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Abstract
We consider normalized Boolean circuits that use binary operations of disjunction and conjunc-
tion, and unary negation, with the restriction that negation can be only applied to input variables.
We derive a lower bound trade-off between the size of normalized Boolean circuits computing
Boolean semi-disjoint bilinear forms and their conjunction-depth (i.e., the maximum number of
and-gates on a directed path to an output gate). In particular, we show that any normalized
Boolean circuit of at most ε logn conjunction-depth computing the n-dimensional Boolean vec-
tor convolution has Ω(n2−4ε) and-gates. For Boolean matrix product, we derive even a stronger
lower-bound trade-off. Instead of conjunction-depth we use the negation-dependent conjunction-
depth, where one counts only and-gates whose each direct predecessor has a (not necessarily
direct) predecessor representing a negated input variable. We show that if a normalized Boolean
circuit of at most ε logn negation-dependent conjunction-depth computes the n×n Boolean ma-
trix product then the circuit has Ω(n3−2ε) and-gates. We complete our lower-bound trade-offs for
the Boolean convolution and matrix product with upper-bound trade-offs of similar form yielded
by the known fast algebraic algorithms.

Keywords and phrases Boolean circuits, semi-disjoint bilinear form, Boolean vector convolution,
Boolean matrix product
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1 Introduction

1.1 Background
A set F of polynomials over a semi-ring is a form (in case of the Boolean semi-ring, just a
set of monotone Boolean functions). F is a semi-disjoint bilinear form if it is defined on the
set of variables X ∪ Y and the following properties hold.

1. For each polynomial Q in F and each variable z ∈ X ∪ Y, there is at most one monomial
(in the Boolean case, called a prime implicant [24]) of Q containing z.

2. Each monomial of a polynomial in F consists of exactly one variable in X and one variable
in Y.

3. The sets of monomials of polynomials in F are pairwise disjoint.

The n-dimensional vector convolution and the n× n matrix product are important and
popular examples of semi-disjoint bilinear forms (for the convolution, |X| = |Y | = n and
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|F | = 2n−1 while for the matrix product, |X| = |Y | = |F | = n2). Both semi-disjoint bilinear
forms in the arithmetic and Boolean case have a wide range of fundamental applications, for
instance, in stringology (see, e.g., [6]) and graph algorithms (see, e.g., [27]).

Two n× n integer matrices can be arithmetically multiplied using O(n3) additions and
multiplications following the definition of matrix product. This is optimal if neither other
operations nor negative constants are allowed [13, 16, 20]. If additionally subtraction or
negative constants are allowed then the so-called fast matrix multiplication algorithms can
be implemented using O(nω) operations [7, 22, 26], where ω < 3. They rely on algebraic
equations following from the possibility of term cancellation (for a study on the power of
arithmetic term cancellation see [23]). Le Gall and Vassilevska Williams have recently shown
the exponent ω of fast matrix multiplication to be smaller than 2.373 in [7, 26]. The fast
arithmetic algorithms run on 0− 1 matrices yield the same asymptotic upper time bounds
for the n × n Boolean matrix multiplication. On the other hand, Raz proved that if only
addition, multiplication and products with constants of absolute value not exceeding one are
allowed then n× n matrix multiplication requires Ω(n2 logn) operations [17].

Similarly, the arithmetic convolution of two n-dimensional vectors can be computed using
O(n2) additions and multiplications. Next, the convolution of two n-dimensional vectors
over a commutative ring with the so-called principal n-th root of unity can be computed via
Fast Fourier Transform using O(n logn) operations of the ring. The n-dimensional Boolean
vector convolution admits an algorithm using O(n log2 n log logn) Boolean operations by
reduction to the fast integer multiplication algorithm from [21] in turn relying on Fast Fourier
Transform [6].

It is well known that for uniform problems, their Boolean circuit complexity corresponds
up to logarithmic factors to their Turing complexity [24]. Unfortunately, until today no
super-linear lower bounds on the size of circuits using binary and unary Boolean operations
forming a complete Boolean basis are known for natural problems [24]. On the other hand,
such lower bounds are known in case of monotone Boolean circuits that use only the binary
operations of disjunction and conjunction [1, 2, 3, 11, 13, 14, 15, 16, 18, 24, 25]. In particular,
Alon and Boppana showed by refining Razborov’s breakthrough method [18] that the (m, s)-
clique, i.e., the problem of determining if a graph on m vertices includes a complete subgraph
on s vertices, requires monotone Boolean circuits of 2

√
m size [1].

