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Abstract

We show that any language in nondeterministic time exp(exp(· · · exp(n))), where the number
of iterated exponentials is an arbitrary function R(n), can be decided by a multiprover interactive
proof system with a classical polynomial-time verifier and a constant number of quantum
entangled provers, with completeness 1 and soundness 1 − exp(−C exp(· · · exp(n))), where the
number of iterated exponentials is R(n) − 1 and C > 0 is a universal constant. The result was
previously known for R = 1 and R = 2; we obtain it for any time-constructible function R.

The result is based on a compression technique for interactive proof systems with entangled
provers that significantly simplifies and strengthens a protocol compression result of Ji (STOC’17).
As a separate consequence of this technique we obtain a different proof of Slofstra’s recent result
(unpublished) on the uncomputability of the entangled value of multiprover games.

Finally, we show that even minor improvements to our compression result would yield
remarkable consequences in computational complexity theory and the foundations of quantum
mechanics: first, it would imply that the class MIP∗ contains all computable languages; second,
it would provide a negative resolution to a multipartite version of Tsirelson’s problem on the
relation between the commuting operator and tensor product models for quantum correlations.
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1 Introduction

The combined study of interactive proof systems and quantum entanglement has led to multiple
discoveries at the intersection of theoretical computer science and quantum physics. On the one
hand, the study has revealed that quantum entanglement, a fundamental physical phenomenon, can
be harnessed in interactive protocols to accomplish an array of novel computing and cryptographic
tasks, ranging from the certified generation of random numbers to improved protocols for multi-
party cryptography and classically-verifiable quantum computation. On the other hand, interactive
proof systems, a cornerstone of modern complexity theory and cryptography, have provided a
powerful lens through which to examine the counter-intuitive properties of quantum entanglement.
This lens has enabled researchers to develop sophisticated ways of exploring phenomena such as
the monogamy of entanglement, embezzlement of quantum states, and more.

We investigate a central question in this area: what is the computational complexity of interactive
proof systems with multiple quantum entangled provers? The starting point for this question dates
back to the seminal result of Babai, Fortnow and Lund, who showed that the set of languages that
can be decided by a (classical) multiprover interactive proof system, denoted by MIP, equals the set
of languages that can be decided in nondeterministic exponential time (denoted by NEXP) [BFL91].
It is not difficult to show that MIP ⊆ NEXP, but the reverse containment is nontrivial and the work
of [BFL91] was an influential stepping stone towards the PCP Theorem [AS98, ALM+98].

A long line of work, starting with that of Cleve et al. [CHTW04], has explored the setting of
interactive proof systems where a classical polynomial-time verifier interacts with provers that are
quantum and may share entanglement. This gives rise to the complexity class MIP∗, which is the set
of all languages decidable by such proof systems.1 Quantum entanglement is a resource that allows
isolated parties to generate correlations that cannot be reproduced by (classical) shared randomness
alone; however, entanglement does not allow for instantaneous communication. A central question
raised by [CHTW04] is whether MIP∗ = MIP, or equivalently, whether MIP∗ = NEXP.

A richer set of correlations gives additional power to provers in an interactive proof system,
making the relationship between MIP∗ and MIP non-obvious. On the one hand, a multiprover
interactive proof system that is sound against “cheating” classical provers may no longer be
sound against “cheating” entangled provers; this prevents one from automatically concluding that
MIP ⊆ MIP∗. On the other hand, a proof system may require “honest provers” to use quantum
entanglement in order to satisfy the completeness property. Entanglement thus allows one to
consider a broader set of protocols, putting in question the inclusion MIP∗ ⊆MIP.

The quest to pin down the computational power of proof systems with entangled provers
has led to a number of surprising discoveries. The best lower bound that is currently known
is that NEXP = MIP ⊆ MIP∗, a nontrivial result that follows from a more general technique of
“immunization” of classical proof systems against malicious entangled provers [IV12, NV17b].
Surprisingly, there are no meaningful upper bounds known for MIP∗. In a striking result, Slofstra
gave evidence that the complexity of MIP∗ might be very different from its classical counterpart: he
proved that it is undecidable to determine whether an interactive proof system with two provers has
an entangled strategy that is accepted with probability 1 (in other words, whether there is a perfect
entangled strategy) [Slo16, Slo17]. In contrast, the complexity of determining whether such a proof
system has a perfect classical strategy is exactly equal to NEXP. Another recent result of Ji [Ji17]
points in the same direction: Ji showed that any language in non-deterministic doubly-exponential
time can be decided by a classical polynomial-time verifier interacting with k = 11 provers, with

1The ∗ in MIP∗ refers to the entanglement.

2



completeness 1 and soundness that is exponentially close to 1.2

In this work we explore the expanse of complexity-space that entangled-prover interactive proof
systems can reach. We focus on the “small gap” regime: we consider the problem of distinguishing
between the cases when a multiprover proof system has a perfect entangled strategy, or when all
entangled provers are rejected with probability at least ε, where ε is a quantity that may go to 0
quickly with the size of the verifier in the proof system. Our results smoothly interpolate between
the hardness result of [IV12, NV17b, Ji17] and Slofstra’s undecidability result. For clarity we restrict
our attention to hyper-exponential time functions, i.e. time-constructible functions of the form
t(n) = ΛR(n), where Λ0(n) = n and for any integer-valued function R = R(n) ≥ 0, ΛR+1(n) = 2ΛR(n).
For a multiprover gameG, the entangled valueω∗(G) is the maximum success probability of quantum
provers sharing entanglement in the game.

Theorem 1.1. Let k ≥ 15 be an integer. Let t :N→N be a hyper-exponential function. There are universal
constants C, c > 0 such that given the description of polynomial-size circuits for the verifier in a k-prover
game G, the problem of distinguishing between

ω∗(G) = 1 or ω∗(G) ≤ 1 −
C

(t(n))c

is hard for nondeterministic 2t(n) time.

The “base case” for Theorem 1.1, corresponding to R = 0 and t(n) = n, is the result that
NEXP ⊆ MIP∗ [IV12, NV17b], where MIP∗ is the class of languages that can be decided using an
entangled-prover interactive proof system, with completeness 2

3 and soundness 1
3 (the completeness-

soundness gap can be amplified from inverse polynomial to constant using hardness amplification
techniques [BVY17]). The first step, R = 1 and t(n) = 2n, follows from Ji’s result [Ji17] mentioned
earlier, albeit using a game with k = 11 provers.

A corollary of both our and Ji’s earlier result is that the “honest strategy” for the provers (i.e.
those satisfying the completeness property) in the games constructed through the reduction from
Theorem 1.1 provably require the provers to share entanglement. Moreover, it is often possible
to obtain lower bounds on the dimension of entanglement required to achieve close to optimal
success probability; this is the case for our result, as described below.

The proof of Theorem 1.1 is based on a compression technique that significantly simplifies and
extends the approach pioneered in [Ji17]. Our generalized compression result can be recursively
composed with itself in order to obtain the statement of Theorem 1.1 for any integer-valued R(n) ≥ 1.

The starting point of the compression approach of [Ji17] is to extend the notion of a history state.
The concept of a history state was first introduced by Kitaev in order to efficiently encode any
polynomial-time quantum computation as the ground state of a local Hamiltonian, in a way that is
also efficiently verifiable [KSV02]. The compression result of [Ji17] as well as the one in this paper
constructs a game to verify history states that encode the execution of a (different) multiprover
game, including the actions of the provers (which in general are not efficiently computable). The
verification is performed by executing a “games” version of the traditional verification procedure
for history states, that consists in randomly sampling a local Hamiltonian term and measuring its
energy.

There are two key ideas behind our generalized compression technique. The first is to ensure
that the game G that verifies the history state of a multiprover game G′ can be executed using a
circuit that is logarithmic in the size of G′, provided that G′ is specified in a sufficiently uniform and

2Due to the vanishing gaps neither Slofstra’s nor Ji’s result directly separates MIP∗ from MIP, though they do separate
the zero-error and exponentially-small error variants respectively.
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succinct manner. The second idea is to compose the first idea with itself, i.e. consider the history
state for the computation performed by the history state verification procedure. At this point there
are a number of delicate issues to consider, including identifying the right model for specifying
verifiers, verifiers of verifiers, etc.; we give more details in Section 1.1.

On a more informal note, we observe that the kind of compression achieved here may be thought
of as a “bootstrapping” of Kitaev’s history state technique, in a similar sense to the composition
technique from the PCP literature that “bootstraps” an efficient PCP into a super-efficient one.3

The fact that history states are ground states of local Hamiltonians is a statement about the local
verifiability of arbitrary quantum computation. Our result goes further by making the following
observations. First, not only is the verification procedure local, it is also exceedingly efficient — it
can be executed in time logarithmic in the size of the original computation. Second, it is possible
to consider a history state for the verification procedure itself. Third, and most strikingly, the
latter history state can be verified with the same complexity as the verification procedure, without
reference to the size of the original computation. This last step crucially relies on rigidity properties
of entanglement which acts as a “leash” on quantum systems. It is sufficient to only control the
leash-holder: if the leash-holder manages to hold the dog tightly enough, then there is no longer
any reason to worry about the (hyper-exponential-size) dog itself.

It is worth noting that such “PCP composition on steroids” has no classical analogue. A
classical PCP verifier runs in polynomial time and uses polynomially many random bits to verify
an exponentially long proof. Encoding the computation performed by such a verifier in a way
that can be verified using, say, a classical multiprover interactive proof system, again requires a
polynomial-sized verifier flipping polynomially many bits. This is because the only way to “verify
the verification procedure” is to, at least with some probability, access some of the original proof
bits. In the quantum case, it is possible to leverage entanglement between provers to avoid the
need for the “inner” verifier (to borrow some terminology from the PCP literature) to make any
query at all to the original proof qubits.

Before proceeding we formulate another consequence of compression that highlights the
versatility of our approach. As already mentioned, it was recently shown by Slofstra that the
problem of determining whether a given multiprover game has a perfect entangled strategy is
undecidable. Slofstra’s result proceeds by an ingenious (and intricate) reduction to the word
problem in finitely presented groups, which is known to be undecidable. The proof of the latter
itself involves a sophisticated embedding of the computation of an arbitrary Turing Machine
(in fact, a Minsky machine) in an instance of the word problem in a suitable finitely presented
group [Nov55, Boo58, Kar82].

We give a different proof of Slofstra’s undecidability result, by directly constructing an interactive
proof system from a Turing machine. Arguably, our result provides an intuitive reason for why the
problem is undecidable, showing in a precise sense how smaller and smaller gaps can be leveraged
to verify that the provers are performing an increasingly complex computation. More precisely, the
main idea for our proof is to design a family of games {Gn}n≥1 such that for any n ≥ 1 the verifier
in the game Gn verifies if a Turing machine provided as input halts within n steps, and if it does
not, executes a game with the provers that verifies that, either the provers hold a quantum proof
that the Turing machine halts within 2n steps, or they hold a history state for the verification of a
quantum proof that either the Turing machine halts within 22n

steps, or... Somewhat more formally,
we obtain the following (see Theorem 7.6 for a more complete statement).

3The analogy only goes so far: composition in PCPs reduces the answer size; here, we reduce the query size.
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Theorem 1.2. For all deterministic Turing machines M, there exists a multiprover game GM (that can be
computed from the description of M) such that if M halts in finite time then ω∗(GM) < 1, whereas if M
does not halt then ω∗(GM) = 1. Furthermore, there exists a universal constant η > 0 such that for any
non-halting M, any strategy for the provers that succeeds with probability at least 1 − ε in GM, for some
ε ≥ 0, requires the use of an entangled state of local dimension at least 2Ω(ε−η).

The gameGM in Theorem 1.2 is a game with 15 provers that can be efficiently computed from M;
the undecidability result follows immediately. In addition, as stated in the theorem our game can
be used as a form of dimension test for the strategies of the provers. Up to the value of the constant
η the bound 2Ω(ε−η) matches the best bound known, for a three-prover game considered in [JLV18].

1.1 Proof overview

We provide a detailed overview for the proof of Theorem 1.1. In Section 1.1.1 we sketch our main
“compression” result and expand on the compression technique from [Ji17]. The following sections
sketch the proof of the compression theorem. We start by describing a method to succinctly describe
the actions of a verifier in a multiprover game in Section 1.1.2. In Section 1.1.3 we describe the main
steps of the proof: (1) design a history state associated with the execution of a multiprover game,
(2) design a game that verifies the history state with the help of an additional trusted prover, and
finally (3) design a game in which the honest prover has been merged into existing provers. This
last step, prover merging, is described in more detail in Section 1.1.4. In Section 1.1.5 we sketch
how the compression theorem can be applied recursively to show Theorem 1.1 and Theorem 1.2.

1.1.1 Protocol compression

The main workhorse of this paper is a compression theorem for quantum multiprover interactive
protocols that simplifies and strengthens the compression result of [Ji17]. To state the result, we
first review the notion of k-prover “extended nonlocal (ENL) game”, which is a type of quantum
multiprover game introduced in [JMVW16]. A k-prover ENL game is a three-turn interaction
between a quantum verifier and k quantum provers sharing entanglement. The game (or “protocol”)
proceeds in three stages. First, the provers send a quantum register C to the verifier. Second, the
verifier measures the register C to obtain an outcome t. 4 The verifier then computes a classical
query Q = (q1, . . . , qk) that it distributes to the provers. Third, the provers respond with classical
answers a = (a1, . . . , ak) to their respective questions. In general, each prover’s answer is determined
by performing a measurement on the prover’s share of a quantum state that may be entangled
with C. Finally, the verifier makes an accept/reject decision based on the outcome t, its internal
randomness, and the provers’ answers. The maximum acceptance probability of an ENL game G is
denoted ω∗(G), and is also called the (entangled) value of G.

The whole interaction between verifier and provers in an ENL game can be represented as a
quantum circuit of a special form that we call a protocol circuit, as depicted in Figure 1. A protocol
circuit starts with the application of a quantum circuit CQ on registers C (which holds the provers’
first message), V (the verifier’s private workspace), and M (which holds the messages exchanged
between the verifier and provers). The circuit CQ implements the verifier’s measurement on register
C, and the verifier’s choice of questions to the provers. The circuit CQ is followed by an arbitrary
unitary transformation for each prover i, applied on the component Mi of the message register
that the prover has access to, as well as its private workspace Pi (that contains the prover’s part of

4Our definition of ENL game is slightly more general than that in [JMVW16], where the sampling of questions is
classical and does not depend on C.

5



shared entangled state). Finally, the last step in the protocol circuit is the application of a circuit
CA that acts on C, V and M and computes the verifier’s decision in the game, that is written on a
specially designated “output qubit”.

C

V

M

P

CQ

P

CA

Figure 1: The protocol circuit of an extended nonlocal game.

The compression theorem applies to families of ENL games {GN} that have succinct descriptions.
By this we mean, not only that the protocol circuit associated with GN has size polynomial in N,
but moreover there exists a deterministic Turing machine G (called a Gate Turing Machine (GTM))
that on input (N, t), where N and t are two integers written in binary, runs in polynomial time and
returns the description of the t-th gate of the protocol circuit associated with GN (and a special
symbol if t is larger than the circuit size). If the t-th gate is an action of the prover, the GTM returns
another special symbol.

Theorem 1.3 (Compression Theorem). Let k ≥ 7 be an integer and let {GN} be a succinctly described
family of k-prover ENL games with GTM G. Then there exists a family of k-prover ENL games {G]n} such
that for all integer n ≥ 1 and N = 2n, it holds that

ω∗(G]n) ≤ 1 −
(1 − ω∗(GN))α

poly(N)
, (1)

where α ≥ 1 is a universal constant, and if ω∗(GN) = 1 then we have ω∗(G]n) = 1. Moreover, there exists a
Turing machine A] that on input (1n,G) returns the description of G]n in polynomial time.

The strength of the theorem lies in the exponential reduction in the size of the verifiers of the
ENL game, from poly(N) (the size of GN) to poly(n) = poly(log N) (the size of G]n). The cost of this
exponential compression of game size is that the value of the game gets “compressed” towards
1; nevertheless, games with value 1 (resp. < 1) are compressed to games with value 1 (resp. < 1).
Theorem 1.3 differs from the results of [Ji17] in two significant ways. First, the compression result
in [Ji17] does not yield a family {G]n} that is as efficiently described as the games returned by our
reduction.5 The recourse to succinct descriptions via Gate Turing Machines is an essential ingredient
for the recursive application of Theorem 1.3. Second, the compression result in [Ji17] increases
the number of provers, from k to k + 8. Our result does not require the use of additional provers;
this is again essential in allowing a large (or even infinite) number of recursive applications of the
theorem.

In the following subsections we sketch the proof of Theorem 1.3. The first step is to make the
notion of “succinctly described” more concrete.

5Although the question lengths of the “compressed” game in [Ji17] are O(log N), the verifier itself has size poly(N).
The verifier for the game G]n, in contrast, has size poly(log N).
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1.1.2 Succinct descriptions of verifiers

In the study of quantum interactive proof systems, families of games {GN} are usually presented as a
uniformly generated family of circuits for the verifier: there exists a polynomial-time deterministic
Turing machine A that on input 1N returns a circuit description of the verifier in GN. However,
such uniform descriptions of verifier circuits are insufficient for our compression result: from a
game GN we aim to design a “compressed game” G]n that has size poly(n), exponentially smaller
than the size of GN. In particular, G]n does not have nearly enough time to run A to get a circuit
description of the verifier of GN. What we need is that the verifier of G]n be granted some form of
implicit description of the verifier of GN.

We achieve this via the notion of a Gate Turing Machine (GTM) for a family of ENL games
{
GN

}
.

As mentioned before, it is a Turing machine G that on input (N, t) outputs in poly log(N) time the
description of the t-th gate of the protocol circuit of GN (which has size poly(N)).

Thus, our notion of “succinct description” for a family of ENL games {GN} is that there is a
GTM G for the family. With this notion in place, it remains to show the compression theorem: any
succinctly described family of games {GN} can be “compressed” to another family of ENL games
{G

]
n} with the properties described in Theorem 1.3. We sketch how this is done in the next sections.

1.1.3 Testing history states of protocol circuits

With the appropriate notion of succinct description in place, we describe the three main steps that
go into the proof of Theorem 1.3.

The first step consists in considering the history state |Ψ
G

(N)〉 of the protocol circuit (Figure 1)
associated with an execution of G = GN, where N = 2n. This state is defined on the registers CVMP,
and may be extremely large, depending on the size of the provers’ registers. In addition, the state
has a component on a clock register Couter of the same dimension as the total number of gates τN in
the protocol circuit, which is polynomial in N; thus the register Couter is over O(n) qubits. Concretely,
the state |Ψ

G
(N)〉 has the form

|Ψ
G

(N)〉 =
1√
τN + 1

τN∑
t=0

|t〉Couter
⊗Ut · · ·U1|ψG(0)〉CVMP . (2)

Here |ψ
G

(0)〉 is the initial state of the verifier and the provers’ registers in G, with C denoting the
initial register received from the provers, V the private workspace for the verifier, M = M1, . . . ,Mk
the message registers, and P = P1, . . . ,Pk the private spaces for the provers.

Note that in (2), almost all unitaries are gates applied by the verifier, except k of them, one for
each prover, that can be considered “wild cards”. The important property is that, if ω∗(G) = 1 then
there exists a state of the form (2), for some choice of |ψ

G
(0)〉, and some choice of unitaries to apply

in the “wildcard” locations, that is a ground state (energy 0) of the local Hamiltonian H
G

(N) that
verifies the history state (this is entirely analogous to Kitaev’s circuit-to-Hamiltonian construction,
but for the use of the prover gates which may induce large non-local Hamiltonian terms to verify
their propagation). Conversely, if ω∗(GN) = 1 then no such state exists, irrespective of the choice of
the “wildcard” unitaries.

The next step is to design an intermediate ENL game GH that has one additional prover, called
the “Pauli Prover” PV. We call the verifier in GH the outer verifier. The goal of the outer verifier is to
verify that the provers share the state |Ψ

G
(N)〉, where registers associated with the verifier in G

(that we call the inner verifier), i.e. C, V and M, are given to PV, while the clock register Couter is the
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prover’s first message in the ENL game G. As already mentioned, this initial message has length
O(n) qubits.

