
Oracle Separation of BQP and PH

Ran Raz∗ Avishay Tal†

May 31, 2018

Abstract

We present a distribution D over inputs in {±1}2N , such that:

1. There exists a quantum algorithm that makes one (quantum) query to the
input, and runs in time O(logN), that distinguishes between D and the uniform
distribution with advantage Ω(1/ logN).

2. No Boolean circuit of quasipoly(N) size and constant depth distinguishes between
D and the uniform distribution with advantage better than polylog(N)/

√
N .

By well known reductions, this gives a separation of the classes Promise-BQP
and Promise-PH in the black-box model and implies an oracle O relative to which
BQPO * PHO.

1 Introduction

Can polynomial-time quantum algorithms be simulated by classical algorithms in the
polynomial-time hierarchy?

In this paper, we show that in the black-box model (also known as query-complexity or
decision-tree complexity), the answer is negative. That is, in the black-box model, the class
BQP of (promise1) problems that can be solved by bounded-error polynomial-time quantum
algorithms, is not contained in the class PH, the (classical) polynomial-time hierarchy.

More precisely, we give an explicit black-box (promise) problem, that can be solved by a
polynomial-time quantum algorithm with only one query, but cannot be solved by a classical
algorithm in the polynomial-time hierarchy.

It is well known that this implies an oracle O relative to which BQP is not contained in
PH. Previously, even an oracle separation of BQP and AM was not known.

∗Department of Computer Science, Princeton University. Research supported by the Simons
Collaboration on Algorithms and Geometry and by the National Science Foundation grant No. CCF-1412958.
†Department of Computer Science, Stanford University, Stanford, CA. Research supported by a Motwani

Postdoctoral Fellowship and by NSF grant CCF-1763299.
1In our entire discussion of black-box complexity classes, we consider complexity classes of promise

problems, rather than decision problems. Nevertheless, separations of classes of promise problems in the
black-box model imply oracle separations of the corresponding classes of decision problems in the “real”
world (see [Aar10]; Footnote 4).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 107 (2018)

1.1 Motivation and Related Work

The black-box model has played a central role in the study of quantum computational
complexity. For example, Shor’s algorithm for factoring [Sho97] builds on Simon’s black-box
algorithm for finding periodicity [Sim94] and Grover’s database search algorithm is stated
and proved directly in the black box model [Gro96].

The relative power of BQP and classical complexity classes, in the black box model,
has been studied in numerous works, starting with the celebrated paper by Bernstein and
Vazirani that defined the class BQP and founded the field of quantum computational
complexity [BV97]. Bernstein and Vazirani proved that in the black-box model BQP *
BPP. Subsequently, Watrous proved that in the black-box model BQP * MA [Watrous00].

Aaronson defined the Forrelation problem, as a candidate for separating BQP and PH in
the black-box model [Aar10]. By studying a variant of the Forrelation problem, he obtained
a relation problem (i.e., a problem with many valid outputs) that is solvable in the black-box
model in BQP, but not in PH, thus separating the relation versions of these classes, in the
black-box model. Consequently, Aaronson obtained an oracle O relative to which the relation
version of BQP is not contained in the relation version of PH. That work by Aaronson has
been quite influential. It led to additional results in the black box model, such as [AA15,
Chen16], as well as results that are seemingly unrelated, such as [Aar11]. Followup works,
such as [FSUV13, Rem16], further studied the problems of separating BQP and PH in the
black-box model and obtaining an oracle O relative to which BQP is not contained in PH.

In his work [Aar10], Aaronson motivated the study of oracle/black-box separation of
BQP and PH in various ways. First, he views such a separation as a formal evidence for
the possibility that BQP * PH in the real world. Second, he argues that oracle separations
played a role in many of the central developments in complexity theory and an even more
central and decisive role in quantum computing. Third, he argues that the black-box (query
complexity) model is a natural and well motivated model in its own right. Finally, he
mentions that such a separation also implies a separation of the classes BQLOGTIME
(the class of promise problems decidable by quantum algorithms that have random access
to an N -bit input, and run in time O(logN)) and AC0,2 in the real world. (We refer the
reader to [Aar10, FSUV13] for further details).

1.2 Our Results

Let D,D′ be two probability distributions over a finite set X. We say that an algorithm A
distinguishes between D and D′ with advantage ε if

ε =
∣∣ Pr
x∼D

[A accepts x]− Pr
x′∼D′

[A accepts x′]
∣∣.

The following is our main result:

Theorem 1.1. There exists an explicit distribution D over inputs in {±1}2N , such that:

1. There exists a quantum algorithm that makes one query to the input, and runs in time
O(logN), that distinguishes between D and the uniform distribution with advantage
Ω(1/ logN).

2Recall that AC0 refers to Boolean circuits of polynomial size and constant depth.

2

2. No Boolean circuit of size quasipoly(N) and constant depth3 distinguishes between D
and the uniform distribution with advantage better than polylog(N)/

√
N .

We can amplify the advantage of the quantum algorithm in Theorem 1.1 by making
polylog(N) sequential repetitions and obtain the following result:

Theorem 1.2. There exists an explicit distribution D1 over inputs in {±1}N1, such that:

1. There exists a quantum algorithm that makes polylog(N1) queries to the input, and
runs in time polylog(N1), that distinguishes between D1 and the uniform distribution
with probability 1− 2−polylog(N1).

2. No Boolean circuit of size quasipoly(N1) and constant depth distinguishes between D1

and the uniform distribution with advantage better than polylog(N1)/
√
N1.

We can also amplify the advantage of the quantum algorithm in Theorem 1.1, using only
one quantum query (by standard amplification techniques) and obtain the following result:

Theorem 1.3. There exist explicit distributions D2 and Ũ over inputs in {±1}N2, such that:

1. There exists a quantum algorithm that makes one query to the input, and runs in time
O(logN2), that distinguishes between D2 and Ũ with probability 1− 2−(logN2)Ω(1)

.

2. No Boolean circuit of size quasipoly(N2) and constant depth distinguishes between D2

and Ũ with advantage better than 2−(logN2)Ω(1)
.

By the standard and straightforward relation between AC0 and PH [FSS84] (by replacing
every ∀ by ∨ gate and every ∃ by ∧ gate), we have the following corollary:

Corollary 1.4. In the black-box model, Promise-BQP * Promise-PH.

By the relation between black-box separations and oracle separations, we have the
following corollary. We include its proof in the appendix for completeness.

Corollary 1.5. There exists an oracle O relative to which BQPO * PHO.

Finally, an immediate corollary of our main theorems (for details, see [Aar10, FSUV13]):

Corollary 1.6. Promise-BQLOGTIME * Promise-AC0.

1.3 Techniques

Our distribution D is a variant of Aaronson’s Forrelation distribution [Aar10], but differs
from it in a way that turned out to be crucial in our analysis.

The quantum algorithm for distinguishing between D and the uniform distribution was
suggested by [Aar10, AA15].

3In fact, our lower bounds on Boolean circuits may be extended up to sub-exponential size constant depth
circuits. See Theorem 7.4 for the exact dependency on the size and depth.

3

The hard part of our result is the lower bound for bounded depth circuits distinguishing
between D and the uniform distribution. For this part, we use Fourier analysis. We use Tal’s
tail bounds on the Fourier spectrum of bounded depth circuits [Tal17] (that builds on a long
line of works, in particular [LMN93, H̊as14]). We also use the fascinating recent approach of
Chattopadhyay, Hatami, Hosseini and Lovett for constructing pseudorandom distributions
by considering a random walk that makes small steps, where each step is sampled from
a pseudorandom distribution that takes values in [−1, 1]N [CHHL18]. In particular, their
(simple yet powerful) Claim 3.3 is crucial for our proof.

2 Proof Outline

2.1 The Distribution D
Our distribution D is a variant of Aaronson’s Forrelation distribution, but differs from it in
a way that turned out to be crucial in our analysis.

