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Abstract

We study the task of seedless randomness extraction from recognizable sources,
which are uniform distributions over sets of the form {x : f(x) = v} for functions f in
some specified class C. We give two simple methods for constructing seedless extractors
for C-recognizable sources.

Our first method shows that if C admits XOR amplification, then we can construct
a seedless extractor for C-recognizable sources by using a mildly hard function for C as a
black box. By exploiting this reduction, we give polynomial-time, seedless randomness
extractors for three natural recognizable sources: (1) constant-degree algebraic sources
over any prime field, where constant-degree algebraic sources are uniform distributions
over the set of solutions to a system of constant degree polynomials; (2) sources rec-
ognizable by randomized multiparty communication protocols of cn bits, where c > 0
is a small enough constant; (3) halfspace sources, or sources recognizable by linear
threshold functions. In particular, the new extractor for each of these three sources
has linear output length and exponentially small error for min-entropy k ≥ (1 − α)n,
where α > 0 is a small enough constant.

Our second method shows that a seed-extending pseudorandom generator with
exponentially small error for C yields an extractor with exponentially small error
for C-recognizable sources, improving a reduction by Kinne, Melkebeek, and Shaltiel
[KvMS12]. Using the hardness of the parity function against AC0 [H̊as87], we sig-
nificantly improve Shaltiel’s extractor [Sha11] for AC0-recognizable sources. Finally,
assuming sufficiently strong one-way permutations, we construct seedless extractors for
sources recognizable by BPP algorithms, and these extractors run in quasi-polynomial
time.

∗Supported by NSF Grant CCF-1526952, NSF Grant CCF-1705028, and a Simons Investigator Award
(#409864, David Zuckerman).
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1 Introduction

Randomness is needed for many applications, such as statistics, algorithms and cryptography.
However, most physical sources are not truly random, in the sense that they can have
substantial biases and correlations. Weak random sources can also arise in cryptography
when an adversary can learn partial information about a uniformly random string.

A natural approach to dealing with weak random sources is to apply a randomness
extractor – a function that transforms a weak random source into an almost-perfect random
source. However, it is impossible to give a single function that extracts even one bit of
randomness from sufficiently general classes of sources [SV86]. There are two ways to combat
this. One is to extract with the help of another short random string. An object constructed
in this manner is called a seeded extractor [NZ96]. The focus of this paper is the second
way: to extract from more structured sources (without using additional random bits). Such
a function is called a seedless, or deterministic, extractor.

More formally, a random source X is modeled as a probability distribution over n bit
strings with some entropy k. In the context of randomness extraction, the standard measure
of entropy is the so called min-entropy – the min-entropy k of a source X is defined as
H∞(X) = mins(log(1/Pr[X = s])). Then, the definition of a seedless extractor can be
presented as follows.

Definition 1.1 (Seedless extractors for structured sources). Let D be a class of distributions
over {0, 1}n. We say a function Ext : {0, 1}n → {0, 1}m is a (k, ε)-extractor for D if for any
distribution D ∈ D with min-entropy at least k, we have

Ext(D) ≈ε Um,

where Um denotes the uniform distribution over {0, 1}m and ≈ε stands for ε-close in statistical
distance (Definition 4.1).

A large body of research has been devoted to constructing seedless extractors for various
structured sources. There are mainly two natural perspectives to limit the structure of a
distribution: an algebraic perspective and a computational perspective.

The algebraic perspective is to impose some algebraic structure on the distribution, such
as an affine source [Bou07]. Later, affine sources were generalized to distributions defined
using low-degree polynomials. On one hand, Dvir, Gabizon and Wigderson [DGW09] studied
polynomial sources, which are the images of low-degree polynomial maps. On the other hand,
viewing an affine source as the kernel, or set of zeros, of an affine mapping, Dvir [Dvi12]
introduced the class of sources sampled uniformly from kernels or sets of common zeros of
one or more polynomials, which he called algebraic sources1.

The computational perspective is to assume a distribution has “low complexity”. This
started with Trevisan and Vadhan [TV00], who considered distributions that can be sampled
by efficient algorithms. They showed that constructing a seedless extractor for this class is
closely related to proving lower bound for circuits and gave a conditional construction of

1For clarification, in [Dvi12], Dvir mentioned sources which are distributed uniformly on varieties. A
variety is also a set of common zeros of one or more polynomials, but it is often defined to require the ground
field to be algebraically closed.
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such an extractor based on lower bound assumptions. Later, in [KRVZ11], an unconditional
extractor was constructed for sources generated by space-bounded algorithms. More recently,
Viola [Vio14] constructed a seedless extractor for AC0-samplable sources.

1.1 Recognizable sources

We focus on recognizable sources, first suggested by Shaltiel [Sha11]. Recognizable sources
are uniform distributions over sets of the form {x : f(x) = v} for functions f coming from
some specified class. Formally, for any boolean function f : {0, 1}n → {0, 1}, define the
source recognizable by f , denoted by Uf , as the uniform distribution over f−1(1). For short,
we call this distribution the f -recognizable source. For any boolean function family C, the
set of C-recognizable sources is the set of f -recognizable sources, for each f ∈ C.

This notion naturally interacts with the algebraic and computational perspectives to
limit the structure of a distribution, and also captures several distributions that were widely
studied. For example, distributions with algebraic structures are those distributions recog-
nizable by algebraic classes – affine sources are distributions recognizable by affine functions
and algebraic sources are distributions recognizable by products of low-degree polynomials.
Moreover, distributions that have “low complexity” could also be the distributions recogniz-
able by low-complexity classes, such as small circuits.

Shaltiel [Sha11] initially proposed an extractor for recognizable sources. He showed that
such extractors produced randomness that was in some sense not correlated with the input
and hence could be used for derandomization. In particular, to derandomize any class
of randomized algorithms, he needed to explicitly construct an extractor for distributions
recognizable by the class. He showed that without further changes, some appropriate known
extractors could work for distributions recognizable by decision trees, streaming algorithms,
and AC0. What’s more, assuming average-case hardness against polynomial-size circuits, he
showed that applying the hard function on disjoint blocks of the input was an extractor for
distributions recognizable by general polynomial-time algorithms.

Later, Kinne, Melkebeek and Shaltiel [KvMS12] improved the derandomization results
in [Sha11] by using seed-extending pseudorandom generators, which are pseudorandom gen-
erators that reveal their seed. They gave reductions between seed-extending PRGs and
extractors for recognizable sources. However, both Shaltiel [Sha11] and this later paper
[KvMS12] focused on derandomization rather than constructing new extractors.

1.2 XOR Amplification

Given a boolean function f : {0, 1}n → {0, 1}, let f⊕m(x1, . . . , xm) :=
⊕

i∈[m] f(xi) denote

the XOR of m independent copies of f . The XOR Amplification Lemma2 states that if a
function f is hard on average for some computational class C, (i.e., f cannot be computed
correctly by any function in C on at most a (1/2 + p)-fraction of of the inputs), then f⊕m

cannot be computed correctly on at most a (1/2 + pΩ(m))-fraction of of the inputs. Loosely
speaking, the hardness of f is amplified when the outputs of independent copies of f are
XOR together. Indeed, this idea is analogously to the information theoretic setting. If f is

2This is usually called simply the XOR lemma, but we want to distinguish it from a different XOR lemma.
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a biased coin with Pr[f = 1] = 1/2 + p, then the XOR of m independent biased coins, f⊕m,
induces a coin with Pr[f⊕m = 1] = 1/2 − (−2p)m/2. However, showing that such an idea
holds in the computational ideas is significantly more involved.

There are several works dedicated to proving XOR amplification for computational mod-
els. Yao [Yao82] first suggested XOR amplification, and proved that XOR (hardness) am-
plification held for polynomial-size circuits. Unfortunately, the amplification stops when
XORing more than logarithmically many copies, which makes it not so useful for us. Later,
Viola and Wigderson [VW08] showed XOR amplification for multi-party communication
complexity and polynomials over GF(2). Subsequently, their proof was extended by Bog-
danov, Kawachi and Tanaka [BKT13], to prove XOR amplification for polynomials over any
prime field.

In this paper, we give a new application of XOR amplification – constructing seedless
extractors for recognizable sources.

2 Overview of our results

2.1 From XOR amplification to Extractors for recognizable sources

As others have independently observed, it is not hard to use correlation bounds to extract
a single bit. In this paper, we use XOR amplification to extend the output length from one
bit to linear in the input length.

Intuitively, XOR amplification states that if a function f is hard on average for some
computational class C, then f⊕m(x1, . . . , xm) = f(x1)⊕ · · · ⊕ f(xm) is exponentially harder
on average. In particular, consider a computational class C as a family of boolean functions.

Let C ⊆ {{0, 1}∗ → {0, 1}} be a class of boolean functions. For a positive constant α, we
say C has α-XOR amplification if there exists a function h : {0, 1}t → {0, 1} such that for
any positive integer k, Cor(h⊕k, g) ≤ 2−αk, for any g ∈ C.

We show that if C is closed under restrictions and C has α-XOR amplification, then there
is an efficient extractor for Cn-recognizable sources, where Cn denotes the set of all n-variate
functions in C.

Theorem 2.1. Let C ⊆ {{0, 1}∗ → {0, 1}} be any boolean function class closed under
restrictions and α be any positive constant. If C has α-XOR amplification, then for any
positive integer n, there is an explicit seedless ((1− β)n, 2−Ω(αn)) extractor Ext : {0, 1}n →
{0, 1}m for Cn-recognizable sources, where β > 0, m = Ω(αn), and Cn denotes the set of all
n-variate functions in C.

Our construction uses h : {0, 1}t → {0, 1} and the generator matrix M of a good [l,m, r]-
code, where l = n/t. We think of the input length t as a large constant, and the distance r
as being linear in l. Then Ext : {0, 1}n → {0, 1}m is simply

Ext(x) = h(l)(x)M, where h(l)(x = (x1, . . . , xl)) = (h(x1), . . . , h(xl)).

Li [Li16] uses a similar construction to extend the output length of two-source extractors
from one bit to more.
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2.1.1 Algebraic sources over GF(2)

An algebraic set is a set of common zeros of one or more multivariate polynomials defined
over a finite field F. An algebraic source is a random variable distributed uniformly over
an algebraic set, which was originally introduced by Dvir [Dvi12]. Algebraic sources are a
natural generalization of affine sources that have been widely studied. Furthermore, we say
that an algebraic source has degree d if the algebraic source can be defined by polynomials
of degree at most d. Dvir obtained explicit extractors for degree-d algebraic sources with
entropy rate greater than 1/2 over moderately sized fields, where |F| = poly(d), and with
small entropy rate over large fields, where |F| = dΩ(n2).

Golovnev and Kulikov [GK16] related the study of Boolean dispersers for quadratic al-
gebraic sets to improving circuit lower bounds. A disperser is a relaxation of an extractor,
which is only required to output a non-constant bit from a weak random source. They posed
the open question of constructing a disperser for any algebraic set of size 20.03n and defined
by using at most 1.78n quadratic polynomials. Such a disperser yields a new circuit lower
bound.

