+¢) min [|[CX — A|%
XGRka

holds with probability .99.

47

Algorithm 7 Generalized Matrix Row Subset Selection: Constructing R with r = O(k+k/€) Rows
and a rank-k U € RF*"

1: procedure GENERALIZEDMATRIXROWSUBSETSELECTION(A, C,n,m,k,e) > Theorem C.14

2: Y, ®, A + APPROXSUBSPACESVD(A,C, k). > Claim C.16 and Lemma 3.12 in [BW14]

3: B+ YA.

4 Zy, D+ QR(B). > Zy € Rk 71 7o = Iy, D € RF¥F

5: he + 8k 1n(20k).

6: Oy, Dy <~ RANDSAMPLING(Z2, ha, 1) > Definition 3.6 in [BW14]

7. My Zy QDo € RFXP2,

8 Uiy, Sm, Vyy, < SVD(My). > rank(Mz) = k and Vyy, € Rh2xk

9: r1 < 4k.

10: Sy < BSSSAMPLINGSPARSE(Viy,, (AT — AT 252)02D2) " 71,0.5) > Lemma 4.3 in
[BW14]

11: Ri + (ATQQDQSQ)T € R™*" containing rescaled rows from A.

12: T < 4820k3/6.

13: Ry <+ ADAPTIVEROWSSPARSE(A, Z3, Ry, 72) > Lemma 4.5 in [BW14]

14: R+ [R{,R]]". > R € RM+72)Xn containing r = 4k + 4820k /e rescaled rows of A.

15: Choose W € RE*™ to be a randomly chosen sparse subspace embedding with &€ = Q(k?e2).
16: U+ @ TAD Y WCOTAD DY WAR! = o 1AAT(WC) W ART.

17: return R, U.

18: end procedure

Proof. This follows by combining Lemma C.17 and C.18. Let U, R denote the output of procedure
GENERALIZEDMATRIXROWSUBSETSELECTION,

|A—CUR|} < (1+¢€)|A— Z22Z) AR'R||3,
(14 €)(1460€)[|A — TIE . (A) | F

<
< (14 130€)[|A — TIE 4 (A) I

Because R is a subset of rows of A and R has size O(k/¢) x m, there must exist a diagonal matrix
D e R™™ with O(k/e) nonzeros such that R = DA. This completes the proof. O

Corollary C.15 (A slightly different version of Theorem C.14, faster running time, and small input
matrix). Given matrices A € R™™ and C € R™* if min(m,n) = poly(k, 1/¢), then there exists
an algorithm which takes O(nnz(A)) + (m + n)poly(k,1/€) time and outputs a diagonal matriz
D € R™™ with d = O(k/¢) nonzeros (or equivalently a matriz R that contains d = O(k/€) rescaled
rows of A) and a matriz U € R**? such that

|CUDA - A|% < (1+¢) min [CX — A|%
XeRka

holds with probability .99.

Proof. The logn factor comes from the adaptive sampling where we need to choose a Gaussian
matrix with O(log n) rows and compute SA. If A has poly(k,1/€) columns, it is sufficient to choose
S to be a CountSketch matrix with poly(k,1/¢) rows. Then, we do not need a logn factor in the
running time. If S has poly(k, 1/¢) rows, then we no longer need the matrix S. O]

48

Claim C.16. Given matrices A € R™™ and C € R™*¢, let Y € R™*¢ & € R and A € R*F
denote the output of procedure APPROXSUBSPACESVD(A,C,k,¢€). Then with probability .99, we
have,

1A= YAATY TA|f < (14 306)| A — TIE . (A) | .
Proof. This follows by Lemma 3.12 in [BW14]. O

Lemma C.17. The matrices R and Zs in procedure GENERALIZEDMATRIXROWSUBSETSELEC-
TION (Algorithm 7) satisfy with probability at least 0.17 — 2/n,

1A~ 222 AR'R|[% < ||A — TIE 1 (A) |5 + 60€l| A — TIE, 1 (A) [7

Proof. We can show,

30¢
_ T 4112 _ 1 2
|A — Z2Zy Allg + 4820||A AR R1|%
30¢
= _ T A2 _ i 2
HA BB AHF+ 4820||A AR1R1||F

< |A— BBYA|% + 30€||A — Ag|
< |A—YAATYA||% + 30¢]| A — IIE , (A) |1
< (1+4306)|A — TIE (A)|F + 30€]| A — TIE . (A) I3,

where the first step follows by the fact that ZoZy = ZoDD~'ZJ = (ZyD)(ZyD)! = BB, the
second step follows by ||A — AR|R; % < 4820||A — Ag||%, the third step follows by B = YA and
Bt = (YA)" = ATYT = ATY T, and the last step follows by Claim C.16. O

Lemma C.18. The matrices C,U and R in procedure GENERALIZEDMATRIXROWSUBSETSELEC-
TION (Algorithm 7) satisfy that

|A—CUR% < (1+¢)| A~ 2225 AR'R|%
with probability at least .99.

Proof. Let Ug, X g, Vg denote the SVD of R. Then V)%VI%r = R'R.
We define Y* to be the optimal solution of

min |WAVRVs — WCO 'AD Y R|%.
XeRer

We define X* to be Y*R € RF¥*" which is also equivalent to defining X* to be the optimal solution
of

min ||[WAVRVE — WC® AD1X|%.
X eRkxn

Furthermore, it implies X* = (WC® 'AD~1)IW AVRV}.
We also define X* to be the optimal solution of

min ||AVRV) — C®'AD1 X2,
XGRMH RV i3

49

which implies that,
X* = (CO'AD Y AVRVE = Zy AVRVy.

Now, we start to prove an upper bound on ||A — CUR|%,

|A—CUR|% = ||[A— C®'ADY*R||% by definition of U
= ||[A—CO'AD X% by X*=Y*R
= [|[AVRVy — C® 'AD'X* + A — AVRV} ||
= |AVRVg — CO'AD'X"|[7+ | A — AVaVY |17, (12)
o B

where the last step follows by X* =M VRT , A— AVRV}; = A(I — VRV;{) and the Pythagorean
theorem. We show how to upper bound the term «,

a< (14 6)||AVRVy — COTADI X2 by Lemma C.19
= €|AVRVy — COIADIX*||Z + |[AVRVy — COTAD I X%
= €| AVRVyp — COIADTIX*||% + |[AVRVA — C® 'AD Y (Z) ARTR)||%. (13)

By the Pythagorean theorem and the definition of Zs (which means Zo = C® " 'AD™!), we have,

|AVRVA — C®'ADY(Z] AR'R)|% + B
= [|[AVRVE — CO®'AD™(Z5 ARTR)|% + [|A — AVRVq |17
= |A-Co®'AD Y(Z) AR'R)||%
= ||A - ZyZy ARTR|%. (14)

Combining Equations (12), (13) and (14) together, we obtain,
|A—CUR|} < €| AVRVE — C®'AD 'X*||3 + |A — Z2Z) AR'R|%.
We want to show [[AVRVy — COIADIX*||% < ||A — Z»Z) ARTR||%,

|AVRVE — COADTIX™||%

= |AVRV,E — C®'AD ™ Z] AV |3 by X* = Z] AVRVy]
<|A-cotAD1Z] A% by properties of projections
< |A-C®'AD'Z] ARTR|% by properties of projections
= |A— ZyZ, ARTR|%. by Zo = C®'AD™!
This completes the proof. O

Lemma C.19 ([CW13]). Let A € R™? have rank p and B € R"™". Let W € R"™*" be a randomly

chosen sparse subspace embedding with r = Q(p?e~2). Let X* = arg min|WAX — WB|% and let
XeRdxr
X* = argmin||AX — B||%. Then with probability at least .99,
XeRaxr

IAX" = Bl|F: < (1+¢)|AX* - B|%.

50

Algorithm 8 Frobenius Norm Tensor Column, Row and Tube Subset Selection, Polynomial Time

1: procedure FCRTSELECTION(A, n, k, €) > Theorem C.20
2: s1 4 s2 < O(k/e).
3 Choose a Gaussian matrix S with s; columns. > Definition B.18
4: Choose a Gaussian matrix Sy with so columns. > Definition B.18
5 Form matrix Zj by setting the (4, j)-th row to be the vectorization of (A151); ® (A252);.
6 D3 <+ GENERALIZEDMATRIXROWSUBSETSELECTION(AJ , (Z3)T ,n?n,s152,€). > Algorithm
7
Let d3 denote the number of nonzero entries in Ds. > ds = O(s152/€)

: Form matrix Zj by setting the (4, j)-th row to be the vectorization of (A4151); ® (A35%);.
9: Dy +~GENERALIZEDMATRIXROWSUBSETSELECTION(Ag , (Z3) T ,n? n,s1d3,¢).
10: Let dy denote the number of nonzero entries in Ds. > dy = O(s1ds/€)
11: Form matrix Z] by setting the (i, j)-th row to be the vectorization of (A2D3); ® (A3D3);.
12: Dy <+ GENERALIZEDMATRIXROWSUBSETSELECTION(A{ , (Z1)T ,n? n,dads,€).
13: Let d; denote the number of nonzero entries in D . > di = O(dads/¢€)

14: C <+ A1D1, R+ AsDy and T <+ A3Ds.
15: return C, R and T.
16: end procedure

C.6 Column, row, and tube subset selection, (1 + ¢)-approximation

We provide two bicriteria CURT results in this Section. We first present a warm-up result. That
result (Theorem C.20) does not output tensor U and only guarantees that there is a rank-poly(k/¢)
tensor U. Then we show the second result (Theorem C.21), our second result is able to output
tensor U. The U has rank poly(k/e€), but not k.

Theorem C.20. Given a 8rd order tensor A € R"*™ " for any k > 1, there exists an algorithm
which takes O(nnz(A)) + npoly(k,1/e) time and outputs three matrices: C € R™ ¢, a subset of
columns of A, R € R™ " qa subset of rows of A, and T € R™ !, a subset of tubes of A where
c=1r=t=npoly(k,1/¢), and there exists a tensor U € R*">t such that

(- TDT-BD)T-CT)T Al < (149 _min (4~ Al

or equivalently,
2
c r t
DD D Ui GioRj@T— Al <(1+e min |4, — A}
i=1 j=1 |=1 »

holds with probability 9/10.

Proof. We mainly analyze Algorithm 8 and it is easy to extend to Algorithm 9.

We fix V* € R™F and W* € R*™F. We define Z; € R¥*7* where the i-th row of Z 18
the vector V; @ W;. Choose sketching (Gaussian) matrix 51 € R™* %51 (Definition B.18), and let
U= AlSl(ZlSl)T € R™*_ Following a similar argument as in the previous theorem, we have

|UZ, — A1||3 < (1+¢)OPT.

o1

We fix U and W*. We define Zy € RF*"* where the i-th row of Z5 is the vector (7@ ® W;. Choose
sketching (Gaussian) matrix So € R %52 (Definition B.18), and let V = A395(Z25,)1 € Rk,
Following a similar argument as in the previous theorem, we have

IV Zy — As||% < (1+¢)2 OPT.

We fix U and V. Note that U = A151(A2151/)\T and V = A289(Z555)T. We define Z3 € RFxn?
such that the i-th row of Z3 is the vector U; ® V. Let z3 = s1 - so. We define Z5 € R#*7* guch
that, Vi € [s1],Vj € [so], the i 4 (j — 1)s1-th row of Zj is the vector (A1.51); ® (A252);. We consider
the following objective function,

min WX Z5 — Asz]|% < min _||[WZ5 — As||% < (14 €)?OPT.
WGR”Xk,XGRkXZS WeER

Using Theorem C.14, we can find a diagonal matrix Dy € R™**"* with ds = O(z23/€) = O(k?/€)

nonzero entries such that

min [|A3D3XZ} — A3||% < (14 €)> OPT.
XeRd3XZ3

In the following, we abuse notation and let A3D3 € R™*% by deleting zero columns. Let W’ denote
AsDs € Rnxds, Then,

min ||[W/XZ, — As|2 < (1 + ¢)3 OPT.
XcR43x23
We fix U and W'. Let zp = s1 - d3. We define Z) € R2X"* such that, Vi € [s1],V] € [ds], the
i+ (j — 1)si-th row of Z is the vector (A;51); ® (A3D3);.
Using Theorem C.14, we can find a diagonal matrix Dy € R™*" with dy = O(z/€) =
O(s1ds/€) = O(k3/€%) nonzero entries such that

min [[A2Dy X Z — As||% < (14 ¢)* OPT.
XeRd2xz2

Let V' denote AsDs. Then,

min ||[V/XZ5 — As|% < (1+¢€)*OPT.
XeRdzxzz
We fix V' and W’. Let z; = dy - d3. We define 7} € R#1%"* guch that, Vi € [d3],Vj € [ds], the
1+ (] — 1)81—th row of Zi is the vector (AQDQ)Z X (A3D3)j.
Using Theorem C.14, we can find a diagonal matrix Dy € R"*" with d; = O(z1/e) =
O(dads/€) = O(k®/€”) nonzero entries such that

min [|A;D1XZ] — A1||% < (1+¢)° OPT.
XGRdlle

Let U’ denote A1D1. Then,

min [|[U'XZ] — A% < (1 +¢)°OPT.
XGRdl Xzq

Putting U’, V', W’ all together, we complete the proof.

All the above analysis gives the running time O(nnz(A))log n+n? poly(logn, k, 1/¢). To improve
the running time, we need to use Algorithm 9, the similar analysis will go through, the running
time will be improved to O(nnz(A) + npoly(k,1/¢)), but the sample complexity of ¢,r, k will be
slightly worse (poly log factors). O

92

Algorithm 9 Frobenius Norm Tensor Column, Row and Tube Subset Selection, Input Sparsity
Time

1: procedure FCRTSELECTION(A, n, k, ¢€) > Theorem C.20
2: 31<—82%O(k‘/6).

3: €o < 0.001.

4: Choose a Gaussian matrix S with s; columns. > Definition B.18
5: Choose a Gaussian matrix Sy with s columns. > Definition B.18
6: Form matrix B; by setting (7, j)-th column to be (A1S57);.

7: Form matrix By by setting (¢, j)-th column to be (A2S53);. > Z4 =B ® By
8 dz < O(s182log(s152) + (s152/€)).

9: D3 <+ FASTTENSORLEVERAGESCOREGENERALORDER(B] , By , 1,1, 8152, €0, d1). >

Algorithm 15
10: Form matrix B; by setting (¢, j)-th column to be (A1S1);.

11: Form matrix Bs by setting (4, j)-th column to be (A3D3);. > Zh =B ®B;
12: dg 0(81d3 10g(81d3) + (81d3/€)).

13: Do <—FASTTENSORLEVERAGESCOREGENERALORDER(BI, B3T, n,n, s1ds, €, dz).

14: Form matrix By by setting (7, j)-th column to be (A2D2);.

15: Form matrix Bs by setting (4, j)-th column to be (A3D3);. > 7} =By ®B;
16: dy < O(d2d3 10g(d2d3) + (d2d3/6)).

17: D; < FASTTENSORLEVERAGESCOREGENERALORDER(B, , Bf ,n,n,dads, €o, d1).

18: C «+ AlDl, R+ AsDy and T « A3D3.
19: return C', R and T.
20: end procedure

Theorem C.21. Given a 8rd order tensor A € R"*™ " for any k > 1, there exists an algorithm
which takes O(nnz(A) + npoly(k,1/€)) time and outputs three matrices: C € R™ ¢, a subset of
columns of A, R € R"™" q subset of rows of A, and T € R™ ! q subset of tubes of A, together with
a tensor U € RE*™ with rank(U) = k' where ¢ = r = t = poly(k,1/¢) and k' = poly(k,1/€) such
that

IU(C, R, T) = Al < (1 +¢) ain 14k — AllZ,

or equivalently,

2

t
2.0 Uiy CioRj@Ti— Al < (1+¢) min ||Ak—A||F
i=1 j=1 I=1

rank —
F

holds with probability 9/10.

Proof. The proof follows by combining Theorem 1.1 and Theorem 1.3 directly. O

C.7 CURT decomposition, (1 + ¢)-approximation
C.7.1 Properties of leverage score sampling and BSS sampling

Notice that, the BSS algorithm is a deterministic procedure developed in [BSS12] for selecting rows
from a matrix A € R"*? (with ||A]|2 < 1 and ||A||% < k) using a selection matrix S so that

|ATSTSA—ATA|], <e

o3

The algorithm runs in poly(n,d,1/¢) time. Using the ideas from [BW14| and [CEM 15|, we are
able to reduce the number of nonzero entries from O(e~2klog k) to O(e~2k), and also improve the
running time to input sparsity.

Lemma C.22 (Leverage score preserves subspace embedding - Theorem 2.11 in [Wool4]). Given
a rank-k matrizc A € R™ 9, via leverage score sampling, we can obtain a diagonal matriz D with
m nonzero entries such that, letting B = DA, if m = O(e 2klogk), then, with probability at least
0.999, for all z € R?,

(1 =) Az(lz < |[Bz[2 < (1 +)| Az]]2

Lemma C.23. Given arank-k matriz A € R™*?, there exists an algorithm that runs in O(nnz(A)+
npoly(k,1/€)) time and outputs a matriz B containing O(e2klogk) re-weighted rows of A, such
that with probability at least 0.999, for all x € RY,

(1= o) Az]2 < |[Bz|z < (1 + €)[[Az]]2

Proof. We choose a sparse embedding matrix (Definition B.16) II € R%** with s = poly(k/e).
With probability at least 0.999, IIT is a subspace embedding of AT. Thus, rank(AIT) = rank(A).
Also, the leverage scores of AIl are the same as those of A. Thus, we can compute the leverage
scores of AIl. The running time of computing AII is O(nnz(A)). Thus the total running time is

O(nnz(A) + npoly(k, 1/e€)). O

Lemma C.24. Let B denote a matriz which contains O(e~2klogk) rows of A € R™ 4. Choosing 11
to be a sparse subspace embedding matriz of size d x O(e~%(klog k)?), with probability at least 0.999,

|BOII' BT — BB ||z < €||B|3.
Combining Lemma C.23, C.24 and the BSS algorithm, we obtain:

Lemma C.25. Given arank-k matriz A € R"*4, there exists an algorithm that runs in O(nnz(A)+
npoly(k,1/€)) time and outputs a sampling and rescaling diagonal matriz S that selects O(e~2k)
re-weighted rows of A, such that, with probability at least 0.999,

JATSTSA— AT Az < | Al13.
or equivalently, for all x € R?,
(1 =) Az]2 < [[SAz[]2 < (1 + €)[| Azl2-

Proof. Using Lemma C.23, we can obtain B. Then we apply a sparse subspace embedding matrix
IT on the right of B. At the end, we run the BSS algorithm on BII and we are able to output
O(e2k) re-weighted rows of BII. Using these rows, we are able to determine O(e~2k) re-weighted
rows of A. O

C.7.2 Row sampling for linear regression

Theorem C.26 (Theorem 5 in [CNW15]). We are given A € R4 with ||A||3 <1 and ||A||% <k,
and an € € (0,1). There exists a diagonal matriz S with O(k/€*) nonzero entries such that

[(SA)TSA—ATA|], <e.

o4

Corollary C.27. Given a rank-k matric A € R™? wector b € R", and parameter ¢ > 0, let
U € R+ denote an orthonormal basis of [A,b]. Let S € R™™ denote a sampling and rescaling

diagonal matriz according to Leverage score sampling and sparse BSS sampling of U with m nonzero
entries. If m = O(k), then S is a (1£1/2) subspace embedding for U; if m = O(k/¢€), then S satisfies
Ve-operator norm approximate matriz product for U.

Proof. This follows by Lemma C.22, Lemma C.24 and Theorem C.26. O

Lemma C.28 ([NW14]). Given A € R™4 and b € R", let S € R™™" denote a sampling and
rescaling diagonal matriz. Let x* denote argmin, ||Az — b||3 and 2’ denote argmin, ||S Az — Sb]|3.
If S is a (1 +1/2) subspace embedding for the column span of A, and € (=y/€)-operator norm
approzimate matriz product for U adjoined with b — Ax*, then, with probability at least .999,

142" = b]13 < (1 + €)|| Az — b13.

Proof. We define OPT = min||Az—b||z. We define 2’ = arg min||SAz—Sb||3 and 2* = arg min|| Az —

b||3. Let w = b— Az*. Let U denote an orthonormal basis of A. We can write Az’ — Ax* = US.
Then, we have,

|Az" —b||% = ||Az’ — Az* + AATH — b||3 by 2* = ATb
= [UB+(UUT — Dbl
= ||Az* — A2'||3 + || Az* —b|3 by Pythagorean Theorem
= |UB|3 + OPT?
= 813 + OPT?.

If Sis a (1 +1/2) subspace embedding for U, then we can show

1Bll2 = IUTSTSUB|I2
< ||B-UTSTSUB|- by triangle inequality
= |(1 -U"STSU)Bll2
11 =UTSTSU| - [18ll2

1
S181.

IN

IN

Thus, we obtain
|UTSTSUBl2 > [|B]]2/2.
Next, we can show

|UTSTSUB|, = [|UTSTS(Az’ — Ax*)|3

= |[UTSTS(A(SA)TSb — Az™)|2 by ' = (SA)TSb
= |UTSTS(b— Az*)]|2 by SA(SA)T =
= |lUTSTSws. by w=b— Az*

95

We define U = [U w/||wl|]2]. We define X and y to satisfy U = U'X and w = U’y. Then, we
have
|UTST Swl|

=|UTSTSw—UTws by UTw =0

_ HXTU/TSTSU/y _ XTU/TU/y”Q

= |XT(U'TSTSU ~ D)yl
1X 2 U STSU" = Iz - |lyll2
¢ [1X 12l 12
= €|[Ul2/lwll2

= ¢ OPT, by |U|l2 = 1 and ||w||2 = OPT

<
<

where the fifth inequality follows since S satisfies ¢’-operator norm approximate matrix product for
the column span of U adjoined with w.
Putting it all together, we have

142" = b]|3 = [|[Az" — b3 + || Az — Ax'|[3

= OPT? +|8|I3
< OPT? +4||U TS T Sw)|3
< OPT? +4(¢ OPT)?
1
< (1+¢€) OPTZ. by € = 5\@

Finally, note that S satisfies €’-operator norm approximate matrix product for U adjoined with
w if it is a (1 £ €')-subspace embedding for U adjoined with w, which holds using BSS sampling by
Theorem 5 of [CNW15] with O(d/e) samples. O

C.7.3 Leverage scores for multiple regression

Lemma C.29 (see, e.g., Lemma 32 in [CW13] among other places). Given matriz A € R™® with
orthonormal columns, and parameter € > 0, if S € R™" is a sampling and rescaling diagonal matriz
according to the leverage scores of A where the number of nonzero entries is t = O(1/¢2), then, for
any B € R™™ we have

|ATSTSB — ATB|[% < || A7 B|%,
holds with probability at least 0.9999.

Corollary C.30. Given matric A € R™ % with orthonormal columns, and parameter ¢ > 0, if
S € R™™ is a sampling and rescaling diagonal matriz according to the leverage scores of A with
m nonzero entries, then if m = O(dlogd), then S is a (1 £ 1/2) subspace embedding for A. If
m = O(d/e), then S satisfies \/e/d-Frobenius norm approzimate matriz product for A.

Proof. This follows by Lemma C.22 and Lemma C.29. O

Lemma C.31 ([NW14]). Given A € R™4 and B € R™™ let S € R™™ denote a sampling and
rescaling matriz according to A. Let X* denote argminy ||AX —B||% and X' denote argminx ||SAX —

o6

SB|%. Let U denote an orthonormal basis for A. If S is a (1 £ 1/2) subspace embedding for U,
and satisfies € (=+/€/d)-Frobenius norm approximate matriz product for U, then, we have that

IAX" = B} < (1 +)| AX™ — Bl %
holds with probability at least 0.999.

Proof. We define OPT = miny ||[AX — B|lr. Let A= UXV " denote the SVD of A. Since A has
rank &k, U and V have k columns. We can write A(X' — X*) = US. Then, we have

|AX' — B||%2 = ||AX' — AX* + AATB — B||% by X* = A'B
= |UB+UUT — DB}
= |AX* — AX'||% + |AX* — B|)% by Pythagorean Theorem
= |UBIl7 + OPT?
= ||BII% + OPT?. (15)

If Sis a (1 £1/2) subspace embedding for U, then we can show,
18llr = U STSSUB|r

<8 - UTSTSUﬂHF by triangle inequality
= (I -UTSTSU)Blr

< NI =UTSTSU)|2- 18] r by [|AB||p < [|All2]| Bl
< %Hﬁ”ﬂ by (I —UTSTSU)|2 < 1/2

Thus, we obtain
IUTSTSUB|F > 18]F/2 (16)
Next, we can show

|lUTSTSUB|p = UTSTS(AX' — AXY)|

= |lUTSTS(A(SA)Sb— AX*)| by X' = (SA)'SB
= |UTSTS(B — AX™)|F. by SA(SA)T =1
Then, we can show
|UTSTS(B - AX™)||r < €UT||F||B — AX*||F by Lemma C.29
= ¢VdOPT. by |U|lp = Vd and |B — AX*||p = OPT
(17)
Putting it all together, we have
|AX" = B||f = [|AX™ = Blf% + |AX™ — AX'|1%
= OPT? +||3|% by Equation (15)
< OPT? +4||UT ST Sw||% by Equation (16)
< OPT? +4(¢VdOPT)? by Equation (17)
< (1+¢€) OPT?. bye'z% e/d
O

o7

C.7.4 Sampling columns according to leverage scores implicitly, improving polynomial
running time to nearly linear running time

This section explains an algorithm that is able to sample from the leverage scores from the ® product
of two matrices U,V without explicitly writing down U ® V. To build this algorithm we combine
TENSORSKETCH, some ideas from [DMIMW12| and some ideas from [AKO11, MW10|. Finally, we
are able to improve the running time of sampling columns according to leverage scores from Q(n?)
to O(n). Given two matrices U,V € R¥*" we define A € RF*™"2 to be the matrix where the i-th
row of A is the vectorization of U’ ® V', Vi € [k]. Naively, in order to sample O(poly(k,1/¢)) rows
from AT according to leverage scores, we need to write down n? leverage scores. This approach
will take at least Q(n?) running time. In the rest of this section, we will explain how to do it in
O(n - poly(logn, k,1/¢€)) time. In Section C.10.1, we will explain how to extend this idea from 3rd
order tensors to general g-th order tensors and remove the poly(logn) factor from running time,
i.e., obtain O(n - poly(k,1/€)) time.

Lemma C.32. Given two matrices U € RF*™ and V € R¥*"2 | there exists an algorithm that takes
O((n1 + n2) - poly(log(ning), k) - Rsamples) time and samples Rsamples columns of U © V' € RFExnina
according to the leverage scores of R-Y(U ® V'), where R is the R of a QR factorization.

Proof. We choose II € R™"2%51 to he a TENSORSKETCH. Then, according to Section B.10, we can
compute R~1 in n - poly(logn, k, 1/€) time, where R is the R in a QR-factorization. We want to
sample columns from U ® V according to the square of the £3-norms of each column of R={ (U ® V).
However, explicitly writing down the matrix R~1(U ® V) takes kning time, and the number of
columns is already mins. The goal is to sample columns from R~ (U ® V) without explicitly
computing the square of the fo-norm of each column.

The first simple observation is that the following two sampling procedures are equivalent in
terms of the column samples of a matrix that they take. (1) We sample a single entry from the
matrix R~1(U ® V) proportional to its squared value. (2) We sample a column from the matrix
R~Y(U ® V) proportional to its squared fo-norm. Let the (4, j1, jo)-th entry denote the entry in the
i-th row and the (j; — 1)ng + jo-th column. We can show, for a particular column (j; — 1)ng + jo,

Prsample an entry from the (j; — 1)ng + jo th column of a matrix]
k
= Z Pr[sample the (i, j1, j2)-th entry of matrix]
=1

_ Zk: (R™HU @ V)it —1)natsol’
2 Rwevi

_ IR U O V) gi—tyngtiaI”
IR=H U o V)%
= Pr[sample the (j; — 1)ng + j2 th column of matrix]. (18)

Thus, it is sufficient to show how to sample a single entry from matrix R~'(U ® V') proportional to
its squared value without writing down all of the entries of a k X nino matrix.

We choose a Gaussian matrix G € R9** with g; = O(e~2log(ninz)). By Claim C.33 we can
reduce the length of each column vector of matrix R~1U®V from k to g; while preserving the squared
f9-norm of all columns simultaneously. Thus, we obtain a new matrix GR™Y(U ® V) € R xmnz
and sampling from this new matrix is equivalent to sampling from the original matrix R=1(U ® V).

In the following paragraphs, we explain a sampling procedure (also described in Procedure
FASTTENSORLEVERAGESCORE in Algorithm 10) which contains three sampling steps. The first

o8

Algorithm 10 Fast Tensor Leverage Score Sampling

1: procedure FASTTENSORLEVERAGESCORE(U, V, n1,ng, k, €, Rsamples) > Lemma C.32
2 s1 < poly(k, 1/e).

3 g1 < g2 < g3 + O(e 2log(nins)).

4: Choose IT € R™™2%51 o be a TENSORSKETCH. > Definition B.34
5: Compute R~' € R¥*¥ by using (U ® V)IL > U € RF>*™M Y ¢ RFxn2
6 Choose G € R9*F to be a Gaussian sketching matrix.

7 fori=1-—g; do

8 w+ (G'R™Y)T > G* denotes the i-th row of G
9: for j =1— [n1] do > Form matrix U" € RFxm
10: Ul <= woUy,Vj € [m]. > U; denotes the j-th column of U € R¥*™
11: end for

12: end for

13: Choose Ga; € R92*™ to be a Gaussian sketching matrix.

14: fori=1— g1 do

15: (o7 H(GQJU/ZT)VH%

16: Choose G'3; € R%*™ to be a Gaussian sketching matrix.

17: for jo =1 — ny do

18: Bij IG3:(U" TV, |13

19: end for

20: end for

21: S+« 0.

22: for r =1 — Rgamples dO

23: Sample i from [g] with probability o;/ > 9" | .

24: Sample jp from [ng] with probability 3; j,/ Z;f:l Bijy-

25: for j; =1 —n; do

26: Vi ((U/iT)jl Vj2)2'

27: end for

28: Sample j; from [nq] with probability v;, / Z;'?:l Vi -

29: S + SU (41, 72)-

30: end for

31: Convert S into a diagonal matrix D with at most Rgamples NONZero entries.

32: return D. > Diagonal matrix D € R™1m2Xmn2

33: end procedure

step is sampling ¢ from [g;], the second step is sampling jo from [ng], and the last step is sampling
J1 from [nq].

For each ji € [n1], let U;, denote the jj-th column of U. For each i € [g1], let Gi denote
the i-th row of matrix G; € R9*k let U’ € RF*™ denote a matrix where the ji-th column is
(G'R~YHToU;, € R¥,Vj € [ny]. Then, using Claim C.37, we have that (G'R™1)- (U®V) € R™M" is
a row vector where the entry in the (j; — 1)n2+ jo-th coordinate is the entry in the ji-th row and jo-
th column of matrix (U*TV) € R™*"2, Further, the squared f3-norm of vector (G'R™1) - (U ® V)
is equal to the squared Frobenius norm of matrix (U”*TV). Thus, sampling i proportional to
the squared f3-norm of vector (G'R™1) - (U ® V) is equivalent to sampling i proportional to the
squared Frobenius norm of matrix (U’*"V). Naively, computing the Frobenius norm of an n; x ns
matrix requires O(ning) time. However, we can choose a Gaussian matrix Gy ; € R9%2*™ to sample

29

according to the value ||(G2;U"")V||%, which can be computed in O((ny + n2)gek) time. By
claim C.35, ||(G2,U"T)V||% =~ ||(U"T)V||% with high probability. So far, we have finished the first
step of the sampling procedure.

For the second step of the sampling procedure, we need to sample j from [ns]. To do that,
we need to compute the squared ¢o-norm of each column of U”*TV € R™*"2 This can be done
by choosing another Gaussian matrix G3; € R9%*". For all jo € [ng], by Claim C.36, we have
|G U TV, |3 ~ |[UTV,,|13. Also, for jay € [na], ||G3:U" "V}, ||3 can be computed in nearly linear
in n1 + ng time.

For the third step of the sampling procedure, we need to sample j; from [n1]. Since we already
have i and j» from the previous two steps, we can directly compute |(U"*7)71V}, |2, for all j;. This
only takes O(nik) time.

Overall, the running time is O((n1 + n2) - poly(log(ninsg), k,1/€¢)). Because our estimates are
accurate enough, our sampling probabilities are also good approximations to the leverage score
sampling probabilities. Putting it all together, we complete the proof. O

Claim C.33. Given matric R-Y (U 0 V) € RF>*Mn2 et G € RIV¥F denote a Gaussian matriz with
g1 = (e 2log(ning)). Then with probability at least 1 — 1/ poly(nins), we have: for all j € [n1na),

L=lR U V)| <IGIRTH U V)5 < L+ o|R™HU o V).
Proof. This follows by the Johnson-Lindenstrauss Lemma. O

Claim C.34. For a fizedi € [g1], let G2; € R92X™ denote a Gaussian matriz with go = O(e~ 2 log(nina)).
Then with probability at least 1 — 1/ poly(ning), we have: for all ja € [na],

(1= U Vi3 < (G20 Vs ll2 < (1 +)[U"T Vi I3
By taking the union bound over all i € [g1], we obtain a stronger claim,
Claim C.35. With probability at least 1 — 1/ poly(ning), we have : for all i € [g1], for all jo € [na],
(1= U Vi3 < (G20 Vs ll2 < (1 +)[U" TV I3
Similarly, if we choose G'3; to be a Gaussian matrix, we can obtain the same result as for Ga;:
Claim C.36. With probability at least 1 — 1/ poly(ning), we have : for all i € [g1], for all jo € [na],
(1= U TVil3 < 1(G3U" Vs ll2 < (1 +)[U"T Vi I3

Claim C.37. For anyi € [g1], j1 € [n1], jo € [n2], let G denote the i-th row of matriz G1 € RIV*F.
Let (U O V)(j,—1)natj» denote the (j1 — 1)ng + jo-th column of matriz RE*™Mn2 Let (U"T)71 denote
the ji-th row of matriz (U''7) € R™M>*k. Let Vj, denote the ja-th column of matriz V. € RF*n2,
Then, we have

GiR_l(U © V)(jl—l)n2+j2 = (U/iT)jl Vi,
Proof. This follows by,

GliR_l(U © V)(j171)n2+j2 = GilR_l<Uj1 © ij) = (GilR_l ° (Uj1)T)V}2 = (U/iT)jl VjQ'

60

Lemma C.38. Given A € R”X”2, V,W € RF*" for any € > 0, there exists an algorithm that runs
in O(n - poly(k,1/€)) time and outputs a diagonal matriz D € R™ > with m = O(klogk + k/e)
nonzero entries such that,

IV oW) - Alf < (1+6) min ([U(V-oW) - All,
= n X
holds with probability at least 0.999, where U denotes the optimal solution to miny |[U(V ® W)D —
ADJ.
Proof. This follows by combining Theorem C.46, Corollary C.30, and Lemma C.31. O

Remark C.39. Replacing Theorem C.46 (Algorithm 15) by Lemma C.32 (Algorithm 10), we can
obtain a slightly different version of Lemma C.38 with npoly(logn, k,1/€) running time, where the
dependence on k is better.

C.7.5 Input sparsity time algorithm

Algorithm 11 Frobenius Norm CURT Decomposition Algorithm, Input Sparsity Time and Nearly
Optimal Number of Samples

1: procedure FCURTINPUTSPARSITY (A, U, Vg, Wg,n, k,¢€) > Theorem C.40
2 dy < dy 4 dy — Oklogk + k/e).

3 €0 < 0.01.

4 Form B = VE—; ® W; € Rkxn?,

5 Dy +FASTTENSORLEVERAGESCOREGENERALORDER(VE , W5 ,n,n, k, €o, d1). >

Algorithm 15
Form U = A, Dy(By D)t € Rk,
Form By = 0T o Wg € Rkxn?,
Do <—FASTTENSORLEVERAGESCOREGENERALORDER(ﬁT, W;, n,n, k, e, dz).
Form ‘7 = AQDQ(BQDQ)T € RnXk.
10: Form Bs = UToVT e R,
11: D3 +FASTTENSORLEVERAGESCOREGENERALORDER(U T, VT, n, n, k, e, ds).
12: C(—AlDl, R(—AQDQ, T «+ AsDs.
13 U 2 ((BiD1)1); @ ((B2D2)T); @ ((BsDs)'):.
14: return C, R, T and U.
15: end procedure

Theorem C.40. Given a 3rd order tensor A € R™™ " let k > 1, and let U, Vg, W € R™*F
denote a rank-k, a-approximation to A. Then there exists an algorithm which takes O(nnz(A) +
npoly(k,1/€)) time and outputs three matrices C € R™¢ with columns from A, R € R™" with
rows from A, T € R™ ! with tubes from A, and a tensor U € R"™ with rank(U) = k such that
c=r=t=0(klogk+ k/e), and

2

c T t
D00 Uiy GioRjoTi— Al <(1+qa_min A=A}
i=1 j=1 I=1 » rank =k

holds with probability 9/10.

61

Proof. We define

OPT:= min |4 — A|%.
rank —k A’

We already have three matrices Up € R"*F, Vg € R™** and Wp € R™*F and these three matrices
provide a rank-k, a-approximation to A, i.e.,

k
S (Us)i® (Va)i ® (Wp)i — A

=1

<aOPT. (19)

F

Let B; = V];r ® Wg € R¥*"* denote the matrix where the i-th row is the vectorization of (VB)i ®
(Wpg);. Let Dy € R"*"* be a sampling and rescaling matrix corresponding to sampling by the
leverage scores of BlT ; there are d; nonzero entries on the diagonal of Dy. Let A; € R™¥" denote

the matrix obtained by flattening A along the i-th direction, for each i € [3].
Define U* € R™** to be the optimal solution to min kHUBl—AlH%, U= AlDl(BlDl)Jr e Rk
UeRn?*

and Vp € R™* to be the optimal solution to min k||V 0T Wg) — As||%. Due to Lemma C.38,
VeRnx

if dy = O(klogk + k/¢) then with constant probability, we have
ITBy = Ail|% < ap,|U*By — Ay (20)

Recall that (ﬁT OWg) e RF*"* denotes the matrix where the i-th row is the vectorization of
U; ® (Wg);, Vi € [k]. Now, we can show,

Vo (OT ©Wg) = Ao} < [UB) - Al by Vo = argmin|[V - (U7 © W) — Ao}
VeRnX
< ap,||[U*B; — A% by Equation (20)
< ap,|UpB: — A} by U* = argmin|UB; — Ay
UcRnXk
< ap,aOPT. by Equation (19) (21)

We define B, =UT © Wg . Let Dy € R™*"* be a sampling and rescaling matrix corresponding
to the leverage scores of B; . Suppose there are do nonzero entries on the diagonal of Ds.
Define V* € R™*¥ to be the optimal solution to miny cgnxk |V By — As||%, V = Ay Do (By Do)t €

R™F W, € R™¥¥ to be the optimal solution to min kHW (UToVT) - Asl%, and V' to be the
WeRnx

optimal solution to VénﬂgglkaVBng — AQDQH%.
Due to Lemma C.38, with constant probability, we have

IV Bs = As||3 < ap,||V*By — As| 3 (22)

Recall that (ﬁ To VT) € R¥*"* denotes the matrix where the i-th row is the vectorization of
U; ® Vi, Vi € [k]. Now, we can show,

Wo- (070 7T) ~ Aslh < VB~ Aol by Wo = argmin|w - (07 © 77) - g
WeRnX
< ap,||V*By — As|% by Equation (22)
< ap,||VoBa — Aol by V* = argmin||V By — As|%
VeRnxk
< ap,ap,aOPT. by Equation (21) (23)

62

We define By = UToVT. Let Ds e R X" denote a sampling and rescaling matrix correspond-
ing to sampling by the leverage scores of BST . Suppose there are ds nonzero entries on the diagonal
of D3. .

Define W* € R™** to be the optimal solution to minyy cgnxk |W Bs—As||%, W = A3D3(B3D3)' €

R™* and W’ to be the optimal solution to min kHWBng — A3Ds]|7.
WeRnx

Due to Lemma C.38 with constant probability, we have

IWBs — As||i < ap, |[W*Bs — As|[7- (24)
Now we can show,
W Bs — As|% < ap,||W*Bs — As|/%, by Equation (24)
< apy|WoBs — As[k, by W = argmin||[W By — Ay|7
WeRnXxk
< apyap,ap,a OPT. by Equation (23)

This implies,
2
& Wz —A

=0

< 0(1)a OPT?.
F

k
Z (71 &
i=1

where (7 == A1D1 (BlDl)T, ‘7 == AQDQ(BQDQ)T, /W == A3D3(B3D3)T.

By Lemma C.38, we need to set d; = dy = d3 = O(klogk + k/¢). Note that B; = (V4 ©@ W3).
Thus D; can be found in n - poly(k, 1/¢) time. Because D; has a small number of nonzero entries
on the diagonal, we can compute ByD; quickly without explicitly writing down B;. Also A;Dq
can be computed in nnz(A) time. Using (A1 D) and (B D;), we can compute U in npoly(k,1/e)
time. In a similar way, we can compute By, Ds, Bs, and Ds. Since tensor U is constructed based
on three poly(k,1/€) size matrices, (B1D;)", (BaD2), and (B3D3)', the overall running time is
O(nnz(A) + npoly(k,1/e€)) O

C.7.6 Optimal sample complexity algorithm

Theorem C.41. Given a 3rd order tensor A € R™™ " let k > 1, and let U, Vg, W € R™*F
denote a rank-k, a-approzimation to A. Then there exists an algorithm which takes O(nnz(A) log n+
n? poly(logn, k,1/€)) time and outputs three matrices: C' € R™ ¢ with columns from A, R € R™*"
with rows from A, T € R™ ! with tubes from A, and a tensor U € Rt with rank(U) = k such
that c =r =1t = O(k/e), and

2

c T t
200 Ui GioRjoTi— Al <(1+qa_min A=A}
i=1 j=1 I=1 » rank =k

holds with probability 9/10.

Proof. The proof is almost the same as the proof of Theorem C.40. The only difference is that
instead of using Theorem C.38, we use Theorem C.14. O

63

Algorithm 12 Frobenius Norm CURT Decomposition Algorithm, Optimal Sample Complexity

1: procedure FCURTOPTIMALSAMPLES(A, Up, Vi, Wg,n, k) > Theorem C.41
2: dy <= dg < d3 < O(k/e).

3 Form By = V] @ Wj € R,

4 D, <—GENERALIZEDMATRIXROWSUBSETSELECTION(AI, BlT,n2,n, k,€). > Algorithm 7
5: Let dy_denote the number of nonzero entries in D;. >dy = O(k/e)
6
7
8
9

Form U AlDl(BlDl)T S RnXk

Form By = 0T o WT € RFxn?,

Dy eGENERALIZEDMATRIXROWSUBSETSELECTION(A;, BQT, n?,n, k,e). > Algorithm 7

: Let da denote the number of nonzero entries in Ds. > do = O(k/e)

10: Form V = AyDy(ByDo)t € Rk,
11: Form By=U' @ VT e Rb*"’,
12: Ds (—GENERALIZEDMATRIXROWSUBSETSELECTION(A?T, B3T, n?,n,k,e). > Algorithm 7
13: d3 denote the number of nonzero entries in Ds3. > dz = O(k/e)
14: C(—AlDl, R(—AQDQ, T + As3Ds.
15 U S ((BiD)h); @ (B2D2)t)i @ ((B3Dy)).
16: return C, R, T and U.
17: end procedure

C.8 Face-based selection and decomposition

Previously we provided column-based tensor CURT algorithms, which are algorithms that can select
a subset of columns from each of the three dimensions. Here we provide two face-based tensor CURT
decomposition algorithms. The first algorithm runs in polynomial time and is a bicriteria algorithm
(the number of samples is poly(k/e€)). The second algorithm needs to start with a rank-k (14 O(e))-
approximate solution, which we then show how to combine with our previous algorithm. Both of
our algorithms are able to select a subset of column-row faces, a subset of row-tube faces and a
subset, of column-tube faces. The second algorithm is able to output U, but the first algorithm is
not.

C.8.1 Column-row, column-tube, row-tube face subset selection

Theorem C.42. Given a 3rd order tensor A € R"*™ " for any k > 1, there exists an algorithm
which takes O(nnz(A))logn + n?poly(logn, k,1/¢) time and outputs three tensors : a subset C €
REX™X" of row-tube faces of A, a subset R € R™ "™ of column-tube faces of A, and a subset
T € R™"Xt of column-row faces of A, where ¢ =1 =t = poly(k, 1/¢), and for which there exists a
tensor U € RIXXT for which

|U(T1, Ca,) = All% < (14+€) min [4"~ All3,

or equivalently,

2
tn cn rn

YD Ui (T)i©(Ca); @ (Re)i — A <(14¢) min |4 = Alf3.

: - rank —k A’
=1 j=1 1=1 P

Proof. We fix V* € R™* and W* € R™*. We define Z; € R¥*7* where the i-th row of Z1 is
the vector V; ® W;. Choose a sketching (Gaussian) matrix §; € R"**s1 (Definition B.18), and let

64

Algorithm 13 Frobenius Norm Tensor Column-row, Row-tube and Tube-column Face Subset
Selection

1: procedure FFACECRTSELECTION(A,n, k, €) > Theorem C.42
2: 31<—82%O(k‘/6).

3: Choose a Gaussian matrix S with s; columns. > Definition B.18
4: Choose a Gaussian matrix Sy with s columns. > Definition B.18
5: Form matrix V3 by setting the (i, j)-th column to be (A2S52);.

6: D3 <~ GENERALIZEDMATRIXROWSUBSETSELECTION (Ag,V3,1n,n2,5152,€). > Algorithm 7
7: Let ds denote the number of nonzero entries in Ds. > ds = O(s152/€)
8: Form matrix Us by setting the (4, j)-th column to be (A4151);.

9: Dy +GENERALIZEDMATRIXROWSUBSETSELECTION(A1,Us,n,n2,5189,€).
10: Let dy denote the number of nonzero entries in Ds. > do = O(s152/€)
11: Form matrix Wy by setting the (i, j)-th column to be (A(I, D3, I)3);.
12: Dy +GENERALIZEDMATRIXROWSUBSETSELECTION (A3, W1,n,n?,5152,€).
13: Let d; denote the number of nonzero entries in Dj. > dp = O(s182/€)

14: T+« A(I,1,D), C < A(Do,I,I), and R «+ A(I,D3,1).
15: return C, R and T.
16: end procedure

U= A181(Z,51)" € R**k. Following a similar argument as in the previous theorem, we have
IUZ, — Ay||% < (1+¢) OPT.

We fix U and W*. We define Zy € RF*"* where the i-th row of Z5 is the vector (7@ ® W;. Choose
a sketching (Gaussian) matrix So € R™ 2 (Definition B.18), and let V = A395(Z255)7 € R™**,
Following a similar argument as in the previous theorem, we have

IV Zy — Ag||% < (1+€)?>OPT.

We fix U and V. Note that U = A181(Z,51)" and V= A985(Z555)t. We define Z3 € RFxn?
such that the i-th row of Z3 is the vector [72 ® \72 Let z3 = s1 - so. We define Z} € R#3%"% guch
that, Vi € [s1],V) € [s2], the i + (j — 1)s1-th row of Zj is the vector (A151); ® (A252);.

We define Us € R™** to be the matrix where the i + (j — 1)s1-th column is (A;51); and
V3 € R™ to be the matrix where the i + (j — 1)s1-th column is (A255);. Then Z4 = (U3 ® V3).

We first have,

min |WXZ, — As]|%2 < min ||[WZ5 — A3|% < (1+¢€)?OPT.
WeRnxk X cRFX23 WeRnxk

Now consider the following objective function,

min V- (WT 0US) — As||%.
i Ve (8T 0 07) — Al

Let D3 denote a sampling and rescaling diagonal matrix according to V7 € R"*#3 | let d3 denote the
number of nonzero entries of D3. Then we have

min_|[D3Vs- (W' ©U3') — D3As| %

WGR”IXZB

— min |Us® (DsVs) @ W — A(I, D, I)||%
WeRnXZ3

= min HW . (Ug—r © (DSVZ’))T) - (A(Iv DS’I))?)H%'?
WeR"*23

65

where the first equality follows by retensorizing the objective function, and the second equality
follows by flattening the tensor along the third dimension.