Informally, to achieve this verification task the outer verifier and the Pauli Prover collaborate
to implement a family of tests that are game-like versions of the tests implemented by the local
Hamiltonian H

G
(N). This includes an “input check” (the state |ψ

G
(0)〉 is well-formatted), a “gate

check” (each time step corresponds to the application of a unitary, and unitaries associated with the
inner verifier are the right ones, as specified in the circuits CQ and CA), and an “output check” (the
final decision made by the inner verifier is to accept). Each of these checks involves not only the
verifier and PV, but also the other provers, that are required to apply their prover gate when the
corresponding propagation check is performed.

In designing GH, we take advantage of the fact that the Pauli Prover is considered “honest”:
it always implements the observable that it is asked by the outer verifier. However, for reasons
that will soon become clear the Pauli Prover can only be asked to implement single- or two-qubit
Pauli observables.6 This means that all tests performed by the outer verifier can only require such
observables on the registers CVM.

The crucial point here is that the complexity of the verifier in the game GH is exponentially
smaller than the complexity of the verifier in G. The reason this is possible is that in order for the
verifier in GH to check that the entangled state shared by the provers is a valid history state for
the protocol circuit associated with G it is enough to select a random time step in that circuit, and
implement the associated check. Both of these can be performed in time poly log(N); the first trivially
so, and the second thanks to our assumption that G is specified through a “succinct description”,
provided by the verifierV and GTM G associated with {GN}, as described in Section 1.1.2.

In the last step we convert the Single Pauli Prover game GH into a new ENL game G] = G]n,
with the same number of provers as in the original ENL G, but with drastically reduced question
length — it is now O(n), when questions in Gmight have been poly(N) bits long. For this we need
to remove the “honest” assumption on PV, and moreover we need to “merge” PV with existing
provers. This step of prover merging is explained in the next subsection.

1.1.4 Prover merging

Prover merging is performed in two steps. The first step uses somewhat standard techniques,
similar to those employed in [Ji17], that originate in the self-testing literature. The main idea is
to require the honest Pauli prover PV in P to implement the observable it is asked to measure
transversally, on an error-encoded version of his share of the state (this is the main motivation
for restricting the prover to Pauli observables), and then to split PV into as many provers as the
error-correcting code requires. It is then possible, using self-testing technique, to test the “split” PV
so as to ensure that any deviation from the honest actions is detected by the verifier.

The second step is the actual merging step. This step is somewhat delicate: we take the split
provers, and merge them into existing provers from G. Since each prover P now simultaneously
receives two questions — its question in G, as well as the share of the question to PV that would
have been sent to the split prover that got merged into P — soundness is non-obvious.

To show that this step does not compromise soundness, we leverage the fact that, by construction,
the prover that is to be merged only has to perform very simple operations: Pauli σX and σZ
observables, on a constant number of qubits at a time. These kinds of operations can be tested,
indeed “commanded”, in a very rigid way by using self-testing results. Therefore, we can embed
these actions into any prover. It is then straightforward to enforce that a prover performs the right

6In fact, triples of commuting two-qubit observables; we gloss over this for purposes of this overview.
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action on a Pauli observable. However, its action on the real question may depend on the Pauli
question. To get around this we once again leverage the structure of the Pauli Prover game as well
as the quantum error-correcting code. More details on this part are given in Section 5.

1.1.5 Recursive compression

Ultimately, we use our compression theorem (Theorem 1.3) in a recursive fashion to prove
Theorem 1.1. To illustrate the essential idea behind the recursive compression approach, we give an
informal overview of the proof of the statement that any language computable in deterministic
time t(n) has a quantum interactive proof system with completeness-soundness gap that scales as
an inverse polynomial in t(n).

Let L be such a language. Then there exists a deterministic Turing machine M that on input
x ∈ {0, 1}n decides whether x ∈ L in time t(n). For every x ∈ {0, 1}n and integer N ≥ n, we construct a
verifierVx,N for a 7-prover ENL game Gx,N that does the following. The verifier first runs M for N
steps on input x. If M accepts in this time, thenVx,N accepts. If M rejects in this time, thenVx,N
rejects. Otherwise, M has not halted. In this caseVx,N executes a compressed version of the protocol
corresponding toVx,2N , which is an exponentially larger version of itself. This compressed protocol
is provided by Theorem 1.3. The recursion continues until at some point, M is run for a large
enough “tower of exponential” number of steps that exceeds t(n), in which case M either accepts or
rejects input x. The following can then be shown by induction on R such that t(n) ≤ ΛR(n). If x ∈ L
then the value of the game Gx,t(n) is 1, and therefore for all N ≤ t(n) the value of Gx,N is 1, which
implies that Gx,n has value 1. Otherwise, if x < L, then using Theorem 1.3 we obtain that the value
of Gx,n is at most 1 −Ω

(
1/poly(t(n))

)
.

This nearly shows the desired conclusion, except that Theorem 1.3 requires that the family of
games to be compressed have a succinct description in the manner described in Section 1.1.2. We
thus need to argue that the family of games

{
Gx,n

}
has a GTM G associated with it. A priori it is

unclear whether the verifiers
{
Vx,n

}
are structured enough so that any particular gate of the verifier

circuits can be specified in polylogarithmic time. However, we show that as long as the verifiers{
Vx,n

}
are uniformly generated (meaning that there is some polynomial time Turing machine A that

on input (1n, x) returns the description of the verifier circuits ofVx,n), there is an equivalent family of
verifiers

{
V
′

x,n

}
that has a succinct description. We prove this fact in Section 3.4; the proof relies on a

concept from classical complexity theory known as oblivious simulation of Turing machines. Since
the family of verifiers

{
Vx,N

}
is uniformly generated, we obtain that the verifiers have a succinct

description via a GTM, which in turn allows us to apply the compression theorem as outlined
above.

Adapting this sketch to handle languages that are decided by nondeterministic Turing machines
(as needed in Theorem 1.1), as well as reproving Slofstra’s undecidability result (Theorem 1.2),
requires additional care. We give details in Section 7.

1.2 Improving the compression theorem?

Theorem 1.3 offers the following tradeoff between “compression in size” and “compression of the
gap”: the former is scaled by an exponential factor, from polynomial in N = 2n to polynomial in n,
while the latter is divided by a quantity that is polynomial in N, or equivalently, exponential in n.

Surprisingly, we show that any better tradeoff, i.e. one in which the gap gets reduced by
a subexponential factor in n, would have far-reaching consequences in complexity theory and
mathematics. The result provides a possible explanation for the absence of meaningful upper
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bounds on MIP∗ (provided an improved compression result does hold): not only would every
computable language be decided by an MIP∗ proof system, there would even be undecidable
languages in MIP∗.

Theorem 1.4 (Consequences of an improved compression theorem). Suppose an analogue of Theo-
rem 1.3 holds, such that the factor poly(N) in the denominator on the right-hand side of (1) is replaced by a
subexponential function of n = log N. Then

1. MIP∗ with constant gap contains all computable languages.

2. MIP∗ with constant gap contains undecidable languages.

3. The commuting operator model of multipartite correlations is strictly more powerful than the tensor
product model.

We precisely define what we mean by “improved compression theorem” in Section 8 (see Con-
jecture 8.1). The idea behind the proof of Theorem 1.4 is that the tradeoff between a subexponential
compression in gap and an exponential reduction in size can be “boosted” to a tradeoff where
the gap does not get compressed at all, but the game size still gets compressed by a nontrivial
amount. This uses hardness amplification techniques for multiprover entangled games [BVY17],
which employs a variant of parallel repetition to achieve this boosting.

We briefly explain what we mean by the third item in Theorem 1.4, and refer to the end of
Section 8.2 for an expanded discussion. In this paper, we define the entangled value of a nonlocal
game as the supremum of the success probabilities over all “tensor product” strategies for the
provers, which consist of a finite-dimensional Hilbert space for each prover, an entangled state
in the tensor product of those Hilbert spaces, and a collection of measurement operators on each
prover’s space.

There is an alternate definition of the entangled value, which considers the supremum over
so-called “commuting operator” strategies, for which there is a single (possibly infinite-dimensional)
Hilbert space shared by all players, and the only restriction is that measurement operators applied
by distinct provers commute with each other. Since tensor product strategies are also commuting
operator strategies, the entangled value in the tensor product model is at most the entangled value
in the commuting operator model. It is known that in the finite dimensional case, the two models
are equivalent. Whether they coincide in general is a famous problem in quantum information
known as “Tsirelson’s problem” (see e.g. [Fri12]).

As we explain in Section 8 (and is well known to experts, though we could not find an explicit
reference), a positive resolution to Tsirelson’s problem implies the existence of an algorithm to
approximate the value of any nonlocal game. However, the second item of Theorem 1.4 shows
that an improved compression theorem would refute the existence of such an algorithm, and thus
would give a negative answer to (the multipartite version of) Tsirelson’s problem.

It is known that Tsirelson’s problem for two-prover games is essentially equivalent to Connes’
Embedding Conjecture [Con76], a longstanding open problem in functional analysis (see [JNP+11,
Fri12, Oza13]). In particular, a separation between the definitions of entangled value for games
with two provers would refute Connes’ Embedding Conjecture. We do not know if a separation for
games with more than two provers (e.g., 15) would still refute Connes’ Embedding Conjecture.

1.3 Related work

We were informed of a forthcoming paper [CS18] by Coudron and Slofstra that establishes a result
similar (though strictly incomparable) to Theorem 1.1, using completely different techniques. In
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particular, the authors show that distinguishing between entangled value 1 or 1 − 1/poly(t(n)) for
games with two provers in the commuting operator model is hard for nondeterministic t(n) time
(whereas our result shows hardness for nondeterministic 2t(n) time for games with 15 provers in the
tensor product model). This result relies on the group-theoretic framework that was pioneered
in [Slo16, Slo17].

1.4 Outlook

The most important structural properties of classical multiprover interactive proof systems have
been established since the 90s. It is known that any multiprover interactive proof system can be
parallelized to a single round of interaction, with two provers only; that completeness 1 can be
achieved without loss of generality; that soundness can be amplified in parallel; finally, and most
importantly, that the class MIP of languages that can be recognized by any multiprover interactive
proof system, for any nontrivial choice of completeness and soundness parameters, is exactly
NEXP. Here, by nontrivial we mean any (c, s) such that exp(−poly(n)) ≤ s < c ≤ 1, where c − s
is at least exp(−poly(n)). We use MIPc,s(k, r) to denote the class of languages that can be decided
by a polynomial-time verifier interacting with k provers through an r-round interaction, with
completeness c and soundness s. Thus, MIPc,s(2, 1) = NEXP for all nontrivial values of (c, s). When
we write MIP we mean the union of all MIPc,s(k, r) for polynomially bounded functions k, r, and c, s
such that 0 < s < c ≤ 1 and (c − s)−1 is polynomially bounded.

In contrast, complexity-theoretic aspects of entangled-prover interactive proof systems remain,
to put it mildly, an untamed wilderness. Prior to our work it was known that NEXP ⊆MIP∗ [IV12,
Vid13, NV17b] with completeness 1 and soundness 1

2 , and that if one allows the completeness-
soundness gap to close exponentially fast with n, then the inclusion can be strengthened to NEEXP,
or, in our notation, NTIME(Λ2(n)) [Ji17]. Interestingly, a similar phenomenon had previously been
observed for single-prover interactive proof systems, for which it is known that QIP = PSPACE
with constant gap [JJUW10], but QIP contains EXP if one allows a doubly exponentially small
gap [IKW12]. Unlike MIP∗, however, the power of QIP does not grow arbitrarily when the gap
goes to zero; for any positive gap the class is contained in EXPSPACE [IKW12].

For the case of multiprover interactive proof systems with entangled provers, there is no
compelling reason that a shrinking gap would be necessary for the verification of languages beyond
NEXP. Indeed, no upper bounds are known on MIP∗ with constant gap — it is not even known to
be contained in the set of decidable languages. In fact, recent works provide indication that the
class may be larger than NEXP: it is known that QMAEXP, the “exponential-size proof” analogue
of QMA, is such that QMAEXP ⊆ MIP∗1,1−2−n(5, 1) [FV15, Ji16], and inclusion with a constant gap
holds under randomized reductions [NV18]. It is therefore an interesting question to determine to
what extent the exponentially small completeness-soundness gap that our technique requires is
necessary. As mentioned earlier, significant consequences in complexity theory and mathematics
would follow from even a small improvement in our compression theorem, Theorem 1.3.

Another major open question on entangled-prover interactive proof systems is the role of the
number of provers. Currently, it is not known if e.g. 3 provers allow to determine more languages
than 2 (for any setting of the completeness-soundness gap). Our proof of the compression theorem
involves a “prover merging” step that reduces the number of provers, albeit for a very restricted
type of interactive proof systems. We also note that our techniques restrict us to games with at least
7 provers. This could potentially be decreased to 5, or even 3, by replacing the use of the 7-qubit
Steane code with, say, a qutrit error-detecting code. Achieving a result with two provers seems
more challenging. Yet, the undecidability results in [Slo17] apply to two-prover games; it would be
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interesting to investigate whether some improvements on our techniques could take us all the way
to hardness results for two-prover games as well.

A number of problems in quantum information theory are known to be undecidable. One that
bears superficial similarity with the problem considered in this paper, in the statement as well
as in the techniques, is the undecidability of the spectral gap of an infinite translation-invariant
Hamiltonian, shown in [CPGW15]. It would be interesting to determine whether there could be a
direct reduction from a multiprover game to that problem.
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Outline. The rest of the paper is organized as follows. We cover preliminaries and definitions in
Section 2. In Section 3 we formally define the model of extended nonlocal games and strategies, as
well as Gate Turing Machines. In Sections 4, 5, and 6 we prove our compression theorem. In Section 7
we prove Theorem 1.1 and Theorem 1.2. In Section 8 we show that quantitative improvements to
our compression theorem would lead to interesting consequences in computational complexity
theory and in foundations of quantum mechanics.

2 Preliminaries

Let Z andN be the set of integers and the set of natural numbers respectively. We write poly(N)
for any function f :N 7→ R+ such that there is an α > 0 and an N0 ∈N such that f (N) ≤ Nα for all
N ≥ N0. We write poly(N; ε) for any function f :N ×R+ → R+ such that there exists α, β > 0 and
N0 ∈N, ε0 > 0 such that, for all N ≥ N0 and all ε ≤ ε0, f (N, ε) ≤ Nαεβ.

2.1 Quantum information theory

All Hilbert spaces considered in the paper are finite dimensional. We use the terminology “quantum
register” to name specific quantum systems with finite dimensional Hilbert spaces. We use sans-serif
font to denote registers, such as A, B. For example, “register A”, to which is implicitly associated
the Hilbert spaceHA.

D(A) denotes the set of density matrices on A, and L(A) the set of linear operators on A. For
a density matrix ρ and an operator M, we use Trρ(M) to denote Tr(ρM). A unitary matrix U is a
reflection if it has eigenvalues in {±1}.

Universal gate set. The quantum circuits we discuss in this paper use single-qubit Hadamard
and three-qubit Toffoli gates, a universal gate set for quantum computation [Shi02].
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Pauli observables. Let σI, σX, σY, σZ denote the four single-qubit Pauli observables

σI =

(
1 0
0 1

)
, σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
.

We use two ways of specifying a Pauli observable acting on a specific qubit.

1. Let W ∈ {I,X,Y,Z} be a label and let R be a single-qubit register. We write σW(R) to denote the
observable σW acting on R.

2. Let R be an n-qubit register, and let i ∈ {1, . . . ,n}. Let W = Xi (resp. W = Zi). We write σW to
denote the σX (resp. σZ) operator acting on the i-th qubit in R (the register R is implicit).

We also use W to label Pauli operators that have higher “weight”. For example, for W = XiZ j the
operator σW denotes the tensor product σXi

⊗ σZ j
. For a vector u ∈ {0, 1}n and W ∈ {X,Z}we write

σW(u) for
⊗

i:ui=1 σWi
.

Lemma 2.1. Let A,R be registers. Let H be a positive semidefinite matrix acting on A with smallest
eigenvalue 0 and second smallest eigenvalue ∆ > 0. If |ψ〉 is a state on AR such that 〈ψ|HA ⊗ 1R|ψ〉 ≤ ε,
then there exists a state |θ〉 on AR such that H|θ〉 = 0 and∥∥∥|ψ〉〈ψ| − |θ〉〈θ|∥∥∥1 ≤ 4

√
ε/∆ .

Proof. Let P denote the projector onto the kernel of H. Let Q = 1 − P. Then since ∆Q ≤ H in the
positive semidefinite ordering we have 〈ψ|Q|ψ〉 ≤ ε/∆. The Gentle Measurement Lemma [ON02]
states that for all density matrices ρ and for all positive semidefinite X satisfying 0 � X � 1, we
have ∥∥∥∥ρ − √Xρ

√

X
∥∥∥∥

1
≤ 2

√
Tr(ρ(1 − X)) . (3)

Setting ρ = |ψ〉〈ψ| and X = P in (3) we obtain the desired conclusion with

|θ〉 =
P|ψ〉√
〈ψ|P|ψ〉

.

�

3 Nonlocal games

In this paper we consider interactive protocols between a quantum verifier V and k quantum
provers. We mostly work with a restricted type of three-turn interactive protocols of the following
form. First, the provers send a quantum message to the verifier; second, the verifier sends classical
questions to the provers; third, the provers reply with classical answers. Following the terminology
introduced in [JMVW16] we call such protocols “extended nonlocal games”, or ENL. We also
consider nonlocal games, which are extended nonlocal games in which the first message is trivial (i.e.
there is a single round of classical communication, from verifier to provers and back).

This section formally introduces extended nonlocal games, as well as a convenient representation
of the verifier for such games as a special kind of Turing machine, called a “gate Turing machine”,
or GTM.

We start by defining extended nonlocal games (and the special case of nonlocal games) in
Section 3.1. In Section 3.2 we recall the definition of the class MIP∗. In Section 3.3 we introduce
the formalism for representing strategies for the provers in an ENL. In Section 3.4 we introduce a
representation of a verifier in an ENL as a Turing machine.
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3.1 Extended nonlocal games

Extended nonlocal games are a special kind of three-turn interactive protocol between a quantum
verifier and k quantum provers. For simplicity we first introduce notation for the case when there
is a single prover P. There are four registers involved: C,V,M,P. The verifierV acts on registers C
(the register containing the prover’s initial message), V (the verifier’s private space) and M (the
message register). The prover P acts on M and P (the prover’s private space). The registers V and M
are initialized in the |0〉 state. The registers C and P are initialized in an arbitrary state, chosen by
the prover. The verifier applies a circuit CQ to the three registers CVM (Q stands for “questions”).
The prover then applies an arbitrary unitary transformation P to the registers MP. Finally, the
verifier applies a circuit CA to the three registers CVM (A stands for “answers”). The first qubit of V
is designated as the “output qubit”, and measured in the standard basis to determine whether the
verifier accepts or rejects. See Figure 1 for a representation.

We can (and often do) assume without loss of generality that every operation in this protocol,
including the prover’s, is a reflection, i.e. a Hermitian operator that squares to identity. Indeed, the
verifier circuits CQ,CA consist of Hadamard gates (H) and Toffoli gate (T), which are reflections.
The prover’s unitary P can be embedded into a reflection by introducing an ancilla qubit initialized
to |0〉 and considering the reflection P̃ = |1〉〈0| ⊗ P + |0〉〈1| ⊗ P†.

The extension to k provers is straightforward. The registers M and P are divided into k parts:
M1, . . . ,Mk and P1, . . . ,Pk, such that the i-th prover’s unitary Pi acts on MiPi.

We say that a verifier V = (CQ,CA) for a k-prover three-turn protocol is a classical-message
verifier if there are question and answer alphabetsQ = Q1× · · · ×Qk andA = A1× · · · ×Ak such that

• The only gates of circuit CQ acting on the message registers M are CNOT gates, controlled on
qubits in V. In other words, CQ copies messages of length log |Qi| from the register V to the
register Mi for all i.

• Similarly, the circuit CA is restricted to classically copying messages of length log |Ai| from
the register Mi into the register V for all i. (After this, an arbitrary quantum computation can
be performed on V only.)

We call such protocols with classical-message verifiers extended nonlocal (ENL) games. Note that
while the verifier sends and receives classical messages in the register M, it may receive a quantum
message in the register C in the first turn. A k-prover nonlocal game is a restricted type of ENL game
where the verifier ignores the register C.