There exist interesting connections between the general Boolean circuit complexity and
the monotone one [4]. In particular, any Boolean circuit using disjunctions, conjunctions
and negations can be easily transformed into a Boolean circuit using the same operations,
where negations are applied solely to input variables. The transformations follows from de
Morgan’s laws and keep the circuit size within a factor 2. In other words, one can see such
Boolean circuits as monotone Boolean circuits with respect to the input literals, i.e., input
variables and their negations. We shall term Boolean circuits in the latter form normalized.

In case of the n × n Boolean matrix product, almost tight or even tight lower bounds
of the form Ω(n3) for the monotone circuit complexity were presented in a series of papers
[13, 14, 16] more than three decades ago. The best known (in the literature) lower bound
on monotone Boolean circuit complexity for the n-dimensional Boolean vector convolution
is Ω(n2/ log6 n) due to Grinchuk and Sergeev [8]. It improves on the previously best n3/2

lower bound due to Weiss [25] and an earlier best n4/3 lower bound due to Blum [3]. The
lower bounds of Weiss, Grinchuk and Sergeev are on the number of disjunctions while that
of Blum is on the number of conjunctions.

Furthermore, Lingas studied the complexity of monotone Boolean circuits for Boolean semi-
disjoint bilinear forms under various monotone circuit restrictions in [12]. In particular, he
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author year lower bound

N. Pippinger and L.G. Valiant [15] 1976 Ω(n log n)
E.A. Lamagna [11] 1979 Ω(n log n)

N. Blum [3] 1980 n4/3 conjunctions
R. Weiss [25] 1981 n3/2 disjunctions

M.I. Grinchuk and I.S. Sergeev [8] 2011 Ω(n2/ log6 n) disjunctions

Table 1 Lower bounds on the monotone Boolean circuit complexity for the n-dimensional Boolean
vector convolution in a historical perspective.

considered monotone Boolean circuits of bounded conjunction-depth, i.e., bounded maximum
number of and-gates on any single directed path to an output gate in the monotone circuit.
He showed that any monotone Boolean circuit of conjunction-depth at most d computing
a Boolean semi-disjoint form with p prime implicants has to have at least p/22d and-gates.
As a corollary, he obtained the Ω(n2−2ε) lower bound on the size of any monotone Boolean
circuit of ε logn-bounded conjunction-depth computing the n-dimensional Boolean vector
convolution.

1.2 Our contributions

Surprisingly enough, we can derive a lower-bound trade-off between the circuit size and its
conjunction-depth for normalized Boolean circuits computing semi-disjoint bilinear forms
similar to that for monotone Boolean circuits from [12].

More exactly, we show that any normalized Boolean circuit of conjunction-depth at most
d computing a Boolean semi-disjoint form with p prime implicants has to have Ω(p/24d)
and-gates. As a corollary, we obtain the Ω(n2−4ε) lower bound on the size of any normalized
Boolean circuit of ε logn-bounded conjunction-depth computing the n-dimensional Boolean
vector convolution.

For Boolean matrix product, we present even a stronger lower-bound trade-off additionally
relying on the tight lower bound on the monotone complexity of this product [13, 14, 16].
Instead of conjunction-depth we use the negation-dependent conjunction-depth, where one
counts only and-gates whose each direct predecessor has a (not necessarily direct) predecessor
representing a negated input variable. We show that if a normalized Boolean circuit of
at most ε logn negation-dependent conjunction-depth computes the n× n Boolean matrix
product then the circuit has Ω(n3−2ε) and-gates.

We complete our lower-bound trade-offs with upper-bounds trade-offs of similar form
yielded by the aforementioned fast algebraic algorithms. We observe that there is a positive
constant c ≤ 1 such that for any ε ∈ (0, 1

c ), the n-dimensional Boolean vector convolution
can be computed by a normalized Boolean circuit of ε logn-bounded conjunction-depth and
O(n2−cε + n log2 n log logn) size. Similarly, there is a positive constant c ≤ 1 such that for
any ε ∈ (0, 1

c ), the n× n Boolean matrix product can be computed by a normalized Boolean
circuit of ε logn-bounded conjunction-depth and O(n3−(3−ω)cε) size.
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1.3 Motivations
Our primary motivation is the very weak progress in deriving non-trivial lower bounds on the
size of Boolean circuits using disjunctions, conjunctions and negations to compute explicit
Boolean functions computable in polynomial time, since the 70s (from 3n [19] to almost
5n [9, 10]). For this reason, trade-offs between structural parameters and the size for the
aforementioned circuits computing explicit functions should be of interest.