Let Z3 denote (U ® (D3V3)") € R*X™ds and W' = (A(I, D3, I))3 € R "3 Using Theo-
rem C.14, we can find a diagonal matrix D3 € R"*" with d3 = O(z3/€) = O(k?/€®) nonzero
entries such that

|Us ® Vs @ (W'ZL) — A% < (1+ €)® OPT.

We define Uy = U3 € R™**2 with 29 = z3. We define Wy = W’?g € R™ %2 with 29 = z3. We
consider,

min ||Us- (VI @ Wy) — Ay||%.
VER™ X2

Let Dy denote a sampling and rescaling matrix according to Uz, and let dy denote the number of
nonzero entries of Dsy. Then, we have

min ||D2U2 . (VT ® WQT) - DQAIH%‘

VeRnXZQ

— min [|DUy @V @ Wy — A(Do, I, 1)||3
VERHXZQ

— min_ [V (W] ©(DaU2)") ~ (A(D2, L D)l

where the first equality follows by retensorizing the objective function, and the second equality
follows by flattening the tensor along the second dimension.

Let Z denote (W, @ (DoUs)") € R#2X742 and V! = (A(Dg,I,I))s € R™"%_ Using Theo-
rem C.14, we can find a diagonal matrix Dy € R"*"” with dy = O(22/€) nonzero entries such
that

Uz @ (V'Z) @ Wo — A% < (1 + €)* OPT.

We define W7 = Wy € R™"**1 with 21 = 29, and define V; = (V’?;) € R™*1 with 21 = 29.
Let D; denote a sampling and rescaling matrix according to Wi, and let d; denote the number
of nonzero entries of Dy. Then we have

min ||D1W1 . (U—r © ‘/1T) - 131143||%J

UGRnle

= min ||U®‘/1®(D1W1)_A(17[7D1)H%'
UeRnle

= min |U- (W ©(D:W)") - A(I,1,D)||%
UERanl

where the first equality follows by unflattening the objective function, and second equality follows
by flattening the tensor along the first dimension.

Let Z; denote (V" ® (D1W;)") € R# ¥ and U’ = A(I,1,D;); € R4, Using Theo-
rem C.14, we can find a diagonal matrix D; € R"*" with d; = O(z /€) nonzero entries such
that

I(U'ZY) © (Vi) © Wy — All} < (1+)7 OPT,
which means,
I(U'Z}) @ (V'ZY) @ (W'Z}) — Al|% < (1+¢)° OPT.

Putting U’, V', W’ together completes the proof. O

66

Corollary C.43. Given a 3rd order tensor A € R™"™ " for any k > 1, there exists an algorithm
which takes O(nnz(A)) + n?poly(k,1/€) time and outputs three tensors : a subset C € RE"X" of
row-tube faces of A, a subset R € R™"™%" of column-tube faces of A, and a subset T € R™"%t of
column-row faces of A, where ¢ =1 =t = poly(k,1/¢), so that there exists a tensor U € RIn*enxrn

for which
[U(Ts, Co, Rs) — Al < (140)_min _ [|A4"~ AJ3,

or equivalently,

2
tn cn rn

2.0 Uiju (T)i®(C2); @ (Re) — A < (1+¢) min A"~ Al
i=1 j=1 =1 F

Proof. 1If we allow a poly(k/e) factor increase in running time and a poly(k/e€) factor increase in the
number of faces selected, then instead of using generalized row subset selection, which has running
time depending on logn, we can use the technique in Section C.11 to avoid the logn factor. O

C.8.2 CURT decomposition

Algorithm 14 Frobenius Norm (Face-based) CURT Decomposition Algorithm, Optimal Sample
Complexity
1: procedure FFACECURTDECOMPOSITION(A, Ug, Vg, Wg,n, k) > Theorem C.44
2: D; < GENERALIZEDMATRIXROWSUBSETSELECTION (A3, Wg,n,n%, k,¢). > Algorithm 7,
the number of nonzero entries is di = O(k/¢)
. Form Z; =V3 © (D1Wpg)'.
4 Form U = (A(I,1,D))1 Z] € Rk,
Dy < GENERALIZEDMATRIXROWSUBSETSELECTION (A7, (7, n,n% k,e). > The number of
nonzero entries is do = O(k/e)
6: Form Zy = (W5 ® (DU)).
Form V = (A(Da, I,1))2Z} € Rk,
8: D3 <~ GENERALIZEDMATRIXROWSUBSETSELECTION(Ag, 17, n,n%,k,e). > The number of
nonzero entries is d3 = O(k/¢)
9: Form Z3 =U" ® (DsV)T.
10 Form W = (A(I, D3, 1))3(Z3)t € Rk,
11: T+« A(I,I,Dy), C + A(Dy,1,1), R+ A(I,Ds,I).
122 U+ S0, ((Z20)Ni@ (Z2))i @ ((Z8)1)i.
13: return C, R, T and U.
14: end procedure

Theorem C.44. Given a 3rd order tensor A € R™ " " let k > 1, and let Ug, Vg, Wg € R™* de-
note a rank-k, c-approximation to A. Then there exists an algorithm which takes O(nnz(A))logn+
n?poly(logn, k,1/€) time and outputs three tensors: C € R*™" with row-tube faces from A,
R € R™ 7" awith colum-tube faces from A, T € R™ ™%t with column-row faces from A, and a
(factorization of a) tensor U € R™XnXTn wyith vank(U) = k for which ¢ =r =t = O(k/e) and

|U(T1,Cs, R3) = Al < (1 +€)a min |4 = A|E,

67

or equivalently,

2
tn cn rn

D20 Ui (T)i @ (Co);® (Ra) — Al < (I+e)a min [|4"— Al
i=1 j=1 I=1 F

holds with probability 9/10.

Proof. We already have three matrices Up € Rk Vg € R™F and Wy € R™* and these three
matrices provide a rank-k, a-approximation to A, i.e.,

HUB®VB®WB—A||% <« min ||A/—A||%.
rank —k A’

OPT
We can consider the following problem,

min |[|[Wg- (U ©Vg3) — As|/%.
yoin (W - B)— Asllk

Let D; denote a sampling and rescaling diagonal matrix according to Wp, and let d; denote the
number of nonzero entries of D1. Then we have

min |(D1Wg) - (U' © Vg) — Dids|

UER"Xk
= min [|[U®Vg® D1Wg— A(I,I,D)|%
UcRnxk
= min U (V] © (DiWs)") = (AU 1. D))

where the first equality follows by retensorizing the objective function, and the second equality
follows by flattening the tensor along the first dimension. Let Z; denote VBT O (D1Wg)T € Rkxndr,

and define U = (A(I, 1, Dl))lZI € R™*. Then we have
U ® Ve ®@Wg — Al|% < (14 €)a OPT.

In the second step, we fix U and Wp, and consider the following objective function,

min |U- (V' ©Wg) = 41%.
VeRnxk

Let Dy denote a sampling and rescaling matrix according to U , and let do denote the number of
nonzero entries of Dy. Then we have,

min {|(D20) - (VT © W) — DaAi|[%

VeRnxk
. . - 2
= min |[(DU)®V @ Wg— A(Ds, I,1)||%
VER”Xk
VeRnXk

where the first equality follows by unflattening the objective function, and the second equality follows
by flattening the tensor along the second dimension. Let Zy denote (W3 © (D2U)T) € RF*nd2 and
define V = (A(Do, I,1))2(Z2)" € R™F. Then we have,

U@V @Ws—A|% < (1+¢€)2aOPT.

68

In the third step, we fix U and ‘77 and consider the following objective function,

in |[V.-(WoU) - A3
pin V- () — Aallp

Let D3 denote a sampling and rescaling matrix according to ‘7, and let ds denote the number of
nonzero entries of D3. Then we have,

i DsV)- (W' oU") — D3As?
in [(DsV) - () — D3 sl

= min |[U® (DsV)®@W — A(I, D3, I)|?
Wrenﬂégxkll (D3V) (I, D3, I)|%

= min |[W-(U" o (DsV)") — (A, D3, 1))3]|%,
WGR"Xk

where the first equality follows by retensorizing the objective function, and the second equality
follows by flattening the tensor along the third dimension. Let Z3 denote (U ® (D3V)T) € RF>*nds
and define W = (A(I, D3, I))3(Z3)!. Putting it all together, we have,

HU®V®W All% < (14 €)>2aOPT.
This implies
I(A(I, I, D1))1 Z] @ (A(Da, 1,1))2Z3 @ (A(I, D3, 1))3Z} — A|% < (1 +€)3a OPT.

C.9 Solving small problems
Theorem C.45. Let max;{t;,d;} <n. Given at; X ty X t3 tensor A and three matrices: a t1 X d;
matriz T1, a ta X do matriz Ts, and a t3 X ds matriz T3, if for any § > 0 there exists a solution to
2

= OPT,
F

k

Y (T1X1)s © (ToXa); ® (T3X3)i — A
=1

min
X1,X2,X3

and each entry of X; can be expressed using O(nd) bits, then there exists an algorithm that takes
nO(0).90(dik+dak+dsk) time and outputs three matrices: X1, Xa, and X3 such that ||(T1X1)®(ToX2)®
(T3X3) Alj%4 = OPT.

Proof. For each i € [3], we can create t; x d; variables to represent matrix X;. Let z denote this
list of variables. Let B denote tensor Zle(Tle)i ® (TyX2); ® (13X3); and let B; ;;(x) denote an
entry of tensor B (which can be thought of as a polynomial written in terms of z). Then we can
write the following objective function,

t1 to i3

mlnzzz i (T 7”)2.

i=1 j=1 I=1

We slightly modify the above objective function to obtain a new objective function,

t1 to t3

2
min 3 > > (B
Py Jl Jl)’

=1 j=1 [=1

s.t. ||z|2 < 200",

69

where the last constraint is unharmful, because there exists a solution that can be written using
O(n?) bits. Note that the number of inequality constraints in the above system is O(1), the degree
is O(1), and the number of variables is v = (d1k+dak+dgk). Thus by Theorem B.11, the minimum
nonzero cost is at least

(2O(n5))—20(”))

It is clear that the upper bound on the cost is at most 920("*) " Thus the number of binary search
steps is at most log(QO(”B))QO(”). In each step of the binary search, we need to choose a cost C
between the lower bound and the upper bound, and write down the polynomial system,

t1 t2 t3
Z Z Z(Bivj,l(fc) —Ajj)? <C,

i=1 j=1I=1
|z]|3 < 200",

Using Theorem B.10, we can determine if there exists a solution to the above polynomial system.
Since the number of variables is v, and the degree is O(1), the number of inequality constraints is
O(1). Thus, the running time is

poly (bitsize) - (# constraints - degree)# variables — ,,0(8)90(v),

C.10 Extension to general ¢-th order tensors

This section provides the details for our extensions from 3rd order tensors to general g-th order
tensors. In most practical applications, the order ¢ is a constant. Thus, to simplify the analysis, we
use Oy(-) to hide dependencies on q.

C.10.1 Fast sampling of columns according to leverage scores, implicitly

This section explains an algorithm that is able to sample from the leverage scores from the ®
product of ¢ matrices Uy, Us,--- , U, without explicitly writing down Uy ® Uz ® ---U,. To build
this algorithm we combine TENSORSKETCH, some ideas from [DMIMW12|, and some techniques
from [AKO11, MW10|. Finally, we improve the running time for sampling columns according to
the leverage scores from poly(n) to 5(71) Given ¢ matrices Uy, Us, - - -, Uy, with each such matrix
U; having size k x n;, we define A € RF¥ITiZ1mi to be the matrix where the i-th row of A is the
vectorization of Ui @ Ul ® - -+ ® Ug, Vi € [k]. Nalvely, in order to sample poly(k, 1/€) rows from A
according to the leverage scores, we need to write down []?_; n; leverage scores. This approach will
take at least [[?_; n; running time. In the remainder of this section, we will explain how to do it in
Oq(n - poly(k,1/e€)) time for any constant p, and max;cfg n; < n.

Theorem C.46. Given q matrices Uy € RF¥X™ Uy € RF*m2 ... U, € RF*7a et max; n; < n.
There exists an algorithm that takes Oq(n-poly(k,1/€)- Rsamples) time and samples Rsamples columns
of Uy U ®---0O U, € REXTTI; i according to the leverage scores of Uy © Ua © - -+ © Uy.

Proof. Let max;n; < n. First, choosing Iy to be a TENSORSKETCH, we can compute R~! in
Oq(npoly(k,1/€)) time, where R is the R in a QR-factorization. We want to sample columns from
Ui U ®--- U, according to the square of the f3-norm of each column of R Y UL0U;0--- Uyg).

70

Algorithm 15 Fast Tensor Leverage Score Sampling, for General g-th Order

1: procedure FASTTENSORLEVERAGESCOREGENERALORDER({U;}ig(qs {i}iclq) k> € Rsamples)
> Theorem C.46

2: s1 < poly(k,1/e).

3: Choose Iy, II; € R™"™2 %51 o each be a TENSORSKETCH. > Definition B.34
4: Compute R™! € R¥** by using (U1 © Uz ® - - - ® Uy)T. > U; € RFX™ Vi € [q]
5: %<—R‘1,n0%k.

6: for i =1 — [no] do

T ai + (Vo) (U1 0 U2 © -+ © Ug)) |13

8: end for

9: for r = 1 = Rsamples dO

10: Sample jo from [ng] with probability a;/ Yot

11: fori=1—q¢g—1do

12: si41 < Og(poly(k,1/€)).

13: Choose II; ;1 € R™M+17 %5141 to be a TENSORSKETCH.

14: for j;=1— [n] do > Form V; € Ruxk
15: (W)jl — (W_l)jl—l o (Ul);

16: end for

17: fori=1—n, do

18: Bi = (V) (U1 © -+ - © Up) i) 3.

19: end for

20: Sample j; from [ny] with probability 3;/ > 5L, Bir.

21: end for

22: fori=1—n, do

23: Bi |(Vg-1)1=1(Ug)s*.

24: end for

25: Sample jq from [ng] with probability 3;/ Y52, B

26: S—SUGL, g

27: end for

28: Convert S into a diagonal matrix D with at most Rsamples NONZero entries.

29: return D. > Diagonal matrix D € R™172 g Xn1n2ng

30: end procedure

The issue is the number of columns of this matrix is already [[?_; n;. The goal is to sample columns
from R-Y U1 00U ®- - U,) without explicitly computing the square of the f3-norm of each column.

Similarly as in the proof of Lemma C.32; we have the observation that the following two sampling
procedures are equivalent in terms of sampling a column of a matrix: (1) We sample a single entry
from matrix R~} (U3 ©Uy ®- - -® U,) proportional to its squared value, (2) We sample a column from
matrix R~ (U; ® Uy ® -+ ® U,) proportional to its squared fy-norm. Let the (i,j1, 72, - ,jq)-th
entry denote the entry in the i-th row and the j-th column, where

q—1 q
i=>_Gi—=1) [] m+ia
=1 t=l+1

Similarly to Equation (18), we can show, for a particular column j,

Pr[we sample an entry from the j-th column of matrix] = Pr[we sample the j-th column of a matrix].

71

Thus, it is sufficient to show how to sample a single entry from matrix R~1(U; © Us ® - © Uy)
proportional to its squared value without writing down all the entries of the k x Hle n; matrix.

Let V, denote R™!. Let ng denote the number of rows of V.

In the next few paragraphs, we describe a sampling procedure (procedure FASTTENSORLEVER-
AGESCOREGENERALORDER in Algorithm 15) which first samples jo from [ng], then samples j;
from [n4], ---, and at the end samples ;q from [ng].

In the first step, we want to sample jfo from [ng] proportional to the squared ¢o-norm of that
row. To do this efficiently, we choose II; € RITIZimixs1 t5 be a TENSORSKETCH to sketch on the
right of Vo(U1 © Uy ® --- ® Uy). By Section B.10, as long as s; = Ogy(poly(k,1/€)), then II; is a
(1 £ €)-subspace embedding matrix. Thus with probability 1 — 1/Q(q), for all i € [ng],

(Vo) (U1 © U2 ® - © UM |I3 = (1 £)l|(Vo) (U1 © U2 © - © Uy)) 3,

which means we can sample jo from [ng] in Oy(npoly(k,1/€)) time.
In the second step, we have already obtained jo. Using that row of Vi with U, we can form a
new matrix V; € R™*¥ in the following sense,

(Vi)' = (Vo) o ()], Vi € [ma],

where (V1)? denotes the i-th row of matrix Vi, (V5)7° denotes the }o—th row of Vp and (Uy); is the
i-th column of U;. Another important observation is, the entry in the (j1, ja,- - ,jq)—th coordinate
of vector (Vp)?0(U; ® Uy ® -+ ® Uy) is the same as the entry in the ji-th row and (ja,- - ,j,)-th
column of matrix Vi(Uy ® U3 ® - -- ® Uy). Thus, sampling j; is equivalent to sampling j; from the
new matrix V1(Us ® U3 ® - - - ® U,) proportional to the squared f»-norm of that row. We still have
the computational issue that the length of the row vector is very long. To deal with this, we can
choose TI, € RIT=2mXs2 ¢4 he a TENSORSKETCH to multiply on the right of Vi(Uo 0 Us®---© Uy).

By Section B.10, as long as sy = Oy(poly(k,1/€)), then IIy is a (1 &+ €)-subspace embedding
matrix. Thus with probability 1 — 1/Q(q), for all ¢ € [n4],

(V) (U2 0+ © UpI)|5 = (1 £)| (V1) (U2 @ - © U)) I3,

which means we can sample J; from [n;] in Oy(n poly(k, 1/€)) time.
We repeat the above procedure until we obtain each of jo, ji,---,jq. Note that the last one,

~

Jg, is easier, since the length of the vector is already small enough, and so we do not need to use
TENSORSKETCH for it.

By Section B.10, the time for multiplying by TENSORSKETCH is O4(npoly(k,1/€)). Setting e
to be a small constant, and taking a union bound over O(q) events completes the proof. O

Lemma C.47. Given A € RoxIlicini U, - Ug € R¥*™ for any € > 0, there exists an
algorithm that runs in O(n - poly(k,1/€)) time and outputs a diagonal matriz D € RIIi=1 nixITiini
with m = O(klogk + k/€) nonzero entries such that,

IIﬁ(U1®U2®“'®Uq)—AII%§(1+6)UﬂﬂgnkllU(U1®U2®“'®Uq)—AII%,
= nx

holds with probability at least 0.999, where U denotes the optimal solution of

min |U(U3 ©Us ®---©U,)D — AD||%.
UGR”OXk

Proof. This follows by combining Theorem C.46, Corollary C.30, and Lemma C.31. O

72

Algorithm 16 General ¢-th Order Iterative Existential Proof

1: procedure GENERALITERATIVEEXISTENTIALPROOF (A, n, k, q, €) > Section C.10.2
22 Fix Uf,U3,--- Uy € R™F

3: fori=1—qdo

4 Choose sketching matrix S; € RSt with s; = Oy (k/e).

5 Define Z; € R " tobe 0 U © © UAT.

<1 J >i 7’
6 Let A; denote the matrix o]btalned ly)y flattening tensor A along the i-th dimension.
7 Define [71 to be AZSZ(ZlSl)T
8 end for
9: return ﬁl,ﬁQ, e ,ﬁq.

10: end procedure

C.10.2 General iterative existential proof

Given a g-th order tensor A € R™"™**" we fix Uy,U3,--- ,U; € R™¥¥ to be the best rank-k
solution (if it does not exist, then we replace it by a good approximation, as discussed). We define
OPT = |Uf @ Us @ --- ® Ur — Al|}.. Our iterative proof works as follows. We first obtain the
objective function,

min ||U; - Z1 — A1||% < OPT,
UleRnxk

where A1 is a matrix obtained by flattening tensor A along the first dimension, Z; = (U3 To U3 Te
O] U;T) denotes a k x n?~! matrix. Choosing S; € R™ 'X51 t0 be a Gaussian sketching matrix
with s; = O(k/e€), we obtain a smaller problem,

min ||U1 'lel —AlSlﬂ%.
U16R”Xk

We define (71 to be AlSl(ZlSl)T e R™* which gives,
1Ty - Zy — Ay||% < (1+€) OPT.
After retensorizing the above, we have,
101 @Us @ @U; — A|% < (1+¢) OPT.

In the second round, we fix (71, us, -, U; € R™¥* and choose Sy € R™ %82 to be a Gaussian
sketching matrix with sy = O(k/c). We define Zo € RF*" ™" o be (U] ® Ut oo U;T). We
define Uy to be A985(Z385)T € R™**. Then, we have

101 0@ U@ U @ @U; — A% < (14¢)?OPT.

We repeat the above process, where in the i-th round we fix 171, e ﬁifl, Uy, - U € R™* and

choose S; € R "% t0 be a Gaussian sketching matrix with s; = O(k/¢). We define Z; € RExn™!
to be (Ul ©- @UTl oU o @U*T) We define U; to be 4;5; (Z;8;)T € R™*. Then, we have

Ui @U_10U; Ul @0 U; — A% < (1+¢)?OPT.

73

At the end of the g-th round, we have
U, @ © U, — Al|% < (1+€)?0PT.
Replacing € = €'/(2q), we obtain
10U @ @0, — A% < (1+¢)OPT.
where for all ¢ € [q], s; = O(kq/€') = Oq4(k/€) .

C.10.3 General input sparsity reduction

This section shows how to extend the input sparsity reduction from third order tensors to general
g-th order tensors. Given a tensor A € R™™* %" and ¢ matrices, for each i € [¢], matrix V; has
size V; € R™*¥ with b; < poly(k,1/€). We choose a batch of sparse embedding matrices T; € R%*™.
Define V; = T;Vi, and C = A(T1,T5, - -+ ,T,). Thus we have with probability 99/100, for any « > 0,
for all {X;, X] € RP>*F}, 0 if

IViX] @ VaXb @ - @ VX, — Cl} < al[ViX1 © VaXo ® -~ © VX, — C|%,
then
ViX] @ VaXs@ - @ Ve Xy = Al < (14 €)a|[ViXi @ VaXo @ --- @ Vo Xy — Allf,

where t; = Oy(poly(b;, 1/€)).

Algorithm 17 General ¢-th Order Input Sparsity Reduction

1: procedure GENERALINPUTSPARSITYREDUCTION(A, {V;}ig(q: 1, K, ¢ €) > Section C.10.3
2 fori=1— ¢ do

3 Choose sketching matrix 7; € R%*™ with t; = poly(k, q,1/e).

4: Vi + T;V;.

5: end for

6 C%A(Tl,TQ,-“ ,Tq).

7 return {Vi}z‘e[q]a C.

8: end procedure

C.10.4 Bicriteria algorithm

This section explains how to extend the bicriteria algorithm from third order tensors (Section C.4)
to general g-th order tensors. Given any g¢-th order tensor A € R™*™* X" we can output a rank-r
tensor (or equivalently ¢ matrices Uy, Uy, -+ ,U, € R™™") such that,

U @ Uz ® -+ @ U, — Al|% < (1 +¢€) OPT,

where r = Oy((k/€)9™!) and the algorithm takes Oy(nnz(A) + n - poly(k, 1/¢)).

74

Algorithm 18 General ¢-th Order Bicriteria Algorithm

1: procedure GENERALBICRITERIAALGORITHM(A, n, k, g, €) > Section C.10.4
2 fori=2—qgdo

3 Choose sketching matrix S; € R™ ™ %% with s; = O(kq/e).

4 Choose sketching matrix T; € R%*™ with t; = poly(k, g, 1/€).

5: Form matrix U, by setting (j2,js, - - ,Jjq)-th column to be (A;S;);,.

6 end for

7 Solve ming, ||[U1 B — (A(L, Ty, -+, Ty)1||%.

8 return {ﬁi}ie[q]'

9: end procedure

C.10.5 CURT decomposition

This section extends the tensor CURT algorithm from 3rd order tensors (Section C.7) to general ¢g-th
order tensors. Given a g-th order tensor A € R™ ™" *™ and a batch of matrices Uy, Us,--- ,U, €
R™ * we iteratively apply the proof in Theorem C.40 (or Theorem C.41) ¢ times. Then for each
i € [g], we are able to select d; columns from the i-th dimension of tensor A (let C; denote those
columns) and also find a tensor U € R%X42XXda gych that,

IU(C1, Cay -, C) = Al < 1+ U1 @ V2 @ - @ Uy — Allf,

where either d; = Oy(klogk + k/e€) (similar to Theorem C.40) or d; = Og4(k/e) (similar to Theo-
rem C.41).

Algorithm 19 General ¢-th Order CURT Decomposition

1: procedure GENERALCURTDECOMPOSITION(A, {Ui}ic(q), 7, K, q, €) > Section C.10.5
2: fori=1—¢qdo
3: Form B; = 'Q[A]JT ® .QUJ-T € RFxn"
1<t 7>
4: if fast = true then > Optimal running time
5: €o < 0.01.
6: di < Oy(klogk + k/e).
7: D; < FASTTENSORLEVERAGESCOREGENERALORDER ({(Afj}j@,{U]—}j>i,n,k,eo,di).
> Algorithm 15
8: else > Optimal sample complexity
9: €0 < Oyle).
10: D; + GENERALIZEDMATRIXROWSUBSETSELECTION (AZT, BiT,nq‘l,n, k,ep). >
Algorithm C.5, d; = Oy(k/e€).
11: end if
13: C; + A;D;.
14: end for

15: U< (B1D1) @ (BaD2)! @ -+ ® (ByDy)T.
16: return {C;}c(q, U.
17: end procedure

75

C.11 Matrix CUR decomposition

There is a long line of research on matrix CUR decomposition under operator, Frobenius or re-
cently, entry-wise ¢; norm [DMMO08, BMD09, DR10, BDM11, BW14, SWZ17]. We provide the first
algorithm that runs in nnz(A) time, which improves the previous best matrix CUR decomposition
algorithm under Frobenius norm [BW14].

C.11.1 Algorithm

Algorithm 20 Optimal Matrix CUR Decomposition Algorithm

10:
11:

1
2
3:
4

procedure OPTIMALMATRIXCUR(A, n, k, €) > Theorem C.48

€ « 0.1e. € < 0.001¢'.

U «SPARSESVD(A, k. €). > U e Rk

Choose S1 € R™ ™ to be a sampling and rescaling diagonal matrix according to the leverage
scores of U with s; = O(e~2klog k) nonzero entries.

R,Y +GENERALIZEDMATRIXROWSUBSETSELECTION(S1 A, $1U, 51, n, k, €”). >
Algorithm 7, R € R™™ Y € R**" and r = O(k/¢)

V « YR e R,

Choose 52T € R™™™ to be a sampling and rescaling diagonal matrix according to the leverage
scores of VT € R™F with sy = O(e 2k log k) nonzero entries.

CT,Z7 + GENERALIZEDMATRIXROWSUBSETSELECTION ((ASy)T, (VSy)T, s9,n,k,€").
Algorithm 7, C € R"*¢, Z € R®* and ¢ = O(k/¢)

U+ ZY. > U € R and rank(U) = k

return C, U, R.
end procedure

Theorem C.48. Given matrix A € R™" for any k > 1 and € € (0,1), there exists an algorithm
that takes O(nnz(A) + npoly(k,1/€)) time and outputs three matrices C € R™ ¢ with ¢ columns

from A, R € R™"™ with r rows from A, and U € R*" with rank(U) = k such that r = ¢ = O(k/e)
and,

ICUR - Al < (1+¢€) min ||y — All,
rank —k Ag

holds with probability at least 9/10.

Proof. We define

OPT = i A — A%,
ranl?l—llIclAk H K HF

We first compute U € R™*¥ by using the result of [CW13], so that U satisfies:

min |[UX — A||% < (1+¢) OPT. (25)
X ERkxn

This step can be done in O(nnz(A) + npoly(k,1/€)) time.

We choose S1 € R™™ to be a sampling and rescaling diagonal matrix according to the leverage

scores of (7, where here s; = O(e 2klog k) is the number of samples. This step also can be done in
O(npoly(k,1/e)) time.

76

We run GENERALIZEDMATRIXROWSUBSETSELECTION(Algorithm 7) on matrices S14 and $,U.
Then we obtain two new matrices R and Y, where R contains r = O(k/e) rows of S;A and Y has
size k x r. According to Theorem C.14 and Corollary C.15, this step takes n poly(k, 1/¢) time.

We construct V = Y R, and choose 82 to be another sampling and rescaling diagonal matrix
according to the leverage scores of VT with 53 = O(e 2klog k) nonzero entries. As in the case of
constructing S1, this step can be done in O(n poly(k, 1/¢)) time.

We run GENERALIZEDMATRIXROWSUBSETSELECTION(Algorithm 7) on matrices (AS2) " and
(VS2)T. Then we can obtain two new matrices CT and Y|, where CT contains ¢ = O(k/e€) rows
of (AS5)" and Z T has size k x c¢. According to Theorem C.14 and Corollary C.15, this step takes
npoly(k,1/€) time.

Thus, overall the running time is O(nnz(A) + npoly(k,1/¢)).

Correctness. Let

X" =arg min HXV Al%.
XeR

According to Corollary C.15,

HCZVSg—ASﬂF (1+€ngm_HXVSQ—ASﬂF (1+€@WXV$§—A&NF

According to Theorem C.52, ¢/ = 0.001¢,
ICZV — AllF < (1+€)IX*V — Alf. (26)
Let

X —arg min ||[UX — A|%.
g min [0X - Al

According to Corollary C.15,

||51UYR SlAHF (1+6”) Xn"ﬁll{in HSlUX SlAHF (1—|—6”)||51UX SlAHF
€

According to Theorem C.52, since € = 0.001¢,
IOY R — A} < (1+)|[UX — Alff. (27)
Then, we can conclude

ICUR — Al = |CZY R — All%
= lozV - A3
<(1+¢€) Inln HXV All%
Xe

1 —I—e/)||UV — A|%

< (
<(1+¢)? min |UX - A%
X €Rkxn
(1+¢)20OPT
(

<
< (14¢) OPT.

7

The first equality follows since U = ZY. The second equality follows since YR = V. The first
inequality follows by Equation (26). The third inequality follows by Equation (27). The fourth
inequality follows by Equation (25). The last inequality follows since ¢’ = 0.1e.
Notice that C has O(k/¢€) reweighted columns of ASs, and ASs is a subset of reweighted columns
of A, so C has O(k/e) reweighted columns of A. Similarly, we can prove that R has O(k/e)
reweighted rows of A. Thus, CUR is a CUR decomposition of A.
O

C.11.2 Stronger property achieved by leverage scores

Claim C.49. Given matrix A € R"™ ™, for any distribution p = (p1,p2, -+ ,pn) define random
variable X such that X = || A;||3/p; with probability p;, where A; is the i-th row of matriz A. Then
take m independent samples X', X2,--- . X™ and let Y = % Z;n:l X7. We have

Pr[Y < 100||Al|%] > .99.

Proof. We can compute the expectation of X7, for any j € [m)],
n
, A2
R
i=1 v

Then E[Y] = 1 Py E[X7] = ||A||%. Using Markov’s inequality, we have

Pr[Y > [|A%] < .01.

O

Theorem C.50 (The leverage score case of Theorem 39 in [CW13]). Let A € R™** B ¢ R™4. Let
S € R™™ denote a sampling and rescaling diagonal matriz according to the leverage scores of A. If
the event occurs that S satisfies (e/\/E)—Frobem'us norm approximate matriz product for A, and also
S is a (1 + €)-subspace embedding for A, then let X* be the optimal solution of miny [|[AX — B|%,
and B= AX* — B. Then, for all X € Rkxd,

(1—-20)|AX = B|li < |S(AX = B)|%: + 1Bl — ISB[7 < (1+20)|AX — BJ%.

Furthermore, if S has m = O(e 2klog(k)) nonzero entries, the above event happens with probability
at least 0.99.

Note that Theorem 39 in [CW13]| is stated in a way that holds for general sketching matrices.
However, we are only interested in the case when S is a sampling and rescaling diagonal matrix
according to the leverage scores. For completeness, we provide the full proof of the leverage score
case with certain parameters.

Proof. Suppose S is a sampling and rescaling diagonal matrix according to the leverage scores of
A, and it has m = O(e 2klog k) nonzero entries. Then, according to Lemma C.22, S is a (1 + ¢)-
subspace embedding for A with probability at least 0.999, and according to Lemma C.29, S satisfies
(e/ V'k)-Frobenius norm approximate matrix product for A with probability at least 0.999.

Let U € R™** denote an orthonormal basis of the column span of A. Then the leverage scores
of U are the same as the leverage scores of A. Furthermore, for any X € R¥*¢ there is a matrix Y
such that AX = UY, and vice versa, so we can now assume A has k orthonormal columns.

78

Then,

IS(AX = B)|I: — |ISBII%
= [SAX — X*) + S(AX* - B)|% - |SBlI%
= ISACX = X[} + IS(AX* = B)|} + 2t (X = X*)TATSTS(AX" - B)) - |SB|}

= SA(X — X*)|2 + 2t ((X - X*)TATSTSE) . (28)

«

The second equality follows using ||C' + D||% = ||C||% + || D||% + 2tr(CT D). The third equality
follows from B = AX* — B. Now, let us first upper bound the term « in Equation (28):

ISAX — X*)||% + 2tr <(X - X*)TATSTSE)
< (L4 AX = X*)|F + 21X — X*|r|ATSTSB|
< (L+ AKX = X*)|F + 2(e/VE) - | X = X7l Alll| Bll -
< (L+ O AX = X[+ 2¢| ACX = X*) ||l Bl -
The first inequality follows since S is a (1+4¢) subspace embedding of A, and tr(C" D) < ||C||#||D|| -
The second inequality follows since S satisfies (e/ \/E)-Frobenius norm approximate matrix product

for A. The last inequality follows using that ||A||r < v/k since A only has k orthonormal columns.
Now, let us lower bound the term « in Equation (28):

ISAX — X*)||% + 2+tr ((X - X*)TATSTSE)
> (1= QI ACX = X7)[|F — 2| X = X7||rl|ATSTSB|
> (1= AX = X*)|F —2(e/VE) - |IX = X7l Allpl| Bll»
> (1= QI AX = X)) — 26| AX = X7)|[p]| Bl| -
The first inequality follows since S is a (1+4-¢) subspace embedding of A, and tr(C'T D) > —||C||r||D|

The second inequality follows since S satisfies (e/ \/E)—Frobenius norm approximate matrix product
for A. The last inequality follows using that ||A||r < vk since A only has k orthonormal columns.

Therefore,
(1= O AX = X*)[|F = 2¢[ACX = X*)|[r|Bllr < |S(AX = B)|[% — |SB|%, (29)
and
(1+ O AX = X*)[|F + 2¢| AX = X*)|[r||Bllr > |S(AX = B)|[% — | SB| 3 (30)

Notice that B = AX* — B= AAIB— B = (AA" — I)B, so according to the Pythagorean theorem,
we have

|AX — B||% = AKX — X*)|% + I|1BIZ,
which means that

IACX = X% = |AX — B||: — || BII3 (31)

79

Using Equation (31), we can rewrite and lower bound the LHS of Equation (29),
(1= O AX = X*)|F = 26| ACX = X)|| | Bl

= [AX = X)|F (HA(X = X)|E + 2l A(X —X*)HFHEHF)

= |AX = B3 — |IBI[} — ¢ (IIA(X = X)|[E + 201 AX ~ X*)IIFIIEHF)
2 112 * n 2

> [|AX = Bl — [|Bl[F — (HA(X — X9)lF + HB”F>

> | AX = B} — | BI% - 2¢ (JIA(X - X%+ |1 BI?)

= (1 -20)|AX - B|[} — || BII%- (32)

The second step follows by Equation (31). The first inequality follows using a? + 2ab < (a + b)2.
The second inequality follows using (a + b)? < 2(a? + b?). The last equality follows using || A(X —
X4+ ||§H% = |AX — B||%. Similarly, using Equation (31), we can rewrite and upper bound the
LHS of Equation (30)

(L+ Ol AX = X*)|F + 26| ACX = X[l Bllp < (1+20)|AX = B|F — | Bl3 (33)
Combining Equations (29),(32),(30),(33), we conclude that
(1= 26)[|AX = Bl — | Bl < [IS(AX = B)|[= [ISBIl% < (1 +2¢)| AX — Bl% — || BIIz-
0l

Theorem C.51. Let A € R™** B € R™*? and % > ¢ > 0. Let X* be the optimal solution to

miny ||AX — B||%, and B=AX*—B. Let S € R™" denote a sketching matriz which satisfies the
following:

1. |SB3 < 100 || BII%,
2. for all X € RF*d,
(1 - AX - B||F < |S(AX = B)|[7 + Bl — [1SB|# < (1+)| AX - B3
Then, for all X1, Xy € RF*? satisfying

€

2
_ <
ISAX, — SBJ|3 < (1 + 759

)-IsAX, - SB|,
we have
|AX, — B||% < (1+5¢) - | AXy — Bl|7..

Proof. Let A, B, S, € be the same as in the statement of the theorem, and suppose S satisfies those
two conditions. Let X1, Xo € RF*? satisfy

_ SBJ=2 . _ SB|2
|SAX, =SB} < (14 155) 194X — SBI.

80

We have

1AX: - B%
1 -~ ~
< —— (IS(A%2 ~ B)I} + I1BI3 ~ 1SBI3)
1 . -
<). . _
- 1—e<(+100) 1S(AX2 = B)[[7 + [Bl r HSBHF)
1))
<o (1 ggp) 1A% = BlE - 1= g5 (HBHF—HSBHF)
1
B L F
< (1+39)|4Xz - Bl} + +— - 105 IS Bl
< (14 36)|AX2 — B} + 2¢|| Bl
< (14 5¢)||AX2 — B[

The first inequality follows since S satisfies the second condition. The second inequality follows
by the relationship between X; and X5. The third inequality follows since S satisfies the second
condition. The fifth inequality follows using that € < % and that S satisfies the first condition. The

last inequality follows using that ||B||% = ||[AX* — B|% < ||[AXy — B|3. O

Theorem C.52. Let A € R™* B € R"*? and % >¢e>0. Let S € R denote a sampling and
rescaling diagonal matriz according to the leverage scores of A. If S has at least m = O(klog(k)/€?)
nonzero entries, then with probability at least 0.98, for all X1, Xo € R¥*4 satisfying

|SAXy — SB|: < (1+ % ISAX, — SB||%,

we have
|AX, — B|% < (1+¢) - |AXy — Bl|3.

Proof. The proof directly follows by Claim C.49, Theorem C.50 and Theorem C.51. Because of
Claim C.49, S satisfies the first condition in the statement of Theorem C.51 with probability at least
0.99. According to Theorem C.50, S satisfies the second condition in the statement of Theorem C.51
with probability at least 0.99. Thus, with probability 0.98, by Theorem C.51, we complete the
proof. O

81

D Entry-wise /; Norm for Arbitrary Tensors

In this section, we provide several different algorithms for tensor ¢i-low rank approximation. Sec-
tion D.1 provides some useful facts and definitions. Section D.2 presents several existence results.
Section D.3 describes a tool that is able to reduce the size of the objective function from poly(n)
to poly(k). Section D.4 discusses the case when the problem size is small. Section D.5 provides
several bicriteria algorithms. Section D.6 summarizes a batch of algorithms. Section D.7 provides
an algorithm for ¢; norm CURT decomposition.

Notice that if the rank —k solution does not exist, then every bicriteria algorithm in Section D.5
can be stated in a form similar to Theorem 1.1, and every algorithm which can output a rank —k
solution in Section D.6 can be stated in a form similar to Theorem 1.2. See Section 1 for more
details.

D.1 Facts

We present a method that is able to reduce the entry-wise £1-norm objective function to the Frobe-
nius norm objective function.

Fact D.1. Given a 3rd order tensor C € RE*2%e3 three matrices Vi € RO*01 1, e Re2xbz,
Vi € R%*5 | for any k € [1,min; b;], if X| € RU>F X1 € Rb2xk X1 € R¥*F satisfies that,

1(ViX1) @ (VaX3) @ (V3X3) = Cllr < o min_ [[(ViX1) @ (VaX2) @ (V3X3) = Clr,
1,A2,A3

then

[(ViX]) ® (VaX3) @ (VsX3) — Cll1 < ay/erczcs | min [(ViX1) ® (VaXa) ® (V3X3) — Ol

1,22,A3

We extend Lemma C.15 in [SWZ17] to tensors:

Fact D.2. Given tensor A € R™*"*" let OPT = ini}r;A |A — Ag|l1. For any r > k, if rank-r
rank — k

tensor B € R™™*™ 4s an f-approximation to A, i.e.,
I|IB— Al < f-OPT,
and U, V,W € R™* is a g-approzimation to B, i.e.,

IUeVeW-—-B|1<g- ranl?l—ilrclBkHBk — B,
then,
U@V oW — Al <gf-OPT.
Proof. We define I~], \7, W € R™* to be three matrices, such that

[U@Ve@W —B|li<g min _||By - B,
rank —k By

and also define,

UV, W= argmin [U®V®W —B|j; and U*,V* W* = argmin [|[URV & W — Al|;.
U,V,WER"Xk U’V’WERTLXIC

82

It is obvious that,

ITUeVeoW —B|) <|U*@V*®W* - B|. (34)
Then,
U@V &W — Al

<IU®V®W —B|1+|B - Alx by the triangle inequality

§g|]U®‘7®W—BHl+HB—AH1 by definition

< gl V*e@W*—DBJ|:1+|B- A1 by Equation (34)

<glU"@V*W* — Al1+9||B— A|1+||B— A1 by the triangle inequality

=gOPT+(g+1)||B— A by definition of OPT

< gOPT+(¢g+1)f-OPT since B is an f-approximation to A

< gfOPT.
This completes the proof. O

Using the above fact, we are able to optimize our approximation ratio.

D.2 Existence results

Definition D.3 (¢; multiple regression cost preserving sketch - Definition D.5 in [SWZ17]). Given
matrices U € R™7 A € R"¥4, let S € R™*™. IfVB > 1,V € R™¢ which satisfy

|SUV — SA|y < B- min ||SUV — SA||1,
VeRrxd

it holds that

UV —All; <B-¢c- min ||UV — A,
VeRTxd

then S provides a c-{1-multiple-regression-cost-preserving-sketch for (U, A).

Theorem D.4. Given a 3rd order tensor A € R" "™ " for any k > 1, there exist three matrices
S1 € R”QX‘“, So € R”QX”, Ss € R™ %53 gych that

k
D (A181X1)i © (42595 X2)i ® (4353 X3); — A

=1

min

<a min | Ax — All1,
X1,X2,X3

L " rank—k ApeRnxnxn

holds with probability 99/100.
(I). Using a dense Cauchy transform,

51 =59 =83 =O0(k), a = O(k"5)log> n.
(IT). Using a sparse Cauchy transform,

51 =59 = s3 = O(K®), a = O(k"3®) log® n.
(II). Guessing Lewis weights,

51 = 89 = 53 = O(k), a = O(k).

83

Proof. We use OPT to denote

OPT := min HAk — AHI
rank —k ApeRnxnxn

Given a tensor A € R™*"2X"3 e define three matrices A7 € R"M*"2"3 A, ¢ R™2X"sM Aq ¢
R™s*mm2 guch that, for any i € [n1],j € [na],l € [ns],
Aiji = (A1)i(j=1)ns+1 = (A2)5,1=1)m1+i = (A3)1,(i=1)na+j-

We fix V* € R™* and W* € R™* and use V", V5", - - , Vi¥ to denote the columns of V* and
Wi, Wy, -+ Wy to denote the columns of W*.
We consider the following optimization problem,

k
Ui@VieW!—A
U méfew Z wve , ’
which is equivalent to
Vi@ Wy
min |y vy - v [EWE| 4
Uy, ,UpeR™
Vi@ Wi 1
We use matrix Z; to denote V*T @ W*T e RF*7* and matrix U to denote [Ul Uy --- Uk]-

Then we can obtain the following equivalent objective function,

min HUZI - A1||1.
UeRnxk

Choose an ¢; multiple regression cost preserving sketch S; € R Xs1 for (Zir ,Air). We can
obtain the optimization problem,

Ugﬂlgglx HUZISI A15‘1H1: mln ZHU’ZlSl AlSl)i|]1,

where U? denotes the i-th row of matrix U € R™** and (A1S1)" denotes the i-th row of matrix
A151. Instead of solving it under the ¢1-norm, we consider the f5>-norm relaxation,

Ué?é? |UZ,S1 — A1S1]|% = mln ZHU’lel (A151)3.

Let U € Rnxk denoteAthe optimal solution of the above optimization problem. Then, U =
A181(Z,51)f. We plug U into the objective function under the £;-norm. According to Claim B.13,
we have,

|UZ18y — A1y = Z 102181 — (A1S1) |l < \/EUgﬂlglxk |UZ181 — A1S1]1.
i=1

Since S; € R"**s1 satisfies Definition D.3, we have

1UZy — A|q < « min [[UZ1 — Aifl1 = a OPT,
Ue

84

where o = /513 and f3 (see Definition D.3) is a parameter which depends on which kind of sketching
matrix we actually choose. It implies

U V*@W*— Ay < aOPT.

As a second step, we fix U € Rk and W* € Rnxk , and convert tensor A into matrix As. Let
matrix Zo denote U ® W*T. We consider the following objective function,

mln HVZQ — A2||1,
VeR

and the optimal cost of it is at most o OPT.
Choose an ¢; multiple regression cost preserving sketch Sy € R %52 for (Zy , AQT), and sketch
on the right of the objective function to obtain this new objective function,

Vén]le? HVZQSQ — A252||1 = mln Z ||VZZQSQ — (AQSQ) H17

where V' denotes the i-th row of matrix V and (AgSg)i denotes the i-th row of matrix ASs. Instead
of solving this under the ¢1-norm, we consider the fo-norm relaxation,

mln HVZQSQ — AQSQHF = min ||VZ(Z25’2) — (A252)Z||%

Let V' € R™* denote the optimal solution of the above problem. Then V= A9S5(Z,85)F. By
properties of the sketching matrix Sy € R”QXSQ, we have,

IVZy— As1 < a min HVZQ—A2||]_ < a? OPT,
VeR

which implies
IU®V @W*— Al <a?OPT.

As a third step, we fix the matrices U € R and V € R"**. We can convert tensor A € RXnxn
into matrix Az € R™*"_ Let matrix Zs denote UT 0 V' € RF*"* We consider the following
objective function,

min ||WZg — A3||1,
WER"Xk

and the optimal cost of it is at most a? OPT.
Choose an ¢1 multiple regression cost preserving sketch S3 € R %83 for (Z3 , AJ) and sketch on
the right of the objective function to obtain the new objective function,

min |[|[WZ3S55 — A3Ss]|1.
WeRnxk

Let W € R™* denote the optimal solution of the above problem. Then W = A3S5(Z3S3)f. By
properties of sketching matrix S3 € R”2X83, we have,

W25 — Aslly <@ min ||[WZs — As|y < o® OPT.
W ERnxk

85

Thus, we obtain,

k
Z(Allel)i ® (AQSQXQ)i ® (AgSng)i — A

min < a?OPT.

X1 €Rs1 Xk,XQGRSQXk,X36R33Xk

1

Proof of (I) By Theorem C.1 in [SWZ17|, we can use dense Cauchy transforms for S, Sa, Ss,
and then s; = so = s3 = O(klogk) and o = O(y/klog klogn).

Proof of (IT) By Theorem C.1 in [SWZ17|, we can use sparse Cauchy transforms for S, Sa, Ss,
and then s; = so = s3 = O(k°log® k) and o = O(k*® log" klog n).

Proof of (IIT) By Theorem C.1 in [SWZ17|, we can sample by Lewis weights. Then S1, S, S5 €
R™X"* are diagonal matrices, and each of them has O(klogk) nonzero rows. This gives a =

O(Vklogk).
O
D.3 Polynomial in £ size reduction

Definition D.5 (Definition D.1 in [SWZ17]). Given a matriz M € R™ 9 if matriz S € R™*"
satisfies

ISM ||y < B[M|,
then S has at most 8 dilation on M.

