
Reachability in O(log n) Genus Graphs is in Unambiguous

Logspace

Chetan Gupta∗1, Vimal Raj Sharma†1, and Raghunath Tewari‡1

1Indian Institute of Technology, Kanpur

May 20, 2018

Abstract

Given the polygonal schema embedding of an O(logn) genus graph G and two vertices
s and t in G, we show that deciding if there is a path from s to t in G is in unambiguous
logarithmic space.

∗gchetan@cse.iitk.ac.in
†vimalraj@cse.iitk.ac.in
‡rtewari@cse.iitk.ac.in

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 106 (2018)



1 Introduction

Deciding reachability between a pair of vertices is an important problem in computational com-
plexity theory. Directed graph reachability characterizes the complexity of the class nondeter-
ministic logspace (NL) and undirected graph reachability characterizes the complexity of the class
deterministic logspace (L). The latter follows due to a seminal result by Reingold in 2005 [19].
Several other variants of this problem characterize the complexity of other complexity classes
[11, 5, 6].

Unambiguous computations are a natural restriction of nondeterministic computation where
for every input the Turing machine can have at most one accepting computation path. In the
domain of logarithmic space, this defines the class unambiguous logspace (UL) of languages for
which there is a nondeterministic logspace bounded machine that has exactly one accepting path
for every input in the language and zero accepting path otherwise. The class UL was introduced
in [8] and subsequently its properties were also studied in the paper [3]. The relation between
NL and UL was not well understood till that point. In 1997, Reinhardt and Allender showed
that NL and UL are equal in a non-uniform setting [20]. Subsequently, it was shown that if
deterministic linear space functions cannot be computed by 2εn sized circuits then NL = UL
[2]. Both these results gave evidence that most likely the classes were the same unconditionally.
Recently directed graph reachability was shown to be decidable by an unambiguous algorithm
running in polynomial time and using O(log2 n) space [15]. The space bound was improved to
O(log1.5 n) in a subsequent result [24].

A graph G is said to be min-unique with respect to a weight function w if for every pair of
vertices in G there is at most one minimum weight path from one vertex to the other with respect
to w. We will call such a weight function a path isolating weight function. Min-uniqueness has
been studied in several papers [25, 13, 20]. Reinhardt and Allender showed that if graphs in
a class of graphs are min-unique with respect to an O(log n) bit weight function then deciding
reachability for that class of graphs is in UL [20]. They also gave a UL algorithm to check if a
graph is min-unique.

Observe that devising a UL algorithm for directed graph reachability would show that NL =
UL, since directed graph reachability is complete for the class NL. Although the NL versus UL
has been elusive so far, partial progress has been made towards solving this problem. For several
classes of directed graphs, the reachability problem has been shown to be in UL – such as layered
grid graphs [1], planar graphs [7], constant genus graphs [16, 10], graphs with polynomially
many paths from the source to all other vertices [18], K3,3-free and K5-free graphs [22, 4]. The
techniques involve either an efficient construction of a path isolating weight function or reduction
to reachability in a graph class for which the problem is already known to be in UL.

Reachability in positive genus graphs is a natural extension of planar reachability. Allender
et al. showed that reachability in genus 1 graphs can be reduced to planar reachability [1]. After
planar reachability was shown to be in UL, reachability in constant genus graphs was reduced
to reachability in planar graphs [16]. Later a path isolating weight function was also given for
constant genus graphs [10]. Prior to our result, the best known nondeterministic space upper
bound for reachability in non-constant genus graphs was nothing better than general directed
graphs. The question of whether reachability in ω(1) genus graphs belongs to UL or not has been
open for almost a decade.

1.1 Our Result

In this paper, we make progress towards understanding the space complexity of directed graph
reachability and show the following result.

2



Theorem 1. Given a polygonal schema of an O(log n) genus directed graph G, deciding reach-
ability in G is in UL ∩ coUL.