We believe that the conjunction-depth of a normalized Boolean circuit computing a
Boolean form whose prime implicants (see Preliminaries) consist of relatively few literals is
an interesting structural characteristic. (For not-necessarily normalized Boolean circuit using
disjunctions, conjunctions and negations, the concept of conjunction-depth does not make
sense since conjunctions can be eliminated by composing negations with disjunctions via de
Morgan’s laws. Also, there are trivial examples of Boolean functions that require a large
conjunction-depth in normalized circuits. E.g., the function given by ¬

∨n
i=1 xi ≡

∧n
i=1 x̄i

obviously requires logn conjunction-depth. The reason is that it has a prime implicant
consisting of n literals.)

Observe that each prime implicant of the functions occurring in semi-disjoint bilinear forms
consists solely of two literals. Hence, any semi-disjoint bilinear form admits a normalized
(in fact, monotone) Boolean circuit having conjunction-depth 1 and the number of gates
proportional to the total number of prime implicants (see also Fact 1).

Our lower-bound trade-offs showing that in order to decrease the size of normalized
Boolean circuits computing a semi-disjoint bilinear form one has to increase their conjunction-
depth should be of interest. Our upper-bound trade-offs imply that normalized Boolean
circuits of even sub-logarithmic conjunction-depth for Boolean vector convolution or Boolean
matrix product have substantially smaller size than their monotone counterparts of unbounded
conjunction-depth.

1.4 Paper structure
In Preliminaries, we introduce basic definitions and notation. In Section 3, we present three
lemmata on restricted normalized circuits computing a Boolean form. In Section 4, we show
our lower-bound trade-offs for semi-disjoint bilinear forms and the stronger lower-bound
trade-off for Boolean matrix product. In Section 5, we present our upper-bound trade-offs.
We conclude with final remarks where among other things a related result is discussed.

2 Preliminaries

For two Boolean n-dimensional vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1), their convo-
lution is a vector c = (c0, ..., c2n−2), where ci =

∨min{i,n−1}
l=max{i−n+1,0} al ∧ bi−l for i = 0, ..., 2n− 2.

A literal is a variable or the negation of a variable.

A (Boolean) circuit is a finite directed acyclic graph with the following properties:

1. The indegree of each vertex (termed gate) is either 0, 1 or 2.
2. The source vertices (i.e., vertices with indegree 0 called input gates) are labeled by

elements in some set of literals, i.e., variables and their negations, and the Boolean
constants 0, 1.

3. The vertices of indegree 2 are labeled by elements of the set {and, or} and termed
and-gates and or-gates, respectively.

4. The vertices of indegree 1 are labeled by negation and termed negation-gates.
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A Boolean circuit is normalized if it does not use negation-gates. A Boolean circuit is
monotone if it is normalized and it does not use negated variables.

The size of a Boolean circuit C is the total number of non-input gates in C while the depth
of C is the maximum length of a directed path in C. Furthermore, C is of conjunction-depth
d if the number of and-gates on any directed path in C does not exceed d. We say that a gate
in C is negation dependent if an input gate labeled by a negated variable is its (not necessarily
direct) predecessor. C is of negation-dependent conjunction-depth d if on any directed path
in C the number of and-gates whose each direct predecessor is negation dependent does not
exceed d.

With each gate g of a normalized Boolean circuit, we associate a set T (g) of terms in
a natural way. Thus, with each input gate, we associate the singleton set consisting of the
corresponding variable, negated variable or constant. Next, with an or-gate, we associate
the union of the sets associated with its direct predecessors. Finally, with an and-gate g,
we associate the set of concatenations t1t2 of all pairs of terms t1, t2, where ti ∈ T (gi)
and gi stands for the i-th direct predecessor of g for i = 1, 2. The function computed at
the gate g is the disjunction of the functions (called monoms) represented by the terms in
T (g). The monom represented by a term t is obtained by replacing concatenations in t with
conjunctions, respectively. A term in T (g) is a zero-term if it contains the Boolean constant
0 or a variable and its negation. Clearly, a zero-term represents the Boolean constant 0.

A form composed of k Boolean functions is computed by a Boolean circuit if there are k
distinguished gates (called output gates) computing the k functions.