To the best of our knowledge, the best known extractor for algebraic sources over GF(2)
was due to Remscrim [Rem16], outputting one bit with error O(1/

√
n) for min-entropy n−nc

for any c < 1/2. However it can handle larger degree n1/2−α, where α > 0 is a constant.
Our construction significantly improves the extractor for constant-degree algebraic sources,
outputting more bits and handling lower min-entropy.

We construct a seedless extractor for algebraic sources of constant degree for some linear
min-entropy. In particular, the new extractor has linear output length and exponentially
small error for min-entropy k ≥ (1− α)n, where α > 0 is a small enough constant.

Definition 2.2 (Algebraic extractor). We say that Ext : Fn → Fm is a (k, d, ε)-algebraic
extractor over F if for any degree-d algebraic source UV with |V | ≥ |F|k, Ext(UV ) ≈ε Um.

Applying Theorem 2.1 to this setting, we prove the following theorem.

Theorem 2.3. For any positive integer d, there is an efficient
(
(1− 1/cd)n, d, 2

−Ω(n/cd)
)
-

algebraic extractor Ext : Fn2 → Fm2 , where cd = Θ(d24d), m = Ω(n/cd).

2.1.2 Algebraic sources over prime fields

We can extend our algebraic extractor to any prime field Fq.

Theorem 2.4. For any positive integer d and any prime field Fq, there is an efficient(
(1− 1/cd,q)n, d, q

−Ω(n/cd,q)
)
-algebraic extractor Ext : Fnq → Fmq , where cd,q = Θ(d222dq3 log q),

m = Ω(n/cd,q).

2.1.3 Sources recognizable by communication protocols

We consider a boolean function class that has low communication complexity. Communica-
tion complexity was defined by Yao [Yao79], who introduced a standard 2-party communi-
cation model. Later, Chandra, Furst, and Lipton [CFL83] generalized this to the multiparty
model. In a t-party communication NOF (number-on-forehead) model, each party holds a
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separate input and each party knows all but its own input. These parties attempt to compute
(or approximate) a given function of these t inputs by exchanging few bits of communica-
tion. The complexity of a communication protocol is the number of bits exchanged on the
worst input. Both deterministic and randomized communication protocols are considered.
A randomized protocol can be viewed as a distribution on deterministic protocols.

For deterministic 2-party protocols, Shaltiel [Sha11] already constructed an efficient ex-
tractor that has linear output for linear min-entropy and exponentially small error. To do
this, he proved that 2-source extractors are also extractors for sources recognizable by deter-
ministic 2-party protocols, and hence some known constructions of 2-source extractors could
be used. However, this approach is tailored to the 2-party case and does not generalize to
the t-party case for some t > 2.

We construct an extractor for sources recognizable by randomized t-party protocols.
Formally, we prove the following theorem.

Theorem 2.5. There exists an explicit seedless ((1 − 1/ct)n, 2−c1n/ct) extractor Ext :(
{0, 1}n/t

)t → {0, 1}c2n/ct for sources recognizable by randomized t-party communication pro-
tocols of at most c3n/4

t bits, where ct = Θ(t4t) and c1, c2, c3 are some positive constants.

This extractor has linear output for linear min-entropy and exponentially small error,

and is simply Ext(x) =
(
∧(l)
t (x)

)
M , where l = n/t, ∧t is the AND function over t variables

and M is the l × (c2n/ct) generator matrix of a good linear code.

2.1.4 Halfspace sources

Halfspace sources are sources recognizable by linear threshold functions. A linear threshold
function (abbreviated LTF) is a boolean function f : {0, 1}n → {0, 1} that can be represented
as f(x) = 1∑

i∈n aixi>a0 for some constants a0, a1, . . . , an ∈ R. From a geometric perspective,
a boolean LTF is a halfspace-indicator to the discrete cube {0, 1}n.

We construct an efficient extractor that has linear output for linear min-entropy and
exponentially small error for halfspace sources.

Theorem 2.6. There exists an explicit seedless ((1− c1)n, 2−c2n) extractor Ext : {0, 1}n →
{0, 1}c3n for halfspace sources, where c1, c2, c3 are some positive small enough constants.

The construction of this extractor is simply Ext(x) =
(
∧(l)

2 (x)
)
M , where l = n/2, M is

the l × c3n generator matrix of a good linear code.

2.2 From Seed-extending PRGs to Extractors for recognizable
sources

The Kinne et al. reductions between seed-extending pseudorandom generators and extractors
for recognizable distributions were asymmetric. They showed that an extractor with expo-
nentially small error yielded a seed-extending pseudorandom generator with exponentially
small error. However, they proved a weak converse.
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In this paper, we prove that a seed-extending pseudorandom generator with exponen-
tially small error yields an extractor with exponentially small error. This applies to flip-
invariant families of boolean functions, which are invariant under flipping input bits (see
Definition 4.11).

Lemma 2.7. Let C be a flip-invariant family of boolean functions over n bits. If G is
a seed-extending (d, ε)-pseudorandom generator G : {0, 1}d → {0, 1}n for C, then for any
∆ = ∆(n) > 0 we can construct an (n − ∆, 2∆ε)-extractor Ext : {0, 1}n → {0, 1}n−d
for C-recognizable sources. Specifically, if G(x) = (x,E(x)) fools any function in C, then
Ext(x ◦ y) = y ⊕ E(x) is an (n − ∆,2∆ε)-extractor for C-recognizable sources, where x ∈
{0, 1}d, y ∈ {0, 1}m, where m = n− d.

In particular, the reduction in [KvMS12] requires a tiny ε ≤ 2−(m+2∆) for the seed-
extending PRG to get an (n − ∆, 2−∆)-extractor. Moreover, the reduction in [KvMS12]
breaks down for a seed-extending PRG, G(x) = (x,E(x)), where E(x) is longer than x. We
improve the reduction from seed-extending PRGs to extractors to require only ε ≤ 2−2∆,
without depending on the output length m. Furthermore, the new reduction can still work
even for a seed-extending PRG, G(x) = (x,E(x)), where E(x) is longer than x.

Based on this new reduction, we significantly improve extractors for two important types
of recognizable sources as follows.

2.2.1 Circuit-recognizable sources

Kinne et al. proved that the well-known Nisan-Wigderson pseudorandom generator con-
struction [NW88] can be made seed-extending. Therefore, assuming hardness against small
circuits, we can construct an extractor for sources recognizable by small circuits.

Proposition 2.8. For any ∆ = ∆(n) > 0 and positive integers l < n, if there is a function
H that is ε-hard at input length

√
l/2 for circuits of size s+ (n− l)2O(log(n−l)/ log l) and depth

d + 1, then we can get an (n − ∆, (n − l)2∆ε)-extractor Ext : {0, 1}n → {0, 1}n−l for any
sources recognizable by circuits of size s and depth d.

Using the hardness of the parity function against AC0 [H̊as87], we significantly improve
Shaltiel’s extractor [Sha11] for AC0-recognizable sources.

Theorem 2.9. For any ∆ = ∆(n) > 0, there exists a polynomial time computable (n −
∆, (n − l)2∆−Ω(l1/(2d+2))) extractor Ext : {0, 1}n → {0, 1}n−l for any sources recognizable by

circuits of size 2n
1/d

and depth d.

In particular, for min-entropy n − n1/(αd), our extractor outputs n − n2/α+O(1/d) bits,
whereas Shaltiel’s extractor outputs only n1/(αd) bits. When α > 2d/(d − 1) is a large
enough constant, our extractor outputs n − o(n) bits whereas Shaltiel’s extractor outputs
only n1/(αd) bits. For min-entropy n− polylog(n) bits, our extractor outputs n− polylog(n),
whereas Shaltiel’s extractor outputs only polylog(n) bits.

Our methods also apply to formulas. Komargodski, Raz and Tal [KRT17] constructed
an explicit function h : {0, 1}n → {0, 1} that is 2−Ω(r)-hard for any deMorgan formula of size
n3−o(1)/r2. Based on this hardness result, we can construct an efficient extractor for sources
recognizable by deMorgan formulas of size close to n3/2.
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Theorem 2.10. For any ∆, r, α > 0 and m ≤ (1 − α)n, there exists a polynomial time
computable (n−∆,m2∆−Ω(r))-extractor Ext : {0, 1}n → {0, 1}m for any sources recognizable
by deMorgan formulas of size n3/2−o(1)/r2.

2.2.2 Sources recognizable by efficient randomized algorithms

Note that there are no efficient seed-extending cryptographic PRGs. Otherwise, with re-
vealed seeds, it is easy to efficiently distinguish the output of an efficient seed-extending
PRG, G(x) = (x,E(x)), from a random string (x, y), by checking whether y equals E(x).

We show that there is an inefficient seed-extending cryptographic PRG implied by the
existence of one-way permutations. By our reduction, we show that a one-way permutation
with exponentially small error yields an (n−nΩ(1), 2−n

Ω(1)
) extractor extracting n−nO(1) bits

from sources recognizable by BPP algorithms. Formally, this follows by taking ε = 2−cn
α

and q(n) = nw(1) in the following theorem.

Theorem 2.11. For any polynomial-time computable functions t(·) and ε(·), assume that
f : {0, 1}∗ → {0, 1}∗ is a one-way permutation with error ε(·) against t(·)-bounded invert-
ers. Then for any ∆ = ∆(n) > 0 and a positive constant δ < 1, we can construct an(
n−∆, O

(
2∆ε(nδ)cδ

))
extractor Ext : {0, 1}n → {0, 1}n−nδ for sources recognizable by ran-

domized algorithms running in time
(
t(nδ)

)cδ , where cδ is a constant depending on δ. The
running time of the extractor is a polynomial times the time to compute the inverse function
f−1 of the one-way permutation f with input length nδ.

Furthermore, the running time of such an extractors will be quasi-polynomial if there
exists a sufficiently strong one-way permutations. In particular, by scaling down, we have
the following corollary.

Corollary 2.12. For any constants a, b, c, δ > 0, assume that there exists a one-way permu-
tation invertible in time O

(
2n

a)
with error 2−n

c
against 2δn

b
-bounded inverters, Then, for

any positive constants α and β < 1, we can get an
(
n− cβ logcα (n) , O

(
2−cβ logcα(n)

))
extrac-

tor Ext : {0, 1}n → {0, 1}n−nβ for sources recognizable by randomized algorithms running in

time 2cβδ logbα(n), where cβ is a constant depending on β.The running time of the extractor is

O
(

2logaα(nβ)
)

.

3 Overview of our main constructions and proofs

3.1 From XOR amplification to Extractors

In this subsection, we describe how to construct a seedless extractor for C-recognizable
sources if there exists a function h : {0, 1}t → {0, 1} such that for any g ∈ C and k ≤ n/t,
Cor(h⊕k, g) ≤ 2−Ω(k). Think of t = O(1).

We start with the statistical XOR lemma3, usually attributed to Vazirani. We say a
random variable Z over {0, 1} is ε-biased if bias(Z) = Cor(Z, 0) = |Pr[Z = 0] − Pr[Z =
1]| ≤ ε.

3The statistical XOR lemma is unrelated to the XOR amplification used in our proof.
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Lemma 3.1 (Statistical XOR Lemma). Let X1, . . . , Xm be 0-1 random variables such that
for any nonempty S ⊆ {1, . . . ,m}, the random variable

⊕
i∈S Xi is ε-biased. Then, the

distribution of (X1, . . . , Xm) is ε2m/2-close to uniform.