Given a genus g graph, in the first stage, we give an O(log n) bit weight function wpl which
is essentially the same weight function as defined in [21] and another weight function wlen which
gives weight 1 to every edge in the graph. Weight function wlen ensures that minimum weight
paths among all pairs of vertices are of minimum length as well. We then show that between
every pair of vertices in the graph, the number of minimum weight “topologically unequivalent”
paths is at most 2O(g). For this, we define a notion called signature which allows us to classify
topologically equivalent paths. We show that topologically equivalent paths are very similar to
paths in planar graphs and therefore we can borrow the machinery for path isolation in planar
graphs here as well. In the second stage, we use the hashing scheme of Fredman, Komlós and
Szemerédi [12] to compute an O(log n + g) bit weight function wfks with respect to which only
one among the 2O(g) many paths of the first stage gets the minimum weight value.

When g is O(log n) the number of such minimum weight paths produced in the first stage is
at most polynomial in n. Thereafter by combining the weight functions wlen, wpl and wfks we get
an O(log n) bit weight function with respect to which the graph is min-unique. We then apply
Reinhardt and Allender’s algorithm to get a UL algorithm for O(log n) genus reachability.

1.2 Organization of the Paper

The rest of the paper is organized as follows. In Section 2 we define the notations and framework
of our problem. We discuss different representations of high genus graphs and how to efficiently
obtain a representation that is suitable for our purpose. We also state results from earlier work
that we use in this paper. In Section 3 we prove the main result by giving a min-unique weight
function.

2 Preliminaries

Let G = (V,E) be a directed graph on n vertices and m edges. Let uv denote an edge directed
from u to v. A weight function is a map w : E → Z which maps every edge in G to an integer.
A weight function w is said to be skew-symmetric if for every edge uv, w(uv) = −w(vu). For a
set of edges S, w(S) =

∑
e∈S w(e). We can think of different structures in a graph such as path,

walk, cycle as sets of edges and define the weight of the structure accordingly.

2.1 Representation of High Genus Graph

A genus g surface is a sphere with g handles on it. The genus of a graph is the minimum genus
surface on which the graph can be embedded without any edge crossings. Such an embedding
is also called a 2-cell embedding. Since we are dealing with graphs embedded on surfaces, it is
important to specify how the input graph is represented. Given a graph, computing its genus is
NP-hard [23]. To the best of our knowledge, no PTAS is known either to compute the genus of a
graph. So in accordance with the convention followed by earlier papers that deals with problems
on bounded genus graphs, we also assume a suitable representation of the input graph [17, 14].
We use a representation similar to the one used by Mahajan and Varadarajan [17].

Given a genus g graph G we consider an embedding of G inside a polygon S with 4g sides,
s1, s2, . . . , s4g. We refer to these as the segments of S. Moreover, we assume there is no vertex
on the boundary of the polygon. The segments s4k+1 and s4k+2 are directed in anti-clockwise
and segments s4k+3 and s4k+4 are directed in clockwise direction. The segments s4k+1 and s4k+3
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form a pair together such that an edge can come into one of them and go out from another.
Similarly, segments s4k+2 and s4k+4 form a pair. Also, if an edge is the jth edge crossing a
segment si from head to tail then it will be the jth edge crossing the paired segment of si from
tail to head. Pairs (s4k+1, s4k+3) and (s4k+2, s4k+4) together constitute the ith handle of the
sphere. We assume that we are provided with the combinatorial embedding of the graph G
inside S and an ordering of the edges crossing each segment si. We also assume without loss of
generality that an edge can cross a segment of the polygonal schema at most once, as an edge
crossing multiple segments can be divided into several edges in logspace so that the assumption
is true. We call this representation the polygonal schema of G.

Let ES be the set of edges inG that cross some segment si. Then observe thatGplanar = G\ES
is a planar graph. A piecewise straight line embedding of a planar graph is an embedding where
vertices are integral coordinates and an edge is a piecewise straight line segment connecting its
two end points such that no two edges intersect. Given the combinatorial embedding of a planar
graph a piecewise straight line embedding of it can be constructed in logspace such that each
edge consists of at most 4 segments [21].