A term (an output term, respectively) of a circuit C is a term in T (g) for some gate
(output gate, respectively) g of C.

An implicant of a Boolean form F is a conjunction of some variables and/or some negated
variables of F and/or Boolean constants (monom) such that there is a function belonging to
F which is true whenever the conjunction is true. If the conjunction includes the Boolean 0
or a variable x and its negation x̄ then it is a trivial implicant of (any) F.

A non-trivial implicant of F that is minimal with respect to included literals is a prime
implicant of F.

The following upper bound is straight-forward.

I Fact 1. [12] Each Boolean semi-disjoint bilinear form composed of l functions on x0, ..., xn−1
and y0, ..., yn−1 with p prime implicants in total can be computed by a monotone Boolean
circuit of conjunction-depth 1 with p ≤ n2 and-gates and p− l or-gates.

Proof. First, we use p and-gates to compute each prime implicant xiyj separately. Then,
we form l disjoint or-unions of the prime implicants corresponding to the l functions of the
bilinear form using p− l or-gates. J

3 Lemmata on Normalized Circuits

Recall that the monom represented by a term t is obtained by replacing concatenations in
t with conjunctions, respectively. We shall say that an implicant (in particular, a prime
implicant) of a function fg computed at the gate g is represented by a single term in T (g) if
there is a term t ∈ T (g) such that the monom represented by t is equivalent to the implicant.

In the following two lemmata, we shall show that if the output terms of a normalized
circuit computing a form contain a bounded number of different negated variables, we can
obtain a situation somewhat similar to that in monotone circuits, where each prime implicant
of an output function has to be represented by a single output term. Namely, we can zero
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some part of variables such that in the resulting circuit, a substantial fraction of the prime
implicants of the form is represented by single output terms.

I Lemma 1. Let C be a normalized Boolean circuit computing a form F whose prime
implicants do not contain negated variables. For each prime implicant of the function fo ∈ F
computed at the output gate o of C, there is a term in T (o) representing the (whole) prime
implicant or a conjunction of the prime implicant with solely negated variables.

Proof. Consider a prime implicant of fo. Assign the Boolean 1 to the variables in the prime
implicant and the Boolean 0 to all remaining variables in F. Under this assignment, the value
of fo should be 1. Hence, since each term in T (o) has to represent an implicant of fo, there
must exist a term in T (o) representing the whole prime implicant or a conjunction of the
prime implicant with solely negated variables. J

I Lemma 2. Let C be a normalized Boolean circuit computing a form F with p prime
implicants. Suppose that each prime implicant of F is composed of q (not negated) variables
and each output term of C contains at most k distinct negated variables. Let 0 < β < 1.
There is a subset of the set of variables of F such that after setting them to the Boolean 0
there are at least pβq(1− β)k prime implicants of F represented by single output terms of
the circuit C ′ resulting from C. Note that the circuit C ′ computes a form F ′ whose set of
prime implicants is a subset of the set of prime implicants of F.

Proof. Set each variable of F to the Boolean constant 0 with probability 1− β uniformly at
random. Consider any prime implicant xi1 ...xiq of F. The probability that none of xi1 , ..., xiq
is set to 0 is βq. By Lemma 1, there is a set of 0 ≤ l ≤ k negated variables whose conjunction
with xi1 ...xiq is represented by an output term of C. The probability that each of these
negated l variables is set to 0 is at least (1 − β)k. Hence, the expected number of prime
implicants of the form computed by the resulting circuit and represented by single output
terms in this circuit is at least pβq(1 − β)k. It follows that there is a subset of the set of
variables satisfying the requirements of the lemma.

Finally, F can be represented by the disjunction of its prime implicants. After the setting
of the variables in the aforementioned subset to the Boolean 0 the prime implicants containing
them disappear and the form F ′ can be represented by the disjunction of the remaining
prime implicants of F. The remaining prime implicants form the set of prime implicants of
F ′. J

The final lemma in this section is pretty obvious.

I Lemma 3. Each term, in particular, each output term of a normalized Boolean circuit
of d-bounded conjunction-depth includes at most 2d literals. Similarly, each term of a
normalized Boolean circuit of d-bounded negation-dependent conjunction-depth includes at
most 2d negated variables.