3.2 The class MIP∗

Given a certain class of games, or more generally interactive protocols, it is possible to define an
associated class of languages. The most common such class is the class MIP∗ of languages that
can be decided by the verifier in a multiprover interactive proof system in which the verifier is
classical and communicates with the provers in a polynomial number of rounds of interaction, using
classical messages only. Although we have only formally defined nonlocal games with a single
round of interaction, the extension to multiple rounds is straightforward. For more background
and definitions of complexity classes associated with quantum interactive proof systems, we refer
to the introductory text [Wat09].

Definition 3.1 (MIP∗). Let k, r be polynomially bounded functions of n, and 0 ≤ s < c ≤ 1 computable
functions of n. We say that a language L is in MIP∗c,s(k, r) if there is an efficient classical procedure that on
input 1n returns a family of circuits for a verifier that interacts with k provers in r rounds and is such that
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1. (Completeness:) If x ∈ L, then there is a strategy for the provers that is accepted with probability at
least c;

2. (Soundness:) If x < L, no strategy for the provers has an acceptance probability that is larger than s.

We write
MIP∗(k, r) =

⋃
c∈(0,1], g∈poly

MIP∗c,c−1/g(k, r) .

The following problem is complete, under polynomial time Karp reductions, for the class
MIP∗c,s(k, 1): given the description of a verifierV for a k-prover nonlocal game G, decide whether
ω∗(G) ≥ c or ω∗(G) ≤ s.

3.3 Strategies

The definition of an ENL in Section 3.1 models the action of each prover as a single reflection acting
jointly on its message and private registers. We refer to the collection of the provers’ shared state
|ψ〉CPR, where R is a reference register, and each prover’s reflection Pi, i ∈ {1, . . . , k}, as a reflection
strategy S = (|ψ〉, {Pi}).

Since the message register only contains classical information, it is always possible to represent
a prover’s reflection as a sequence of three operations: copy the message to the prover’s private
register; apply an arbitrary reflection on the private register; copy the answer from the private
register onto the message register. We call a strategy for the provers that are decomposed in
this form a normal form strategy. The structure of normal form strategies will be crucial for our
compression result later on.

We use the following notation to refer to normal form strategies. LetV = (CQ,CA) be the circuits
for the verifier in a k-prover ENL game G. Assume without loss of generality that all question and
answer sets Qi and Ai have the same cardinality For i ∈ {1, . . . , k} and j ∈ {1, . . . , log |Qk|}, let Mi j
denote the j-th qubit of Mi.

Definition 3.2. A normal form ENL game strategy is a tuple S = (ρ, {Qi j}, {Pi}, {Ai j}), where {Qi j} is
a set of reflections indexed by i ∈ {1, . . . , k} and j ∈ {1, . . . , log |Qi|}, {Pi} is a set of reflections indexed by
i ∈ {1, . . . , k}, and {Ai j} is a set of reflections indexed by i ∈ {1, . . . , k} and j ∈ {1, . . . , log |Ai|}. For all (i, j),
the reflections Qi j, Pi, Ai j act on Pi.

The execution of a normal form ENL game strategy S in the game G proceeds as follows:

1. The circuit CA is executed on the registers C,V,M.

2. For each i ∈ {1, . . . , k}, the i-th prover applies the sequence of gates {CTL-Qi j} for j ∈
{1, . . . , log |Qi|}, where

CTL-Qi j = |0〉〈0|Mi j
⊗ 1P + |1〉〈1|Mi j

⊗Qi j .

3. The i-th prover applies a reflection Pi on Pi.

4. For each i ∈ {1, . . . , k}, the i-th prover applies the sequence of gates {TGT-Ai j} for j ∈
{1, . . . , log |Ai|}, where

TGT-Ai j = 1M ⊗
1 + Ai j

2
+ σX(Mi j) ⊗

1 − Ai j

2
.

5. The circuit CA is executed on the registers C,V,M.
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Figure 2: An extended nonlocal game in normal form.

Figure 2 gives a representation for the circuit associated with this protocol. Gates of the form
CTL-Qi j and TGT-Ai j are referred to as communication gates. Gates of the form Pi are referred to as
prover reflection gates.

It is clear that any strategy for the players in an ENL game can be converted to the normal form:
the provers use the gates CTL-Qi j to classically read the message register M one bit at a time, apply
an arbitrary measurement, controlled on the copied message, on their private register Pi, and finally
use TGT-Ai j to classically write their answers into M one bit at a time.

In addition we consider a second type of strategy, called measurement strategies, which is the
standard type of strategies in the study of nonlocal games. Reflection strategies and measurement
strategies in ENL games are easily converted from one to another.

Definition 3.3. A measurement strategy S for the provers in a k-prover ENL game G with question set
Q1 × · · · × Qk and answer setA1 × · · · × Ak consists of a pair (ρ, {Mi}), where

1. ρ is a state on (k + 1) registers denoted C, P1, . . . ,Pk.

2. For each i ∈ {1, . . . , k}, Mi is a map from Qi ×Ai to the set of positive semidefinite operators acting on
Pi, satisfying the constraint that for all q ∈ Qi,∑

a∈Ai

Mi(q, a) = 1Pi
.

For each q ∈ Qi, we write Mi(q) = {Mi(q, a)}a to denote the associated POVM on Pi.

Next we define the value of a game.

Definition 3.4. The value of a strategy S (either measurement or reflection) in a game G is denoted by
ω∗
S

(G) and is defined as the probability that players implementing strategy S are accepted by the verifier in
G, i.e. the probability that a measurement of the verifier’s output qubit at the end of the interaction returns
the outcome 1. The value of a game G is denoted by ω∗(G) and is defined as

ω∗(G) = sup
S

ω∗
S

(G) ,

where the supremum is over all (finite dimensional) strategies S for G.
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Distance between measurement strategies. We define notions of closeness of measurement
strategies. (There are analogous notions of closeness of reflection strategies; however we will not
need them in this paper).

Definition 3.5 (State-dependent closeness of POVMs). Let ρ be a density matrix and let M = {Ma
}a,N =

{Na
}a be two POVMs that have the same set of possible outcomes. Then define

dρ (M,N) :=
[∑

a
Tr

(
(Ma
−Na)2ρ

) ]1/2
. (4)

Definition 3.6 (Closeness of strategies). Let S = (ρ, {Mi}),S
′ = (ρ′, {M′i }) be strategies for an k-prover

ENL game G. Then S is ε-close to S′ if and only if

1. ‖ρ − ρ′‖tr ≤ ε

2. For all i ∈ {1, . . . , k}, Eq dρ(Mi(q),M′i (q)) ≤ ε, where the expectation is over q drawn from the marginal
distribution of the ith prover’s questions in the game G.

Definition 3.7 (Isometric strategies). Let S = (ρ, {Mi}) and S′ = (ρ′, {M′i }) be strategies for an k-prover
ENL game G, where ρ ∈ D(CP1 · · ·Pk) and ρ′ ∈ D(CP′1 · · ·P

′

k). Then S is ε-isometric to S′ if and only if
there exist isometries: Vi : Pi → P′i for each i ∈ {1, . . . , k} such that the strategy S̃ = (ρ̃, {M̃i}) is ε-close to
S
′, where S̃ is defined by

1. ρ̃ = (V1 ⊗ · · · ⊗ Vk)ρ(V1 ⊗ · · · ⊗ Vk)†

2. For all i, for all (q, a) ∈ Qi ×Ai, M̃i(q, a) = Vi Mi(q, a) V†i .

The following lemma shows that if strategy S1 in a k-prover ENL game G is ε-isometric to S2,
then their success probabilities differ by at most O(kε).

Lemma 3.8. LetV = (CQ,CA) be a verifier in an ENL game G, and let S′ = (ρ1, {P
(1)
i }),S = (ρ2, {P

(2)
i }) be

strategies for G such that S is ε-isometric to S′. Then∣∣∣ω∗
S

(G) − ω∗
S
′(G)

∣∣∣ ≤ O(kε) .

Proof. Observe that ω∗
S

(G) = ω∗
S̃

(G) where S̃ is the strategy that is ε-close to S′ as given by the

definition of isometric strategies. Let S′′ denote the strategy that is the same as S̃ except the shared
state ρ′′ is taken to be the shared state ρ′ of S′. We have that

∣∣∣ω∗
S
′′(G) − ω∗

S
(G)

∣∣∣ ≤ ε.
Consider a sequence of (k + 1) hybrid strategies S0,S1, . . . ,Sk where S0 = S′′ and Sk = S′, and

strategies Si and Si+1 differ in that the i-th prover’s measurement operators are switched from

those of S′′ to those of S′. Lemma 7 of [Ji17] implies that
∣∣∣∣ω∗Si

(G) − ω∗
Si+1

(G)
∣∣∣∣ ≤ ε. We thus obtain

the statement of the lemma. �

Protocol circuits. A protocol circuit is a quantum circuit description of a normal form strategy in
an extended nonlocal game (see Figure 2 for an example). Formally, a k-prover protocol circuit C is
specified by a set of s verifier wires, a set of k prover wires, and a finite sequence of gates g1, g2, . . . , gτ.
Every gate g has a type, denoted by type(g):

1. H, which stands for a double Hadamard gate7

7A double Hadamard gate is simply a two-qubit gate that applies two Hadamard gates in parallel. We use this gate
for technical reasons.
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2. T, which stands for a Toffoli gate

3. Q, which stands for a gate of the form CTL-Qi j, for an arbitrary reflection Qi j acting on Pi.

4. A, which stands for a gate of the form TGT-Ai j, for an arbitrary reflection Ai j acting on Pi.

5. P, which stands for a prover reflection Pi acting on Pi.

The wires of a gate g, denoted by wire(g), is the set of wires it acts on. Each gate acts on up to 3
wires. The size of a k-prover protocol circuit with τ gates and s + k wires is defined to be (τ + s + k).

It is easy to see that, from the protocol circuit C of a game, we can extract the circuits CQ and CA
defining the verifierV of the game. We may use protocol circuits C and the corresponding verifier
V interchangeably.

3.4 Turing machine descriptions of verifier circuits

In this section, we discuss Turing machine descriptions of verifier circuits.

Definition 3.9. Let Λ denote a countable set. A family of verifier circuits {Vn,λ}n∈N,λ∈Λ is uniformly
generated if there is a deterministic Turing machine M that on input (1n, λ) runs in polynomial time and
returns a description ofVn,λ.

Remark. In the usual definition of uniformly generated circuits, the circuits are only parameterized
by an integer n that denotes the size. In our definition, the verifier circuits are parameterized by both
a size parameter n as well as an auxiliary symbol λ; this generalization will be useful in our proof
of the compression theorem. Alternatively, one can think of a family of verifier circuits {Vn,λ}n,λ as
specifying, for each fixed λ ∈ Λ, a family of uniformly generated verifiers circuits {Vn,λ}n∈N (in
the standard sense). Furthermore, there is a single Turing machine M, that by fixing the input λ,
generates each family {Vn,λ}n∈N.

For our compression result it is not enough for verifiers to have uniform Turing machine
descriptions — it is crucial that they also have highly succinct descriptions, defined as follows.

Definition 3.10. A family of verifier circuits {Vn,λ} has a succinct description if there exists a deterministic
Turing machine G, called the Gate Turing Machine (GTM) for the protocol circuits {Cn,λ} specified by
{Vn,λ} if on input (n, t, λ) the Turing machine G runs in polynomial time and returns the description of the
t-th gate g of Cn,λ (and a special error symbol in case t is larger than the size of Cn,λ). In addition, we assume
that a GTM always returns the size pλ(n) of the protocol circuit Cn,λ it specifies when provided the input
(1n,−1, λ).

In the definition, by “description” of a gate we mean the pair (type(g),wire(g)).
We use CKT(G,n) to denote the protocol circuit whose gates are specified by G on input (n, t)

for 1 ≤ t ≤ p(n). We call the circuit CKT(G,n) the n-th protocol circuit specified by G, and the game
Gn corresponding to CKT(G,n) the n-th game specified by G. We say that G is a GTM for a family
of ENL games {Gn} if Gn is the n-th game specified by G.

The following lemma shows that if a verifier family
{
Vn

}
is uniformly generated, then there is

an equivalent verifier family
{
V
′

n

}
that has a succinct description. Here, we use a strong notion of

equivalence: the question and answer alphabets ofV′n are the same asVn, and furthermore, the
value of any strategy S is the same in G′n and Gn.
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Lemma 3.11. Let k ≥ 0 be an integer. Let {Vn,λ} = {(CQ,n,λ,CA,n,λ)} be a family of verifier circuits for a
k-prover ENL game that is uniformly generated by a Turing machine M. Here λ denotes an auxiliary string
that is part of the input (1n, λ) to M. Let Gn,λ denote the ENL game associated withVn,λ. Then there exists
a GTM GM, that is computable from M, such that the n-th game specified by GM is G′n,λ such that:

1. The question and answer alphabets of the verifier of G′n,λ are the same as in Gn,λ;

2. For all n and for all ENL game strategies S, ω∗
S

(G′n,λ) = ω∗
S

(Gn,λ).

Proof. From the Turing machine M it is possible to design two Turing machines MQ and MA that
specify the families of circuits {CQ,n,λ} and {CA,n,λ}. As shown in Lemma A.5 in Appendix 3.4,
any uniformly generated family of circuits has a succinct representation of the form described
in Definition 3.10. Let GQ and GA be the associated GTMs. The GTM GM is a straightforward
combination of GQ and GA. On input (n, t, λ), the GTM first determines if the time t corresponds to
a gate in CQ, or is among the CTL-Qi j, Pi or TGT-Ai j gates, or a gate in CA (recall the notation for
normal form verifiers introduced in Section 3.3). This can be determined in polynomial time as each
part has an easily computable size. If t belongs to the first or last part, GM determines the appropriate
gate by executing GQ or GA respectively. In the remaining cases, the correct communication gate or
prover reflection gate can easily be computed in polynomial time. �

4 Honest Pauli Prover games

As mentioned in the introduction, we prove Theorem 1.3 in two parts: first we show how to
compress a family of k-prover ENL games

{
GN

}
specified by a GTM G to a family of (k + 1)-prover

Honest Pauli Prover games
{
G
]
H,n

}
, in which one of the provers is a specially designated “Honest

Pauli Prover” who is “commanded” to measure multi-qubit Pauli observables. We describe Honest
Pauli Prover games in this section. In Section 5 we show how to simulate an Honest Pauli Prover
game G]H,n with a k-prover ENL game

{
G
]
n

}
. In Section 6 we put the two parts together to prove

Theorem 1.3.

Throughout this section, we fix a GTM G for a family of k-prover ENL games
{
Gn

}
. We write

CKT(G,n) for the n-th protocol circuit specified by G, and let p(n) denote the size of CKT(G,n).
When n is fixed we let N = 2n and write Ĉ, V̂, M̂ for the registers that the verifierVN in GN acts on,
and X̂ = ĈV̂M̂ for the union of these registers. We interpret X̂ as an ordered sequence of single-qubit
registers {Ĉi}, {V̂i}, and {M̂i}. For any register Ri of this form, we write ind(Ri) ∈ {1, . . . , |̂X|} for the
qubit of X̂ that Ri corresponds to.

In this section we introduce a family of games
{
G
]
H,n

}
that is designed to force the provers to

hold a history state of the protocol circuit CKT(G,N). (The ] superscript in G]H,n indicates that the
game is a compression of GN.) These games fall in a category of Honest Pauli Prover games, defined
as follows.

Definition 4.1 (Honest Pauli Prover game). Let k,S ≥ 1 be integer. An extended nonlocal game G is an
(k + 1)-prover S-qubit Honest Pauli Prover game if the following holds. The game has (k + 1) provers, the
first of which is labelled PV and called the “Pauli prover”, and the remaining k are labelled PP1, . . . ,PPk. In
the game, queries take the form Q = (qV, qP,1, . . . , qP,k), where the question qV to the Pauli prover is a set of
labels {W( j)

} for up to three commuting S-qubit Pauli observables, each of which acts nontrivially on at most
two qubits. Answers in the game are labeled aV, aP,1, . . . , aP,k, respectively.
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We introduce a class of strategies for Honest Pauli Prover games in which the Pauli prover
performs Pauli operations honestly.

Definition 4.2 (Honest Pauli Prover strategy). For k ≥ 0 we say that a (k + 1)-prover measurement
strategy (|ψ〉, {Mi}) for an Honest Pauli Prover Game GH is an S-qubit honest Pauli Prover strategy (or
honest Pauli strategy for short) if the following holds. The state |ψ〉 is on (k + 3) registers: C (held by the the
verifier), PV (held by the prover PV), PP,1, . . . ,PP,k (held by provers PP1, . . . ,PPk respectively), and R (a
reference register). We use P to denote the (k + 1) prover registers collectively. Furthermore, the register PV
consists of S qubits, and on any question qV the answer bits aV returned by the Pauli prover are obtained by
measuring the set of commuting Pauli observables that is specified by its question (the prover reports one
answer bit for each observable).

The verifierV]
H,n for the game G]H,n is summarized in Figure 3. The verifier randomly executes

one of three possible routines. We give the description of each subprotocol in Section 4.1, Section 4.2
and Section 4.3 respectively. We conclude with the analysis ofV]

H,n in Section 4.4.

Verifier name:V]
H,n:

• Execute each of the following subprotocols with probability 1/3: Gate Check(n),
Input Check(n), and Output Check(n).

Figure 3: The verifierV]
H,n.

4.1 Gate Check

The goal of the Gate Check subprotocol is to check that the provers (already assumed to be using
an honest Pauli strategy) share a state close to a history state corresponding to the execution of the
protocol circuit CKT(G,N). More precisely, their strategy must be close to one of the following form.

Definition 4.3 (Honest Gate Check strategy). An honest Pauli strategy S = (|ψ〉, {Mi}) is an honest
Gate Check strategy for the game G]H,n derived from the GTM G if the shared state |ψ〉CPR is a history state
of the circuit CKT(G,N),

|ψ〉CPR =
1√

p(N) + 1

p(N)∑
t=0

|t〉C ⊗ |ψt〉PR , (5)

where the state |ψ0〉PR is arbitrary and for all t ≥ 1, the state |ψt〉PR is defined as Ugt
|ψt−1〉PR where

gt = G(N, t) and Ugt
is the unitary specified in (6), acting on the registers specified by wire(gt). In particular,

the register PV is isomorphic to X̂ = ĈV̂M̂, and S = |̂X|.

We proceed to describe the Gate Check, and then state its properties. In the check, the verifier
samples a random time t ∈ {1, . . . , p(N)}, and computes the t-th gate g = G(N, t) (the verifier can
compute this gate by simulating the Turing machine G for poly log(N) steps). Depending on the type
of g, a double Hadamard gate, a Toffoli gate, a communication channel gate (see Section 3.3), or a
prover reflection gate, the verifier executes a specially tailored subprotocol to check the propagation
of that particular gate.
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Subprotocol name: Gate Check(n):

1. Select a uniformly random integer t ∈ {1, . . . , p(N)}, and measure the clock register
C using the POVM{

Π0 = |+t〉〈+t|,Π
1 = |−t〉〈−t|,Π

2 = 1 −Π0
−Π1

}
,

where |±t〉 = 1
√

2

(
|t − 1〉 ± |t〉

)
. Let s ∈ {0, 1, 2} denote the result of the measurement.

If s = 2, accept.

2. Simulate the execution of the the GTM G on input (N, t) to obtain g = G(N, t).

3. If type(g) = T, run Toffoli Check(n, s, g).

4. If type(g) = H, run Hadamard Check(n, s, g).

5. If type(g) ∈ {Q,A}, run Communication Channel Check(n, s, g).

6. If type(g) = P, run Prover Reflection Check(n, s, g).

Figure 4: Gate Check

Figure 5 details the subprotocols invoked by Gate Check. The subprotocols Toffoli Check and
Hadamard Check are taken from [Ji17]. A Toffoli or doubled Hadamard gate g returned by the
GTM G always comes together with labels for a set of qubits on which the gate acts on. In the
subprotocols Hadamard Check, Communication Channel Check, and Prover Reflection Check,
the verifier artificially accepts with probability 1/2 without testing anything; this is to adjust the
normalization of the rejection probabilities of these subprotocols.