Definition D.6 (Definition D.2 in [SWZ17]). Given a matriz U € R™ ¥ if matriz S € R™*"
satisfies

1
Yz € R*,||SUz||; > EHUle,

then S has at most 8 contraction on U.

Theorem D.7. Given a tensor A € R™*"2X"s and three matrices Vi € R™M*0 V, € R"2x02 Vy €
Rngng’ let Xik c Rblxk’ X; c RbQXkJ’Xg c Rb3><k Satisﬁes

XT,X;,X?T = arg min HV1X1®Vv2X2®‘/3X3—AH1
X1€Rb1Xk,XQERbQXk,XgeRb3Xk

Let S € R™™ have at most 31 > 1 dilation on V1 X7 - (VaX3)" © (VaX3$)T) — Ay and S have at
most By > 1 contraction on V. If X1 € R\vkE X, € Ri2¥E X5 € RB3¥F sqtisfies

1SViX1 ® VaXo @ Vs X3 — SA|1 < B min 1SViX1 ® VaXo ® VX3 — SAl[1,
XleRblXk,XQERbQXk7X3ERb3Xk

where B > 1, then

IViX1 @ VaXy @ VaX3 — Al < 51525)(H)lfiﬂx [ViX1 @ VaXe ® V3X3 — All;.
1,A2,A3

The proof idea is similar to [SWZ17].

Proof. Let A,Vi,Va, V3,5, X7, X5, X3, B1,B2 be the same as stated in the theorem. Let)?1 €
RO xE X, € R2¥F X3 € RB3XF gatisfy

1SVi X1 ® VaXo @ V3X3 — SA|; < 3 min 1SViX; ® VaXo @ VaX3 — SA|1.
XleRblXk,XQGRbQXk,XgeRb?)Xk

86

We have,
1SV1 X1 @ VoXy @ VaXs — SA|:
> |SVIX) @ VaXo @ VaXs — SVIXT @ VaXs @ VaXi|h — [|SViXT @ VaX3 @ VaXi — SA|4

1 v v v * * * * * *
> @HVIXI R VoXo ® V3 X3 — Vin & V2X2 X V3X3H1 — 51HV1X1 (03] V2X2 &® V3X3 — AH1

1 v v v 1 * * *
2 @HVle ® VoXo ® V3 X3 — Al — g||V1X1 ® VaX5 @ V3X3 — Al
— G|V XT @ Vo X5 @ Vs X3 — Al

1 -~ - ~ 1
= @HVle R VoXo ® V3 X3 — AH1 . (@ +ﬁ1)HV1Xf ® ‘/QX; &® ‘/73)(54,k — AHl- (35)

The first and the third inequality follow by the triangle inequalities. The second inequality follows
using that
1SViX1 @ VaXo @ VaXs — SVIXTE @ VaX3 @ VaXi||y

= [lsvii = x) - (va(%e - x5) T © (X - x5) 7,

= ﬁ12 ViR —x) - (%o = X5) T © (K - x3) 7,

1 . . N
> EHVle ® VoXo ® V3X3 — V1 XT @ VX, ® VaX3]1,

and
|SVIXT @ VoX3 @ VX5 — SA|
= ISViXT - (VaX3)T © (V3X5)T) — A1)l
< |Vixy - (veX3)T © (VsX35)T) — Al
= B1|[ViX] ® VaX3 @ V3 X5 — Al (36)

Then, we have

IViXi © VaXo @ V3X5 — Ay
< Bol|SVi X1 ® VaXo @ V3 X5 — SA[|1 + (1 + Bi1B2)[ViX} @ VaXj @ V3 X5 — Ay
< Bofl|SVIXT] ® VaXs @ VaXs — SA|1 4 (1 + B152) [ViXT @ VaX5 @ VX3 — Al
< B1B2B[ViXT @ Vo X35 @ V3 X3 — All1 + (1 + B182)[[ViX] @ Vo X5 @ V3 X3 — Ay
< B(1+26182)[[Vi X7 @ Vo X5 @ V3 X5 — Allx.

The first inequality follows by Equation (35). The second inequality follows by

1SVi X1 ® VaXs ® VaX3 — SA||y < BX min_ [SV1X1 ® VaXo ® V3 X3 — SA|1.
1,A2,A3

The third inequality follows by Equation (36). The final inequality follows using that 8 > 1. O

Lemma D.8. Let min(by, b, b3) > k. Given three matrices Vi € R™ 1V, € R™b2 and V3 €
R™¥Y3 there exists an algorithm that takes O(nnz(A)) + npoly (b1, bz, b3) time and outputs a tensor

87

Algorithm 21 Reducing the Size of the Objective Function to poly(k)

1: procedure L1POLYKSIZEREDUCTION(A, V1, Va, V3, n, by, ba, b3, k) > Lemma D.8
2 fori=1—3do

3 ci < O(b;).

4 Choose sampling and rescaling matrices T; € R&*™ according to the Lewis weights of V;.
5: Vi « T;V; € Reixbi,
6 end for

7 C + A(Ty, Ty, T3) € Rerxc2xes,
8 return ‘71, ‘72, ‘73 and C.

9: end procedure

C ¢ RaxeXas gnd three matrices 171 € Rexbr 172 e Re2xb2 gnd 173 € RX03 with ¢ = ¢y = c3 =
poly(b1, b2, b3), such that with probability 0.99, for any o > 1, if X1, X3, X§ satisfy that,

k k
Z}(VlXDi ® (VaXp)i ® (VaX3); = C| <o min Z (ViX1); ® (V2X2); ® (V3X3)i — C|
1= 1 =1 1
then,
k k
> (X))@ (VaXs) @ (VaX3)i — Al S min ||Y (ViX1); ® (VaXa)i ® (V3X3)i — A
i=1 1 X1,.X2,. X3 || 1
Proof. For simplicity, we define OPT to be
k
< ain ;(Vl 1)i ® (VaXa); ® (V3X3) 1

Let T, € R*™ sample according to the Lewis weights of Vi € R™*1 where ¢; = O(bl) Let
Ty € R2*" sample according to the Lewis weights of Vo € R"*b2 where ¢y = O(bg) Let T3 € R®*"
sample according to the Lewis weights of V3 € R"*%3 where ¢3 = O(b3)

For any a > 1, let X| € R>F X) ¢ Rb2xk X! € RUs*F satisfy

ITh V1 X @ ToVoXh ® T5Va Xy — A(Th, T2, Ts) |1

<« min 1T V1 Xh @ TaVoXo @ T3V3 X3 — A(Th, 1o, T3) |1
X1€Rb1Xk,XQERbQXk,X3€Rb3Xk

First, we regard T as the sketching matrix for the remainder. Then by Lemma D.11 in [SWZ17]
and Theorem D.7, we have

IViX] ® ToVaXh @ T3V3 X5 — A(L, Ty, Ts)| 1

Sa min [ViX1 @ TaVaXo @ T3V3X3 — A(L, T2, T3) |-
XleRblXk,X2€Rb2Xk7X3€Rb3Xk

Second, we regard T as a sketching matrix for V1 X7 @ VoXo ® T5V3Xs — A(I,I,73). Then by
Lemma D.11 in [SWZ17| and Theorem D.7, we have

ViX] ® VaXj © T3V3 X5 — AL 1, T3) |1

5 Q min HV1X1 QR VoXo ®T3V3Xg — A(I,I,Tg)”l
XleRblXk,X2€Rb2Xk,X3€Rb3Xk

88

Third, we regard T3 as a sketching matrix for V1 X7 ® Vo X9 ® V3X3 — A. Then by Lemma D.11 in
[SWZ17] and Theorem D.7, we have

k
ST (ViX)i @ (VaXh); @ (V3 X5) — A
=1

k

S (ViX1)i ® (VaXa)i ® (VaXs)i — A
=1

< a min
X1,X2,X3

1 1

O

Lemma D.9. Given tensor A € R™>"2*" gnd two matrices U € R™*5 V € R™*S5 with
rank(U) = r, let T € R¥X"™ be q sampling/rescaling matriz according to the Lewis weights of U
with t = O(r). Then with probability at least 0.99, for all X' € R"*% « > 1 which satisfy

HT1U®V®X/—T1AH1 < - min HT1U®V®X—T1AH1,

it holds that
IUeVeX —Ali<a- min UV eX — Al
XeRTL3XS

The proof is similar to the proof of Lemma D.S.

Proof. Let X* = arg manHU ®V ® X — A||1. Then according to Lemma D.11 in [SWZ17]|, T has
at most constant)d{iel]itfon (Definition D.5) on U - (VT ® (X*)T) — A;, and has at most constant
contraction (Definition D.6) on U. We first look at
|1TU ® V@ X' — TAl;
= TU- (VI (X)) = T4
> TV - (VI o (X)) = (VT o) N~ ITU- (VI o (X)) = T4

> ;HU (VTeo X)) = Ay - <B1 +B)IU - (VT @ (X*)7) = A,
2 2

where 81 > 1,82 > 1 are two constants. Then we have:

UV X — Al

Bl TU - (VT © (X)T) = TAlL + (14 B1B)IU - (VT © (XH)T) = Aulh
aBo|TU - (VT @ (X)) = TAi i+ L+ BB U - (VI © (X)) = Al
abrBe|U- (VI o (X)T) = Aili+ 1+ 818U - (VT © (X)T) = Ails
alUV e X* — Al;.

IN A

IANYA

O

Corollary D.10. Given tensor A € R™"™*" " and two matrices U € R™** 'V € R™* with rank(U) =
ri,rank(V) = ro, let Ty € RUX" be a sampling/rescaling matriz according to the Lewis weights of
U, and let Ty € R2X" be a sampling/rescaling matriz according to the Lewis weights of V with
t1 = O(r1),ta = O(rg). Then with probability at least 0.99, for all X' € R™ 5 o > 1 which satisfy

”T1U®T2V®X/ —A(Tl,TQ,I)Hl <« -Xmln ”T1U®T2V®X A(Tl,TQ,)H17

it holds that
UV X — Al ga-Xmln UV eX-—A|.

89

Proof. We apply Lemma D.9 twice: if

WU @ TV @ X' — A(Th, Ty, 1|1 < a-Xmln WU @ TV X — A(Th, Ty,)1,

then

||U®T2V®X'—A(I,T2,I)H1ga-xmln ||U®T2V®X A(I TQ,)Hl
eR

Then, we have

IUeVeX —Al1 Sa- min UV e®X—A|;.
XeRnXs

D.4 Solving small problems

Theorem D.11. Let max;{t;,d;} < n. Given a t; X tg X t3 tensor A and three matrices: a t; X d;
matriz T1, a ta X do matriz Ts, and a ts X ds matriz T3, if for § > 0 there exists a solution to

k

D (T1X1); @ (TX2)i ® (T5X3); — A
=1

min

= OPT,
X1,X2,X3

1

such that each entry of X; can be expressed using O(n®) bits, then there exists an algorithm that
takes nO0) -2?<d1k+d2k+d3k> time and outputs three matrices: X1, Xo, and Xs such that ||(T1.X1) ®
(TQXQ) (%9 (T3X3) — A||1 = OPT.

Proof. For each i € [3], we can create t; X d; variables to represent matrix X;. Let = denote the list
of these variables. Let B denote tensor Zle(Tle)i ® (T5X3); ® (T5X3);. Then we can write the
following objective function,

t1 t2 U3
min) Y Y [Bija(x) = Aijal.
i=1 j=1 I=1
To remove the | - |, we create t1tot3 extra variables o; ;;. Then we obtain the objective function:
t1 to 3
min E E E o; —A;
e i3, (Bijia(i)
i=1 j=1[=1

s.t. Um’l =1,
0ij1(Biji(z) — Aiji) >0,
ol + llo]3 < 200
where the last constraint is unharmful, because there exists a solution that can be written using
O(n®) bits. Note that the number of inequality constraints in the above system is O(t1tat3), the

degree is O(1), and the number of variables is v = (t1tots +d1k+dok+dsk). Thus by Theorem B.11,
we know that the minimum nonzero cost is at least

(2O(n5))—26(”))

90

It is immediate that the upper bound on cost is at most 20(”5), and thus the number of binary
search steps is at most log(ZO("a))2O(”). In each step of the binary search, we need to choose a cost
C between the lower bound and the upper bound, and write down the polynomial system,

t1 ta 3

Z Z Z i1 (Biji(x) — Aiji) < C,

=1 j=1 I=1
oria =1,
O-Zujvl(BZJJ(x) - Al:jzl) Z 07

|2(13 + [|o][3 < 200",

Using Theorem B.10, we can determine if there exists a solution to the above polynomial system.
Since the number of variables is v, and the degree is O(1), the number of inequality constraints is
titote. Thus, the running time is

poly (bitsize) - (# constraints - degree)# variables — nO®)20()

D.5 Bicriteria algorithms

We present several bicriteria algorithms with different tradeoffs. We first present an algorithm that
runs in nearly linear time and outputs a solution with rank O(k3) in Theorem D.12. Then we show
an algorithm that runs in nnz(A) time but outputs a solution with rank poly(k) in Theorem D.13.
Then we explain an idea which is able to decrease the cubic rank to quadratic rank, and thus we
can obtain Theorem D.14 and Theorem D.15.

D.5.1 Input sparsity time

Algorithm 22 ¢1-Low Rank Approximation, Bicriteria Algorithm, rank—a(k3), Nearly Input Spar-
sity Time

1: procedure L1BICRITERIAALGORITHM (A, n, k) > Theorem D.12

2: 81 < 82 < 83 6(k)

3: For each i € [3], choose S; € R™* %% {0 be a dense Cauchy transform. > Part (I) of
Theorem D.2

4: Compute Aq- S, Ay - SQ, Ag - S3.

5: Y1,Ys,Ys, C +L1POLYKSIZEREDUCTION(A, 4151, A2S9, A3S3,n, s1, S92, $3, k) >
Algorithm 21

6: Form objective function

S1 S22 83

min Z Z ZXi,j,l(Yl)i ® (Y2); @ (Y3), = C

S1 ><52><S3
XeR i=1 j=1 I=1 .

7 Run /-regression solver to find X.
8: return A;57, A5y, A3S3 and X.
9: end procedure

91

Theorem D.12. Given a 3rd order tensor A € R™"™ " for any k > 1, e € (0,1), let r = O(k3).

There exists an algorithm which takes nnz(A)-O(k)+O(n) poly(k)+poly(k) time and outputs three
matrices U, V,W € R™ " such that

zr:Uz‘®Vi®Wi—A

i=1

holds with probability 9/10.

< O(k*/?)1og® i Ap— A
1_ O(k) 8 nranlgnfllrclAkH k ”1

Proof. We first choose three dense Cauchy transforms S; € R %si According to Section B.7, for
cach i € [3], A;S; can be computed in nnz(A)-O(k) time. Then we apply Lemma D.8 (Algorithm 21).
We obtain three matrices Y7, Ya, Y3 and a tensor C. Note that for each i € [3], ¥; can be computed
in npoly(k) time. Because C = A(T1,T5,T3) and T1,T5, T3 € R™*O%) are three sampling and
rescaling matrices, C' can be computed in nnz(A) + 5(k3) time. At the end, we just need to run an
£1-regression solver to find the solution to the problem,

51 S2 83

min Z Z Z Xiju(Y1)i ® (Y2); ® (Y3);|

Sl X52 ><S3
XeR i=1 j=1 1=1)

where (Y7); denotes the i-th column of matrix Y;. Since the size of the above problem is only
poly(k), this can be solved in poly(k) time. O

Algorithm 23 /¢;-Low Rank Approximation, Bicriteria Algorithm, rank-poly(k), Input Sparsity
Time

1: procedure L1BICRITERIAALGORITHM (A, n, k) > Theorem D.13

2: S§1 ¢ S9 < S3 O(k":’)

3: For each i € [3], choose S; € R" %% to be a sparse Cauchy transform. > Part (II) of
Theorem D.4

4: Compute Aq - S1, As - Sy, Ag - Ss.

5: Y1,Y5,Y3, C <+ L1POLYKSIZEREDUCTION(A, 41571, A2Sa, A3, S3,n, 81, 2, 83, k) >
Algorithm 21

6: Form objective function

s1 S2 83

opin Z Z > Xiju(N)i @ (Ya); @ (Ya), — C
i=1 j=1 [=1 1

7: Run /;-regression solver to find X.

8: return AlSl, AQSQ, A3S3 and X.

9: end procedure

Theorem D.13. Given a 3rd order tensor A € R™ ™" for any k > 1, e € (0,1), let r = O(k').
There exists an algorithm that takes nnz(A)+O(n) poly(k)+poly(k) time and outputs three matrices
UV, W € R"™" such that

ZT:UZ»@M@WZ-—A
i=1

holds with probability 9/10.

< poly(k,logn) raniniilA | Ax — All1
- k

1

92

Proof. We first choose three dense Cauchy transforms S; € R %si According to Section B.7, for
each i € [3], A4;S; can be computed in O(nnz(A)) time. Then we apply Lemma D.8 (Algorithm
21), and can obtain three matrices Y7, Ys,Ys and a tensor C. Note that for each i € [3], ¥; can
be computed in O(n) poly(k) time. Because C = A(Ty, Ty, T3) and Ty, Ts, T3 € R"*OK) are three
sampling and rescaling matrices, C' can be computed in nnz(A) + 6(/<:3) time. At the end, we just
need to run an fi-regression solver to find the solution to the problem,

51 82 83

min Z Z Z Xiju(Y1); ® (Ya2); @ (Y3), = C||

Sl ><52 ><S3
XeR i=1 j=1 1=1 .

where (Y7); denotes the i-th column of matrix Y;. Since the size of the above problem is only
poly(k), it can be solved in poly(k) time. O

D.5.2 Improving cubic rank to quadratic rank

Algorithm 24 /;-Low Rank Approximation, Bicriteria Algorithm, rank—é(kz), Nearly Input Spar-
sity Time

1: procedure L1BICRITERIAALGORITHM(A, n, k) > Theorem D.14

2: S1 < S92 < S3 5(%)

3: For each i € [3], choose S; € R *% to be a dense Cauchy transform. > Part (I) of
Theorem D.2

4: Compute Aq - S1, Ag - 5.

o

For each i € [2], choose T; to be a sampling and rescaling diagonal matrix according to the
Lewis weights of A;S;, with t; = 5(kz) nonzero entries.

C «+ A(Tl,TQ,I).

BZ‘Jr(j*l)S:l — V€C((T1A151)i ® (TQAQSQ)j),Vi S [81],j S [82].

Form objective function miny, ||KV\B — Csl1

Run ¢;-regression solver to find W.
10: Construct U by using A;51 according to Equation (38).
11: Construct V' by using A2Ss according to Equation (39).

12: return U,V , W.
13: end procedure

Theorem D.14. Given a 3rd order tensor A € R™™ ™ for any k > 1, e € (0,1), let r = O(k?).
There exists an algorithm which takes nnz(A)-O(k)+O(n) poly (k) +poly(k) time and outputs three
matrices U, V,W &€ R™ " such that

iUi@)‘/i@Wi_A

i=1
holds with probability 9/10.
Proof. Let OPT = min || A,—A|1. We first choose three dense Cauchy transforms S; € R %

AkeRnann
Vi € [3]. According to Section B.7, for each i € [3], A;S; can be computed in nnz(A) - O(k) time.
Then we choose T; to be a sampling and rescaling diagonal matrix according to the Lewis weights
of AZSZ, Vi € [2]

< O(k3/?)1og3 i A, — A
1_O(k) log nranlgng,gAkll k— Al

93

According to Theorem D.4, we have

k
D (A1S1X1); @ (4255 X5) © (A353X3); — A
=1

< O(k'®)log® n OPT
1

min
X1€R51 Xk,XzERSQXk,XgeRS?)Xk

Now we fix an [and we have:

(A151X1); ® (A252X2); ® (A353X3);

=<2(A151)1(X1)i,z)® i(Aﬁz)j(Xz)j,l ® (A353X3)1

i=1 j=1
81 S22

=3) (A151)i ® (A25%); ® (A3S3X3)i(X1)ia(X2)j0
i=1 j=1

Thus, we have

S1 S92 k
min Z Z(Alsl)z (= (AQSQ)]‘ & (Z(A3SSX3)Z(X1>1',I(X2)j,l) - Al < O(/{15) 10g3 nOPT .

X1,X2, X3 1T j=1 =1 1
(37)
We create matrix U € R7X5152 by copying matrix A1S7 sg times, i.e.,
U=[A8 A8 - AiSi]. (38)
We create matrix V € Rnxsf? by copying the i-th column of A5 a total of s; times into the
columns (i — 1)sy,--- ,isy of V, for each i € [s9], i.e.,
V= [(A282)1 -+ (A252)1 (A282)2 -+ (A2S52)2 -+ (A252)sy -+ (A252)s,.] (39)

According to Equation (37), we have:

min UV e W — Al; < O(k"®)log’n - OPT.
WeRnXSISQ

Let

W= argmin |T.U @ ToV @ W — A(Ty, Ty, I)||1.
WeRnXSISQ

Due to Corollary D.10, we have
U@V oW — Al <O(k")log®n - OPT.

Putting it all together, we have that U , 17, 1% gives a rank—é(k:Q) bicriteria algorithm to the original
problem. O

Theorem D.15. Given a 3rd order tensor A € R™™" for any k > 1, e € (0,1), let r = O(k1?).
There exists an algorithm which takes nnz(A) + O(n)poly(k) + poly(k) time and outputs three
matrices U, V,W &€ R™ " such that

ZT:Ui®V¢®Wi—A
=1

holds with probability 9/10.

< poly(k,logn) min |4 — Al
—k Ay

rank
1

94

Algorithm 25 /¢;-Low Rank Approximation, Bicriteria Algorithm, rank-poly(k), Input Sparsity
Time

1: procedure L1BICRITERIAALGORITHM (A, n, k) > Theorem D.15

2: S1 ¢ S9 < S3 5(1@’5)

3: For each i € [3], choose S; € R"**5i to be a sparse Cauchy transform. > Part (II) of
Theorem D.2

4: Compute Aq - 51, Ag - 5.

5: For each i € [2], choose T; to be a sampling and rescaling diagonal matrix according to the
Lewis weights of 4;5;, with t; = O(k) nonzero entries.

6: C <+ A(Ty, Ty, 1).

7 Bi+(j71)31 — VeC((TlAlsl)i & (TQAQSQ)j),Vi S [81],j S [82].

8: Form objective function miny |WB — Cs||;.

9: Run ¢;-regression solver to find w.

10: Construct U by using A;5; according to Equation (38).
11: Construct V' by using A2S2 according to Equation (39).

12: return U,V , W.
13: end procedure

Proof. The proof is similar to the proof of Theorem D.14. The only difference is that instead of
choosing dense Cauchy matrices S1, S2, we choose sparse Cauchy matrices. O

Notice that if we firstly apply a sparse Cauchy transform, we can reduce the rank of the matrix
to poly(k). Then we apply a dense Cauchy transform and can further reduce the dimension while
only incurring another poly(k) factor in the approximation ratio. By combining a sparse Cauchy
transform and a dense Cauchy transform, we can improve the running time from nnz(A4) - O(k) to
nnz(A).

Corollary D.16. Given a 3rd order tensor A € R™™ " for any k > 1, € € (0,1), let r = O(k?).
There exists an algorithm which takes nnz(A) + O(n)poly(k) + poly(k) time and outputs three
matrices U, V,W &€ R™ " such that

ZUi®V2®Wi*A
i—1

holds with probability 9/10.

< poly(k. 1 i A, — A
1_1o<>y(,ogn)ranlgn_lgAkH k— Al

D.6 Algorithms

In this section, we show two different algorithms by using different kind of sketches. One is shown
in Theorem D.17 which gives a fast running time. Another one is shown in Theorem D.19 which
gives the best approximation ratio.

D.6.1 Input sparsity time algorithm

Theorem D.17. Given a 3rd tensor A € R™™" for any k > 1, there exists an algorithm that
takes nnz(A) - O(k) + O(n) poly (k) + 200:) time and outputs three matrices U,V,W € R™* such
that,

IU@VeW - Al <poly(k,logn) min [A"— Al

95

Algorithm 26 ¢;-Low Rank Approximation, Bicriteria Algorithm, rank—é(kQ), Input Sparsity
Time

1: procedure L1BICRITERIAALGORITHM(A, n, k) > Corollary D.16

2: 81 ¢ S9 & 83 < 5(%)

3: For each i € [3], choose S; € R *$i to be the composition of a sparse Cauchy transform and
a dense Cauchy transform. > Part (LIT) of Theorem D.2

4: Compute Aq - S1, Ag - 5.

o

For each i € [2], choose T; to be a sampling and rescaling diagonal matrix according to the
Lewis weights of A;S;, with t; = 5(1{:) nonzero entries.

C + A(Tl, 15, I)

Bit(i—1s1 VeC((T1A151)Z‘ & (TQAQSQ)j),Vi S [81],j S [82].

Form objective function miny ||W\B — Csl)x.

Run ¢;-regression solver to find W.
10: Construct U by using A;51 according to Equation (38).
11: Construct V' by using A2Ss according to Equation (39).

12: return U,V , W.
13: end procedure

Algorithm 27 /1-Low Rank Approximation, Input sparsity Time Algorithm

1: procedure L1 TENSORLOWRANKAPPROXINPUTSPARSITY (A, n, k) > Theorem D.17
2 S1 < 82 < S3 — 6(k55)

3: Choose S; € R"**$i to be a dense Cauchy transform, Vi € [3]. > Part (I) of Theorem D.4
4 Compute Ay - S1, Ay - So, and Ag - Ss.

5 Y1,Ys,Ys, C < L1POLYKSIZEREDUCTION(A, A1 51, A2S2, A3Ss, n, s1, s2, 3, k). >

Algorithm 21

6 Create variables s1 X k + so X k 4 s3 X k variables for each entry of Xi, Xs, Xjs.

7: Form objective function [|(Y1X1) ® (YaX2) ® (Y3X3) — C|/%.

8 Run polynomial system verifier.

9: return A151X1,A252X2,A353X3.
10: end procedure

holds with probability at least 9/10.

Proof. First, we apply part (II) of Theorem D.4. Then A;S; can be computed in O(nnz(A)) time.
Second, we use Lemma D.8 to reduce the size of the objective function from O(n?) to poly(k) in
npoly(k) time by only losing a constant factor in approximation ratio. Third, we use Claim B.15
to relax the objective function from entry-wise £1-norm to Frobenius norm, and this step causes us
to lose some other poly(k) factors in approximation ratio. As a last step, we use Theorem C.45 to
solve the Frobenius norm objective function. O

Notice again that if we first apply a sparse Cauchy transform, we can reduce the rank of the
matrix to poly(k). Then as before we can apply a dense Cauchy transform to further reduce the
dimension while only incurring another poly(k) factor in the approximation ratio. By combining
a sparse Cauchy transform and a dense Cauchy transform, we can improve the running time from
nnz(A) - O(k) to nnz(A), while losing some additional poly(k) factors in approximation ratio.

96

Corollary D.18. Given a 3rd tensor A € R™"™ " for any k > 1, there exists an algorithm that
takes nnz(A) + O(n) poly(k) + 2°**) time and outputs three matrices U,V,W € R"™* such that,

U@V @W — A|; <poly(k,logn) min |4 — Al;.
rank —k A’

holds with probability at least 9/10.

D.6.2 6(k3/2)-approximation algorithm

Algorithm 28 /;-Low Rank Approximation Algorithm, 6(1{:3/ 2)-approximation

1: procedure L1TENSORLOWRANKAPPROXK (A, n, k) > Theorem D.19

2: 81 ¢ 89 < 83 < 6(]{7)

3: Guess diagonal matrices S; € R"* %% with s; nonzero entries, Vi € [3)]. > Part (III) of
Theorem D .4

4: Compute Ay - Sy, As - Sy, and Ag - Ss.

5: Y1,Y3,Y3, C «+L1POLYKSIZEREDUCTION(A, A1S71, A2 Sa, A3S3,n, 81, S2, 3, k). >

Algorithm 21
6 Create s1 X k + so2 X k 4 s3 X k variables for each entry of X;, Xo, X3.
7 Form objective function [|(Y1X1) ® (YaX2) ® (Y3X3) — C|1.
8 Run polynomial system verifier.
9: return U, V,W.
10: end procedure

Theorem D.19. Given a 3rd order tensor A € R™™ " for any k > 1, there exists an algorithm
that takes n®®20%) time and output three matrices U, V,W € R™* such that,

U@V QW — Al < O(K*?) min A"~ Al

holds with probability at least 9/10.

Proof. First, we apply part (III) of Theorem D.4. Then, guessing S; requires nO®) time, Second,

we use Lemma D.8 to reduce the size of the objective from O(n?®) to poly(k) in polynomial time
while only losing a constant factor in approximation ratio. Third, we use Theorem D.11 to solve
the entry-wise £1-norm objective function directly. O

D.7 CURT decomposition

Theorem D.20. Given a 3rd order tensor A € R™™" et k > 1, let U, Vg, W € R™F
denote a rank-k, a-approzimation to A. Then there exists an algorithm which takes O(nnz(A)) +
O(n?)poly (k) time and outputs three matrices: C € R™ ¢ with columns from A, R € R™ " with
rows from A, T € R™ ! with tubes from A, and a tensor U € R*"™t with rank(U) = k such that
c=r=t=0(klogk), and

c r t
S>3 N Uiju CioR; @1 — A < O(k")a min 4"~ Al
=1 j=1 I=1 . rank—

holds with probability 9/10.

97

Algorithm 29 ¢-CURT Decomposition Algorithm

1: procedure LICURT(A,Ug, Vg, Wg,n, k) > Theorem D.20
2: Form B = VE—; ® W; € Rkxn?,
3: Let DI € R"*"” be the sampling and rescaling diagonal matrix corresponding to the Lewis

weights of B{, and let Dy have d; = O(klogk) nonzero entries.
Form U = A, Dy (B1 D)t € R™*F,
Form By = T o Wg c RFxn?,
Let D, € R %" he the sampling and rescaling diagonal matrix corresponding to the Lewis
weights of By , and let Dy have do = O(klog k) nonzero entries.
7. Form V = AyDy(ByDy)t € R<F.
. Form By=U" VT e RF*™.
: Let D3T € R"**"” he the sampling and rescaling diagonal matrix corresponding to the Lewis
weights of By , and let D3 have d3 = O(klog k) nonzero entries.
10: C <+ A1Dy, R+ AsDy, T < A3Ds.
11: U« 35 ((BiD1)1); @ ((B2D2)T); @ ((BsDs)')i.
12: return C, R, T and U.
13: end procedure

Proof. We define

OPT:= min [A"— Al;.
rank —k A’

We already have three matrices Ug € Rnxk , Vg € R™k and Wi € R™** and these three matrices
provide a rank-k, o approximation to A, i.e.,

k

S (Us)i ® (VB)i @ (Wp)i — A
=1

< aOPT (40)

1

Let B = VBT ® Wg € R¥*"* denote the matrix where the i-th row is the vectorization of (VB)i ®
(Wg);. By Section B.3, we can compute Dy € R *"* which is a sampling and rescaling matrix
corresponding to the Lewis weights of By in O(n?poly(k)) time, and there are dy = O(klogk)
nonzero entries on the diagonal of Dy. Let A; € R denote the matrix obtained by flattening A
along the i-th direction, for each i € [3].
Define U* € R™*¥ to be the optimal solution to Un&én kHUBlfAlHl, U= A1Dy (B D)t € R™*F,
cRnx

Vo € R™* to be the optimal solution to min kHV (U7 W) — As|l1, and U’ to be the optimal
VeRnx

solution to min ||[UB1Dy — A1D1||1.
UcRnxk
By Claim B.13, we have

|UB1D; — A1Dy |y < v/di|[U'B1Dy — A1 D ||y
Due to Lemma D.11 and Lemma D.8 (in [SWZ17]) with constant probability, we have
1UBy — Ay < Vévap, U By — Ay, (41)

where ap, = O(1).

98

Recall that ((/jT oW e RF*"* denotes the matrix where the i-th row is the vectorization of
U; ® (Wg);, Vi € [k]. Now, we can show,

Vo (U7 @ Wg) — Aoy < |UB1 — Auly by Vo = %Rggguwﬁ OWE) — Az
<V |[U*By — A1 by Equation (41)
< Vdi|UpB1 — Aillx by U = ?]TGE;RTXHQHUBl — A1l
< O(+/d1)a OPT by Equation (40) (42)

We define B, = U ® Wg . We can compute Dy € R™*"* which is a sampling and rescaling ma-
trix corresponding to the Lewis weights of By in O(n? poly(k)) time, and there are dy = O(k log k)
nonzero entries on the diagonal of Ds.

Define V* € R™F to be the optimal solution of miny cgnxk |V B2 — As|1, V = AyDy(By D))t €
R™F Wy € R™* to be the optimal solution of Wrr]gn kHW A(UT ©VT) = 431, and V' to be the

c nx
optimal solution of min kHVBng — Ao Ds|;.

VeR™X
By Claim B.13, we have

|V B2Dy — AsDal|y < \/do||V'BaDy — AsDally.
Due to Lemma D.11 and Lemma D.8(in [SWZ17|) with constant probability, we have
IV B2 = As|ly < V/daaup, |V By — Ao, (43)
where ap, = O(1).

‘Recall that (ﬁ To VT) € R""* denotes the matrix for which the i-th row is the vectorization
of U; ® Vi, Vi € [k]. Now, we can show,

IWo - (U ©VT) = Aslly < |VBy — As|x by Wo = S‘fgﬂgg\lw (T V) = A3
S @HV*B2 — Azt by Equation (43)
< Vda|[VoBa — Az by V" = argmin[[V'B; — o]l
< O(\/dydy) o OPT by Equation (42) (44)

We define By = UToVT. We can compute D3 € R >*"* which is a sampling and rescaling ma-
trix corresponding to the Lewis weights of B in O(n? poly(k)) time, and there are d3 = O(k log k)
nonzero entries on the diagonal of Djs. -

Define W* € R™*¥ to be the optimal solution to minyy cpnxr |WB3—As|j1, W = A3Ds(B3D3)f €
Rk and W’ to be the optimal solution to Wrer}éilkaWBng — A3Ds||1.

By Claim B.13, we have
W B3D3 — A3Ds||1 < \/ds||W'B3D3 — A3Ds]);.
Due to Lemma D.11 and Lemma D.8(in [SWZ17|) with constant probability, we have

W Bs — As|l1 < V/dzap,|W*Bs — As|l, (45)

99

where ap, = O(1). Now we can show,

W B3 — As|l1 < \/ds||W*Bs — As||1, by Equation (45)
< \/dgHWoBg - A3||1, by W* = argminHWBg - A3||1

WeRnxk
< O(y/didad3)a OPT by Equation (44)

Thus, it implies,

)

—

QW — A

=

< poly(k,logn) OPT.

k
> G
=1

where (7 = A1D1 (BlDl)T, ‘7 == AQDQ(BQDQ)T, /W = A3D3(33D3)T.

1

Algorithm 30 ¢;-CURT decomposition algorithm

1: procedure LICURT™ (A, n, k) > Theorem D.21
2: Up,Vp, Wi +LILOWRANKAPPROXIMATION(A, n, k). > Corollary D.18
3: C,R,T,U «+ L1ICURT(A,Up, Vg, Wg,n, k). > Algorithm 29

4: return C, R, T and U.
5. end procedure

Theorem D.21. Given a 3rd order tensor A € R"™" " for any k > 1, there exists an algorithm
which takes O(nnz(A)) + O(n2) poly (k) + 2°%*) time and outputs three matrices C € R™¢ with
columns from A, R € R™" with rows from A, T € R™*! with tubes from A, and a tensor U € RE¥"*!

with rank(U) = k such that c =r =t = O(klogk), and

c r t
2.0 UijiCi®R;@Ti— A <poly(k,logn) min [A"— Ay,
i=1 j—=1 =1 . rane

holds with probability 9/10.

Proof. This follows by combining Corollary D.18 and Theorem D.20.

100

E Entry-wise {, Norm for Arbitrary Tensors, 1 <p < 2

There is a long line of research dealing with ¢, norm-related problems [DDH09, MM13, CDMI*13,
CP15, BCKY16, YCRM16, BBC*17].

In this section, we provide several different algorithms for tensor f,-low rank approximation.
Section E.1 formally states the ¢, version of Theorem C.1 in [SWZ17|. Section E.2 presents several
existence results. Section E.3 describes a tool that is able to reduce the size of the objective function
from poly(n) to poly(k). Section E.4 discusses the case when the problem size is small. Section E.5
provides several bicriteria algorithms. Section E.6 summarizes a batch of algorithms. Section E.7
provides an algorithm for £, norm CURT decomposition.

Notice that if the rank-k solution does not exist, then every bicriteria algorithm in Section E.5
can be stated in the form as Theorem 1.1, and every algorithm which can output a rank-k solution
in Section E.6 can be stated in the form as Theorem 1.2. See Section 1 for more details.

E.1 Existence results for matrix case

Theorem E.1 ([SWZ17]). Let 1 < p < 2. Given V € RF>*" A € R>*" Let S € R™ be a proper
random sketching matrix. Let

U = arg Jin, |lUVS — AS|Z,
i.€.,
U=ASWVS).
Then with probability at least 0.999,
TV - Al < a- yin UV — Allp.
(I). S denotes a dense p-stable transform,

k) O(k*=7/?)1og d.

, o=
. S denotes a sparse p-stable transform,

=0 k5), o = O(K>=52/242/P) Jog d.
(III) ST denotes a sampling/rescaling matriz according to the ¢, Lewis weights of v,
= O0(k), a = O(k*P/?).

We give the proof for completeness.

Proof. Let S € R™ be a sketching matrix which satisfies the property (x): Ve > 1,U € Rixk
which satisfy

|UVS — AS||E < ¢ min |[UVS — AS|~,
UeRdxk

we have

\IﬁV—A\Iiﬁcﬂs- min UV — Al

where 8¢ > 1 only depends on the sketching matrix S. Let

Vi€ [d),(U")" = arg min 2TV S — A'S|3,
zeR

101

ie.,

U=ASWVS.
Let
U = arg min ||UVS AS|P.
UeR
Then, we have:
|UVS — AS|®

d
=Y IU'VS - A'S|p

=1
d
< D (SYPTRTVS - ATS||p)P
=1
d ~ . .
<) (sMPTVRUIVS - A'S|)P
=1
d

< D (SPTIRUVS - A8l
i=1

< s'7P2|UVS — AS|PP.

The first inequality follows using Va € R®, ||z, < s'/P~1/2||z||y since p < 2. The third inequality
follows using Vo € R®, ||z||2 < ||z||, since p < 2. Thus, according to the property (x) of S,

Iy 1-p/2 .
|0V = Allp < 877255 min [[UV = Al

Due to Lemma E.8 and Lemma E.11 of [SWZ17], we have:
for (I), s = O(k), Bs = O(logd), o = s 1284 = O(k'~ p/Z)logd
for (II), s = O(k®), Bs = (kQ/plogd) a = s'P2Bg = O(K>~%/2+2/P) log d,
for (111), s = O(k), Bs = O(1),a = s' P2 B4 = O(k'~7/2). O

E.2 Existence results

Theorem E.2. Given a 3rd order tensor A € R™ ™™ for any k > 1, there exist three matrices
Sp € RVt Gy € RV%s2 Gy € R"%S3 gych that

k p

D (A181X1)i @ (4255 X2); ® (A393X3); — A

=1

min

< i A — Al]P
X1,X2,X3 @ Tie H k Hp’

" rank—k Ap€RnXnxn

p

holds with probability 99/100.
(I). Using a dense p-stable tmnsform
s1=s9 =83 =O0(k), « = O(k3 1) log® n.
(IT). Using a sparse p-stable transform,
s1= 59 = s3 = O(k®), a = O (k' 7-5P+6/P) 1og3 .
(IT1). Guessing Lewis weights,
s1=s9=s3=0(k), a = O(k31).

102

Proof. We use OPT to denote

OPT := min |Ax — Al
rank —k A €RnXnxn

Given a tensor A € R™*"2X"3 e define three matrices 41 € R"M*"2"3 A, ¢ R™2X"8M Aq ¢
R™8*m"2 guch that, for any i € [n1],j € [na],l € [n3]

Aiji = (A1)i(i=1)ns+1 = (A2)5 1=1)m1+i = (A3)1,(i=1)matj-

We fix V* € R™* and W* € R"**, and use Vi, Vg, -+, V¥ to denote the columns of V* and
Wi, W3, -, W} to denote the columns of W*.
We consider the following optimization problem,

P
Ui VeW:—A
Us, mlljileR" Z OV e ’
P
which is equivalent to
‘/'1* ® Wl* p
min [Ul U2 Uk] V2 ®W2 - A
Uy, Ug€R™
Vi® Wk)
We use matrix Z; to denote V*T @ W*T e RF*"* and matrix U to denote [Ul Uy --- Uk].

Then we can obtain the following equivalent objective function,

min [|[UZ; — Aq|[b.
UcRn Xk

Choose a sketching matrix (a dense p-stable, a sparse p-stable or an ¢, Lewis weight sam-
pling /rescaling matrix to Z;) S € R 51 We can obtain the optimization problem,

in ||[UZ,S1 — A1 S|P = U'Z1S, — (A1S1)1|,
yin (U218 = AuSilfy UglnglmZH 151 = (A151)'[1p

where U’ denotes the i-th row of matrix U € R™* and (A4;5;)" denotes the i-th row of matrix
A151. Instead of solving it under the £,-norm, we consider the f3-norm relaxation,

Ué?éf |UZ,S; — A181||F_ mln ZHUlzls1 (A151)2.

Let U € R™* denote the optimal solution of the above optimization problem. Then, U =
AlSl(ZlSl)T. We plug U into the objective function under the f,-norm. By choosing s; and
by the properties of sketching matrices (a dense p-stable, a sparse p-stable or an ¢, Lewis weight

sampling/rescaling matrix to Z1) S; € R 51 we have

1UZ1 — Ai|]p < @ min |UZ; — Ay||E = a OPT.
UeRnxk

This implies
|U®V*®W* — AL <« OPT.

103

As a second step, we fix U € Rk and W* € Rv<k , and convert tensor A into matrix A,. Let
matrix Z, denote U ® W*T. We consider the following objective function,

1 _ p
ymin (V2 = Az,

and the optimal cost of it is at most @ OPT.
We choose a sketching matrix (a dense p-stable, a sparse p-stable or an ¢, Lewis weight sam-

pling/rescaling matrix to Z3) Sy € R 52 and sketch on the right of the objective function to obtain
the new objective function,

Jmin V238 — Az} = mlnnxkz IV Z2S5 — (A252)" |2,

where V* denotes the i-th row of matrix V and (A353) denotes the i-th row of matrix A3S5. Instead
of solving this under the ¢,-norm, we consider the ¢>-norm relaxation,

[min HVZQSg—AgSQHF_ min ZHV’ (ZS5) — (A25:)7|3.

Let V € R™* denote the optimal solution of the above problem. Then V= A2;S’2(Z2;S’2)T. By
properties of sketching matrix Sy € R”QXSQ, we have,

[VZ; — As|P < o min [[VZ; — As|2 < o OPT,
VeRnxk

which implies
IU®VeW*— Al < a®OPT,
As a third step, we fix the matrices U € R™* and V € R"**. We can convert tensor A € RXnxn

into matrix Az € R7’X7 Let matrix Z3 denote UT ® VT € RF¥7* We consider the following
objective function,

i _ p
in [[WZs — As|lp,

and the optimal cost of it is at most a? OPT.
We choose sketching matrix (a dense p-stable, a sparse p-stable or an ¢, Lewis weight sam-

pling/rescaling matrix to Z3) S3 € R >3 and sketch on the right of the objective function to
obtain the new objective function,

min HWZ385 — A3 Ss]D.
WeRnxk

Instead of solving this under the £,-norm, we consider the ¢>-norm relaxation,

in ||WZ585 — A3S3||% = W(Z383) — (A3S3)!|3.
i [1W 25 S5 — AsSs| | HﬁénkaH 353) — (A4353)"[2

Let W € R™*F denote the optimal solution of the above problem. Then W = AgSg(ZgSg)T. By
properties of sketching matrix S3 € IR{"QXS?’ we have,

||WZ3 - A3]h <a HllIl HWZ3 - AP <« SOPT.
We

104

Thus, we obtain,

P
< a®OPT.

k
D (A151X1); @ (A25:X2);i @ (A3S3X3)i — A

min
X1 €Rs1 Xk7X26R32 Xk,X3ERS3 Xk

p

According to Theorem E.1, we let s = s; = s3 = s3 and take the corresponding «. We can
directly get the results for (I), (II) and (III). O
E.3 Polynomial in k size reduction

Definition E.3 (Definition E.1 in [SWZ17]). Given a matric M € R™? if matriz S € R™*"
satisfies

ISMIp < BI[M]1,
then S has at most B dilation on M in the £, case.
Definition E.4 (Definition E.2 in [SWZ17]|). Given a matric U € R™* if matriz S € R™*"
satisfies

1
vz € R¥, ||SUz|b > EHUng,

then S has at most B contraction on U in the £, case.

Theorem E.5. Given a tensor A € R™M*"2X1s and three matrices Vi € RM*01 1, € R2x%2 Vg €
R™*bs et Xt € RUF X5 € Rb2XF X% € RO*F satisfy

Xf,X;,X; = arg min |V1 X, ®V2X2®V3X3—A||§.
Xlé]RblXk,XQERb2Xk7X3ERb3Xk

Let S € R™" have at most 81 > 1 dilation on Vi X{ - (VaX3)" ® (V3X3)") — Ay and S have at
most o > 1 contraction on Vi in the £y, case. If Xy € ROUxk X, € Ri2¥F X5 € RPXF satisfy

ISViX1 ® VaXs ® VaX;3 — SA|L < 8 min 1SViX1 ® VaXo ® VsX3 — SA|P,
XleRb1Xk,X2€Rb2Xk,XgERb?)Xk

where 3 > 1, then

VX1 ® VaXo @ VaXs — Al < A1 min [[ViXy ® VaXo ® VX5 — A,

1,42,A3

The proof is essentially the same as the proof of Theorem D.7:

Proof. Let A, V1,Va, V3,5, X7, X35, X3, B1, B2 be as stated in the theorem. Let)?1 € Rlek,)/(\'g €
RP2xF Xa € RP3¥F gatisfy

1SVi X1 © VaXs © V3X3 — SA|E < 8 min 1SViX1 @ VaXo ® V5X3 — SA|P.
XleRblXk,XzERbQXk,XgéRbi’er

Similar to the proof of Theorem D.7, we have,
||SV1)/§>1 & Vg)?z & ‘/'3)?3 — SAHg
1 ~ ~ ~ 1
= 22‘2p@||V1X1 ® VaXo @ VaXz — A|b — (zl—p@ + B IViXT ® V2 X5 © VX5 — AlP

105

The only difference from the proof of Theorem D.7 is that instead of using triangle inequality, we
actually use ||z + y[|h < 2P~ Y|2|]5 + ||y||h. Then, we have
IViX1 ® VaXo ® VsXs — Ap

< 2726,V Xy ® VoXo ® V3 X3 — SA|D + (201 4+ 227723,)|V X ® Vo X3 © V3 X5 — AP

< 2PERBISVIXT @ VaX3 @ VaXG — SA[p+ (2071 + 2772015y [V XT @ Vo X5 ® Vs X5 — Al

< 2251 B,ViXT © Va X5 ® VaXy — AL+ (2071 +2%72515) [ViXT © Vo X3 ® VX5 — A}

< 2P7IB(1 4261 5) Vi XT @ Vo X5 @ VX5 — AL

O

Lemma E.6. Let min(by,bo,b3) > k. Given three matrices Vi € R™% Vo € R™¥%2 and V3 €
R™*b3 there exists an algorithm which takes O(nnz(A))+n poly(br, ba, b3) time and outputs a tensor

C e R01X02X03 and three matrices V1 Rerxbr V € Re2xb2 gpd V}, € R®X03 with ¢ = ¢y = ¢35 =
poly (b1, ba, b3), such that with probability 0.99, for any o > 1, if X1, X5, X4 satisfy that,

p k p
Z ViX()i @ (1o Xh); @ (V5X3); — O < o, min Z (ViX1); @ (VaXa)i ® (VaX3)i — C|
=1 p i=1 p
then,
k p k p
Y XD (bX)i© (X5 — Al Sa_min_ ||y (ViX1)i ® (VaXa)i ® (V3X3)i — A
° X1,X2,X3 ||
=1 P =1 D
Proof. For simplicity, we define OPT to be
k p
i X1); X2)i X3);— A
o ain 2(‘/1 1)i ® (VaX2); ® (V3X3);
= P

Let T1 € R“*™ correspond to sampling according to the ¢, Lewis weights of V; € R™*b1 where
c1 = by. Let Th € R®?*™ be sampling according to the ¢, Lewis weights of V5 € R™*b2 where ¢y = by.
Let T3 € R%*™ be sampling according to the £, Lewis weights of V3 € R™*bs where c3 = bs.
For any a > 1, let X| € Rb1*F X! € Rb2xF X! € Rb¥K satisfy
||T1V1X{ ® TQVQXé & T3V3Xé — A(Tl, Ts, Tg)Hg

< « min HT1V1X1 X TQ‘/QXQ X T3‘/3X3 — A(Tl,TQ,Tg)Hg.
XléRblXk,XgERbQXk,X;:,ERb3Xk

First, we regard T as the sketching matrix for the remainder. Then by Lemma D.11 in [SWZ17]
and Theorem D.7, we have

5 o min ||ViX1 R THVoXo @ T3V3 X3 — A(I,TQ,Tg)Hg.
XleRblXk,XzGRbQXk,X3€Rb3Xk

Second, we regard T as the sketching matrix for V1 X ® VoXo @ T3V3X3 — A(I,1,73). Then by
Lemma D.11 in [SWZ17| and Theorem D.7, we have

IViX] @ VaXy © TV X5 — AL L, T3) |15

5 o min ||V1X1 ® VoXo @ T3V3 X3 — A(I,I,Tg)”i
XleRblXk,XQERbQXk,XgeRbSXk

106

Third, we regard T3 as the sketching matrix for 11 X7 ® V5 Xo ® V3X35 — A. Then by Lemma D.11
in [SWZ17] and Theorem D.7, we have

p p

k
ST (ViX)i @ (VaXh) @ (V3 X5) — A
i=1

k
D (ViX1)i @ (VaXa); ® (VaX3)i — A
i=1

< a min
X1,X2,X3

p p

O

E.4 Solving small problems

Combining Section B.5 in [SWZ17] and the proof of Theorem D.4, for any p = a/b with a,b are
integers, we can obtain the £, version of Theorem D 4.