Let gi(x) be the i-th bit of Ext(x) for each i ∈ [m]. Thus, to show that the output of Ext
is close to uniform, it suffices to show that for any non-empty set S ⊆ [m], gS =

∑
i∈S gi is

low-biased conditioned on f(x) = 1 for each f ∈ C. By XOR amplification, it is enough to
guarantee that each gS is the sum of Ω(n) independent copies of h, and hence gS has 2−Ω(n)

correlation with any function in C.
A linear code is a natural candidate to guarantee that each gS is the sum of Ω(n) in-

dependent copies. Let h(l) : {0, 1}tl → {0, 1} denote the concatenation of l copies of h and
M be the generating matrix of an asymptotically good [l,m, r]2 code. Our construction is
simply

Ext(x) = (g1(x), . . . , gm(x)) = h(l)(x)M.

Finally, we observe that the bias of gS conditioned on f(x) = 1 can be bounded by the
correlation between gS and f plus the bias of gS.

Lemma 3.2. |Pr[gS(X) = 1|f(X) = 1]− Pr[gS(X) = 0|f(X) = 1]| ≤ Cor(gS ,f)+bias(gS)
2 Pr[f(X)=1]

.

That is, if we choose a good linear code, then Ext(x) = h(l)(x)M is an extractor for
C-recognizable sources with exponentially small error.

For details, see Section 5.

3.2 Algebraic extractors over GF(2)

In this subsection, we describe our algebraic extractor construction.
Notice that to construct a degree-d algebraic extractor that outputs only one bit, it is

enough to let the extractor have small correlation bounds with degree-d polynomials. This
fact is implicitly proved by Dvir [Dvi12] and observed by others, e.g., Eshan Chattopad-
hyay and Avishay Tal (personal communication). Based on this fact, we combine XOR
amplification and linear codes to extend the output length form one bit to more.

First we observe that an algebraic source over n bits defined by n-variate polynomials
p1, . . . , pk is also a source recognizable by the product

∏
i∈[k](pi + 1). Let Vd denote the set

of all products of polynomials of degree at most d. Thus, for any positive integer n, to get
an extractor for n-bit algebraic sources of degree d, it suffices to construct an extractor for
Vd-recognizable sources over n bits. In particular, by the previous discussion, it suffices to
show that XOR amplification holds for Vd.

Second we observe that to show that a function f has low correlations with Vd, it suffices
to show that f has low correlation with any d-degree polynomials. This is because the L1
norm of the Fourier transform of the AND function is at most 2.

Viola and Wigderson [VW08] proved XOR amplification for low-degree polynomials over
GF(2). Specifically, if a Boolean function h over {0, 1}O(d) has correlation at most 1− 1/2d

with degree-d polynomials, then the correlation between h⊕l (see Section 1.2) and degree-d
polynomials drops exponentially with l. Such h are known.

For details, see Section 5.1.
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3.3 From seed-extending PRGs to Extractors

We start with a new reduction from pseudorandom generators to seedless extractors. Observe
that a seedless extractor Ext : {0, 1}n → {0, 1}m partitions {0, 1}m as

⋃
z∈{0,1}m Ext−1(z). If

Ext is a (k, ε)-extractor for C-recognizable sources, then for every f ∈ C with |f−1(1)| ≥ 2k,
most intersections Ext−1(z) ∩ f−1(1) should have almost the same size. That is, for most
m-bit strings z, the preimage Ext−1(z) is an ε-pseudorandom set against any f ∈ C with
|f−1(1)| ≥ 2k.

Now, given PRGs, how do we construct extractors? From the above observation, con-
verting an ε-pseudorandom set into a partition of ε-pseudorandom sets is a possible way. If
each preimage Ext−1(z) of Ext is an ε-pseudorandom set for C, Ext should be an extractor
for C-recognizable sources with a bit worse parameters.

To make Ext−1(z) an ε-pseudorandom set for each z, we need a seed-extending PRG
G(x), i.e., G(x) = x ◦ E(x) for some function E : {0, 1}d → {0, 1}n−d. By linearly shifting
the set {(x,E(x))}, we can partition {0, 1}n as

⋃
z∈{0,1}n−d

{
(x, (E(x)⊕ z)) : x ∈ {0, 1}d

}
.

We therefore define Ext(x, z) = E(x)⊕ z. Since C is a flip-invariant function family, we have
that the set Ext−1(z) =

{
(x, (E(x)⊕ z)) : x ∈ {0, 1}d

}
fools any function f in C.

For details, see Section 6.

3.4 Algebraic extractors over prime fields

We remark that the main results used in building our algebraic extractor over GF(2) – the
XOR amplification, the statistical XOR lemma and the asymptotically linear code – all have
been extended to prime fields. Thus, to generalize our algebraic extractor, the remaining
difficulties are not hard.

Bogdanov, Kawachi and Tanaka [BKT13] proved XOR amplification for low-degree poly-
nomials over prime fields, i.e., the sum of k independent copies of h was q−Ω(k)-hard for Pd if
h was mildly hard. However, besides the sum of copies, we require the same hardness result
for linear combinations of k copies of h. We prove this hardness result by using the original
proof of Bogdanov, Kawachi and Tanaka with some slight modifications. The main revision
of our proof uses the fact that the Gowers norm is multiplicative for functions over disjoint
sets of input variables.

Furthermore, over a prime field Fq, an algebraic source over n bits defined by n-variate
polynomials p1, . . . , pk is a source recognizable by the product

∏
i∈[k](1− p

q−1
i ). We need to

analyze the product of the special form
∏

i∈[k](1− x
q−1
i ), as an analog of the AND function

over GF(2).
The reason we assume prime fields in our results is that XOR amplification for polyno-

mials is known only over prime fields.
For details, see Section 7.

4 Preliminaries

In the following, for any two binary strings x, y, let x ◦ y denote their concatenation, and let
x⊕ y denote their bitwise XOR when x and y have the same length.
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Definition 4.1 (Statistical distance). Let D1 and D2 be two distributions over a set S. De-
fine the statistical distance between D1 and D2 as |D1−D2| = 1

2

∑
s∈S |Pr[D1 = s]− Pr[D2 = s]| .

We say D1 is ε-close to D2, denoted by D1 ≈ε D2, if |D1 −D2| ≤ ε.

Definition 4.2 (Recognizable source). For any boolean function f : {0, 1}n → {0, 1}, define
the source recognizable by f , denoted by Uf , as the uniform distribution over f−1(1). For
short, we call this distribution the f -recognizable source.

For any boolean function family C, the set of C-recognizable sources is the set of f -
recognizable sources for f ∈ C.

For l ∈ N, let Ul denote the uniform distribution on l bits.

Definition 4.3 (Extractor for recognizable sources [Sha11]). Let C be a class of functions
C : {0, 1}n → {0, 1}. We say that Ext : {0, 1}n → {0, 1}m is a (k, ε)-extractor for C-
recognizable sources if for every f ∈ C such that |f−1(1)| ≥ 2k, Ext(Uf ) ≈ε Um.

Note that when the output length m = 1, the extractor is simply a boolean function
which has low correlation with any function in C.

4.1 Algebraic sources

An algebraic set is a set of common zeros of one or more multivariate polynomials defined
over a finite field F.

Definition 4.4 (Algebraic set). For any s polynomials f1, . . . , fs ∈ F[x1, . . . , xn], the set
V (f1, . . . , fs) = {x ∈ Fn|fi(x) = 0,∀i ∈ [s]} is an algebraic set. We say V is an algebraic
set of degree d, if each polynomial fi has degree at most d.

An algebraic source is a random variable distributed uniformly over an algebraic set as
initially defined by Dvir [Dvi12].

Definition 4.5 (Algebraic source). An algebraic source is the uniform distribution UV over
an algebraic set V . If V is a degree-d algebraic set, then we say UV is an algebraic source of
degree d.

Definition 4.6 (Algebraic extractor). We say that Ext : Fn → Fm is a (k, d, ε)-algebraic
extractor if for any degree-d algebraic source UV with |V | ≥ |F|k, Ext(UV ) ≈ε Um.

Definition 4.7 (Linear codes over prime fields). For a prime q, a linear code of length n and
dimension k is a k-dimensional linear subspace C of the vector space Fnq . If the distance of
the code C is d we say that C is an [n, k, d]q code. A family of codes {Cn} is asymptotically
good if there exist constants 0 < δ1, δ2 < 1 s.t. k ≥ δ1n and d ≥ δ2n.

Note that every linear code has an associated generating matrix M ∈ Fknq , and every
codeword can be expressed as vM , for some vector v ∈ Fkq . There are explicit constructions
of asymptotically good linear codes, such as the Justensen codes over GF(2) constructed in
[Jus72] and the expander codes over GF(q) in [ABN+92] for any prime q.
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Definition 4.8 (Correlation over prime fields). Let f, g : Fnq → Fq be two functions over n
inputs. The correlation between f and g with respect to the uniform distribution is defined
as

Cor(f, g) := |Eeq[f(x) + g(x)]| ∈ [0, 1],

where eq[x] := wx for x ∈ {0, 1, . . . , q − 1}, where w denotes the q-th root of unity.

For a class C of functions, we denote by Cor(f, C) the maximum of Cor(f, C) over all
C ∈ C whose domain is the same as f .

Furthermore, when q = 2, e2[x] = (−1)x and Cor(f, g) = |Pr[f(x) = g(x)]− Pr[f(x) 6= g(x)]|.
We often write e2[x] as e[x] for convenience.

Definition 4.9 (f (m), f v). For any function f : Fnq → Fq, let f (m) denote the concatenation

of m copies of f , i.e., f (m)(x1, x2, . . . , xm) := (f(x1), . . . , f(xm)), where x1, . . . , xm ∈ Fnq . For
each v = (v1, . . . , vm) ∈ Fmq , let f v denote the linear combination of m copies of f according
to v, i.e., f v(x1, x2, . . . , xm) :=

∑
i∈[m] vif(xi).

Let F∗q = Fq \ {0} denotes the set of non-zero elements in Fq. We remark that the
statistical XOR lemma has been generalized to prime fields by e.g., Goldreich [Gol95].

Lemma 4.10 (Statistical XOR Lemma over Fq). Let X = (X1, . . . , Xm) be random vector
over Fmq such that for any nonzero vector v = (v1, . . . , vm) ∈ Fmq \ {0m}, the random variable

v ·X =
∑

i∈[m] viXi is ε-biased. Then, the distribution of (X1, . . . , Xm) is εqm/2-close to the
uniform distribution over Fmq .

For example, when m = 1, for a random variable X over Fq, to show that X ≈ε UFq , we
need to show that bias(αX) ≤ ε/

√
q for each α ∈ F∗q.

4.2 Seed-extending PRGs

Definition 4.11 (Flip-invariant family). We say a boolean function family C over n bits is
flip-invariant if for any string s ∈ {0, 1}n, f ∈ C implies f(x⊕ s) ∈ C.

Definition 4.12 (Seed-extending pseudorandom generator). A seed-extending pseudoran-
dom generator is a generator G that outputs the seed as part of the pseudorandom string.