For a genus g graph G, a flat schema is an embedding of G such that the polygon S is
represented as a straight line segment parallel to the x-axis, the internal planar graph Gplanar is
given as a piecewise straight line embedding and each edge in ES is drawn as a piecewise straight
line segment such that no two edges cross each other. Moreover, all vertices and points where
an edge crosses a segment are integral coordinates. See Figure 1 for an example of a flat schema
of K5.

s2

s3

s4

s1

a b

cd

e

(a) Polygonal schema of K5

s1 s2 s3 s4

a b

cd

e

(b) Flat schema of K5

Figure 1: Embeddings of K5

Given a polygonal schema of G, we can compute a piecewise straight line embedding of
Gplanar in logspace. Now using a similar idea we draw each edge in ES as a piecewise straight
line segment from its end vertices to the corresponding segments of S. We summarize this process
in Lemma 2.

Lemma 2. Given a polygonal schema of a graph G with 4g segments we can construct a flat
schema of G with 4g segments in logspace.

The weight function wpl that we define in Section 3 is similar to the weight function in [21].
That is why we need edges to be piecewise straight line segments. Also the flat schema embedding
is necessary because we want all edges parallel to the x-axis to have weight 0 with respect to wpl.

2.2 Previous Work

Consider a genus g graph G embedded on a surface of genus g say Γ. A simple cycle C in G is
called a separating cycle if cutting along C divides the surface into at least two parts. Otherwise
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C is called a non-separating cycle. We state a characterization of these cycles from Lemma 4 of
Cabello and Mohar [9] and Lemma 10 of Datta et al. [10].

Theorem 3. [9, 10] Consider a polygonal schema of a genus g graph. A cycle C in G is said
to be surface separating if and only if C crosses each segment of the polygonal schema an even
number of times. Moreover, if C is surface separating then with respect to each segment si, the
cycle C alternates between coming into si and going out of it (if C crosses si at all).

We next state the popular hashing result by Fredman, Komlós and Szemerédi.

Theorem 4. [12] Let S = {x1, x2, . . . , xk} be a set of n−bit integers. Then there exists a
O(log n+ log k) bit prime number p so that for all xi 6= xj ∈ S, xi mod p 6= xj mod p.

In Theorem 5 we state a slightly modified version of Reinhardt and Allender’s result that
would be useful for our purpose.

Theorem 5. [20] There is a nondeterministic logspace Turing machine M that takes a tuple
〈G, s, t, w〉 as input where G is a directed graph on n vertices, s and t are vertices in G and w is
an O(log n) bit edge weight function and outputs the following along a unique computation path
while all other computation paths halt and reject:

• Not Min-unique if G is not min-unique with respect to w,

• Yes if G is min-unique with respect to w and there is a path from s to t in G, and

• No if G is min-unique with respect to w and there is no path from s to t in G.

Finally, in Theorem 6 we state the relation between the area of a simple cycle in a planar
graph and weight of the cycle with respect to a suitable weight function as shown by Tewari and
Vinodchandran.

Theorem 6. [21] Given a straight line embedding of a planar graph G there exists a logspace
computable weight function w such that for any cycle C in G, we have w(C) = 2 ·Area(C) if C
is a counter-clockwise cycle and w(C) = −(2 ·Area(C)) if C is a clockwise cycle, where Area(C)
is the area of the region enclosed by C.

3 Isolating Paths in High Genus Graphs

In this section we show that graphs of logarithmic genus are min-unique with respect to an
O(log n)-bit weight function that can be computed by an unambiguous logspace machine. Using
this weight function in combination with Theorem 5 we get a UL ∩ coUL algorithm for directed
graph reachability in O(log n) genus graphs. Theorem 7 is the main technical result of this paper
where we show the existence and computability of such a weight function.

Theorem 7. Given a genus g directed graph G = (V,E) in terms of its flat schema, there exists
an O(log n+g) bit weight function w : E → Z, such that for every u, v ∈ V , there exists a unique
minimum weight path from u to v with respect to w, if v is reachable from u. Moreover, there is a
nondeterministic O(log n+ g) space algorithm that given G as input, outputs the weight function
w along a unique computation path while all other paths halt and reject.