Let n ∈ N and N = 2n. Let ε = 1/(24 · lnN). We define a probability distribution G ′
over RN×RN as follows: Sample x1, . . . , xN ∼ N (0, ε) independently. Let y = HN ·x (where
HN is the Hadamard transform). Output z = (x, y). Note that G ′ is a multivariate gaussian
distribution with zero-means and covariance matrix

ε ·
(
IN HN

HN IN

)
.

Aaronson had a similar distribution (with ε = 1) and obtained from it a distribution over
{±1}2N , by replacing each zi by sgn(zi). Instead, our distribution D is defined as follows:
We draw z ∼ G ′ and truncate each zi to the interval [−1, 1], by applying the function
trnc(zi) := min(1,max(−1, zi)). Then, in order to obtain values in {±1}, independently

for each i ∈ [2N] we draw z′i = 1 with probability 1+trnc(zi)
2

and z′i = −1 with probability
1−trnc(zi)

2
. We output z′ ∈ {±1}2N .

Note that since ε is sufficiently small, we have that with high probability, every zi is
already in the interval [−1, 1], to begin with. Thus, the truncation operation occurs with
negligible probability and we show that it could be essentially ignored in the analysis (See
Sec. 5). The more important point is that, assuming that zi ∈ [−1, 1], we take z′i = 1 with
probability 1+zi

2
and z′i = −1 with probability 1−zi

2
, rather than taking z′i to be the sign of zi.

The reason for defining D as above is that we can prove the following fact, that turned
out to be crucial for our analysis: Let F : R2N → R be any multilinear function that maps
[−1, 1]2N to [−1, 1]. Then, F has similar expectation under G ′ and under D. In fact, denoting
trnc(z) := (trnc(z1), . . . , trnc(z2N)), we show that

E
z′∼D

[F (z′)] = E
z∼G′

[F (trnc(z))]

and since, as mentioned above, truncation occurs with negligible probability, we can prove
that

E
z′∼D

[F (z′)] ≈ E
z∼G′

[F (z)].

Thus, in large parts of the proof, we can analyze the distribution G ′, rather than D.

4

2.2 The Quantum Algorithm

The quantum algorithm for distinguishing between D and the uniform distribution is simple
and is similar to [Aar10, AA15]. Since the constraint y = HN · x is linear, the support of
the distribution G ′ is an N -dimensional linear subspace H ⊂ R2N . A vector z ∼ D will be,
on average, closer to H than a random vector. Thus, intuitively, the algorithm just needs to
accept with higher probability vectors that are closer to H.

Given an input z = (x, y) ∈ {±1}2N , the algorithm can generate, by one quantum query,
the quantum state Ψ = 1√

2N

∑2N
i=1 zi|i〉. By applying an appropriate unitary transformation

and measuring the state, the algorithm can accept with higher probability when the distance
between z and H is relatively small, and thus distinguish between D and the uniform
distribution. It was shown in [Aar10, AA15] how to implement the appropriate unitary
transformation efficiently, by O(logN) quantum gates (using the fact that the Hadamard
transform can be computed using O(logN) quantum gates). The algorithm distinguishes
between D and the uniform distribution with advantage that is proportional to ε.

2.3 The AC0 Lower Bound

The hard part of our result is the lower bound for bounded depth circuits distinguishing
between D and the uniform distribution. Our proof uses Fourier analysis; Tal’s tail bounds
for the Fourier coefficients of bounded depth circuits [Tal17] and a recent approach and claim
by Chattopadhyay, Hatami, Hosseini and Lovett [CHHL18].

LetA : {±1}2N → {±1} be a Boolean circuit of quasi-polynomial size and constant depth.
For a vector z ∈ R2N , we denote by A(z) the value of the multilinear extension of A on z.

The multilinear extension A : R2N → R can be written as A(z) =
∑

S⊆[2N] Â(S) ·
∏

i∈S zi,

where Â(S) are the Fourier coefficients of A. Observe that A(~0) = Â(∅) = Eu∼U2N
[A(u)].

Tal’s tail bounds imply that for all k ∈ N, we have∑
S⊆[2N]:|S|=k

|Â(S)| ≤ (polylog(N))k.

We need to prove that A cannot distinguish between the distributions D and U2N . That
is, we need to prove that

E
z∼D

[A(z)] ≈ E
u∼U2N

[A(u)].

Since Eu∼U2N
[A(u)] = A(~0) and since, as mentioned above, Ez∼D[A(z)] ≈ Ez∼G′ [A(z)], it will

be sufficient to prove that ∣∣∣ E
z∼G′

[A(z)]− A(~0)
∣∣∣

is small.
Denote by Ĝ ′(S) the moments of the distribution G ′. That is, Ĝ ′(S) = Ez∼G′ [

∏
i∈S zi].

(We use moments, rather than Fourier coefficients, because the distribution is over the reals.
In some sense, these moments play the role of Fourier coefficients in our proof). The values

of Ĝ ′(S) are well known. In particular, Ĝ ′(S) = 0 when |S| is odd, and we have a closed
formula for the case that |S| is even.

5

Similarly to Plancherel’s theorem, it is easy to bound∣∣∣ E
z∼G′

[A(z)]− A(~0)
∣∣∣ =

∣∣∣ ∑
∅6=S⊆[2N]

Â(S) · Ĝ ′(S)
∣∣∣

≤
∑
k≥1

∑
|S|=k

|Â(S)||Ĝ ′(S)| =
∑
k≥2

∑
|S|=k

|Â(S)||Ĝ ′(S)| (1)

(where the last equality is since Ĝ ′(S) = 0 when |S| is odd). It turns out that when plugging

in the bounds that we have on the moments |Ĝ ′(S)| and the bounds that we have on∑
|S|=k |Â(S)|, the terms that correspond to small k-s are small, but the bounds that we

get on terms that correspond to large k-s (i.e. k ≥
√
N) are too large. Thus, it is not clear

how to use this expression to prove the desired result.
Here we use the approach of [CHHL18]. Let t := N and p := 1/

√
t = N−1/2. Rather

than sampling z ∼ G ′, we sample independently z(1), . . . , z(t) ∼ G ′. For i = 0, . . . , t, let
z≤(i) = p · (z(1) + . . .+ z(i)). We think of z≤(1), . . . , z≤(t) as a random walk that makes small
steps, where each step is a small constant p times a random variable that is distributed
according to the original distribution G ′. (We note that in the limit p→ 0, that walk would
be a Brownian motion).

[CHHL18] used a similar random walk4 in order to converge to the discrete cube {±1}2N .
In that sense, their walk was used in order to obtain better and better distributions, that is,
distributions that are closer and closer to {±1}2N . Their motivation was the construction
of pseudorandom generators and hence they tried to minimize the number of steps, as they
needed fresh random bits for each step. Instead, our motivation is separating BQP from PH
in the relativized world, and we use our random walk just in order to analyze the original
distribution G ′. The crucial point is that since G ′ is a multivariate gaussian distribution, the
distribution of z≤(t) is exactly G ′. Thus, in our case, the random walk does not give a better
distribution; it gives the exact same distribution and it is used because it gives a powerful
way to analyze the original distribution, as described next.

Similarly to Claim 3.3 of [CHHL18], we can prove that if for every Boolean circuit of a
certain size and depth and for some b,∣∣∣ E

z∼G′
[A(pz)]− A(~0)

∣∣∣ ≤ b,

then for every i ∈ [t], ∣∣∣E[A(z≤(i))]− A(~0)
∣∣∣ ≤ O(i · b),

and in particular for i = t,∣∣∣ E
z∼G′

[A(z)]− A(~0)
∣∣∣ =

∣∣∣E[A(z≤(t))]− A(~0)
∣∣∣ ≤ O(t · b) = O(p−2 · b).

4One difference is that we take a simple random walk whereas [CHHL18] adaptively scale each step

according to the current location of the walk, in order to get closer to {±1}2N .