Formally, a seed-extending (d, ε)-pseudorandom generator G : {0, 1}d → {0, 1}n for a
class of functions f over n bits, is a seed-extending function, i.e., G(s) = (s, E(s)) for some
function E, such that

|Pr[f(G(Ud)) = 1]− Pr[f(Un) = 1]| ≤ ε.

5 From XOR Amplification to Extractors for Recog-

nizable Sources

First we define XOR amplification for a boolean function class that contains functions with
various input lengths. Recall that f⊕m(x1, . . . , xm) =

⊕
i∈[m] f(xi).
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Definition 5.1 (α-XOR amplification for a boolean function class). Let C ⊆ {{0, 1}∗ →
{0, 1}} be a class of boolean functions. For a positive constant α, we say C has α-XOR
amplification if there exists a function h : {0, 1}t → {0, 1} such that for any positive integer k,
Cor(h⊕k, g) ≤ 2−αk, for any g ∈ C.

However, for constructing extractors for n-bit recognizable sources, we need to focus
on the specific subset Cn ⊆ C that contains all n-variate functions in C. We define XOR
amplification for Cn to also allow fixing some input bits.

Definition 5.2 ((α,w)-XOR amplification for functions with a fixed input length). For a
set Cn of n-variate functions C : {0, 1}n → {0, 1} and a positive constant α, we say Cn has
(α,w)-XOR amplification for a function h : {0, 1}t → {0, 1} if for any vector v ∈ {0, 1}bn/tc
with at least w ones, Cor(hv, Cn) ≤ 2−αw, where we add dummy variables to the input of hv

if hv has less than n input variables.
Moreover, we say Cn has α-XOR amplification for h, if Cn has (α,w)-XOR amplification

for h for each positive integer w ≤ bn/tc.

Note that if C is closed under restrictions, the fact that C has α-XOR amplification implies
that Cn has also α-XOR amplification for every positive integer n. Formally,

Lemma 5.3. Let C ⊆ {{0, 1}∗ → {0, 1}} be a class of boolean functions closed under restric-
tions. Let Cn ⊆ C denote the set of all n-variate functions in C. If C has α-XOR amplification
for a function h : {0, 1}t → {0, 1}, then Cn has also α-XOR amplification for h for every
positive integer n.

Proof. Assume that C has α-XOR amplification for a function h : {0, 1}t → {0, 1}, i.e.,
Cor(h⊕k, C) ≤ 2−αk for each positive integer k. Then, we need to prove that for every positive
integer n, Cn has also α-XOR amplification for h. In particular, fix n and let l = bn/tc. It
suffices to prove that for any vector v ∈ {0, 1}l with k ones, Cor(hv, Cn) ≤ Cor(h⊕k, C), as
Cor(h⊕k, C) ≤ 2−αk.

To prove this, without loss of generality, assume that the first k coordinates of v are all
1’s, and the remaining coordinates are all 0’s. Thus, hv depends only on the first kt variables.
For any n-variate function C(x1, . . . , xn) ∈ Cn,

Cor(hv, C) = EX∼Ukt,Y∼Un−kte[h
v(X, Y ) + C(X, Y )]

= EY∼Un−kt [EX∼Ukte[h
v(X, Y ) + C(X, Y )]]

≤ 1

2n−kt

∑
Y0∈{0,1}n−kt

Cor
(
h⊕k(X), C(X, Y0)

)
≤ 1

2n−kt

∑
Y0∈{0,1}n−kt

Cor(h⊕k, C)

= Cor(h⊕k, C).

The last inequality follows since C is closed under restrictions, i.e., C(X, Y0) ∈ C for any
Y0 ∈ {0, 1}n−kt.
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Theorem 5.4. Let Cn be a family of boolean functions over n bits containing the constant
function f(x) = 0. Let M be the l×m generating matrix of an asymptotically good [l,m, r0]2
code, where l = n/t. Assume that Cn has (α, r)-XOR amplification for h : {0, 1}t → {0, 1},
where r ≤ r0. Then, the function Ext : {0, 1}n → {0, 1}m,

Ext(x) = h(l)(x)M,

is an (n−∆, 2m/2+∆−αr) extractor for Cn-recognizable sources.

Proof. For convenience, let (g1(x), . . . , gm(x)) = h(l)(x)M . To show that the output of Ext
is 2m/2+∆−αr-closed to the uniform, by the statistical XOR Lemma, it suffices to show that
for any non-empty set S ⊆ [m], gS =

∑
i∈S gi is 2∆−αr-biased conditioned on f(x) = 1 for

any f ∈ Cn with |f−1(1)| ≥ 2n−∆.
First we observe that the bias of gS conditioned on f(x) = 1 can be bounded by the

correlation between gS and f plus the bias of gS.

Lemma 5.5 (Lemma 3.2, restated).

|Pr[gS(X) = 1|f(X) = 1]− Pr[gS(X) = 0|f(X) = 1]| ≤ Cor(gS, f) + bias(gS)

2 Pr[f(X) = 1]
.

Proof. By multiplying 2 Pr[f(X) = 1] on both sides, it is equivalent to prove that

2 |Pr[gS(X) = 1 ∧ f(X) = 1]− Pr[gS(X) = 0 ∧ f(X) = 1]| ≤ Cor(gS, f) + bias(gS).

Notice that

Cor(gS, f) = |Pr[gS(X) = f(X)]− Pr[gS(X) 6= f(X)]|
= |Pr[gS(X) = 1 ∧ f(X) = 1] + Pr[gS(X) = 0 ∧ f(X) = 0]

− Pr[gS(X) = 0 ∧ f(X) = 1]− Pr[gS(X) = 1 ∧ f(X) = 0]|,

and

bias(gS) = |Pr[gS(X) = 1]− Pr[gS(X) = 0]|
= |Pr[gS(X) = 1 ∧ f(X) = 1] + Pr[gS(X) = 1 ∧ f(X) = 0]

− Pr[gS(X) = 0 ∧ f(X) = 1]− Pr[gS(X) = 0 ∧ f(X) = 0]|.

Thus, by the triangle inequality,

bias(gS) + Cor(gS, f) ≥ |2 Pr[gS(X) = 1 ∧ f(X) = 1]− 2 Pr[gS(X) = 0 ∧ f(X) = 1]|
= 2 |Pr[gS(X) = 1 ∧ f(X) = 1]− Pr[gS(X) = 0 ∧ f(X) = 1]| .

Then, observe that not only is each gi a sum of at least r independent copies, but also so
is any non-empty sum of the gi, and hence has exponentially small correlation with degree-d
polynomials.

Lemma 5.6. For any nonempty set S ⊆ [m], Cor(gS, Cn) ≤ 2−αr.
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Proof. Note that

gS(x) =
∑
i∈S

Mi · h(l)(x) =

(∑
i∈S

Mi

)
h(l)(x),

where Mi denotes the i-th row of the matrix M . As M is the generating matrix of an [l,m, r]2
code and S is non-empty,

∑
i∈SMi is a codeword and hence has at least r 1’s. Thus, gS is

the XOR of at least r0 independent copies of h. By the assumed (α, r)-XOR amplification,
we know Cor(gS, Cn) ≤ 2−αr.

Since the constant function 0 ∈ Cn, we also have that bias(gS) = Cor(gS, 0) ≤ 2−αr. Thus,
by Lemma 5.5, the bias of gS conditioned on f(x) = 1 is at most 2−αr/p, where p = Pr[f(X) = 1].

At last, we have p = |f−1(1)|
2n

≥ 2−∆ by the min-entropy requirement that |f−1(1)| ≥ 2n−∆.
Therefore, gS(x) is 2∆−αr-biased conditioned on f(x) = 1.

Combining with an explicit asymptotically good [l,m, r]2 code, we prove the following
theorem.

Theorem 5.7. Let C ⊆ {{0, 1}∗ → {0, 1}} be any boolean function class closed under
restrictions and α be any positive constant. Let Cn denote the set of all n-variate functions
in C. If Cn has (α, δn)-XOR amplification for h : {0, 1}t → {0, 1}, where δ < 1/t is a positive
constant, then there is an explicit (n − c1αl, 2−c2αl) extractor Ext : {0, 1}n → {0, 1}c3αl for
Cn-recognizable sources, where l = n/t and c1, c2, c3 are some positive constants.

Moreover, if C has α-XOR amplification for a function h : {0, 1}t → {0, 1}, then for any
positive integer n, there is an explicit seedless (n − c1αl, 2−c2αl) extractor Ext : {0, 1}n →
{0, 1}c3αl for Cn-recognizable sources, where l = n/t and c1, c2, c3 are some positive constants.

Proof. Note that if C has α-XOR amplification for a function h, then by Lemma 5.3, Cn
also has α-XOR amplification for h for every positive integer n, i.e., Cn also has (α, δl)-XOR
amplification for h by definition. Now, we start with the assumption that Cn has (α, δl)-XOR
amplification for h. We use an explicit [l, δ1l, δ2l]2 linear code for some constants δ1 > 0 and
δ2 > δ by Justesen [Jus72]. Therefore, Theorem 5.4 yields an (n−∆, 2m/2+∆−αδ2l) extractor
Ext : {0, 1}n → {0, 1}m for Cn-recognizable sources. That is, by setting ∆ = c1αl and
m = c3αl for some small positive constants c1, c3, we get the desired (n − c1αl, 2−c2αl)
extractor, where c2 = −(c3/2 + c1 − δ2) > 0 is also a positive constant.

5.1 Algebraic extractors over GF(2)

In this subsection, we will show that for any algebraic sources of constant degree over GF(2),
there exists an efficient extractor that has linear output for linear min-entropy and exponen-
tially small error. Formally, we will prove the following theorem:

Theorem 5.8. For any positive integer d, there is an efficient
(
(1− 1/cd)n, d, 2

−Ω(n/cd)
)
-

algebraic extractor Ext : {0, 1}n → {0, 1}m, where cd = Θ(d24d), m = Ω(n/cd).
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Let Pd denote the set of all polynomials of degree at most d over GF(2). Let Vd denote
the set of all products of polynomials in Pd and Vd,n denote the set of all products of n-variate
polynomials in Pd.

Notice that an algebraic source of degree d over n bits is also a Vd,n-recognizable source.

Lemma 5.9. An n-bit algebraic source of degree d iff it is a Vd,n-recognizable source.

Proof. Let UV denote an arbitrary algebraic source, where V = {x ∈ {0, 1}n|pi(x) = 0, pi ∈
Pd,∀i ∈ [k]} is an algebraic set of degree d over n bits. Notice that V can be viewed as the
set of 1-inputs of function

∏
i∈[k](pi(x) + 1). That is, the uniform distribution over V is also

the source recognizable by
∏

i∈[k](pi(x) + 1) ∈ Vd,n. In other words, an algebraic source of
degree d is a Vd,n-recognizable source.

For the other direction, let Uf denote an arbitrary Vd,n-recognizable source, where f =∏
i∈[k] pi ∈ Vd,n with deg(pi) ≤ d for each i ∈ [k]. Note that f−1(1) = {x ∈ {0, 1}n|pi(x) =

1,∀i ∈ [k]} = {x ∈ {0, 1}n|pi(x) + 1 = 0, ∀i ∈ [k]}. Hence, f−1(1) is the algebraic set of
p1(x) + 1, . . . , pk(x) + 1. Since deg(pi(x) + 1) = deg(pi) ≤ d for each i ∈ [k], f−1(1) is an
algebraic set of degree d over n bits. Therefore, Uf is an n-bit algebraic source of degree
d.