E.5 Bicriteria algorithm

We present several bicriteria algorithms with different tradeoffs. We first present an algorithm that
runs in nearly linear time and outputs a solution with rank O(k?) in Theorem E.7. Then we show
an algorithm that runs in nnz(A) time but outputs a solution with rank poly(k) in Theorem E.8.
Then we explain an idea which is able to decrease the cubic rank to quadratic, and thus we can
obtain Theorem E.9.

Theorem E.7. Given a 3rd order tensor A € R"™ ™ "™ for any k > 1, let r = 6(k3) There
exists an algorithm which takes nnz(A) - O(k) +npoly (k) +poly(k) time and outputs three matrices
U, V,W € R"™" such that

T p
Y UieVioW;— Al <Ok**/?)log’n min || Ay, — Allp
Pl rank — k

P
holds with probability 9/10.

Proof. We first choose three dense Cauchy transforms S; € R %si According to Section B.7,
for each i € [3], AsS; can be computed in nnz(A) - O(k) time. Then we apply Lemma E.6. We
obtain three matrices Y7 = T1A151,Ys = ThA2S59,Ys = T3A3S53 and a tensor C' = A(Th,Ts,T3).
Note that for each i € [3], Y; can be computed in npoly(k) time. Because C = A(T1,T5,T3) and
Th, Ts, T3 € R"O%) are three sampling and rescaling matrices, C' can be computed in nnZ(A)+5(k3)

time. At the end, we just need to run an /)-regression solver to find the solution for the problem:

p
s1 S2 S3

min Z Z Z Xija(Y1); ® (Y2); @ (Y3);| »

X ERS1%s2Xs3 Pl
p
where (Y7); denotes the i-th column of matrix Y;. Since the size of the above problem is only
poly(k), this can be solved in poly(k) time. O

Theorem E.8. Given a 3rd order tensor A € R™™*"_ for any k > 1, let r = 6(14:15). There exists
an algorithm that takes nnz(A)+n poly(k)+poly(k) time and outputs three matrices U, V,W € R"*"
such that

r P
Z U;V,ieW, — A
i=1

< poly(k,logn) mi

A —A|P
rank —lrcl Ag H K Hp

P
holds with probability 9/10.

107

Proof. We first choose three sparse p-stable transforms S; € R X According to Section B.7,
for each i € [3], A;S; can be computed in O(nnz(A)) time. Then we apply Lemma E.6, and can
obtain three matrices Y7 = T1A4151,Ys = ThA259,Ys = T3A353 and a tensor C' = A(Th,T>,T3).
Note that for each ¢ € [3], ¥; can be computed in npoly(k) time. Because C' = A(T1,T5,T3) and
Ty, Ty, Ty € R™OF) are three sampling and rescaling matrices, C' can be computed in nnz(A)+6(/<:3)
time. At the end, we just need to run an ¢,-regression solver to find the solution to the problem,

p
s1 S2 S3

min Z Z Z XijaM)i® (Y2); @ (Ya), = C||

X6R31X32><S3 1:1]:1 l:1
p
where (Y7); denotes the i-th column of matrix Y;. Since the size of the above problem is only
poly(k), it can be solved in poly(k) time. O

Theorem E.9. Given a 3rd order tensor A € R™"™ " for any k > 1, e € (0,1), let r = O(k?).
There exists an algorithm which takes nnz(A) - O(k) + npoly(k) + poly(k) time and outputs three
matrices U, V,W € R™ " such that

T p
ZUZ-@V}@Wi — Al <O(K>P)log>n min || A —A|P
= , rank —k Ag
holds with probability 9/10.
Proof. The proof is similar to Theorem D.14. O

Algorithm 31 /,-Low Rank Approximation, Bicriteria Algorithm, rank—é(kQ), Input Sparsity
Time

1: procedure LPBICRITERIAALGORITHM(A, n, k) > Corollary E.10

2: 81 $— 89 < 83 < 6(]?)

3: For each i € [3], choose S; € R™Xsi to be the composition of a sparse p-stable transform
and a dense p-stable transform. > Part (I,IT) of Theorem E.2

4: Compute Ay - Sy, As - Ss.

5: For each i € [2], choose T; to be a sampling and rescaling diagonal matrix according to the
Lewis weights of A;S;, with t; = 6(14:) nonzero entries.

6: C(—A(Tl,TQ,I).

7 Bi"'(j_l)s1 — VeC((TlAlsl)i X (TQAQSQ)j),Vi S [81],]' S [82].

8: Form objective function miny |WB — Cs||;.

9: Run £)-regression solver to find w.

10: Construct U by copying (A;151); to the (i, j)-th column of U.
11: Construct V by copying (A2S2); to the (i,7)-th column of V.
12: return (7, ‘7, W,

13: end procedure

As for /1, notice that if we first apply a sparse Cauchy transform, we can reduce the rank of
the matrix to poly(k). Theyn we can apply a dense Cauchy transform and further reduce the
dimension, while only incurring another poly(k) factor in the approximation ratio. By combining
sparse p-stable and dense p-stable transforms, we can improve the running time from nnz(A) - O(k)
to be nnz(A) by losing some additional poly(k) factors in the approximation ratio.

108

Corollary E.10. Given a 3rd order tensor A € R™"™ " for any k > 1, e € (0,1), let r = O(k?).
There exists an algorithm which takes nnz(A) + n poly (k) + poly(k) time and outputs three matrices
UV, W € R"™" such that

r p
Z UioVioW,—A
i=1

holds with probability 9/10.

< poly(k,logn) min |4 — A}
- k

p

E.6 Algorithms

In this section, we show two different algorithms by using different kind of sketches. One is shown
in Theorem E.11 which gives a fast running time. Another one is shown in Theorem E.12 which
gives the best approximation ratio.

Theorem E.11. Given a 3rd tensor A € R"*" " for any k > 1, there exists an algorithm which
takes O(nnz(A)) + npoly (k) + 2°**) time and outputs three matrices U, V, W € R™* such that,

U@V @W — Al < poly(k,logn) min A" — Al

rank —k A’

holds with probability at least 9/10.

Proof. First, we apply part (II) of Theorem E.2. Then A;S; can be computed in O(nnz(A)) time.
Second, we use Lemma E.6 to reduce the size of the objective function from O(n?) to poly(k) in
npoly(k) time by only losing a constant factor in approximation ratio. Third, we use Claim B.15
to relax the objective function from entry-wise £,-norm to Frobenius norm, and this step causes us
to lose some other poly(k) factors in approximation ratio. As a last step, we use Theorem C.45 to
solve the Frobenius norm objective function. O

Theorem E.12. Given a 3rd order tensor A € R"™"™*" for any k > 1, there exists an algorithm
that takes nO®20%°) time and output three matrices U, V,W € R™ ¥ such that,

~(1.3—-1.5 .
UV eW - Al <Ok p)rangllg A/||A’—A||£.

holds with probability at least 9/10.

Proof. First, we apply part (III) of Theorem E.2. Then, guessing S; requires n®®) time. Second,

we use Lemma E.6 to reduce the size of the objective from O(n?) to poly(k) in polynomial time
while only losing a constant factor in approximation ratio. Third, we solve the small optimization
problem. O

E.7 CURT decomposition

Theorem E.13. Given a 3rd order tensor A € R™ "™ " let k > 1, and let Ug, Vg, W5 € R™F
denote a rank-k, a-approximation to A. Then there exists an algorithm which takes O(nnz(A)) +
O(n?) poly(k) time and outputs three matrices C € R™ ¢ with columns from A, R € R™" with
rows from A, T € R™ " with tubes from A, and a tensor U € R"™ with rank(U) = k such that
c=r=t=0(klogkloglogk), and

p

c T t

Y>3 D Uiju CioRj@T— Al <O(K*P)a min ||A — Al
P) rank —k A

holds with probability 9/10.

109

Proof. We define

OPT:= min [A"— Al
rank —k A’

We already have three matrices Ug € R"*F, Vg € R™* and W € R™** and these three matrices
provide a rank-k, v approximation to A, i.e.,

k p
E:@%%®(WﬂﬂgﬂVmi—A < aOPT. (46)
i=1 »

Let By = VBT ® Wg € R¥*"® denote the matrix where the i-th row is the vectorization of

(VB)i ® (Wg);. By Section B.3 in [SWZ17], we can compute D; € R™*"* which is a sampling
and rescaling matrix corresponding to the Lewis weights of B{ in O(n? poly(k)) time, and there are
dy = O(klog kloglog k) nonzero entries on the diagonal of Dy. Let A; € R™ " denote the matrix
obtained by flattening A along the i-th direction, for each i € [3].
Define U* € R™** to be the optimal solution to Urrﬂlgin kHUBl—Ang, U= A1D{(BD;)f € R™*F,
e n X

Vo € R to be the optimal solution to min kHV (JANC Wg) — As||p, and U’ to be the optimal
VeRnX

solution to min |UB1Dy — A1 Dq]fb.
UeRnxk
By Claim B.13, we have

|TB.Dy — Ay Dy < dy ?|U'B1 Dy — Ay Dy[L.
Due to Lemma E.11 and Lemma E.8 in [SWZ17], with constant probability, we have
1By = Aullp < &y ap, U By - A, (47)

where ap, = O(1).
Recall that (UT 0@ W}) € RF*"* denotes the matrix where the i-th row is the vectorization of
U; ® (Wg);, Vi € [k]. Now, we can show,

IVo- (@7 @ WJ) ~ Ay < 5By — A by Vo = argmin|[V - (07 © Wj) — As}
VeRnX
<& PP BL - Al by Equation (47)
< d, PP|UpBy - AyI8 by U* = argmin||[UB; — A, |2
UeRnxk
< O(di "*)a OPT. by Equation (46) (48)

We define By = U7 o W; . We can compute Dy € R *"* which is a sampling and rescaling
matrix corresponding to the £, Lewis weights of By in O(n?poly(k)) time, and there are dy =
O(klog kloglog k) nonzero entries on the diagonal of Ds.

Define V* € R™F to be the optimal solution of miny cgnxk ||V B2 — Aalfb, V = AyDy(BoDy)t €

R™F W, € R™* to be the optimal solution of min kHW (UToVT) - As|b, and V’ to be the
WeRn*
optimal solution of min kHVBQDQ — Ay Dolb.
VeRnx
By Claim B.13, we have

IV BsDy — AsDs||2 < dy P/?(|V' BaDa — AsDs 2.

110

Due to Lemma E.11 and Lemma E.8 in [SWZ17], with constant probability, we have
|VB2 = Asflf < dy ", | VB2 — Aallf, (49)
where ap, = O(1).
Recall that (U ® VT) € R¥"* denotes the matrix for which the i-th row is the vectorization

of U ® ‘/}i, Vi € [k]. Now, we can show,

Wo- (TT V) - A3}

< |VBy — As|l? by Wo = argmin|[W - (U7 © V1) — A3
W ERnxk
S dyPPVEB, — Ao|lf by Equation (49)
< défp/2||VOB2 — Aol by V* = E‘l/,]:‘ngiEHVBQ — Ao}
c n X
< O((dyd2)'"P/?)ac OPT.. by Equation (48) (50)

We define By = UToVT. We can compute D3 € R *"* which is a sampling and rescaling
matrix corresponding to the £, Lewis weights of B in O(n?poly(k)) time, and there are ds =
O(klog kloglog k) nonzero entries on the diagonal of Ds.

Define W* € R™*¥ to be the optimal solution to minyy cgaxx ||W B3—As]|5, W= A3Ds3(B3D3)f €
Rk and W’ to be the optimal solution to min |W B3Ds — A3Ds|/}.

WeRnxk
By Claim B.13, we have
IWB3Ds — A3Ds|| < dy */*|W'By D3 — A3 Dy
Due to Lemma E.11 and Lemma E.8 in [SWZ17], with constant probability, we have
IW B3 — As||2 < dy " ap,|[W*Bs — As]l%, (51)

where ap, = O(1). Now we can show,

IWBs — Agllh < dy™"|W* By — As|l, by Equation (51)
< dé_p/ZHWoBg — AsllE, by W* = argmin||W B3 — A3}

WeRnxk
< O((d1dads)*~P/?)a OPT. by Equation (50)

Thus, it implies,
p
< poly(k,logn) OPT.

p

)

—

PQW, — A

=

k
> O
=1

where fj = A1D1 (BlD1)T, ‘7 = AQDQ(BQDQ)T, I//V\ = A3D3(33D3)T.

111

F Robust Subspace Approximation (Asymmetric Norms for Arbi-
trary Tensors)

Recently, [CW15b| and [CW15a| study the linear regression problem and low-rank approximation
problem under M-Estimator loss functions. In this section, we extend the matrix version of the low
rank approximation problem to tensors, i.e., in particular focusing on tensor low-rank approximation
under M-Estimator norms. Note that M-Estimators are very different from Frobenius norm and
Entry-wise #1; norm, which are symmetric norms. Namely, flattening the tensor objective function
along any of the dimensions does not change the cost if the norm is Frobenius or Entry-wise ;-
norm. However, for M-Estimator norms, we cannot flatten the tensor along all three dimensions.
This property makes the tensor low-rank approximation problem under M-Estimator norms more
difficult. This section can be split into two independent parts. Section F.2 studies the £1-f5-f5 norm
setting, and Section F.3 studies the £1-£1-f5 norm setting.

F.1 Preliminaries

Definition F.1 (Nice functions for M-Estimators, My, £,, [CW1bal). We say an M -Estimator is
nice if M(x) = M(—=z), M(0) =0, M is non-decreasing in |z|, there is a constant Cpr > 0 and a
constant p > 1 so that for all a,b € Rsg with a > b, we have

(a) a

S

id
Cmi S
1

and also that M(x)% is subadditive, that is, M (x + y)% < M(x)% + M(y)%

Let My denote the set of such nice M-estimators, for p = 2. Let L, denote M -Estimators with
M(z) = |z|P and p € [1,2).
F.2 /;-Frobenius (a.k.a {;-f5-(5) norm

Section F.2.1 presents basic definitions and facts for the #1-f5-f5 norm setting. Section F.2.2 intro-
duces some useful tools. Section F.2.3 presents the “no dilation” and “no contraction” bounds, which
are the key ideas for reducing the problem to a “generalized” Frobenius norm low rank approximation
problem. Finally, we provide our algorithms in Section F.2.6.

F.2.1 Definitions

We first give the definition for the v-norm of a tensor, and then give the definition of the v-norm
for a matrix and a weighted version of the v-norm for a matrix.

Definition F.2 (Tensor v-norm). For an n x n X n tensor A, we define the v-norm of A, denoted
A, to be

n 1/p
(Z M(\Az‘,*,*HF)> 7
=1

where A; 1s the i-th face of A (along the 1st direction), and p is a parameter associated with the
function M (), which defines a nice M -Estimator.

112

Definition F.3 (Matrix v-norm). For an nxd matriz A, we define the v-norm of A, denoted || Al|,,
to be

> M| Aisll2)'?,
i=1

where A; x is the i-th row of A, and p is a parameter associated with the function M (), which defines
a nice M -Estimator.

Definition F.4. Given matriv A € R4, let A;, denote the i-th row of A. Let Ts C [n] denote
the indices © such that e; is chosen for S. Using a probability vector q and a sampling and rescaling
matriz S € R™™ from q, we will estimate ||A||, using S and a re-weighted version, ||S - ||y of
|- o, with

1/p

IS Al = | D wiM (|| Aisll2) |
1€Tg

where w}; = w;/q;. Since w' is generally understood, we will usually just write ||SA||,. We will also
need an “entrywise row-weighted” version :

1/p 1/p
W Wy

NSAIl = | D =l Adb | = > —MAy | .
. icTs jeld &

where A; ; denotes the entry in the i-th row and j-th column of A.

Fact F.5. For p =1, for any two matrices A and B, we have ||A+ B, < ||A|l, + || Bll». For any
two tensors A and B, we have ||A+ B, < || Alls + || Bl|v-

F.2.2 Sampling and rescaling sketches

Note that Lemmas 42 and 44 in [CW15a| are stronger than stated. In particular, we do not need
to assume X is a square matrix. For any m > z, if X € R¥™_ then we have the same result.

Lemma F.6 (Lemma 42 in [CW1bal). Let p > 0 and integer z > 0. For sampling matriz S,
suppose for a given y € R with failure probability & it holds that ||SAy|ly = (1 £ 1/10)||Ayl|ar-
There is K1 = O(2%/Chy) so that with failure probability §(Kar/Car) P, for a constant Ky, any
rank-z matriz X € R¥>™ has the property that if |AX||, > Kip, then |SAX|, > p, and that if
[AX ||y < p/Ky, then | SAX ||, < p.

Lemma F.7 (Lemma 44 in [CW15a]). Let 6, p > 0 and integer z > 0. Given matriz A € R"*? there
exists a sampling and rescaling matriz S € R™™ with r = O(y(A, M, w)e 2dz?log(z/€) log(1/5))
nonzero entries such that, with probability at least 1 — 6, for any rank-z matriz X € R¥™ we have
either

[SAX] = p,

or

(1-oAX], —ep < |SAX o < (1 +)| AX][s + €p.

113

Lemma F.8 (Lemma 43 in [CW15a|). Forr >0, let 7 =r/v(A, M,w), and let ¢ € R™ have
¢ = min{1,7y;(A, M,w)}.

Let S be a sampling and rescaling matriz generated using q, with weights as usual w}, = w;/q;. Let
W € R¥™? and § > 0. There is an absolute constant C so that for ¥ > Czlog(1/6)/€?, with
probability at least 1 — 0, we have

(1= [AW o, < [[SAW o0 < (1 + €)[[AW [|o -

F.2.3 No dilation and no contraction
Lemma F.9. Given matrices A € R™™ U € R™4 et V* = argmin || UV — Al,. If

rank —k VERdxm
S € R**™ has at most c1-dilation on UV* — A, i.e.,

[SOVT = A)lls <arl|UVT = All,

and it has at most co-contraction on U, i.e.,

1
vz € RY ||SUz|y > —||Uz]o,
C2
then S has at most (c2, c1 + é)—contmction on (U, A), i.e.,

¥ rank —k V € RU™ ||SUV — SA||, > Ci||Uv — Ay = (o1 + Ci)HUV* Al
2 2

Proof. Let A € R™™_ U € R™? and S € R**" be the same as that described in the lemma. Let
(V — V*); denote the j-th column of V — V*. Then V rank —k V € R¥*™

> ||SUV — SUV*||, — 1 [|[UV* — Al|,
= [SUV = V)lly = cr[UV* = Al

|ISUV — SA|, > ||SUV — SUV*||, — ||SUV* = SA|,

= Y ISUWV = V)l — e [UV* = Al
j=1
m 1 . .

> W =Vl — el UV - Al

j=1

1
= g”UV —UVHly —al||UV* = A,

v

1 1 ¥ *
> — UV =Ally = —[lUV* = Ally =1 [UV" = All,
Cc2 Cc2
1 1 -
= —UV = Ally = [(= +)|[UV" = Al |,
Cco C2

where the first inequality follows by the triangle inequality, the second inequality follows since S
has at most ¢; dilation on UV* — A, the third inequality follows since S has at most ¢y contraction
on U, and the fourth inequality follows by the triangle inequality. O

114

Claim F.10. Given matric A € R™™ for any distribution p = (p1,p2,--- ,pn) define random
variable X such that X = ||A;||2/p; with probability p; where A; is the i-th row of matriz A. Then
take m independent samples X', X2,--- . X™ and let Y = % Z;”Zl X7. We have

Pr[Y < 1000 A|l,] > .999.

Proof. We can compute the expectation of X7, for any j € [m)],
n
: | Aill2
R I L
i=1

Then E[Y] = 1 > BlX 9] = ||Al|,. Using Markov’s inequality, we have
Pr[Y > ||A4],] < .001.
O

Lemma F.11. For any fized U* € R™*?% and rank-k V* € R>™ with d = poly(k), there exists an
algorithm that takes poly(n,d) time to compute a sampling and rescaling diagonal matriz S € R™*™

with s = poly(k) nonzero entries such that, with probability at least .999, we have: for all rank-k
V € Réxm

\U*V* =U*V|, S ||SUV*=SU V|, S| UV*=UV|,.

Lemma F.12 (No dilation). Given matrices A € R™™ U* € R™? with d = poly(k), define

V* € R¥X™ to be the optimal solution min |\U*V — Al|,. Choose a sampling and rescaling
rank —k VeERdxm

diagonal matriz S € R™™ with s = poly(k) according to Lemma F.8. Then with probability at least
.99, we have: for all rank-k V € R¥™,
[SUTV = SA[l, S UV =U V| + OMUV" = Ally S UV = Ao

~

Proof. Using Claim F.10 and Lemma F.11, we have with probability at least .99, for all rank-k
Ve]Rclxm7

[SU*V — SAll,
< ||[SU*V = SUV*||, + |SUV* — SA|, by triangle inequality
S |SUV = SU VT, + O(1) | UV* — Al|, by Claim F.10
SOV =UVE, + 0()|UVF = A, by Lemma F.11
SOV = Ally + UV = A, + O)||U*VF — A, by triangle inequality
STV = Allo.

O

Lemma F.13 (No contraction). Given matrices A € R™™, U* € R™*? with d = poly(k), define

V* € R™ to be the optimal solution min |U*V — Al|,. Choose a sampling and rescaling
rank —k VERIx™

diagonal matriz S € R™™ with s = poly (k) according to Lemma F.8. Then with probability at least
.99, we have: for all rank-k V € R¥*™,
UV = Ally S STV = SA|l, + O)[UVT = Alfo.

~

Proof. This follows by Lemma F.9, Claim F.10 and Lemma F.12. O

115

F.2.4 Oblivious sketches, MSKETCH

In this section, we recall a concept called M-sketches for M-estimators which is defined in [CW15b].
M-sketch is an oblivious sketch for matrices.

Theorem F.14 (Theorem 3.1 in [CW15b|). Let OPT denote min,cga ||Ax — b||g. There is an
algorithm that in O(nnz(A))+poly(dlogn) time, with constant probability finds x’' such that ||Az’ —
blla < O(1) OPT.

Definition F.15 (M-Estimator sketches or MSKETCH [CW15b]). Given parameters N,n,m,b > 1,
define hmax = |logy(n/m)|, B = (b —b~max)/(b— 1) and s = Nhmax. For each p € [n], op, gp, by
are generated (independently) in the following way,

op < *1, chosen with equal probability,
gp € [N, chosen with equal probability,
hyp +t, chosen with probability 1/(8b") for t € {0,1,- - hmax}-

For each p € [n], we define j, = gp+ Nhy. Let w € R® denote the scaling vector such that, for each
j € ls],

Bbw | if there exists p € [n] s.t.j = Jjp,
wj =]
0 otherwise.

Let S € RNhwaxXn he sych that, for each j € [s],for each p € [n],

Sj,p =

— op, fj=g,+N-hy,
0, otherwise.

Let Dy, denote the diagonal matriz where the i-th entry on the diagonal is the i-th entry of w. Let
S = DyS. We say (S,w) or S is an MSKETCH.

Definition F.16 (Tensor |||, ,-norm). For a tensor A € R>*™X"2 gnd q vector w € , we define

d
1Al = D will A sll -
i=1
Let (S,w) denote an MSKETCH, and let S = D,,S. If v corresponds to a scale-invariant M-
Estimator, then for any three matrices U, V, W, we have the following,
[(SU) @V @ Wlpw = [(DuSU) @V @ W, = (SU) @V @ W|l,.

Fact F.17. For a tensor A € R™"™" " et S € R%*™ denote an MSKETCH (defined in F.15) with
s = poly(k,logn). Then SA can be computed in O(nnz(A)) time.

Lemma F.18. For any fized U* € R™*¢ and rank-k V* € R>™ with d = poly(k), let S € R**"
denote an MSKETCH (defined in Definition F.15) with s = poly(k,logn) rows. Then with probability
at least 999, we have: for all rank-k V € R¥>™,

\U*V* =U*V|, S ||SUV*=SU V|, S| UV*=UV|,.

116

Lemma F.19 (No dilation, Theorem 3.4 in [CW15b]). Given matrices A € R™ ™ U* € R™*4 ith

d = poly(k), define V* € R¥™ to be the optimal solution to min lU*V — A|l,. Choose
rank —k VERdxm

an MSKETCH S € R%*™ with s = poly(k,logn) according to Definition F.15. Then with probability
at least .99, we have: for all rank-k V € R&>™

ISUTV = SA[l, S |UTVT = UV, + O)[UTV" = Allp S |UTV = Allo.

Lemma F.20 (No contraction). Given matrices A € R™™, U* € R™*? with d = poly(k), define

V* € R™ 0 be the optimal solution to min |{U*V —All,. Choose an MSKETCH S € R**™
rank —k VERIxm

with s = poly(k,logn) according to Definition F.15. Then with probability at least .99, we have: for
all rank-k V € R>™

UV = Ally S ISUV = SA[l, + O [UTVT — A,

F.2.5 Running time analysis

Lemma F.21. Given a tensor A € R"*4? et § € R**" denote an MSKETCH with s rows. Let
SA denote a tensor that has size s X d x d. For each i € {2,3}, let (SA); € R¥™¥% denote a matriz
obtained by flattening tensor SA along the i-th dimension. For each i € {2,3}, let S; € R
denote a CountSketch transform with s; columns. For each i € {2,3}, let T; € R%*?% denote a
CountSketch transform with t; rows. Then

(I) For each i € {2,3}, (SA);S; can be computed in O(nnz(A)) time.

(IT) For each i € {2,3}, T;(SA);S; can be computed in O(nnz(A)) time.

Proof. Proof of Part (I). First note that (SA)252 has size n x Sa. Thus for each i € [d],j € [s2], we
have,

ds
((54)252)i5 = D ((SA)2)iaw (S2)ars by (SA)s € R, 55 € RT*2

=1

- ZZ ((SA)2)i,(y—1)s42(52) (y—1)s+2.

y=1 z=1

d s
= Z Z(SA)z,i,y(S2)(y—1)s+z,j by unflattening
y—l z=1

— ZZ <ZS”A“) (S2) (y—1)s42.7

y=12z=1 \z=1
d

= Zzzszx CAg gy SQ)(y—l)S‘FZJ'

y=1z=1z=1

For each nonzero entry A;;,, there is only one z such that S ; is nonzero. Thus there is only one
J such that (52)(,—1)s42,; is nonzero. It means that A, ;, can only affect one entry of ((SA)252)i ;-
Thus, (SA)2S52 can be computed in O(nnz(A)) time. Similarly, we can compute (SA)3S3 in
O(nnz(A)) time.

117

Proof of Part (IT). Note that T5(SA)2S5 has size t X so. Thus for each i € [ta],j € [s2], we have,

d ds
(T2(SA)252)i; = Z Z(TQ)i71-((SA)2)x’y/(SQ)y/J by (SA) € Rdxds
$:1 y’:l
d d s
= Z Z Z(TZ)LIE((SA)Q)x,(y—l)s+z(SQ)(y—l)s+z,j
z=1y=1 2=1
d d s
= Z Z Z(TZ)i,x(SA)z,m,y(SZ)(y—l)S_FZJ by unflattening
r=1y=1 2=1
d d s n
=PI NLIT LRI [
r=1y=1 2=1 w=1
d d s n

- Z Z Z Z(Tﬂi’x Sz Away - (SQ)(y—l)s—&-zJ'

r=1y=1 z2=1 w=1

For each nonzero entry A, ;,, there is only one z such that S ,, is nonzero. There is only one 4
such that (7%); , is nonzero. Since there is only one z to make S ,, nonzero, there is only one j, such
that (52)(y—1)s42,; is nonzero. Thus, T2(SA)252 can be computed in O(nnz(A)) time. Similarly, we
can compute T3(SA)3S3 in O(nnz(A)) time. O

F.2.6 Algorithms

We first give a “warm-up” algorithm in Theorem F.22 by using a sampling and rescaling matrix.
Then we improve the running time to be polynomial in all the parameters by using an oblivious
sketch, and thus we obtain Theorem F.23.

Algorithm 32 ¢;-Frobenius(¢1-3-¢3) Low-rank Approximation Algorithm, poly(k)-approximation

1: procedure L122TENSORLOWRANKAPPROX(A, n, k) > Theorem F.22
2 e+ 0.1.

3 s < poly(k, 1/e).

4: Guess a sampling and rescaling matrix S € R¥*™.

5: 82<—83%O(k)/6).

6 T < S9S3.

7 Choose sketching matrices So € R™$*52 G5 € RM™$*53,

8 Compute (SA)QSQ, (SA)gSg

9: Form V € R™*" by repeating (SA4)2S s3 times according to Equation (59).

10: Form W € R™ " by repeating (SA)3S3 so times according to Equation (60).

11: Form objective function ming cgnxr [|U - (VT ® WT) — AillF.
12: Use a linear regression solver to find a solution U.
13: Take the best solution found over all guesses.

14: return ﬁ, ‘7, w.
15: end procedure

Theorem F.22. Given a 3rd order tensor A € R™™" for any k > 1, let r = O(k?). There exists

118

an algorithm which takes nPY (%) time and outputs three matrices U, V,W € R"*" such that

UV eWw—Al, <poly(k) min [A"—Al,

holds with probability at least 9/10.

Proof. We define OPT as follows,

OPT= min |U®VeW-A|,= min
U,V,W eRnxk U,V,W cRnxk

k
Y UieV,eW,- A
i=1

v

Let A; € R™" denote the matrix obtained by flattening tensor A along the 1st dimension. Let
U* € R™** denote the optimal solution. We fix U* € R™** and consider this objective function,

min U@V eW -A|,= min (U VI oW’ -4

V,WER"Xk V,WER”Xk

: (52)

which has cost at most OPT, and where VI @ W' € RF*"* denotes the matrix for which the
i-th row is a vectorization of V; ® W;,Vi € [k]. (Note that V; € R" is the i-th column of matrix
V € R™F). Choose a sampling and rescaling diagonal matrix S € R™*" according to U*, which
has s = poly(k) non-zero entries. Using S to sketch on the left of the objective function when U*
is fixed (Equation (52)), we obtain a smaller problem,

min [[(SU") @V @ W — SA|,= min
V,WeRnxk V,W cRnxk

SU*-(View") -S4,

(53)

Let V', W' denote the optimal solution to the above problem, i.e.,

VW' = argmin [[(SU*)®@V @ W — SA|, .
V,WG]R”X"'

Then using properties (no dilation Lemma F.12 and no contraction Lemma F.13) of S, we have
|[U* @V @ W' - A||, <aOPT.

where « is an approximation ratio determined by S.
By definition of || - ||, and || - |]2 < || - |1 < Vdim]|| - ||2, we can rewrite Equation (53) in the
following way,

|(SU") @V oW — SA|,

_ Z ZZ(SU*) ®V®W)zj’l—(SA)i,j,l>2

i=1 \j=11=1

N[

VI

< /s ZZZ((SUH VW), - (SA)i,jJ)2
i=1 j=1 [=1
= Vs[|(SU) RV W — SA||p. (54)

Given the above properties of S and Equation (54), for any 8 > 1, let V”, W" denote a (-

approximate solution of min [[(SU*)®@V @ W — SA|p, ie.,
V,WGR”X’“

119

[(SUH @ V" @W" —SA||,<B- min [[(SU)@V oW — SA|p. (55)
V,WeRnxk

Then,
|[U*@V"oW" - Al < Vsaf-OPT. (56)

In the next few paragraphs we will focus on solving Equation (55). We start by fixing W* € R?**
to be the optimal solution of

i SUN @V @W — SA||p.
yyin 165U7) Ir

We use (SA)y € R™™ to denote the matrix obtained by flattening the tensor SA € R*™*™ along
the second direction. We use Zy = (SU*)T © (W*)T € R¥*"$ to denote the matrix where the i-th
row is the vectorization of (SU*); ® W}*. We can consider the following objective function,

min ||V Zs — (SA)a| .
VeRnxk

Choosing a sketching matrix So € R™*%2 with sy = O(k/€) gives a smaller problem,

min ||VZ252 — (SA)25:||F.
VeRnX

Letting V = (SA)2S9(Z252)" € R™¥K then
|V Zy — (SA)s||p < Le) min [[VZ = (SA)|r
1+e) min [[V((SU)T o (W)T) — (SA):|r

(
= VeRnxk
= (
= (

1+e¢) Véan |(SU*) @V @W* - SA|F by unflattening

14+¢€¢ min [[(SU)@V QW —SA|F. by definition of W* (57)
V,WeRnxk

We define Dy € R"*"* to be a diagonal matrix obrained by copying the n x n identity matrix
s times on n diagonal blocks of Dy. Then it has ns nonzero entries. Thus, D5 also can be thought
of as a matrix that has size n? x ns.

We can think of (SA4)252 € R"*2 as follows,

(SA)2Se = (A(S,1,1))2S52
= Ay - Dy - Sy by Dy can be thought of as having size n? x ns
2 . 2vn2 x
nxXns n<xn< MNSXs2

c2.11,
eIy

— A, ' .S,
CQ,nIn

where I,, is an n x n identity matrix, cg; > 0 for each i € [n], and the number of nonzero cy; is s.

For the last step, we fix SU* and V. We use (SA)3 € R™ " to denote the matrix obtained by
flattening the tensor SA € R¥*™*" along the third direction. We use Z3 = (SU*)T @ VI € RFxns

120

to denote the matrix where the i-th row is the vectorization of (SU*); ® V;. We can consider the
following objective function,

min HWZg - (SA)ZSHF
WeRnxk

Choosing a sketching matrix S3 € R"***3 with s3 = O(k/e) gives a smaller problem,

min ||[WZ353 — (SA)353||r.
WeRnxk

Let /W = (SA)gSg(ZgSg)T € R™ . Then

||WZ;3 — (SA);sllr < (1+4¢) WIEIEEX’“ \WZs — (SA)s|lr by property of S3
=(1+¢) min IW((SUHT @ VT — (SA)s||r by definition Zs
= n X
= (14¢) min [|[(SUH@V QW —SA|r by unflattening
WeRnxk
<1+ (SUHQVRW — SA|,. by Equation (57)

We define D3 € R"*"* to be a diagonal matrix formed by copying the n x n identity matrix s
times on n diagonal blocks of D3. Then it has ns nonzero entries. Thus, D3 also can be thought of
as a matrix that has size n? x ns and D3 is uniquely determined by S.

Similarly as to the 2nd dimension, for the 3rd dimension, we can think of (SA)3S3 as follows,

(SA)383 = (A(S,1,1))3S3

Ss by D5 can be thought of as having size n? x ns
—~—

As - D3
~
nxn2 n2xn? NSXs3

c31ln
c321y
= Az~ . - 53
C3,nIn

where I,, is an n x n identity matrix, cz; > 0 for each ¢ € [n] and the number of nonzero c3; is s.
Overall, we have proved that,

gnin [[(SU7) @ (A2D252X3) @ (A3D355X3) — SA|p < (1+ ?|(SU) @V eW —SA|p, (58)
2,43

where diagonal matrix Do € R™xn? (with ns nonzero entries) and D3 € R X0 (with ns nonzero
entries) are uniquely determined by diagonal matrix S € R™™"™ (s nonzero entries). Let X5 and X3
denote the optimal solution to the above problem (Equation (58)). Let V" = (A3D2S52X5) € R"*k
and W" = (A3D3S53X}%) € R™*. Then we have

U@ V" @W" — A, < VsaB OPT.
We construct matrix V € Rnxs253 by copying matrix (SA)2S52 € R"*%2 g3 times,

V = [(SA)2S2 (SA)2S> - (SA)2Ss.] (59)

121

We construct matrix W € Rnxs2s3 by copying the i-th column of matrix (SA)3S3 € R™ %3 into
(i—1)sg+ 1, -+ ,is9 columns of W,

W = [((SA)3S3)1 - ((SA)3S3)1 ((SA)3S3)2 - ((SA)3Sz)e -+ ((SA)3S3)ss -~ ((SA)3S3)s,-] (60)

Although we don’t know S, we can guess all of the possibilities. For each possibility, we can find
a solution U € R™*%2% to the following problem,

S2 83
pomin NS D Uit @ (SA)282)i @ ((S4)353); — A
i=1 j=1 v

52 83

=, min DD Ui-nysys - vee(((SA)2S2); @ ((SA)3S3);) — A
i=1 j=1)

s2 83

_ . . . i 7T (Gi—1)s3+5

B UGIE{I}LIXI}W% ZZU(@*USH] (V ow') Ay

=1 j=1

= min [|[U- VToW)-4
UcRn %5253

= min ||[UZ — A4,
UcRn*5253

5283

= min » [[UZ - A,

UcR"*5253 —

v

v

where the first step follows by flattening the tensor along the 1st dimension, U;_y) denotes the

s3+j
(i—1)s3+j-th column of U € R"*%2%3 A, € R™*"* denotes the matrix obtained by flattening tensor
A along the 1st dimension, the second step follows since VT o WT € R253€7% i5 defined to be the
matrix where the (i — 1)s3 + j-th row is vectorization of ((SA4)252); ® ((SA)3S53);, the fourth step
follows by defining Z to be V! ® WT, and the last step follows by definition of || - ||, norm. Thus,
we obtain a multiple regression problem and it can be solved directly by using [CW13, NN13].
Finally, we take the best U , ‘7, W over all the guesses. The entire running time is dominated by
the number of guesses, which is nP°Y(*) This completes the proof. O

Theorem F.23. Given a 3rd order tensor A € R™™ " for any k > 1, let r = O(k?). There exists
an algorithm which takes O(nnz(A)) + npoly(k,logn) time and outputs three matrices U,V,W €
R™ " such that

UV @W — A, <poly(k,logn) min [[A" — 4],

rank —k A’
holds with probability at least 9/10.
Proof. We define OPT as follows,
k
OPT= min [[U@VeW-Al,= mn D U;eV,eW,-A
U,V,W eRnxk U,V,W eRnxk im1

v

122

Algorithm 33 /;-Frobenius({;-f2-f3) Low-rank Approximation Algorithm, poly(k,logn)-
approximation

1: procedure L122TENSORLOWRANKAPPROX (A, n, k) > Theorem F.23
2: €<+ 0.1.

s < poly(k,logn).

Choose S € R**"™ to be an MSKETCH. > Definition F.15
89 < 83 < O(k/e)

to < t3 < poly(k/e).

T < S$283.

Choose sketching matrices Sy € R™$*%2 G € R™$%53,

Choose sketching matrices Ty € R2X" Ty € Rfsxn,

10: Compute (SA)2S52, (SA)3S5.

11: Complite TQ(SA)QSQ, Tg(SA)gSg.

12: Form V' € R™ " by repeating (5A4)2S2 s3 times according to Equation (69).

13: Form W € R™" by repeating (SA)3S3 s9 times according to Equation (70).

14: Form V € R%2*" by repeating T(SA)252 s3 times according to Equation (67).

15: Form W € R%*" by repeating T3(SA)3S53 s2 times according to Equation (68).

16: C «+ A(I,TQ,Tg).

17: Form objective function mingecgnxr |U - (VT ©) WT) — Ci|lF-

18: Use linear regression solver to find a solution U.

19: return U, V, W.

20: end procedure

Let A; € R™" denote the matrix obtained by flattening tensor A along the 1st dimension. Let
U* € R™F denote the optimal solution. We fix U* € R™** and consider the objective function,

Us-(Viow?h — 4, , (61)

v

min U@V W —A|,= min
V,WcRnxk V,WcRnxk

which has cost at most OPT, and where VI 0@ WT € RFXn* denotes the matrix for which the
i-th row is a vectorization of V; @ W;,Vi € [k]. (Note that V; € R™ is the i-th column of matrix
V € R™F). Choose an (oblivious) MSKETCH S € R**™ with s = poly(k,logn) according to
Definition F.15. Using MSKETCH S, w to sketch on the left of the objective function when U* is
fixed (Equation (61)), we obtain a smaller problem,

min [|(SU)@V@W —SA|,= min (ISU*- (VI oWT) -S4

62
V,WG]R"X"' V,WG]R"Xk ()

v
Let V', W' denote the optimal solution to the above problem, i.e.,

VI,W' = argmin [[(SU") @V @ W — SA|,.
V,WER”X’“

Then using properties (no dilation Lemma F.19 and no contraction Lemma F.20) of S, we have
|[U*@ V' @ W' — A||, < aOPT.

where « is an approximation ratio determined by S.

123

By definition of || - ||y and || - |l2 < || - |1 < Vdim|| - ||2, we can rewrite Equation (62) in the
following way,

|(SU") @V oW — SA|,

=S (S (v evew),, - (s4),)

i=1 \j=11=1

[V

=

<Vs Z Z Z (((SU*) QVOW), ;i — (SA)i,j,l)2
i=1 j=1 I=1
= Vs |(SUH) @V W — SA| (63)

Using the properties of S and Equation (63), for any 5 > 1, let V/, W” denote a S-approximation
solution of min ||(SU*) @V @ W — SA|, ie.,

V,WeRnxk
SUH@V"@W" - SA||,<B- mi SUHNQVOW — SA|p. 64
[(sU") @ V" @ lp<8 varﬁ}éixk”(yove I (64)
Then,
|[U*@V"oW" - Al < Vsaf-OPT. (65)

Let A denote SA. Choose S; € R™*5 to be Gaussian matrix with s; = O(k/e), Vi{2,3}. By a

similar proof as in Theorem F.22, we have if X/, X% is a S-approximate solution to

min [|(SU*) ® (425 X2) ® (A383X3) — SA|F,
X2,X3

then,
|U* @ (A\zszXz) ® (2353)(3) — Ally, < Vsap.

To reduce the size of the objective function from poly(n) to poly(k/e), we use perform an
“Input sparsity reduction” (in Lemma C.3). Note that, we do not need to use this idea to optimize
the running time in Theorem F.22. The running time of Theorem F.22 is dominated by guessing
sampling and rescaling matrices. (That running time is > nnz(A).) Choose T; € R%*" to be a
sparse subspace embedding matrix (CountSketch transform) with ¢; = poly(k, 1/¢), Vi € {2,3}.
Applying the proof of Lemma C.3 here, we obtain, if X}, X} is a S-approximate solution to

nin [[(SUY) © (T2(SA4)252X2) ® (T3(5A4)353X3) — SA|F,
2,43

then,
|U* @ ((SA)252X2) @ ((SA)353X3) — All, < v/saB. (66)

Similar to the bicriteria results in Section C.4, Equation (66) indicates that we can construct a
bicriteria solution by using two matrices (SA)2S52 and (SA)3S3. The next question is how to obtain
the final results U, V,W. We first show how to obtain U. Then we show to construct V and W.

124

To obtain ﬁ, we need to solve a regression problem related to two matrices V, W and a tensor
A(I, Ty, T3). We construct matrix V € R¥2%5253 by copying matrix Th(SA)2Sy € R2%52 s3 times,

V = [To(SA)9Sy Ta(SA)eSy - Ta(SA)2Ss). (67)

We construct matrix W € R¥*5253 by copying the i-th column of matrix T53(S5A4)3S3 € R%X53 into
(i—1)sy+1,--+ ,isy columns of W,

W=[F--F F--F - F,---F, (68)
where F' = T3(SA)3S3.

Thus, to obtain U € R%2% we just need to use a linear regression solver to solve a smaller
problem,

, —T —T
Ugﬂlglsgls3 ||U . (V OR14) - A(Ia T27T3)||F7

which can be solved in O(nnz(A)) + n poly(k, logn) time. We will show how to obtain V and w.

We construct matrix V' € R™"*25% by copying matrix (SA)257 € R"*%2 g3 times,
V= [(SA)2Sy (SA)2Sy -++ (SA)2S2.] (69)

We construct matrix W € R7xs2s3 by copying the i-th column of matrix (SA)3S3 € R™*%3 into
(1 —1)sa+ 1, -+ ,isy columns of W,

VT/:[F1~~F1 Fy--Fy - Fy--Fyl, (70)
where F' = (SA)3Ss. O

F.3 {¢-¢{-¢» norm

Section F.3.1 presents some definitions and useful facts for the tensor ¢1-£1-f5 norm. We provide
some tools in Section F.3.2. Section F.3.3 presents a key idea which shows we are able to reduce
the original problem to a new problem under entry-wise ¢; norm. Section F.3.4 presents several
existence results. Finally, Section F.3.6 introduces several algorithms with different tradeoffs.

F.3.1 Definitions

Definition F.24. (Tensor u-norm) For an n xn xn tensor A, we define the u-norm of A, denoted
|A||w, to be

1/p

YD M Aia) |

i=1 j=1

where A; j« is the (i,7)-th tube of A, and p is a parameter associated with the function M(), which
defines a nice M -Estimator.

Definition F.25. (Matriz u-norm) For an n X n matriz A, we define u-norm of A, denoted || A||v,
to be

n 1/p
<Z M(HAZ‘,*H2)> :
=1

where A; x is the i-th row of A, and p is a parameter associated with the function M (), which defines
a nice M -Estimator.

125

Fact F.26. For p =1, for any two matrices A and B, we have || A+ Bl|y < ||A|ly + || Bllw. For any
two tensors A and B, we have ||A+ Bl < ||Allu + || B|u-

F.3.2 Projection via Gaussians

Definition F.27. Let p > 1. Let Engl be an infinite dimensional ¢, metric which consists of a
coordinate for each vector r in the unit sphere S*~1. Define function f : S™' — R. The {1-norm
of any such f is defined as follows:

1/p
= ([rorar)

Claim F.28. Let f,(r) = (v,r). There exists a universal constant oy, such that

1follp = apllv]l2.