Proof. An and-gate can at most double the number of literals in single terms while an
or-gate does not increase it. Hence, by induction on the maximum number d of and-gates
on a path from an input gate to a gate g in the circuit, any term in T (g) includes at most
2d literals. This proves the first part. Observe that an and-gate whose direct predecessor is
not reachable by any directed path from input gates labeled with negated variables cannot
increase the number of negated variables in single terms in the circuit. Hence, the proof of
the second part is analogous. J
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4 Lower-bound Trade-offs (main results)

4.1 Semi-disjoint bilinear forms
In monotone circuits, where negation is not used, each prime implicant of a function computed
at a gate h has to be represented by a single term in T (h) (there might be several such terms
and many other terms having subterms representing the prime implicant). This is not the
case in normalized circuits generally. There, we can associate to a prime implicant of the
function the set of all terms in T (g) representing a conjunction of the prime implicant with
an additional conjunction of literals (e.g., xiyj could be represented by {xiyjxk, xiyj x̄k}).
Interestingly, the disjunction of the aforementioned additional conjunctions does not have to
be always true (e.g., x ∨ y could be computed by xȳ ∨ y so the prime implicant x would be
represented just by {xȳ}).

First, we shall show how a restriction on the maximum number of distinct literals which
occur in an output term of a normalized Boolean circuit computing a Boolean semi-disjoint
form can be used to derive a non-trivial lower bound on the number of and-gates in the
circuit.

I Lemma 4. Let C be a normalized Boolean circuit computing a semi-disjoint bilinear form
F on the variables x0, ..., xn−1 and y0, ..., yn−1. Suppose that for each output gate o in C,
each term in T (o) contains at most k different literals. Let h be a gate connected by directed
paths with some output gates in C such that the function computed at h has prime implicants
zq1 , ..., zql(h) which are single (not negated) variables represented by single terms in T (h), and
possibly some other prime implicants. The inequality l(h) ≤ k holds or h can be replaced by
the Boolean constant 1.

Proof. Consider a directed path P connecting h with some output gate o in C. At the output
gate o, for each zqr

, 1 ≤ r ≤ l(h), any single term t(zqr
) ∈ T (h) representing zqr

has to
appear in terms t1t(zqr

)t2 in the associated set T (o) (see Preliminaries) such that t1t2 is a
concatenation (i.e., conjunction) of some terms added by subsequent and-gates on P and
t1t(zqr )t2 represents an implicant of the function fo computed at o. In general, t(zqr ) may
include several occurrences of zqr

and the Boolean 1, for simplicity we may assume w.l.o.g.
that t(zqr ) = zqr . (The reason of having t1, t2 instead of a single term t is that syntactically
the concatenations can come from both sides.)

Suppose that there is such a t1t2, where t1zt2 ∈ T (o) for some z ∈ {zqr |1 ≤ r ≤ l(h)},
which does not represent an implicant of fo. It follows from the definition of t1t2 that for any
z ∈ {zqr

|1 ≤ r ≤ l(h)}, the term t1zt2 also appears in the set T (o) of terms associated with
the output gate o and consequently it has to represent an implicant of fo as well. Therefore,
for each such a z, either t1t2 contains z̄ or t1t2 contains the unique "mate" variable z′ for
which zz′ is a prime implicant of fo. Note that if z is an x-variable then z′ is a y-variable
and vice versa. Set H to {zq1 , ..., zql(h)}. E.g., the case that t1t2 contains z̄ could happen if
there were some other variables z” ∈ H for which t1z”t2 are not trivial implicants of fo but
t1zt2 becomes a trivial implicant because it contains both z and z̄.

Consider the mapping of each z ∈ H either to the z′ in t1t2 (which must be the unique
"mate" among the prime implicants of fo) or to the z̄ ∈ t1t2. Clearly, all the z̄ for z ∈ H are
distinct negated variables. Because no two elements of H have the same mate among the
prime implicants of fo, no two of the z′ for z ∈ H can be the same. Finally, the mates z′
are single not negated variables. It follows that the mapping is one-to-one. We infer that
l(h) ≤ k.

On the contrary, if each such term t = t1t2 for each path P connecting h with any output
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gate o, represents an implicant of fo then on each P we could connect the successor of the
start vertex h with the Boolean constant 1 instead of h and the output gate o still would
output fo. To see this observe that then each u ∈ T (h) is a part of the terms of the form
t1ut2 in T (o), where t1t2 represents an implicant of the function fo. Since this holds for each
successor of h, this gate can be replaced by the constant 1. J

For an and-gate g in a normalized Boolean circuit C computing a semi-disjoint bilinear
form F, Sg will denote the set of prime implicants s of F such that:
1. s is a prime implicant of the function computed at g that is represented by a single term

in T (g),
2. s is not a prime implicant of the function computed at either of the two direct predecessors

h of g that is represented by a single term in T (h), and
3. there is a directed path connecting g with the output gate computing the function whose

prime implicant is s.