Then, observe that Vd is closed under restrictions. Thus, by Theorem 5.4, to get an
extractor for Vd,n-recognizable sources, it is enough to show that Vd has α-XOR amplification
for some positive constant α.

Note that to show that a function f has low correlations with Vd, it suffices to show that
f has low correlation with any polynomial of degree at most d. Recall that the correlation
between a function f and a class C of functions is defined as the maximum of Cor(f, C)
over all C ∈ C whose input length is the same as f . In particular, to show that a function
f : {0, 1}t → {0, 1} has low correlations with Vd, it suffices to show that f has low correlation
with any t-variate polynomial of degree at most d.

Lemma 5.10. If a function f : {0, 1}t → {0, 1} is ε-correlated with any polynomial of degree
at most d in t variables, then f is at most 2ε-correlated with any product of polynomials of
degree at most d in t variables.

The lemma follows because the L1 norm of the Fourier transform of the AND function
is at most 2.

Proof. We need to show that if for any t-variate p ∈ Pd Cor(f, p) = |Ee [f + p]| ≤ ε, then
for any product

∏
i∈[k](pi + 1) ∈ Vd,t where p1 + 1, . . . , pk + 1 ∈ Pd,t, we have

Cor

f,∏
i∈[k]

(pi(X) + 1)

 =

∣∣∣∣∣∣Ee
f +

∏
i∈[k]

(pi(X) + 1)

∣∣∣∣∣∣ ≤ 2ε.

Consider the Fourier expansion of the function

e

∏
i∈[k]

(yi + 1)

 = −
∑
S 6=∅

e
[∑

i∈S yi
]

2k−1
+ (1− 1/2k−1).
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Now, substituting each yi by pi, we have e
[∏

i∈[k](pi + 1)
]

= −
∑

S 6=∅
e[
∑
i∈S pi]

2k−1 +(1−1/2k−1).

That is, ∣∣∣∣∣∣Ee
f +

∏
i∈[k]

(pi(X) + 1)

∣∣∣∣∣∣ ≤
∑
S 6=∅

∣∣Ee [f +
∑

i∈S pi(X)
]∣∣

2k−1
.

Notice that for each S 6= ∅, the sum
∑

j∈S pi is also a polynomial of degree at most d. For

the polynomial of degree at most d,
∑

j∈S pi, we have that
∣∣∣Ee [f +

∑
j∈S pi(X)

]∣∣∣ ≤ ε. In

other words,
∣∣∣Ee [f +

∏
i∈[k](pi(X) + 1)

]∣∣∣ ≤ 2k 2ε
2k−1 = 2ε.

Moreover, Viola and Wigderson [VW08] proved XOR amplification for GF(2) polynomi-
als, which implies XOR amplification for Vd by Lemma 5.10.

Theorem 5.11. [VW08, Theorem 1.1] Let h : {0, 1}n → {0, 1} be a function such that
Cor(h, Pd,n) ≤ 1− 1/2d. Then Cor(h⊕m, Pd) ≤ 2−Ω(m/(4d·d)).

Finally, by brute force search, it is easy to find a function h over O(d) bits such that
Cor(h, Pd) ≤ 1− 1/2d as d is a constant. That is, Pd has Ω( 1

4d·d)-XOR amplification for the

function h : {0, 1}O(d) → {0, 1}. This implies that Vd has Ω( 1
4d·d) -XOR amplification for the

function h : {0, 1}O(d) → {0, 1} by Lemma 5.10. Therefore, Theorem 5.7 yields our main
theorem of this subsection, i.e., constructing an efficient

(
(1− 1/cd)n, d, 2

−Ω(n/cd)
)
-algebraic

extractor Ext : {0, 1}n → {0, 1}m, where cd = Θ(d24d), m = Ω(n/cd).
We remark that an explicit example of h is the mod3 function, which outputs 1 if and only

if the number of input bits that are 1 is congruent to 1 modulo 3. Smolensky [Smo87] proved
that the mod3 function over O(d2) bits is 2/3-hard for Pd (see Viola [Vio09] for a proof), that
is, Pd has Ω( 1

4d·d)-XOR amplification for the function mod3 : {0, 1}O(d2) → {0, 1}. Using the

mod3 function, Theorem 5.7 yields an efficient
(
(1− 1/c′d)n, d, 2

−Ω(n/c′d)
)
-algebraic extractor

Ext : {0, 1}n → {0, 1}m, where c′d = Θ(d34d), m = Ω(n/c′d).

5.2 Sources recognizable by communication protocols

In this subsection, we construct an extractor for sources recognizable by randomized t-party
protocols. Formally, we prove the following theorem.

Theorem 5.12. There exists an explicit seedless ((1 − 1/ct)n, 2−c1n/ct) extractor Ext :(
{0, 1}n/t

)t → {0, 1}c2n/ct for sources recognizable by randomized t-party communication pro-
tocols of at most c3n/ct bits, where ct = Θ(t4t) and c1, c2, c3 are some positive constants.

Let RCCn,t,w denote the class of n-variate randomized t-party protocols using at most
w communication bits. Now, to construct extractors for RCCn,t,w-recognizable sources with
exponentially small error, by Theorem 5.4, it suffices to show RCCn,t,w has (α, r)−XOR
amplification for some function h, where r = Ω(n) is the distance of some good linear code.

Notice that, Babai, Nisan, and Szegedy [BNS92] proved a lower bound for randomized
t-party protocols for the Generalized Inner Product (GIP) function, which is the XOR of
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AND functions. Formally, let ∧t : {0, 1}t → {0, 1} denote the AND function on t variables.
Then, the GIP function GIPkt : ({0, 1}t)k → {0, 1} is defined as the function∧⊕kt , i.e.,
GIPkt(x1, . . . , xk) :=

⊕k
i=1 ∧t(xi). Moreover, let Rt,ε(f) denote the complexity of the best

randomized t-party protocol correlating f with at least ε.

Theorem 5.13 ([BNS92, Theorem 2]).

Rt,ε(GIPn) = Ω
( n

4t
− log(1/ε)

)
.

Now, for any constant 0 < δ < 1/t and some constant ct = Θ(t4t), we prove that
RCCn,t,O(n/4t) has (Ω(1/ct), δn)−XOR amplification for ∧t, which directly yields Theorem
5.12 by Theorem 5.7.

Proposition 5.14. For any constant 0 < δ < 1/t, RCCn,t,c′n/4t has (c/ct, δn)−XOR ampli-
fication for ∧t, where ct = Θ(t4t), c, c′ > 0 are constants.

Proof. Assume by contradiction that RCCn,t,c′n/4t does not have (c/ct, δn)−XOR amplifica-
tion for ∧t, where c, c′ are some constants to be decided later. That is, there exists some
vector v ∈ {0, 1}n/t with at least δn ones, Cor(hv,RCCn,t,c′n/4t) ≤ 2

− c
ct
δn

, That is, there

exists a (c′n/4t)-bit randomized protocol that approximates hv within 2
− c
ct
δn

error. Fur-
thermore, observe that hv is the XOR of at least δn copies of ∧t, i.e, hv depends on ≥ δnt
variables. Therefore, by Theorem 5.13, we have

R
t,2
− c
ct
δn(hv) ≥ R

t,2
− c
ct
δn(GIPδn) = Ω

(
δn/4t − c

ct
δnt

)
.

That is, letting the constant c be small enough, we know there exists a positive constant c′′

such that
Rt,2−αδn(hv) ≥ c′′n/4t.

Now letting c′ < c′′ yields a contraction. Therefore, RCCn,t,c′n/4t has (c/ct, δn)−XOR ampli-
fication for ∧t.

5.3 Halfspace sources

In this subsection, for halfspace sources, we construct an efficient extractor that has linear
output for linear min-entropy and exponentially small error. Formally, we will prove the
following theorem.

Theorem 5.15. There exists an explicit seedless ((1−c1)n, 2−c2n) extractor Ext : {0, 1}n →
{0, 1}c3n for halfspace sources, where c1, c2, c3 are some positive small enough constants.

Note that Nisan already proved an exponentially small correlation bound for Inner Prod-
uct function against LTFs. Formally, let IPn : ({0, 1}2)n/2 → {0, 1} denote the inner product
function over n variables, i.e., IPn(x1, . . . , xn/2) =

⊕
i∈[n/2] ∧2(xi). Then, we have the fol-

lowing lemma.
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Lemma 5.16. For any LTF f on n variables, we have

Cor(IPn, f) ≤ 2−Ω(n).

Proof of sketch. Nisan proved that a LTF on n variables can be approximated within ε
error by a randomized 2-party protocol of complexity O(log(n/ε)) by [Nis93, Theorem 1].
Moreover, by Chor and Goldreich [CG88], we know at least n/2−log(1/ε) complexity needed
for randomized 2-party protocol computing the function IPn.

Therefore, for any LTF f over n variables, there is a protocol P of complexity cn bits
approximating f within 2−Ω(n) error and Cor(IPn,P) ≤ 2−Ω(n). That is, replacing f by IPn
in Cor(IPn, f), we can bound Cor(IPn, f) ≤ 2−Ω(n) + Cor(IPn,P) = 2−Ω(n).

Let LT Fn denote the class of LTFs over n variables. Then, the above lemma directly
yields that LT Fn has (α, δn)-XOR amplification for ∧2 for any positive constant δ < 1/2,
where α is some positive constant. Hence Theorem 5.15 directly follows by Theorem 5.7.

6 From Seed-Extending PRGs to Extractors for Rec-

ognizable Sources

Note that Kinne et al. [KvMS12] already showed reductions between extractors for recog-
nizable sources and seed-extending PRGs.

Lemma 6.1 ([KvMS12, Theorem 7]). Let C : {0, 1}n × {0, 1}m → {0, 1} be a function.
Let ∆ = m + log(1/ε) and let E : {0, 1}n → {0, 1}m be an (n − ∆, 2−∆)-extractor for C-
recognizable distributions, where each function in C is of the form fr(x) = C(x, r) where
r ∈ {0, 1}m is an arbitrary string. Then, G(x) = (x,E(x)) is ε-pseudorandom for C.

Lemma 6.2 ([KvMS12, Theorem 8]). Let f : {0, 1}n → {0, 1} be a function and let E :
{0, 1}n → {0, 1}m be a function such that G(x) = (x,E(x)) is ε-pseudorandom for tests
T (x, r) of the form Tz(x, r) = f(x) ∧ (r = z) where z ∈ {0, 1}m is an arbitrary string. For
any ∆ > 0, if ε ≤ 2−(m+2∆) then E is an (n−∆, 2−∆)-extractor for the distribution recognized
by f .

The Lemma 3.2 requires a tiny ε ≤ 2−(m+2∆) for the seed-extending PRG to get an
(n − ∆, 2−∆)-extractor. In the following, we improve the reduction from seed-extending
PRGs to extractors to require only ε ≤ 2−2∆. Moreover, our extractor is even stronger –
the output of our extractor is close to uniform with relative error, which will be defined as
follows.

Definition 6.3 (Statistical distance with relative error). We say that a distribution Z on
{0, 1}m is ε-close to uniform with relative error if for every event A ⊆ {0, 1}m,

|Pr[Z ∈ A]− µ(A)| ≤ ε · µ(A), where µ(A) = |A|/2m.