1/p
||fv||p=</ |<v,r>rpdr)
reSn—1
1/p
= ([10l feosoras)
pesSn—1
1/p
1oll> </ |coseypde>
peSn—1

= apl|vlo-

Proof. We have,

This completes the proof. O

Lemma F.29. Let G € RF*" denote i.i.d. random Gaussian matrices with rescaling. Then for any
v € R™, we have

Pr{(1 — Ollell> < |Gl < (1 + €)[ofls] > 1 — 272,

Proof. For each i € [k], we define X; = (v, g;), where g; € R" is the i-th row of G. Then X; =
> i=1v39i; and E[|X;|] = ap||v][2. Define Y = Zle |.Xi|. We have E[Y| = ko ||v]j2 = kag.
We can show

Pr[Y > (14 €)ayk] = Prle’ > es(1re)ark] for all s >0
< E[e?Y]/es(1He)onk by Markov’s inequality

k k
= emsrdank g s by Y =Y |X;|

i=1 =1

_ e—s(l—l—e)alk . (E[65|X1|])k

It remains to bound E[e**1]]. Since X; ~ A(0,1), we have that X; has density function e=*"/2,

126

Thus, we have,

V21 J o

1 oo, 2
1 2/2 (=972,
e e

\V 27 /—oo

= e%/2(erf(s/V2) + 1)
< e"/2((1 — exp(—2s* /7)) + 1) by 1 — exp(—da?/m) > erf(x)?
§€S2/2(\/2/7T8—|—1). byl—e <=z

Thus, we have
Pr[Y > (14 e)ark] < e s+ eks/2(1 4 g /2/7)F
_ e—s(1+e)o¢1k’eks2/26k'log(l+s\/2/7r)

e—s(1+e)o¢1k+k82/2+k-s\/2/7r

IN

IN

e~ ke?) by ay > 1/2/7 and setting s = €
[l

Lemma F.30. For any e € (0,1), let k = O(n/e?). Let G € RF*™ denote i.i.d. random Gaussian
matrices with rescaling. Then for any v € R™, with probability at least 1 — 2_9(”/62), we have : for
allv e R",

(1 =alvllz < [[Gullx < (1 + €]l

Proof. Let S denote {y € R™ | ||y|l2 = 1}. We construct a y-net so that for all y € S, there exists a
vector w € N for which [ly — w2 <. We set v =1/2.
For any unit vector y, we can write

y=y"+y +y’
where ||y?[|2 < 1/2¢ and 3° is a scalar multiple of a vector in NV. Thus, we have

Gyl = IG(° +y" +y* +--)lh

IN

[0.9]
Z Gy ||y by triangle inequality
=0

> 1+l
1=0

< i(ug)i

a =0 2t

< 14 O(e).

IN

Similarly, we can lower bound ||Gyl|; by 1 —O(¢). By Lemma 2.2 in [Wool4], we know that for any
v € (0,1), there exists a y-net N of S for which |[N| < (1 +4/~)". O

127

F.3.3 Reduction, projection to high dimension
Lemma F.31. Given a 3rd order tensor A € R™*"*" et S € R™S denote a Gaussian matriz with
= O(n/€®) columns. With probability at least 1 — 2-Un/e*) for any U, V,W € R™*we have
1-OlUeVeWw-Al, < UeVeW)s-As|, <1+ |UaV oW - A,.

Proof. By definition of the ® product between matrices and - product between a tensor and a
matrix, we have (U@ V @ W)S =U @V ® (SW) € R™™* We use A; . € R" to denote the
(i,7)-th tube (the column in the 3rd dimension) of tensor A. We first prove the upper bound,

UV eaW)S—AS|i= > Y [(U&V@W)ijx— A S,
i=1 j=1

<Y D A+ IURV@W)ijm — Aijul,
i=1 j=1
—(1+olUaVew - A,

where the first step follows by definition of tensor |- ||, norm, the second step follows by Lemma F.30,
and the last step follows by tensor entry-wise ¢; norm. Similarly, we can prove the lower bound,

(T oV eW)S—ASl = 33 (1- U eV e Wy - A,
=1 j=1

=(1-¢UaxVeW-A|,.
This completes the proof. O
Corollary F.32. For any a > 1, if U, V', W' satisfy

W' @V &W =S <7 min (4= 4],

rank —

then

1+e¢
V'@V @W Al Sy min | [l4x = Al

Proof. Let [7, V,W denote the optimal solution to minyank—x 4, |[(Ar — A)S|1. Let U*,V* W*
denote the optimal solution to minank —% 4, |[Ax — Ally. Then,

1
U@V W — All, < :H(U’@V’@W’ —A)S|h
1 ~ ~ —~

1
<T@V e W - S|y

RV @ W* — A,

which completes the proof. O

128

F.3.4 Existence results

Theorem F.33 (Existence results). Given a 3rd order tensor A € R™ ™" and a matriz S € R"™7",
let OPT denote mingayi kA, crnxnxn |[(Ar — A)S|1, let A= AS € R™"™" . For any k > 1, there

exist three matrices S € R™*51 Gy € R"*52 Gy ¢ R™*X53 sych that

min
X, €RS1 Xk,XzGRSQXk,XgeRSSXk

(A151X1) @ (A285X5) ® (A3S93X3) — /THl < a OPT,
or equivalently,

min
X1€R51 Xk,XzERS2Xk,X3€RS3Xk

((A181X1) © (A28:Xz) © (4353 Xs) = 4) S| < @ OPT,

holds with probability 99/100.
(I). Using a dense Cauchy transform,

51 =89 = 53 = O(k), a = O(k'®) log®n.
(IT). Using a sparse Cauchy transform,

51 =89 = 53 = O(k%), a = O(k'3%) log® n.
(ITI). Guessing Lewis weights,
51 =892 = s3 = O(k), a = O(k').

Proof. We use OPT to denote the optimal cost,

OPT := min H(Ak - A)SHl

rank —k Ag€RnXnxn
We fix V* € R™* and W* € R™*¥ to be the optimal solution to

min (U Ve W —A)S|;.
uv,w

We define Z; € RF*™ to be the matrix where the i-th row is the vectorization of V;* @ (SW;). We
define tensor

A= AS € RV

Then we also have A = A(I,1I,S) according to the definition of the - product between a tensor and
a matrix.

Let A\l € R™"™" denote the matrix obtained by flattening tensor A along the first direction. We
can consider the following optimization problem,

min
UeRnxk

Ua—&m.

Choosing S7 to be one of the following sketching matrices:

(I) a dense Cauchy transform,

(IT) a sparse Cauchy transform,

(ITT) a sampling and rescaling diagonal matrix according to Lewis weights.

Let ag, denote the approximation ratio produced by the sketching matrix S;. We use S; €
R™*51 to sketch on right of the above problem, and obtain the problem:

n
min [|[UZ1S1 — A1S1[|; = min UiZ1S1 — (A1S1) |,
UeRnka 191 — AiSilly U@Rnxk;” 151 — (A151)'[lx

129

where U? denotes the i-th row of matrix U € R™**¥ and (2151)2' denotes the i-th row of matrix
A1S7. Instead of solving it under ¢1-norm, we consider the ¢o-norm relaxation,

pin |UZ1S1 — 2151!!%: ZHU’Zﬁl (A151)']3.
=1

Let U € R"™* denote the optimal solution of the above optimization problem, so that U =
A181(Z,81)f. We plug U into the objective function under the ¢;-norm. By the property of
sketching matrix S; € R">51 we have,

WUZy — Aq]|1 < as, min || UZ; — Aq|1 = ag, OPT,
UGR"Xk

which implies that,
U@ V*® (SW*) — Al = |(Ue V@ WS — A, < as, OPT.

In the second step, we fix U € Rk and W* € R™F. Let Ay € R™™ denote the matrix
obtained by flattening tensor A € Rm along the second direction. We choose a sketching
matrix Sy € R"™2. Let Zy = UT ® (SW*)T € RF*" denote the matrix where the i-th row is the
vectorization of U; ® (SWZ). Define V= IZQSQ(ZQSQ)T. By the properties of sketching matrix Ss,
we have

|V Zy — Ay, < ag,as, OPT,

In the third step, we fix ﬁ € Rk and V € R, Let A3 € R™" denote the matrix
obtalned by flattening tensor A e Rxnxm along the third direction. We choose a sketching matrix
S3 € R™ %53 Let Z3 € RF*"* denote the matrix where the i-th row is the vectorization of U ® V
Define W’ = A383(Z353)t € R™* and W = A395(Z355)" € R"**. Then we have,

W' = A3S5(Z3S5)!
= (A(I,1,5))355(Z353)"
= (97 A3)S5(Z355)"
= S'w

By properties of sketching matrix S5, we have
W' Zs — As||y < ag,ag,as, OPT.
Replacing W’ by S’Tﬁ/\, we obtain,
W' Zs — A3y = |STW Z5 — Ag|ly = |STWZs — ST As||y = (U@ V @ W — A)S||;.
Thus, we have

min
X1€R51 Xk’X2€R82Xk’XseRSSXk

(gllel) ® (2{25’2){2) &® (A\353X3) — A\Hl < ag, 08,08, OPT.

130

F.3.5 Running time analysis

Fact F.34. Given tensor A € R™"™ " and a matriv B € R™? with d = O(n), let AB denote an
n X n x d size tensor, For each i € [3], let (AB); denote a matriz obtained by flattening tensor AB
along the i-th dimension, then

(AB); € R (AB), € R (AB)3 € R,

For each i € [3], let S; € R™*%i denote a sparse Cauchy transform, T; € R%*™. Then we have,

(I) If T\ denotes a sparse Cauchy transform or a sampling and rescaling matriz according to the
Lewis weights, T1(AB)151 can be computed in O(nnz(A)d) time. Otherwise, it can be computed in
O(nnz(A)d + nsltl).

(IT) If Ty denotes a sparse Cauchy transform or a sampling and rescaling matriz according to the
Lewis weights, To(AB)2Sa can be computed in O(nnz(A)d) time. Otherwise, it can be computed in
O(nnz(A)d + nsata).

(II1) If T3 denotes a sparse Cauchy transform or a sampling and rescaling matriz according to the
Lewis weights, T3(AB)3Ss can be computed in O(nnz(A)d) time. Otherwise, it can be computed in
O(nnz(A)d + dssts).

Proof. Part (I). Note that Ty (AB)1S; € R*t and (AB); € R™" for each i € [t1],] € [s1],

n nd

(T1(AB)1S)ij = Y > (T1)ia((AB)1)ay (S1)y 5

r=1y'=1

= Y Y (1)ie((AB)1) g (y—1)ar=(S1) (y—1)ds25

z=1y=1 2=1
n n d
= Z Z Z(Tl)i,x(AB)x,yz(Sl)(yfl)dJrz,j
z=1y=1 2=1
n n d n
- Z Z Z(Tl)ivx Z(Aw,wa,z)(51)(y71)d+z,j
rz=1y=12=1 w=1
n n n d
- Z Z(Tl)i,x Z Avyw Z Bu,z(S1) (y—1)d-4 2,
z=1y=1 w=1 =1

We look at a non-zero entry A, , . and the entry B, .. If T; denotes a sparse Cauchy transform
or a sampling and rescaling matrix according to the Lewis weights, then there is at most one pair
(4,7) such that (T1)izAzywBuw,2(51)(y—1)d+z,; 18 non-zero. Therefore, computing 71(AB)1S; only
needs nnz(A)d time. If T} is not in the above case, since Sj is sparse, we can compute (AB)157 in
nnz(A)d time by a similar argument. Then, we can compute 77(AB)1.51 in nt;s; time.

Part (II). It is as the same as Part (I).

131

Part (IIT). Note that T3(AB)3Ss € R*53 and (AB)s € R¥"*. For each i € [t3],] € [s3],

d n?
(Tg(AB)gSg)iJ’ = Z Z(TS)i,x((AB)3)x,y/(53)y’7j

r=1y'=1

d n n
= > D) (13)i2((AB)3)a (y—1)n+2(93) (y—1)nt 2.

r=1y=1 2z=1
d n n
= Z Z Z(TIS)i,x(AB)y,z,x(SS)(y—l)n—i-z,j
r=1y=1 2z=1
d n n

= 220 Wiz) AyewBua(S) g1z
w=1

z=1y=1 z=1

Similar to Part (I), if 7 denotes a sparse Cauchy transform or a sampling and rescaling matrix
according to the Lewis weights, computing T5(AB)3S3 only needs nnz(A)d time. Otherwise, it
needs dtsss + nnz(A)d running time.

O

F.3.6 Algorithms

Algorithm 34 ¢1-¢1-f>-Low Rank Approximation algorithm, input sparsity time

1: procedure L112TENSORLOWRANKAPPROXINPUTSPARSITY (4, n, k) > Theorem F.35

2 n < O(n). N

3 81 ¢ S9 < 83 O(k5)

4: Choose S € R™ ™ to be a Gaussian matrix.

5: Choose S1 € R"™*51 to be a sparse Cauchy transform. > Part (II) of Theorem F.33

6 Choose Sy € R"*%2 tg be a sparse Cauchy transform.

7 Choose S3 € R™X53 t0 be a sparse Cauchy transform.

8 Form A = AS.

9: Compute 121\151, 121\252, and 121\353 L R R

10: Y1,Y5,Y3,C %LIPOLYKSIZEREDUCTION(A,Alsl,AQSQ,A353,n, n,n, s, SQ,Sg,k) >
Algorithm 21

11: Create s1k + sok + ssk variables for each entry of Xy, X5, X3.

12: Form objective function [|(Y1X1) ® (YaX2) ® (Y3X3) — C|/%.

13: Run polynomial system verifier.

14: return A151X1,A282X2,A353X3

15: end procedure

Theorem F.35. Given a 3rd order tensor A € R™"™ " for any k > 1, there exists an algorithm
which takes O(nnz(A)n) + O(n) poly (k) +n2°*) time and outputs three matrices U, V, W € R"*k
such that,

U@V @W — A, <poly(k,logn) min |A"— Al,,
rank —k A’

holds with probability at least 9/10.

132

Proof. We first choose a Gaussian matrix S € R"*™ with m = O(n). By applying Corollary F.32,
we can reduce the original problem to a “generalized” ¢; low rank approximation problem. Next, we
use the existence results (Theorem F.33) and polynomial in k size reduction (Lemma D.8). At the
end, we relax the ¢1-norm objective function to a Frobenius norm objective function (Fact D.1). O

Algorithm 35 /¢1-¢1-f5-Low Rank Approximation Algorithm, 6(k:2/3)

1: procedure L112TENSORLOWRANKAPPROXK(A,n, k) > Theorem F.36

2 n <+ O(n). N

3 S1 (—SQ%Sg%O(k?).

4: Choose S € R™7 to be a Gaussian matrix.

5: Guess a diagonal matrix S; € R™*%1 with s; nonzero entries. > Part (III) of Theorem F.33

6 Guess a diagonal matrix So € R"*%2 with sy nonzero entries.

7 Guess a diagonal matrix S3 € R 3 with S3 nonzero entries.

8 Form A = AS.

9: Compute 2151, EQSQ, and ;1\353 R R

10: Y1,Y5, Y5, C <—L1POLYKSIZEREDUCTION(£, A151, Ay Ss, /TgSg,n,n,ﬁ, S1, 82, 83, k) >
Algorithm 21

11: Create s1k + sok + ssk variables for each entry of Xy, X5, X3.

12: Form objective function [|(Y1.X1) ® (YaX2) ® (Y3X3) — CJ)1.

13: Run polynomial system verifier.

14: return A151X1,A252X2,A353X3

15: end procedure

Theorem F.36. Given a 3rd order tensor A € R™"™", for any k > 1, there exists an algorithm
which takes n®®20%) time and outputs three matrices U, V,W € R™* such that,

IUQV@W — All, < O®k?) min A" — All.,

holds with probability at least 9/10.

Proof. We first choose a Gaussian matrix S € R"*™ with m = O(n). By applying Corollary F.32,
we can reduce the original problem to a “generalized” ¢; low rank approximation problem. Next,
we use the existence results (Theorem F.33) and polynomial in k size reduction (Lemma D.8). At
the end, we solve an entry-wise #; norm objective function directly. O

Theorem F.37. Given a 3rd order tensor A € R™*"™*" for any k > 1, let r = O(k%). There is an
algorithm which takes O(nnz(A)n) + O(n) poly(k) time and outputs three matrices U, V,W € R™"*"
such that

|U @V @W = All, < poly(logn. k) _min |4k — Al
rank — k

holds with probability at least 9/10.

Proof. We first choose a Gaussian matrix S € R™ ™ with m = O(n). By applying Corollary F.32,
we can reduce the original problem to a “generalized” ¢; low rank approximation problem. Next,
we use the existence results (Theorem F.33) and polynomial in k size reduction (Lemma D.8). At
the end, we solve an entry-wise £1 norm objective function directly. O

133

Algorithm 36 ¢1-¢1-f>-Low Rank Approximation Algorithm, Bicriteria Algorithm

1: procedure L112TENSORLOWRANKAPPROXBICTERITERIA(A, n, k) > Theorem F.37

2: n < O(n).

3 S9 ¢ S3 < 5(k5)

4 to < t3 6(](3)

5: T < S983.

6 Choose S € R™ ™ to be a Gaussian matrix.

7 Form A = AS € RvXnxT,

8: Choose a sketching matrix Sy € R"*52 with so nonzero entries (Sparse Cauchy transform),
for each i € {2, 3}. > Part (II) of Theorem F.33

9: Choose a sampling and rescaling diagonal matrix D; according to the Lewis weights of &Si
with ¢; nonzero entries, for each i € {2, 3}.

10: Form V € R™%" by setting the (i, j)-th column to be (A2S55);.

11: Form W € R"*" by setting the (4,7)-th column to be (A3S53);.

12: Form matrix B € Rt by setting the (i,7)-th column to be the vectorization of
(T2 A2S2); ® (T3A3S3);.

13: Solve mingy ||U - B — (A(I, Ty, T3)) 1|1

14: return (7, ‘7, /W

15: end procedure

G Weighted Frobenius Norm for Arbitrary Tensors

This section presents several tensor algorithms for the weighted case. For notational purposes,
instead of using U, V, W to denote the ground truth factorization, we use Uy, Us, Us to denote the
ground truth factorization. We use A to denote the input tensor, and W to denote the tensor
of weights. Combining our new tensor techniques with existing weighted low rank approximation
algorithms [RSW16] allows us to obtain several interesting new results. We provide some necessary
definitions and facts in Section G.1. Section G.2 provides an algorithm when W has at most r
distinct faces in each dimension. Section G.3 studies relationships between r distinct faces and
r distinct columns. Finally, we provides an algorithm with a similar running time but weaker
assumption, where W has at most r distinct columns and r distinct rows in Section G.4. The result
in Theorem G.2 is fairly similar to Theorem G.5, except for the running time. We only put a very
detailed discussion in the statement of Theorem G.5. Note that Theorem G.2 also has other versions
which are similar to the Frobnius norm rank-% algorithms described in Section 1. For simplicity of
presentation, we only present one clean and simple version (which assumes Ay, exists and has factor
norms which are not too large).

G.1 Definitions and Facts

For a matrix A € R™ " and a weight matrix W € R"*™ we define ||W o A||r as follows,
1
2

Wodlr= (> W2

i=1 j=1

134

For a tensor A € R™*™*™ and a weight tensor W € R™*™"*" we define ||W o A||r as follows,

2

WoAlp=[> D> W2,A%,

i=1 j=1 [=1

For three matrices A € R™*™ U € R™** V € R¥*™ and a weight matrix W, from one perspective,
we have

|V =)o Wk = SNWV =AY o Wil =3 |(UV — A) Dy 3
i=1 =1

where W* denote the i-th row of matrix W, and Dy € R™*™ denotes a diagonal matrix where
the j-th entry on diagonal is the j-th entry of vector W*. From another perspective, we have

IOV = A) o Wik = 3 IUV; = A e Will3 =D _II(UV; = 4;)Dw, |3
j=1 J=1

where W denotes the j-th column of matrix W, and Dy, € R™*" denotes a diagonal matrix where
the i-th entry on the diagonal is the i-th entry of vector W;.
One of the key tools we use in this section is,

Lemma G.1 (Cramer’s rule). Let R be an n X n invertible matriz. Then, for each i € [n],j € [n],

(R™Y)] = det(RT))/ det(R),

where R:;'. 1s the matrix R with the i-th row and the j-th column removed.

G.2 r distinct faces in each dimension

Notice that in the matrix case, it is sufficient to assume that ||A’||r is upper bounded [RSW16].
Once we have that ||A’||F is bounded, without loss of generality, we can assume that U; is an
orthonormal basis| CW15a, RSW16]. If U is not an orthonormal basis, then let U{ R denote a QR
factorization of Uy, and then write Uj = RU;. However, in the case of tensors we have to assume
that each factor |[U/||r is upper bounded due to border rank issues (see, e.g., [DSL0S]).

Theorem G.2. Given a 3rd order n x n X n tensor A and an n xn X n tensor W of weights with r
distinct faces in each of the three dimensions for which each entry can be written using O(n®) bits,
for § >0, define OPT = infrank —t 4, ||W o (Ar — A)H% Let k > 1 be an integer and let 0 < e < 1.

If OPT > 0, and there exists a rank-k A = Uy @ U5 @ U3 tensor (with size n X n xn) such that
W o (A, — A)||7 = OPT, and max;eps) |Uf||p < 20(") then there exists an algorithm that takes
(nnz(A) 4+ nnz(W) + n200k/0)pn00®) time in the unit cost RAM model with words of size O(logn)
bits'’ and outputs three n x k matrices Uy, Uy, Us such that

W o (U @ Uy @ Us — A)||5 < (14 €) OPT (71)

holds with probability 9/10.

10The entries of A and W are assumed to fit in n® words.

135

Algorithm 37 Weighted Tensor Low-rank Approximation Algorithm when the Weighted Tensor
has r Distinct Faces in Each of the Three Dimensions.
procedure WEIGHTEDRDISTINCTFACESIN3DIMENSIONS(A, W, n,r, k, €) > Theorem G.2
for j=1—3do
sj < O(k/e).
Choose a sketching matrix S; € R %55
fori=1—1rdo
Create k x s1 variables for matrix P; ; € REXs5
end for
fori=1—ndo 4
Write down (U;) = A Dy, S;P(PyiPl) .
end for
end for L R
Form ||[W o (U ® Uy ® Uz — A)||%.
Run polynomial system verifier.
return Uy, Us, Us
end procedure

Proof. Note that W has r distinct columns, rows, and tubes. Hence, each of the matrices W7, Wy, W3
€ R™"” has at most r distinct columns, and at most r distinct rows. Let Uy, Us, U3 € R™** denote
the matrices satisfying |W o (U} ® Uy ® Ui — A)||% = OPT. We fix U; and Uj, and consider a
flattening of the tensor along the first dimension,
min ||(U1Z; — A1) o Wi)% = OPT,
UleR"Xk
where matrix Z; = U} T © U; " has size k x n? and for each i € [k] the i-th row of Z; is vec((Us); ®
(U3);). For each i € [n], let W} denote the i-th row of n x n? matrix Wy. For each i € [n], let Dy

denote the diagonal matrix of size n? x n?, where each diagonal entry is from the vector W} € R™.

Without loss of generality, we can assume the first r rows of W; are distinct. We can rewrite the
objective function along the first dimension as a sum of multiple regression problems. For any n x k
matrix Uy,

n
2 i j 2
(U121 = Ar) o WillE = D |Ui Z1 Dyyi — A1 Dyl 3. (72)
i=1
Based on the observation that W has r distinct rows, we can group the n rows of W1 into r groups.
We use g1,1,91,2,** , g1, to denote r sets of indices such that, for each i € gy ;, Wi = Wy. Thus we
can rewrite Equation (72),

n
|01 21— Ay o Wiy = 3 Ui Zi Dy — AiDyy3

i=1
r . .

= > > IUiZ1Dyys — A1 Dy 5
j=1li€g ;

We can sketch the objective function by choosing Gaussian matrices S; € R X1 with s = O(k/e).

n
> IUfZ1 Dy Sy — Ai Dy S 13-
i=1

136

Let ﬁl denote the optimal solution of the sketch problem,

U, = arg mlnz HUlZlDWzsl Al DW151H2
UleRnxk

By properties of S1([RSW16]), plugging U € R™F into the original problem, we obtain,

n

> U121 Dyyy — A Dy |3 < (1 +¢) OPT.
=1

Note that U; € R"** also has the following form. For each i € [n],

Ul A Dwz51(Z1Dwz81)
= A1 Dy S1(Z1Dy51) T ((Z1Dyy51)(Z1 Dy S1) 1) ™!

Note that W7 has r distinct rows. Thus, we only have r distinct lei. This implies that there are r

distinct matrices Z1Dy,: 51 € RF*s1 Using the definition of gy j, for j € [r], for each i € g1; C [n],
we have

= Alewljsl(Zllegsl) by le = Wj,

which means we only need to write down r different ZlDWj S1. For each k x s1 matrix ZlDWj S1,
1 1

we create k X s1 variables to represent it. Thus, we need to create rks; variables to represent r
matrices,

{Zllelsl, Zllele, ey ZlDWIT;Sfl}
For simplicity, let Py ; € RFXs1 denote Zllei S1. Then we can rewrite Ui € RF as follows,
Ul = AiDy;SiP(PLiPl) ™

If Pl,iPlTi € R*** has rank k, then we can use Cramer’s rule (Lemma G.1) to write down the inverse
of PLiPl—l’—i. However, vector WIZ could have many zero entries. Then the rank of Pl,ipl—l,— ; can be
smaller than k. There are two different ways to solve this issue.

One way is by using the argument from [RSW16], which allows us to assume that Py ; P,’, € R¥*k
has rank k. 7

The other way is straightforward: we can guess the rank. There are k possibilities. Let ¢t; < k
denote the rank of P; ;. Then we need to figure out a maximal linearly independent subset of rows
of Pi;. There are 20(k) possibilities. Next, we need to figure out a maximal linearly independent
subset of columns of P;;. We can also guess all the possibilities, which is at most 20(k) " Because
we have r different P ;, the total number of guesses we have is at most 20("k) Thus, we can write
down (Plyipl—l,—i)_l according to Cramer’s rule.

After (71 is obtained, we will fix (71 and U3 in the next round. We consider the flattening of the
tensor along the second direction,

: _ 2
pmin (U222 — Az) o Wal|F,

137

where n x n? matrix A, is obtained by flattening tensor A along the second dimension, k x n? matrix

Z5 denotes (7; oU; T and n x n? matrix W is obtained by flattening tensor W along the second
dimension. For each i € [n], let Wi denote the i-th row of n x n? matrix Wa. For each i € [n],
let lei denote the diagonal matrix which has size n? x n? and for which each entry is from vector

Wi e R™. Without loss of generality, we can assume the first r rows of Wy are distinct. We can
rewrite the objective function along the second dimension as a sum of multiple regression problems.
For any n x k matrix Us,

1(U2Za — Ag) o Wal|} = > |U3Z2Dyys — A5 Dyl 3. (73)
=1

Based on the observation that W5 has r distinct rows, we can group the n rows of W?2 into r groups.

We use g2.1,92.2,- - , g2, to denote r sets of indices such that, for each i € go ;, WQZ = WQJ Thus we
obtain,

|(UaZs — Az) o Wallh = > U3 Za Dy — As Dyl
=1

T
= Z Z U322 Dyy; *AzszgH%-

j=li€ga ;

We can sketch the objective function by choosing a Gaussian sketch 55 € R Xs2 with s9 = O(k/e).
Let Uy denote the optimal solution to the sketch problem. Then Us has the form, for each i € [n],

U3 = A3 Dy Sa(Za Dy Sa)'.

Similarly as before, we only need to write down r different matrices ZQDW21'S1, and for each of
them, create k x sp variables. Let Pp; € RE*s2 denote Zngé-Sg. By our guessing argument, we
can obtain (72.

In the last round, we fix Uy and Us. We then write down Us. Overall, by creating [= O(rk?/e)
variables, we have rational polynomials U;(z), Us(z), Us(z). Putting it all together, we can write
this objective function,

min |0 (z) @ Ua(w) @ Us(w) — A) o W[E.

s.t. hu(a:) #0,Vi € [r].
hgﬂ‘(l') #0,Vi € [T]
h3’i($) 7é 0,Vi € [7“]

where hy;(z) denotes the denominator polynomial related to a full rank sub-block of P ;(x). By
a perturbation argument in Section 4 in [RSW16|, we know that the h;;(z) are nonzero. By
a similar argument as in Section 5 in [RSW16], we can show a lower bound on the cost of the
denominator polynomial hj;(z). Thus we can create new bounded variables zjii,--- ,x34; to
rewrite the objective function,

138

Dninq(z)/p(x).

)

s.t. hii(x)r = 0,Vi € [r].

hoi(x)xi1ryi = 0,Vi € [r].
3,2($)$l+2r+z 0 Vi € [}

Hh x)h3 ()

Note that the degree of the above system is poly(kr) and all the equality constraints can be merged
into one single constraint. Thus, the number of constraints is O(1). The number of variables is
O(rk?/e).

Using Theorem B.11 and a similar argument from Section 5 of [RSW16|, we have that the
minimum nonzero cost is at least 2*"620(”62/6). Combining the binary search explained in Sec-
tion C(similar techniques also can be found in Section 6 of [RSW16|) with the lower bound we

obtained, we can find the solution for the original problem in time,

(nnz(A) + nnz(W) + n26(7"k2/6))n0(6).

G.3 r distinct columns, rows and tubes

Lemma G.3. Let W € R™ "™ " denote a tensor that has r distinct columns and v distinct rows,
then W has

(I) r distinct column-tube faces.

(IT) r distinct row-tube faces.

Proof. Proof of Part (I). Without loss of generality, we consider the first (which is the bottom one)
column-row face. Assume it has r distinct rows and r distinct columns. We can re-order all the
column-tube faces to make sure that all the n columns in the bottom face have been split into r
continuous disjoint groups Cj, e.g., {C1,Cy, - ,C,} = [n]. Next, we can re-order all the row-tube
faces to make sure that all the n rows in the bottom face have been split into r continuous disjoint
groups R;, e.g., {R1, Ra,- -, R} = [n]. Thus, the new bottom face can be regarded as r x r groups,
and the number in each position of the same group is the same.

Suppose that the tensor has r + 1 distinct column-tube faces. By the pigeonhole principle there
exist two different column-tube faces belonging to the same group Cj, for some i € [r]. Note that
these two column-tube faces are the same by looking at the bottom (column-row) face. Since they
are distinct faces, there must exist one row vector v which is not in the bottom (column-row) face,
and it has a different value in coordinates belong to group C;. Note that, considering the bottom
face, for each row vector, it has the same value over coordinates belonging to group C;. But v has
different values in coordinates belong to group C;. Also, note that the bottom (column-row) face
also has r distinct rows, and v is not one of them. This means there are at least r 4+ 1 distinct
rows, which contradicts that there are r distinct rows in total. Thus, there are at most r distinct
column-tube faces.

Proof of Part (II). It is similar to Part (I). O

139

W1)i,i—1ynt1 = Wi i

(W2)j.a=1ynti = Wi

(W3)1,(i—1yn+j = Wiz

Figure 7: Let W denote a tensor that has columns(red), rows(green) and tubes(blue). For each
i € [3], let W; denote the matrix obtained by flattening tensor W along the i-th dimension.

Cy Cy C3
Ry — — —
Ry = e S5y
Ry — — —
W**l W**Q W**n

Figure 8: Each face W, ,; is a column-row face. W, . 1 is the bottom column-row face. » = 3. The
blue blocks represent column-tube faces, the red blocks represent column-tube faces.

Corollary G.4. Let W € R™"*" denote a tensor that has r distinct columns, r distinct rows, and
r distinct rubes. Then W has r distinct column-tube faces, r distinct row-tube faces, and r distinct
column-row faces.

Proof. This follows by applying Lemma G.3 twice. O

140

Thus, we obtain the same result as in Theorem G.2 by changing the assumption from r distinct
faces in each dimension to r distinct columns, r distinct rows and r distinct tubes.

G.4 r distinct columns and rows

The main difference between Theorem G.2 and Theorem G.5 is the running time. The first one
takes 20("**/9) time and the second one is slightly longer, 20(r?k?/e) By Lemma G.3, r distinct
columns in two dimensions implies r distinct faces in two of the three kinds of faces. Thus, the
following theorem also holds for r distinct columns in two dimensions.

Algorithm 38 Weighted Tensor Low-rank Approximation Algorithm when the Weighted Tensor
has r Distinct Faces in Each of the Two Dimensions.
procedure WEIGHTEDRDISTINCTFACESIN2DIMENSIONS(A, W, n,r, k, €) > Theorem G.5
for j=1—3do
sj < O(k/e).
Choose a sketching matrix S; € R X85
if j # 3 then
fori=1—rdo
Create k x s; variables for matrix P; ; € RExs5
end for
end if
fori=1—ndo
Write down (U) = A Dy, S P(PyiPl) .
end for
end for L R
Form ||[W o (U; ® Uy ® Uz — A)||%.
Run polynomial system verifier.
return Uy, Us, Us
end procedure

Theorem G.5. Given a 3rd order n X n xn tensor A and an n xn X n tensor W of weights with r
distinct faces in two dimensions (out of three dimensions) such that each entry can be written using
O(n%) bits for some § > 0, define OPT = infrank & 4, ||W o (Ax — A)||%. For any k > 1 and any
0<e<l.

(I) If OPT > 0, and there exists a rank-k A = U; @ Uy ® U3 tensor (with size n x n X n) such
that |W o (Ax — A)||F = OPT, and maxcpy |U;||F < 20(°) then there exists an algorithm that
takes (nnz(A) + nnz(W) + n200**/)n00) time in the unit cost RAM model with words of size
O(logn) bits'! and outputs three n x k matrices Uy, Us, Us such that

W o (U @ Uy @ Us — A)||5 < (14 €) OPT (74)

holds with probability 9/10.

(IT) If OPT > 0, Ay, does not exist, and there exist three n x k matrices Uy, Us, Uy where each
entry can be written using O(n’) bits and |W o (U] @ Uy @ U; — A)||% < (1 + ¢/2) OPT, then we
can find U, V,W such that (74) holds.

"The entries of A and W are assumed to fit in n’ words.

141

(III) If OPT = 0, Ay, exists, and there exists a solution U;,Us,Us such that each entry of the
matriz can be written using O(n®) bits, then we can obtain (74).
(IV) If OPT = 0, and there exist three n x k matrices U1, Uz, Us such that max;eg |Uf||F <

20("6) and
W o (Uy ® Uy @ Us — A)||% < (1+¢) OPT +272"), (75)

then we can output Uy, Us, Us such that (75) holds.
(V) Further if Ay exists, we can output a number Z for which OPT < Z < (1 +¢) OPT.
For all the cases, the algorithm succeeds with probability at least 9/10.

Proof. By Lemma G.3, we have W has r distinct column-tube faces and r distinct row-tube faces.
By Claim G.7, we know that W has R = 2°9("1°87) distinct column-row faces.

We use the same approach as in proof of Theorem G.2 (which is also similar to Section 8 of
[RSW16]) to create variables, write down the polynomial systems and add not equal constraints.
Instead of having 3r distinct denominators as in the proof of Theorem G.2, we have 2r + R.

We create | = O(rk?/€) variables for {Zllel S1, ZlDW1251, e ,ZlDW{Sl}. Then we can write

down U; with r distinct denominators g;(z). Each g;(z) is non-zero in an optimal solution using
the perturbation argument in Section 4 in [RSW16]. We create new variables zg;1; to remove
the denominators g;(x), Vi € [r]. Then the entries of U, are polynomials as opposed to rational
functions.

We create | = O(rk?/€) variables for {ZQDW21 So, ZQDW22S2, “++, ZoDwy Sa}. Then we can write

down ﬁg with 7 distinct denominators g,4;(z). Each g,4+;(z) is non-zero in an optimal solution using
the perturbation argument in Section 4 in [RSW16]. We create new variables x9;,4; to remove
the denominators g,4i(x), Vi € [r]. Then the entries of Uy are polynomials as opposed to rational
functions.

Using U, and Us we can express Us with R distinct denominators fi(z), which are also non-zero
by using the perturbation argument in Section 4 in [RSW16]|, and using that W3 has at most this
number of distinct rows. Finally we can write the following optimization problem,

oin - p(2)/q(2)
st gi(@)zy; —1=0,Vi € [r]
9r+i(@) T4+ — 1 =0,Vi € [r]
I3 (x) #0,9j € [R]

R
q(z) =[] £ (@)
j=1

We then determine if there exists a solution to the above semi-algebraic set in time
(poly(k, T)R)O(rkg/e) — 26(’!’2]?2/6)‘

Using similar techniques from Section 5 of [RSW16], we can show a lower bound on the cost similar
to Section 8.3 of [RSW16|, namely, the minimum nonzero cost is at least

526(r2k2/e)

277’7,

142

Cy Cy C3 Cr Co C3 Ch Cy C3

Rl R1 Rl
R 2 | A R
R3 R3 R3
W*,*,l W*,*,2 W*,*,n
&) Cy Cs Cq (& Cs Cq Co Cs
Ry Ry Ry
R 2 | S S S S R
W*,*,l W*,*,Q W*,*,n
Cl CQ Cd Cl Cz 03 C] CQ 05
Rl R1 Rl
Ry Roll e e Ry
R3 R3 RS
W*,*Arl W*,*,Q W*,*,n

Figure 9: Each face W, . ; is a column-row face. W, , 1 is the bottom column-row face. » = 3. The
blue blocks represent |C3| column-tube faces. The green blocks represet |R3| row-tube faces. In
each column-row face, the intersection between blue faces and green faces is a size |R3| x |C3| block,
and all the entries in this block are the same.

Combining the binary search explained in Section C (a similar techniques also can be found in
Section 6 of [RSW16]) with the lower bound we obtained, we can find a solution for the original
problem in time

(nnz(A) + nnz(W) + n25(r2k2/6))n0(5).
O

Remark G.6. Note that the running time for the Frobenius norm and for the £1 norm are of the
form poly(n) + exp(poly(k/e)) rather than poly(n) - exp(k/e). The reason is, we can use an input
sparsity reduction to reduce the size of the objective function from poly(n) to poly(k).

Claim G.7. Let W € R denote a third order tensor that has r distinct columns and r distinct rows.
Then it has 29071987 distinet column-row faces.

143

Proof. By similar arguments as in the proof of Lemma G.3, the bottom (column-row) face can be
split into r groups C1,Co, - - - , C, based on r columns, and split into r groups R1, Rs, - - , R, based
on rows. Thus, the bottom (column-row) face can be regarded as having r x r groups, and the
number in each position of the same group is the same.

We can assume that all the 72 blocks in the bottom column-row face have the same size. Other-
wise, we can expand the tensor to the situation that all the r? blocks have the same size. Because
this small tensor is a sub-tensor of the big tensor, if the big tensor has at most t distinct column-row
faces, then the small tensor has at most ¢ distinct column-row faces.

By Lemma G.3, we know that the tensor W has at most r distinct column-tube faces and row-
tube faces. Because it has 7 distinct column-tube faces, then all the faces belonging to coordinates
in C, are the same. Thus, all the columns belonging to C; and in the second column-row face are
the same. Similarly, we have that all the rows belonging to R, and in the second column-row face
are the same. Thus we have that all the entries in block Cr U R, and in the second column-row
faces are the same. Further, we can conclude, for every column-row face, for every C; U R; block,
all the entries in the same block are the same.

The next observation is, if there exist 72 + 1 different values in the tensor, then there exist either
r distinct columns or r distinct rows. Indeed, otherwise since we have r distinct columns, each
column has at most r distinct entries given our bound on the nunber of distinct rows. Thus, the r
distinct columns could have at most 72 distinct entries in total, a contradiction.

For each column-row face, there are at most r? blocks, and the value in each block can have at
most r2 possibilities. Thus, overall we have at most (r2)"* = 20(

By using different argument, we can improve the above bound. Note that we already show in
each column-row face of a tensor, it has 72 blocks, and all the values in each block have to be the
same. Since we have r distinct rows, we can fix the those r distinct rows. If we copy row v into
one row of R;, then we have to copy row v into every row of R;. This is because if R; contains two
distinct rows, then there must exist a block C; for which the entries in block R; U C;j are not all the
same. Thus, for each row group, all the rows in that group are the same.

Now, for each column-row face, consider the leftmost r blocks, Ry UC7, RoUCY, -+, R, UC}.
There are at most r possible values in each block, because we have r distinct rows in total. Overall
the total number of possibilities for the leftmost r blocks is at most (r)" = 29("1°87) " Once the
leftmost r blocks are determined, the remaining r(r — 1) are also determined. This completes the
proof.

2
r71087) column-row faces.

O

Also, notice that there is an example that has 2°"1°87) distinct column-row faces. For the

bottom column-row faces, there are r x r blocks for which all the blocks have the same size, the
blocks on the diagonal have all 1s, and all the other blocks contain Os everywhere. For the later
column-row faces, we can arbitrarily permute this block diagonal matrix, and the total number of
possibilities is Q(r!) > 2%(rlogr),

144

H Hardness

We first provide definitions and results for some fundamental problems in Section H.1. Section H.2
presents our hardness result for the symmetric tensor eigenvalue problem. Section H.3 presents
our hardness results for symmetric tensor singular value problems, computing tensor spectral norm,
and rank-1 approximation. We improve Héastad’s NP-hardness|Has90| result for tensor rank in
Section H.4. We also show a better hardness result for robust subspace approximation in Section H.5.
Finally, we discuss several other tensor hardness results that are implied by matrix hardness results
in Section H.6.

H.1 Definitions

We first provide the definitions for 3SAT , ETH , MAX-3SAT , MAX-E3SAT and then state some
fundamental results related to those definitions.

Definition H.1 (3SAT problem). Given n variables and m clauses in a conjunctive normal form
CNF formula with the size of each clause at most 3, the goal is to decide whether there exists an
assignment to the n Boolean variables to make the CNF formula be satisfied.

Hypothesis H.2 (Exponential Time Hypothesis (ETH) [IPZ98]). There is a 6 > 0 such that the
3SAT problem defined in Definition H.1 cannot be solved in O(2°") time.

Definition H.3 (MAX-3SAT). Given n variables and m clauses, a conjunctive normal form CNF for-
mula with the size of each clause at most 3, the goal is to find an assignment that satisfies the largest
number of clauses.

We use MAX-E3SAT to denote the version of MAX-3SAT where each clause contains exactly 3
literals.

Theorem H.4 ([Has01]). For every § > 0, it is NP-hard to distinguish a satisfiable instance of
MAX-E3SAT from an instance where at most a 7/8+ 9§ fraction of the clauses can be simultaneously
satisfied.

Theorem H.5 (|Has01, MR10]). Assume ETH holds. For every é > 0, there is no 20" *D) 4ime
algorithm to distinguish a satisfiable instance of MAX-E3SAT from an instance where at most a
fraction T/8 4+ & of the clauses can be simultaneously satisfied.

We use MAX-E3SAT(B) to denote the restricted special case of MAX-3SAT where every variable
occurs in at most B clauses. Hastad [Has00| proved that the problem is approximable to within
a factor 7/8 + 1/(64B) in polynomial time, and that it is hard to approximate within a factor
7/8 4 1/(log B)*M). In 2001, Trevisan improved the hardness result,

Theorem H.6 ([Tre01]). Unless RP=NP, there is no polynomial time (7/8+5/v/B)-approzimate
algorithm for MAX-E3SAT(B) .

Theorem H.7 (|[Has01, Tre01, MR10]). Unless ETH fails, there is no 20" ="M) time (7/8+5/vB)-
approzimate algorithm for MAX-E3SAT(B) .

Theorem H.8 ([LMS11]). Unless ETH fails, there is no 2°") time algorithm for the Independent
Set problem.

Definition H.9 (MAX-CUT decision problem). Given a positive integer ¢* and an unweighted graph
G = (V, E) where V is the set of vertices of G and E is the set of edges of G, the goal is to determine
whether there is a cut of G that has at least ¢* edges.

145

Note that Feige’s original assumption|[Fei02] states that there is no polynomial time algorithm
for the problem in Assumption H.10. We do not know of any better algorithm for the problem in
Assumption H.10 and have consulted several experts'? about the assumption who do not know a
counterexample to it.

Assumption H.10 (Random Exponential Time Hypothesis). Let ¢ > In2 be a constant. Consider
a random 3SAT formula on n variables in which each clause has 3 literals, and in which each of the
8n3 clauses is picked independently with probability c/n*. Then any algorithm which always outputs
1 when the random formula is satisfiable, and outputs 0 with probability at least 1/2 when the random
formula is unsatisfiable, must run in 2¢'" time on some input, where ¢ > 0 is an absolute constant.

The 4SAT-version of the above random-ETH assumption has been used in [GL04| and [RSW16]
(Assumption 1.3).

H.2 Symmetric tensor eigenvalue

Definition H.11 (Tensor Eigenvalue [HL13]). An eigenvector of a tensor A € R ™ is a nonzero
vector x € R™ such that

Z Z A jrriry = Axg, Vk € [n]
i=1 j=1
for some A € R, which is called an eigenvalue of A.

Theorem H.12 ([N103]). Let G = (V, E) on v vertices have stability number (the size of a mazi-
mum independent set) o(G). Let n = v—l—@ and S* = {(z,y) € R" xR*C=D/2 |jz|3+|yl3 =

1}. Then,
VU TRV L, D mai
i<4,(4,5)¢ E

For any graph G(V, E), we can construct a symmetric tensor A € R?*"*" For any 1 <i < j <
k<w, let

AL isi<isvk=v+6(i,5) () ¢ B,
Gk 0 otherwise,

where ¢(i,7) = (i —1)v—1i(i —1)/2+ j — i is a lexicographical enumeration of the v(v — 1)/2 pairs
1 < j. For the other cases i < k < j, ---, k < j <1, we set

Aijr = Aigj = Ajik = Ajhi = Akij = Ak ji-
If two or more indices are equal, we set A; j = 0. Thus tensor T" has the following property,
A(z,2,2) =6 Z TiT Y s
i<g,(4,9)¢ B

where z = (z,y) € R™

12Personal communication with Russell Impagliazzo and Ryan Williams.

146

Thus, we have

A= max A(z,z,z)= max 6 E i Yi -
z€Sn—1 (zy)esn—t =
i<j,(3,§)¢E

Furthermore, A is the maximum eigenvalue of A.

Theorem H.13. Unless ETH fails, there is no 2°V™ time to approzimate the largest eigenvalue of
an n-dimensional symmetric tensor within (1 £ O(1/n)) relative error.

Proof. The additive error is at least

B 1/(v—=1)—1/v v 1) — 1/)2
\/1—1/v—\/1—1/(v—1)—\/1_1/U+\/1_1/(U_1)21/(1) =1/v=1/v"

Thus, the relative error is (1 £ ©(1/v?)). By the definition of n, we know n = ©(v?). Assuming
ETH , there is no 2°) time algorithm to compute the clique number of G. Because the clique
number of G is a(G), there is no 2°(*) time algorithm to compute «(G). Furthermore, there is no
2°(%) time algorithm to approximate the maximum eigenvalue within (1 + ©(1/v?)) relative error.
Thus, we complete the proof. O

Corollary H.14. Unless ETH fails, there is no polynomial running time algorithm to approximate
the largest eigenvalue of an n-dimensional tensor within (1+0(1/log?"7(n))) relative-error, where
v > 0 is an arbitrarily small constant.

Proof. We can apply a padding argument here. According to Theorem H.13, there is a d-dimensional
tensor such that there is no 2°(V®) time algorithm that can give a (1 + ©(1/d)) relative error

approximation. If we pad Os everywhere to extend the size of the tensor to n = od =772

, Where
7' > 0 is a sufficiently small constant, then poly(n) = 20(\/@, sod= log2+o('yl)(n). Thus, it means
that there is no polynomial running time algorithm which can output a (1 4 1/(log?*?))-relative
approximation to the tensor which has size n.