The next lemma establishes an expression for the rejection probability for GateCheck conditioned
on a choice of random t ∈ {1, . . . , p(N)}.

Lemma 4.4. Let S = (|ψ〉, {Mi}) be an honest Pauli strategy for the Gate Check subprotocol. For all
i ∈ {1, . . . , k} let Qi j, Ai j,Pi be prover PPi’s observables on questions Qi j,Ai j, ? respectively. Let CTL-Qi j
and TGT-Ai j denote the associated controlled operators defined in Section 3.3.

Fix t ∈ {1, . . . , p(N)}. Let g = G(N, t) denote the t-th gate of the protocol circuit CKT(G,N). Let

Ug =


H⊗2 if type(g) = H
T if type(g) = T
CTL-Qi j if type(g) = Q,wire(g) = (i, j)
TGT-Ai j if type(g) = A,wire(g) = (i, j)
Pi if type(g) = P,wire(g) = i.

(6)

Then the rejection probability of Gate Check, conditioned on the verifier selecting time t ∈ {0, 1, . . . , p(N)}
in Step 1 of Figure 4, is

1
4

Trρ
(
Kt(1 − Jt ⊗Ug)Kt

)
,

where ρ = |ψ〉〈ψ|, Kt denotes the projector |+t〉〈+t| + |−t〉〈−t| acting on C and Jt denotes the unitary operator
1 − 2|−t〉〈−t| acting on C.
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Subprotocol name: Toffoli Check(n, s, g):
Description of input: g is a Toffoli gate acting on qubits u1,u2,u3, and s ∈ {0, 1}.

1. Sample α ∈ {0, 1} uniformly at random, and accept if α = 1. Otherwise, continue.

2. Set qV = (Zu1
,Zu2

,Xu3
). Let aV = (a1, a2, a3) be the three answer bits from PV. Reject

if a1 = a2 = 1 ∧ s ⊕ a3 = 1, or a1a2 = 0 ∧ s = 1. Accept otherwise.

Subprotocol name: Hadamard Check(n, s, g):
Description of input: g is a double Hadamard gate acting on qubits u1,u2, and s ∈ {0, 1}.

1. Sample α ∈ {0, 1} uniformly at random.

2. If α = 0, set qV = (Xu1
Xu2

,Zu1
Zu2

). Let a1, a2 be the two answer bits from PV. Reject
if s ⊕ a1 = s ⊕ a2 = 1, accept otherwise.

3. If α = 1, set qV = (Xu1
Zu2

,Zu1
Xu2

). Let a1, a2 be the two answer bits from PV. Reject
if s ⊕ a1 = s ⊕ a2 = 1 and accept otherwise.

Subprotocol name: Communication Channel Check(n, s, g):
Description of input: g is a communication gate CTL-Qi j or TGT-Ai j, and s ∈ {0, 1}.

1. Sample α ∈ {0, 1} uniformly at random, and accept if α = 1. Otherwise, continue.

2. Let (i, j) = wire(g). Let u = ind(M̂i j).

3. If type(g) = Q: Set qV = Zu. Set qP,i = Qi j. Reject if aV = 1 ∧ s ⊕ aP,i = 1, or
aV = 0 ∧ s = 1. Accept otherwise.

4. If type(g) = A: Set qV = Xu. Set qP,i = Ai j. Reject if aP,i = 1 ∧ s ⊕ aV = 1, or
aP,i = 0 ∧ s = 1. Accept otherwise.

Subprotocol name: Prover Reflection Check(n, s, g):
Description of input: g is a prover reflection gate, and s ∈ {0, 1}.

1. Sample α ∈ {0, 1} uniformly at random, and accept if α = 1. Otherwise, continue.

2. Let i = wire(g). Set qP,i = ?.

3. Reject if aP,i , s. Accept otherwise.

Figure 5: Toffoli, Hadamard, Communication Channel, and Prover Reflection Checks.

Proof. The rejection probability for the double Hadamard and Toffoli gates was established in [Ji17].
In the case of type(g) = Q, the rejection probability is

1
2

Trρ

(
Kt

[
|−t〉〈−t| ⊗

1 + σZu

2
+
1 − Jt ⊗Qi j

2
⊗

1 − σZu

2

]
Kt

)
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which can be verified to be equal to 1
4 Trρ(Kt(1− Jt⊗Ug)Kt). In the case that type(g) = A, the rejection

probability is
1
2

Trρ

(
Kt

[
|−t〉〈−t| ⊗

1 + Ai j

2
+
1 − Jt ⊗ σXu

2
⊗

1 − Ai j

2

]
Kt

)
which again can be verified to be equal to 1

4 Trρ(Kt(1 − Jt ⊗Ug)Kt). In the case of type(g) = P, the
rejection probability is by definition

1
4

Trρ(Kt(1 − Jt ⊗Ug)Kt).

�

Lemma 4.5. The following hold for the Gate check subprotocol described in Figure 5:

1. (Completeness) An honest Gate Check strategy passes the Gate check subprotocol with probability 1.

2. (Soundness) Any honest Pauli strategy that passes the Gate check subprotocol with probability at
least 1 − ε is δ-close (see Definition 3.6) to an honest Gate Check strategy, for δ = O(p(N)3/2√ε)

Proof. Completeness is straightforward. We show soundness. The analysis largely follows [Ji17].
Let S be an honest Pauli strategy that succeeds with probability at least 1 − ε in the Gate check
subprotocol. Let |ψ〉CPR denote the provers’ shared state in S, and let ρ = |ψ〉〈ψ|.

We calculate the rejection probability of Gate Check. At step 1. in Gate Check the verifier
selects a time t uniformly at random from {1, . . . , p(N)}. Let gt = G(N, t) denote the t-th gate of
CKT(G,N). Let rt denote the rejection probability of Gate Check conditioned on time t having been
selected. By Lemma 4.4, the rejection probability is rt = 1

4 Trρ
(
Kt(1 − Jt ⊗Ugt

)Kt

)
. Thus the overall

rejection probability satisfies

ε ≥ E
t

rt

≥
1
4 Et

Trρ
(
Kt(1 − Jt ⊗Ugt

)Kt

)
=

1
4 Et

Trρ
(
|t − 1〉〈t − 1| ⊗ 1 + |t〉〈t| ⊗ 1 − |t − 1〉〈t| ⊗U†gt

− |t〉〈t − 1| ⊗Ugt

)
(7)

where in the last equality we used the fact that U†gt
= Ugt

. Define Q =
∑

t|t〉〈t|C ⊗ Ugt
· · ·Ug1

. It is
straightforward to verify that (7) implies

TrρEt

(
Q|−t〉〈−t|Q

†
)
≤ 2ε .

Let Hprop denote the operator
∑

t

(
Q|−t〉〈−t|Q

†
)
. Notice that Hprop is a positive semidefinite operator

that is exactly the same as the propagation term of the Feynman-Kitaev clock Hamiltonian [KSV02].
It has been shown that this propagation term has a spectral gap of at least Ω(1/p(N)2) [AVDK+08],
and therefore the scaled operator Et

(
Q|−t〉〈−t|Q

†
)

has spectral gap of at least Ω(1/p(N)3). Using

Lemma 2.1, we have that ρ is δ-close to a pure state |θ〉〈θ| satisfying Hprop|θ〉 = 0 for δ = O(p(N)3/2√ε).
Since the ground space of the propagation term of is spanned by history states of the form
|θ〉CPR = 1√

p(N)+1

∑
t|t〉C ⊗ |θt〉PR where |θt〉 = Ugt

|θt−1〉, this establishes the lemma.

�
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4.2 Input check

Assume that the provers’ strategy is an honest Gate Check strategy (Definition 4.3). The Input
Check subprotocol is designed to check that the component |ψ0〉PR of the history state (5) at time
t = 0 is a valid initial state for the protocol circuit.

Definition 4.6 (Honest Input Check strategy). An honest Gate Check strategy S = (|ψ〉, {Mi}) is an
honest Input Check strategy if the initial state |ψ0〉PR is such that the registers V̂M̂ of PV are initialized to
the all zero state.

Subprotocol name: Input Check(n):

1. Measure the clock register C in the computational basis. Let t ∈ {0, . . . , p(N)} be the
outcome. If t , 0, accept.

2. Pick a random qubit index j ∈ supp(V̂M̂).

3. Set qV = Z j. Accept if aV = 0. Otherwise, reject.

Figure 6: Input Check.

Lemma 4.7. The following hold for the Input check subprotocol described in Figure 6:

1. (Completeness) An honest Input Check strategy passes the Input Check subprotocol with probability
1.

2. (Soundness) Any honest Gate Check strategy that passes the Input Check subprotocol with probability
at least 1 − ε is δ-close to an Honest Input Check strategy for δ = O(p(N)

√
ε).

Proof. Completeness is straightforward. We show soundness. Let S be a strategy that passes the
Input Check subprotocol with probability at least 1 − ε. Let |ψ〉CPR denote the shared state in S.
Since the strategy S is an honest Gate Check strategy (and therefore an honest Pauli Check strategy),
we have that

|ψ〉CPR =
1√

p(N) + 1

p(N)∑
t=0

|t〉C ⊗ |ψt〉PR .

Let Π = |0〉〈0|C, and let ρ = |ψ〉〈ψ|. We have that Trρ(Π) ≥ (p(N) + 1)−1. Let

ρ0 =
ΠρΠ

Trρ(Π)
= |0〉〈0|C ⊗ |ψ0〉〈ψ0|PR .

The probability that Input Check rejects when the shared state is ρ0 instead of ρ is at most
ε′ = (p(N) + 1)ε.

Suppose now that the shared state in Input Check is ρ0. The probability of rejection is then

Trρ0

(
Hinit

)
≤ ε′ , (8)

where
Hinit =

1

|̂VM̂|

∑
i∈supp(V̂M̂)

|1〉〈1|i ,
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with |̂VM̂| ≤ p(N) the number of qubits in register V̂M̂.
Observe that the operator Hinit is positive semidefinite, has smallest eigenvalue 0, and has

spectral gap of at least 1/p(N). Furthermore, the kernel of Hinit is spanned by states of the form
|θ〉PR where the register V̂M̂ is in the all zeroes state. Using Lemma 2.1, we conclude that |ψ0〉 is
δ-close to such a state |θ〉PR for δ = O(p(N)

√
ε). This concludes the proof.

�

4.3 Output check

As for the Input check, assume that the provers share a valid history state of the protocol circuit
CKT(G,N). The Output Check subprotocol is designed to check that the state held by the provers
is a history state of an accepting computation. In other words, the Output Check subprotocol
enforces that the output qubit of the last time step of the history state is in the state |1〉.

Subprotocol name: Output Check(n):

1. Measure the clock register C in the computational basis. Let t ∈ {0, . . . , p(N)} be the
outcome. If t , p(N), accept.

2. Let u denote the index of the decision bit in V̂.

3. Set qV = Zu. If aV = 0, reject. Otherwise, accept.

Figure 7: Output Check

Lemma 4.8. The following hold for the Output check subprotocol described in Figure 7:

1. (Completeness) For all γ > 0 there exists an honest Input Check strategy that passes the Output
Check subprotocol with probability

1 −
1 − ω∗(GN) + γ

p(N) + 1
.

2. (Soundness) Any honest Input Check strategy passes the Output Check subprotocol with probability
at most

1 −
1 − ω∗(GN)

p(N) + 1
.

Proof. We show the Completeness part. Consider a normal form k-prover strategy T for GN that
achieves the value at least ω∗(GN) − γ (there isn’t necessarily a strategy that achieves the optimal
value ω∗(GN)). The strategy T is comprised of a shared state |ϕ〉 on register ĈP̂ and reflections {Ai j},
{Qi j}, and {Pi} as described in Section 3.3.

Consider the following Honest Input Check strategy S: the shared state |ψ〉 is the history state
of the protocol circuit CKT(G,N) where the provers’ reflections {Ai j}, {Qi j}, and {Pi} are given by the
strategy T . Since the strategy T succeeds in GN with probability at least ω∗(GN) − γ, strategy S
succeeds in Output Checkwith the claimed probability.
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We now show soundness. Let S be an Honest Input Check strategy that passes the Output
Check subprotocol with probability at least 1 − ε. Let |ψ〉CPR denote the shared state. Since the
strategy is an Honest Input Check strategy, the shared state is a history state of the protocol circuit C

|ψ〉CPR =
1√

p(N) + 1

p(N)∑
t=0

|t〉C ⊗ |ψt〉PR ,

with the initial snapshot state |ψ0〉 representing the state of the verifier and provers at the start of an
execution of the game GN. Let ρ = |ψ〉〈ψ|. Let Π = |N〉〈N|C. We have that Trρ(Π) = 1/(p(N) + 1). Let

ρ f =
ΠσΠ

Trρ(Π)
= |ψN〉〈ψN |.

The probability that Output Check rejects when the shared state ρ f is at most ε′ = (p(N) + 1)ε.
Note that |ψN〉 final snapshot of a history state of the protocol circuit CKT(G,N), which specifies

a reflection strategy T for the game GN. Therefore the rejection probability of Output Check when
the shared state is ρ f is Tr

(
|0〉〈0|out |ψN〉〈ψN |

)
, which is at least 1 − ω∗(GN). This concludes the proof

of the lemma. �

4.4 Analysis ofV]
H,n

The following lemma states the important properties of the verifierV]
H,n specified in Figure 3.

Lemma 4.9. Let G be a GTM for a family of k-prover ENL games {Gn}, and letV]
H,n be the verifier described

in Figure 3. Let n ≥ 1 be an integer, N = 2n, S = p(N), and G]H,n be the S-qubit Honest Pauli Prover game

whose verifier is specified byV]
H,n. Then the following hold:

1. (Completeness) For all γ > 0 there exists an honest Pauli strategy S that has value

ω∗
S

(G]H,n) = 1 −
1 − ω∗(GN) + γ

p(N) + 1
.

2. (Soundness) There exists universal constants α ≥ 1, β > 0 such that for all Honest Pauli strategies S,

ω∗
S

(G]H,n) ≤ 1 −
(

1 − ω∗(GN)
β p(N)

)α
.

Proof. Completeness follows from combining the completeness statements of the Gate Check, Input
Check, and Output Check.

We prove soundness. Let S be an Honest Pauli Prover strategy that succeeds with probability
1 − ε in the game G]H,n. Then it succeeds with probability at least 1 − 3ε in each of the Gate Check,
Input Check, and Output Check subprotocols.

Let δ = O(p(N)3/2√ε). By Lemma 4.5, there exists an honest Gate Check strategy S1 that is
δ-close to S. Using Lemma 3.8, this implies that S1 succeeds in the Input and Output Check
subprotocols with probability at least 1 − 3δ.

Let δ′ = O(p(N)
√
δ). Applying Lemma 4.7, there exists an honest Input Check strategy S2 that

is δ′-close to S1. The strategy S2 succeeds in the Output Check subprotocol with probability at
least 1 − 3δ′ (using Lemma 3.8 again).
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Finally, applying Lemma 4.8, the success probability of S2 in Output Check is at most

1 −
1 − ω∗(GN)

p(N) + 1
.

This implies that there exist universal constants β, µ, ν > 0 we have

ω∗
S2

(G]H,n) = 1 − p(N)µεν ≤ 1 −
1 − ω∗(GN)
β p(N)

,

which implies

ω∗
S

(G]H,n) = 1 − ε ≤ 1 −
(

1 − ω∗(GN)
β p(N)

)α
,

for some universal constant α. This concludes the proof.
�

We point out some properties of the games specified byV]
H,n that will be relevant for the next

stage of the argument. In all the subprotocols above, the honest Pauli prover PV gets a question
that specifies up to three commuting Pauli observables. (Furthermore, the honest Pauli prover’s
question can be embedded in what we call an MS-compatible triple; see Section 5.2.) All other provers
PPi get questions from the set {?} ∪ {Qi j} ∪ {Ai j} ∪ {⊥}, where the ⊥ symbol is used to denote the
absence of a question. Furthermore, note that at any one time, at most one PPi prover gets sent a
message that is not ⊥.

5 Simulating Honest Pauli Prover games

Let GH be any (k + 1)-prover S-qubit Honest Pauli Prover game (Definition 4.1) such that k ≥ 7. In
this section we introduce a k-prover Simulated Pauli Prover gameGS that uses 7 out of the k provers to
simulate the Pauli prover inGH (provided thatGH satisfies some mild conditions) using a technique
similar to the “code-check” test in [Ji17, NV18].

In Section 5.1 we introduce a class of error-correcting codes that will be used in the game. In
Section 5.2 we present a multi-qubit test for constant-weight Pauli observables. In Section 5.3 we
define the simulated Pauli Prover game and state its properties.

5.1 Stabilizer codes

We consider weakly self-dual Calderbank-Shor-Steane (CSS) codes [CS96, Ste96b]. Let C be a classical
[m, d] linear error-correcting code over F2: C is specified by a generator matrix H ∈ Fm×d

2 and a
parity check matrix K ∈ F(m−d)×d

2 such that C = Im(H) = ker(K). We say that C is weakly self-dual if
the dual code C⊥, with generator matrix KT, is such that C ⊆ C⊥; equivalently, HTH = 0. To any
such code C we associate a subspace C of (C2)⊗m that is the simultaneous +1 eigenspace of a set of
stabilizers {SW, j}W∈{X,Z}, j∈{1,...,k′} such that SW, j is a tensor product of Pauli σW observables over F2 in
the locations indicated by the j-th column of the generator matrix H, i.e.

SW, j = σW(H1 j) ⊗ σW(H2 j) ⊗ · · · ⊗ σW(Hmj),

where Hi j is the (i, j)-th entry of H. The condition that HTH = 0 implies that all the SW, j commute,
so that C is well-defined.
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The 7-qubit Steane code. We make use of the Steane code, a CSS code that encodes 1 qubit into 7
physical qubits [Ste96a]. In Figure 8, we list the stabilizer generators of the code as well as several
logical X and logical Z operators (that are equal up to multiplication by a stabilizer). The logical
generators satisfy the useful property that for every i ∈ {1, . . . , 7}, there exists a logical X (resp.
logical Z) operator that acts trivially on the i-th qubit.

Stabilizer Generators

S1 X X X X I I I
S2 X X I I X X I
S3 X I X I X I X
S4 Z Z Z Z I I I
S5 Z Z I I Z Z I
S6 Z I Z I Z I Z

Logical Operators

X I I I I X X X
X X I I I I X
X I X I I X I

Z I I I I Z Z Z
Z Z I I I I Z
Z I Z I I Z I

Figure 8: The 7-qubit Steane code.

The next lemma establishes some basic properties of the Steane code (shared by any CSS code
that can correct single-qubit errors).

Lemma 5.1. Consider the 7-qubit Steane code (Figure 8). Let E1, . . . ,E7,F1,F
′

1 be qubit registers. Let
E = E1 · · ·E7. Let R be a register of arbitrary dimension.

1. There exists a unitary U acting on registers E2 · · ·E7F1F′1X and a state |τ〉 such that for all states
|ψ〉E1···E7R such that TrR(|ψ〉〈ψ|) is in the code space,

U
(
|ψ〉E1···E7R ⊗ |0〉F1F′1X

)
= |ψ〉F1E2···E7R ⊗ |τ〉E1F′1X .

Moreover, the reduced density matrix of |τ〉 on E1 is the maximally mixed state on one qubit.

2. For W ∈ {X,Z} let LW denote a logical W operator that does not act on E1. For all states |ψ〉 on
E1 · · ·E7 that lie in the code space,

U
(
LW |ψ〉E1···E7

⊗ |0〉F1F′1X

)
= LWU

(
|ψ〉E1···E7

⊗ |0〉F1F′1X

)
=

(
LW |ψ〉F1E2···E7R

)
⊗ |τ〉E1F′1X .

Proof. We first establish item 1. Since the Steane code is a quantum error-correcting code that
can correct any one qubit error, there exists a unitary U that acts on registers E2 · · ·E7 and ancilla
registers F1F′1X and can correct an erasure error in the register E1. Since the 7-qubit code can correct
any single qubit erasure, the resulting state on registers F1E2 · · ·E7 is the original state TrR(|ψ〉〈ψ|).
Formally, let |0〉 and |1〉 denote the 7-qubit encodings of |0〉 and |1〉, respectively. Since the code
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corrects any single-qubit erasure, for any b ∈ {0, 1}, applying U to the state |b〉E ⊗ |0〉F1F′1X yields a
pure state |θ〉EF1F′1X such that

TrE1F′1X (|θ〉〈θ|) = |b〉〈b| .