I Lemma 5. Let C be a normalized Boolean circuit computing a semi-disjoint bilinear
form F. Suppose that for each output gate o in C, each term in T (o) contains at most k
different literals. Next, suppose that C does not contain any and-gate that could be replaced
by the Boolean 1 so the resulting circuit would still compute F. For any and-gate g in C, the
inequality |Sg| ≤ k2 holds.

Proof. We may assume w.l.o.g. |Sg| ≥ 1. It follows that at least for one of the direct
predecessor gates h of g, the function computed at h has at least

√
|Sg| single variable prime

implicants represented by single terms in T (h). By Lemma 4, we infer that either
√
|Sg| ≤ k

or the gate h can be replaced by the constant 1. The latter possibility contradicts the lemma
assumptions. J

I Theorem 6. Let C be a normalized Boolean circuit computing a semi-disjoint bilinear
form F with p prime implicants. Suppose that each output term of C contains at most k
distinct literals. The circuit C has at least p

k4 (1− 1
k )k−2 and-gates.

Proof. We shall apply Lemma 2 with β = 1
k and q = 2, and k set to k−2 in the lemma, to the

circuit C. Let C ′ be the circuit resulting from C by zeroing the subset of variables specified
in this lemma. Note that the output terms of C ′ still contain at most k different literals,
and that C ′ computes a semi-disjoint bilinear form F ′ whose prime implicants are prime
implicants of F. Among the prime implicants of F ′, at least p

k2 (1− 1
k )k−2 are represented by

single output terms by Lemma 2.
Iterate the following steps starting from the circuit C ′. Whenever the current circuit

contains an and-gate or an or-gate h that can be replaced by the Boolean constant 1 without
affecting the functions computed at the output gates, replace h by 1. By induction on the
number of iterations, the new circuit still computes the same bilinear form F ′. Also, the
number of prime implicants of F ′ represented by single output terms does not drop and each
output term of the new circuit contains at most k literals.

Since the circuit C ′ is finite and each iteration eliminates at least one gate, after a finite
number of iterations, we obtain a circuit C ′′ sharing the aforementioned properties, not
containing any and-gate or or-gate that could be replaced by 1, and still computing F ′. It
follows from Lemma 4 that C ′′ does not have any gate h such that the function computed at
h contains more than k single-variable prime implicants represented by single terms in T (h).

Let S be the set of at least p
k2 (1− 1

k )k−2 prime implicants of F ′ represented by single
output terms of C ′′. Recall the definition of the set Sg of prime implicants of a form for an
and-gate g given before Lemma 5. For each s ∈ S, there must be at least one and-gate g
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of C ′′ such that s ∈ Sg. (To find such a gate g start from the output gate computing the
function of F ′ for which s is a prime implicant represented by a single term and iterate the
following steps: check if the current gate g satisfies s ∈ Sg, if not go to the direct predecessor
of g that computes a function having s as a prime implicant represented by a single term.)
By the latter lemma, we have |Sg| ≤ k2. Hence, C ′′, and consequently C ′ and C, have at
least |S|/k2 ≥ p

k2 (1− 1
k )k−2/k2 ≥ p

k4 (1− 1
k )k−2 and-gates since |S| ≥ p

k2 (1− 1
k )k−2. J

By combining Theorem 6 with Lemma 3, we obtain our first main result.

I Theorem 7. Let C be a normalized Boolean circuit of conjunction-depth at most d
computing a semi-disjoint bilinear form F with p prime implicants. The circuit C has at
least p

24d (1− 1
2d )2d−2 and-gates.

Observe that the n-dimensional Boolean vector convolution has Θ(n2) prime implicants
while the n× n Boolean matrix product has Θ(n3) prime implicants.

I Corollary 8. For ε > 0, any normalized Boolean circuit of ε logn-bounded conjunction-depth
that computes the n-dimensional Boolean vector convolution has Ω(n2−4ε) and-gates.

I Corollary 9. For ε > 0, any normalized Boolean circuit of ε logn-bounded conjunction-depth
that computes the n× n Boolean matrix product has Ω(n3−4ε) and-gates.