O

H.3 Symmetric tensor singular value, spectral norm and rank-1 approximation

[HL13| defines two kinds of singular values of a tensor. In this paper, we only consider the following
kind:

Definition H.15 ({; singular value in [HL13|). Given a 3rd order tensor A € R™M*"2X"3 the
number o € R is called a singular value and the nonzero u € R™ v € R™ w € R™ are called
singular vectors of A if

ng N3

E E Ai7j7kvjwk = ou;,Vi € [nl]
j=1k=1

ny ns

g E A; jruswy, = ovj,Vj € [no]
i=1 k=1

ny ne2

Z Z A jruivy = owy,Vk € [ng].

i=1 j=1

147

Definition H.16 (Spectral norm [HL13|). The spectral norm of a tensor A is:
Alx,y,z
Al = sup AL
2,20 | Z[2llyl2]]2]]2
Notice that the spectral norm is the absolute value of either the maximum value of m
or the minimum value of it. Thus, it is an fs-singular value of A. Furthermore, it is the maximum
£s-singular value of A.

Theorem H.17 (|Ban38|). Let A € R™*"*" be a symmetric 3rd order tensor. Then,
A A
zyzzollZl2llyll2llzlle a0 [z

It means that if a tensor is symmetric, then its largest eigenvalue is the same as its largest
singular value and its spectral norm. Then, by combining with Theorem H.13, we have the following
corollary:

Corollary H.18. Unless ETH fails,

1. There is no 2°0V™ time algorithm to approzimate the largest singular value of an n-dimensional
symmetric tensor within (14 ©(1/n)) relative-error.

2. There is no 2°0V™ time algorithm to approzimate the spectral norm of an n-dimensional sym-
metric tensor within (1 4+ ©(1/n)) relative-error.

By Corollary H.14, we have:
Corollary H.19. Unless ETH fails,

1. There is no polynomial time algorithm to approximate the largest singular value of an n-
dimensional tensor within (14 ©(1/log*™7(n))) relative-error, where v > 0 is an arbitrarily
small constant.

2. There is no polynomial time algorithm to approximate the spectral norm of an n-dimensional
tensor within (1+0(1/1og?t (n))) relative-error, where v > 0 is an arbitrarily small constant.

Now, let us consider Frobenius norm rank-1 approximation.

Theorem H.20 (|Ban38|). Let A € R™*"™*" be a symmetric 3rd order tensor. Then,

min |[A—ocu®@v@uw|p= min [[A-w@uv|F.
020,]|ull2=lv[2=[lwl2=1 AZ0,[|vll2=1

Furthermore, the optimal o and X may be chosen to be equal.
Notice that
|4 - cug oo w|} = |AIE - 20 A0, v,0) + o2u @ o w|.
Then, if ||ul2 = ||[v||2 = ||lw||2 = 1, we have:
A —ou®v@w|:=]|A|% - 204(u,v,w) + o2

When A(u,v,w) = o, then the above is minimized.
Thus, we have:

1A - ou@v @ wl + | Al3 = |4l

020, [Jull2=]lv]l2=]lw|l2=1

It is sufficient to prove the following theorem:

148

Theorem H.21. Given A € R™™ " ynless ETH fails, there is no 2°0V time algorithm to compute
u', v, w' € R"™ such that
|A—v'@v@uw|:<(1+e¢ min [|[A-u®vew|,
u,v,wER™
where € = O(1/n?).
Proof. Let A € R™"™*™ be the same hard instance mentioned in Theorem H.12. Notice that

each entry of A is either 0 or 1. Thus, miny ,pern [|[A — v ® v @ w||% < ||A]|%. Notice that
Theorem H.12 also implies that it is hard to distinguish the two cases ||Alj2 < 24/2/3- /1 —1/cor
|All2 > 24/2/3-y/1 —1/(c+ 1) where ¢ is an integer which is no greater than \/n. So the difference
between (24/2/3 - /1 —1/c)? and (2/2/3-1/1 —1/(c+1))? is at least ©(1/n). Since || A% is at
most n (see construction of A in the proof of Lemma H.12), ©(1/n) is an ¢ = O(1/n?) fraction of
ming , were ||A — 4 ® v ® w||%. Because

min A - u®@v@w|E + A3 = |4,

u,v,WwER™
if we have a 2°0V™) time algorithm to compute «/,v’, w’ € R™ such that

[A—v' @v @uw||% < (1+€ min [|[A-—u®v®w|%
u,v,WER™

for € = O(1/n?), it will contradict the fact that we cannot distinguish whether ||Alj2 < 2./2/3 -
V1—=1/cor ||All2 >2+/2/3-/1—-1/(c+1). O
Corollary H.22. Given A € R™*™*" ynless ETH fails, for any e for which % > ¢ > c¢/n? where ¢

s any constant, there is no 20"V time algorithm to compute u',v',w’ € R™ such that

[A—v/ @V @uw|%2<(1+e min ||[A-u®v®w|.
u,v,wER”
Proof. If ¢ = Q(1/n?), it means that n = Q(1/,/€). Then, we can construct a hard instance B
with size m x m x m where m = ©(1/,/€), and we can put B into A, and let A have zero entries
elsewhere. Since B is hard, i.e., there is no 200m /) = go(c™/") running time to compute a rank-1
approximation to B, this means there is no go(e7/%) running time algorithm to find an approximate
rank-1 approximation to A. O

Corollary H.23. Unless ETH fuils, there is no polynomial time algorithm to approximate the best
rank-1 approzimation of an n-dimensional tensor within (1+©(1/1og?*7(n))) relative-error, where
v > 0 s an arbitraridy small constant.

Proof. We can apply a padding argument here. According to Theorem H.21, there is a d-dimensional
tensor such that there is no 2°V9 time algorithm which can give a (1 + ©(1/d%)) relative approxi-
mation. Then, if we pad with Os everywhere to extend the size of the tensor to n = 2d(1_wl)/2 where
7' > 0 is a sufficiently small constant, then poly(n) = 20Vd) and d4 = log2+0(7/)(n). Thus, it
means that there is no polynomial time algorithm which can output a (1+1/(log?*?))-relative error
approximation to the tensor which has size n. O

H.4 Tensor rank is hard to approximate

This section presents the hardness result for approximating tensor rank under ETH . According
to our new result, we notice that not only deciding the tensor rank is a hard problem, but also
approximating the tensor rank is a hard problem. This therefore strengthens Hastad’s NP-Hadness
[Has90| for computing tensor rank.

149

i - 1 C :

N \\k\\‘ : o
° %‘x‘\> 9_ 23

T “’\\\\v/i’ . C

L5 =~ O Cs

=
L6 — ® Cs
z7 @ Cy

® G
®Cio

Figure 10: Cover number. For a 3SAT instance with n variables and m clauses, we can draw a
bipartite graph which has n nodes on the left and m nodes on the right. Each node (blue) on the
left corresponds to a variable z;, each node (green) on the right corresponds to a clause C;. If either
x; or Z; belongs to clause C}, then we draw a line between these two nodes. Consider an input
string y € {0,1}7. There exists some unsatisfied clauses with respect to this input string y. For
for example, let C, Co and C3 denote those unsatisfied clauses. We want to pick a smallest set of
nodes on the left partition of the graph to guarantee that for each unsatisfied clause in the right
partition, there exists a node on the left to cover it. The cover number is defined to be the smallest
such number over all possible input strings.

H.4.1 Cover number

Before getting into the details of the reduction, we provide a definition of an important concept
called the “cover number” and discuss the cover number for the MAX-E3SAT(B) problem.

Definition H.24 (Cover number). For any 3SAT instance S with n variables and m clauses, we
are allowed to assign one of three values {0,1,%} to each variable. For each clause, if one of the
literals outputs true, then the clause outputs true. For each clause, if the corresponding variable of
one of the literals is assigned to , then the clause outputs true. We say y € {0,1}" is a string, and
z € {0,1,%}" is a star string. For an instance S, if there exists a string y € {0,1}" that causes all
the clauses to be true, then we say that S is satisfiable, otherwise it is unsatisfiable. For an instance
S, let Zg denote the set of star strings which cause all of the clauses of S to be true. For each star
string z € {0,1,%}", let star(z) denote the number of xs in the star-string z. We define the “cover
number” of instance S to be

cover-number(S) = IniZn star(z).
FASVAS

Notice that for a satisfiable 3SAT instance S, the cover number p is 0. Also, for any unsatisfiable
3SAT instance S, the cover number p is at least 1. This is because for any input string, there exists
at least one clause which cannot be satisfied. To fix that clause, we have to assign * to a variable

150

belonging to that clause. (Assigning * to a variable can be regarded as assigning both 0 and 1 to a
variable)

Lemma H.25. Let S denote a MAX-E3SAT(B) instance with n variables and m clauses and S
suppose S is at most 7/8+ A satisfiable, where A € (0,1/8). Then the cover number of S is at least
(1/8 = A)m/B.

Proof. For any input string y € {0,1}", there exists at least (1/8 — A)m clauses which are not
satisfied. Since each variable appears in at most B clauses, we need to assign * to at least (1/8 —
A)m/B variables. Thus, the cover number of S is at least (1/8 — A)m/B. O

We say x1, s, -+ ,x, are variables and x1,%1, T2, T2, - , Ty, Ty are literals.

Definition H.26. For a list of clauses C' and a set of variables P, if for each clause, there exists
at least one literal such that the corresponding variable of that literal belongs to P, then we say P
covers L.

H.4.2 Properties of 3SAT instances

Fact H.27. For any 3SAT instance S with n variables and m = ©(n) clauses, let ¢ > 0 denote a
constant. If S is (1—c)m satisfiable, then let y € {0,1}"™ denote a string for which S has the smallest
number of unsatisfiable clauses. Let T denote the set of unsatisfiable clauses and let b denote the
number of variables in T. Then Q((em)'/3) < b < O(em).

Proof. Note that in S, there is no duplicate clause. Let T denote the set of unsatisfiable clauses by
assigning string y to S. First, we can show that any two literals z;, T; cannot belong to T' at the
same time. If x; and T; belong to the same clause, then that clause must be an “always” satisfiable
clause. If x; and Z; belong to different clauses, then one of the clauses must be satisfiable. This
contradicts the fact that that clause belongs to T'. Thus, we can assume that literals x1,z9, -, xp
belong to T.

There are two extreme cases: one is that each clause only contains three literals and each literal
appears in exactly one clause in 7. Then b = 3cm. The other case is that each clause contains
3 literals, and each literal appears in as many clauses as possible. Then (g) = cm, which gives
b=0((cm)'/3). O

Lemma H.28. For a random 3SAT instance, with probability 1 — 2~ 2(lognloglogn) there is no literal
appearing in at least logn clauses.

Proof. By the property of random 3SAT , for any literal x and any clause C, the probability that z
appears in C' is %, ie, Prlx € O] = 2i = ©(1/n). Let p denote this probability. For any literal z,

n

151

the probability of appearing in at least logn clauses (out of m clauses) is

Pr[x appearing in > logn clauses |

-5 (o
i=logn
/2 m " /m
= > <Z.>p(1—p) Dy <i>p(1—p) B
i=logn i=m/2
m/2 U m m
S sy 3 (7)o oy (=p) <1 () < fem
i=logn i=m/2
< (6(1/logn))°8™ + 2. (2¢)™% . ©(1/n)™/?
< 2—Q(logn~loglogn)‘

IN

Taking a union bound over all the literals, we complete the proof,

Pr[# 2 appearing in > logn clauses | > 1 — 27 $(lognloglogn)

O

Lemma H.29. For a sufficiently large constant ¢ > 0 and a constant ¢ > 0, for any random
3SAT instance which has n variables and m = d'n clauses, suppose it is (1 — ¢)m satisfiable. Then
with probability 1 — 2~(egnloglogn) = for g1l input strings y, among the unsatisfied clauses, each
literal appears in O(logn) places.

Proof. This follows by Lemma H.28. O
Next, we show how to reduce the O(logn) to O(1).

Lemma H.30. For a sufficiently large constant c, for any random 3SAT instance that has n variables
and m = en clauses, for any constant B > 1,b € (0,1), with probability at least 1 — E—ZZL, there exist
at least (1 —b)m clauses such that each variable (in these (1 —b)m clauses) only appears in at most
B clauses (out of these (1 —b)m clauses).

Proof. For each i € [m], we use z; to denote the indicator variable such that it is 1, if for each
variable in the ith clause, it appears in at most a clauses. Let B € [1,00) denote a sufficiently large
constant, which we will decide upon later.
For each variable x, the probability of it appearing in the i-th clause is % Then we have
m

3
E[# clauses that contain x| = Z E[i-th clause contains z] = om
n

=1
By Markov’s inequality,
3m

Pr[# clauses that contain x > a] < E[# clauses that contain z|/B = B
n

152

By a union bound, we can compute E|[z] ,

E[z;] = Pr[z; = 1]

> 1 — 3 Pr| one variable in i-th clause appearing > B clauses]

> 2m
- Bn
Furthermore, we have
E[z] =E[} z]=> E[z]>(1- B—n)m
=1 =1

Note that z < m. Thus E[z] <m. Let b € (0,1) denote a sufficiently small constant. We can show

E[m — Z]
bm

m — E[z]
bm

m — (

Prjm —z >bm] <

_ 9m
Bn

bm

m

IN

I9m
Bbn’

This implies that with probability at least 1 — %7 we have m — z < bm. Notice that in random-

ETH , m = cn for a constant c. Thus, by choosing a sufficiently large constant B (which is a
function of ¢, b), we can obtain arbitrarily large constant success probability. O

H.4.3 Reduction

We reduce 3SAT to tensor rank by following the same construction in [H&s90|. To obtain a stronger
hardness result, we use the property that each variable only appears in at most B (some constant)
clauses and that the cover number of an unsatisfiable 3SAT instance is large. Note that both MAX-
E3SAT(B) instances and random-ETH instances have that property. Also each MAX-E3SAT(B) is
also a 3SAT instance. Thus if the reduction holds for 3SAT , it also holds for MAX-E3SAT(B) , and
similarly for random-ETH .

Recall the definition of 3SAT : 3SAT is the problem of given a Boolean formula of n variables
in CNF form with at most 3 variables in each of the m clauses, is it possible to find a satisfying
assignment to the formula? We say 1,29, - ,x, are variables and x1,%1,xs, T, ,Tn, Ty are
literals. We transform this to the problem of computing the rank of a tensor of size ny X no X ns
where n; = 2+ n+2m, no = 3n and ng = 3n+m. T has the following n3 column-row faces, where
each of the faces is an m; X no matrix,

e n variable matrices V; € R™>"2_ It has a 1 in positions (1,2i — 1) and (2, 2¢) while all other
elements are 0.

e 1 help matrices S; € R™*"2 [t has a 1 position in (1,2n +4) and is 0 otherwise.

e n help matrices M; € R"*"2. It has a 1 in positions (1,2i — 1), (2 +,2i) and (2 +14,2n + 1)
and is 0 otherwise.

153

11 | 11
AN ? N
n Lo n Lo
2m b 2m Lo

2t —1 2n +1
V; 21 S;

2n n 2n n

S G R ST | P— Wi]
RS R T F B

B ! I ST S

Lo A iy —ws oo
2m b Lo 2m

2 —1 .
M; 2 2n+i C

Figure 11: There are 3n + m column-row faces, V;,Vi € [n], S;,Vi € [n], M;,Vi € [n], C},VI € [m].
In face Cy, each uy ; is either x; or T; where z; = eg;—1 and T; = e2;_1 + e;.

e m clause matrices C; € R™*"2. Suppose the clause ¢; contains the literals u; 1, ;2 and u; 3.
For each j € [3], w; € {x1,%2, -+ ,Zn,T1,T2, -+ ,Tn}. Note that x;,T; are the literals of the
3SAT formula. We can also think of x;,T; as length 3n vectors. Let x; denote the vector that
has a 1 in position 27 — 1, i.e., z; = e9;_1. Let T; denote the vector that has a 1 in positions
2i — 1 and 2i, T; = eg;_1 + €9;.

— Row 1 is the vector u;; € R3",
— Row 2 +n + 20 — 1 is the vector u;; — w2 € R3™,
— Row 2 + n + 21 is the vector u;; — w3 € R3",

154

First, we can obtain Lemma H.31 which follows by Lemma 2 in [H&s90|. For completeness, we
provide a proof.

Lemma H.31. If the formula is satisfiable, then the constructed tensor has rank at most 4n + 2m.

Proof. We will construct 4n 4+ 2m rank-1 matrices Vi(l), Vi(2), SZ-(I), Mi(l), C’l(l) and 01(2) . Then the
goal is to show that for each matrix in the set

{‘/17‘/2)"' 7Vn7S1752)"' 7Sn)M1)M2)"' 7Mn701702)"' 7Cm}7
it can be written as a linear combination of these constructed matrices.

e Matrices Vi(l) and Vi(z). Vi(l) has the first row equal to x; iff o; = 1 and otherwise z;. All the
other rows are 0. We set V;(Q) =V, - Vi(l).

e Matrices Si(l). Si(l) = S;.

e Matrices Mi(l).

o [Mi= v if 0y = 1
! MZ‘—VZ»(U—SZ' ifOéi:O

e Matrices Cl<1) and C’l(g). Let x; = a; be the assignment that makes the clause ¢; true. Then

C; — Vi(l) has rank 2, since either it has just two nonzero rows (in the case where x; is the
first variable in the clause) or it has three nonzero rows of which two are equal. In both cases
we just need two additional rank 1 matrices.

O

Once the 3SAT instance S is unsatisfiable, then its cover number is at least 1. For each unsatis-
fiable 3SAT instance S with cover number p, we can show that the constructed tensor has rank at
most 4n + 2m + O(p) and also has rank at least 4n + 2m + Q(p). We first prove an upper bound,

Lemma H.32. For a 3SAT instance S, lety € {0,1} denote a string such that S(y) has a set L that
contains unsatisfiable clauses. Let p denote the smallest number of variables that cover all clauses
in L. Then the constructed tensor T has rank at most 4n + 2m + p.

Proof. Let y denote a length-n Boolean string (aq, g, -+ ,ay). Based on the assignment y, all the
clauses of S can be split into two sets: L contains all the unsatisfied clauses and L contains all the
satisfied clauses. We use set P to denote a set of variables that covers all the clauses in set L. Let
p = |P|. We will construct 4n + 2m + p rank-1 matrices Vi(l), V(2), Sl-(l), Mi(l)7 Vi € [n], Cl(l), 01(2)7

(A
Vi € [m], and Vj(g), Vj € P. Then the goal is to show that the V;, S;, M; and C} can be written as
linear combinations of these constructed matrices.

e Matrices Vi(l) and V;(?). Vi(l) has first row equal to x; iff ; = 1 and otherwise T;. All the
other rows are 0. We set ‘/;(2) =V, - Vi(l).

e Matrices 1/j(3). For each j € P, Vj(g) has the first row equal to z; iff a; = 0 and otherwise ;.

e Matrices Si(l). Si(l) =5;.

155

2n n 2n n 2n n

[SR S R R . .
C - - -
b A e e

n C n - n 1, 1,
I I I O Tt TSttt T Tt T T T T [|
Co - - -
L - - -
C - - -

2m Lo 2m Lo 2m Lo Lo
C - - -
C - - -
2% —1)

v zi=1 v 2i zi=1 MY 2i z=1 2 +i

2n n 2n n 2n n

o (] e —— o (-
A o - -

n Co n - nelo A a1
Co - - -
Co - - -
Co - - -

2m o 2m Lo 2m Lo Lo
Co - - -
Co - - -
%—1

v 2i 2 =0 v 2i 2 =0 MY 2 2 =0 2n +i

Figure 12: Two possibilities for Vi(l),Vi € [n], V), Vi € [n], Mi(l),Vi € [n].

e Matrices Mi(l).

w® M; — Vi(l) ifa; =1
i M-V -85 ifa;=0

e Matrices Cl(l) and C’l(2).

— For each | ¢ L, clause ¢ is satisfied according to assignment y. Let z; = a; be the
assignment that makes the clause ¢; true. Then C; — Vi(l) has rank 2, since either it has
just two nonzero rows (in the case where z; is the first variables in the clause) or it has
three nonzero rows of which two are equal. In both cases we just need two additional
rank 1 matrices.

— For each [€ L. It means clause ¢; is unsatisfied according to assignment y. Let z;, = oy,
Tj, = Qj,, Tj; = (v, be an assignment that makes the clause ¢; false. In other words,
one of ji,j2,73 must be P according to the definition that P covers L. Then matrix
Cr — Vj(lg) has rank 2, since either it has just two nonzero rows (in the case where z;, is
the first variables in the clause) or it has three nonzero rows of which two are equal. In
both cases we just need two additional rank 1 matrices.

156

2n n

S R e
Vi,i € [n] ! 3 1 3 !
B A
B [N e 3 ””” e
]\71',1', € [n]
Cnie [m,] ("/t,:s + 'YZA)W,I —V,3UL2 — Y1,4UL3

2i-1 2i 2n +i

Figure 13: ‘Z,@,Mi,é’l.

We finish the proof by taking the P that has the smallest size. O

Further, we have:

Corollary H.33. For a 3SAT instance S, let p denote the cover number of S, then the constructed
tensor T has rank at most 4n + 2m + p.

Proof. This follows by applying Lemma H.32 to all the input strings and the definition of cover
number (Definition H.24). O

We can split the tensor T' € R2+n+3m)x3nx(3n+m) int4 two sub-tensors, one is T} € R2x3nx(Bntm)
(that contains the first two row-tube faces of 7' and linear combination of the remaining 2m row-
tube faces of T'), and the other is T € R(?+2m)x3nx@ntm) (that contains the next n + 2m row-tube
faces of T'). We first analyze the rank of 77 and then analyze the rank of 7.

Claim H.34. The rank of T> is n + 2m.

Proof. According to Figure 11, the nonzero rows are distributed in n+m fully separated sub-tensors.
It is obvious that the rank of each one of those n sub-tensors is 1, and the rank of each of those m
sub-tensors is 2. Thus, overall, the rank 75 is n + 2m. O

To make sure rank(T) = rank(7T}) + rank(7T3), the Ty € R?*37x37+m) can be described as the
following 3n + m column-row faces, and each of the faces is a 2 x 3n matrix.

e Matrices V;,Vi € [n]. The two rows are from the first two rows of V; in Figure 11, i.e., the
first row is eg;_1 and the second row is es;.

e Matrices S;,Vi € [n]. The two rows are from the first two rows of S; in Figure 11, i.e., the
first row is egy1; and the second row is zero everywhere else.

e Matrices]\Z,W € [n]. The first row is ezi—1 + Bi1(e2 + €2n44), while the second row is
Bi2(e2i + €2n+i)-

e Matrices él,Vz' € [m]. The first row is (1471 +1,2)w,1 — W12 — Y,2u,3 and the second is
(M3 +Ma)w — 32 — V403,

157

2n p

. r1 unknown
B P) I e e R e e
P
1 B ! unknown
Anpi€lp] poooo- R R TEELISEREEEES
1Bi2 \Pi2)
2i-1 2¢ 2n+1i
n r
. 1 1
Boiv,i€lp] po---- T T A M
[!
el T Biat
it € P F----- T e e
‘ 10 Biz
. 1

Byi—1,i€ [n]\[p] fo-mmmmmmm i et ittt
I

T I S
[

. unknown
Bonyini €[p] pemmmmm Gor T
\Pinzy
i(<p) i(>p) n+i

Figure 14: There are n + p matrices 4; € R?*2+2) i ¢ [n + p| and 2n + p matrices B; €

R2*("+P) /i e [2n4p|. Tensor A and tensor B represet the same tensor, and for each i € [n+pl,j €
[2],1 € [2n +pl, (Ai)ju = (B)ji-

where for each i € [3n], we use vector e; to denote a length 3n vector such that it only has a 1 in
position ¢ and 0 otherwise. 3,~ are variables. The goal is to show a lower bound for,

rank(77).
an (T1)

Lemma H.35. Let P denote the set {i | the second row of matriz M; is nonzero,Vi € [n]}. Then
the rank of T1 is at least 3n + | P|.

Proof. We define p = |P|. Without loss of generality, we assume that for each 7 € [p], the second
row of matrix M, is LONZETO.

Notice that matrices V;, S;,]\Z have size 2 x 3n, but we only focus on the first 2n 4+ p columns.
Thus, we have n + p column-row faces (from the 3rd dimension) A4; € R2*(2n+p)

o A;, 1< j<mn,Ajis the first 2n + p columns of ‘7] > ai7j§¢ € R?*3" where Qi j are some
coeflicients.

o Ay, 1 <5 <p, Ajis the first 2n 4 p columns of]\ij -> ai,nﬂ'gi € R¥*3" where o ;
are some coefficients.

Consider the first 2n + p column-tube faces (from 2nd dimension), Bj, Vj € [2n + p|, of T}.
Notice that these matrices have size 2 x (n + p).

e By 1,1 <i<p, it has a1 in positions (1,7) and (1,n + 7).
e By, 1 <i<p,ithas f; in position (1,n+1), 1 in position (2,7) and §; 2 in position (2,n+1).

e By 1, p+1<1i<n,it has 1 in position (1,3).

158

e By, p+1<i<n,ithas 1 in position (2,7).
® By,yi, 1 <i < p, the first row is unknown, the second row has f3; > in position in (2,n + 7).

It is obvious that the first 2n matrices are linearly independent, thus the rank is at least 2n. We
choose the first 2n matrices as our basis. For Bs, 1, we try to write it as a linear combination of
the first 2n matrices {Bi};cj2n). Consider the second row of Ba,1. The first n positions are all
0. The matrices By; all have disjoint support for the second row of the first n columns. Thus, the
matrices Ba; should not be used. Consider the second row of Bg;_1,Vi € [n]. None of them has a
nonzero value in position n+ 1. Thus By, 1 cannot be written as a linear combination of of the first
2n matrices. Thus, we can show for any i € [p], Bo,+; cannot be written as a linear combination
of matrices {B;}ic[2,). Consider the p matrices { Ban+i}icfp)- Each of them has a different nonzero
position in the second row. Thus these matrices are all linearly independent. Putting it all together,
we know that the rank of matrices {B;};c[any] is at least 2n + p. O

Next, we consider another special case when ;2 = 0, for all ¢ € [n]. If we subtract 8;; times §Z
from M; and leave the other column-row faces (from the 3rd dimension) as they are, and we make
all column-tube faces(from the 2nd dimension) for j > 2n identically 0, then all other choices do not
change the first 2n column-tube faces (from the 2nd dimension) and make some other column-tube
faces (from the 2nd dimension) nonzero. Such a choice could clearly only increase the rank of 7'
Thus, we obtain,

rank(7T") = 2n + 2m + minrank(73),

where T3 is a tensor of size 2 X 2n X (2n + m) given by the following column-row faces (from 3rd
dimension) A;,Vi € [2n + m] and each matrix has size 2 x 2n (shown in Figure 15).

e A;, i€ [n], the first 2n columns of V;.

e A4, i € [n], the first 2n columns of M;. The first row is es;_q + Bie2i, and the second row
is 0.

e Asgyyy, L € [m], the first 2n columns of 5;. The first row is (14,1 4+71,2)w,1 —Y,1U1,2 — V1,2U1,3,
and the second row is (y,3 + yi,4)ui,1 — V1,312 — Y1,4U13-

We can show
Lemma H.36. Let p denote the cover number of the 3SAT instance. Ts has rank at least 2n+Q(p).

Proof. First, we can show that all matrices A, y; — A; and A, ; (for all i € [n]) are in the expansion
of tensor T3. Thus, the rank of T3 is at least 2n.
We need the following claim:

Claim H.37. For any | € [m], if A2ny can be written as a linear combination of {Anii — Ai}icjn)
and {An+i}i€[n], then the second row of Aoy is 0, and the first row of one of the An4; is u; where
u; s one of the literals appearing in clause ;.

Proof. We prove this for the second row first. For each | € [m], we consider the possibility of using
all matrices A,+; — A; and A, 4; to express matrix Ag,4;. If the second row of As,4; is nonzero,
then it must have a nonzero entry in an odd position. But there is no nonzero in an odd position
of the second row of any of matrices A,,+; — A; and A, ;.

159

2n

4 TR
Aiyien] po---- R T T T
P L
, R
Apyii€n] Fo---o R e e e
A L€ m] (A + v +y2)wa —Yaue — Y23
2n+1 L e
! (m,3+ ')’1,4)111,1 — V1,312 — V1,4UL3
2i-1 24

Figure 15: For any i € [n], 8;1 € R, for any | € [m], v;,1,7,2 € R, for any | € [m], if the first literal
of clause [is xj, then row vector u;1 = ez;—1 € R2™; if the first literal of clause [is T;, then row
vector u;1 = eg;—1 + €2; € R?™.

For the first row. It is obvious that the first row of Ag,,; must have at least one nonzero
position, for any v, 1,7,2. Let u; be a literal belonging to the variable z; which appears in the first
row of Ay,4; with a nonzero coefficient. Since only A,4; of all the other A, s,Vs € [n] matrices
has nonzero elements in either of the positions (1,2¢ — 1) or (1,2i), then A,4; must be used to
cancel these elements. Thus, the first row of A, ; must be a multiple of u; and since the element
in position (1,2i — 1) of A,4; is 1, this multiple must be 1.

O

Note that matrices A;, Vi € [n] have the property that, for any matrix in {4, 41, -, Aon+m}, it
cannot be written as the linear combination of matrices A;,Vi € [n]. Let A e R(m+m)x2n denote a
matrix that consists of the first rows of {A,41,- -, Aopt+m}. According to the property of matrices
A;,Vi € [n], and that the rank of a tensor is always greater than or equal to the rank of any
sub-tensor, we know that

rank(73) > n + minrank(A).

Claim H.38. For a 3SAT instance S, for any input string y € {0,1}", set 5,1 to be the entry-wise
flipping of y, (I) if the clause [is satisfied, then the (n+1)-th row onl e RHMIX20 con be written
as a linear combination of the first n rows of A. (IT) if the clause l is unsatisfied, then the (n+1)-th
row ofg cannot be written as a linear combination of the first n rows of A.

Proof. Part (I), consider a clause | which is satisfied with input string y. Then there must exist a
variable z; belonging to clause [(either literal z; or literal Z;) and one of the following holds: if z;
belongs to clause I, then o; = 1; if T; belongs to clause [, then a; = 0. Suppose clause [contains
literal x;. The other case can be proved in a similar way. We consider the (n 4 [)-th row. One of
the following assignments (0, 0), (—1,0), (0, —1) to 71,711 is going to set the (n 4 1)-th row of Ato
be vector eg;_1. We consider the i-th row of A. Since we set a; =1, then we set 5;1 = 0, it follows
that the i-th row of A becomes eg;_1. Therefore, the (n 4 [)-th row of A can be written as a linear
combination of A.

Part (II), consider a clause | which is unsatisfied with input string y. Suppose that clause
contains three literals x;,,x;,, %, (the other seven possibilities can be proved in a similar way).
Then for input string y, we have a;; = 0, a;, = 0 and oy, = 0, otherwise this clause [is satisfied.
Consider i1-th row of A. Tt becomes €2i,—1 + €2;,. Similarly for the is-th row and i3-th row.
Consider the (n + [)-th row. We can observe that all of positions 2i1,2is,2i3 must be 0. Any

160

linear combination formed by the i, %9, i3-th row of A must have one nonzero in one of positions
2i1, 2i9, 2i3. However, if we consider the (n + [)-th row of ;L one of the positions 2i1, 2i9, 2i3 must
be 0. Also, the remaining n — 3 of the first n rows of A also have 0 in positions 21, 2i9, 2¢3. Thus,
we can show that the (n + [)-th row of A cannot be written as a linear combination of the first n
rows. Similarly, for the other seven cases. O

Note that in order to make sure as many as possible rows in n +1,--- ,n + m can be written
as linear combinations of the first n rows of A, the ;1 should be set to either 0 or 1. Also each
possibility of input string y is corresponding to a choice of 3; 1. According to the above Claim H.38,
let lp denote the smallest number of unsatisfied clauses over the choices of all the 2" input strings.

Then over all choices of 3,, there must exist at least [y rows of Avn+1, -+ Aptm, such that each of
those rows cannot be written as the linear combination of the first n rows.

Claim H.39. Let A € R"T™)X2n depote a matriz that consists of the first rows of Api,Vi € [n]
and Ap+1, V1l € [m]. Let p denote the cover number of 3SAT instance. Then minrank(A) > n+Q(p).

Proof. For any choices of {f3; 1 }ic[n], there must exist a set of rows out of the next m rows such that,
each of those rows cannot be written as a linear combination of the first n rows. Let L denote the
set of those rows. Let ¢ denote the maximum size set of disjoint rows from L. Since those ¢ rows in
L all have disjoint support, they are always linearly independent. Thus the rank is at least n + t.
Note that each row corresponds to a unique clause and each clause corresponds to a unique row.
We can just pick an arbitrary clause [in L, then remove the clauses that are using the same literal
as clause [from L. Because each variable occurs in at most B clauses, we only need to remove at
most 3B clauses from L. We repeat the procedure until there is no clause L. The corresponding
rows of all the clauses we picked have disjoint supports, thus we can show a lower bound for ¢,

t > |L|/(3B) > lo/(3B) > p/(9B) 2 p,

where the second step follows by |L| > Iy, the third step follows 3ly > p, and the last step follows
by B is some constant. O

Thus, putting it all together, we complete the proof.
O

Now, we consider a general case when there are ¢ different ¢ € [n] satisfying that ;2 # 0.
Similar to tensor T3, we can obtain T4 such that,

rank(7") = 2n + 2m + minrank(7})

where T} is a tensor of size 2 X 2n X (2n + m) given by the following column-row faces (from 3rd
dimension) A;, Vi € [2n + m] and each matrix has size 2 x 2n (shown in Figure 16).

o A;, i€ [n], the first 2n columns of V;.

o A4, i € [qg], the first 2n columns of]\AJ/Z The first row is eg;—1 + (i 1€2;, and the second row
is (i 2€2;.

o Apyi,i€{q+1,---,n}, the first 2n columns of]\Z The first row is eg;—1 + B;,1€2;, and the
second row is 0.

e Ay, I € [m], the first 2n columns of Cy. The first row is (T40+v2)w,1 — Y12 — V1,213,
and the second row is (y;,3 + yi,4)ui,1 — V1,312 — V1,4U1,3-

161

2n

) 1
Aiyien] po---- m m e e e e e e e e
P 31
Aricld 1B
+ixt €19 pomoe i R B e e i
' | Bial
, "1 B
Ai €\l | R
4 L€ m] I+ v +y2)wa — Yaue — Y23
2n+1 L ettt
" (m,3+ ')’1,4)111,1 — V1,32 — V1,4U13
2i-1 2i

Figure 16: For any ¢ € [n], 8;1 € R. For any i € [¢], B;2 € R. For any [€ [m], 1,72 € R. For
any [€ [m], if the first literal of clause [is x;, then row vector u;; = egi—1 € R2": if the first literal
of clause [is T, then row vector u; 1 = ez;—1 + €2; € R2™,

Note that modifying ¢ entries(from Figure 15 to Figure 16) of a tensor can only decrease the rank
by ¢, thus we obtain

Lemma H.40. Let g denote the number of i such that 8;2 # 0, and let p denote the cover number
of the 3SAT instance. Then Ty has rank at least 2n + Q(p) — q.

Combining the two perspectives we have

Lemma H.41. Let p denote the cover number of an unsatisfiable 3SAT instance. Then the tensor
has rank at least 4n + 2m + Q(p).

Proof. Let ¢ denote the ¢ in Figure 16. From one perspective, we know that the tensor has rank
at least 4n + 2m + Q(p) — ¢. From another perspective, we know that the tensor has rank at least
4n 4 2m + ¢q. Combining them together, we obtain the rank is at least 4n + 2m + Q(p)/2, which is
still 4n + 2m + Q(p). O

Theorem H.42. Unless ETH fails, there is a § > 0 and an absolute constant co > 1 such that the
following holds. For the problem of deciding if the rank of a q-th order tensor, ¢ > 3, with each
dimension n, is at most k or at least cok, there is no 20k =0 fime algorithm.

Proof. The reduction can be split into three parts.'® The first part reduces the MAX-3SAT problem
to the MAX-E3SAT problem by [MR10]|. For each MAX-3SAT instance with size n, the correspond-
ing MAX-E3SAT instance has size n!T°(1). The second part is by reducing the MAX-E3SAT prob-
lem to MAX-E3SAT(B) by [Tre01]. For each MAX-E3SAT instance with size n, the corresponding
MAX-E3SAT(B) instance has size ©(n) when B is a constant. The third part is by reducing the
MAX-E3SAT(B) problem to the tensor problem. Combining Theorem H.7, Lemma H.25 with this
reduction, we complete the proof. O

Theorem H.43. Unless random-ETH fails, there is an absolute constant co > 1 for which any
deterministic algorithm for deciding if the rank of a q-th order tensor is at most k or at least cok,
requires 200K) time.

Proof. This follows by combining the reduction with random-ETH and Lemma H.30. O

13The first two parts are accomplished by personal communication with Dana Moshkovitz and Govind Ramnarayan.

162

Note that, if BPP = P then it also holds for randomized algorithms which succeed with prob-
ability 2/3.

Indeed, we know that any deterministic algorithm requires 24 running time on tensors that
have size n x n x n. Let g(n) denote a fixed function of n, and g(n) = o(n). We change the original
tensor from size nxnxn to 290" x 29(7) » 29(7) by adding zero entries. Then the number of entries in
the new tensor is 239(") and the deterministic algorithm still requires 22 running time on this new
tensor. Assume there is a randomized algorithm that runs in 29" time, for some constant ¢ > 3.
Then considering the size of this new tensor, the deterministic algorithm is a super-polynomial time
algorithm, but the randomized algorithm is a polynomial time algorithm. Thus, by assuming BPP
= P, we can rule out randomized algorithms, which means Theorem H.43 also holds for randomized
algorithms which succeed with probability 2/3.

We provide some some motivation for the BPP = P assumption: this is a standard conjecture
in complexity theory, as it is implied by the existence of strong pseudorandom generators or if any
problem in deterministic exponential time has exponential size circuits [TW97].

H.5 Hardness result for robust subspace approximation

This section improves the previous hardness for subspace approximation [CW15a] from 141/ poly(d)
to 14+ 1/poly(logd). (Note that, we provide the algorithmic results for this problem in Section F.)

Lemma H.44 ([Deml4|). For any graph G with n nodes, m edges, for which the mazimum degree
in graph G is d, there exists a d-reqular graph G' with 2nd — 2m nodes such that the clique size of
G’ is the same as the clique size of G.

Proof. First we create d copies of the original graph G. For each i € [n], let v;1,v;2,- - ,v; 4 denote
the set of nodes in G’ that are corresponding to v; in G. Let d,, denote the degree of node v; in
graph G. In graph G’, we create d — dy, new nodes v; ;,v; 5, ,v; 4 and connect each of them to

all of the vy, v, -+ ,vg. Therefore, 1. For each i € [n],j € [dy,], nodezvaj has degree d. 2. For each
i € [n],j € [d], node v; j has degree d,, (from the original graph), and d —d,, degree (from the edges
to all the v, v],,--+,v] 4). Thus, we proved the graph G is d-regular.

The number of nodes in the new graph G’ is,

nd + Z(d —dy,) = 2nd — Zdvi = 2nd — 2m.
i=1 i=1

It remains to show the clique size is the same in graph G and G’. Since we can always reorder the
indices for all the nodes, without loss of generality, let us assume the the first k nodes vy, vo, -+ , vk
forms a k-clique that has the largest size. It is obvious that the clique size k&’ in graph G’ is at least
k, since we make k copies of the original graph and do not delete any edges and nodes. Then we just
need to show &’ < k. By the property of the construction, the node in one copy does not connect
to a node in any other copy. Consider the new nodes we created. For each node vé,j,
the neighbors of this node. None of them share a edge. Combining the above two properties gives
k' < k. Thus, we finish the proof. O

consider

Theorem H.45 (Theorem 2.6 in [GJS76]). Any n variable m clauses 3SAT instance can be reduced
to a graph G with 24m wvertices, which is an instance of 10m-independent set. Furthermore G is a
3-reqular graph.

We give the proof for completeness here.

163

: @:}:

Figure 17: In the original graph G, vertex u has degree 2. We create 5 new “artificial” vertices for
u to guarantee that the new graph G’ is 3-regular. This construction was suggested to us by Syed
Mohammad Meesum.

Proof. Define o; to be the number of occurrences of {x;,Z;} in the m clauses. For each variable
x;, we construct 2o0; vertices, namely v; 1,v; 2, ,0;2,,. We make these 20; vertices be a circuit,
i.e., there are 20; edges: (v;1,v;2), (Vi2,vi3), "+, (Vi20,—1, Vi20;), (Vi,20;5 Vi,1). For each clause with
3 literals a,b,c, we create 3 vertices vg, vp, v, Where they form a triangle, i.e., there are edges
(Va, vp), (Vp, Ve), (Ve, Vo). Furthermore, assume a is the j*" occurrence of z; (occurrence of z; means
a=ux; or a =71;). Then if a = z;, we add edge (vq, v 2;), otherwise we add edge (vq, vi2j—1).

Thus, we can see that every vertex in the triangle corresponding to a clause has degree 3, half
of vertices of the circuit corresponding to variable x; have degree 3 and the other half have degree
2. Notice that the maximum independent set of a 20; circuit is at most 0;, and the maximum
independent set of a triangle is at most 1. Thus, the maximum independent set of the whole graph
has size at most m + Y ;" ; 0, = m + 3m = 4m. Another observation is that if there is a satisfiable
assignment for the 3SAT instance, then we can choose a 4m-independent set in the following way:
if x; is true, then we choose all the vertices in set {v;1,vi3, - ,vi2j—1," - Vi20,—1}; otherwise, we
choose all the vertices in set {v;2,vi4, - ,Vi2j, - Vi20,}. For a clause with literals a,b,c: if a is
satisfied, it means that v; ; which connected to v, is not chosen in the independent set, thus we can
pick vy.

The issue remaining is to reduce the above graph to a 3 regular graph. Notice that there are ex-
actly > | 0; = 3m vertices which have degree 2. For each of this kind of vertex u, we construct 5 ad-
ditional vertices u1, ug, us, ug, us and edges (u1, uz), (ug, us), (us, ug), (vg, us), (us, u1), (u2, uq), (us, us)

and (u1,u). Because we can always choose exactly two vertices among uy, ug, - - ,us no matter we

choose vertex u or not, the value of the maximum independent set will increase the size by exactly
n _

23", 0 =6m.

To conclude, we construct a 3-regular graph reduced from a 3SAT instance. The graph has ex-
actly 24m vertices. Furthermore, if the 3SAT instance is satisfiable, the graph has 10m-independent
set. Otherwise, it does not have a 10m-independent set. O

Corollary H.46. There is a constant 0 < ¢ < 1, such that for any € > 0, there is no 0(2"1_6)
time algorithm which can solve k-clique for an n-vertex (n — 3)-regular graph where k = cn unless

ETH fails.

Proof. According to Theorem H.45, for a given n variable m = O(n) clauses 3SAT instance, we
can reduce it to a 3-regular graph with 24m vertices which is a 10m-independent set instance. If

164

(8] C 1 _ L (6]
’I"\/Bl T\/Bl Bl ’I"\/Bl
C _ L C
rvB1 By rvbB1
¢ _ 1
T Bl Bl

Figure 18: The left graph has 5 nodes, and we convert it into a 5 X 5 symmetric matrix.

there exists € > 0 such that we have an algorithm with running time 0(2(247”)1_6) which can solve
10m-clique for a 24m — 3 regular graph with 24m vertices, then we can solve the 3SAT problem in

O(2n1‘6') time, where ¢ = ©(€). Thus, it contradicts ETH . 0

Definition H.47. Let V be a k-dimensional subspace of R%, represented as the column span of a
d x k matriz with orthonormal columns. We abuse notation and let V' be both the subspace and the
corresponding matriz. For a set Q of points, let

(@ V)=> dg, V)P => llg" T-VVIE=> (lal? - llg"VI*)PF"?,
qeQ q€Q q€Q

be the sum of p-th powers of distances of points in Q, i.e., |Q—QVV ||, with associated M (x) = |z|P.

Lemma H.48. For any k € [d], the k-dimensional subspaces V' which minimize c(E, V') are exactly
the (Z) subspaces formed by taking the span of k distinct standard unit vectors e;, © € [d]. The cost
of any such V isd — k.

Theorem H.49. Given a set Q of poly(d) points in R?, for a sufficiently small e = 1/ poly(d), it
is NP-hard to output a k-dimensional subspace V. of R? for which ¢(Q,V) < (1 + €)c(Q, V*), where
V* is the k-dimensional subspace minimizing the expression ¢(Q,V), that is ¢(Q,V) > ¢(Q, V™) for
all k-dimensional subspaces V.

Theorem H.50. For a sufficiently small ¢ = 1/poly(log(d)), there exist 1 < k < d, unless
ETH fails, there is no algorithm that can output a k-dimensional subspace V of R for which
(@, V) < (14 €)e(Q,V*), where V* is the k-dimensional subspace minimizing the expression
c(Q, V), that is ¢(Q,V) > ¢(Q, V*) for all k-dimensional subspaces V.

Proof. The reduction is from the clique problem of d-vertices (d — 3)-regular graph. We construct
the hard instance in the same way as in [CW15a|. Given a d-vertes (d — 3)-regular graph graph G,
let By = d®, By = d” where > o > 1 are two sufficiently large constants. Let ¢ be such that

(1-1/By)? +c/B; = 1.

165

We construct a d x d matrix A as the following: Vi € [d], let A;; =1 —1/B; and Vi # j, A;; =
Aj; = c/\/Bir if (i,j) is an edge in G, and 4; j = A;; = 0 otherwise. Let us construct A’ € R?4x4

as follows:
; A
A= |:BQ'Id ’

where I; € R% is a d x d identity matrix.

Claim H.51 (In proof of Theorem 54 in [CW15a]). Let V' € R¥™¥ satisfy that
(A VY)Y < (1 +1/d)e(A, V),

where A’ is constructed as the above corresponding to the given graph G, and v > 1 is a sufficiently
large constant, V* is the optimal solution which minimizes c¢(A'; V). Then if G has a k-Clique ,
given V', there is a poly(d) time algorithm which can find the clique which has size at least k.

Now, to apply ETH here, we only need to apply a padding argument. We can construct a matrix
A" € RNX4 a5 follows:
A/
A// — A/
A/
Basically, A” contains N/(2d) copies of A’ where N =2¢'"% and 0 < « is a constant which can be
arbitrarily small. Notice that YV € R%**,

o(V,A") =Y " d(q, V)P =N/(@2d) > d(q, V)P = N/(2d)c(V, A).

qeA”’ qeA’

So if V" gives a (1 + 1/d") approximation to A", it also gives a (1 + 1/d”) approximation to A’.
So if we can find V" in poly(V,d) time, we can output a k-Clique of G in poly(N,d) time. But
unless ETH fails, for a sufficiently small constant o/ > 0 there is no poly(N,d) = O(2d17a/) time
algorithm that can output a k-Clique of G. It means that there is no poly(N,d) time algorithm
that can compute a (1 +1/d”) = (1 + 1/ poly(log(N))) approximation to A”. To make A” be a
square matrix, we can just pad with Os to make the size of A” be N x N. Thus, we can conclude,
unless ETH fails, there is no polynomial algorithm that can compute a (1+ 1/ poly(log(N))) rank-k
subspace approximation to a point set with size V.

O

H.6 Extending hardness from matrices to tensors

In this section, we briefly state some hardness results which are implied by hardness for matrices.
The intuition is that, if there is a hard instance for the matrix problem, then we can always construct
a tensor hard instance for the tensor problem as follos: the first face of the tensor is the hard instance
matrix and it has all Os elsewhere. We can prove that the optimal tensor solution will always fit the
first face and will have all Os elsewhere. Then the optimal tensor solution gives an optimal matrix
solution.

166

H.6.1 Entry-wise /; norm and /;-/1-{2 norm

In the following we will show that the hardness for entry-wise £; norm low rank matrix approximation
implies the hardness for entry-wise £1 norm low rank tensor approximation and asymmetric tensor
norm (¢1-¢1-¢3) low rank tensor approximation problems.

Theorem H.52 (Theorem H.13 in [SWZ17]). Unless ETH fails, for an arbitrarily small constant

~ > 0, given some matrix A € R" "™ there is no algorithm that can compute T,y € R™ s.1.