Since |θ〉 is pure, after rearranging registers we obtain that

U|b〉E ⊗ |0〉F1F′1X = |θ〉F1E2···E7E1F′1X = |b〉F1E2···E7
⊗ |τb〉E1F′1X . (9)

Now we establish two claims: (1) TrF′1X(|τb〉〈τb|) is the maximally mixed state on one qubit, and
(2) |τ0〉 = |τ1〉. The first claim follows from the fact that the reduced density matrix on one qubit
of any code state of a CSS code that corrects single-qubit errors is maximally mixed. The second
claim follows from the fact that if |τ0〉 , |τ1〉, then U would fail to correct an erasure error on the
superposition 1

√
2
(|0〉 + |1〉). Now write

|ψ〉ER = α0|0〉E ⊗ |ψ0〉R + α1|1〉E ⊗ |ψ1〉R .

Applying (9),

U|ψ〉ER ⊗ |0〉F1F′1X =
∑

b

αb|b〉F1E2···E7
⊗ |ψb〉R ⊗ |τ〉E1F′1X = |ψ〉F1E2···E7R ⊗ |τ〉E1F′1X .

This establishes item 1. of the lemma.
To show item 2., we note that applying a logical operator LW to a code state |ψ〉, erasing the

first qubit, and then performing error correction, yields the state LW |ψ〉, except on a different set of
registers. �

5.2 Multi-qubit entanglement tests

In this subsection we present the S-qubit EPR test, which is an elementary test that aims to verify
that two provers A and B share S EPR pairs, on which they measure several commuting single-
or two-qubit Pauli operators when asked to do so. This test uses as a primitive the Magic Square
game, which is a two-prover nonlocal game that is a self-test for two EPR pairs. We present the
Magic Square game next.

The Magic Square game. The 3 × 3 matrix presented in Figure 9 is called the operator solution
for the Magic Square game. Each entry consists of the label for a two-qubit Pauli observable; the
observables all commute within a row or a column. The product of the observables along every
row and column is equal to I, except for the last column, which multiplies to −I.

XI IX XX
IZ ZI ZZ
XZ ZX YY


Figure 9: Operator solution for the Magic Square game

The Magic Square game is played as follows: the verifier randomly chooses one of the provers
to be prover A, and the other to be prover B. The verifier then chooses a random row r and column c
from the operator solution for the Magic Square game. Let W denote the two-qubit Pauli observable
in the intersection of r and c. The verifier then chooses random Pauli observables Wr,Wc from the
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row r and column c, respectively. The pairs (W,Wr) and (W,Wc), both formatted in lexicographic
order, are sent to prover A and prover B, respectively. For example, the verifier could select the first
column and second row, and send observables (IZ,XZ) to prover A and (IZ,ZZ) to prover B.

The provers are required to respond with two-bit answers a, b ∈ {0, 1}2, respectively. The verifier
checks that the bits in a and b that correspond to the common observable W sent to both provers are
equal.

Definition 5.2 (Honest Magic Square strategy). The honest Magic Square strategy S is such that the
shared state |ψ〉 is two EPR pairs (i.e. |ψ〉 = 1

2 (|00〉 + |11〉)⊗2), and when a prover receives a pair of labels
for commuting two-qubit Pauli observables, they measure the observables on their half of the EPR pairs and
respond with the two bit outcome.

Theorem 5.3 (Magic Square test, Theorem 5.9 in [CS17]). The Magic Square game satisfies the following
properties:

1. (Completeness) The honest Magic Square strategy succeeds in the Magic Square (MS) game with
probability 1.

2. (Soundness) For any ε ≥ 0 there is a δ = O(
√
ε) such that any strategy with success probability at

least 1 − ε in the game is δ-isometric to the honest Magic Square strategy.

The EPR test. The S-qubit EPR test is described in Figure 10. The test and its analysis are adapted
from [CRSV16]. The provers in the test are denoted prover A and prover B. Furthermore, the
provers each receive a triple of commuting two-qubit Pauli observables (W(1),W(2),W(3)). (This is
purposefully formatted as questions to the Honest Pauli Prover in Section 4.)

The EPR test consists of two subtests, which check that the provers’ measurements satisfy the
Pauli commutation and anticommutation relations, respectively. The Magic Square game is used
to test the anticommutation relations. In order for the EPR test — as well as the other protocols
presented in this section — to be sound, we need to ensure that the provers cannot distinguish
between the subtests. Thus we require a definition of a triple (W(1),W(2),W(3)) that is compatible
with the Magic Square game.

Definition 5.4. A triple of commuting two-qubit Pauli observables (W(1),W(2),W(3)) is MS-compatible if
at least two of the observables act on the same pair of qubits, and furthermore those two observables can occur
together in a row or column in Figure 9.

In the EPR test (and the other protocols in this section) we require that any question to the
provers is embedded in a uniformly random MS-compatible triple that is consistent with the
question. For example, suppose the verifier samples the question (X1,Z2,Z4) to send to prover A
where the subscripts indicate which qubits the observables are supposed to act on. This question
can be embedded in, say, the MS-compatible triple (X1I2, I1Z2, I3Z4), which is then sent to prover A.
Note that any commuting pair of two-qubit Pauli observables, where each single-qubit observable
is taken from {I,X,Z}, can be embedded in an MS-compatible triple in several ways; it does not
matter which MS-compatible triple is chosen for any particular question.
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The verifier performs each of the following with equal probability:

1. (Commutation test)

(a) Select distinct i, j ∈ {1, . . . ,S} and let W,W′ ∈ {X,Z} uniformly at random.

(b) Send the pair of single-qubit observables (Wi,W
′

j), embedded in an MS-
compatible triple to prover A.

(c) Send the two-qubit observable WiW
′

j, embedded in an MS-compatible triple
to prover B.

(d) Receive bits (a, a′, a′′) from prover A and (b, b′, b′′) from prover B. Let a, a′

denote the answer bits corresponding to Wi and W′j respectively, and let b
denote the answer bit corresponding to WiW

′

j. Accept if and only if a ⊕ a′ = b.

2. (Anticommutation test)

(a) Select distinct i, j,∈ {1, . . . ,S} and a pair of questions (q, q′) in the Magic Square
game. Note that q, q′ both consist of a pair of commuting two-qubit Pauli
observables.

(b) Send q and q′, embedded in MS-compatible triples, to prover A and prover B,
respectively.

(c) Accept if and only if the provers’ answers associated with the query (q, q′)
would be accepted in the Magic Square game.

Figure 10: S-qubit EPR test [CRSV16].

Definition 5.5 (Honest EPR strategy). An honest S-qubit EPR strategy S is a two-prover strategy
that satisfies the following conditions. In the strategy the provers share the S-qubit maximally entangled
state |Φ〉AB, where prover A has register A and prover B has register B. When sent an MS-compatible triple
(W(1),W(2),W(3)) of mutually commuting two-qubit Pauli observables, the prover returns the three bits
obtained by simultaneously measuring the three Pauli observables σW(1) , σW(2) and σW(3) on its share of |Φ〉.

The following is a consequence of the results in [CRSV16].

Theorem 5.6. The S-qubit EPR test (Figure 10) has the following guarantees.

• (Complexity) Questions in the test are O(log S)-bit long. Answers are O(1)-bit long.

• (Completeness) Any honest S-qubit EPR strategy succeeds with probability 1 in the test.

• (Soundness) For any ε ≥ 0 there is a δ = poly(S; ε) such that any strategy that succeeds with
probability at least 1 − ε in the test is δ-isometric to a honest S-qubit EPR strategy.

5.3 Simulated Pauli Prover game

Let VH be a verifier for a (k + 1)-prover S-qubit Honest Pauli Prover game GH satisfying some
special properties that will be specified later (these properties are satisfied by the verifier VH,n
introduced in Section 4). Assume k ≥ 7.
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We define a k-prover ENL game GS that simulates GH. Label the provers in GS as P1, . . . ,Pk. Of
the k provers, the first seven, P1, . . . ,P7, are chosen to be the “simulated Pauli provers.” The idea is
that the provers P1, . . . ,P7 are supposed to share the state of PV where each qubit is encoded using
the 7-qubit Steane code, and prover Pi holds the i-th share of each encoded qubit. When in game
GH, PV is asked to measure a certain Pauli observable, in game GS the simulated Pauli provers are
asked to implement a logical observable on their share of the encoding. In addition, the prover is
sent its own question, as in GH, and asked to provide an answer. Since, in contrast to PV, none
of the provers {Pi} in GS are trusted, the verifier in GS executes a sub-test (called Stabilizer Check)
to ensure that the simulated Pauli provers do indeed share an encoding of some state (on some
sub-registers), and measure a Pauli observable when asked to do so.

The game GS is described in Figure 11. In the game questions are of the form (W, g) where W is
called an “EPR question” (i.e. is an MS-compatible triple that could arise in the EPR test) and g is a
“GH question” (i.e. a question that is asked in the game GH). The provers reply with answers (A, a)
where A is the answer to the EPR question and a is the answer to g. We use qi to denote the i-th
prover’s question in GS.

Let gP be a GH question. For an answer A = (A(1),A(2),A(3)) to an (MS-compatible) EPR question
W that contains gP (which we denote by gP ⊆W), let A|gP

denote the projection of A’s three bits to
those that correspond to gP. If gP = ⊥, then A|gP

is defined to be 0.
The description of GS in Figure 11 involves notions of “composite query” and “composite

answer” that are defined as follows. Let H be the generator matrix corresponding to the Steane
code described in Figure 8.

Definition 5.7 (Composite queries and answers). Let W be an S-qubit Pauli observable.

1. The composite query associated with W, denoted W, is obtained by sending each prover forming the
composite prover the question W.

2. Given answers (Ai)i∈{1,...,k}\{t} from the 6 provers forming the composite prover, the composite answer A
is obtained by selecting a uniformly random vector v in the column span of H such that vt = 1, and
computing the sum A =

∑
i∈{1,...,7}\{t} viAi.
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Let GH denote a (k + 1)-prover Honest Pauli Prover game such that k ≥ 7.
The first 7 of the k provers are designated the “simulated Pauli prover”.
The verifier in GS perform one of the following tests, each chosen with equal probability:

1. (Stabilizer Check)

(a) Pick t ∈ {1, . . . , 7} uniformly at random. Prover Pt is designated the “special
prover”. The other provers {P1, . . . ,P7} \ {Pt} are jointly referred to as the
“composite prover”. A prover is not told whether it is the special prover, or a
composite prover.

(b) Generate a query (W,W′) in the S-qubit EPR test, and for i ∈ {1, . . . , k} inde-
pendently sample a question gi according to the marginal distribution of the
i-th prover’s question in GH.

(c) Set qt = (W, gt) and qi = (W′, gi) for each i ∈ {1, . . . , 7} \ {t}. For i > 7, set
qi = (W′′, gi) where W′′ is a random EPR question.

(d) Let (Ai, ai) denote the i-th prover’s answer. Accept if and only if (At,A) would
be accepted in the EPR test, where A is the composite answer associated with
{Ai}i,t. (Answers to GH questions are ignored.)

2. (GH Simulation)

(a) Generate a query Q = (gP, g1, . . . , gk) as in GH. Let i∗ ∈ {1, . . . , k} denote the
index such that gi∗ , ⊥ if it exists. If it doesn’t, set i∗ = 1.

(b) Let W be a uniformly random MS-compatible triple that contains gP.

(c) For all i ∈ {1, . . . , k}, if gi = ⊥ set qi = (W, g̃i), where g̃i is uniformly random
question sampled from the marginal distribution of the i-th prover’s question
in GH. If gi , ⊥ set qi = (Wi, gi), where Wi is a uniformly random EPR
question.

(d) Let v ∈ {0, 1}7 be such that σX(v) and σZ(v) are logical operators for the 7-qubit
code, and moreover vi∗ = 0.

(e) Let (Ai, ai) denote the i-th prover’s answer. Let A =
∑

i∈{1,...,7} viAi. Accept if
and only if (A|gP

, a1, . . . , ak) would be accepted in GH.

Figure 11: k-prover ENL game GS.

For a label W ∈ {X,Z}, an integer i ∈ [S], and bit A ∈ {0, 1}, let σA
Wi

denote the projector
1
2 (1 + (−1)AσWi

). We first analyze the Stabilizer Check of the game GS. We show that succeeding in
the Stabilizer Check with high probability enforces that the provers hold a state that is encoded
using the Steane code, and furthermore they apply honest Pauli measurements. This type of rigidity
statement is common to the works of [Ji16, Ji17, NV17a, NV18].

Definition 5.8 (Honest Stabilizer Check strategy). A strategy S = (|ψ〉, {Mi}) is an honest Stabilizer
Check strategy (implicitly, for code C) if the following holds.

• The state |ψ〉 is on registers C,P1, . . . ,Pk, and a reference register R, where for each i ∈ {1, . . . , k},
Pi = EiAi with Ei a register of S qubits labeled Ei1, . . . ,EiS.
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• For j ∈ {1, . . . ,S}, the reduced density matrix ρE1 j···E7 j
of |ψ〉 is in the code space of C. We refer to Ei as

the S “code qubits” of prover Pi.

• Let {Mi((W, g), (A, a))} denote the i-th prover’s POVM for the question (W, g), where W = (W(1),W(2),W(3))
is an EPR question and g is a GH question. Then

E
g

∑
a

Mi((W, g), (A, a)) = σA
W , (10)

where the expectation is taken with respect to the marginal distribution of questions g to the i-th prover
in GH and σA

W = σ
A1

W(1)σ
A2

W(2)σ
A3

W(3) is the product of the three commuting projectors corresponding to the
Pauli observables W acting on Ei.

Lemma 5.9 (Rigidity for Stabilizer Check). The following properties hold for the Stabilizer Check (item 1.
in Figure 11).

1. (Completeness) An honest Stabilizer Check strategy S passes the Stabilizer Check with probability 1.

2. (Soundness) For any ε ≥ 0 there is a δ = poly(S; ε) such that any strategy S that pass the Stabilizer
Check with probability at least 1 − ε is δ-isometric to an honest Stabilizer Check strategy.

Proof. We first show completeness. Let S be an honest Stabilizer Check strategy. Suppose without
loss of generality that prover 1 is selected to be the special prover, and provers {2, . . . , 7} are chosen
to form the composite prover. In the Stabilizer Check, the EPR test is executed between the special
prover and the composite prover; thus S can then be viewed as a two-prover strategy in the EPR
test, where the special prover measures the Pauli observables corresponding to its EPR question on
its share of the shared state |ψ〉, generating a triple of bits A ∈ {0, 1}3 as its answer. The composite
prover performs the Pauli measurements of provers P2, . . . ,P7 on registers E2, . . . ,E7, generating 6
strings A2, . . . ,A7 ∈ {0, 1}

3. Assume without loss of generality that the composite answer is the sum
A = A2 + A3 + A4 modulo 2 (this corresponds to selecting the vector v = 1111000 in the column
span of the generator matrix H corresponding to the Steane code).

It is straightforward to verify that this two-prover strategy passes the EPR test with probability
1. Suppose first that the commutation subtest of the EPR test is chosen by the verifier, and let
i, j,Wi,W

′

j be as in Figure 10. Then the special prover measures σWi
(i) and σW′j

( j) on registers E1i and

E1 j of |ψ〉 to obtain answer bits a and a′, respectively. The composite prover independently measures
σWi

(i) ⊗ σW′j
( j) on registers E2iE2 j, E3iE3 j, and E4iE4 j to obtain answer bits a2, a3, a4 which then form

the composite answer a = a2 + a3 + a4. Since Pauli observables σWi
(i)⊗4 acting on E1iE2iE3iE4i and

σW′j
( j)⊗4 acting on E1 jE2 jE3 jE4 j are stabilizers of the Steane code, this implies that a + a′ + a = 0,

which is the condition checked in the EPR test. A similar argument holds for the anticommutation
test.

Next we show soundness of the Stabilizer Check. Fix a t ∈ {1, . . . , 7}, and condition on prover Pt
being selected as the special prover. The provers’ strategy S is accepted in the Stabilizer Check
with probability at least 1 − 7ε. From Swe construct a strategy S′t for the EPR test as follows. Let
(W,W′) be the query received in the EPR test. When prover A receives question W, it generates a
uniformly random G question gt for the t-th prover, and plays according to the special prover Pt’s
strategy on question (W, gt). For prover B we combine the strategies of the six provers that make
the composite prover (including the post-processing involved in computing the composite answer
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A′). Prover B simulates the measurements of the six provers on (W′, gi) where gi is a random GH
question for the i-th prover, for i = {1, . . . , 7} \ {t}.

The resulting two-prover strategy succeeds in the EPR test with success probability 1 − 7ε.
Applying the soundness analysis of the EPR test given in Theorem 5.6 it follows that S′t is poly(S; ε)-
isometric to an honest S-qubit EPR strategy. In particular, there is an isometry Vt for the special
prover, such that the special prover’s measurement operator associated with the answer At to the
EPR question W, which is

E
gt

∑
at

Mt((W, gt), (At, at)) ,

is poly(S; ε)-close to the honest Pauli measurement operator σA
W, under Vt, on the S qubits identified

by the isometry.
Applying this analysis for each t ∈ {1, . . . , 7}, we obtain an isometry Vt for each prover under

which their (marginalized) measurement operators are poly(S; ε)-close to the corresponding honest
Pauli measurement operator. Let Ei j denote the register that holds the j-th qubit of the i-th prover
under the isometry.

It remains to show that the shared state |ψ〉 (after application of the isometries {Vt}) is poly(S; ε)-
close to the codespace of the Steane code. Let Π denote the projector onto the 7 qubit codespace of
the Steane code. Observe that

Π = E
h

h , (11)

where the expectation is over a uniformly random stabilizer element h of the Steane code. Using
that the stabilizer elements of the Steane code (or any CSS code) are Hermitian and form a group,
it is immediate to verify that the expectation in Equation (11) define a projection; by definition
the codespace is the eigenvalue-1 eigenspace of the projection. For j ∈ {1, . . . ,S} let Π j (resp. h j)
denote projector onto the codespace (resp. the stabilizer h) of the Steane code that acts on registers
E1 j · · ·E7 j.

Let |ψ′〉 =
⊗

t Vt|ψ〉. Succeeding with probability at least 1 − ε in the Stabilizer Check test
implies that for all j ∈ {1, . . . ,S}, we have that |ψ′〉 is approximately stabilized by the stabilizers of the
Steane code:

E
h j

∥∥∥h j|ψ
′
〉 − |ψ′〉

∥∥∥ ≤ poly(S; ε) ,

from which it follows that∥∥∥Π j|ψ
′
〉 − |ψ′〉

∥∥∥ =
∥∥∥∥E

h j

h j|ψ
′
〉 − |ψ′〉

∥∥∥∥ ≤ poly(S; ε) .

By a hybrid argument, this implies that∥∥∥∥⊗
j

Π j|ψ
′
〉 − |ψ′〉

∥∥∥∥ ≤ poly(S; ε) ,

which completes the proof. �

Theorem 5.10. Let k ≥ 7 be an integer. Let GH be a (k + 1)-prover S-qubit Honest Pauli Prover game that
satisfies the following properties:

1. The distribution over queries (gP, g1, . . . , gk) is such that for any (gP, g1, . . . , gk) in the support, there
is at most one i∗ ∈ {1, . . . , k} such that gi∗ , ⊥.
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2. For any query (gP, g1, . . . , gk) the accept or reject decision of GH does not depend on the answer of
prover PPi, for all i such that gi = ⊥.

3. The distribution of gP is supported on sets of Pauli observables that can be embedded in MS-compatible
triples (see Definition 5.4).

Let GS be the Simulated Pauli Prover game described in Figure 11. Then the following hold.

• (Completeness) For all Honest Pauli Prover strategies SH in GH there exists a k-prover strategy S in
GS that succeeds with probability ω∗

SH
(GH).

• (Soundness) For any k-prover honest Stabilizer Check strategy that succeeds in GS with probability at
least 1 − ε, there is a (k + 1)-prover Honest Pauli prover strategy that is accepted with probability at
least 1 − 2ε in GH.