Note that if Z is ε-close to uniform with relative error, then it is also ε-close to uniform.
Next we define extractors with relative error analogously.
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Definition 6.4 (Seedless extractor with relative error, [AASY16, Definition 1.19]). Let C be
a class of distributions over {0, 1}n. A function Ext : {0, 1}n → {0, 1}m is a (k, ε)-relative-
error extractor for C if for every distribution X in the class C such that H∞(X) ≥ k, Ext(X)
is ε-close to uniform with relative error.

We remark that the notions of statistical distance and extractors with relative error
were introduced by Applebaum, Artemenko, Shaltiel, and Yang [AASY16]. They translate
relative-error extractors for distributions recognizable by small circuits into incompressible
functions. However, parameters of our relative-error extractors are not strong enough to get
incompressible functions.

Now we prove the reduction lemma from seed-extending PRGs to seedless extractors with
relative error, which directly implies the reduction from seed-extending PRGs to seedless
extractors.

Lemma 6.5. Let C be a flip-invariant family of boolean functions over n bits. If G is a seed-
extending (d, ε)-pseudorandom generator G : {0, 1}d → {0, 1}n, then we can construct an
(n−∆, 2∆ε)-relative-error extractor Ext : {0, 1}n → {0, 1}n−d as follows. If G(x) = (x,E(x))
fools any function in C, then Ext(x◦y) = y⊕E(x) is an extractor for C-recognizable sources,
where x ∈ {0, 1}d, y ∈ {0, 1}n−d.

For intuition, observe that a seedless extractor Ext : {0, 1}n → {0, 1}m partitions {0, 1}m
as
⋃
z∈{0,1}m Ext−1(z). If Ext is a (k, ε)-relative-error extractor for C-recognizable sources,

then for every f ∈ C with |f−1(1)| ≥ 2k, all intersections Ext−1(z)∩f−1(1) should have almost
the same size. That is, for most m-bit strings z, the preimage Ext−1(z) is an ε-pseudorandom
set against any f ∈ C with |f−1(1)| ≥ 2k.

Now, given PRGs, how to construct extractors? From the above observation, converting
an ε-pseudorandom set into a partition of ε-pseudorandom sets is a possible way. If each
preimage Ext−1(z) of Ext is an ε-pseudorandom set for C, Ext should be a relative-error
extractor for C-recognizable sources with a bit worse parameters, which will be precisely
calculated in the following formal proof.

To make Ext−1(z) an ε-pseudorandom set for each z, we need a PRG of the specific
form: G(x) = B(x) ◦ E(x), for some bijection B : {0, 1}d → {0, 1}d and some function
E : {0, 1}d → {0, 1}n−d. By linearly shifting the set {(B(x), E(x))}, we can partition {0, 1}n
as
⋃
z∈{0,1}n−d

{
(B(x), (E(x)⊕ z)) : x ∈ {0, 1}d

}
. Since C is a flip-invariant function family,

we have that the set Ext−1(z) =
{

(B(x), (E(x)⊕ z)) : x ∈ {0, 1}d
}

fools any function f in C.
Note that to convert the PRG of the form (B(x), E(x)) into an extractor, the above

intuition gives Ext(x) = E(B−1(x)). Thus, to get an efficient extractor, we have to assume
that E(B−1(x)) can be efficiently computed. That is, the PRG of the form (B(x), E(x)) also
gives an efficient seed-extending PRG (x,E(B−1(x))). Therefore, for constructing extractors
from the above intuition, we only need to focus on the seed-extending PRGs.

Proof. For convenience, let m = n− d denote the output length of Ext.
First, we observe that, for any fixed z, Gz(x) = (x, (E(x)⊕z)) fools any function f(x, y) in

C. Notice that to prove Gz(x) fools f(x, y), it is equivalent to prove (x,E(x)) fools f(x, y⊕z).
Because of the flip-invariant property of C, we know if f(x, y) ∈ C, then f(x, y⊕ z) ∈ C. So
G(x) = x ◦ E(x) fools f(x, y ⊕ z). That is, Gz(x) fools the function f(x, y).
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Note that Ext−1(z) is the range of Gz. Then, we can get

Pr[Ext(X ◦ Y ) = z|f(X ◦ Y ) = 1] =
Pr[Ext(X ◦ Y ) = z ∧ f(X ◦ Y ) = 1]

Pr[f(X ◦ Y ) = 1]

=
Pr[Ext(X ◦ Y ) = z]

Pr[f(X ◦ Y ) = 1]
Pr[f(X ◦ Y ) = 1|Ext(X ◦ Y ) = z]

=
Pr[Ext(X ◦ Y ) = z]

Pr[f(X ◦ Y ) = 1]
Pr[f(Gz(X)) = 1]

=
Pr[Ext(X ◦ Y ) = z]

Pr[f(X ◦ Y ) = 1]
(Pr[f(X ◦ Y ) = 1]± ε)

=
p± ε
p

Pr[Ext(X ◦ Y ) = z], where p = Pr[f(X ◦ Y ) = 1],

=
p± ε
p

1

2m
.

For any nonempty subset S ⊆ {0, 1}m, summing over all z ∈ S, we deduce that the output
of Ext is ε

p
µ(S)-close to the uniform distribution over S. Furthermore, we have ε

p
≤ 2∆ε,

since p = |f−1(1)|
2n

≥ 2−∆ by the min-entropy requirement that |f−1(1)| ≥ 2n−∆. Therefore,
Ext(x ◦ y) = y ⊕E(x) is an (n−∆, 2∆ε)-relative-error extractor for C-recognizable sources.

6.1 Applications

In this section, we construct extractors for sources recognized by several widely used function
families. These constructions are all based on Lemma 6.5 proved in the previous section,
which means we can convert seed-extending PRGs into extractors. In the following sub-
sections, the main points are to construct seed-extending PRGs for some specific common
function families.

6.1.1 Circuit-recognizable sources

Recall that we say a function h : {0, 1}t → {0, 1} is ε-hard for C if Cor(h, C) ≤ ε.
For any circuit family, Nisan and Wigderson [NW88] already constructed a hardness-

based PRG. Reviewing the NW generator, Kinne et al. [KvMS12] proved that it could be
made seed-extending, and hence they gave a seed-extending PRG for circuits. In particular,
they proved the following lemma.

Lemma 6.6. [KvMS12, Lemma 2.9] Let l and m be positive integers and H : {0, 1}
√
l/2 →

{0, 1} a function. If H is ε
m

-hard at input length
√
l/2 for circuits of size s+m ·2O(logm/ log l)

and depth d+ 1, then there is a seed-extending (l, ε)-PRG NWH;l,m : {0, 1}l → {0, 1}l+m for
tests T : {0, 1}l+m → {0, 1} computable by circuits of size s and depth d.

Notice that the set of bounded-size circuits is flip-invariant since flipping the inputs of a
circuit does not change its size. Thus, applying Lemma 6.5, we get an extractor.
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Proposition 6.7. For any positive integer l < n, if there is a function H that is ε-hard at
input length

√
l/2 for circuits of size s + (n − l) · 2O(log(n−l)/ log l) and depth d + 1, then for

any ∆ = ∆(n) > 0 we can get an (n−∆, (n− l)2∆ε)-extractor Ext : {0, 1}n → {0, 1}n−l for
any sources recognizable by circuits of size s and depth d.

We remark that, in the best case, the above lemma yields an (n−Õ(
√
l), 2−Ω̃(

√
l))-extractor

Ext : {0, 1}n → {0, 1}n−l, if we can get a function at input length
√
l/2 which is 2−Ω̃(

√
l)-hard

for circuits of polynomial size.

6.1.2 AC0-recognizable sources

Hastad [H̊as87] proved that the parity function is 2−n
1/(d+1)

-hard against any AC0 circuit of

size 2n
1/(d+1)

and depth d. Based on this hardness, Shaltiel [Sha11] constructed extractors
for AC0-recognizable sources.

Theorem 6.8 (Corollary 4.25, [Sha11]). For any ∆ = ∆(n) > 0, there is a constant α > 0
such that for every sufficiently large n, m ≤ n1/(αd), and sources recognizable by circuits of
size 2n

1/(αd)
and depth d, we can construct an (n− n1/(αd), 2−100m)-extractor Ext : {0, 1}n →

{0, 1}m.

Theorem 6.9 (Theorem 4.21, [Sha11]). For any constants c, d, e > 1 there is a constant
d > 1 and a uniform family E = {En} of circuits of polynomial-size and depth d such that
En : {0, 1}n → {0, 1}m for m(n) = (log n)e and En is a (n − 100m(n), 2−100m(n))-extractor
for sources recognizable by circuits of size nc and depth d.

However, directly using the Lemma 6.7 with the hardness of parity function, we can get
the following lemma.

Theorem 6.10. For any ∆ = ∆(n) > 0, there exists a polynomial time computable (n −
∆, (n − l)2∆−Ω(l1/(2d+2))) extractor Ext : {0, 1}n → {0, 1}n−l for any sources recognizable by

circuits of size 2n
1/d

and depth d.

Proposition 6.11. For any constants c, d, e > 1 there is a constant e′ < e and a polynomial-
time computable uniform family E = {En} such that En : {0, 1}n → {0, 1}m for m(n) =

n − (log n)e and En is a (n − 100(log n)e
′
, 2−100(logn)e

′
)-extractor for sources recognizable by

circuits of size nc and depth d.

In particular, for min-entropy n − n1/(αd), our extractor outputs n − n2/α+O(1/d) bits,
whereas Shaltiel’s extractor outputs only n1/(αd) bits. When α > 2d/(d − 1) is a large
enough constant, our extractor outputs n − o(n) bits whereas Shaltiel’s extractor outputs
only n1/(αd) bits. For min-entropy n− polylog(n) bits, our extractor outputs n− polylog(n),
whereas Shaltiel’s extractor outputs only polylog(n) bits

For circuit sources, Viola [Vio14] also constructed extractors for AC0-samplable sources,
extracting k(k/n1+γ)O(1) bits with super-polynomially small error from n-bit sources of min-
entropy k, for any γ > 0. Nevertheless, AC0-samplable sources are different from AC0-
recognizable sources.
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6.1.3 Sources recognizable by deMorgan formulas of size n3/2−o(1)

A deMorgan formula F is a Boolean formula with AND, OR and NOT gates with fan in
at most 2. Notice that a deMorgan formula is also a circuit where each gate has fan-out at
most 1. Therefore, to construct extractors for formula-recognizable sources, we can follow
the same route as constructing extractors for AC0-recognizable sources.

Now, our starting point becomes a hardness result for bounded-size formulas, proved by
Komargodski, Raz and Tal [KRT17]. In particular, they constructed an explicit function
h : {0, 1}n → {0, 1} that is 2−Ω(r)-hard for any deMorgan formula of size n3−o(1)/r2.

Next, we consider the following hardness-based seed-extending PRG for formulas.

Lemma 6.12. Let l and m be positive integers and H : {0, 1}
√
l/2 → {0, 1} a function. If

H is ε
m

-hard at input length
√
l/2 for formulas of size s + m · 2O(logm/ log l), then there is

a seed-extending (l, ε)-PRG NWH;l,m : {0, 1}l → {0, 1}l+m for tests T : {0, 1}l+m → {0, 1}
computable by formulas of size s.