6

Since multiplication of a random variable by a factor of p < 1, reduces all moments of
order k by a factor of pk, similarly to Equation (1), we have∣∣∣ E

z∼G′
[A(pz)]− A(~0)

∣∣∣ ≤∑
k≥2

pk
∑
|S|=k

|Â(S)||Ĝ ′(S)|.

Thus, ∣∣∣ E
z∼G′

[A(z)]− A(~0)
∣∣∣ ≤ O

(
p−2 ·

∑
k≥2

pk
∑
|S|=k

|Â(S)||Ĝ ′(S)|
)
.

The last expression is (up to a multiplicative constant) the same as Equation (1), except
that all terms were reduced by a factor of pk−2. Since we took p to be very small, all terms
except for k = 2 can essentially be ignored and plugging in the bounds on |Ĝ ′(S)| and the

bounds on
∑
|S|=k |Â(S)|, we get the desired bound.

3 Preliminaries

We denote by UN the uniform distribution over {±1}N . We denote by IN the identity matrix
of order N .

We shall use the following standard bound on the gaussian distribution: for any positive
x ∈ R, we have Pr[|N (0, 1)| ≥ x] ≤ e−x

2/2.
We consider Boolean circuits consisting of unbounded fan-in AND, OR gates applied to

input variables and their negation. We only consider circuits with one output. The size of a
circuit is the number of gates it contains. The depth is defined as the length of the longest
path (in edges) from any input to the output.

3.1 The Hadamard Transformation

Let n ∈ N and N = 2n. The Hadamard transform H = HN ∈ RN×N is defined as follows.
For i, j ∈ [N],

Hi,j = N−1/2 · (−1)〈i,j〉,

where 〈i, j〉 denotes the inner product between the binary representations of (i − 1) and
(j − 1). It is well known that HN is orthonormal and symmetric and thus HN ·HN = IN .

3.2 Quantum Query

A quantum query to an input z ∈ {±1}2N performs the diagonal unitary transformation Uz,
defined by |i, w〉 → zi|i, w〉, where i ∈ [2N] and w represents the auxiliary workspace that
does not participate in the query.

4 The Distribution D

4.1 The Forrelation Distribution and its Variant

Let n ∈ N and N = 2n. We assume that n is sufficiently large. We follow Aaronson
suggestion [Aar10], that defined a distribution F on {±1}N × {±1}N (called Forrelation)

7

that is sampled as follows:

1. Sample x1, . . . , xN ∼ N (0, 1) independently.

2. Let y = HN · x (where HN is the Hadamard transform).

3. Output (sgn(x), sgn(y)).

We define a probability distribution G over RN × RN using the same process, but without
taking signs. That is, G is sampled as follows:

1. Sample x1, . . . , xN ∼ N (0, 1) independently.

2. Let y = HN · x (where HN is the Hadamard transform).

3. Output z = (x, y).

Observe that G is a multivariate gaussian distribution with zero-means and covariance matrix(
IN HN

HN IN

)
.

It is thus clear that G is symmetric in x and y. Note that x1, . . . , xN are independent random
variables. Similarly y1, . . . , yN are independent.

For S, T ⊆ [N], we wish to analyze the “Fourier coefficients” of G, defined as

Ĝ(S, T) , E
(x,y)∼G

[∏
i∈S

xi ·
∏
j∈T

yj

]

(these are actually the moments of G). In the next claim, we bound Ĝ(S, T).

Claim 4.1. Let S, T ⊆ [N] and i, j ∈ [N]. Let k1 = |S|, k2 = |T |. Then,

1. Ĝ({i}, {j}) = N−1/2 · (−1)〈i,j〉.

2. Ĝ(S, T) = 0 if k1 6= k2.

3. |Ĝ(S, T)| ≤ k! ·N−k/2 if k = k1 = k2.

4. |Ĝ(S, T)| ≤ 1 for all S, T .

Proof. All items rely on the fact that G is a multivariate gaussian distribution with zero-
means and covariance matrix (

IN HN

HN IN

)
.

The first item is trivial as it is actually an entry in the covariance matrix above.
The second and third items rely on Isserlis’ Theorem [Iss1918] (See also http://

en.wikipedia.org/wiki/Isserlis’_theorem), stating that in a zero-mean multivariate
gaussian distribution Z1, . . . , Z2N , for distinct i1, . . . , i2k ∈ [2N], we have E[Zi1 · · ·Zi2k−1

] = 0
and E[Zi1 · · ·Zi2k] =

∑∏
E[ZirZi`], where the notation

∑∏
means summing over all

8

http://en.wikipedia.org/wiki/Isserlis'_theorem
http://en.wikipedia.org/wiki/Isserlis'_theorem

distinct ways of partitioning Zi1 , . . . , Zi2k into pairs and each summand is the product of
the k pairs. In our case, if |S| 6= |T |, in any partition of the elements of S and T into pairs,
we will have a pair in which either the two entries are from the left half or the two entries
are from the right half, however the covariance of any such pair is 0. This gives the second
item. For the third item, we note that if |S| = |T | = k there are k! partitions of the elements
of S and T into pairs such that each pair contains exactly one variable from each half. The
covariance of each pair is ±N−1/2. Thus, we are summing k! numbers which are ±N−k/2,
which gives |Ĝ(S, T)| ≤ k! ·N−k/2.

The last item is a simple application of Cauchy-Schwarz inequality:

Ĝ(S, T) = E
[∏
i∈S

xi
∏
j∈T

yj

]
≤
√
E
[∏
i∈S

x2i

]
· E
[∏
j∈T

y2j

]
=

√∏
i∈S

E[x2i] ·
∏
j∈T

E[y2j] = 1.

4.2 The Distribution D
Let n ∈ N. Let N = 2n. We assume that n is sufficiently large. Recall that G is a multivariate
gaussian distribution over R2N with zero-means and covariance matrix(

IN HN

HN IN

)
.

Let ε = 1/(24·lnN). We define a probability distribution G ′ over R2N , sampled as follows:
Sample z ∼ G and output

√
ε · z. Note that G ′ is a multivariate gaussian distribution over

R2N with zero-means and covariance matrix

ε ·
(
IN HN

HN IN

)
.

Let trnc(a) := min(1,max(−1, a)) be the function that given a real number, truncates it
to the interval [−1, 1].

The Distribution D: We draw z ∼ G ′ and take trnc(z) := (trnc(z1), . . . , trnc(z2N)). Then,

independently for each i ∈ [2N] we draw z′i = 1 with probability 1+trnc(zi)
2

and z′i = −1 with

probability 1−trnc(zi)
2

. We output z′ ∈ {±1}2N .
Observe that conditioned on the value of z ∼ G ′, we have that z′1, . . . , z

′
2N are independent

and for each i ∈ [2N] the expected value of z′i equals trnc(zi).

5 Multilinear Functions on D
In this section, we show that any multilinear function F : R2N → R that maps [−1, 1]2N to
[−1, 1] has similar expectation under G ′ and under D. Let F : R2N → R be a multilinear
function, defined by

F (z) =
∑

S⊆[2N]

F̂ (S) ·
∏
i∈S

zi,

9

where F̂ (S) ∈ R. First we show that

E
z′∼D

[F (z′)] = E
z∼G′

[F (trnc(z))]. (2)

For the proof of Equation (2), recall that z′ ∼ D can be generated as follows: Draw

z ∼ G ′. Then, independently for each i ∈ [2N], draw z′i = 1 with probability 1+trnc(zi)
2

and z′i = −1 with probability 1−trnc(zi)
2

. Equation (2) holds since conditioned on the value of
z, the expected value of F (z′) equals F (trnc(z)). To see this, we use linearity of expectation
and the definition of G ′,D:

E[F (z′) | z] = E
[∑
S⊆[2N]

F̂ (S) ·
∏
i∈S

z′i

∣∣∣ z] =
∑

S⊆[2N]

F̂ (S) ·
∏
i∈S

E[z′i | z]

=
∑

S⊆[2N]

F̂ (S) ·
∏
i∈S

trnc(zi) = F (trnc(z)).