Proof. The completeness part of the theorem is straightforward.
We show soundness. Fix an honest Stabilizer Check strategy S = (|ψ〉, {Mi}) for the k provers

in GS that has success probability at least 1 − ε, for some ε ≥ 0. In the game GH, the provers are
labeled PV,PP1, . . . ,PPk. The honest Pauli prover is PV. Using the strategy S, we define an Honest
Pauli strategy SH = (|ψ〉H, {MH

i }) for the provers in GH as follows:

• ρH is on registers C,PH
V ,P

H
1 , . . . ,P

H
k , and R, where the honest Pauli prover PV gets PH

V , and
prover PPi gets PH

i for i ∈ {1, . . . , k}. The register PH
V is isomorphic to the union of E1, . . . ,E7

(i.e. it is 7S qubits). The register PH
i is isomorphic to FiAi. The reduced density ρH of the state

|ψ〉H on all registers except R is equal to the state ρ ⊗ σ, where ρ is the reduced density of |ψ〉
on all registers but R, and σ is the maximally mixed state on an ancilla register F = F1 · · ·F7
that is isomorphic to E = E1 · · ·E7. The registers have been relabeled according to the scheme
described in Figure 12.

Register in ρ ⊗ σ Register in ρH

C C
E1 · · ·E7 PH

V
AiFi PH

i

Figure 12: Relabeling the registers of ρ ⊗ σ to get ρH.

In other words, the honest Pauli prover is given the S code qubits held by each of the 7 provers
that constitute the simulated Pauli prover in GS. The prover PPi in GH gets all the other qubits
of prover Pi in GS, as well as the maximally mixed state in place of the S qubits.

• On reception of a question gP in GH (which is a collection of up to three commuting Pauli
observables), the honest Pauli prover PV samples a random EPR question W = (W(1),W(2),W(3))
that contains gP. The prover PV measures the three logical observables W(1),W(2),W(3) on
the 7S-qubit encoded state to obtain (A( j)

1 , . . . ,A
( j)
7 ) for j = 1, 2, 3. Let (A(1),A(2),A(3)) be the

decoded measurement outcomes. For example, PV could apply the logical operator which
has weight only on the last 3 qubits and set A( j) = A( j)

5 + A( j)
6 + A( j)

7 . The prover PV returns A|gP
.
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• Suppose prover PPi in GH receives the question gi. If gi = ⊥, then PPi returns 0. The prover
PPi samples a random EPR question Wi that contains gP. The prover PPi performs the same
measurement that prover Pi would in game GS on question (Wi, gi). It obtains answer (Ai, ai)
and returns ai.

The following claim establishes that the answer distribution of the honest Pauli strategy SH,
when restricted to the “relevant” provers (i.e. the provers who receive questions that are not ⊥), is
essentially the same as in the strategy S.

Claim 5.11. Fix a query Q = (gP, g1, . . . , gk) in GH.

1. If for all i ∈ {1, . . . , k} it holds that gi = ⊥, then the distribution of A|gP
that is produced by strategy S

in the “GH Simulation” part of GS when query Q is sampled is the same as the distribution of aP that
is produced by prover PV in the strategy SH when it receives the question gP.

2. If there exists an i∗ ∈ {1, . . . , k} such that gi∗ , ⊥, then the distribution of (A|gP
, ai∗) that is produced by

strategy S in the “GH Simulation” part ofGS is the same as the distribution of (aP, ai∗) that is produced
by prover PV and PPi∗ in the strategy SH when they receive questions gP and gi∗ respectively.

We defer the proof of the claim to Section 5.4 and proceed with the proof of Theorem 5.10. Since
the strategy S succeeds with probability at least 1 − ε in GS, it succeeds with probability at least
1 − 2ε in the GH Simulation part of GS.

From our assumption on the game GH, for a fixed GH question Q = (gP, g1, . . . , gk) that is
sampled in the GH Simulation part ofVsim, the accept or reject decision of GH does not depend on ai
if gi = ⊥. Combined with the fact that at most one index i∗ is such that gi∗ , ⊥, Lemma 5.11 implies
that the distribution of “relevant” answers to GH are the same in the following two scenarios when
Q is fixed: the strategy SH in GH, and the strategy S in the GH Simulation part of GS.

Thus for a fixed Q, the probability that the “relevant” answers are accepted by GH are the same
in both scenarios. Since the distribution of Q is the same in both scenarios, this implies that SH

passes GH with probability at least 1 − 2ε. �

5.4 Proof of Lemma 5.11

Part 1 of the claim follows directly from the fact that S is an honest Stabilizer Check strategy, in
which the provers P1, . . . ,P7 measure the honest Pauli observables corresponding to a random EPR
question W that contains gP, which is identical to PV’s action in the strategy SH.

We now argue Part 2. For an EPR question W = (W(1),W(2),W(3)), we write σW for the product

σW(1)σW(2)σW(3) . For a three-bit vector A = (A(1),A(2),A(3)), we write σA
W for the projector

∏3
j=1

1+(−1)A( j)

2 .
This is a projector because the Pauli observables σW( j) all commute.

Assume without loss of generality that i∗ = 1, and the string v ∈ {0, 1}7 chosen by the verifier in
GS is v = 0000111. Let W be a fixed EPR question that contains gP. For j ∈ {1, 2, 3} let

LW( j) = σW( j)(v)

denote the logical operator corresponding to W( j) which is a tensor product of two logical operators
(since W( j) is the label for a two-qubit Pauli observable).

For notational clarity we write g = gi∗ and a = ai∗ . Let Ai = (A(1)
i ,A

(2)
i ,A

(3)
i ) denote the three bits

returned by prover Pi for its EPR question, and let A( j) = A( j)
5 + A( j)

6 + A( j)
7 denote the j-th bit of the

answer vector A, as computed by the verifier.
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Let Ma
g = EW1

∑
A M1((W1, g), (A, a)) denote P1’s measurement on question g, where we have

marginalized the EPR question (which was chosen independently of W) and the associated answers.
We compute the probability of the answer pair (A, a) in S when prover P1 gets the question

(W1, g) for a uniformly random EPR question W1, provers P5,P6,P7 get the EPR question W, and
each prover gets an independently chosen random GH question. Since S is an honest Stabilizer
Check strategy, the measurement operator each prover applies (when marginalizing over the
prover’s answer to its GH question) is given by (10). By our choice of v, the outcome (A, a) occurs
with probability ∑

A5+A6+A7=A

Trρ
(
Ma

g ⊗ σ
A5
W ⊗ σ

A6
W ⊗ σ

A7
W

)
(12)

= Trρ

Ma
g ⊗

3∏
j=1

1 + (−1)A( j)
LW( j)

2


 . (13)

Expanding the product, we obtain eight terms of the form

±
1
8

Trρ
(
Ma

g ⊗ LD

)
,

where LD is a product of up to three logical operators {LW( j)}. The label D indicates a collection
of up to six Pauli observables (for example, LD = LW(1)LW(2)LW(3) where each W( j) is a label for a
two-qubit Pauli observable).

Fix one of the possible labels D. Let U be the unitary given by Lemma 5.1. Since S is an honest
Stabilizer Check strategy, ρE1 j···E7 j

is in the code space for all j ∈ {1, . . . ,S}. Let F1,F
′

1 be registers
isomorphic to E1, and let X be an ancilla register that is sufficiently large. Applying part 1. of
Lemma 5.1 we get

U⊗Sρ ⊗ |0〉〈0|F1F′1X(U⊗S)† = ρF1E2···E7
⊗ |τS〉〈τS|E1F′1X , (14)

where |τS〉 is the S-fold tensor product of the state |τ〉 given by Lemma 5.1. Here, the j-th tensor
factor of U⊗S acts on registers E2 j · · ·E7 jF1 jF

′

1 jX j. Then

Trρ
(
Ma

g ⊗ LD

)
= Tr

(
(Ma

g ⊗ LD)(ρ ⊗ |0〉〈0|F1F′1X)(U⊗S)†(U⊗S)
)

= Tr
(
Ma

gU⊗S
LD(ρ ⊗ |0〉〈0|F1F′1X)(U⊗S)†

)
= Tr

(
(Ma

g ⊗ LD) U⊗S(ρ ⊗ |0〉〈0|F1F′1X)(U⊗S)†
)

= Tr
(
(Ma

g ⊗ LD)
(
ρAF1E2···E7

⊗ |τS〉〈τS|E1F′1X

))
= Tr

(
(Ma

g ⊗ LD)
(
ρAF1E2···E7

⊗ σE1

))
,

where σE1
is the maximally mixed state on E1. The second equality follows from the cyclicity of the

trace and the fact that U and Ma
g act on different registers. The third equality follows from part 2 of

Lemma 5.1. The fourth equality follows from (14). The last equality follows from the fact that the
reduced density matrix of |τS〉 on E1 is the maximally mixed state.

Thus the probability of obtaining outcome (A, a) expressed in (12) is the same as

Tr
((
ρAF1E2···E7

⊗ σE1

)(
Ma

g ⊗
∏

j

1 + (−1)A( j)
LW( j)

2

))
. (15)
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Here the operator Ma
g acts on A1E1. Observe that the state ρH = ρAE1E2···E7

⊗ σF1
and therefore (15) is

equal to

TrρH

Ma
g ⊗

∏
j

1 + (−1)A( j)
LW( j)

2


where now we treat the operator Ma

g as acting on registers A1F1. This quantity is precisely the

probability that (A, a) is obtained by provers PV and PPr in the strategy SH when given input
gP = W and gi∗ , respectively: the prover PV measures the registers E5,E6,E7 using the observables
LW(1) ,LW(2) ,LW(3) and the prover PPi∗ measures the registers Ai∗Fi∗ with the POVM {Ma

g}. This
establishes Part 2 of the claim.

6 The Compression Theorem

In this section we present the proof of our compression result, informally stated as Theorem 1.3 in
the introduction, and formally re-stated here.

Theorem 6.1 (Compression Theorem). Let k ≥ 7 be an integer, and let G be a GTM for a family of
k-prover ENL games {Gn}. Let p(n) denote the size of CKT(G,n), the n-th protocol circuit specified by G.
There exists a family of k-prover ENL games {G]n} such that the following holds, for all integer n:

1. The verifier of G]n, denoted byV]
n, is uniformly generated from (1n,G).

2. Each prover’s answer in G]n is 4 bits long.

3. There are universal constants α ≥ 1, β > 0 such that for N = 2n,

1 −
1 − ω∗(GN)

p(N) + 1
≤ ω∗(G]n) ≤ 1 −

(
1 − ω∗(GN)
β p(N)

)α
. (16)

4. There exists universal constants µ ≥ 1, ν > 0,C > 0 such that any strategy S for G]n that satisfies
ω∗
S

(G]n) ≥ 1 − ε for some ε ≥ 0 requires an entangled state such that the local dimension of registers
associated with at least 7 of the provers is at least (1 − C p(N)µ εν)2p(N).

To make the dependence of the games {G]n} on the GTM G more explicit, in subsequent sections
we use the notationG]G,n andV]

G,n to denote the game and verifier associated with G in Theorem 6.1.

Proof. The proof combines the results of the Section 4 and Section 5. Let S = p(N) and G]H,n the
S-qubit (k + 1)-prover Honest Pauli Prover game obtained from G as described in Figure 3. Observe
that G]H,n satisfies the properties required by Theorem 5.10. Let G]n denote the S-qubit Simulated

Pauli Prover game obtained from G]H,n as described in Figure 11. Let V]
H,n and V]

n denote the

verifiers of G]H,n and G]n, respectively. The verifiersV]
H,n andV]

n depend on the GTM G, but we
leave the dependence implicit.

By inspecting each of the subprotocols of the Honest Pauli Prover game presented in Section 4,
it is not hard to verify that the family of verifiers

{
V
]
H,n

}
for the games

{
G
]
H,n

}
is uniformly generated

from (1n,G). Inspecting the protocols in Section 5, it follows that the family of verifiers
{
V
]
n

}
for
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the games
{
G
]
n

}
is uniformly generated from (1n,G) as well. This establishes the first item of the

theorem.
The second item follows since answers in G]n consist of 3 bits, to answer the EPR question, and 1

bit, to answer the G]H question.
We show the third item. The completeness statements of Lemma 4.9 and Theorem 5.10 imply

that for any γ > 0 there exists a strategy S inG]n that succeeds with probability at least 1− 1−ω∗(GN)+γ
p(N)+1 .

Using that ω∗(G]n) is defined as a supremum over strategies, taking the limit γ→ 0 shows the lower
bound in (16).

For the upper bound, consider a k-prover strategy S for G]n that succeeds with probability
1 − ε, for some ε ≥ 0. Then S passes the Stabilizer Check subroutine of G]n (see Figure 11) with
probability at least 1 − 2ε. By Lemma 5.9, S is poly(S; ε)-isometric to an honest Stabilizer Check
strategy S′. Applying Lemma 3.8, it follows that the strategy S′ succeeds in G]n with probability at
least 1 − poly(S; ε).

Observe that G]H,n is a Honest Pauli Prover game that satisfies the properties required for the

application of Theorem 5.10, and that by definition G]n is the simulated game associated with G]H,n.
It follows from the soundness part of the theorem that there exists a (k + 1)-prover Honest Pauli
strategy S′′ such that

ω∗
S
′′(G]H,n) ≥ 1 − poly(S; ε) . (17)

Moreover, using that S′′ is a Honest Pauli strategy, from Lemma 4.9 we get

ω∗
S
′′(G]H,n) ≤ 1 −

(
1 − ω∗(GN)
β′ p(N)

)α′
, (18)

for universal constants α′ ≥ 1, β′ > 0. Combining (17) and (18), since ε = 1 −ω∗(G]n) and S = p(N), it
follows that

ω∗(G]n) ≤ 1 −
(

1 − ω∗(GN)
β p(N)

)α
,

for some universal constants α > 1, β > 0.
Finally we show the fourth item in the theorem.As shown in the course of the proof of the

third item, any strategy S for G]n that is accepted with probability at least 1 − ε, for some ε ≥ 0, is
δ-isometric to an honest Stabilizer Check strategy S′, for some δ = poly(S; ε). By definition the
provers in an honest Stabilizer Check strategy share a state |ψ〉 such that for any i ∈ {1, . . . ,S} the
reduced density of |ψ〉 on registers Ei1, . . . ,Ei7, held by provers P1, . . . ,P7 respectively, is a 7-qubit
state supported on the codespace. Applying item 1. from Lemma 5.1 independently to each of
the S reduced densities, it follows that for any t ∈ {1, . . . , 7} the reduced density of |ψ〉 on register
Et = E1t . . .ESt is the totally mixed state on S qubits. Using the definition of δ-isometric strategies, it
follows that for every t ∈ {1, . . . , 7} there exists an isometry Vt mapping register Et to registers AA′,
and an isometry V′t mapping registers {E j} j,t to registers BB′, such that

Vt ⊗ V′t |ψ〉E1···E7R ≈δ |Φ〉AB ⊗ |ψ
′
〉A′B′R ,

where |Φ〉AB is an S-qubit maximally entangled state between A and B, and the state |ψ′〉 is arbitrary.
Here, the notation ≈δ indicates closeness in trace distance. Using that for any two pure states |φ〉, |θ〉
it holds that 1 −

∥∥∥|φ〉〈φ| − |θ〉〈θ|∥∥∥1 ≤ |〈φ|θ〉|
2, we obtain∣∣∣∣ (〈Φ|AB ⊗ 〈ψ

′
|A′B′R

) (
Vt ⊗ V′t |ψ〉P1···P7R

) ∣∣∣∣2 ≥ 1 − δ . (19)
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If |θ〉AA′BB′R is an arbitrary pure state with Schmidt rank at most r along the cut that separates the
registers AA′ and BB′R, then using that all Schmidt coefficients of |Φ〉AB ⊗ |ψ

′
〉A′B′R along the same

cut are at most 2−S/2 it follows that∣∣∣∣(〈Φ|AB ⊗ 〈ψ
′
|A′B′R

) (
|θ〉AA′BB′R

)∣∣∣∣2 ≤ r2−S . (20)

Inequalities (19) and (20) imply that the Schmidt rank of Vt ⊗V′t |ψ〉P1···P7R between prover t and the

other provers is at least (1− δ)2p(N). Since the isometries Vt and V′t cannot increase the Schmidt rank
between prover t and the other provers as well as the reference system R, the same lower bound
holds for the Schmidt rank of |ψ〉 between register Pt and {P j} j,tR. Finally, since this lower bound
holds for all t = 1, . . . , 7, this concludes the proof of item 4.

�

7 Recursive compression of quantum interactive proofs

In this section we show how to apply the compression theorem, Theorem 6.1 in Section 6, recursively
to prove Theorem 1.1 and Theorem 1.2 stated in the introduction. Before doing so we introduce
several definitions.

A function t : N→ N is time-constructible if there exists an integer m ≥ 0 and a deterministic
Turing machine T such that for all n ≥ m, the Turing machine halts on input 1n after exactly t(n)
steps. Examples of time-constructible functions include n,n2, 2n, 22n

, and so on. Recall the iterated
exponential function ΛR(n), defined inductively by Λ0(n) = n for all integer n ≥ 0, and for integer
R ≥ 0, ΛR+1(n) = 2ΛR(n) for all integer n ≥ 0. We call the parameter R the “height” of ΛR(n).

Definition 7.1. A time-constructible function t(n) is hyper-exponential if there exists a function R(n)
such that t(n) = ΛR(n)(n).

Note that with this definition, any hyper-exponential function t satisfies t(n) ≥ n for all n ≥ 0.

Definition 7.2. Let t : N→ N be a time-constructible function. The language L[t] consists of all pairs
(1n,M) such that M is a nondeterministic Turing machine that halts on input 0 within t(n) steps.

For any time-constructible t, the language L[t] is complete for NTIME[t] under polynomial-time
Karp reductions. The following result from [NV17b] will be used as the base case for our construction.
It shows that for t(n) = 2n languages in L[t] can be decided by a polynomial-size verifier in a
two-prover nonlocal game.

Theorem 7.3 (The Natarajan-Vidick verifier [NV17b]). There is a universal constant δ > 0 and a
family of verifiers {VNV(M,n)} that is uniformly generated from (1n,M) such that for any integer n and
nondeterministic Turing machine M the following hold. The game GNV(M,n) associated withVNV(M,n) is
a two-prover nonlocal game such that ω∗(GNV(M,n)) = 1 if (1n,M) ∈ L[2n] and ω∗(GNV(M,n)) ≤ 1 − δ
otherwise.

7.1 The main recursive compression result

The main result we prove in this section is the following.

Proposition 7.4. Let t :N→N be a hyper-exponential function. Let T be a deterministic Turing machine
that halts in exactly t(n) steps on input 1n. Let M be a nondeterministic Turing machine. There exists a
family of 7-prover ENL games

{
Gn,M,T

}
that is uniformly generated from (1n,M,T) and such that
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1. The answer length of the provers is O(1) bits.

2. There exists universal constants c,C > 0 such that for all integer n,

ω∗(Gn,M,T) = 1 if (1n,M) ∈ L[2t]

ω∗(Gn,M,T) ≤ 1 − Ct(n)−c if (1n,M) < L[2t].

Before proving Proposition 7.4 we show that it implies Theorem 1.1, which we reformulate for
convenience.

Theorem 7.5. There exists universal constants c′,C′ > 0 such that for any hyper-exponential function
t :N→N,

NTIME[2t(n)] ⊆MIP∗
1,1−C′t−c′ (15, 1) .

Proof. Let T be a deterministic Turing machine that halts in exactly t(n) steps on input 1n. Fix an
instance (1n,M) of L[2t]. Applying Proposition 7.4 gives a 7-prover game Gn,M,T of size poly(n)
such that ω∗(Gn,M,T) = 1 if (1n,M) ∈ L[2t], and otherwise ω∗(Gn,M,T) ≤ 1−Ct(n)−c for some universal
constants c,C > 0.