Proof (Sketch). The proof of this lemma is almost the same as the proof of Lemma 2.9 by
Kinne, Melkebeek, and Shaltiel [KvMS12]. Their proof goes by contradiction: assume a
distinguisher T computable by a circuit of size s that distinguishes the output of NWH;l,m

with at least ε probability. There are two main steps in their proof. First, they use a standard
reduction from the distinguisher T to a next-bit predictor T̃ as in [NW88]. Second, based
on the predictor T̃ , they construct a circuit C of size not much larger than T but computing
the given hard function H well on average. The construction of C concludes a contradiction
with the assumed hardness of H. In the following, we briefly describe these two steps and
explain why similar operations also hold if we take formulas instead.

For transforming from the distinguisher T to a next-bit predictor T̃ , they mainly use a
hybrid argument together with an average argument on the (n+m)-bit output of NWH;l,m.
As a result, they show that there must exist a position i > n and a fixing of last n+m− i+1
bits such that after this fixing either T or ¬T predicts the i-th bit well, when given the
first i − 1 bits. They let T̃ be this circuit, or the next-bit predictor. We remark that this
transformation holds for formulas: if the distinguisher T is assumed as a formula instead,
then all these arguments still hold and the predictor T̃ will become a formula.

For building a circuit C computing H from T̃ , they start with fixing all variables in T̃
that are independent of the i-th output bit of NWH;l,m. By an average argument, this can
be done with the prediction probability of T̃ preserved. Furthermore, the construction of
NWH;l,m guarantees that the function computing the i-th output bit is precisely H, and for
each j ∈ [i−1] the function computing j-th bit depends on only few unfixed variables, which
hence can be computed by a very small CNF or DNF. Therefore, after plugging either a
CNF or DNF into T̃ for each of the first i− 1 bits, they can get a circuit C computing the
i-th output bit, i.e., H. Moreover, the increased size of C from T̃ is only due to these at
most m very small CNFs or DNFs, and hence cannot be large. Notice that if T̃ is a formula,
then C will become a formula after plugging CNFs or DNFs, and the increased size will be
the same as for circuits. Therefore, this step also holds if we take formulas instead.

Then, as the set of bounded-size deMorgan formulas is flip-invariant, we can get an
extractor by applying Lemma 6.5.
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Proposition 6.13. For any positive integer l < n, if there is a function H that is ε-hard at
input length

√
l/2 for formulas of size s+(n− l) ·2O(log(n−l)/ log l), then for any ∆ = ∆(n) > 0

we can construct an (n−∆, (n− l)2∆ε)-extractor Ext : {0, 1}n → {0, 1}n−l for any sources
recognizable by formulas of size s.

Finally, combining with the 2−Ω(r)-hardness result [KRT17] against deMorgan formulas
of size n3−o(1)/r2, Proposition 6.13 yields the following theorem by setting l = Ω(n).

Theorem 6.14. For any ∆, r, α > 0 and m ≤ (1 − α)n, there exists a polynomial time
computable (n−∆,m2∆−Ω(r))-extractor Ext : {0, 1}n → {0, 1}m for any sources recognizable
by deMorgan formulas of size n3/2−o(1)/r2.

6.1.4 Sources recognizable by efficient randomized algorithms

In this subsection we mainly talk about sources recognizable by probabilistic polynomial
time algorithms, or BPP algorithms. First we define extractors for recognizable sources in
the asymptotic setting.

Definition 6.15 (Extractors for sources recognizable by randomized algorithms). For a
function t, let C ⊆ BPTIME(t). We say that a deterministic algorithm Ext = {Extn :
{0, 1}n → {0, 1}m(n)}n≥0 is a (k(·), ε(·))-extractor for distributions recognizable by C if for
every language L ∈ C such that Sn = {x ∈ L : |x| = n} is of size at least 2k(n) for all large
enough n, then Ext(USm) is ε(m)-close to the uniform distribution for all large enough m.

To construct an extractor for sources recognizable by efficient randomized algorithms,
think of t as a polynomial. Note that when the output length m = 1, an extractor for
sources recognizable by BPP algorithms is simply a function that cannot be computed by
any BPP algorithm on at most (1/2 + ε) fraction of inputs. Therefore, such an extractor is
not polynomial-time-computable.

To construct the above extractor, we use a widely-used cryptographic primitive – a family
of one-way permutations.

Definition 6.16 (One-way permutation). For any functions t(·) and ε(·), a one-way per-
mutation with error ε(·) against t(·)-bounded inverters is a polynomial-time-computable per-
mutation f : {0, 1}∗ → {0, 1}∗ such that for any randomized algorithm A with running time
bounded by t(n) and all large enough n,

Pr
x←Un

[A(f(x)) = x] ≤ ε(n).

The running time of our extractor is polynomially related to the time for inverting the
one-way permutations. Therefore, our ideal one-way permutation is invertible in the worst
case in time just slightly larger than t(n). For example, think of t(n) = n

√
logn, ε = n−

√
logn,

and f invertible in the worst case in time nO(logn). One can also scale down harder functions.

Lemma 6.17. For any functions T (·), ε(·) and t(·), assume that there exists a one-way
permutation invertible in time T (n) with error ε(n) against t(n)-bounded inverters. Then
for any m = m(n), we can construct a one-way permutation invertible in time T (m) +O(n)
with error ε(m) against t(m)-bounded inverters.
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Proof. Let f : {0, 1}∗ → {0, 1}∗ be the assumed permutation invertible in time T (n), and
for any algorithm A with running time bounded by t(n) and all large enough n,

Pr
x←Un

[A(f(x)) = x] ≤ ε(n).

Let m = m(n) be given. Then consider the permutation p : {0, 1}∗ → {0, 1}∗ defined by

p(x, y) = f(x) ◦ y, where x ∈ {0, 1}m, and y ∈ {0, 1}n−m.

Clearly, since f is efficiently computable and invertible in time T (n), p is also efficiently
computable and invertible in time T (m) +O(n).

Finally, we prove that p has error ε(m) against t(m)-bounded inverters, i.e., for any
algorithm A that runs in time t(m),

Pr
z←Un

[A(p(z)) = z] ≤ ε(m).

Otherwise, assume that there exists an algorithm A∗ running in time t(m) inverting p(z)
with probability more than ε(m). Then A∗ yields an algorithm B running in t(n) inverting
f(x) with probability more than ε(n), which contradicts the hardness assumption of f .

In particular, given f(·) and an m-bit input x, B runs A∗ to invert p(x ◦ y) = f(x) ◦ y for
uniform random y ∈ {0, 1}n−m, and outputs the first m bits of the output of A∗. Note that
if A∗ inverts f(x) ◦ y correctly, then B inverts f(x) correctly. Due to the assumption that
A∗ inverts f(x) ◦ y with probability more than ε(m), B also inverts f(x) with probability
more than ε(m).

In the following corollary, think of a = δ = 1, b = c = 1/2, and α = 3.

Corollary 6.18. For any constants a, b, c, δ > 0, assume that there exists a one-way permu-
tation invertible in time O

(
2n

a)
with error 2−n

c
against 2δn

b
-bounded inverters. Then for any

constant α ≥ 1/a, we can construct a one-way permutation invertible in time O
(
2logaα(n)

)
with error 2− logcα(n) against 2δ logbα(n)-bounded inverters.

Proof. Apply Lemma 6.17 with m = logα(n).

Next, we define PRGs in the asymptotic setting, which are usually called cryptographic
PRGs.

Definition 6.19 (Cryptographic Pseudorandom Generator). A family of pseudorandom gen-
erators with error ε(·) against t(·)-bounded distinguishers is an efficiently evaluable family of
functions G : {0, 1}l → {0, 1}p(l) such that for any algorithm A with running time bounded
by t(l) and for all large enough l,

|Pr[A(G(Ul)) = 1]− Pr[A(Up(l)) = 1]| ≤ ε(l).

Notice that there are no efficient seed-extending cryptographic PRGs. Otherwise, with
revealed seeds, it is easy to efficiently distinguish the output of an efficient seed-extending
PRG, G(x) = (x,E(x)), from a random string (x, y), by checking whether y equals E(x).

However, assuming one-way permutations, the key observation is that there are con-
structions of inefficient seed-extending cryptographic PRGs. Formally, we define inefficient
seed-extending cryptographic PRGs as cryptographically secure functions.
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Definition 6.20 (Cryptographically secure functions). A cryptographically secure function
f : {0, 1}l → {0, 1}p(l) with error ε(·) against t(·)-bounded distinguishers is a function such
that for any algorithm A with running time bounded by t(l),

|Pr[A(f(Ul)) = 1]− Pr[A(Up(l)) = 1]| ≤ ε(l).

Let 〈·, ·〉 denote the inner product over GF(2). First, in the following lemma, we construct
cryptographic PRGs from one-way permutations.

Lemma 6.21 ([GL89]). For any functions t(·) and ε(·), assume that f : {0, 1}∗ → {0, 1}∗ is a
one-way permutation with error ε(·) against t(·)-bounded inverters. Then for any polynomial
p(n), there exists a constant c > 0 such that the function G : {0, 1}2n → {0, 1}2n+p(n),

G(x, r) =
(
fp(n)(x), r, 〈x, r〉, 〈f(x), r〉, . . . , 〈fp(n)−1(x), r〉

)
,

is a pseudorandom generator with error ε(·)c against t(·)c-bounded distinguishers.

Then, to convert G(x) into the seed-extending form, let h(·) = f−1(·) compute the inverse
of f . Notice that the image of G(x, r) is the same as the image of

G′(x, r) = x, r, 〈h(x), r〉, 〈h2(x), r〉, . . . , 〈hp(n)(x), r〉, which is a seed-extending function.

That is, G′(x, r) is a seed-extending cryptographically secure functions with error ε(·)c against
t(·)c-bounded distinguishers. Formally, we have the following corollary.

Corollary 6.22. For any functions t(·) and ε(·), assume that f : {0, 1}∗ → {0, 1}∗ is a
one-way permutation with error ε(·) against t(·)-bounded inverters. Then for any polynomial
p(n), there exists a constant c > 0 such that the function G : {0, 1}2n → {0, 1}2n+p(n),

G(x, r) = x, r, 〈h(x), r〉, 〈h2(x), r〉, . . . , 〈hp(n)(x), r〉, where h(·) = f−1(·).

is a seed-extending cryptographically secure function with error ε(·)c against t(·)c-bounded
distinguishers.

Therefore, combining with Lemma 6.5, we have the following:

Theorem 6.23. For any functions t(·) and ε(·), assume that f : {0, 1}∗ → {0, 1}∗ is a one-
way permutation with error ε(·) against t(·)-bounded inverters. Then for any ∆ = ∆(n) > 0
and a positive constant t < 1, we can get an

(
n−∆, O

(
2∆ε(nt)ct

))
extractor Ext : {0, 1}n →

{0, 1}n−nt for sources recognizable by randomized algorithms running in time (t(nt))
ct, where

ct is a constant depending on t. The running time of our extractor is a polynomial times the
time to compute the inverse function f−1 of the one-way permutation f with input length nt.