4.2 A stronger lower-bound trade-off for Boolean matrix product
Recall Lemma 2. We can provide a stronger lower bound trade-off for Boolean matrix product
by using the following simple complementary lemma.

I Lemma 10. Let the normalized Boolean circuits C, C ′ and the forms F, F ′ computed by
them be defined as in Lemma 2. Let F ′′ be a form having the following properties: for each
f ′′ ∈ F ′′ different from a constant there is a distinct f ∈ F such that the prime implicants of
f ′′ are implicants of f and all prime implicants of f represented by single output terms in
C ′ are also prime implicants of f ′′, Suppose that any monotone Boolean circuit computing
such form F ′′ has at least u and-gates and at least w or-gates. Then the circuits C, C ′ have
also at least u and-gates and at least w or-gates.

Proof. We can transform C ′ to a monotone Boolean circuit C ′′ computing a form F ′′ having
the properties stated in the lemma as follows. We substitute the Boolean constant 0 for
all negated variables. Thus, we replace each directed edge from an input gate labeled with
a negated variable to a and-gate or an or-gate by a directed edge from the gate labeled
with 0 to the and-gate or or-gate. The substitution turns all output terms of C ′ including a
negated variable to an output term equivalent to the Boolean 0, but it leaves the output
terms containing only not negated variables unchanged. Hence, it follows from the properties
of the circuit C ′ and the form F ′ that the form F ′′ computed by the resulting monotone
circuit C ′′ has the properties stated in the lemma. By our assumptions, the circuit C ′′, and
consequently also C ′ and C have at least u and-gates and at least w or-gates. J

If F stands for Boolean matrix product then tight lower bounds on the monotone
circuit complexity of F ′′ follow from the known tight lower bounds on the monotone circuit
complexity of Boolean matrix product.

I Fact 2. [13, 14, 16] Any monotone Boolean circuit computing the n× n Boolean matrix
product has at least n3 and-gates.
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I Corollary 11. Suppose that for each function h in a form H there is a distinct function f
in the n×n Boolean matrix product form such that each prime implicant of h is an implicant
of f. Let p be the total number of prime implicants of H that are also prime implicants of
the n× n Boolean matrix product. Any monotone Boolean circuit computing H has at least p
and-gates.

Proof. Suppose that there is a monotone Boolean circuit that computes H using a number
of and-gates smaller than p We can augment this circuit with n3 − p and-gates forming
the prime implicants of the Boolean matrix product that are not prime implicants of H
and no more than n2(n− 1) or-gates in order to obtain a monotone circuit computing the
Boolean matrix product. Since the resulting circuit has less than n3 and-gates, we obtain a
contradiction with Fact 2. J

In the resulting lower bound trade-off, the number of not negated variables in output
terms does not have to be limited.

I Theorem 12. Let C be a normalized Boolean circuit computing the n× n Boolean matrix
product. Suppose that each output term of C contains at most k distinct negated variables.
The circuit has at least n3

k2 (1− 1
k )k and-gates.

Proof. Set F to the n× n Boolean matrix product, q to 2, and β to 1
k in Lemma 2. Now it

is sufficient to combine Lemma 10 with Corollary 11. Note that the form F ′′ in the latter
lemma shares at least n3

k2 (1− 1
k )k prime implicants with F and that it has the properties of

the form H in the corollary. J

I Corollary 13. Let C be a normalized Boolean circuit computing the n× n Boolean matrix
product. Suppose that C is of negation-dependent conjunction-depth d. The circuit C has at
least n3

22d (1− 1
2d )2d and-gates. In particular, if d = ε logn then C has Ω(n3−2ε) and-gates.

Proof. By Lemma 3, each output term of the circuit C contains at most 2d distinct negated
variables. By Theorem 12, C has at least n3

22d (1− 1
2d )2d and-gates. Consequently, if d = ε logn

then it has Ω(n3−2ε) and-gates. J

5 Upper-bound Trade-offs

The fast algebraic algorithms for arithmetic matrix multiplication [7, 22, 26] yield normalized
Boolean circuits for the n× n Boolean matrix product of O(nω) size and O(logn) depth (see
[5]). Similarly, the fast algorithm for integer multiplication [21] yields normalized Boolean
circuits for the n-dimensional Boolean vector convolution of O(n log2 n log logn) size and
O(logn) depth [6, 5]. We can use these facts to derive the following upper-bound trade-offs
analogous to our lower-bound trade-offs for these two problems.
I Proposition 1. There is a positive constant c ≤ 1 such that for any ε ∈ (0, 1

c ), the
n-dimensional Boolean vector convolution can be computed by a normalized Boolean circuit
of ε logn-bounded conjunction-depth and O(n2−cεn log2 n log logn) size.