PR 1 .
|4 —2g" | < <1 + W) L, 1A =2y |,

in poly(n) time.
We can get the hardness for tensors directly.

Theorem H.53. Unless ETH fails, for an arbitrarily small constant v > 0, given some tensor
A E RanXTL

1. there is no algorithm that can compute T,y,z € R™ s.t.

1
A-zyzlhi <14+ ——— i A—
I :c®y®zH1_< +log1+7(n)>x,yrgleanH TRy 2|,

in poly(n) time.

2. there is no algorithm can compute T,7,z € R™ s.t.

e 1 .
4-2a7e2l < (14 W) min [A- @,

in poly(n) time.

Proof. Let matrix A € R™" be the hard instance in Theorem H.52. We construct tensor A €
R™*mx™ as follows: Vi, j,1 € [n],1 # 1 we let A; j1 = A;j, Ay =0.
Suppose 7,7,z € R™ satisfies

1
A-2Z7R2z21 < |1+ ———) min |[A—-zQy® z|;.
| o< < 10g1+7(n)> z,y,2ER™ | y @2l

Then letting 2’ = (1,0,0,---,0) ", we have

1
~ ~ / ~ ~ ~] .
[A-20yez i <[A-2@y®zli < (1"1'W>x7£1€an||A—$®y®z||l-

The first inequality follows since Vi, j,1 € [n],l # 1, we have A; j; = 0. Let
® ok : n T
z*,y* =arg min ||[A—zy |-
z,ycR"

Then

1
log'*7(n)

1

A-TR7R 2 <<1+ -

) lA-Fe7esl < (1+) lA—2* @y ® |

167

Thus, we have

T AN 1 n * [%
1A= < (14 s) 1A =26 I

Combining with Theorem H.52, we know that unless ETH fails, there is no poly(n) running time
algorithm which can output

1
A-2yezh < |1+ ——— | min [A-20y® z|;.
l4-Fe 7o < (1+ s) min, A=z oy e:l,

z,y,zER™

Similarly, we can prove that if z,y, z € R™ satisfies:

1
A-7070F < (14—) min [A-20y® 2|,
4-FeTe < (14 s) min, JA—z 0y 9:.

z,y,zER™

then

T 1 n [k
1A= < (14 s) 1A= 2" I

We complete the proof.

Corollary H.54. Unless ETH fails, for arbitrarily small constant v > 0,

1. there is no algorithm that can compute (1+¢€) entry-wise €1 norm rank-1 tensor approzimation
in 200/€") runming time. (|| - ||1-norm is defined in Section D)

2. there is no algorithm that can compute (1 + €) Ly-norm rank-1 tensor approximation in
20/ runming time. (|| - ||u-norm is defined in Section F.3)
H.6.2 /1-/3-f5 norm

Theorem H.55. Unless ETH fails, for arbitrarily small constant v > 0, given some tensor A€
R "™X" " there is no algorithm can compute U V W e Rk st

A~ 1
[A-UVeaW|, < |1+ ——F— [A-U@VeW|,,
poly(logn) UVWeRnXk
in poly(n) running time. (|| - [|,-norm is defined in Section F.2)

Proof. Let matrix A € R™™ be the hard instance in Theorem H.50. We construct tensor A e
R™*mx™ as follows: Vi, j,1 € [n],1 # 1 we let A; j1 = A;j, Aiji=0.
Suppose U V W € Rk satisfies

S 1
HA—U®V®WM§<H—> min [A-URV W,
poly(logn)) u,v,wernxk

Let W’ € R™** be the following:

1 1 1
0 0 0

w=|0 o0 01,
0 0 0

168

then we have

PN PO 1
]M—U@V@WWﬁﬂA—U@V@WWS(L%) min [A-U®V&W|,.
poly(logn)) u,v,wernxk

The first inequality follows since Vi, j, I € [n],l # 1, we have A; j; = 0. Let
U V*=arg min [|[A—UV'|,.
U,VGR"Xk

Then

1

poly(logn)
1

< (14—
- (+poly(logn)

[A-TUeVeW|, < <1+ >||A—ﬁ®17®WHv

> |A—U"@V* 2 W|,.

Thus, we have

1

A-UVT|, < (14—
A=0710= (1 g

) 1A -0V

Combining with Theorem H.50, we know that unless ETH fails, there is no poly(n) time algorithm
which can output

P 1
HA—U®V®W@§(H—> mn [A-U®V&W|,.
poly(logn)) u,v,wernxk

169

I Hard Instance

This section provides some hard instances for tensor problems.

I.1 Frobenius CURT decomposition for 3rd order tensor

In this section we will prove that a relative-error Tensor CURT is not possible unless C' has Q(k/¢)
columns from A, R has Q(k/e) rows from A, T has Q(k/e) tubes from A and U has rank Q(k).
We use a similar construction from [BW14, BDM11, DR10] and extend it to the tensor setting.

Theorem I.1. There exists a tensor A € R™™*™ with the following property. Consider a factoriza-
tion CURT, with C € R™*¢ containing ¢ columns of A, R € R™¥" containing r rows of A, T € R"*!
containing r tubes of A, and U € R"™t such that

2
AN Uju-CGoReT| <(+olA— Al
i=1 j=1 I=1 ”

Then, for any e <1 and any k > 1,
c=Qk/e), r=Q(k/e), t =Q(k/e) and rank(U) > k/3.

Proof. For any i € [d], let e; € R? denote the i-th standard basis vector. For a > 0 and integer
d > 1, consider the matrix D e R(@+1)x(d+1)

D= [el—l—aeg e1 +aes - e+ aeqyl 0]
[1 1 -~ 1 0]
« 0
— leY 0
L. a 0—

We construct matrix B € R(EDE/B3X(HDE/3 by repeating matrix D k/3 times along its main
diagonal,

D

Let m = (d+ 1)k/3. We construct a tensor A € R™*"*" with n = 3m by repeating matrix B three
times in the following way,

AL]"[= BjJ,Vj,l S [m] X [m]
Am+i,m+1,m+l = Bi,laVial € [m] X [m]
Aomtiomtjom+1 = Bij, Vi, € [m] x [m]

and 0 everywhere else. We first state some useful properties for matrix D,

DTD _ |:].d].;lr + CyQId 0:| c R(d+1)><(d+1)
0 0

170

where

oi(D) =d + o,
o2(D) = a?, Vi=2,---,d
‘73+1(D) =0.

By definition of matrix B, we can obtain the following properties,

0}(B) =d+ o, Vi=1,---,k/3
02(B) = o, Vi=k/3+1,---,dk/3
o?(B) =0, Vi=dk+1,---,dk/3+k/3

By definition of A, we can copy B into three disjoint n X n X n sub-tensors on the main diagonal of
tensor A. Thus, we have

o2(A) =d + a?, Vi=1,---,k
02(A) = o2, Vi=k+1, - ,dk
o2(A) =0, Vi=dk+1,---,dk+k

Let A(x) denote the best rank-k approximation to A, and let D; denote the best rank-1 approxima-
tion to D. Using the above properties, for any k£ > 1, we can compute ||A — A(k)”%,

|A — A% = k|D — Di||% = k(d — 1)a®. (76)

Suppose we have a CUR decomposition with ¢ = o(k/€) columns, ' = o(k/€) rows or t’ = o(k/€)
tubes. Since the tensor is equivalent by looking through any of the 3 dimensions/directions, we just
need to show why the cost will be at least (1 + €)||A — Ag||% if we choose ¢ = o(k/€) columns and
t = o(k/e) rows.

Let C' € R™*¢ denote the optimal solution. Then it should have the following form,

Cq
C = (s
Cs

where €7 € R™*“ contains ¢; columns from Aj.p1:m1:m € R™™X™ Cy € R™* contains

co columns from Ayqi:2mmt1:2mm+i2m € RTX™X™Cy € R™*% contains c3 columns from

A2 11:3m,2m+1:3m,2m+1:3m € R7XMXT,

Let R € R™" denote the optimal solution. Then it should have the following form,

Ry
R = Ry
R3
|A— ACCHRRY,)|} > | B~ RiR{B|} + | B — CxCiB|% + | BT — C3CiBT|3. (77)
By the analysis in Proposition 4 of [DV06], we have
IB — RiRIB|% > (k/3)(1 +b-)| D — Dpyylf3. (78)

171

and
|B — C2CiB|% > (k/3)(1+b-a)|D — Dyl (79)

Let C5 € R™%% contain any ¢z columns from BT. Note that C3 contains c3(< t) columns from
BT, equivalently C’QT contains ¢y rows from B. Recall that B contains k copies of D € R(@+1)x(d+1)
along its main diagonal. Even if we choose ¢ columns of BT, the cost is at least

IBT = CGCLBT % = (b/3)|D — D% > (k/3)(d — t)a. (30)

Combining Equations (76), (77), (78), (79), (80), o = € gives,

1A - CCTA|%

IA = AwlIE
o 1B = RiRIB|[} + 1B — CCYBllg. + | BT — CsCiBT | by Eq. (77)
- [A= A2 T

(R
B~ RiRIB|[3% +||B — C:C3B||% + ||BT — C5C{B™ |12
2(k/3)(1 + be)(d — 1) + (k/3)(d — t)€?
> (k/3)(>(k:(d —)1)62 (k/3)() by Eq. (78),(79),(80) and v = €
k(d—1)e + (k/3)(—t + 1)e* 4 2(k/3)be(d — 1)€?
N k(d—1)e?
_1a (k/3)e?(2be(d — 1) —t + 1)
N k(d—1)e?
2be(d — 1) —t + 1

=1

LT
> 1+ (b/3)e by 2t < be(d —1)/2
>1+4e by b > 3.

which gives a contradiction. O

I.2 General Frobenius CURT decomposition for ¢-th order tensor

In this section, we extend the hard instance for 3rd order tensors to g-th order tensors.

Theorem 1.2. For any constant ¢ > 1, there exists a tensor A € R™ ™ X" with the following
property. Define

OPT = min |A — Agl/%.
q

rank —k Aj€RC1X 2% Xe

Consider a q-th order factorization CURT, with C7 € R"™ containing ¢ columns from the 1st
dimension of A, Cy € R™ containing ca columns from the 2nd dimension of A, ---, Cy € R™"*
containing cq columns from the g-th dimension of A and a tensor U € R *2*"%% such that
2
n n n
A— Z Z cee Z Uil,i2,~-~,iq . Cl,il (03] Cz,zé X R Cq’z'q < (1 + 6) OPT.
ii=lig=1 ig=1 P

There exists a constant ¢ < 1 such that for any € < ¢ and any k > 1,

c1 = Qk/e), co=Qk/e), -, cg=Q(k/e) and rank(U) > k.

172

Proof. We use the same matrix D € R(@1)*(d+1) a5 the proof of Theorem I.1. Then we can construct
matrix B € R(@Dk/ax(d+1)k/a by repeating matrix D k/q times along the its main diagonal,

D
D

D

Let m = (d 4+ 1)/q. We construct a tensor A € R™*™*" X" with n = gm by repeating the matrix ¢
times in the following way,

Alim] [1im], 1,11, 1,1 = B,
A =BT
m+1,[m+1:2m],[m+1:2m],m+1,m+1,--- m+1,m+1 — ’
A2m+1,2m+1,[2m+1:3m],[2m+1:3m],2m+17--~ 2m~+1.2m+1 — B,

_ T
A3m+1,3m+1,3m+17[3m+1:4m]7[3m+1:4m]7--~ 2m+1,3m+1 — B ;

A(q—2)m+17(q—2)m+1,(q—2)m+17(q—2)m+1,(q—2)m+1,-" [(g=2)mA4-1:(g—1)m],[(g—2)m+1:(¢—1)m] = B,

T
A[(q—l)m-l—l:qm},(q—l)m+1,(q—1)m+1,(q—1)m+1,(q—1)m+1,-~~,(q—l)m+1,[(q—1)m+1:qm] =B)

where there are ¢/2 Bs and ¢/2 B's on the right when ¢ is even, and there are (¢ + 1)/2 Bs and
(¢ —1)/2 Bs on the right when ¢ is odd. Note that this tensor A is equivalent if we look through
any of the ¢ dimensions/directions. Similarly as before, we have

1A = A% = kIID — D)% = k(d — 1)a”.

Suppose there is a general CURT decomposition (of this ¢-th order tensor), with ¢; =ca =--- ¢4 =
o(k/e€) columns from each dimension. Let C; € R"* Cy € R"*2, ... C, € R"*% denote the
optimal solution. Then the C; should have the following form,
Cia Ca1 Cqn
Ci2 Ca2 Cy2
01: . ’02:) 7“'70(]:
Clq Chyq Coyq

(In the rest of the proof, we focus on the case when ¢ is even. Similarly, we can show the same
thing when ¢ is odd.) We have

1A = A(C1CT, CoC, - CuChIIE

q/2

S NB = Coim10i-1C; 1 0 1 BllF + BT — Ci2iCY 5, BT I3
=1

> (a/2) ((k/q)(1 + ba)||D — Dy 7 + (k/a)(d — t)a?)
= (4/2) ((k/a)(1 + ba)(d — 1)a” + (k/q)(d — t)a?)

Y

where the second inequality follows by Equations (79) and (80), and the third step follows by
ID — Deyylit = (d — 1o,

173

Putting it all together, we have

|4 - A(CIC], CoC, - CyC
IA = Aw %

o (4/2) ((k/@)(1 + ba)(d — 1)a? + (k/q)(d — t)a?)
- k(d —1)a?

k(d—1)a? + (k/2)ba(d — 1)a? + (k/q)(—t + 1)a?

k(d—1)a?
(k/2)ba(d — 1)a? + (k/q)(—t + 1)a?
k(d—1)a?

(k/3)ba(d — 1)a?
s e
=14 (b/3)e by € = «
>1+¢€ by b > 3.

=14

which leads to a contradiction. Similarly we can show the rank is at least Q(k).

174

J Distributed Setting

Input data to large-scale machine learning and data mining tasks may be distributed across different
machines. The communication cost becomes the major bottleneck of distributed protocols, and so
there is a growing body of work on low rank matrix approximations in the distributed model [TD99,
QOSG02, BCL05, BRB08, MBZ10, FEGK13, PMvdG™13, KVW14, BKLW14, BLS*16, BWZ16,
WZ16, SWZ17| and also many other machine learning problems such as clustering, boosting, and
column subset selection [BBLM14, BLG115, ABW17]. Thus, it is natural to ask whether our algo-
rithm can be applied in the distributed setting. This section will discuss the distributed Frobenius
norm low rank tensor approximation protocol in the so-called arbitrary-partition model (see, e.g.
[KVW14, BWZ16]).

In the following, we extend the definition of the arbitrary-partition model [KVW14] to fit our
tensor setting.

Definition J.1 (Arbitrary-partition model [KVW14]). There are s machines, and the i machine
holds a tensor A; € R™*™*™ as its local data tensor. The global data tensor is implicit and is denoted
as A=3"7 | A;j. Then, we say that A is arbitrarily partitioned into s matrices distributed in the s
machines. In addition, there is also a coordinator. In this model, the communication is only allowed
between the machines and the coordinator. The total communication cost is the total number of
words delivered between machines and the coordinator. Each word has O(log(sn)) bits.

Now, let us introduce the distributed Frobenius norm low rank tensor approximation problem
in the arbitrary partition model:

Definition J.2 (Arbitrary-partition model Frobenius norm rank-k tensor approximation). Tensor
A € R g4s qrbitrarily partitioned into s matrices A1, Aa,--- , As distributed in s machines
respectively, and Vi € [s|, each entry of A; is at most O(log(sn)) bits. Given tensor A, k € Ny and
an error parameter 0 < € < 1, the goal is to find a distributed protocol in the model of Definition J.1
such that

1. Upon termination, the protocol leaves three matrices U*,V*, W* € R™¥ on the coordinator.

2. U*,V* W* satisfies that
2

k
=1

< (1 i A — A%
F_(+e) min | 17

3. The communication cost is as small as possible.

Theorem J.3. Suppose tensor A € R™ "™ 4s distributed in the arbitrary partition model (See
Definition J.1). There is a protocol(in Algorithm 39) which solves the problem in Definition J.2
with constant success probability. In addition, the communication complexity of the protocol is
s(poly(k/e) + O(kn)) words.

Proof. Correctness. The correctness is implied by Algorithm 2 and Algorithm 3 (Theorem C.1.)
Notice that A; = Zle Ai71, Ay = Zle ALQ, Az = Zle AZ‘73, which means that

Y1 =T1A151,Y2 =T A255,Y3 = T3A355,
and

C = ATy, Ty, Ty).

175

According to line 23,

k
X7, X5, X5 = argmin ||} (Y1X1); ® (YaX2); ® (Y3X3); — C

X1,X2,X3 j=1 r

According to Lemma C.3, we have

k
Z TlAISIXl (TQAQSQX;)]‘ (= (TgAgSng)j — A(Tl, TQ, Tg)

= F
i 2
<(1+0(¢)) min D (A151X1); @ (425, X2); ® (A3Y3X3); — A
1,A2,A3 j:l F
. 2

)

F

< :
<(1+ O(e))UIT‘l/I’%/

ZUi®Vi®Wi_A
i—1

where the last inequality follows by the proof of Theorem C.1. By scaling a constant of €, we
complete the proof of correctness.

Communication complexity. Since S7,S52,53 are wi-wise independent, and T7,75,7T3 are
wy-wise independent, the communication cost of sending random seeds in line 5 is O(s(w; + w3))
words, where w1 = O(k),w2 = O(1) (see [KVW14, CW13, Wool4, KN14]). The communication
cost in line 18 is s - poly(k/e) words due to T1A;151,T2A;252,T3A;353 € RPoly(k/€)xO(k/€) and
C; = Ai(Ty, Ty, Ts) € RPoW(k/€)xpoly(k/e)xpoly(k/e)

Notice that, since Vi € [s] each entry of A; has at most O(log(sn)) bits, each entry of Y1, Ys, Y3, C
has at most O(log(sn)) bits. Due to Theorem J.7, each entry of X}, X5, X3 has at most O(log(sn))
bits, and the sizes of X{, X3, X5 are poly(k/e) words. Thus the communication cost in line 24 is
s - poly(k/e) words.

Finally, since Vi € [s], U, V;*, W} € R™* the communication here is at most O(skn) words.
The total communication cost is s(poly(k/e) + O(kn)) words. O

Remark J.4. If we slightly change the goal in Definition J.2 to the following: the coordinator does
not need to output U*, V*, W*, but each machine i holds U}, V;*, W} such that U* =37 | U, V* =

)

Sl VEWE =377 WS, then the protocol shown in Algorithm 39 does not have to do the line 28.
Thus the total communication cost is at most s - poly(k/€) words in this setting.

Remark J.5. Algorithm 39 needs exponential in poly(k/e) running time since it solves a polynomial
solver in line 23. Instead of solving line 23, we can solve the following optimization problem:

S1 S22 83

af = arg min ZZZOQJ’ (Yg) X (}/3)1 - C

QERIIXE2XE3 |1y iy =1 P

Since it is actually a regression problem, it only takes polynomial running time to get o*. And
according to Lemma C.5,

s1 S2 83

YYD ar M)ie (Ya); @ (Va),

i=1 j=1 I=1

176

Algorithm 39 Distributed Frobenius Norm Low Rank Approximation Protocol

1: procedure DISTRIBUTEDFNORMLOWRANKAPPROXPROTOCOL(A,€,k,s)

2 A € R"*"*"™ wag arbitrarily partitioned into s matrices Aq,--- , As € R™*™*" on s machines.
3 Coordinator Machines ¢

4 Chooses a random seed.

5: Sends it to all machines.
6:
7
8
9

si < O(k/e), Vi € [3].
Agree on S; € R™ i Vi € [3]
which are wi-wise independent random

10: N(0,1/s;) Gaussian matrices.
11: ti < poly(k/e), Vi € [3].
12: Agree on T; € RE*™ i € [3]
13: which are ws-wise independent random
14: sparse embedding matrices.
15: Compute }/i,l — TlAiJSl,
16: Yio ¢ 15A;252,Y;3 < T3A;355.
17: Send Y; 1,Y;2,Y; 3 to the coordinator.
18: Send C; «— A;(Th,T>,T3) to the coordinator.
19: <—-—————"————
S S

20: Compute Y7 < > Y1, Yo < > Y9,

i=1 i=1

s s
21: Y3 Z}/ig,, C + ZC@

i=1 i=1
22: Compute X7, X3, X3 by solving
23 min [[(Y1X1) @ (Y2X2) © (Y3X5) - CfF

21; Send X%, X3, X to machines.

25 —= === == —— >

26: Compute U] < A; 151 X7,

27: Vz* — Ai725'2X§, I/Vl* — Ai7353X§.
28: Send U}, V;*, W} to the coordinator.
29: <—-———"—"————

30. Compute U* < > 7, Ur.
31: Compute V* - >"7 | V*
32: Compute W* « >~7 | WS
33: return U*, V* W*.

34: end procedure

gives a rank-O(k3/e3) bicriteria solution.
Further, similar to Theorem C.8, we can solve
s1 S92
min Z Z Uirs (j-1) @ (Y2): ® (Y3); = C||

nXsgsg
Uek i=1 j=1 »

where C =Y. A;(I,Ts,Ts). Thus, we can obtain a rank-O(k?/€%) in polynomial time.

Remark J.6. If we select sketching matrices S1,S2,55, 11,12, T5 to be random Cauchy matrices,

177

then we are able to compute distributed entry-wise 1 norm rank-k tensor approzimation (see The-
orem D.17). The communication cost is still s(poly(k/e) + O(kn)) words. If we only require a
bicriteria solution, then it only needs polynomial running time.

Using similar techniques as in the proof of Theorem C.45, we can obtain:

Theorem J.7. Let max;{t;,d;} < n. Given a t1 X ta X t3 tensor A and three matrices: a t1 X di
matriz T, a to X do matriz Ty, and a t3 X dg matriz T3. For any § > 0, if there exists a solution to

k 2

N (11 X1)s © (ToXa); ® (T3X3) — A
i=1

min

= OPT,
X1,X2,X3

F

and each entry of X; can be expressed using O(logn) bits, then there exists an algorithm that
takes/\poly(log Q) . ZO(dllirko+d3k) time and outputs three matrices: X1, Xso, and X3 such that
(T1X1) @ (ToX2) ® (T3X3) — Al|% = OPT.

178

K Streaming Setting

One of the computation models which is closely related to the distributed model of computation is
the streaming model. There is a growing line of work in the streaming model. Some problems are
very fundamental in the streaming model such like Heavy Hitters [LNNT16, BCI™16, BCTW16], and
streaming numerical linear algebra problems [CW09|. Streaming low rank matrix approximation
has been extensively studied by previous work like [CW09, KL11, GP14, Lib13, KLM ™14, BWZ16,
SWZ17]. In this section, we show that there is a streaming algorithm which can compute a low
rank tensor approximation.

In the following, we introduce the turnstile streaming model and the turnstile streaming tensor
Frobenius norm low rank approximation problem. The following gives a formal definition of the
computation model we study.

Definition K.1 (Turnstile model). Initially, tensor A € R"™ ™ ™ s an all zero tensor. In the
turnstile streaming model, there is a stream of update operations, and the i update operation is in
the form (x;,v;, zi, 0;) where x;,y;, z; € [n], and 6; € R has O(logn) bits. Each (z;,y;, z;, d;) means
that Ay, y, - should be incremented by 6;. And each entry of A has at most O(logn) bits at the end
of the stream. An algorithm in this computation model is only allowed one pass over the stream. At
the end of the stream, the algorithm stores a summary of A. The space complezity of the algorithm
1s the total number of words required to compute and store this summary while scanning the stream.
Here, each word has at most O(log(n)) bits.

The following is the formal definition of the problem.

Definition K.2 (Turnstile model Frobenius norm rank-k tensor approximation). Given tensor
A e R ke Ny and an error parameter 1 > € > 0, the goal is to design an algorithm in the
streaming model of Definition K.1 such that

1. Upon termination, the algorithm outputs three matrices U*, V*, W* € R"¥F,

2. U*,V* W* satisft that

k 2

=1

< (1 i A — A|%.
F_(+e) min | 17

3. The space complexity of the algorithm is as small as possible.

Theorem K.3. Suppose tensor A € R"™"™*" js given in the turnstile streaming model (see Defi-
nition K.1), there is an streaming algorithm (in Algorithm 40) which solves the problem in Defi-
nition K.2 with constant success probability. In addition, the space complexity of the algorithm is
poly(k/e) + O(nk/e) words.

Proof. Correctness. Similar to the distributed protocol, the correctness of this streaming algorithm
is also implied by Algorithm 2 and Algorithm 3 (Theorem C.1.) Notice that at the end of the stream
Vi = A151 S Rnxsl, Vo = AQSQ S RnXSQ, V3 = A353 S Rnxs?’, C = A(Tl,TQ, Tg) S RUxt2Xt3 Tt also

means that

Y1 =T1A151,Ys =15 A255,Y3 = T3A3S3.

179

According to line 26 of procedure TURNSTILESTREAMING,

k

X7, X5, X5 = arg min Z(Yle)j ® (Y2X2); ® (Y3X3); — C
Xle]RSlXk,XQGRSQXk,X3E]RS3Xk j:1 P

According to Lemma C.3, we have

2
k
Z(Yle)j ® (YaX2); @ (Y3X3); — C
Jj=1 F
i 2
= D (T A181XT); ® (ThA259:X5); ® (TsAsS3X3); — A(Ty, Ty, Ts)
j:l F
& 2
< (1+0(e) min Z(AISIXI)]‘ ® (A25:X3); ® (A3Y3X3); — A
Jj=1 F
2
< (1+0(e) mln ZU@V@W Al o,
=1 F

where the last inequality follows by the proof of Theorem C.1. By scaling a constant of e, we
complete the proof of correctness.

Space complexity. Since Si, 55,53 are wi-wise independent, and 17,15, T35 are wo-wise inde-
pendent, the space needed to construct these sketching matrices in line 3 and line 5 of procedure
TURNSTILESTREAMING is O(w; + wa) words, where wi = O(k),wy = O(1) (see |[KVW14, CW13,
Wool4, KN14]|). The cost to maintain Vi, Va, V3 is O(nk/e) words, and the cost to maintain C' is
poly(k/e) words.

Notice that, since each entry of A has at most O(log(sn)) bits, each entry of Y7, Y, Y3, C has at
most O(log(sn)) bits. Due to Theorem J.7, each entry of X}, X5, X3 has at most O(log(sn)) bits,
and the sizes of X, X3, X3 are poly(k/e) words. Thus the space cost in line 26 is poly(k/¢) words.

The total space cost is poly(k/e) + O(nk/e) words. O

Remark K.4. In the Algorithm 40, for each update operation, we need O(k/e) time to maintain
matrices Vi, Va, V3, and we need poly(k/e) time to maintain tensor C. Thus the update time is
poly(k/e). At the end of the stream, the time to compute

K
Xi,X5,X; = argmin Z Y1X1); @ (YaXa); @ (Y3X3); = C|
=1

Xl,Xg,X;;ERO(k/G)Xk
F

is exponential in poly(k/€) running time since it should use a polynomial system solver. Instead of
computing the rank-k solution, we can solve the following:

S1 S2 83

of = argmin | DY 0 ()i ® (¥2); ® (Ya), - C

OLERSI XsgXs3 i=1
J=11=1 F

180

Algorithm 40 Turnstile Frobenius Norm Low Rank Approximation Algorithm

1: procedure TURNSTILESTREAMING (k,S)
2: S1 (—Sg(—Sg(—O(k/E).
3: Construct sketching matrices S; € R”Q“Z‘,Vi € [3] where entries of S1, 52,53 are wi-wise
independent random N(0,1/s;) Gaussian variables.

t1 < tg < t3 < poly(k/e).

Construct sparse embedding matrices T; € R'*" Vi € [3] where entries are wo-wise inde-
pendent.

6: Initialize matrices:

7 Vi «+ {0} Vi € [3].

8: C — {O}tl Xty Xt3

9: for i € [I] do

10: Receive update operation (x;,y;, 2;, 0;) from the data stream S.
11: forr=1— s; do

12: (Vl)l‘nr < (Vl)xz‘ﬂ” +0i- (Sl)(yi_l)n+zi7r'
13: end for

14: forr =1 — s9 do

15: (Vé)yi,r — (VQ)yi,r + 51) (SQ)(zifl)nwL:Bi,r'
16: end for

17: for r =1 — s3 do

18: (Vé)zz'ﬂ" < (VS)%T +0i (SS)(mi—l)n'i‘yi,T'
19: end for

20: forr=1—t;,p=1—1ty,q=1—t3 do
21 CT,P#] A CT,P#I + 57‘ ’ (TI)T’,QD,L' (Tz)pvy’b (T3>q’z’b
22: end for

23: end for

24: Compute Y7 + 11V, Y5 < 15 V5, Y3 + T5V53.
25: Compute X} € R*** Vi € [3] by solving
26: minX ||(Y1X1) ® (YQXQ) & (Y3X3) — CHF

X1,X2,X3

27: Compute U* <= V1 XT,V* <= Vo X5, W* < V3X3.
28: return U*, V* W*
29: end procedure

which will then give

S1 82 83

YYD ar M) (Ya); @ (Va),

i=1 j=1 I=1

to be a rank-O(k3/e3) bicriteria solution.
Further, similar to Theorem C.8, we can solve

s1 82

min Z Z Uitsi(j-1) ® (Y2)i ® (Y3); = C

TL><S283
UeR i=1 j=1 P

where C =", A;(I, T2, T3). Thus, we can obtain a rank-O(k?/€%) in polynomial time.

181

Remark K.5. If we choose S1,S59,S53,11,15,15 to be random Cauchy matrices, then we are able
to apply the entry-wise {1 norm low rank tensor approximation algorithm (see Theorem D.17) in
turnstile model.

182

L Extension to Other Tensor Ranks

The tensor rank studied in the previous sections is also called the CP rank or canonical rank. The
tensor rank can be thought of as a direct extension of the matrix rank. We would like to point
out that there are other definitions of tensor rank, e.g., the tucker rank and train rank. In this
section we explain how to extend our proofs to other notions of tensor rank. Section L.1 provides
the extension to tucker rank, and Section L.2 provides the extension to train rank.

L.1 Tensor Tucker rank
Tensor Tucker rank has been studied in a number of works [KC07, PC08, MH09, ZW13, YC14|. We
provide the formal definition here:

L.1.1 Definitions

Definition L.1 (Tucker rank). Given a third order tensor A € R™* ™" we say A has tucker rank k
if k is the smallest integer such that there exist three matrices U, V,W € R"™¥ and a (small) tensor
C € RF¥kXE satisfying

kok ok
Aiji = Z Z ZCi’,j’,l’Ui,i’Vj,j’Wl,l’aViajal € [n] x [n] x [n],
f=1j=11=1

or equivalently,

A=C(U,V,W).

L.1.2 Algorithm

Algorithm 41 Frobenius Norm Low (Tucker) Rank Approximation

1: procedure FLOWTUCKERRANKAPPROX (A, n, k, €) > Theorem L.2
2 81<—82%83%O(k/6).

3 t1 < lo < t3 + pOly(kﬁ, 1/6).

4: Choose sketching matrices Sy € R"QX‘“, So € R”2XS2, Ss € R 83, > Definition B.18
5: Choose sketching matrices 77 € R\ X" T, € Rf2Xn Ty € Rtsxn,

6 Compute A;S;,Vi € [3].

7 Compute T;A;S;, Vi € [3].

8 Compute B < A(Ty,T5,T3).

9: Create variables for X; € R¥** Vi ¢ [3].

10: Create variables for C' € RF*kxk,

11: Run a polynomial system verifier for ||C((Y1X1), (YaX2), (Y3X3)) — B||%.

12: return C,Allel, AQSQXQ, and A3S53X3.

13: end procedure

Theorem L.2. Given a third order tensor A € R"*" " for any k > 1 and € € (0,1), there exists
an algorithm which takes O(nnz(A)) + npoly(k, 1/€) + 200 /<+k%) time and outputs three matrices
UV, W € R and a tensor C € RF*F¥E for which

IC(W, V.W) = Al < (1 +¢) min 1Ak — All%

tucker rank —k Ag

183

holds with probability 9/10.
Proof. We define OPT to be

OPT = min 1A — Alj%.
tucker rank —k A’

Suppose the optimal Ay = C*(U*, V*, W*). We fix C* € RF*kxk 1* ¢ Rnxk and W* € R™¥K,
We use Vi*, V', .-+, V¥ to denote the columns of V* and W, W5, --- W}’ to denote the columns
of W*.

We consider the following optimization problem,

. * * W) — A 2
g min L NCHU VW) — Al

which is equivalent to

: O*(T * N _ A 2
g min o (U CHLVE W) — Al

because C*(U, V*, W*) = U - C*(1,V*,W*) according to Definition A.6.

Recall that C*(I,V*, W*) denotes a k x n X n tensor. Let (C*(I,V*, W*)); denote the ma-
trix obtained by flattening C*(I,V*,W*) along the first dimension. We use matrix Z; to denote
(C*(I,V*,W*)); € R xn? Then we can obtain the following equivalent objective function,

min HUZ1 Ap|%.
UeR

Notice that mingegnxs |[UZ1 — A1||% = OPT, since Ay = U*Z;.
Let S| € Rs1%7* he the sketching matrix defined in Definition B.18, where s; = O(k/e). We
obtain the following optimization problem,

min ||UZ1S1 A151||%v
UGRnX

Let U € R™* denote the optimal solution to the above optimization problem. Then U =
A151(Z,81)f. By Lemma B.22 and Theorem B.23, we have

1UZ1 — Ay||% < (1 +), min [[UZ - A1]|% = (1+¢) OPT,
c nx
which implies
HC* (T, V*, W) AH (1+¢)OPT.

To write down ﬁl, e ,(/jk7 we use the given matrix Ay, and we create s; X k variables for matrix
(Z,S1)F. R

As our second step, we fix U € R™* and W* € R"* and we convert tensor A into matrix As.
Let matrix Zs denote (C*(U,I,W*)), € RFXn* We consider the following objective function,

mln HVZQ - A2||F,
VeR

for which the optimal cost is at most (1 + €) OPT.

184

Let S, € R%2%"* he a sketching matrix defined in Definition B.18, where sy = O(k/e). We
sketch S5 on the right of the objective function to obtain a new objective function,

min HVZQSQ — AQSQ”F
VeRnX

Let V € R"™* denote the optimal solution to the above problem. Then V= A985(Z285)T. By
Lemma B.22 and Theorem B.23, we have,

|V Zy — A% < (14 ¢€) min NVZs— Asl|% < (14 €)? OPT,
E n><
which implies
HC*(U,YA/,W AH (1+¢)2OPT.

To write down 171, e ,T?k, we need to use the given matrix As € R”2X", and we need to create
s9 x k variables for matrix (Z9Ss).

As our third step, we fix the matrices U € R™* and V € R"**. We convert tensor A € R"*nxn
into matrix Az € R"*". Let matrix Z3 denote (C*(U,V,I)); € R¥*"*. We consider the following
objective function,

in (W Zs — Asll,

which has optimal cost at most (1 + €)2 OPT.
Let S5 € R%*"* he a sketching matrix defined in Definition B.18, where s3 = O(k/e). We
sketch S3 on the right of the objective function to obtain a new objective function,

min HWZgSg — A353||F
WeRnx

Let W € R™*F denote the optimal solution of the above problem. Then W = AgSg(ZgSg)T. By
Lemma B.22 and Theorem B.23, we have,

W Zs — Ag||% < (1+ e)Wmln W Z3 — A3||% < (1+¢)> OPT.

Thus, we have

min_ [|C*((A151X1), (4255 X5), (A355X3)) — A% < (1 + €)® OPT.
X1,X2,X3

Let Vi = A151, Vo = AsSs, and V3 = A3S53. We then apply Lemma C.3, and we obtain 171, 172, f/\}),, B
We then apply Theorem C.45. Correctness follows by rescaling € by a constant factor.

Running time. Due to Definition B.18, the running time of line 7 (Algorithm 41) is O(nnz(A))+
npoly(k,1/€). Due to Lemma C.3, line 7 and 8 can be executed in nnz(A) + npoly(k,1/e) time.
The running time of line 11 is given by Theorem C.45. (For simplicity, we ignore the bit complexity
in the running time.) O

185

L.2 Tensor Train rank

L.2.1 Definitions

The tensor train rank has been studied in several works [Osell, OTZ11, ZWZ16, PTBD16]. We
provide the formal definition here.

Definition L.3 (Tensor Train rank). Given a third order tensor A € R™* ™™ we say A has train
rank k if k is the smallest integer such that there exist three tensors U € Rk 1/ ¢ RExnxk
W e RF"X1 satisfying:

—_

k

k 1
Aigi = Z Z Z Z Uiy ivia Vig.jiis Wis s> Vi, J, L € [n] X [n] X [n],

i1=112=113=114=1

or equivalently,
k k
Aigi = Z Z(U2)i,i2(VZ)j,ig—i-k(ig—l)(W2)l,i3a

where Va € R™* denotes the matriz obtained by flattening the tensor U along the second dimension,
and (Va); i, +k(is—1) denotes the entry in the i-th row and i1+ k(iz — 1)-th column of Va. We similarly
define Uy, Wy € Rk,

Algorithm 42 Frobenius Norm Low (Train) rank Approximation

1: procedure FLOWTRAINRANKAPPROX (A, n, k, €) > Theorem L.4
2 s1 < s3 < O(k/e).

3 89 O(k2/€)

4: t1 < 1o 13 pOly(k, 1/6)

5: Choose sketching matrices Sy € R”QX“”, So € R”2X52, Ss € R 83, > Definition B.18
6 Choose sketching matrices Ty € Rl X" Ty € Rf2Xn Ty ¢ Rlsxn,

7 Compute A;S;,Vi € [3].

8 Compute T;A;S;, Vi € [3].

9 Compute B < A(Ty,T5,T3).

10: Create variables for X; € Rs1%k,
11: Create variables for X3 € R3%k,
12: Create variables for Xy € Rs2xk*
13: Create variables for C' € RF*kxk,

14: Run polynomial system verifier for || 212 1 213 L (Y1.X1) i, (Y2 X2) iy a(i5—1) (Y3 X3)i; — B3
15: return A151X1, AQSQXQ, and A3S53X3.
16: end procedure

L.2.2 Algorithm

Theorem L.4. Given a third order tensor A € R"™ "™ " for any k > 1, ¢ € (0,1), there exists
an algorithm which takes O(nnz(A)) + npoly(k, 1/€) + 2°F/9) time and outputs three tensors U €
Rlxnxk Ve kanxk = kanxl such that

k k
ZZ ® (Va)itai_1) @ (Wa); — A|| <(1+e€) min HAk—AHF

train rank —k A
F

186

holds with probability 9/10

Proof. We define OPT as

OPT = min A" — Alj%.
train rank —k A’
Suppose the optimal

Ak:ZZU*

+k (3-1) ® W*
i=1 j=1
We fix V* € R™F and W* € R™*. We use V}, V5, V)5 to denote the columns of V*, and
Wi, Wy, -+, W} to denote the columns of W*.
We consider the following optimization problem

2
min ZZU @ Vikg-n @ Wi = 4],
UeRnX

=1 j=1
which is equivalent to

F
_ -
2 1+k(j— 1®VVJ
k

Z

min ||U -

2+k (3-1) ® W*
UcRnxk

Z k+l<:] 1) ®W;

F
Let A; € R™™ denote the matrix obtained by flattening the tensor A along the first dimension
We use matrix Z; € RF*"* 6 denote

Z vee(V7” 1+k(—1) @ W)

Z vec(Vf rk(j—1) ® W)

k
2 ec(Viii k=1 @ W5)

Then we can obtain the following equivalent objective function

min [|UZ — A13.
ymin U2y — Al
Notice that mingegnxr [|[UZ1 — A1]|% = OPT, since Ay = U*Z;.

Let S] € R*™*"" be a sketching matrix defined in Definition B.18, where s; = O(k/¢)
obtain the following optimization problem

min ||U2151 A151||%v
UER”X

187

Let U € R"™* denote the optimal solution to the above optimization problem. Then U =
A151(Z,81)f. By Lemma B.22 and Theorem B.23, we have

|UZ, — A1]|3 < (1+¢) min |UZ — A% = (14 ¢€) OPT,
UGR”Xk

which implies

kK k
ZZ Vi @ Wi —A|l < (1+¢OPT.
=1j=1 F
To write down ﬁl, S ,ﬁk, we use the given matrix Ay, and we create s; X k variables for matrix

(Z181)1.

As our second step, we fix U € R™** and W* € R™* and we convert the tensor A into matrix
Az, Let matrix Zy € RF**n* denote the matrix where the (i,7)-th row is the vectorization of
U; @ W7. We consider the following objective function,

. . 2
yin [|VZy = Asl,

for which the optimal cost is at most (1 + ¢) OPT.
Let S) € R%2%"* be a sketching matrix defined in Definition B.18, where s, = O(k2/e). We
sketch S5 on the right of the objective function to obtain the new objective function,

min HVZQSQ — AQSQ”F
VeRnX

Let V € R denote the optimal solution of the above problem. Then V= A985(Z555)t. By
Lemma B.22 and Theorem B.23, we have,

||VZ2 —AQHF (1+6) mln HVZQ —AQHF (1—|—6) OPT,

which implies

k k 2
ZZ K1) @ W — Al < (1+4¢)?OPT.
=1j=1 F
To write down ‘71, e ,T7k, we need to use the given matrix As € R"2X", and we need to create

s9 x k variables for matrix (Z9S2). R
As our third step, we fix the matrices U € R™* and V' € R"**¥. We convert tensor A € R?*"*"
into matrix Az € R™X" Let matrix Z3 € RF xn? denote

Zle VeC([zi ® ‘:/Hk.o)
Z§:1 vec(U; @ Viyk1)
& PO
> ic1 vee(Ui @ Vig g (k-1))
We consider the following objective function,

min ||WZ3 — A][3,
WeRnxk

188

which has optimal cost at most (1 + €)2 OPT.
Let S5 € R%*7* he a sketching matrix defined in Definition B.18, where s3 = O(k/e). We
sketch S3 on the right of the objective function to obtain a new objective function,

mi

W Z3S53 — AsSs]|%.
in NIW Z3S5 — AsSse

Let W € R™F denote the optimal solution of the above problem. Then W = A353(2353)T. By
Lemma B.22 and Theorem B.23, we have,

W25 — As||} < (1+¢) min [|[WZ5 — Ag|[} < (1+€)*OPT,
WeRnX

Thus, we have

2
k k

. H)?HX g E (A151X1)i ® (A282X2)i41(j—1) ® (A353X3); — A|| < (14€)°OPT.
1,A2,A3 - -
=1]:1

F

Let Vi = A151, Vo = AsSs, and V3 = A3S3. We then apply Lemma C.3, and we obtain 171, ‘72, 173, B.
We then apply Theorem C.45. Correctness follows by rescaling € by a constant factor.

Running time. Due to Definition B.18, the running time of line 7 (Algorithm 42) is O(nnz(A))+
npoly(k,1/€). Due to Lemma C.3, lines 8 and 9 can be executed in nnz(A) + npoly(k,1/€) time.
The running time of 20(k*/9) comes from running Theorem C.45 (For simplicity, we ignore the bit
complexity in the running time.) O

189

M Acknowledgments

The authors would like to thank Udit Agarwal, Alexandr Andoni, Arturs Backurs, Saugata Basu,
Lijie Chen, Xi Chen, Thomas Dillig, Yu Feng, Rong Ge, Daniel Hsu, Chi Jin, Ravindran Kannan, J.
M. Landsberg, Qi Lei, Fu Li, Syed Mohammad Meesum, Ankur Moitra, Dana Moshkovitz, Cameron
Musco, Richard Peng, Eric Price, Govind Ramnarayan, Ilya Razenshteyn, James Renegar, Rocco
Servedio, Tselil Schramm, Clifford Stein, Wen Sun, Yining Wang, Zhaoran Wang, Wei Ye, Huacheng
Yu, Huan Zhang, Kai Zhong, David Zuckerman for useful discussions.

190

References

[AAB*07]

[ABF16]

[ABSV14]

[ABW17]

[ACKYO05]

[ACY06]

|[ADGM16]

[AFdLGTLOY]

|AFH*12|

IAGH*14]

[AGHK14]

Evrim Acar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and Biilent Yener.
Multiway analysis of epilepsy tensors. In Proceedings 15th International Conference
on Intelligent Systems for Molecular Biology (ISMB) & 6th Furopean Conference on
Computational Biology (ECCB), Vienna, Austria, July 21-25, 2007, pages 10-18,
2007.

Jason Altschuler, Aditya Bhaskara, Gang Fu, Vahab Mirrokni, Afshin Rostamizadeh,
and Morteza Zadimoghaddam. Greedy column subset selection: New bounds and
distributed algorithms. In International Conference on Machine Learning (ICML).
https://arxiv.org/pdf/1605.08795, 2016.

Pranjal Awasthi, Avrim Blum, Or Sheffet, and Aravindan Vijayaraghavan. Learning
mixtures of ranking models. In Advances in Neural Information Processing Systems
(NIPS). https://arxiv.org/pdf/1410.8750, 2014.

Pranjal Awasthi, Maria-Florina Balcan, and Colin White. General and robust
communication-efficient algorithms for distributed clustering. In arXiv preprint.
https://arxiv.org/pdf/1703.00830, 2017.

Evrim Acar, Seyit A Camtepe, Mukkai S Krishnamoorthy, and Biilent Yener. Mod-
eling and multiway analysis of chatroom tensors. In International Conference on
Intelligence and Security Informatics, pages 256-268. Springer, 2005.

Evrim Acar, Seyit A Camtepe, and Biilent Yener. Collective sampling and analysis
of high order tensors for chatroom communications. In International Conference on
Intelligence and Security Informatics, pages 213-224. Springer, 2006.

Anima Anandkumar, Yuan Deng, Rong Ge, and Hossein Mobahi. Homotopy analysis
for tensor pca. In arXiv preprint. https://arxiv.org/pdf/1610.09322, 2016.

Santiago Aja-Fernandez, Rodrigo de Luis Garcia, Dacheng Tao, and Xuelong Li.
Tensors in image processing and computer vision. Springer Science & Business Me-
dia, 2009.

Anima Anandkumar, Dean P Foster, Daniel J Hsu, Sham M Kakade, and Yi-Kai
Liu. A spectral algorithm for latent dirichlet allocation. In Adwvances in Neural
Information Processing Systems(NIPS), pages 917-925. https://arxiv.org/pdf/
1204.6703, 2012.

Animashree Anandkumar, Rong Ge, Daniel J. Hsu, Sham M. Kakade, and Matus
Telgarsky. Tensor decompositions for learning latent variable models. In Journal of
Machine Learning Research, volume 15(1), pages 2773-2832. https://arxiv.org/
pdf/1210.7559, 2014.

Animashree Anandkumar, Rong Ge, Daniel J Hsu, and Sham M Kakade. A tensor
approach to learning mixed membership community models. In Journal of Machine
Learning Research, volume 15(1), pages 2239-2312. https://arxiv.org/pdf/1302.
2684, 2014.

191

https://arxiv.org/pdf/1605.08795
https://arxiv.org/pdf/1410.8750
https://arxiv.org/pdf/1703.00830
https://arxiv.org/pdf/1610.09322
https://arxiv.org/pdf/1204.6703
https://arxiv.org/pdf/1204.6703
https://arxiv.org/pdf/1210.7559
https://arxiv.org/pdf/1210.7559
https://arxiv.org/pdf/1302.2684
https://arxiv.org/pdf/1302.2684

[AGKM12]

[AGMRI16]

[AKDM10]

|AKOL11]

[ALA16|

[ALB13]

[All12a]

[All12D]

[AMO7]

[ANW14]

[Ban38|

[BBC*17]

[BBLM14]

Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Computing a
nonnegative matrix factorization - provably. In Proceedings of the 44th Symposium
on Theory of Computing Conference (STOC), New York, NY, USA, May 19 - 22,
2012, pages 145-162. https://arxiv.org/pdf/1111.0952, 2012.

Sanjeev Arora, Rong Ge, Tengyu Ma, and Andrej Risteski. Provable learning of
noisy-or networks. In Proceedings of the 49th Annual Symposium on the Theory of
Computing (STOC). ACM, https://arxiv.org/pdf/1612.08795, 2016.