Thus, we need to bound the difference between Ez∼G′ [F (trnc(z))] and Ez∼G′ [F (z)]. Note
that whenever z ∈ [−1, 1]2N , there is no difference between F (z) and F (trnc(z)), and we
only need to bound the difference when z is outside [−1, 1]2N . The next claim bounds the
value of |F (z)| when z is outside [−1, 1]2N .

Claim 5.1. Let F : R2N → R be a multilinear function that maps {±1}2N to [−1, 1]. Let
z = (z1, . . . , z2N) ∈ R2N . Then, |F (z)| ≤

∏2N
i=1 max(1, |zi|).

Proof. Recall that two multilinear functions that agree on {±1}2N must be equal as functions
on all R2N . Thus, we can write F (x) as

F (x) =
∑

w∈{±1}2N
F (w) ·

2N∏
i=1

xiwi + 1

2
,

since these two expressions are multilinear and they agree on {±1}2N . By our assumption,
for any fixed w ∈ {±1}2N , F (w) ∈ [−1, 1]. Thus, the value of |F (z)| is at most

|F (z)| ≤
∑

w∈{±1}2N
|F (w)| ·

∣∣∣∣∣
2N∏
i=1

ziwi + 1

2

∣∣∣∣∣
≤

∑
w∈{±1}2N

2N∏
i=1

|ziwi + 1|
2

=
2N∏
i=1

(
|zi + 1|

2
+
| − zi + 1|

2

)
=

2N∏
i=1

max(1, |zi|).

We got that the value of |F (z)| is bounded by
∏

i max(1, |zi|). The following claim bounds
the latter times the indicator that z 6= trnc(z).

Claim 5.2. E(x,y)∼G′
[∏N

i=1 max(1, |xi|) ·
∏N

i=1 max(1, |yi|) · 1(x,y)6=trnc(x,y)

]
≤ 4 ·N−2.

10

Proof. For every sequence of non-negative integers (a1, . . . , aN), we consider the event

∀i ∈ [N] : ai ≤ |xi| ≤ ai + 1,

denoted by Ea1,...,aN . For every sequence of non-negative integers (b1, . . . , bN), we consider
the event

∀i ∈ [N] : bi ≤ |yi| ≤ bi + 1,

denoted by E ′b1,...,bN . Since x1, . . . , xN are independent (by the definition of G ′), we have

Pr[Ea1,...,aN] ≤
N∏
i=1

Pr[|N (0, ε)| ≥ ai] ≤
N∏
i=1

e−a
2
i /(2ε),

and similarly Pr[E ′b1,...,bN] ≤
∏N

i=1 e
−b2i /(2ε). We thus have

(∗) = E
(x,y)∼G′

[N∏
i=1

max(1, |xi|) ·
N∏
i=1

max(1, |yi|) · 1(x,y)6=trnc(x,y)

]
≤

∑
a∈NN ,b∈NN ,
(a,b)6=02N

Pr[Ea1,...,aN ∧ E ′b1,...,bN] ·
N∏
i=1

(1 + ai) ·
N∏
i=1

(1 + bi)

≤
∑

a∈NN ,b∈NN ,
(a,b)6=02N

min{Pr[Ea1,...,aN],Pr[E ′b1,...,bN]} ·
N∏
i=1

(1 + ai) ·
N∏
i=1

(1 + bi)

≤
∑

a∈NN ,b∈NN ,
(a,b)6=02N

√
Pr[Ea1,...,aN] ·Pr[E ′b1,...,bN] ·

N∏
i=1

(1 + ai) ·
N∏
i=1

(1 + bi). (3)

We bound √
Pr[Ea1,...,aN] ·

N∏
i=1

(1 + ai) ≤ e−
∑

i a
2
i /(4ε) ·

N∏
i=1

(1 + ai) ≤ e−
∑

i a
2
i /(8ε)

since 1 + ai ≤ eai ≤ ea
2
i /(8ε) for ε < 1/8. Similarly,

√
Pr[E ′b1,...,bN] ·

∏N
i=1(1 + bi) ≤ e−

∑
i b

2
i /(8ε).

We plug these estimates in Expression (3):

(∗) ≤
∑

a∈NN ,b∈NN ,
(a,b)6=02N

e−
∑

i a
2
i /(8ε) · e−

∑
i b

2
i /(8ε)

≤
∑

a∈NN ,b∈NN ,
(a,b)6=02N

e−
∑

i ai/(8ε) · e−
∑

i bi/(8ε)

≤
∞∑
k=1

e−k/(8ε) ·

∣∣∣∣∣
{

(a, b) : a ∈ NN , b ∈ NN ,
∑
i

ai + bi = k

}∣∣∣∣∣
11

≤
∞∑
k=1

e−k/(8ε) ·
(

2N + k − 1

k

)
≤

∞∑
k=1

e−k/(8ε) · (2N)k ≤
∞∑
k=1

N−3k · (2N)k ≤ 4 ·N−2.

The next claim shows that a multilinear function has very similar expectation under G ′
and under the truncated variant of G ′. For the application in Section 7, we generalize the
claim a bit to include any shift by a constant vector z0 ∈ [−p0, p0]2N and any multiplication
by a positive constant p ∈ R, as long as p + p0 ≤ 1. We shall later use the claim with
p0 = 1/2, p ≤ 1/2 in Section 7 and (p0, p) = (0, 1) in Section 6.

Claim 5.3. Let 0 ≤ p, p0 such that p + p0 ≤ 1. Let F : R2N → R be a multilinear function
that maps {±1}2N to [−1, 1]. Let z0 ∈ [−p0, p0]2N . Then,

E
z∼G′

[|F (trnc(z0 + p · z))− F (z0 + p · z)|] ≤ 8 ·N−2.

Proof. Let E be the event that (trnc(z0 + p · z) 6= z0 + p · z). Note that E implies the event
z 6= trnc(z) since p+ p0 ≤ 1. Using Claim 5.1, we get

E
z∼G′

[|F (trnc(z0 + p · z))− F (z0 + p · z)|] ≤ E
z∼G′

[(1 + |F (z0 + p · z)|) · 1E]

≤ E
z∼G′

[(1 + |F (z0 + p · z)|) · 1z 6=trnc(z)]

≤ E
z∼G′

[(
1 +

2N∏
i=1

max(1, |(z0)i + p · zi|)
)
· 1z 6=trnc(z)

]

≤ E
z∼G′

[
2 ·

2N∏
i=1

max(1, |(z0)i + p · zi|) · 1z 6=trnc(z)

]
.

However,
∏2N

i=1 max(1, |(z0)i + p · zi|) ≤
∏2N

i=1 max(1, p0 + p|zi|) ≤
∏2N

i=1 max(1, |zi|). Using
Claim 5.2, we get

E
z∼G′

[|F (trnc(z0 + p · z))− F (z0 + p · z)|] ≤ E
z∼G′

[
2 ·

2N∏
i=1

max(1, |zi|) · 1z 6=trnc(z)

]
≤ 8 ·N−2.

6 Quantum Algorithm Distinguishing D and U2N

Let Q be the 1-query algorithm for Forrelation by Aaronson and Ambainis [AA15]. By
[AA15, Prop.6], on a given input x ∈ {±1}N , y ∈ {±1}N , the algorithm Q accepts with
probability (1 + ϕ(x, y))/2, where

ϕ(x, y) :=
1

N
·

∑
i∈[N],j∈[N]

xi ·Hi,j · yj.

In other words, if the algorithm outputs a {±1} value, then its expected value is exactly
ϕ(x, y). Observe that ϕ is a homogeneous polynomial of degree 2 in the input variables.

12

Claim 6.1. E(x,y)∼U2N
[ϕ(x, y)] = 0.