Let S = {s1, s2, . . . , s4g} be the set of segments of the flat schema of G. We define a skew-
symmetric weight function wpl that gives non-zero weight to every surface separating cycle in G.
For edges which do not cross any segment of the flat schema (we refer to them as planar edges),
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wpl is same as the weight function defined in [21], and for edges which do cross some segment
of the flat schema (we refer to them as crossing edges) we modify the weight function to be the
sum of the weights of the two line segments of the edge. Formally, for an edge e = uv we define
the wpl(e) as:

wpl(e) =

{
(yv − yu)(xv + xu) if e is a planar edge

(yu′ − yu)(xu′ + xu) + (yv − yv′)(xv + xv′) if e is a crossing edge

where (xu, yu) and (xv, yv) are the coordinates of u and v respectively and (xu′ , yu′) and (xv′ , yv′)
are the coordinates of intersection points of edge e with segments si and sj respectively, assuming
that edge e comes into si and goes out of sj .

We also define another weight function wlen that assigns value one to every edge in the graph.
That is wlen(e) = 1 for every edge e ∈ G. Let wcomb = wlen · nk1 + wpl be the weight function
defined by combining wpl and wlen for a large enough constant k1. As a result the minimum
weight path with respect to wcomb also has the minimum length.

We first show that every surface separating cycle has non-zero weight with respect to wpl.
The idea is to decompose every surface separating cycle into a set of planar cycles having the
same orientation such that the weight of the original cycle is the sum of the weights of the planar
cycles.

Lemma 8. Let C be a simple surface separating cycle of length at least 3 in G, then wpl(C) 6= 0.

Proof. A surface separating cycle can be of two types – one which does not intersect with any
segment of the flat schema and the one which does. If C does not intersect any segment of the
flat schema then C is a planar cycle. Hence wpl(C) 6= 0 by [21].

Now consider the case where some edges of C cross the flat schema. From Theorem 3 we know
that since C is a surface separating cycle, therefore, C alternates between going out and coming
into the segments of the flat schema. Without loss of generality assume that the first edge of C
crossing the flat schema going left to right, is coming into it. The other case is analogous.

For every edge uv which crosses the boundary S of the flat schema we subdivide uv into two
directed edges uu′ and v′v, such that u′ is the point at which uv comes into some segment si
and v′ is the point at which uv goes out of some segment sj . Let C ′ be the cycle corresponding
to C formed by this subdivision. By definition of wpl we have wpl(uv) = wpl(uu

′) +wpl(v
′v) and

hence wpl(C) = wpl(C
′).

Let x1, x2, . . . x2t be the set of intersection points of C ′ and S ordered from left to right. Add t
dummy directed edges from x2i−1 to x2i for all 1 ≤ i ≤ t. This decomposes C ′ into a set of disjoint
planar cycles C1, C2, . . . , Ck such that each Ci has the same orientation (counter-clockwise, since
we assume the first edge is coming into S). See Figure 2 for an example.

u vwx y zq

r s

t

(a) Surface separating cycle C

u vwx y zq

r s

t
C1

C2

C3

u′ x′ y′ q′ w′ v′ t′ z′

(b) Decomposition of C into C1, C2 and C3

Figure 2: Decomposing a surface separating cycle into planar cycles
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By Theorem 6, wpl(Ci) = 2 · Area(Ci) for each i. Moreover, since the Ci’s have all the
edges of C ′ plus some horizontal edges (the dummy edges) of zero weight, therefore wpl(C

′) =∑k
i=1 wpl(Ci) = 2 ·

∑k
i=1 Area(Ci). Therefore wpl(C) 6= 0.

We now show that the number of minimum weight paths with respect to wcomb, between any
pair of vertices is at most 22g. We define classes of paths based on the number of times a path
intersects each segment of the flat schema, and show that in each such class there is at most one
minimum weight path.

Given a polygonal schema of a genus g graph G, by Lemma 2 we assume that we are provided
with a flat schema of G having 4g segments. Let T = {T1, T2, . . . , T2g} be the set of segments of
the flat schema such that no two elements of T are pairs of each other.

For a path P in G, define the signature of P , denoted as sign(P ), as a binary string s =
s1s2 . . . s2g where si = 1 if P crosses Ti an odd number of times and si = 0 if P crosses Ti an
even number of times. Clearly, the total number of different signatures are 22g. This definition
can be similarly extended to cycles and walks as well.