Proof. By the aforementioned facts, for some positive constant c ≤ 1, an ncε-dimensional
Boolean vector convolution can be computed by a normalized Boolean circuit of ε logn-
bounded conjunction-depth and O(ncε log2 n log logn) size. On the other hand, since cε < 1,
the n-dimensional Boolean vector convolution can be easily reduced to n2−2cε ncε-dimensional
Boolean vector convolutions using just disjunctions. The resulting normalized Boolean circuit
has still ε logn-bounded conjunction-depth and O(n2−cε log2 n log logn) size. J
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I Proposition 2. There is a positive constant c ≤ 1 such that for any ε ∈ (0, 1
c ), the n× n

Boolean matrix product can be computed by a normalized Boolean circuit of ε logn-bounded
conjunction-depth and O(n3−(3−ω)cε)) size.

Proof. By the aforementioned facts, there is a positive constant c ≤ 1 such that an ncε× ncε
Boolean matrix product can be computed by a normalized Boolean circuit of ε logn-bounded
conjunction-depth and O(nωcε) size. On the other hand, since cε < 1, the n × n Boolean
matrix product can be easily reduced to n3−3cε ncε×ncε Boolean matrix products using just
disjunctions. The resulting normalized Boolean circuit has still ε logn-bounded conjunction-
depth and O(n3−(3−ω)cε) size. J

6 Final Remarks

The disjointness of the sets of prime implicants of the Boolean functions forming a bilinear
form is not essential in the proofs of Theorems 6, 7. Hence, these theorems hold even
for Boolean bilinear forms satisfying only the two remaining conditions (see Introduction)
provided that p denotes the number of distinct prime implicants of the form.

Our main results are the lower-bound trade-offs between the number of and-gates and
conjunction-depth in normalized Boolean circuits computing semi-disjoint bilinear forms
(Section 4). They rely on the analysis of output terms containing bounded numbers of literals
because of the assumed bound on the conjunction-depth (Lemma 3, note that this lemma
wouldn’t hold if the fan-in of and-gates wasn’t bounded). In case of the stronger lower bound
trade-off for Boolean matrix product only the number of negated variables in output terms
is bounded by the assumed bound on the negation-dependent conjunction-depth.

Likely, also for Boolean vector convolution and other non-necessarily bilinear forms, we
could obtain stronger lower-bound trade-offs analogous to that for Boolean matrix product
based on Lemma 10.

In order to apply Lemma 10 to a form F with known non-trivial lower bound on its
monotone circuit complexity, we need to derive a generalization of this lower bound. Such
a generalization should include a sparsification of the set of the prime implicants of F
resulting in a form F ′′ having the properties stated in Lemma 10. (In case of Boolean matrix
product this has been easy since the corresponding lower bound is tight, see Corollary 11.)
E.g., suppose F is the (m, s)-clique given by the Boolean polynomial

∨
S∈[m]s

∧
{i,j}⊂S x{i,j},

where [m]s stands for the family of s element subsets of {1, 2, ...,m}. Alon and Boppana
[1], by refining Razborov’s method [18], showed in [1] that any monotone Boolean circuit
computing the (m, s)-clique has Ω((m/ logm)s) and-gates for s = O(1) (Theorem 3.16 in [1]).
It seems possible to generalize their complicated proof in order to include the aforementioned
sparsification. By combining this with Lemmata 2, 10, 3, we could obtain a similar lower-
bound trade-off for the (m, s)-clique. Likely, it would be as follows: For fixed s ≥ 3 and
ε < 2

s−1 , if a normalized Boolean circuit of ε logm-bounded negation-dependent conjunction-
depth computes the (m, s)-clique then the circuit has Ω(ms−ε(s

2)/(logm)s) and-gates. Since
the (m, s)-clique easily reduces to the mds/3e × mds/3e Boolean matrix product (see the
subsection 3.5 in [1]), we can obtain a corresponding upper-bound trade-off for the (m, s)
clique by substituting mds/3e for n in the upper bound in Proposition 2.
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