Proof. For any i, j ∈ [N], we have E[xiyj] = 0, under the uniform distribution. By linearity
of expectation, E[ϕ(x, y)] = 0.

Claim 6.2. E(x,y)∼G′ [ϕ(x, y)] = ε.

Proof. Using the fact that E(x,y)∼G′ [xi · yj] = ε ·Hi,j, we get

E
(x,y)∼G′

[ϕ(x, y)] = 1
N
·

∑
i∈[N],j∈[N]

Hi,j · E
(x,y)∼G′

[xi · yj]

= 1
N
·

∑
i∈[N],j∈[N]

Hi,j · ε ·Hi,j = ε.

Claim 6.3. E(x′,y′)∼D[ϕ(x′, y′)] ≥ ε/2.

Proof. By the multi-linearity of ϕ, Equation (2) and the definition of G ′,D we have

E
(x′,y′)∼D

[ϕ(x′, y′)] = E
(x,y)∼G′

[ϕ(trnc(x), trnc(y))]

≥ E
(x,y)∼G′

[ϕ(x, y)]−
∣∣∣∣ E
(x,y)∼G′

[ϕ(trnc(x), trnc(y))− ϕ(x, y)]

∣∣∣∣
≥ ε− E

(x,y)∼G′
[|ϕ(trnc(x), trnc(y))− ϕ(x, y)|].

Thus it suffices to upper bound E(x,y)∼G′ [|ϕ(trnc(x), trnc(y))−ϕ(x, y)|] by ε/2. Since ϕ(x, y)
is the expected value of a quantum algorithm outputting a value in {±1} it is bounded in
[−1, 1] on inputs x, y ∈ {±1}2N . Since ϕ is multilinear, we may apply Claim 5.3 with p0 = 0,
p = 1 and z0 = 02N to get

E
(x,y)∼G′

[|ϕ(trnc(x), trnc(y))− ϕ(x, y)|] ≤ 8 ·N−2 ≤ ε/2,

which completes the proof.

Corollary 6.4. There exists a quantum algorithm Q making 1-query and running in time
O(logN) such that |Ez′∼D[Q(z′)]− Eu∼U2N

[Q(u)]| ≥ ε/2.

7 D Fools Bounded Depth Circuits

In the following, for a Boolean function A : {±1}2N → {±1} and a vector x ∈ R2N , we
denote by A(x) the value of the multilinear extension of A on x. The multilinear extension
A : R2N → R can be written as

A(x) =
∑

S⊆[2N]

Â(S) ·
∏
i∈S

xi. (4)

Observe that A(~0) = Â(∅) = Ex∼U2N
[A(x)].

We use the following result of Tal [Tal17]:

13

Lemma 7.1 ([Tal17, Thm. 37]). There exists a universal constant c > 0 such that the
following holds. Let A : {±1}2N → {±1} be a Boolean circuit with at most s gates and depth

at most d. Then, for all k ∈ N, we have
∑

S⊆[2N]:|S|=k |Â(S)| ≤ (c · log s)(d−1)k.

For two vectors R,Q ∈ R2N we denote by R ◦Q ∈ R2N their point-wise product, that is
(R ◦Q)i = Ri ·Qi for all i ∈ [2N].

Claim 7.2. Let p ≤ 1/2. Let A : {±1}2N → {±1} be a Boolean circuit of size at most s
and depth at most d, such that

√
εp · (c · log s)d−1 ≤ 1/2. Let P ∈ [−p, p]2N . Then,∣∣∣∣ Ez∼G′[A(P ◦ z)]− A(~0)

∣∣∣∣ ≤ 3ε · p2 · (c · log s)2(d−1) ·N−1/2 .

Proof. By Equation (4) and since A(~0) = Â(∅),∣∣∣∣ E
z∼G′

[A(P ◦ z)]− A(~0)

∣∣∣∣ =

∣∣∣∣ E
z∼G′

[∑
∅6=S⊆[2N]

Â(S) ·
∏
i∈S

Pi · zi
]∣∣∣∣

=

∣∣∣∣ ∑
∅6=S⊆[2N]

Â(S) ·
∏
i∈S

Pi · E
z∼G′

[∏
i∈S

zi

]∣∣∣∣
=

∣∣∣∣ ∑
∅6=S⊆[2N]

Â(S) ·
∏
i∈S

Pi · Ĝ ′(S)

∣∣∣∣
≤

∑
∅6=S⊆[2N]

|Â(S)| · p|S| ·
√
ε
|S| · |Ĝ(S)|

≤
2N∑
k=1

(
√
εp)k ·

(
max
S:|S|=k

|Ĝ(S)|
)
·

∑
S⊆[2N],|S|=k

|Â(S)|

(by Lemma 7.1) ≤
2N∑
k=1

(
√
εp)k ·

(
max
S:|S|=k

|Ĝ(S)|
)
· (c log s)(d−1)k

=
2N∑
k=1

qk ·
(

max
S:|S|=k

|Ĝ(S)|
)

where q :=
√
ε · p · (c log s)d−1. For odd k, Claim 4.1 gives maxS:|S|=k |Ĝ(S)| = 0. For k = 2`,

` ≤ bn/2c, Claim 4.1 gives maxS:|S|=2` |Ĝ(S)| ≤ `! · N−`/2. For k = 2`, ` ≥ bn/2c + 1, we

have maxS:|S|=2` |Ĝ(S)| ≤ 1. Plugging these bounds in the above expression, gives

∣∣∣ E
z∼G′

[A(P ◦ z)]− A(~0)
∣∣∣ ≤ bn/2c∑

`=1

q2` · `! ·N−`/2 +
N∑

`=bn/2c+1

q2`.

Observe that each two consecutive elements in each sequence above are decreasing by at
least a factor of 2 (since q =

√
εp · (c · log s)d−1 ≤ 1/2). Thus, the sum is bounded by

2 · q2 ·N−1/2 + 2 · qn+1 ≤ 3q2 ·N−1/2.

14

Claim 7.3. Let p ≤ 1/4. Let A : {±1}2N → {±1} be a Boolean circuit of size s and depth
d, such that

√
εp · (c · log s)d−1 ≤ 1/4. Let z0 ∈ [−1/2, 1/2]2N . Then,∣∣∣ E
z∼G′

[A(z0 + p · z)]− A(z0)
∣∣∣ ≤ 12ε · p2 · (c · log s)2(d−1) ·N−1/2.

The proof is similar to the proof of [CHHL18, Claim 3.3], relying on the fact that
restrictions of A are also Boolean circuits of size at most s and depth at most d.

Proof. Given z0, we define a distribution Rz0 over restrictions ρ ∈ {−1, 1, ∗}2N , as follows.
For each entry i ∈ [2N] independently, we set ρi = sgn((z0)i) with probability |(z0)i| and
ρi = ∗ otherwise.

Define P ∈ [−2p, 2p]2N by Pi = p · 1
1−|(z0)i| for i ∈ [2N].

Let ρ ∼ Rz0 . Next, for any vector z ∈ R2N , we define a vector z̃ = z̃(z, ρ) ∈ R2N , as
follows:

z̃i =

{
ρi if ρi ∈ {±1}
Pi · zi otherwise

Thus, for a fixed z ∈ R2N , the vector z̃ is a random variable that depends on ρ. We show that
for any fixed z ∈ R2N , the distribution of the random variable z̃ is a product distribution
(over inputs in R2N), and the expectation of z̃ is the vector z0+p ·z. Indeed, each coordinate
z̃i is independent of the other coordinates, and its expected value is

E
ρ∼Rz0

[z̃i] = |(z0)i| · sgn((z0)i) + (1− |(z0)i|) · Pi · zi = (z0)i + p · zi.