For 0 ≤ i ≤ 2l − 1, let bin(i) be the l-bit string that denotes the binary representation of i
(if the binary representation has lesser than l bits then we prefix it with appropriate number of
zeroes to make it l-bit long). For every pair of vertices u and v, we define 22g classes of paths
Kuv

0 ,Kuv
1 , . . . ,Kuv

22g−1 as follows:

Kuv
i = {P | P is path from u to v and sign(P ) = bin(i)}.

Note that if P = P1P2 . . . Pk be a partition of a path P into subpaths, then sign(P ) =
sign(P1)⊕ sign(P2)⊕ . . . sign(Pk), where ⊕ is the bitwise XOR operator.

For a directed path P from x to y, let P r represent the directed path from vertex y to x
obtained by reversing the edges along the path P . Note that sign(P ) = sign(P r).

Theorem 9. Let G = (V,E) be a genus g graph embedded on a flat schema having 4g segments.
Let u and v be two vertices in G and i be a non-negative integer less than or equal to 22g − 1.
Then in every class Kuv

i there exists at most one minimum weight path from u to v with respect
to wcomb.

Proof. Assume that P1 and P2 are two minimum weight paths in Kuv
i with respect to wcomb.

Then wpl(P1) = wpl(P2) and wlen(P1) = wlen(P2). Consider two cases – when P1 and P2 have
common intermediate vertices and when they do not.
Case 1: P1 and P2 do not have any common intermediate vertices

We will show that P1 and P r2 together form a surface separating cycle. Let C = P1P
r
2 be the

directed cycle formed by taking P1 followed by P r2 . Since P1 and P2 do not have any common
intermediate vertices therefore C is a simple cycle. Recall that wpl is a skew-symmetric weight
function so wpl(P

r
2 ) = −wpl(P2). Therefore,

wpl(C) = wpl(P1) + wpl(P
r
2 )

= wpl(P1)− wpl(P2)

= 0 (since P1 and P2 have the same minimum weight)

Also since P1 and P2 belong to Kuv
i we have that sign(P1) = sign(P2) = sign(P r2 ). Therefore we

get that sign(C) = 0 (the all zeroes vector). By Theorem 3 we have that C is a surface separating
cycle and thus by Lemma 8 wpl(C) cannot be zero. Thus we get a contradiction. Therefore Case
1 cannot occur.
Case 2: P1 and P2 have common intermediate vertices
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Note that at any common intermediate vertex, the paths P1 and P2 can either cross each
other or tangentially touch each other without crossing. We refer to the former as crossing vertex
and the latter as grazing vertex.

We will show that the closed walk formed by P1 and P r2 reduces to a surface separating simple
cycle such that the weight of the closed walk is almost equal to that of the cycle.

Lemma 10. Let P1 and P2 be two minimum weight paths from u to v with u1, u2, . . . ul being
the set of common intermediate vertices. Then u1, u2, . . . ul must occur in the same order in both
paths P1 and P2.

Proof. Lemma is trivially true when l = 1. So, let l > 1. Suppose ui occurs before uj in P1 and
uj occurs before ui in P2, for i < j. Let a, b and c be the lengths of path P1 from u to ui, ui to
uj and uj to v respectively. Similarly, let d, e and f be the lengths of path P2 from u to uj , uj
to ui and ui to v respectively. Since wlen(P1) = wlen(P2) we have

a+ b+ c = d+ e+ f. (1)

If d < a+ b then taking P2 from u to uj and P1 from uj to v gives us a shorter length path from
u to v than either P1 or P2. Similarly, if d > a+ b we can construct a shorter length from u to
v as well. Hence we can assume that

d = a+ b. (2)

Using analogous argument we can assume

f = b+ c. (3)

Now adding Equations 2 and 3 we have

a+ 2b+ c = d+ f. (4)

Now since b and e are non zero, Equations 1 and 4 contradict each other. Hence u1, u2, . . . ul
occur in the same order in paths P1 and P2.