E. Acar, T. G. Kolda, D. M. Dunlavy, and M. Morup. Scalable Tensor Factorizations
for Incomplete Data. In arXiv preprint. https://arxiv.org/pdf/1005.2197, 2010.

Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms
via precision sampling. In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 363-372. IEEE, https://arxiv.org/pdf/1011.
1263, 2011.

Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Rein-
forcement learning of POMDPs using spectral methods. In 29th Annual Conference
on Learning Theory (COLT), pages 193-256. https://arxiv.org/pdf/1602.07764,
2016.

Mohammad Gheshlaghi Azar, Alessandro Lazaric, and Emma Brunskill. Sequential
transfer in multi-armed bandit with finite set of models. In Advances in Neural
Information Processing Systems(NIPS), pages 2220-2228. https://arxiv.org/pdf/
1307.6887, 2013.

Genevera Allen. Sparse higher-order principal components analysis. In AISTATS,
volume 15, 2012.

Genevera [Allen. Regularized tensor factorizations and higher-order principal com-
ponents analysis. In arXiv preprint. https://arxiv.org/pdf/1202.2476, 2012.

Dimitris Achlioptas and Frank McSherry. Fast computation of low-rank matrix
approximations. J. ACM, 54(2):9, 2007.

Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings for the
polynomial kernel. In Advances in Neural Information Processing Systems(NIPS),
pages 2258-2266, 2014.

Stefan Banach. Uber homogene polynome in (I?). Studia Mathematica, 7(1):36-44,
1938.

Jaroslaw Blasiok, Vladimir Braverman, Stephen R Chestnut, Robert Krauthgamer,
and Lin F Yang. Streaming symmetric norms via measure concentration. In Pro-
ceedings of the 49th Annual Symposium on the Theory of Computing(STOC). ACM,
https://arxiv.org/pdf/1511.01111, 2017.

MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab Mirrokni.
Distributed balanced clustering via mapping coresets. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 2591-2599, 2014.

192

https://arxiv.org/pdf/1111.0952
https://arxiv.org/pdf/1612.08795
https://arxiv.org/pdf/1005.2197
https://arxiv.org/pdf/1011.1263
https://arxiv.org/pdf/1011.1263
https://arxiv.org/pdf/1602.07764
https://arxiv.org/pdf/1307.6887
https://arxiv.org/pdf/1307.6887
https://arxiv.org/pdf/1202.2476
https://arxiv.org/pdf/1511.01111

[BCI*16]

[BCIW16]

[BCKY16]

[BCLO5)

[BCMV14]

IBCS97]

[BCV14]

[BDL16]

[BDM11]

[Bins0]

[Bins6|

[BKLW14]

[BKS15]

Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu
Wang, and David P Woodruff. Bptree: an ¢ heavy hitters algorithm using constant
memory. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (PODS). https://arxiv.org/pdf/1603.00759,
2016.

Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, and David P Woodruff.
Beating countsketch for heavy hitters in insertion streams. In Proceedings of the
48th Annual Symposium on the Theory of Computing (STOC). https://arxiv.
org/pdf/1511.00661, 2016.

Vladimir Braverman, Stephen R Chestnut, Robert Krauthgamer, and Lin F Yang.
Sketches for matrix norms: Faster, smaller and more general. In arXiv preprint.
https://arxiv.org/pdf/1609.05885, 2016.

Zheng-Jian Bai, Raymond H Chan, and Franklin T Luk. Principal component anal-
ysis for distributed data sets with updating. In Advanced Parallel Processing Tech-
nologies, pages 471-483. Springer, 2005.

Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan.
Smoothed analysis of tensor decompositions. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, pages 594—603. ACM, https://arxiv.
org/pdf/1311.3651, 2014.

Peter Biirgisser, Michael Clausen, and Amin Shokrollahi. Algebraic complezity the-
ory, volume 315. Springer Science & Business Media, 1997.

Aditya Bhaskara, Moses Charikar, and Aravindan Vijayaraghavan. Uniqueness of
tensor decompositions with applications to polynomial identifiability. In 27th Annual
Conference on Learning Theory (COLT), pages 742-778. https://arxiv.org/pdf/
1304.8087, 2014.

Amitabh Basu, Michael Dinitz, and Xin Li. Computing approximate PSD factor-
izations. In arXiv preprint. https://arxiv.org/pdf/1602.07351, 2016.

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near optimal column-
based matrix reconstruction. In IEFE 52nd Annual Symposium on Foundations of
Computer Science (FOCS), 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 305-314. https://arxiv.org/pdf/1103.0995, 2011.

Dario Bini. Border rank of a p x q x 2 tensor and the optimal approximation of a
pair of bilinear forms. Automata, languages and programming, pages 98-108, 1980.

Dario Bini. Border rank of m x n x (mn-q) tensors. Linear Algebra and Its Appli-
cations, 79:45-51, 1986.

Maria-Florina Balcan, Vandana Kanchanapally, Yingyu Liang, and David Woodruff.
Improved distributed principal component analysis. In Advances in Neural Informa-
tion Processing Systems (NIPS). https://arxiv.org/pdf/1408.5823, 2014.

Boaz Barak, Jonathan A Kelner, and David Steurer. Dictionary learning and tensor
decomposition via the sum-of-squares method. In Proceedings of the Forty-Seventh

193

https://arxiv.org/pdf/1603.00759
https://arxiv.org/pdf/1511.00661
https://arxiv.org/pdf/1511.00661
https://arxiv.org/pdf/1609.05885
https://arxiv.org/pdf/1311.3651
https://arxiv.org/pdf/1311.3651
https://arxiv.org/pdf/1304.8087
https://arxiv.org/pdf/1304.8087
https://arxiv.org/pdf/1602.07351
https://arxiv.org/pdf/1103.0995
https://arxiv.org/pdf/1408.5823

[BLG*15|

[BLST16]

[BM16]

[BMDO9]

[BNRT15]

[Boull]

[BPR96|

[BRBOS]

[BS15]

[BSS12]

[BW14]

[BWZ16]

Annual ACM on Symposium on Theory of Computing (STOC), pages 143-151.
ACM, https://arxiv.org/pdf/1407.1543, 2015.

Aurélien Bellet, Yingyu Liang, Alireza Bagheri Garakani, Maria-Florina Balcan,
and Fei Sha. A distributed frank-wolfe algorithm for communication-efficient sparse
learning. In Proceedings of the 2015 SIAM International Conference on Data Mining
(ICDM), pages 478-486. SIAM, https://arxiv.org/pdf/1404.2644, 2015.

Maria-Florina Balcan, Yingyu Liang, Le Song, David Woodruff, and Bo Xie. Com-
munication efficient distributed kernel principal component analysis. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 725-734. ACM, https://arxiv.org/pdf/1503.06858,
2016.

Boaz Barak and Ankur Moitra. Noisy tensor completion via the sum-of-squares
hierarchy. In Proceedings of the 29th Conference on Learning Theory, COLT 2016,
New York, USA, June 23-26, 2016, pages 417-445. https://arxiv.org/pdf/1501.
06521, 2016.

Christos Boutsidis, Michael W Mahoney, and Petros Drineas. An improved approx-
imation algorithm for the column subset selection problem. In Proceedings of the
twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
968-977. Society for Industrial and Applied Mathematics, https://arxiv.org/pdf/
0812.4293, 2009.

Guillaume Bouchard, Jason Naradowsky, Sebastian Riedel, Tim Rocktéschel, and
Andreas Vlachos. Matrix and tensor factorization methods for natural language
processing. In ACL (Tutorial Abstracts), pages 16-18, 2015.

Christos Boutsidis. Topics in matrix sampling algorithms. In Ph.D. Thesis. arXiv
preprint. https://arxiv.org/pdf/1105.0709, 2011.

Saugata Basu, Richard Pollack, and Marie-Francoise Roy. On the combinatorial and
algebraic complexity of quantifier elimination. J. ACM, 43(6):1002-1045, 1996.

Yann-Ael Le Borgne, Sylvain Raybaud, and Gianluca Bontempi. Distributed prin-
cipal component analysis for wireless sensor networks. Sensors, 2008.

Srinadh Bhojanapalli and Sujay Sanghavi. A new sampling technique for tensors.
In arXiv preprint. https://arxiv.org/pdf/1502.05023, 2015.

Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan spar-
sifiers. In SIAM Journal on Computing, volume 41(6), pages 1704-1721. https:
//arxiv.org/pdf/0808.0163, 2012.

Christos Boutsidis and David P Woodruff. Optimal cur matrix decompositions. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC),
pages 353-362. ACM, https://arxiv.org/pdf/1405.7910, 2014.

Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal compo-
nent analysis in distributed and streaming models. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 236-249. ACM,
https://arxiv.org/pdf/1504.06729, 2016.

194

https://arxiv.org/pdf/1407.1543
https://arxiv.org/pdf/1404.2644
https://arxiv.org/pdf/1503.06858
https://arxiv.org/pdf/1501.06521
https://arxiv.org/pdf/1501.06521
https://arxiv.org/pdf/0812.4293
https://arxiv.org/pdf/0812.4293
https://arxiv.org/pdf/1105.0709
https://arxiv.org/pdf/1502.05023
https://arxiv.org/pdf/0808.0163
https://arxiv.org/pdf/0808.0163
https://arxiv.org/pdf/1405.7910
https://arxiv.org/pdf/1504.06729

[CCT0]

[CC10]

[CDMI*13]

[CEM*15]

[CKPS16]|

[Cla05]

[CLK*+15]

[CLM™*15]

[CLZ17]

[CMDL*15]

[CNW15]

J Douglas Carroll and Jih-Jie Chang. Anaylsis of individual differences in mul-
tidimensional scaling via an n-way generalization of eckart-young decomposition.
Psychometrika, 35(3):283-319, 1970.

Cesar F Caiafa and Andrzej Cichocki. Generalizing the column-row matrix decom-
position to multi-way arrays. Linear Algebra and its Applications, 433(3):557-573,
2010.

Kenneth L Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney,
Xiangrui Meng, and David P Woodruff. The fast cauchy transform and faster ro-
bust linear regression. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 466-477. Society for Industrial
and Applied Mathematics, https://arxiv.org/pdf/1207.4684, 2013.

Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approxima-
tion. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing (STOC), pages 163-172. ACM, https://arxiv.org/pdf/1410.6801,
2015.

Xue Chen, Daniel M. Kane, Eric Price, and Zhao Song. Fourier-sparse interpola-
tion without a frequency gap. In IEEFE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,
New Jersey, USA, pages 741-750, 2016.

Kenneth L Clarkson. Subgradient and sampling algorithms for ¢; regression. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms
(SODA), pages 257-266, 2005.

Fengyu Cong, Qiu-Hua Lin, Li-Dan Kuang, Xiao-Feng Gong, Piia Astikainen, and
Tapani Ristaniemi. Tensor decomposition of eeg signals: a brief review. Journal of
neuroscience methods, 248:59-69, 2015.

Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng,
and Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science (ITCS), pages
181-190. ACM, https://arxiv.org/pdf/1408.5099, 2015.

Longxi Chen, Yipeng Liu, and Ce Zhu. Iterative block tensor singular value thresh-
olding for extraction of low rank component of image data. In ICASSP 2017, 2017.

Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao,
Cesar Caiafa, and Huy Anh Phan. Tensor decompositions for signal processing ap-

plications: From two-way to multiway component analysis. IEEE Signal Processing
Magazine, 32(2):145-163, 2015.

Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal approximate
matrix product in terms of stable rank. In Proceedings of the 43rd International
Collogquium on Automata, Languages and Programming (ICALP), Rome, Italy, July
12-15, 2016. https://arxiv.org/pdf/1507.02268, 2015.

195

https://arxiv.org/pdf/1207.4684
https://arxiv.org/pdf/1410.6801
https://arxiv.org/pdf/1408.5099
https://arxiv.org/pdf/1507.02268

[Com09]

[CP15)

[CV15]

[CW87]

[CWO09]

[CW13]

[CW15a]

[CW15b)

[CYYM14]

[DDH*09]

[Dem14]

[DLDMOYS|

[DMIMW12]

P. Comon. Tensor Decompositions, State of the Art and Applications. ArXiv e-
prints, 2009.

Michael B. Cohen and Richard Peng. ¢, row sampling by lewis weights. In Pro-
ceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting (STOC), STOC ’15, pages 183-192, New York, NY, USA, 2015. https:
//arxiv.org/pdf/1412.0588.

Nicol6 Colombo and Nikos Vlassis. Fastmotif: spectral sequence motif discovery.
Bioinformatics, pages 2623-2631, 2015.

Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic pro-
gressions. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 1-6. ACM, 1987.

Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the stream-
ing model. In Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 205214,
2009.

Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and re-
gression in input sparsity time. In Symposium on Theory of Computing Con-
ference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 81-90. https:
//arxiv.org/pdf/1207.6365, 2013.

Kenneth L Clarkson and David P Woodruff. Input sparsity and hardness for robust
subspace approximation. In 2015 IEEFE 56th Annual Symposium on Foundations of
Computer Science (FOCS), pages 310-329. IEEE, https://arxiv.org/pdf/1510.
06073, 2015.

Kenneth L Clarkson and David P Woodruff. Sketching for m-estimators: A unified
approach to robust regression. In Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 921-939. STAM, 2015.

Kai-Wei Chang, Scott Wen-tau Yih, Bishan Yang, and Chris Meek. Typed tensor
decomposition of knowledge bases for relation extraction. In Empirical Methods in
Natural Language Processing (EMNLP), pages 1568-1579, 2014.

Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Ma-
honey. Sampling algorithms and coresets for £, regression. SIAM Journal on Com-
puting, 38(5):2060-2078, 2009.

Erik Demaine. Algorithmic lower bounds: Fun with hardness proofs, lecture 13. In
MIT Course 6.890, 2014.

Lieven De Lathauwer and Bart De Moor. From matrix to tensor: Multilinear algebra
and signal processing. In Institute of Mathematics and Its Applications Conference
Series, volume 67, pages 1-16. Citeseer, 1998.

Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruft.
Fast approximation of matrix coherence and statistical leverage. Journal of Machine
Learning Research, 13(Dec):3475-3506, 2012.

196

https://arxiv.org/pdf/1412.0588
https://arxiv.org/pdf/1412.0588
https://arxiv.org/pdf/1207.6365
https://arxiv.org/pdf/1207.6365
https://arxiv.org/pdf/1510.06073
https://arxiv.org/pdf/1510.06073

[DMMO6a]

[DMMO6b|

[DMMOS]|

[DR10]

[DSLOS|

[DVO6]

[DVO07]

[Dvo61]

[DW17]

[ES09]

[FEGK13]

[Fei02]

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling
and relative-error matrix approximation: Column-based methods. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
9th International Workshop on Approzimation Algorithms for Combinatorial Opti-
mization Problems, APPROX 2006 and 10th International Workshop on Random-
1zation and Computation, RANDOM 2006, Barcelona, Spain, August 28-30 2006,
Proceedings, pages 316-326, 2006.

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling
and relative-error matrix approximation: Column-row-based methods. In Algorithms
- ESA 20006, 14th Annual European Symposium, Zurich, Switzerland, September 11-
18, 2006, Proceedings, pages 304-314, 2006.

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error CUR
matrix decompositions. SIAM J. Matriz Analysis Applications, 30(2):844-881, 2008.

Amit Deshpande and Luis Rademacher. Efficient volume sampling for row/column
subset selection. In 2010 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 329-338. IEEE, https://arxiv.org/pdf/1004.4057, 2010.

Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-
rank approximation problem. SIAM Journal on Matrix Analysis and Applications,
30(3):1084-1127, 2008.

Amit Deshpande and Santosh Vempala. Adaptive sampling and fast low-rank matrix
approximation. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 292-303. Springer, 2006.

Amit Deshpande and Kasturi R. Varadarajan. Sampling-based dimension reduction
for subspace approximation. In Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA, June 11-183, 2007, pages
641-650, 2007.

AP Dvoredsky. Some results on convex bodies and banach spaces. In Proc. Internat.
Sympos. Linear Spaces (Jerusalem, 1960), pages 123-160, 1961.

Huaian Diao and David P. Woodruff. Kronecker product and spline regression.
manuscript, 2017.

Lars Eldén and Berkant Savas. A newton-grassmann method for computing the
best multilinear rank-(r1,r2,r3) approximation of a tensor. SIAM J. Matriz Analysis
Applications, 31(2):248-271, 2009.

Ahmed K Farahat, Ahmed Elgohary, Ali Ghodsi, and Mohamed S Kamel. Dis-
tributed column subset selection on mapreduce. In 2013 IEEE 13th International
Conference on Data Mining (ICDM), pages 171-180. IEEE, 2013.

Uriel Feige. Relations between average case complexity and approximation com-
plexity. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing(STOC), pages 534-543. ACM, 2002.

197

https://arxiv.org/pdf/1004.4057

[FFSS07]

[FKV04|

[FMMN11]

[FMPS13)|

[FS99)

[FTO7]

[FT15]

|GGH14|

|GHK15]

[GIST6]

[GLO4]

[GM15]

[GP14]

Dan Feldman, Amos Fiat, Micha Sharir, and Danny Segev. Bi-criteria linear-time
approximations for generalized k-mean/median/center. In Proceedings of the 23rd
ACM Symposium on Computational Geometry, Gyeongju, South Korea, June 6-8,
2007, pages 19-26, 2007.

Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms
for finding low-rank approximations. J. ACM, 51(6):1025-1041, 2004.

Shmuel Friedland, V Mehrmann, A Miedlar, and M Nkengla. Fast low rank approx-
imations of matrices and tensors. FElectron. J. Linear Algebra, 22(10311048):462,
2011.

Shmuel Friedland, Volker Mehrmann, Renato Pajarola, and Susanne K. Suter. On
best rank one approximation of tensors. Numerical Lin. Alg. with Applic., 20(6):942—
955, 2013.

Roger Fischlin and Jean-Pierre Seifert. Tensor-based trapdoors for cvp and their
application to public key cryptography. Cryptography and Coding, pages 801-801,
1999.

Shmuel Friedland and Anatoli Torokhti. Generalized rank-constrained matrix ap-
proximations. SIAM Journal on Matriz Analysis and Applications, 29(2):656—659,
2007.

Shmuel Friedland and Venu Tammali. Low-rank approximation of tensors. In Numer-
ical Algebra, Matriz Theory, Differential-Algebraic Equations and Control Theory,
pages 377-411. Springer, 2015.

Quanquan Gu, Huan Gui, and Jiawei Han. Robust tensor decomposition with gross
corruption. In Advances in Neural Information Processing Systems(NIPS), pages
1422-1430, 2014.

Rong Ge, Qingqing Huang, and Sham M Kakade. Learning mixtures of gaussians in
high dimensions. In Proceedings of the Forty-Seventh Annual ACM on Symposium,
on Theory of Computing (STOC), pages 761-770. ACM, https://arxiv.org/pdf/
1503.00424, 2015.

Michael R Garey, David S. Johnson, and Larry Stockmeyer. Some simplified np-
complete graph problems. Theoretical computer science, 1(3):237-267, 1976.

Andreas Goerdt and André Lanka. An approximation hardness result for bipartite
clique. In FElectronic Colloquium on Computational Complexity, Report, volume 48.
https://eccc.weizmann.ac.il/report/2004/048/, 2004.

Rong Ge and Tengyu Ma. Decomposing overcomplete 3rd order tensors using sum-
of-squares algorithms. In The 18th. International Workshop on Approzimation Al-
gorithms for Combinatorial Optimization Problems (APPROX’2015), and the 19th.
International Workshop on Randomization and Computation (RANDOM’2015).
https://arxiv.org/pdf/1504.05287, 2015.

Mina Ghashami and Jeff M Phillips. Relative errors for deterministic low-rank matrix
approximations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium,

198

https://arxiv.org/pdf/1503.00424
https://arxiv.org/pdf/1503.00424
https://eccc.weizmann.ac.il/report/2004/048/
https://arxiv.org/pdf/1504.05287

1GQ14]

[Har70]

[Has90]

[Has00]

[Has01]

[HDOS|

[HK13|

[HL13]

[HPS05]

[HSS15]

[HSSS16]

[HT16]

[IPZ98)]

on Discrete Algorithms (SODA), pages 707-717. Society for Industrial and Applied
Mathematics, https://arxiv.org/pdf/1307.7454, 2014.

Donald Goldfarb and Zhiwei Qin. Robust low-rank tensor recovery: Models and
algorithms. SIAM Journal on Matriz Analysis and Applications, 35(1):225-253,
2014.

Richard A Harshman. Foundations of the parafac procedure: Models and conditions
for an “explanatory” multi-modal factor analysis. ., 1970.

Johan Hastad. Tensor rank is np-complete. Journal of Algorithms, 11(4):644-654,
1990.

Johan Hastad. On bounded occurrence constraint satisfaction. Imformation Process-
ing Letters, 74(1-2):1-6, 2000.

Johan Héstad. Some optimal inapproximability results. Journal of the ACM
(JACM), 48(4):798-859, 2001.

Heng Huang and Chris Ding. Robust tensor factorization using r 1 norm. In IFEFE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1-8. IEEE,
2008.

Daniel Hsu and Sham M Kakade. Learning mixtures of spherical gaussians: mo-
ment methods and spectral decompositions. In Proceedings of the 4th confer-
ence on Innovations in Theoretical Computer Science(ITCS), pages 11-20. ACM,
https://arxiv.org/pdf/1206.5766, 2013.

Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. In
Journal of the ACM (JACM), volume 60(6), page 45. https://arxiv.org/pdf/
0911.1393, 2013.

Tamir Hazan, Simon Polak, and Amnon Shashua. Sparse image coding using a
3d non-negative tensor factorization. In Tenth IEEE International Conference on
Computer Vision(ICCV), volume 1, pages 50-57. IEEE, 2005.

Samuel B Hopkins, Jonathan Shi, and David Steurer. Tensor principal component
analysis via sum-of-square proofs. In 28th Annual Conference on Learning Theory
(COLT), pages 956-1006. https://arxiv.org/pdf/1507.03269, 2015.

Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spectral
algorithms from sum-of-squares proofs: tensor decomposition and planted sparse
vectors. In Proceedings of the 48th Annual Symposium on the Theory of Computing.
ACM, https://arxiv.org/pdf/1512.02337, 2016.

Daniel Hsu and Matus Telgarsky. Greedy bi-criteria approximations for k-medians
and k-means. arXiv preprint arXiw:1607.06203, 2016.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? In Proceedings. 39th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 653-662. IEEE, 1998.

199

https://arxiv.org/pdf/1307.7454
https://arxiv.org/pdf/1206.5766
https://arxiv.org/pdf/0911.1393
https://arxiv.org/pdf/0911.1393
https://arxiv.org/pdf/1507.03269
https://arxiv.org/pdf/1512.02337

[TW97]

[TMZ15]

[JO14a]

[JO14b)

[JPT13|

|JSA15]

[KABO10]

[KBO6|

[KB09)

[KCO07]

[KDS08]

[KHLSY]

IKL11]|

[KLM™*14]

Russell Impagliazzo and Avi Wigderson. P= BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing (STOC), pages 220-229. ACM, 1997.

Bo Jiang, Shigian Ma, and Shuzhong Zhang. Tensor principal component analysis
via convex optimization. Mathematical Programming, 150(2):423-457, 2015.

Prateek Jain and Sewoong Oh. Learning mixtures of discrete product distribu-
tions using spectral decompositions. In 27th Annual Conference on Learning Theory
(COLT), pages 824-856. https://arxiv.org/pdf/1311.2972, 2014.

Prateek Jain and Sewoong Oh. Provable tensor factorization with missing data.
In Advances in Neural Information Processing Systems (NIPS), pages 1431-1439.
https://arxiv.org/pdf/1406.2784, 2014.

Gabriela Jeronimo, Daniel Perrucci, and Elias Tsigaridas. On the minimum of a
polynomial function on a basic closed semialgebraic set and applications. SIAM
Journal on Optimization, 23(1):241-255, 2013.

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-
convexity: Guaranteed training of neural networks using tensor methods. In arXiv
preprint. https://arxiv.org/pdf/1506.08473, 2015.

Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. Mul-
tiverse recommendation: n-dimensional tensor factorization for context-aware col-
laborative filtering. In Proceedings of the fourth ACM conference on Recommender
systems, pages 79-86. ACM, 2010.

Tamara Kolda and Brett Bader. The tophits model for higher-order web link analysis.
In Workshop on link analysis, counterterrorism and security, volume 7, pages 26-29,
2006.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications.
SIAM Review, 51(3):455-500, 2009.

Yong-Deok Kim and Seungjin Choi. Nonnegative tucker decomposition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)., pages 1-8. IEEE,
2007.

Wim P Krijnen, Theo K Dijkstra, and Alwin Stegeman. On the non-existence
of optimal solutions and the occurrence of “degeneracy” in the candecomp/parafac
model. Psychometrika, 73(3):431-439, 2008.

JB Kruskal, RA Harshman, and ME Lundy. How 3-mfa data can cause degenerate
parafac solutions, among other relationships. Multiway data analysis, pages 115-121,
1989.

J. Kelner and A. Levin. Spectral sparsification in the semi-streaming setting. In
Symposium on Theoretical Aspects of Computer Science (STACS), 2011.

Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron
Sidford. Single pass spectral sparsification in dynamic streams. In 2014 IEEE 55th

200

https://arxiv.org/pdf/1311.2972
https://arxiv.org/pdf/1406.2784
https://arxiv.org/pdf/1506.08473

[KM11]

IKN14]

[Knu9g)|

[Kro83]

[KSO08]

[KVW14]

[KYFD15]

[Lan06|

[Lan12]

[LFC*16]

[Lib13]

[LMS11]

[LMV00a]

[LMVO0Ob|

Annual Symposium on Foundations of Computer Science (FOCS), pages 561-570.
IEEE, https://arxiv.org/pdf/1407.1289, 2014.

Tamara G Kolda and Jackson R Mayo. Shifted power method for computing tensor
eigenpairs. SIAM Journal on Matriz Analysis and Applications, 32(4):1095-1124,
2011.

Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. In
Journal of the ACM (JACM), volume 61(1), page 4. https://arxiv.org/pdf/1012.
1577, 2014.

Donald E. Knuth. The art of computer programming, vol. 2 : seminumerical algo-
rithms, 1998.

Pieter M Kroonenberg. Three-mode principal component analysis: Theory and ap-
plications, volume 2. DSWO press, 1983.

Tamara G Kolda and Jimeng Sun. Scalable tensor decompositions for multi-aspect
data mining. In Fighth IEEE International Conference on Data Mining (ICDM),
pages 363-372. IEEE, 2008.

Ravindran Kannan, Santosh S Vempala, and David P Woodruff. Principal compo-
nent analysis and higher correlations for distributed data. In Proceedings of The
27th Conference on Learning Theory (COLT), pages 1040-1057, 2014.

Liwei Kuang, Laurence Yang, Jun Feng, and Mianxiong Dong. Secure tensor decom-
position using fully homomorphic encryption scheme. IEEE Transactions on Cloud
Computing, 2015.

J Landsberg. The border rank of the multiplication of 2x 2 matrices is seven. In
Journal of the American Mathematical Society, volume 19(2), pages 447-459, 2006.

Joseph M Landsberg. Tensors: geometry and applications, volume 128. Amer-
ican Mathematical Society Providence, RI, USA., http://www.math.tamu.edu/
~joseph.landsberg/Tbookintro.pdf, 2012.

Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan.
Tensor robust principal component analysis: Exact recovery of corrupted low-rank
tensors via convex optimization. In Proceedings of the IEEFE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5249-5257, 2016.

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD), pages 581-588. ACM, 2013.

Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. In Bull. EATCS 105, pages 41-72, 2011.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular
value decomposition. SIAM J. Matriz Analysis Applications, 21(4):1253-1278, 2000.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1
and rank-(Ry, R, - -+, R,,) approximation of higher-order tensors. SIAM J. Matriz
Analysis Applications, 21(4):1324-1342, 2000.

201

https://arxiv.org/pdf/1407.1289
https://arxiv.org/pdf/1012.1577
https://arxiv.org/pdf/1012.1577
http://www.math.tamu.edu/~joseph.landsberg/Tbookintro.pdf
http://www.math.tamu.edu/~joseph.landsberg/Tbookintro.pdf

[LMWY13|

[LNNT16]

[LRHG13)|

[LZBJ14]

[LZMB15]

[MBZ10]

[MHO09)

[MHG15]

[MHWG14]

[MM13]

[MMDOS]

[MMSW15]

Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion for
estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell.,
35(1):208-220, 2013.

Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. Heavy hit-
ters via cluster-preserving clustering. In Foundations of Computer Science (FOCS),
2016 IEEE 57th Annual Symposium on, pages 61-70. IEEE, https://arxiv.org/
pdf/1604.01357, 2016.

Ben London, Theodoros Rekatsinas, Bert Huang, and Lise Getoor. Multi-relational
learning using weighted tensor decomposition with modular loss. In arXiv preprint.
https://arxiv.org/abs/1303.1733, 2013.

Tao Lei, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. Low-rank tensors for
scoring dependency structures. In Association for Computational Linguistics(ACL),
Best student paper award, 2014.

Tao Lei, Yuan Zhang, Alessandro Moschitti, and Regina Barzilay. High-order low-
rank tensors for semantic role labeling. In In Proceedings of the 2015 Conference
of the North America Chapter of the Association For Computational Linguistics—
Human Language Technologies (NAACLHLT 2015. Citeseer, 2015.

Sergio V Macua, Pavle Belanovic, and Santiago Zazo. Consensus-based distributed
principal component analysis in wireless sensor networks. In Signal Processing Ad-
vances in Wireless Communications (SPAWC), 2010 IEEE Eleventh International
Workshop on, pages 1-5. IEEE, 2010.

Morten Mgrup and Lars Kai Hansen. Sparse coding and automatic relevance de-
termination for multi-way models. In SPARS’09-Signal Processing with Adaptive
Sparse Structured Representations, 2009.

Cun Mu, Daniel Hsu, and Donald Goldfarb. Successive rank-one approximations
for nearly orthogonally decomposable symmetric tensors. SIAM Journal on Matriz
Analysis and Applications, 36(4):1638-1659, 2015.

Cun Mu, Bo Huang, John Wright, and Donald Goldfarb. Square deal: Lower bounds
and improved relaxations for tensor recovery. In The Thirty-first International Con-
ference on Machine Learning (ICML), pages 73-81. https://arxiv.org/pdf/1307.
5870, 2014.

Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings in
input-sparsity time and applications to robust linear regression. In Proceedings of
the forty-fifth annual ACM symposium on Theory of computing, pages 91-100. ACM,
https://arxiv.org/pdf/1210.3135, 2013.

Michael W Mahoney, Mauro Maggioni, and Petros Drineas. Tensor-cur decompo-
sitions for tensor-based data. SIAM Journal on Matriz Analysis and Applications,
30(3):957-987, 2008.

Konstantin Makarychev, Yury Makarychev, Maxim Sviridenko, and Justin Ward. A
bi-criteria approximation algorithm for & means. arXiv preprint arXiv:1507.04227,
2015.

202

https://arxiv.org/pdf/1604.01357
https://arxiv.org/pdf/1604.01357
https://arxiv.org/abs/1303.1733
https://arxiv.org/pdf/1307.5870
https://arxiv.org/pdf/1307.5870
https://arxiv.org/pdf/1210.3135

[Moi13]

[Moi14]

[Morl11]

[MRO5]

[MR10]

[MSS16]

[MW10]

[N+03]

[NN13]

[NW14]
[0S14]

[Osell]

[0STO8]

Ankur Moitra. An almost optimal algorithm for computing nonnegative rank. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), New Orleans, Louisiana, USA, January 6-8, 2013, pages 1454-1464.
https://arxiv.org/pdf/1205.0044, 2013.

Ankur Moitra. Algorithmic Aspects of Machine Learning. Cambridge University
Press, 2014.

Morten Mgrup. Applications of tensor (multiway array) factorizations and decompo-
sitions in data mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 1(1):24-40, 2011.

Elchanan Mossel and Sébastien Roch. Learning nonsingular phylogenies and hidden
markov models. In Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing (STOC), pages 366-375. ACM, https://arxiv.org/pdf/cs/
0502076, 2005.

Dana Moshkovitz and Ran Raz. Two-query pcp with subconstant error. In Journal
of the ACM (JACM), volume 57(5), page 29. A preliminary version appeared in the
Proceedings of The 49th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 08), FOCS 08 Best paper award, https://eccc.weizmann.ac.il/
eccc-reports/2008/TR08-071/, 2010.

Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-time tensor decomposi-
tions with sum-of-squares. In Foundations of Computer Science (FOCS), 2016 IEEE
57th Annual Symposium on, pages 438-446. IEEE, https://arxiv.org/pdf/1610.
01980, 2016.

Morteza Monemizadeh and David P Woodruff. 1-pass relative-error lp-sampling with
applications. In Proceedings of the twenty-first annual ACM-SIAM symposium on
Discrete Algorithms, pages 1143-1160. STAM, 2010.

Yurii Nesterov et al. Random walk in a simplex and quadratic optimization over
convez polytopes. CORE, 2003.

Jelani Nelson and Huy L Nguyén. Osnap: Faster numerical linear algebra al-
gorithms via sparser subspace embeddings. In 2013 IEEE 5/th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 117-126. IEEE, https:
//arxiv.org/pdf/1211.1002, 2013.

Jelani Nelson and David P. Woodruff. Personal communication. ., 2014.

Sewoong Oh and Devavrat Shah. Learning mixed multinomial logit model from
ordinal data. In Advances in Neural Information Processing Systems (NIPS), pages
595-603. https://arxiv.org/pdf/1411.0073, 2014.

Ivan V. Oseledets. Tensor-train decomposition. SIAM J. Scientific Computing,
33(5):2295-2317, 2011.

Ivan V Oseledets, DV Savostianov, and Eugene E Tyrtyshnikov. Tucker dimension-
ality reduction of three-dimensional arrays in linear time. SIAM Journal on Matrix
Analysis and Applications, 30(3):939-956, 2008.

203

https://arxiv.org/pdf/1205.0044
https://arxiv.org/pdf/cs/0502076
https://arxiv.org/pdf/cs/0502076
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-071/
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-071/
https://arxiv.org/pdf/1610.01980
https://arxiv.org/pdf/1610.01980
https://arxiv.org/pdf/1211.1002
https://arxiv.org/pdf/1211.1002
https://arxiv.org/pdf/1411.0073

[0T09)

|0TZ11]

[Paad7|

[Paa00]

[Pagl13]

[PBLJ15|

[PCOS|

[PLY10]

[PMvdG+13]

[PP13]

[PS17]

[PTBD16]

1QOSG02

[Ren92al

Ivan V Oseledets and Eugene E Tyrtyshnikov. Breaking the curse of dimensionality,
or how to use svd in many dimensions. SIAM Journal on Scientific Computing,
31(5):3744-3759, 2009.

Ivan Oseledets, Eugene Tyrtyshnikov, and Nickolai Zamarashkin. Tensor-train ranks
for matrices and their inverses. Computational Methods in Applied Mathematics
Comput. Methods Appl. Math., 11(3):394-403, 2011.

Pentti Paatero. A weighted non-negative least squares algorithm for three-
way “parafac” factor analysis. Chemometrics and Intelligent Laboratory Systems,
38(2):223-242, 1997.

Pentti Paatero. Construction and analysis of degenerate parafac models. Journal of
chemometrics, 14(3):285-299, 2000.

Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computa-

tion Theory (TOCT), 5(3):9, 2013.

Anastasia Podosinnikova, Francis Bach, and Simon Lacoste-Julien. Rethinking lda:
moment matching for discrete ica. In Advances in Neural Information Processing
Systems(NIPS), pages 514-522. https://arxiv.org/pdf/1507.01784, 2015.

Anh Phan and Andrzej Cichocki. Fast and efficient algorithms for nonnegative tucker
decomposition. Advances in Neural Networks-ISNN 2008, pages 772-782, 2008.

Yanwei Pang, Xuelong Li, and Yuan Yuan. Robust tensor analysis with 11-norm.
IEEFE Transactions on Circuits and Systems for Video Technology, 20(2):172-178,
2010.

Jack Poulson, Bryan Marker, Robert A van de Geijn, Jeff R Hammond, and
Nichols A Romero. Elemental: A new framework for distributed memory dense ma-
trix computations. ACM Transactions on Mathematical Software (TOMS), 39(2):13,
2013.

Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit
feature maps. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining(KDD), pages 239-247. ACM, 2013.

Aaron Potechin and David Steurer. Exact tensor completion with sum-of-squares.
In arXiv preprint. https://arxiv.org/pdf/1702.06237, 2017.

Ho N Phien, Hoang D Tuan, Johann A Bengua, and Minh N Do. Efficient tensor
completion: Low-rank tensor train. In arXiv preprint. https://arxiv.org/pdf/
1601.01083, 2016.

Yongming Qu, George Ostrouchov, Nagiza Samatova, and Al Geist. Principal com-
ponent analysis for dimension reduction in massive distributed data sets. In Pro-
ceedings of IEEE International Conference on Data Mining (ICDM), 2002.

James Renegar. On the computational complexity and geometry of the first-order
theory of the reals, part I: introduction. preliminaries. the geometry of semi-algebraic
sets. the decision problem for the existential theory of the reals. J. Symb. Comput.,
13(3):255-300, 1992.

204

https://arxiv.org/pdf/1507.01784
https://arxiv.org/pdf/1702.06237
https://arxiv.org/pdf/1601.01083
https://arxiv.org/pdf/1601.01083

[Ren92b]

[RM14]

[RNSS16]

[RST10]

[RSW16]

[RTP16]

[RV09]

[Sar06]

ISBGO4]

[SC15]

[Sch12]

SHO5|

[SHW*16]

9S17]

James Renegar. On the computational complexity and geometry of the first-order
theory of the reals, part II: the general decision problem. preliminaries for quantifier
elimination. J. Symb. Comput., 13(3):301-328, 1992.

Emile Richard and Andrea Montanari. A statistical model for tensor pca. In Ad-
vances in Neural Information Processing Systems, pages 2897-2905. https://arxiv.
org/pdf/1411.1076, 2014.

Avik Ray, Joe Neeman, Sujay Sanghavi, and Sanjay Shakkottai. The search problem
in mixture models. In arXiv preprint. https://arxiv.org/pdf/1610.00843, 2016.

Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization
for personalized tag recommendation. In Proceedings of the third ACM international
conference on Web search and data mining(WSDM), pages 81-90. ACM, 2010.

Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approxi-
mations with provable guarantees. In Proceedings of the 48th Annual Symposium on
the Theory of Computing (STOC), 2016.

Thomas Reps, Emma Turetsky, and Prathmesh Prabhu. Newtonian program analy-
sis via tensor product. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages(POPL), volume 51:1, pages
663-677. ACM, 2016.

Mark Rudelson and Roman Vershynin. Smallest singular value of a random rectan-
gular matrix. Communications on Pure and Applied Mathematics, 62(12):1707-1739,
2009.

Tamas Sarlés. Improved approximation algorithms for large matrices via random
projections. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS) , 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 143—
152, 2006.

Age K. Smilde, Rasmus Bro, and Paul Geladi. Multi-way Analysis with Applications
in the Chemical Sciences. Wiley, 2004.

Jimin Song and Kevin C Chen. Spectacle: fast chromatin state annotation using
spectral learning. Genome biology, 16(1):33, 2015.

Leonard J Schulman. Cryptography from tensor problems. In TACR Cryptology
ePrint Archive, volume 2012, page 244. https://eprint.iacr.org/2012/244, 2012.

Amnon Shashua and Tamir Hazan. Non-negative tensor factorization with appli-
cations to statistics and computer vision. In Proceedings of the 22nd international
conference on Machine learning(ICML), pages 792-799. ACM, 2005.

Mao Shaowu, Zhang Huanguo, Wu Wanqing, Zhang Pei, Song Jun, and Liu Jinhui.
Key exchange protocol based on tensor decomposition problem. China Communi-
cations, 13(3):174-183, 2016.

Tselil Schramm and David Steurer. Fast and robust tensor decomposition with
applications to dictionary learning. manuscript, 2017.

205

https://arxiv.org/pdf/1411.1076
https://arxiv.org/pdf/1411.1076
https://arxiv.org/pdf/1610.00843
https://eprint.iacr.org/2012/244

[Ste06]

[Ste08]

[STLS14]

[Str69]

[SWZ16|

[SWZ17]

[TD99)

[TK11]

[TM17]

[Tre01]

[TSHK11]

[Vas09]

[VT02]

Alwin Stegeman. Degeneracy in candecomp/parafac explained for p x p x 2 arrays
of rank p+1 or higher. Psychometrika, 71(3):483-501, 2006.

Alwin Stegeman. Low-rank approximation of generic p x q x 2 arrays and diverging
components in the candecomp/parafac model. SIAM Journal on Matriz Analysis
and Applications, 30(3):988-1007, 2008.

Marco Signoretto, Dinh Quoc Tran, Lieven De Lathauwer, and Johan A. K. Suykens.
Learning with tensors: a framework based on convex optimization and spectral
regularization. Machine Learning, 94(3):303-351, 2014.

Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354-356, 1969.

Zhao Song, David P. Woodruff, and Huan Zhang. Sublinear time orthogonal tensor
decomposition. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems (NIPS) 2016, December 5-10,
2016, Barcelona, Spain, pages 793-801, 2016.

Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with
entrywise £1-norm error. In Proceedings of the 49th Annual Symposium on the Theory
of Computing (STOC). ACM, https://arxiv.org/pdf/1611.00898, 2017.

Frangoise Tisseur and Jack Dongarra. A parallel divide and conquer algorithm for the
symmetric eigenvalue problem on distributed memory architectures. SIAM Journal
on Scientific Computing, 20(6):2223-2236, 1999.

Petr Tichavsky and Zbynék Koldovsky. Weight adjusted tensor method for blind sep-
aration of underdetermined mixtures of nonstationary sources. IEEE Transactions
on Signal Processing, 59(3):1037-1047, 2011.

Davoud Ataee Tarzanagh and George Michailidis. Fast monte carlo algorithms for
tensor operations. In arXiv preprint. https://arxiv.org/pdf/1704.04362, 2017.

Luca Trevisan. Non-approximability results for optimization problems on bounded
degree instances. In Proceedings of the thirty-third annual ACM symposium on The-
ory of computing (STOC), pages 453-461. ACM, 2001.

Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, and Hisashi Kashima. Statistical per-
formance of convex tensor decomposition. In Advances in Neural Information Pro-
cessing Systems 24: 25th Annual Conference on Neural Information Processing Sys-
tems (NIPS). Proceedings of a meeting held 12-14 December 2011, Granada, Spain.,
pages 972-980, 2011.

M Alex O Vasilescu. A multilinear (tensor) algebraic framework for computer graph-
ics, computer vision, and machine learning. PhD thesis, Citeseer, 2009.

M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis of image en-
sembles: Tensorfaces. In Furopean Conference on Computer Vision, pages 447-460.
Springer, 2002.

206

https://arxiv.org/pdf/1611.00898
https://arxiv.org/pdf/1704.04362

[VTO04]

[WAO3]

[WA16]

[Wes94]

[Wil12]

[WMO1]

[Woo1l4|

[WS15]

[WTSA15|

[WWS+05]

[WZ16]

[YC14]

[YCRM16]

M Alex O Vasilescu and Demetri Terzopoulos. Tensortextures: Multilinear image-
based rendering. In ACM Transactions on Graphics (TOG), volume 23:3, pages
336—342. ACM, 2004.

Hongcheng Wang and Narendra Ahuja. Facial expression decomposition. In Com-
puter Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages
958-965. IEEE, 2003.

Yining Wang and Animashree Anandkumar. Online and differentially-private tensor
decomposition. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems (NIPS) 2016, December 5-10,
2016, Barcelona, Spain. https://arxiv.org/pdf/1606.06237, 2016.

Carl-Fredrik Westin. A tensor framework for multidimensional signal processing.
PhD thesis, Linkoping University Electronic Press, 1994.

Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-
winograd. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing (STOC), pages 887-898. ACM, 2012.

B. Walczak and DL Massart. Dealing with missing data: Part i. Chemometrics and
Intelligent Laboratory Systems, 58(1):15-27, 2001.

David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations
and Trends in Theoretical Computer Science, 10(1-2):1-157, 2014.

Yining Wang and Aarti Singh. Column subset selection with missing data via ac-
tive sampling. In The 18th International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 1033-1041, 2015.

Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast
and guaranteed tensor decomposition via sketching. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 991-999. https://arxiv.org/pdf/1506.
04448, 2015.

Hongcheng Wang, Qing Wu, Lin Shi, Yizhou Yu, and Narendra Ahuja. Out-of-core
tensor approximation of multi-dimensional matrices of visual data. ACM Transac-

tions on Graphics (TOG), 24(3):527-535, 2005.

David P Woodruff and Peilin Zhong. Distributed low rank approximation of implicit
functions of a matrix. In 82nd IEEFE International Conference on Data Engineering
(ICDE). https://arxiv.org/pdf/1601.07721, 2016.

Tatsuya Yokota and Andrzej Cichocki. Multilinear tensor rank estimation via sparse
tucker decomposition. In Soft Computing and Intelligent Systems (SCIS), 2014 Joint
7th International Conference on and Advanced Intelligent Systems (ISIS), 15th In-
ternational Symposium on, pages 478-483. IEEE, 2014.

Jivan Yang, Yin-Lam Chow, Christopher Ré, and Michael W Mahoney. Weighted
sgd for £, regression with randomized preconditioning. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
558-569. Society for Industrial and Applied Mathematics, https://arxiv.org/pdf/
1502.03571, 2016.

207

https://arxiv.org/pdf/1606.06237
https://arxiv.org/pdf/1506.04448
https://arxiv.org/pdf/1506.04448
https://arxiv.org/pdf/1601.07721
https://arxiv.org/pdf/1502.03571
https://arxiv.org/pdf/1502.03571

[YCS11] Yusuf Kenan Yilmaz, Ali Taylan Cemgil, and Umut Simsekli. Generalised coupled
tensor factorisation. In Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011. Proceedings of
a meeting held 12-14 December 2011, Granada, Spain., pages 2151-2159, 2011.

[YCS16| Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Solving a mixture of many
random linear equations by tensor decomposition and alternating minimization. In
arXiv preprint. https://arxiv.org/pdf/1608.05749, 2016.

[YFS16] Yuning Yang, Yunlong Feng, and Johan AK Suykens. Robust low-rank tensor re-
covery with regularized redescending m-estimator. [IEFEE transactions on neural
networks and learning systems, 27(9):1933-1946, 2016.

[ZCZJ14] Yuchen Zhang, Xi Chen, Denny Zhou, and Michael I Jordan. Spectral methods
meet em: A provably optimal algorithm for crowdsourcing. In Advances in Neu-
ral Information Processing Systems (NIPS), pages 1260-1268. https://arxiv.org/
pdf/1406.3824, 2014.

[ZGO1] Tong Zhang and Gene H. Golub. Rank-one approximation to high order tensors.
SIAM J. Matriz Analysis Applications, 23(2):534-550, 2001.

|ZSJ 17| Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, and Inderjit S. Dhillon.
Recovery guarantees for one-hidden-layer neural networks. manuscript, 2017.

[ZW13] Syed Zubair and Wenwu Wang. Tensor dictionary learning with sparse tucker de-
composition. In Digital Signal Processing (DSP), 2013 18th International Conference
on, pages 1-6. IEEE, 2013.

|[ZWZ16| Junyu Zhang, Zaiwen Wen, and Yin Zhang. Subspace methods with local refinements
for eigenvalue computation using low-rank tensor-train format. Journal of Scientific
Computing, pages 1-22, 2016.

[ZX17] Anru Zhang and Dong Xia. Guaranteed tensor pca with optimality in statistics and
computation. In arXiv preprint. https://arxiv.org/pdf/1703.02724, 2017.

ECCC ISSN 1433-8092
208
https://eccc.weizmann.ac.il

https://arxiv.org/pdf/1608.05749
https://arxiv.org/pdf/1406.3824
https://arxiv.org/pdf/1406.3824
https://arxiv.org/pdf/1703.02724