Hence, since A is multi-linear and z̃ has a product distribution, by Equation (4),
Eρ∼Rz0

[A(z̃)] = A(z0 + p · z).
Let z ∼ G ′. We get∣∣∣ E

z∼G′
[A(z0 + p · z)]− A(z0)

∣∣∣ =
∣∣∣ E
z∼G′

E
ρ∼Rz0

[
A(z̃(z, ρ))− A(z̃(~0, ρ))

]∣∣∣
≤ E

ρ∼Rz0

[∣∣∣ E
z∼G′

[
A(z̃(z, ρ))

]
− A(z̃(~0, ρ))

∣∣∣]
However, for any fixed ρ, we have A(z̃(z, ρ)) = Aρ(P ◦ z), where Aρ is attained from A by
fixing the coordinates that were fixed in ρ, according to ρ. Thus,∣∣∣∣ Ez∼G′[A(z0 + p · z)]− A(z0)

∣∣∣∣ ≤ E
ρ∼Rz0

[∣∣∣ E
z∼G′

[Aρ(P ◦ z)]− Aρ(~0)
∣∣∣]

and we may apply Claim 7.2 to get that for any fixed ρ we have∣∣∣∣ Ez∼G′[Aρ(P ◦ z)]− Aρ(~0)

∣∣∣∣ ≤ 3 · ε · (2p)2 · (c log s)2(d−1) ·N−1/2

using the fact that P ∈ [−2p, 2p]2N and the assumption
√
εp(c · log s)d−1 ≤ 1/4.

Theorem 7.4. Let A : {±1}2N → {±1} be a Boolean circuit of size s and depth d. Then,∣∣∣Ez′∼D[A(z′)]− A(~0)
∣∣∣ ≤ 32ε · (c · log s)2(d−1) ·N−1/2 .

15

Proof. First, we can assume without loss of generality that
√
ε · (c · log s)d−1 ≤ 1

4
· N1/4, as

otherwise the claim is vacuous (as the LHS is at most 2 and the RHS is bigger than 2).
Let t := N , p := 1/

√
t = N−1/2. Note that

√
εp(c · log s)d−1 ≤ 1

4
· N−1/4 ≤ 1/4. Let

z(1), . . . , z(t) ∼ G ′. For i = 0, . . . , t, let z≤(i) = p · (z(1) + . . . + z(i)). The main observation is
that z≤(t) ∼ G ′. This is since the distribution of z≤(t) is a multivariate gaussian distribution
with the same expectation and the same covariance matrix as G ′. Thus, by Equation (2), it
will be sufficient to bound ∣∣∣E[A(trnc(z≤(t)))]− A(~0)]

∣∣∣ .
We do so by induction, by the triangle inequality: for i = 0, . . . , t− 1, we will show∣∣E[A(trnc(z≤(i+1)))]− E[A(trnc(z≤(i)))]

∣∣ ≤ 12 · εp2 · (c · log s)2(d−1) ·N−1/2 + 12 ·N−2 .

For i ∈ {0, . . . , t − 1}, let Ei be the event that z≤(i) ∈ [−1/2, 1/2]2N . Since (for i ≥ 1)
z≤(i)

p
√
i
∼ G ′, each j-th entry in z≤(i) is distributed N (0, p2iε) and we have

Pr[|(z≤(i))j| ≥ 1/2] ≤ Pr[|N (0, ε)| ≥ 1/2] ≤ e−1/(8ε) ≤ N−3.

By the union bound, we have Pr[Ei] ≥ 1− 2N · (N−3) = 1− 2N−2.
By Claim 7.3, used with z0 = z≤(i), we have that conditioned on the event Ei,∣∣E[A(z≤(i+1))|Ei]− E[A(z≤(i))|Ei]

∣∣ ≤ 12ε · p2 · (c · log s)2(d−1) ·N−1/2 .

We wish to show a similar bound on the truncated version of z≤(i+1). Note that conditioned
on Ei, we have z≤(i) = trnc(z≤(i)), but this is not necessarily the case for z≤(i+1). Using
Claim 5.3 with p0 = 1/2 and p ≤ 1/2 we get

∣∣E [|A(trnc(z≤(i+1)))− A(z≤(i+1))|
∣∣ Ei]∣∣ ≤

8 ·N−2. By the triangle inequality we get∣∣E[A(trnc(z≤(i+1)))|Ei]− E[A(trnc(z≤(i)))|Ei]
∣∣ ≤ ∣∣E[A(trnc(z≤(i+1)))|Ei]− E[A(z≤(i+1))|Ei]

∣∣
+
∣∣E[A(z≤(i+1))|Ei]− E[A(trnc(z≤(i)))|Ei]

∣∣
≤ 8 ·N−2 + 12ε · p2 · (c · log s)2(d−1) ·N−1/2 .

When Ei does not hold, the difference between A(trnc(z≤(i+1))) and A(trnc(z≤(i))) is at
most 2 since A maps [−1, 1]2N to [−1, 1]. Thus,∣∣E[A(trnc(z≤(i+1)))]− E[A(trnc(z≤(i)))]

∣∣
≤
∣∣E[A(trnc(z≤(i+1)))|Ei]− E[A(trnc(z≤(i)))|Ei]

∣∣+ 2 ·Pr[¬Ei]
≤ 12ε · p2 · (c · log s)2(d−1) ·N−1/2 + 12 ·N−2

By Equation (2) and the triangle inequality,∣∣∣ E
z′∼D

[A(z′)]− A(~0)
∣∣∣ =

∣∣∣∣ Ez∼G′[A(trnc(z))]− A(~0)

∣∣∣∣ =
∣∣∣E[A(trnc(z≤t))]− A(~0)

∣∣∣
≤

t−1∑
i=0

∣∣E[A(trnc(z≤(i+1)))]− E[A(trnc(z≤(i)))]
∣∣

16

≤ t · 12ε · p2 · (c · log s)2(d−1) ·N−1/2 + 12t ·N−2

= 12ε · (c · log s)2(d−1) ·N−1/2 + 12 ·N−1

≤ 32ε · (c · log s)2(d−1) ·N−1/2 ,

which completes the proof.

The following is an immediate corollary to Theorem 7.4.

Corollary 7.5. Let A : {±1}2N → {±1} be a Boolean circuit of size exp(logO(1)(N)) and
depth O(1). Then, |Ez′∼D[A(z′)]− Eu∼U2N

[A(u)]| ≤ polylog(N)/
√
N .

8 Proofs of the Main Theorems

8.1 Proof of Theorem 1.1

Proof. The first part of the theorem is Corollary 6.4. The second part is Corollary 7.5.

8.2 Proof of Theorem 1.2

Proof. Let δ ∈ (0, 1) be such that δ ≥ 2−polylog(N). Let m = 32 · ln(1/δ)
ε2

= polylog(N). We
take N1 = 2Nm. Note that polylog(N1) = polylog(N). We take D1 = D⊗m, that is, the
distribution over {±1}2N ·m, generated by taking a concatenation of m independent random
variables with distribution D. The first part of the theorem follows by the following claim.

Claim 8.1. There exists a quantum algorithm Q1 making O(m) queries and running in time
O(m · logN), such that, Prz∼D1 [Q1(z) accepts] ≥ 1− δ and Prz∼UN1

[Q1(z) accepts] ≤ δ.

Proof. The claim is proved by amplifying the advantage of the quantum algorithm in
Theorem 1.1, by making m = polylog(N) sequential repetitions, with fresh quantum states
for each repetition. Since the repetitions are sequential with fresh quantum states, the
output of each repetition is an independent random variable. Thus, by Chernoff’s bound,
the probability that the algorithm successfully distinguishes between D1 and the uniform
distribution is close to 1.

Formally, let z = (z(1), . . . , z(m)) ∈ {±1}m·2N , where each z(i) ∈ {±1}2N . We run the
quantum algorithm Q from Theorem 1.1 on each z(i) sequentially, and take a measurement
after each run. Given the results of the m runs, denoted r ∈ {±1}m, we compute S =

∑m
i=1 ri

and accept if and only if S ≥ m · ε/4. The algorithm runs in time O(m · logN) as it runs
m times the algorithm Q and then performs an addition of m bits. The algorithm makes m
queries to the input.