Lemma 11. Let P1 and P2 be two paths in Kuv
i having crossing vertices v1, v2, . . . vk, such

that these vertices divide P1 and P2 into k + 1 sub-paths P 1
1 , P

2
1 , . . . P

k+1
1 and P 1

2 , P
2
2 , . . . P

k+1
2

respectively (as shown in Figure 3). Then the paths P ′ = P 1
1P

2
2 . . . P

k+1
i and P ′′ = P 1

2P
2
1 . . . P

k+1
j

(where i = 1 and j = 2 if k is even and i = 2 and j = 1 if k is odd) belong to the same class.

u v1 v2 vk−1 vk v

P 1
1 P 2

2 P k1 P k+1
2

P 1
2 P 2

1 P k2 P k+1
1

Figure 3: Crossings of paths P1 (bold line) and P2 (dashed line) at k many points

The intuition of Lemma 11 is that if P1 and P2 cross each other then the two paths obtained
by taking the “above” and “below” portions of these two paths have the same signature.
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Proof. Since P1 and P2 belong to same class, we have

sign(P1) = sign(P2)

sign(P 1
1 )⊕ sign(P 2

1 )⊕ . . .⊕ sign(P k+1
1 ) = sign(P 1

2 )⊕ sign(P 2
2 )⊕ . . .⊕ sign(P k+1

2 )

We know that if a, b, c, d are binary strings of equal length then a⊕ b = c⊕d⇔ a⊕ c = b⊕d.
Therefore by rearranging the terms we get

sign(P 1
1 )⊕ sign(P 2

2 )⊕ . . .⊕ sign(P k+1
i ) = sign(P 1

2 )⊕ sign(P 2
1 )⊕ . . .⊕ sign(P k+1

j )

sign(P ′) = sign(P ′′)

Hence P ′ and P ′′ belong to the same class.

Note that P ′ and P ′′ need not belong to the same class as P1 and P2. We define P j,ki (j < k)

as a shorthand for path P ji P
j+1
i . . . P ki .

Lemma 12. Let P1 and P2 are two minimum weight paths in Kuv
i having crossing vertices

v1, v2, . . . vk, then wpl(P
i
1) = wpl(P

i
2), for all i, 1 ≤ i ≤ k + 1. Additionally, for the closed walk

C ′ = P ′(P ′′)r we have that wpl(C
′) = 0 and sign(C ′) = 0 (where P ′ and P ′′ are as defined in

Lemma 11).

Proof. Assume that there exists some j (1 ≤ j ≤ k + 1) such that j is the smallest index, where
wpl(P

j
1 ) 6= wpl(P

j
2 ). Without loss of generality assume that wpl(P

j
1 ) < wpl(P

j
2 ). Now consider

path P̃ = P 1,j−1
2 P j1P

j+1,k+1
2 . P̃ is a path from u to v and by construction wpl(P̃ ) < wpl(P2).

This is a contradiction since P2 is a minimum weight path from u to v. Therefore for all i we
have wpl(P

i
1) = wpl(P

i
2).

Now,

wpl(C
′) = wpl(P

′) + wpl((P
′′)r)

= wpl(P
1
1 ) + wpl(P

2
2 ) + wpl(P

3
1 ) + . . .+ wpl(P

k+1
i ) +

wpl((P
1
2 )r) + wpl((P

2
1 )r) + wpl((P

3
2 )r) + . . .+ wpl((P

k+1
j )r)

= (wpl(P
1
1 ) + wpl((P

1
2 )r)) + (wpl(P

2
2 ) + wpl((P

2
1 )r)) + (wpl(P

3
1 ) + wpl((P

3
2 )r)) +

. . .+ (wpl(P
k+1
i ) + wpl((P

k+1
j )r))

= (wpl(P
1
1 )− wpl(P

1
2 )) + (wpl(P

2
2 )− wpl(P

2
1 )) + (wpl(P

3
1 )− wpl(P

3
2 )) +

. . .+ (wpl(P
k+1
i )− wpl(P

k+1
j ))

= 0.

By Lemma 11 we have that P ′ and P ′′ belong to the same class. Hence sign(C ′) = sign(P ′)⊕
sign(P ′′) = 0.