To convert the game to an MIP∗ protocol, i.e. remove the provers’ initial quantum message
in the ENL game, we use the compression result of [Ji17] as a black box. This result provides an
efficient method to transform any ENL game G involving k provers into a nonlocal game G′ of size
(as measured by the verifier circuit) poly(|G|), involving k + 8 provers, with the following properties.
If ω∗(G) = 1, then ω∗(G′) = 1. Otherwise,

ω∗(G′) ≤ 1 −
(

1 − ω∗(G)
poly(n)

)d

≤ 1 − C′ t(n)−c′ ,

for some universal constants d, c′,C′ > 0.Here the second inequality uses that t(n) = Ω(n) for any
hyper-exponential function t. Combining the two reductions gives a polynomial-time reduction
from L[2t] to 15-prover nonlocal game G′n,M,T. �

To prove Proposition 7.4, we present and analyze a family of verifiers
{
VRC(n,n0,M,T,G)

}
,

specified in Figure 13. The verifiers are parametrized by two integers n ≥ n0 > 0, a nondeterministic
Turing machine M, a deterministic Turing machine T, and a GTM G that takes input (n, t, λ). Here,
think of n0 as the input size, and n as a parameter that indicates the size ofVRC. For the actual
verifier used to define the game, n = n0, but we may also consider the case where n eventually
grows very large. Roughly speaking, if n ≥ t(n0), the verifier VRC(n,n0,M,T,G) simulates the
Natarajan-Vidick protocol from Theorem 7.3 to determine whether (1n,M) ∈ L[2t]. Otherwise, if n
is smaller than t(n0), thenVRC is “too small” to perform the simulation directly. In this case,VRC
instead executes the compressed protocol associated withVRC(2n,n0,M,T,G), i.e. an exponentially
bigger version of itself.
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Verifier name:VRC(n,n0,M,T,G)
Description of parameters: n ≥ n0 > 0 are integers, M is a nondeterministic Turing
machine, T is a deterministic Turing machine, and G is a GTM that takes input (n, t, λ).

1. Run T on input 1n0 for n steps.

2. If T halts in that time, then execute the verifierVNV(M,n) from Theorem 7.3.

3. Otherwise, execute the verifier V]
Gλ,n

from Theorem 6.1, where λ = (n0,M,T,G)
and Gλ(n, t) = G(n, t, λ).

Figure 13: The recursive compression verifier

It follows from Theorem 6.1 and Theorem 7.3 that the family of verifiers
{
VRC(n,n0,M,T,G)

}
can

be uniformly generated from (1n, λ), where λ = (n0,M,T,G), by a Turing machine R. By Lemma 3.11,
there exists a GTM GR that takes input (n, t, λ) and returns the t-th gate of the protocol circuit
corresponding to the verifierVRC(n,n0,M,T,G).8 For the remainder of the section we consider M
and T as implicitly fixed, and writeVRC(n,n0) forVRC(n,n0,M,T,GR). LetGn,n0

denote the 7-prover
game specified byVRC(n,n0), and let ω∗n,n0

denote ω∗(Gn,n0
). Let Gn = Gn,n.

Due to its recursive nature the verifierVRC may be hard to comprehend at first. For concreteness,
we go through an execution of the protocol specified by the verifier for the choice of the time-
constructible function t(n) = 2n. Thus, T is a Turing machine that on input 1n iterates for 2n steps
exactly, and then halts. M is an arbitrary nondeterministic Turing machine, and n0 a positive integer.
The verifierVRC(n0,n0) specifies the actions of a verifier in a 7-prover ENL game G0 that has size
poly(n0). Following the description in Figure 13, the verifier in G0 performs the following actions.
It first executes T on input 1n0 for n0 steps. By definition of T, since n0 < t(n0) = 2n0 , the Turing
machine has not yet halted. Thus the verifier proceeds to the second step in Figure 13: it executes
another verifier,V]

Gλ,n0
from Theorem 6.1. The verifier can compute the description ofV]

Gλ,n0
in

polynomial time given 1n0 and the description of Gλ.
By construction (see the proof of Theorem 6.1) the verifierV]

Gλ,n0
specifies a 7-prover ENL game

G
]
Gλ,n0

, which checks that the provers hold (an encoding of) the history state of the protocol circuit
CKT(Gλ, 2

n0). Let n1 = 2n0 . The protocol circuit CKT(Gλ,n1) defines a verifier VRC(n1,n0) and a
game G1 = Gn1,n0

. Notice that G1 is just as G0, except that the first input is exponentially larger,
from n0 to n1.

Theorem 6.1 relates the value of G0 to the value of G1. So it suffices to analyze the value
of G1, which means analyzing VRC(n1,n0,M,T,GR). Since n1 ≥ 2n0 , G1 reduces to the game
GNV specified by the Natarajan-Vidick verifier VNV(M,n1). By Theorem 7.3, if (1n1 ,M) ∈ L[2n1],
then the value of GNV(M,n1) is 1, which implies that ω∗(G1) = 1, which in turns implies that
ω∗(G0) = 1. Otherwise if (1n1 ,M) < L[2n1], ω∗(G1) = ω∗(GNV(M,n1)) ≤ 1 − δ, which implies that
ω∗(G0) ≤ 1 − δα

poly(n1) ≤ 1 − C2−cn0 for some constants c,C > 0.

Observe now that (1n1 ,M) ∈ L[2n1] if and only if (1n0 ,M) ∈ L[22n0 ]. This establishes Proposi-

8Strictly speaking, the protocol circuit corresponds to an equivalent verifier toVRC, but for clarity of exposition we will
not distinguish between the verifier specified by GR andVRC itself.
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tion 7.4 for the special case t(n) = 2n. We now give the proof for the general case.

Proof of Proposition 7.4. Since the answer sizes are constant in both the Natarajan-Vidick protocol,
as well as the games produced by Theorem 6.1, this establishes item 1. of the proposition. We now
show item 2.

Fix n,M,T. Since t(n) is a hyper-exponential function, there exists a smallest integer R ≥ 0 such
that ΛR(n) = t(n) (note that R generally depends on n).

We show by downwards induction on 0 ≤ r ≤ R that there exists a constant β ≥ 1 (depending
only on Gλ) such that the following holds. If (1n,M) ∈ L[2t], then ω∗Λr(n),n = 1. Otherwise,

ω∗(Gn) ≤ 1 −
δα

R−r

ΛR(n)βα
R−r
· · ·Λr+1(n)βα

. (21)

Note that the case r = 0 implies item 2. of the proposition. First, the completeness statement shows
that if (1n,M) ∈ L[2t], then ω∗(Gn) = ω∗Λ0(n),n = 1. Second, the soundness statement (21) implies that
there exists universal constants c,C > 0 depending only on α, β, δ such that ω∗n,n ≤ 1 − CΛR(n)−c =

1 − Ct(n)−c.
For the base case r = R, note that on input 1n the Turing machine T halts in t(n) ≤ ΛR(n) steps.

Thus the game GΛR(n),n is the game associated with the Natarajan-Vidick verifier VNV(M,ΛR(n))

(Theorem 7.3). Suppose that (1n,M) ∈ L[2t]. This implies that (1ΛR(n),M) ∈ L[2n].9 By Theorem 7.3,
ω∗ΛR(n),n = 1. Otherwise, if (1n,M) < L[2t], then we have that ω∗ΛR(n),n < 1 − δ.

Now suppose r < R. Then the Turing machine T does not halt on input 1n in Λr(n) steps.
Therefore,VRC(Λr(n),n) executes the verifierV]

Gλ,Λr(n), where Gλ is the GTM specified in Figure 13,

with λ = (n,M,T,GR). In turn, the protocol circuit CKT(Gλ, 2
Λr(n)) = CKT(Gλ,Λr+1(n)) corresponds

to the game GΛr+1(n),n. Thus it follows from Theorem 6.1 that

1 −
1 − ω∗Λr+1(n),n

poly(Λr+1(n))
≤ ω∗Λr(n),n ≤ 1 −

 1 − ω∗Λr+1(n),n

poly(Λr+1(n))

α ,
for some polynomial poly(·) that depends only on Gλ and not r or n. Using the induction
hypothesis (21), this completes the induction step. �

7.2 An alternate proof of the undecidability of nonlocal games

In this section we give an alternate proof that the problem of distinguishing between the cases when
a nonlocal game has value equal to 1, or when it has value strictly less than 1, is undecidable [Slo16,
Slo17]. This result was stated as Theorem 1.2 in the introduction. Let M be an arbitrary Turing
machine, and G a GTM. Consider the family of verifiers {VHalt(n,M,G)} described in Figure 14.

9Note: the “2n” inside L[·] is a variable that is different from the n used to specify the instance (1ΛR(n),M).
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Verifier name:VHalt(n,M,G):
Description of input: M is a deterministic Turing machine, and G is a GTM that takes
input (n, t,M).

1. Run M on input 0 for n steps. If it halts in this time, then reject.

2. Otherwise, execute the verifierV]
GM,n

from Theorem 6.1 where GM(n, t) = G(n, t,M).

Figure 14: The verifierVHalt

It follows from the definition and Theorem 6.1 that the verifiers
{
VHalt(n,M,G)

}
can be uniformly

generated from (1n,M,G) by a Turing machine H. By Lemma 3.11, there exists a GTM GH that
takes input (n, t,M,G) and outputs the t-th gate of the protocol circuit corresponding to the verifier
VHalt(n,M,G). Define the verifierVHalt(n,M) =VHalt(n,M,GH).

Theorem 7.6. There exists universal constants c,C > 0 such that for any deterministic Turing machine M
there exists a 15-prover nonlocal game GM, that can be computed from the description of M, such that the
following hold.

1. Suppose that M halts on input 0 in time T, for some T ≥ 0. Let R be the largest integer such that
T > ΛR(1). Then ω∗(GM) ≤ 1 − CΛR(1)−c.

2. Suppose that M does not halt on input 0. Then ω∗(GM) = 1. Furthermore, there is a universal constant
η > 0 such that any strategy S for GM such that ω∗

S
(GM) ≥ 1 − ε for some ε ≥ 0 requires local

dimension at least 2Ω(ε−η).

Theorem 7.6 implies that if there were a Turing machine A that when given a description of a
nonlocal game G, decides if ω∗(G) = 1, then A could be used to solve the Halting Problem. Thus
there is no such Turing machine A.

Proof. Fix a deterministic Turing machine M. For any integer n ≥ 1 let Gn denote the 7-prover game
specified byVHalt(n,M), and let ω∗n = ω∗(Gn). It follows from Theorem 6.1 that

1 −
1 − ω∗2n

p(2n) + 1
≤ ω∗n ≤ 1 −

(
1 − ω∗2n

β p(2n)

)α
, (22)

for some universal constants α ≥ 1, β > 0 and some polynomial p that depends only on GM.
We first show the completeness statement, item 2. in the theorem. Suppose that M does not halt

on input 0. By an immediate induction it follows from the first inequality in (22) that for any r ≥ 0,

1 − ω∗1 ≤
1 − ω∗Λr(1)(

p(Λ1(1)) + 1
)
· · ·

(
p(Λr(1)) + 1

) ,
from which it follows, by taking the limit r→∞, that necessarily ω∗1 = 1.

Next we show the soundness statement, item 1. in the theorem. Suppose that M halts in time T,
and let R be the largest integer such that ΛR(1) < T. Then ω∗ΛR+1(1) = 0. By downwards induction it
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follows from the second inequality in (22) that there exists constants c′,C′ > 0 that depend on GM
such that

1 − ω∗1 ≥
1

p(ΛR(1))α
R
p(ΛR−1(1))α

R−1
· · · p(Λ1(1))α

≥ C′ΛR(1)−c′ .

To conclude, as in the proof of Theorem 7.5 we apply the compression result from [Ji17] to G1
to obtain a 15-prover nonlocal game GM such that ω∗(GM) = 1 if M does not halt, and otherwise
ω∗(GM) ≤ 1−Ω((1−ω∗1)α) < 1−CΛR(1)−c for universal constants c,C > 0. Note that the game GM is
“constant sized” (there is no asymptotic parameter here).

The “furthermore” part of the theorem follows from the fact that any strategy S for GM that
is accepted with probability at least 1 − ε is δ-isometric to a strategy S′ such that the provers’
shared state is a history state of a strategy S1 in G1 that succeeds with probability 1 − δ for δ = εc.
(This follows from the analysis of the compression result of [Ji17]; details omitted.) By part 4 of

Theorem 6.1, the strategy S1 must have local dimension at least 2Ω(δ−η
′

) for some universal constant
η′ > 0. Thus Smust have local dimension 2Ω(ε−η) for some universal constant η > 0. �

8 Improving the Compression Theorem?

We explore the question of whether our compression theorem, Theorem 6.1, is optimal in terms
of the trade-off that it provides between “compression in game size” versus “compression of the
game value towards 1”. Recall that, given a GTM G for a family of games {GN}, the theorem yields
a family of games {G]n} such that for all n and N = 2n we have that if ω∗(GN) = 1, then ω∗(G]n) = 1,

but otherwise ω∗(G]n) ≤ 1 −
(

1−ω∗(GN)
poly(N)

)α
. The compression of the game size is exponential, from N to

poly(log N), and the value of G]n is closer to 1 by a factor poly(N). But suppose that there was a
Hypothetical Compression Theorem (HCT) with a better trade-off.

Conjecture 8.1 (Hypothetical Compression Theorem). Given a GTM G for a family of games {GN},
there exists a family of verifiers {V♦n} that is uniformly generated from (1n,G), and a monotonically increasing
function g(n) = 2o(n), such that the following hold. For any integer n ≥ 0, the game {G♦n} associated withV♦n
has constant answer size, and for N = 2n we have that if ω∗(GN) = 1, then ω∗(G♦n) = 1, and in all cases,

ω∗(G♦n) ≤ 1 −
(

1 − ω∗(GN)
g(n)

)α
. (23)

(Note that when g(n) = 2O(n) (23) recovers the upper bound of Theorem 6.1.) We show that
Conjecture 8.1 implies “constant-gap analogues” of Theorem 7.5 and Theorem 7.6: first, MIP∗

would contain all computable languages. Second, MIP∗ would contain undecidable languages.
The undecidability of MIP∗, in turn, implies a negative answer to a multipartite generalization of
Tsirelson’s problem, which is a open question about the relation between the commuting operator
and tensor product models for quantum correlations.

The main tool we need to derive these consequences is a hardness amplification procedure for
k-prover ENL games. This is a general transformation on ENL games that preserves the game value
if the original game has value 1, but otherwise decreases it.

We call an ENL game and its associated verifier nonadaptive if the questions to the provers
are chosen before the measurement of the provers’ first message. The ENL games and verifiers
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obtained from Theorem 6.1 are nonadaptive. The following hardness amplification procedure is
established in [BVY17].

Theorem 8.2 (Hardness amplification via anchoring [BVY17]). Fix an integer k ≥ 2. For every integer
r there exists a transformationAr on verifiers such that for any k-prover nonadaptive verifierV for an ENL
game G the following holds:

1. Ar(V) is a k-prover verifier for a nonadaptive ENL game G′ such that

(ω∗(G))r
≤ ω∗(G′) ≤

(
1 − (1 − ω∗(G))c)νGr

,

where ν
G

is a positive real that depends on the number of provers k and the length of answers in G, and
c ≥ 1 is a universal constant.

2. The size ofAr(V) is O(r) times the size ofV.

Furthermore, if {Vn,λ} is a family of verifiers uniformly generated from (1n, λ), the family of verifiers
{Ar(Vn,λ)} can be uniformly generated from (1n, 1r, λ).

Strictly speaking, the hardness amplification result of [BVY17] is stated for nonlocal games, in
which the verifier is completely classical. However, the results extend to nonadaptive ENL games
because the verifier’s initial measurement can be modeled as the action of an “honest” prover.10

8.1 Consequence 1: MIP∗ contains all computable languages

A language L is computable if there exists a Turing machine M that, for all inputs x ∈ {0, 1}∗, accepts
if x ∈ L and otherwise rejects. In particular, M halts on all inputs.

We introduce a verifier V̂RC, described in Figure 15, and analyze it in a manner similar to the
verifierVRC considered in Section 7.1. In this section, we use c and ν to denote the constants from
Theorem 8.2 that correspond to games with at most 7 provers and the answer length provided
by Conjecture 8.1. We also let α and g(n) be the constant and subexponential function g(n) from
Conjecture 8.1. We letV♦n denote the verifier of the game G♦n.

VTM name: V̂RC(n,M,G):
Description of input: n > 0 is an integer, M is a deterministic Turing machine, and G is a
GTM that takes input (n, t, λ).

1. Run M on input 0 for n steps. If M accepts in that time, accept. If M rejects in that
time, reject.

2. Otherwise, if M does not halt in n steps, perform the following. Let λ = (M,G), and
Gλ(n, t) = G(n, t, λ). Let n′ be the largest integer less than n such that
(2g(n′))αc

· q(n′)/ν ≤ n, where q(n′) is the size ofV♦Gλ,n
′ . Let r = (2g(n′))αc/ν. Execute

the verifierAr(V
♦

Gλ,n
′).

Figure 15: The verifier V̂RC

10We believe that the nonadaptive condition can be omitted from the statement of Theorem 8.2, but we leave this for
future work.
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It follows from the definition that the family of verifiers {V̂RC(n,M,G)} can be uniformly
generated by some Turing machine R. (This is the reason for the choice of the parameter n′, which
guarantees that the size of the verifierAr(V

♦

Gλ,n
′) is at most n.)

Let R be a Turing machine that on input (1n,M,G) generates the verifier V̂RC(n,M,G) in
polynomial time. By Lemma 3.11, there exists a GTM GR that takes input (n, t,M,G) and outputs
the t-th gate of the protocol circuit corresponding to the verifier V̂RC(n,M,G).

Proposition 8.3. Suppose Conjecture 8.1 is true. Let M be a deterministic Turing machine that halts
on input 0. Then the family of verifiers {V̂RC(n,M,GR)} can be uniformly generated from (1n,M,GR).
Furthermore, the 7-prover ENL game Gm associated with V̂RC(m,M,GR), where m is the smallest integer
larger than (2g(1))αcq(1)/ν,11 satisfies

ω∗(Gm) = 1 if M accepts on input 0,
ω∗(Gm) ≤ 1/2 if M rejects on input 0.

Proof. Let M and m be as in the theorem statement. For any integer n ≥ 1, define the verifier
V̂RC(n) = V̂RC(n,M,GR). Let Gn denote the 7-prover ENL game specified by V̂RC(n), and let
ω∗n = ω∗(Gn). Let R be the smallest integer such that ΛR(m) is greater than the running time of M
(which is well-defined since M halts on input 0).

If M accepts on input 0, then ω∗(Gm) = 1; this follows by induction on R, using similar reasoning
as in the proof of Proposition 7.4. The remaining case is that M does not accept on input 0. By
definition, for all N ≥ ΛR(m), we have that ω∗N = 0. We show by downwards induction that
ω∗N ≤ 1/2 for all integers N ≥ m. Assume the inductive hypothesis holds for all N ≥ N0 + 1 for some
N0 < ΛR(m). Since N0 < ΛR(m), M does not halt on input 0 in N0 steps. Therefore, the verifier in the
game GN0

executesAr(V
♦

Gλ,N
′

0
) where λ, Gλ, N′0, and r are defined in Figure 15. Let N1 = 2N′0 . Since

g is a monotonically increasing but subexponential function, we have N′0 = ω(log N0) and therefore
N1 > N0. Therefore by the induction hypothesis it follows that ω∗N1

≤ 1/2. Using Conjecture 8.1 and
Theorem 8.2 together,

ω∗N0
≤

1 −

1 − ω∗N1

g(N′0)

αc
νr

.

Using that ω∗N1
≤ 1/2 and the choice of r made in Figure 15, we get that ω∗N0

≤ 1/e ≤ 1/2. This
completes the induction and shows that ω∗m ≤ 1/2, as desired. �

Corollary 8.4. Suppose Conjecture 8.1 is true. Then MIP∗ with constant completeness-soundness gap
contains all computable languages. In other words, we have R ⊆ MIP∗ where R is the set of all recursive
languages.

Proof. Let L denote a computable language. This means that there exists a deterministic Turing
machine M such that for all inputs x ∈ {0, 1}∗, M(x) accepts if x ∈ L, otherwise M(x) rejects. Let
Mx denote the Turing machine M with input x hardwired and otherwise ignores its input tape.
Observe that Mx halts in finite time.