On a uniform input, the string r is distributed uniformly at random on {±1}m, thus by
Chernoff’s bound the probability that the algorithm accepts is at most e−m(ε/4)2/2 ≤ δ.

On input z ∼ D1, the string r is distributed as a product distribution of random variables
taking values in {±1} with expectation ≥ ε/2. By Chernoff’s bound, the probability that
the algorithm accepts is at least 1− e−m(ε/4)2/2 ≥ 1− δ.

The second part of the theorem follows by the following claim.

17

Claim 8.2. Let A be any Boolean circuit of size s and depth d. Then,∣∣∣∣ E
z∼D1

[A(z)]− E
u∼UN1

[A(u)]

∣∣∣∣ ≤ m · 32ε · (c · log s)2(d−1) ·N−1/2.

Proof. We apply a hybrid argument. We define m + 1 hybrids: U2Nm = H0, H1, . . . , Hm =
D⊗m, by taking Hi = D⊗i ⊗ (U2N)⊗(m−i). We bound the difference between Ez∼Hi−1

[A(z)]
and Ez′∼Hi

[A(z′)], for i ∈ {1, . . . ,m}. Let z = (z(1), . . . , z(i−1), u(i), u(i+1), . . . , u(m)) ∼ Hi−1.
Let z′ = (z(1), . . . , z(i−1), z(i), u(i+1), . . . , u(m)) ∼ Hi. For a partial assignment to all m parts
except the i-th part, a−i = (a(1), . . . , a(i−1), a(i+1), . . . , a(m)), we denote by A|a−i

(w) the value
of A on (a(1), . . . , a(i−1), w, a(i+1), . . . , a(m)). By an averaging argument, there exists a string
a−i, such that,∣∣∣∣ E

z′∼Hi

[A(z′)]− E
z∼Hi−1

[A(z)]

∣∣∣∣ ≤ ∣∣∣∣ E
z(i)∼D

[A|a−i
(z(i))]− E

u(i)∼U2N

[A|a−i
(u(i))]

∣∣∣∣ .
For any fixed string a−i, the restricted function A|a−i

is a Boolean circuit of size at most s
and depth at most d. Thus, we can apply Theorem 7.4 to get that∣∣∣∣ E

z(i)∼D
[A|a−i

(z(i))]− E
u(i)∼U2N

[A|a−i
(u(i))]

∣∣∣∣ ≤ 32ε · (c · log s)2(d−1) ·N−1/2.

The proof follows by a triangle inequality.

8.3 Proof of Theorem 1.3

Proof. Let δ ∈ (0, 1) be such that δ = 2−polylog(N). Let m = 32 · ln(1/δ)
ε2

= polylog(N). Let
N ′ = (2N)m. Note that polylog(N ′) = polylog(N).

Define the distribution D′ over {±1}N
′
, generated as follows: Let z(1), . . . , z(m) be m

independent random variables with distribution D. Output z := z(1) ⊗ . . . ⊗ z(m), where ⊗
denotes tensor product, that is, for i1, . . . , im ∈ [2N], zi1,...,im =

∏m
j=1 z

(j)
ij

.

Define the distribution U ′ over {±1}N
′
, generated as follows: Let u(1), . . . , u(m) be m

independent random variables with distribution U2N . Output u := u(1) ⊗ . . .⊗ u(m), that is,
for i1, . . . , im ∈ [2N], ui1,...,im =

∏m
j=1 u

(j)
ij

.

Claim 8.3. There exists a quantum algorithm Q′ making one query and running in time
polylog(N), such that, Prz∼D′ [Q

′(z) accepts] ≥ 1− δ and Prz∼U ′ [Q
′(z) accepts] ≤ δ.

Proof. Let Q be the one-query quantum algorithm from Theorem 1.1, for distinguishing
between D and U2N . Intuitively, the algorithm Q′ will run m unentangled copies of Q in
parallel.

Recall that for an input z ∈ {±1}2N , a quantum query to the input performs the diagonal
unitary transformation Uz, defined by

|i, w〉 → zi|i, w〉,

18

where i ∈ [2N] and w represents the auxiliary workspace that does not participate in the

query. Thus, for an input z = z(1) ⊗ . . . ⊗ z(m) ∈ {±1}N
′
, a quantum query to the input

performs the diagonal unitary transformation Uz, defined by

|i1, . . . , im, w〉 → zi1,...,im|i1, . . . , im, w〉,

where i1, . . . , im ∈ [2N] and w represents the auxiliary workspace. Since zi1,...,im =
∏m

j=1 z
(j)
ij

,

zi1,...,im|i1, . . . , im, w〉 =
(
z
(1)
i1
|i1〉
)
⊗ . . .⊗

(
z
(m)
im
|im〉

)
⊗ |w〉.

Thus, for an input z = z(1) ⊗ . . .⊗ z(m) ∈ {±1}N
′
,

Uz = Uz(1) ⊗ . . .⊗ Uz(m) ,

where ⊗ represents tensor product of operators.
Note that the algorithm Q′ is promised that the input z ∈ {±1}N

′
satisfies z =

z(1) ⊗ . . . ⊗ z(m), for some z(1), . . . , z(m) ∈ {±1}2N , as this is the case in both distributions
D′ and U ′.

Assume that the algorithm Q applies a query transformation on the state |Ψ〉. The
algorithm Q′ will prepare m unentangled copies of |Ψ〉 (by applying m times the procedure
run by Q to prepare |Ψ〉) and obtain the state |Ψ〉1 ⊗ . . .⊗ |Ψ〉m. Next, Q′ applies a query
transformation on that state and, assuming that z = z(1) ⊗ . . .⊗ z(m), obtains the state(

Uz(1)|Ψ〉1
)
⊗ . . .⊗

(
Uz(m)|Ψ〉m

)
.

Finally, Q′ takes the same measurement as Q, on each of the m unentangled states separately.
Since the states are unentangled, the measurements give independent results.

Given the results of the m measurements, denoted r ∈ {±1}m, we compute S =
∑m

i=1 ri
and accept if and only if S ≥ m · ε/4. The algorithm Q′ runs in time polylog(N) as it runs
m times the algorithm Q. The algorithm makes one query to the input.

On input z ∼ U ′, the string r is distributed uniformly at random on {±1}m, thus by
Chernoff’s bound the probability that the algorithm accepts is at most e−m(ε/4)2/2 ≤ δ.

On input z ∼ D′, the string r is distributed as a product distribution of random variables
taking values in {±1} with expectation ≥ ε/2. By Chernoff’s bound, the probability that
the algorithm accepts is at least 1− e−m(ε/4)2/2 ≥ 1− δ.

Claim 8.4. Let A be any Boolean circuit of size quasipoly(N) and constant depth. Then,∣∣∣ E
z∼D′

[A(z)]− E
u∼U ′

[A(u)]
∣∣∣ ≤ polylog(N) ·N−1/2.

Proof. The proof is by a reduction to Claim 8.2. Let A be any Boolean circuit of size
quasipoly(N) and constant depth, and denote

α =
∣∣∣ E
z∼D′

[A(z)]− E
u∼U ′

[A(u)]
∣∣∣.

19

We will construct a Boolean circuit A′ of size quasipoly(N) and constant depth, such that,∣∣∣ E
z∼D1

[A′(z)]− E
u∼UN1

[A′(u)]
∣∣∣ = α,

where D1, N1 are as in the proof of Theorem 1.2. The proof hence follows by Claim 8.2.
The circuit A′ gets as input z = (z(1), . . . , z(m)) ∈ {±1}m·2N , computes z′ := z(1) ⊗ · · · ⊗

z(m) and outputs A(z′). Note that by the definitions of D1, UN1 ,D′, U ′, if z ∼ D1, then
z′ ∼ D′ and if z ∼ UN1 , then z′ ∼ U ′. Thus,∣∣∣ E

z∼D1

[A′(z)]− E
u∼UN1

[A′(u)]
∣∣∣ = α.