We now argue that there is a simple cycle (say Ĉ) such that C ′ and Ĉ are infinitesimally
separated. Hence their signatures are the same. However the weight function wpl depends on

the coordinates of an edge, therefore wpl(C
′) and wpl(Ĉ) are nearly the same. This implies that

wpl(Ĉ) is close to zero. Which leads to a contradiction as we will show that |wpl(C̃)| > |wpl(Ĉ)|
where C̃ is one of the planar cycles in which Ĉ can be decomposed. Hence P1 and P2 cannot be
two minimum weight paths in Kuv

i .
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Consider a graph Ĝ that is similar to G except that in Ĝ we split each common intermediate
vertex ui (both crossing and grazing vertices) of the paths P1 and P2, into two vertices u′i and
u′′i , such that u′i and u′′i are δ distance apart (see Figure 4). If e = xui was an edge in P1(or P2)

then we will have the edge e′ = xu′i (or e′ = xu′′i ) in Ĝ. Let N = cnk be an upper bound on the
coordinates of the embedding of G, where c and k are constants. Then by definition of wpl, we
have |wpl(e)− wpl(e

′)| ≤ 4Nδ + δ2. Let us define f(δ) := 4Nδ + δ2.

Let v1, v2, . . . , vk be the crossing vertices of P1 and P2, and Q1′ , Q2′ , . . . , Q(k+1)′ be the paths
from u to v′1, v′1 to v′2 and so on till v′k to v respectively, such that the paths Q1′ , Q2′ , . . . , Q(k+1)′

correspond to the paths P 1
1 , P

2
2 . . . , P

k+1
i respectively (see Figure 4). Note that the paths Qi

′

and P ij (where j is 1 if i is odd and 2 otherwise) can have at most n edges that differ and their

weights wpl differ by at most f(δ) for each such edge. Therefore |wpl(P
i
j )−wpl(Q

i′)| ≤ n · f(δ).

Similarly let Q1′′ , Q2′′ , . . . , Q(k+1)′′ be the paths from u to v′′1 , v′′1 to v′′2 and so on till v′′k to v

respectively, such that the paths Q1′′ , Q2′′ , . . . , Q(k+1)′′ correspond to the paths P 1
2 , P

2
1 . . . , P

k+1
j

respectively. By an analogous argument we have, |wpl(P
i
j )−wpl(Q

i′′)| ≤ n · f(δ) (where j is 2 if
i is odd and 1 otherwise).

u

v′1

v′′1

v′2

v′′2

v′k−1

v′′k−1

v′k

v′′k

v

Q1′ Q2′ Qk
′

Q(k+1)′

Q1′′ Q2′′ Qk
′′

Q(k+1)′′

Figure 4: Splitting vertices to form the graph Ĝ from G.

Now Q′ = Q1′Q2′ . . . Q(k+1)′ and Q′′ = Q1′′Q2′′ . . . Q(k+1)′′ are paths from u to v (corre-
sponding to the paths P ′ and P ′′ respectively) that do not cross each other, as shown in Figure
4. Observe that sign(Q′) = sign(P ′) since the difference between the coordinates of vertices along
Q′ and P ′ is less than 1, therefore the number of crossings with respect to each segment of the
flat schema remains the same. Similarly, sign(Q′′) = sign(P ′′). Now consider the simple cycle

Ĉ = Q′(Q′′)r. By Lemma 12, sign(Ĉ) = 0. Hence Ĉ is a surface separating cycle by Theorem 3.

|wpl(Ĉ)− wpl(C
′)| = |(wpl(Q

′) + wpl((Q
′′)r))− (wpl(P

′) + wpl((P
′′)r))|

= |
((
wpl(Q

1′) + . . .+ wpl(Q
(k+1)′)

)
−
(
wpl(Q

1′′) + . . .+ wpl(Q
(k+1)′′)

))
−
((
wpl(P

1
1 ) + . . .+ wpl(P

(k+1)
i )

)
−
(
wpl(P

1
2 ) + . . .+ wpl(P

(k+1)
j )

))
|

≤
∣∣∣wpl(Q

1′)− wpl(P
1
1 )
∣∣∣+ . . .+

∣∣∣wpl(Q
(k+1)′)− wpl(P

(k+1)
i )

∣∣∣
+
∣∣∣wpl(Q

1′′)− wpl(P
1
2 )
∣∣∣+ . . .+

∣∣∣wpl(Q
(k+1)′′)− wpl(P

(k+1)
j )

∣∣∣
≤ 2(k + 1)nf(δ)