There exists a polynomial time deterministic Turing machine A that on input x performs the
following. First, A computes a description of the 7-player ENL gameGm,Mx

given by Proposition 8.3,
with m chosen as in the proposition statement. Let n = |x|. This game has the property that if

11The justification for this choice of m is to ensure that for all n ≥ m, the integer n′ chosen in step 2. of the definition of
V̂RC(n,M,G) (Figure 15) is well-defined and at least 1.
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Mx accepts, then ω∗(Gm,Mx
) = 1, otherwise ω∗(Gm,Mx

) ≤ 1/2. Furthermore the size of the verifier
of Gm,Mx

is poly(n, |M|). Next, the ENL game Gm,Mx
is converted to a nonlocal game by using the

compression result of [Ji17]; this result gives an efficient reduction from the description of the
verifier of Gm,Mx

to the verifier of a 15-player nonlocal game G′m,Mx
whose value satisfies

ω∗(Gm,Mx
) ≤ ω∗(G′m,Mx

) ≤ 1 −

1 − ω∗(Gm,Mx
)

poly(n)

α .
Finally, A computes a description of the gameG′′m,Mx

, in which the hardness amplification procedure
As of Theorem 8.2 is applied to the verifier of G′m,Mx

for some s = poly(n). The verifier of G′′m,Mx
still

has poly(n) size, but now if ω∗(G′m,Mx
) ≤ 1 − 1/poly(n), then ω∗(G′′m,Mx

) ≤ 1/2 (provided that s is a
large enough polynomial).

Thus on input x the Turing machine A returns the description of a nonlocal game with a
poly(n)-sized verifier, such that if x is accepted by M, the value of the game is 1; otherwise, the
value is at most 1/2. This shows that L has a one-round MIP∗ proof system with 15 provers and
constant completeness-soundness gap. �

8.2 Consequence 2: MIP∗ contains undecidable languages

In this section we show that Conjecture 8.1 implies that MIP∗ contains undecidable languages. We
show this directly: instead of reducing the halting problem to the problem of approximating the
value of a nonlocal game, we show that there is no Turing machine that can approximate the value
of a nonlocal game to within constant additive error. Thus MIP∗ contains undecidable languages:
namely, the (promise) language Lc,s whose YES instances consist of all nonlocal games whose value
is at least c, and whose NO instances consists of all nonlocal games whose value is at most s, for
some constants 0 ≤ s < c ≤ 1.

In Figure 16 we define a VTM V̂undec that is differs slightly from the VTMVHalt analyzed in
Section 7.2. Whereas the games {Gn,M} specified byVHalt have value 1 or less than 1/2 depending
on whether M halts or not, the games {Gn,M} specified by V̂undec have value 1 or less than 1/2
depending on whether M accepts or rejects (when given its own description as input). There is no
guarantee on the value of the game Gn,M if M does not halt.

In Figure 16, c, ν and α are the constants introduced in Section 8.1.

VTM name: V̂undec(n,M,G):
Description of input: M is a deterministic Turing machine.

1. Run M on input M (i.e. the input to M is the description of M itself) for n steps. If
M halts and accepts, then accept. If M halts and rejects, then reject.

2. If M does not halt within n steps, then perform the following. Let λ = (M,G) and
Gλ(n, t) = G(n, t, λ). Let n′ be the largest integer such that (2g(n′))αcq(n′)/ν ≤ n,
where q(n′) is the size ofV♦Gλ,n

′ . Let r = (2g(n′))αc/ν. ExecuteAr(V
♦

Gλ,n
′).

Figure 16: The verifier V̂undec
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It follows from the definition that the family of verifiers {V̂undec(n,M,G)} can be uniformly
generated by a Turing machine H. By Lemma 3.11, there exists a GTM GH that takes input (n, t,M,G)
and returns the t-th gate of the protocol circuit corresponding to the verifier V̂undec(n,M,G). Define
the verifier V̂undec(n,M) = V̂undec(n,M,GR). Let Gn,M denote the 7-prover ENL game executed by
V̂undec(n,M).

Proposition 8.5. Suppose Conjecture 8.1 is true. Let M be a deterministic Turing machine. Then for all n,

ω∗(Gn,M) = 1 if M accepts on input M,

ω∗(Gn,M) ≤ 1/2 if M rejects on input M.

Note that Proposition 8.5 does not specify the value of Gn,M in the case that M does not halt
on input M. An ideal version of Proposition 8.5 would state that ω∗(Gn,M) = 1 if M does not halt,
and ω∗(Gn,M) ≤ 1/2 if M halts, similarly to the conclusion of Theorem 7.6. We are able to obtain a
guarantee on the value of Gn,M when M does not halt in Theorem 7.6 because of special properties
of the games specified byV] (namely, when the size N of the verifier increases, the value of the
game goes to 1, no matter what game is being compressed). However, the games specified by
Conjecture 8.1 may not satisfy this property; the only guarantee is thatω∗(G♦Gλ,n

) = 1 ifω∗(G2n,M) = 1,
and otherwise ω∗(G♦Gλ,n

) is upper-bounded by some function of ω∗(G2n,M).
The proof of Proposition 8.5 is essentially the same as the proof of Proposition 8.3, and we omit

it. We state a corollary showing that it is possible to construct a family of nonlocal games with
similar properties as the ENL games from Proposition 8.5.

Corollary 8.6. Suppose Conjecture 8.1 is true. Let M be a deterministic Turing machine. There exists a
15-prover nonlocal game GM such that

ω∗(GM) = 1 if M accepts on input M,
ω∗(GM) ≤ 1/2 if M rejects on input M.

Furthermore, the description of the verifier of GM is computable from M.

Proof. The proof is essentially the same as the proof of Corollary 8.4. The only additional step is
to apply the hardness amplification procedureAr from Theorem 8.2 to the game returned by the
Turing machine A, for r = poly(|M|), to amplify the gap from 1 vs. 1 − 1/poly(|M|) to 1 vs. 1/2. �

Theorem 8.7. Suppose Conjecture 8.1 is true. Then there is no deterministic Turing machine A that, given
as input the description of the verifier circuits of a nonlocal game G, decides whether G has value at least 2/3
or less than 1/3, promised that one is the case.

Proof. Suppose for contradiction that there exists such a Turing machine A. Consider the following
deterministic Turing machine M. M expects as input an X, which is the description of a deterministic
Turing machine. The Turing machine M first computes the descriptions of verifier circuits for two
nonlocal games GX and Gr

X. The first game, GX, is the game given by Corollary 8.6. The second
game, Gr

X, is the nonlocal game that results from applying the hardness amplification procedureAr
from Theorem 8.2 to GX, where r is an integer such that (1 − (1/3)c)νr

≤ 1/3. Here, c and ν are the
constants given by Theorem 8.2. Thus

ω∗(Gr
X) ≤ (1 − (1 − ω∗(GX))c)νr . (24)

Furtherore, if GX has value 1, then Gr
X has value 1.
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Having computed the descriptions of the games GX and Gr
X, the Turing machine M executes

two instances of A in parallel (for example, by interleaving the executions of A), where one instance
is executed on the description of GX, and the other on Gr

X. If one of the instances halts first with
output bit a, then M rejects if a = 1 and accepts if a = 0. However, M may not halt (if both instances
of A don’t halt).

Observe that at most one of the games GX, Gr
X has value that is greater than 1/3 and less

than 2/3. Indeed, suppose the value of both games were in that range. In particular, we have
1/3 < ω∗(GX) < 2/3. However, by (24) and our choice of r, this implies that ω∗(Gr

X) ≤ 1/3, a
contradiction.

Thus at least one instance of A halts, because by definition A correctly decides whether a given
input game G has value at least 2/3 or at most 1/3. Therefore, M always halts, on all inputs X.

Now we analyze M, when given input M. By definition of GM, if M accepts input M, then
ω∗(GM) = ω∗(Gr

M) = 1. In this case, both instances of A accept, in which case M rejects, which is a
contradiction.

On the other hand, if M rejects input M, then both ω∗(GM) and ω∗(Gr
M) have value at most 1/3,

in which case both instances of A reject, in which case M accepts, which is a contradiction.12

Therefore such a Turing machine A does not exist. �

Thus Theorem 8.7 implies that the language Lc,s for c = 2/3 and s = 1/3 is undecidable, which
implies that MIP∗ contains undecidable languages. We end by formulating the following corollary,
that relates Conjecture 8.1 to a famous problem in quantum information, Tsirelson’s problem. To state
the corollary, we introduce the notion of a k-partite, n-input, m-output correlation, which is a k-tensor
C of complex numbers, with size nm × · · · × nm = (nm)k, where k,n,m are arbitrary integers. We say
that a correlation C is achievable in the tensor product model if there exists finite-dimensional Hilbert
spacesH1, . . . ,Hk, a state |ψ〉 ∈ H1 ⊗ · · · ⊗ Hk, and for every ` ∈ {1, . . . , k} and i ∈ {1, . . . ,n} a POVM
{Aa

`,i}a∈{1,...,m} acting onH`, such that for all i1, . . . , ik ∈ {1, . . . ,n} and a1, . . . , ak ∈ {1, . . . ,m}, we have

C(i1, a1, . . . , ik, ak) = 〈ψ|Aa1
1,i1
⊗ · · · ⊗ Aak

k,ik
|ψ〉 .

Similarly, we say that C is achievable in the commuting operator model if there exists a (possibly
infinite-dimensional) Hilbert spaceH , a state |ψ〉 ∈ H , and for every ` ∈ {1, . . . , k} and i ∈ {1, . . . ,n}
a POVM {Aa

`,i}a∈{1,...,m} acting on H satisfying the commutativity condition [Aa
`,i,A

a′

`′,i′] = 0 for all
` , `′ and i, i′, a, a′, such that for all i1, . . . , ik ∈ {1, . . . ,n} and a1, . . . , ak ∈ {1, . . . ,m}, we have

C(i1, a1, . . . , ik, ak) = 〈ψ|Aa1
1,i1
· · ·Aak

k,ik
|ψ〉 .

We also measure the distance between two correlations C,C′ as the sum of the absolute differences
of their entries:

|C − C′| =
∑

i1,...,ik
a1,...,ak

∣∣∣C(i1, a1, . . . , ik, ak) − C′(i1, a1, . . . , ik, ak)
∣∣∣ .

Tsirelson’s problem (more precisely, the multipartite version of it) asks whether for every k, n,
and m, for every k-partite, n-input, m-output correlation C achievable in the commuting operator
model, for every ε > 0, there exists a k-partite, n-input, m-output correlation C′ achievable in the
tensor product model such that |C−C′| ≤ ε. In other words, a positive answer to Tsirelson’s problem

12The reader would be justified in asking why we needed to consider two games in the first place. If we only considered
GM, then we wouldn’t be able to conclude that GM has value either greater than 2/3 or at most 1/3, and thus M could in
principle run forever. By defining M in this way we force the resulting game GM to satisfy the promise of A.
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would establish that correlations in the commuting operator model can be approximated arbitrarily
well by correlations in the tensor product model. The next corollary shows that Conjecture 8.1
would yield a negative resolution of Tsirelson’s problem.

Corollary 8.8. Suppose Conjecture 8.1 is true. Then there exists ε > 0, integers n,m > 0, and a 15-partite,
n-input, m-output correlation C that is achievable in the commuting operator model that has distance at least
ε from any correlation C′ achievable in the tensor product model.

Proof. Suppose not, i.e. any 15-partite correlation C achievable in the commuting operator model,
for all ε > 0 there exists a correlation C′ achievable in the tensor product model such that |C−C′| ≤ ε.
This implies that for any 15-prover nonlocal game G, the entangled value of G in the tensor product
(denoted by ω∗tp(G)) and commuting operator models (denoted by ω∗c(G)) are equal: for every δ > 0,
letSc be a commuting operator strategy in a 15-prover nonlocal gameG such thatω∗c(G) ≤ ω∗

Sc
(G)+δ.

Then by our assumption, for all ε > 0 there is a tensor product model strategy Stp such that∣∣∣∣ω∗Stp
(G) − ω∗

Sc
(G)

∣∣∣∣ ≤ ε.
By taking ε = δ, for every δ > 0 we have that there is a strategy Stp in the tensor product model

such that
∣∣∣∣ω∗Stp

(G) − ω∗c(G)
∣∣∣∣ ≤ 2δ. Since the entangled value in the tensor product model is defined

as the supremum over tensor product model strategies, by taking δ→ 0 we get that ω∗c(G) = ω∗tp(G).
We provide an algorithm that decides if the value of a 15-prover nonlocal game is larger than

2/3, or at most 1/3, promised that one is the case. The algorithm interleaves two procedures.
The first procedure exhaustively searches for strategies in the tensor product model of increasing
dimension, and with increasing accuracy. If this procedure returns a value that is larger than 1/2,
the algorithm halts and returns YES. A second procedure computes a non-increasing sequence
of upper bounds by solving semidefinite programs obtained at increasing levels of the hierarchy
introduced in [DLTW08, NPA08]. If this procedure returns a value that is smaller than 1/2, the
algorithm halts and returns NO.

We show that this algorithm always halts, and always returns the correct decision. It is clear that
the first procedure provides a non-decreasing sequence that converges to the value of the game in
the tensor product model from below. Conversely, it is known that the second procedure provides a
non-increasing sequence that converges to the value of the game in the commuting operator model
from above. Since the values in both models coincide, this implies that the algorithm described in
the previous paragraph always halts with the correct decision.

However, Conjecture 8.1 and Theorem 8.7 implies that there is no such algorithm, a contradic-
tion. Thus there is a correlation C achievable in the commuting operator model that cannot be
approximated arbitrarily well by correlations in the tensor product model. �
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A Succinct representation of uniform circuit families

In this appendix we show that any uniformly generated family of circuits has a succinct description,
in the sense of Section 3.4. First we introduce a generic method for constructing a circuit that
implements the same computation as a Turing machine. Then, we show that any such circuit can
be written in a regular form, that has a succinct description. Finally, we apply these two steps for
the case of a Turing machine that specifies a family of circuits.

A.1 Simulation of a Turing machine with a quantum circuit

A universal Turing machine simulator circuit is a quantum circuit TMSIM that, given as input the
description of a Turing machine M, a positive integer time T, and a designated output tape for M,
computes the contents of the output tape after M has been executed for T steps.

Lemma A.1. For any integer k ≥ 1 there exists a family of quantum circuits {TMSIMk(T)}T∈N of size
poly(T) such that the following hold for all T ≥ 1.

1. TMSIMk(T) acts on registers S (the Turing machine state register), M (the Turing machine
specification register), and A1, . . .Ak(the Turing machine tape registers).

2. Let M be the classical description of a k-tape Turing machine and a = (a1, . . . , ak) be a k-tuple of strings
of symbols for the k tapes of M, such that each ai has length at most the size of Ai. Let a′ = (a′1, . . . , a

′

k)
be the contents of M’s tapes after it has been executed for T steps, starting from the tape values specified
by a. Then after the circuit TMSIMk(T) has been executed on input |0〉S ⊗ |M〉M ⊗ |a〉A1···Ak

, the
registers A1, . . . ,Ak are in state |a′〉A1···Ak

.

Furthermore, there exists a deterministic Turing machine TMSIM-DESCk that on input T and an integer t
in binary runs in polynomial time and returns a description of the t-th gate of TMSIMk(T) when it exists,
and a special failure symbol when it does not.
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Proof. Fix an integer k ≥ 1 and let U be a universal (k + 1)-tape Turing machine. When provided as
input the description of a k-tape Turing machine M and a number of steps 1T on its first tape, and
some values a on the remaining k tapes, U performs the computation of M on input a for T steps.
Furthermore, U runs in polynomial time, and we assume without loss of generality [PF79] that U is
oblivious: the movements of the head of U are independent of its input. Without loss of generality,
each tape head of U alternates between weeping left for T steps and then right for T steps, and the
heads move in sequence (i.e., the first tape’s head moves first, then the second tape’s head moves,
and so on).

The circuit TMSIMk(T) is defined as follows. The register S stores the state of the universal
Turing machine U. The register M stores the description of the k-tape Turing machine M. The
registers {A j} store the contents of the work tapes of M. Each movement of the heads of U is
implemented by a layer in the circuit. The computation of the head transition function is computed
in register S, which is connected via two-qubit gates to the corresponding locations in the registers
A j. (Due to the assumption that U is oblivious, these locations only depend on the index of the
layer in the circuit.)

The number of gates of TMSIMk(T) is clearly polynomial, establishing item 1. in the lemma.
Furthermore, item 2. holds by construction.

For the “Furthermore” part of the lemma, note that the structure of each layer is identical, with
the only difference being that the gates that cross between S and the registers {A j} ∪ {M} are different
depending on which cells of the tapes are supposed to be read/written to at that layer. Using that U
is oblivious, the location of the t-th gate of TMSIMk(T) can be computed in time polynomial in t. �

A.2 Simulating regular circuits

Analogously to the circuit TMSIM that simulates a Turing Machine, we introduce the notion of a
universal circuit CKTSIM that simulates an arbitrary quantum circuit. For purposes of efficient
description it is convenient to consider regular circuits, which are defined as follows.

Definition A.2. An n-qubit regular circuit of size s is specified by a sequence of gates g1, . . . , gs where
each gi ∈ {H,T}, and the set of qubits that the gate gi acts on only depends on the triple (i,n, s), and can be
computed in polynomial time from the triple (i,n, s) specified in binary. (For consistency, the Hadamard gate
is interpreted as a 3-qubit gate I ⊗H ⊗ I.)

We record the easy observation that every n-qubit circuit of size s has an equivalent regular
circuit of size poly(n, s) as the following lemma.

Lemma A.3. There exists a deterministic polynomial-time Turing machine that takes as input the description
of a quantum circuit C and outputs a regular quantum circuit C′ that implements the same unitary
transformation as C does.

The next lemma establishes the existence of a simulation procedure for circuits analogous to the
one shown for Turing machines in Lemma A.1.

Lemma A.4. There is a family of quantum circuits {CKTSIMn,s}n,s≥1 of size poly(n, s) such that the
following hold. For any n, s ≥ 1 the circuit CKTSIMn,s acts on two registers A (the circuit specification
register) and B (the target register), where B has n qubits. For any C ∈ {0, 1}s and state |θ〉B

CKTSIMn,s

(
|C〉A ⊗ |θ〉B

)
= |C〉A ⊗ C|θ〉B ,

where C is interpreted as the description of a regular n-qubit quantum circuit of size s.
Furthermore, there exists a deterministic Turing machine CKTSIM-DESC that on input (n, s, t) runs in
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polynomial time and returns a description of the t-th gate of CKTSIMn,s when it exists, and a special failure
symbol when it does not.

Proof. For n, s ≥ 1 the circuit CKTSIMn,s has s layers, where the i-th layer applies either a Hadamard
or a Toffoli gate, depending on gi, on the appropriate qubits. The indices of those qubits can be
computed in poly(log n, log s) time. �

A.3 Succinct representation of uniform families of circuits

Lemma A.5. Let {Cn}n≥1 be family of circuits that is uniformly generated by the Turing machine M. Then
there exists a deterministic Turing machine G, that is computable from M, such that on input (n, t), where
both n and t are integer written in binary, G runs in polynomial time and returns a description of the t-th
gate of a regular circuit C′n that implements the same unitary transformation as Cn (but uses additional
ancilla registers).

Proof. Without loss of generality assume the number of tapes used by M is k = 3, with an input
tape, a work tape and an output tape. Let pM be a polynomial that bounds the running time of
M. Let n ≥ 1. We describe the circuit C′n. The circuit first initializes ancilla registers for TMSIM
(see Lemma A.1) as follows. The register S contains the initial state of M. The register M contains
a description of M. The registers A1,A2,A3 are empty, except that the register A1 associated with
the input tape contains the input 1n. The next step in the circuit C′n is to execute the circuit
TMSIMk(pM(n)) on these registers to obtain a description of Cn. Using Lemma A.3 we may without
loss of generality assume that Cn is regular. Finally, the last step in the circuit C′n it to execute the
circuit CKTSIM on the register A3 associated with the output tape of M, that contains the description
of Cn and plays the role of the circuit specification register, and the target register, that is identified
with the register containing the input state to Cn.

It is clear that C′n implements the same transformation as Cn. The existence of the Turing
machine G follows directly from the description of C′n and the existence of the Turing machines
TMSIM-DESC and CKTSIM-DESC from Lemma A.1 and Lemma A.4 respectively. Specifically,
from its input (n, t), G may efficiently determine which of its three phases (input preparation,
TMSIM, CKTSIM) the t-th gate of C′n is associated with, and then compute the gate itself using the
appropriate succinct description Turing machine. �
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