Note that each bit in z′ is the XOR of m bits in the inputs (z(1), . . . , z(m)). Since
m = polylog(N), the computation z′ := z(1) ⊗ · · · ⊗ z(m) can be done by a circuit of size
poly(N) and constant depth. Thus, A′ is a Boolean circuit of size quasipoly(N) and constant
depth. Therefore, by Claim 8.2, α ≤ polylog(N) ·N−1/2.

We are now ready to define the distributions D2 and Ũ and complete the proof of the
theorem. Note that in Claim 8.3, the running time of the algorithm Q′ is polylog(N) and not
O(logN ′) as needed. Nevertheless, this is easy to fix by a padding argument. Assume that
the running time of Q′ is at most (logN)c, where c is a constant. Let N2 = N ′ + 2(logN)c .

Let D2 be D′, padded by 2(logN)c ones, and let Ũ be U ′, padded by 2(logN)c ones. Note that
polylog(N2) = polylog(N), that is, N = 2(logN2)Ω(1)

.
The theorem thus follows by Claim 8.3 and Claim 8.4.

Acknowledgements We would like to thank Scott Aaronson, Shalev Ben-David, Mika
Göös, Johan H̊astad, Pooya Hatami and Toni Pitassi for very helpful discussions.

References

[Aar10] Scott Aaronson: BQP and the polynomial hierarchy. STOC 2010: 141-150

[Aar11] Scott Aaronson: A Counterexample to the Generalized Linial-Nisan Conjecture.
CoRR abs/1110.6126 (2011)

[AA15] Scott Aaronson, Andris Ambainis: Forrelation: A Problem that Optimally Separates
Quantum from Classical Computing. STOC 2015: 307-316

[BG81] Charles H. Bennett, John Gill: Relative to a Random Oracle A, PA != NPA !=

co-NPA with Probability 1. SIAM J. Comput. 10(1): 96-113 (1981)

[BV97] Ethan Bernstein, Umesh V. Vazirani: Quantum Complexity Theory. SIAM J.
Comput. 26(5): 1411-1473 (1997)

[Chen16] Lijie Chen: A Note on Oracle Separations for BQP. CoRR abs/1605.00619 (2016)

20

[CHHL18] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett:
Pseudorandom Generators from Polarizing Random Walks. Electronic Colloquium on
Computational Complexity (ECCC) 25: 15 (2018)

[FSS84] Merrick L. Furst, James B. Saxe, Michael Sipser: Parity, Circuits, and the
Polynomial-Time Hierarchy. Mathematical Systems Theory 17(1): 13-27 (1984)

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, Emanuele Viola: On Beating
the Hybrid Argument. Theory of Computing 9: 809-843 (2013)

[Gro96] Lov K. Grover: A Fast Quantum Mechanical Algorithm for Database Search. STOC
1996: 212-219

[H̊as14] Johan H̊astad: On the Correlation of Parity and Small-Depth Circuits. SIAM J.
Comput. 43(5): 1699-1708 (2014)

[Iss1918] Leon Isserlis: On a Formula for the Product-Moment Coefficient of any Order of a
Normal Frequency Distribution in any Number of Variables. Biometrika, 12(1): 134-139
(1918)

[LMN93] Nathan Linial, Yishay Mansour, Noam Nisan: Constant Depth Circuits, Fourier
Transform, and Learnability. J. ACM 40(3): 607-620 (1993)

[Rem16] Zachary Remscrim: The Hilbert Function, Algebraic Extractors, and Recursive
Fourier Sampling. FOCS 2016: 197–208

[Sho97] Peter W. Shor: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput. 26(5): 1484-1509 (1997)

[Sim94] Daniel R. Simon: On the Power of Quantum Computation. SIAM J. Comput. 26(5):
1474-1483 (1997)

[Tal17] Avishay Tal: Tight Bounds on the Fourier Spectrum of AC0. Computational
Complexity Conference 2017: 15:1-15:31

[Watrous00] John Watrous: Succinct quantum proofs for properties of finite groups. FOCS
2000: 537-546

A Oracle Separation Result

In this section, we prove that using the distribution D1, one can construct an oracle O such
that BQPO * PHO. The proof was essentially given in the work of Aaronson [Aar10] and
Fefferman et al. [FSUV13, Section 2.6] (based on [BG81]). We repeat it here for completeness.

Proof of Corollary 1.5. We view the oracle O as encoding the truth-tables of Boolean
functions of different input lengths. As in the proof of Theorem 1.2, for each n ∈ N, let
N = 2n, ε = 1

24 ln(N)
, δ = 1

n2 , m = 32·d ln(1/δ)
ε2
e andN1 = 2N ·m. Note thatN1 is a function of n

and we denote it also as N1(n). With probability 1/2 we draw xn ∈ {±1}N1 from the uniform

21

distribution UN1 , and with probability 1/2 we draw xn ∈ {±1}N1 from the distribution D1.

We interpret xn ∈ {±1}N1 as a Boolean function fn : {±1}dlog(N1(n))e → {±1} that describes
the oracle O restricted to strings of length dlog(N1(n))e (note that dlog(N1(n))e is strictly
increasing in n). Let L be the unary language consisting of all 1n for which xn was drawn
from the distribution D1.

Using Claim 8.1, we show that there exists a BQPO machine M that decides L on all but
finitely many values of n. The machine M on input 1n would run the quantum algorithm Q1

from Claim 8.1 on the oracle string provided by O of length N1(n) and would accept/reject
according to Q1. Note that this is a BQP machine since Q1 runs in polylog(N) = poly(n)
time. We show that with high probability over the choices of O, the machine M decides L
correctly on all but finitely many inputs. Indeed, for sufficiently large n:

1. If 1n ∈ L, then xn was sampled from D1, and the probability that Q1 accepts xn is at
least 1− 1/n2.

2. If 1n /∈ L, then xn was sampled from UN1 , and the probability that Q1 accepts xn is at
most 1/n2.

We see that in both cases the probability (over the choices of O and the randomness of
M ’s measurements) that MO decides L correctly on 1n is at least 1 − 1/n2. Let n0 ∈ N be
sufficiently large. Then,

Pr
M,O

[MO decides L correctly on 1n for all n ≥ n0] ≥
∏
n≥n0

(1− 1/n2) ≥ 0.9,

(where PrM,O denotes the probability over the choices of O and the randomness of M ’s
measurements). By averaging, with probability at least 0.5 over the choice of O, we have

Pr
M

[MO decides L correctly on 1n for all n ≥ n0] ≥ 0.8.

On the other hand, for any fixed PH machine A and fixed oracle O, let En(A,O) be
the event that AO decides L correctly on 1n. By Theorem 1.2 for sufficiently large n, we
have PrO[En(A,O)] ≤ 0.51, since we may reinterpret AO on 1n as a Boolean circuit of size
at most 2poly(n) = quasipoly(N) and constant depth. By independence of O on different
input lengths, and the fact that A can only ask queries of length poly(n) on input 1n,
we get that there are infinitely many input lengths n1, n2, . . . such that for each i ∈ N,
PrO[Eni+1

(A,O)|En1(A,O) ∧ . . . ∧ Eni
(A,O)] ≤ 0.51. We get that

Pr
O

[E1(A,O) ∧ E2(A,O) ∧ . . .] = 0,

and since there are countably many PH machines we have

Pr
O

[∃A : E1(A,O) ∧ E2(A,O) ∧ . . .] = 0.

Overall, we got that with probability at least 0.5 over the choice of O, MO decides L
correctly on 1n for all n ≥ n0, and no PHO machine decides L correctly on 1n for all n ≥ 1.
Thus, there exists an oracle O where both events happen. Fixing the oracle O, we may
hardwire the values of L on 1n for n < n0 to M , making it a BQPO machine that decides
L correctly on 1n for all n ≥ 1.

22
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