Now since by Lemma 12 wpl(C
′) = 0, therefore we can choose δ small enough (say less than

1/100N3) so that we get |wpl(Ĉ)| < 1/3.
Without loss of generality assume that C ′ crosses some segment of the flat schema. If not

then both P1 and P2 would not be crossing any segment of the polygon and hence with respect
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to wpl both cannot be minimum weight paths [21]. Since C ′ crosses some segment, therefore, Ĉ

also must cross the same segment. Since Ĉ is a surface separating cycle therefore by Lemma 8,
Ĉ can be decomposed into planar cycles such that the weight of Ĉ is equal to sum of the weights
of the planar cycles with respect to wpl. Moreover, the weight of each planar cycle has the same
sign and each planar cycle has a dummy edge (an edge that is incident on a segment of the flat

schema). Let C̃ be one such planar cycle, and consider a triangulation of C̃ (by thinking of C̃
as a polygon). There exists some triangle say T = (a, x, y) in this triangulation that contains

the dummy edge xy of C̃ as one of its sides. Now ||x− y|| ≥ 1 since vertices in C ′ were integral

and in Ĉ, x and y were not shifted. Moreover, a cannot be a vertex that is δ close to any
segment of the flat schema. This is because for every vertex v that lies at the intersection of
cycle C ′ and the side S of the flat schema, v was not split when forming the cycle Ĉ. Hence the
distance of a from the line joining x and y is at least 1 − δ. Therefore the area of the triangle
Area(T ) > 1/2 − 1/200n. Now, Area(T ) ≤ Area(C̃) ≤ |wpl(C̃)| ≤ |wpl(Ĉ)| ≤ 1/3, where the
second inequality follows from Theorem 6. This contradicts that P1 and P2 are two minimum
weight paths in G with respect to wcomb.

Therefore the class Kuv
i has at most one minimum weight path from u to v with respect to

wcomb. This completes the proof of Theorem 9.

For a fixed pair of vertices u, v, the number of classes Kuv
i is at most 22g. Since by Theorem

9 there is at most one minimum weight path from u to v in each class Kuv
i , therefore we have

the following the result.

Theorem 13. Let G = (V,E) be a genus g graph embedded on a flat schema having 4g segments.
Then there exists at most 22g minimum weight paths between any pair of vertices in G, with
respect to weight function wcomb.

Now we are ready to prove Theorem 7 which says that there is a weight function with respect
to which there is at most one minimum weight path between any pair of vertices in G.

Proof of Theorem 7. Let Muv be the set of all minimum weight paths from u to v and let M =⋃
(u,v)∈V 2 Muv. By Theorem 13, |Muv| is at most 22g. Hence |M | ≤ n2 · 22g. Now by Theorem

4 there is an O(log n + g) bit weight function wfks which for some suitable prime p assigns the
weight 2i mod p to the ith edge, such that every path in M gets a distinct weight with respect
to wfks. Therefore with respect to the weight function w = wcomb · nk2 + wfks, where k2 is a
sufficiently large constant, the minimum weight path between every pair of vertices is unique.
Note that wcomb and wfks are O(log n) bit and O(log n+ g) bit weight functions respectively.

Computing wcomb can be done in logspace since it is a simple function of the coordinates
of the end points of an edge. To compute wfks one needs to find the appropriate prime whose
existence is shown in Theorem 4. For each prime, we check if G is min-unique with respect to
the corresponding weight function and if not we move to the next prime. This can be done by
a nondeterministic O(log n + g) space algorithm along a unique computation path as shown in
[15].

Proof of Theorem 1. Now given a graph G on n vertices and two vertices s and t in G we cycle
through all primes less than n′, and for each prime, we compute the weight function w given
in Theorem 7. Using Theorem 5 we check if G is min-unique with respect to w and if so we
check if there is a path from s to t in G. If G is not min-unique with respect to w then we move
to the next prime. Theorem 4 guarantees that there is an n′ = nO(1) and a prime less than
n′ such that G is min-unique with respect to the corresponding prime. Hence along a unique
computation path, we finally have Yes or No answer depending on whether s is reachable from
t or not respectively, while all other paths halt and reject.
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