In the case that ε = 1
nw(1) and q(n) = nw(1), for any positive constant t, setting ∆ =

ct
2

log 1/ε(nt) we get an (n−O (log(1/ε(nt))) , ε(nt)ct/2 = 1/nw(1)) extractor outputting n−nt
bits from sources recognizable by BPP algorithms. By Lemma 6.17, one can scale down
harder functions to get an extractor running in quasi-polynomial time.

Corollary 6.24. For any constants a, b, c, δ > 0, assume that there exists a one-way permu-
tation invertible in time O

(
2n

a)
with error 2−n

c
against 2δn

b
-bounded inverters. Then, for

any positive constants α and β < 1, we can get an
(
n− cβ logcα (n) , O

(
2−cβ logcα(n)

))
extrac-

tor Ext : {0, 1}n → {0, 1}n−nβ for sources recognizable by randomized algorithms running in

time 2cβδ logbα(n), where cβ is a constant depending on β.The running time of the extractor is

O
(

2logaα(nβ)
)

.
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7 Algebraic Extractors over Prime Fields

In this section we explain how our algebraic extractor extends to any prime field Fq. Recall
that for two n-variate functions f, g : Fnq → Fq, Cor(f, g) = |Eeq[f(x) + g(x)]| , where
eq[x] := wx and w denotes the q-th root of unity. Moreover, over Fq, we say a random
variable Z is ε-biased if bias(Z) = |

∑
i∈Fq w

i Pr[Z = i]| ≤ ε.
Formally, we will prove the following:

Theorem 7.1. For any positive integer d and an prime field Fq, there is an efficient(
(1− 1/cd,q)n, d, 2

−Ω(n/cd,q)
)
-algebraic extractor Ext : Fnq → Fmq , where cd,q = Θ(d222dq3 log q)

and m = Ω(n/cd,q).

We follow the same proof outline as over GF(2). For simplicity, we focus on the set of
fixed-length functions over Fq, i.e., Cn ⊆ {Fnq → Fq} for any positive integer n. We first show
that a naturally generalized XOR amplification for Cn over Fq yields a seedless extractor for
Cn-recognizable sources. Then, we prove that the generalized XOR amplification holds for
n-bit algebraic sources over Fq.

We first generalize the definition of α-XOR amplification for functions with a fixed input
length to Fq.

Definition 7.2 (α-XOR amplification over Fq). For a class Cn of functions C : Fnq → Fq
and a positive constant α, we say Cn has α-XOR amplification for a function h : Ftq → Fq
such that for any vector v ∈ Fbn/tcq with k non-zero coordinates, Cor(hv, Cn) ≤ q−αk, where
we add dummy variables to the input of hv if hv has less than n input variables.

Theorem 7.3. Let Cn be a class of n-variate functions C : Fnq → Fq, such that C ∈ Cn
implies γC ∈ Cn for any γ ∈ Fq. Assume that Cn has α-XOR amplification for a function
h : Ftq → Fq. Let M be the generating matrix of a linear [l,m, r]q code, where l = n/t. Then,
the function Ext : Fnq → Fmq ,

Ext(x) = h(l)(x)M,

is an
(
n−∆, qm/2+∆+1.5−αr) extractor for C-recognizable sources.

Proof. For convenience, let g = (g1(x), . . . , gm(x)) = h(l)(x)M . To show that the output of
Ext is qm/2+∆+1.5−αr-closed to uniform, by the statistical XOR lemma over Fq, it suffices to
show that for any vector v ∈ Flq \ {0l}, gv =

∑
i∈[l] vigi is q∆+1.5−αr-biased conditioned on

C(x) = 1 with |C−1(1)| ≥ qn−∆.
Notice that for any γ ∈ F∗q,

γgv(x) = γ
[
v ·
(
Mh(l)(x)

)]
=

∑
i∈[l]

γviMi

h(l)(x),

where Mi denotes the i-th row of the matrix M . As M is the generating matrix of an [l,m, r]q
code and v is a non-zero vector,

∑
i∈[l] γviMi is a non-zero codeword that has at least r non-

zero coordinates. Thus, by the assumed XOR amplification, we have Cor(γgv, Cn) ≤ q−αr.

26



Furthermore, by the property of Cn, we know that for any β ∈ Fq, βC ∈ Cn. Therefore,
for any C ∈ Cn, any γ ∈ F∗q, and any β ∈ Fq, we have

Cor(γgv, βC) ≤ Cor(γgv, Cn) ≤ q−αr.

Notice that this implies that for each β ∈ Fq and each γ ∈ F∗q, γ(gv + βC) is q−αr-biased.
Then, by the statistical XOR lemma over Fq, gv + βC is q0.5−αr-close to the uniform.

Now, we need the following two lemmas on connections between correlations and statis-
tical distances over Fq. The proofs of these two lemmas are given in the appendix.

Lemma 7.4. For any prime q, let f, g : Fnq → Fq be two functions. If for any β, γ ∈ Fq
PrX∼UFnq

[f(X) + βg(X) = γ] ≤ 1
q

+ ε, then for any u, v ∈ Fq, we have

Pr
X∼UFnq

[f(X) = u|g(X) = v] ≤ 1

q
+

ε

Pr[g(X) = v]
.

We remark that Dodis, Li, Wooley and Zuckerman [DLWZ14] proved the above lemma
by Fourier analysis, which they called the non-uniform XOR lemma. For completeness, we
include a proof in the appendix.

Lemma 7.5. For a random variable Z over Fq and each j ∈ Fq, if Pr[Z = j] ≤ 1/q + δ,
then Z is qδ-biased.

Combining with the fact that gv + βC is q0.5−αr-close to the uniform, i.e., Pr[gv + βC =
λ] ≤ q0.5−αr for any λ ∈ Fq, these two lemmas directly imply that the bias of gv is at most
q1.5−αr/Pr[C(X) = 1] conditioned on C(x) = 1. As |C−1| ≥ qn−∆, Pr[C(x) = 1] ≥ 2−∆,
and hence the bias of gv is at most q∆+1.5−αr conditioned on C(x) = 1, which concludes the
proof.

The next, we prove that XOR amplification over Fq holds for n-bit algebraic sources.
Now, let Pd denote the set all polynomials of degree at most d over Fq, and Vd,n denote

the set of the specific products Πi∈[k] (1− pi(x)q−1) for any positive integer k and any n-

variate polynomials p1(x), . . . , pk(x) ∈ Pd. Note that the product Π
(
1− xq−1

i

)
is the analog

of the AND function over GF(2). Using the same idea as in the case GF(2), we can prove
the following two lemmas. See the appendix for their proofs.

Lemma 7.6. An n-bit algebraic source of degree d over Fq iff it is a Vd,n-recognizable source.

Lemma 7.7. If f : Fnq → Fq is a function such that Cor(f, Pd) ≤ ε, then Cor(f,Vd,n) ≤ 2ε.

Lemma 7.7 follows because the L1 norm of Fourier transform of any one-point indicator
functions Π(1− xq−1

i ) over Fq is at most 2.
Therefore, to prove XOR amplification for algebraic sources, it suffices to prove XOR

amplification for Pd.
Bogdanov, Kawachi and Tanaka [BKT13] proved XOR amplification for low-degree poly-

nomials over prime fields. They proved that the sum of k independent copies of h was
q−Ω(k)-hard for Pd if h was mildly hard. However, besides the sum of copies, we require the
same hardness result for linear combinations of k copies of h.

Formally, for a function f : Fnq → Fq, let δd(f) := minp∈Pd PrX∼UFnq
[f(x) 6= p(x)] denote

the distance of f to Pd. We prove the following lemma.
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Lemma 7.8. Let q be a prime number, t a positive integer, and h : Fnq → Fq a function. If

δd(h) ≥ q/(d+ 1)2d+1, then for any v ∈ Fn/tq with t non-zero coordinates,

δd(h
v) ≥ q − 1

q
− q − 1

q
exp

(
− 3t

q2(d+ 1)22d+3

)
.

We remark that the lemma is implicitly implied by the proof of Bogdanov, Kawachi
and Tanaka. The main revision of our proof is using the fact that the Gowers norm is
multiplicative for functions over disjoint sets of input variables. Please see the appendix for
the proof.

Finally, to get the desired XOR amplification for Pd, we need to prove the following
lemma.

Lemma 7.9. If δd(h
v) ≥ q−1

q
− q−1

q
exp

(
− 3t
q2(d+1)22d+3

)
, then Cor(hv, Pd) ≤ q−t/cd,q , where

cd,q = Θ(d22dq2 log q).

Proof. To show that Cor(hv, Pd) ≤ q−t/cd,q , it is equivalent to show that for any n-variate
polynomial p ∈ Pd, hv + p is q−t/cd,q -biased as Cor(hv, p) = bias(hv + p). By Lemma 7.5, it
suffices to show that for any α ∈ Fq, Pr[hv + p = α] ≤ 1/q + q−t/cd,q , or

Pr[hv 6= α− p] ≥ (q − 1)/q − q−t/cd,q .

This follows if δd(h
v) ≥ q−1

q
− q−1

q
exp

(
− 3t
q2(d+1)22d+3

)
.

In conclusion, we give the proof of our main theorem in this section, i.e., constructing an
algebraic extractor over Fq.

Proof. We use an explicit [l, δ1l, δ2l]q linear code over Fq for some constant δ1, δ2 by Alon et
al. [ABN+92]. By brute force search, it is easy to find a function h over O(dq) bits such that
δd(h) ≥ q/(d + 1)2d+1 as d, q are constants. Let cd,q = Θ(d22dq2 log q). By Lemma 7.8 and
Lemma 7.9, Cor(hv, Pd) ≤ q−Ω(t/cd,q) for any v ∈ Flq with t non-zero coordinates. That is,

Cor(hv,Vd,n) ≤ q−Ω(t/cd,q), by Lemma 7.4.

Thus, Theorem 7.3 yields a
(
n−O(l/cd,q), q

−Ω(l/cd,q)
)

extractor for Vd,n-recognizable sources,

i.e., a
(

(1− 1/c′d,q)n, d, q
−Ω(n/c′d,q)

)
-algebraic extractor Ext : Fnq → Fmq , where c′d,q = Θ(d222dq3 log q)

and m = Ω(n/c′d,q).
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A Appendix

In the appendix, we give all missing proofs. Before each proof, we restate the statement
which it proves.

Lemma A.1 (Lemma 7.4, restated). For a prime q, let f, g : Fnq → Fq be two functions. If
for any β, λ ∈ Fq PrX∼UFnq

[f(X) + βg(X) = λ] ≤ 1
q

+ ε, then for any u, v ∈ Fq, we have

Pr
X∼UFnq

[f(X) = u|g(X) = v] ≤ 1

q
+

ε

Pr[g(X) = v]
.

Proof. Let ai,j = Pr[f(X) = i∧ g(X) = j] for any i, j ∈ Fq, and Sβ,λ =
∑

t∈Fq aλ−βt,t for any
β, λ ∈ Fq. Then, we have

Sβ,λ =
∑
t∈Fq

aλ−βt,t =
∑
t∈Fq

Pr[f(X) = λ− βt ∧ g(X) = t] = Pr[f(X) + βg(X) = λ] ≤ 1

q
+ ε.

Furthermore, we know∑
i,j∈Fq

ai,j =
∑
i,j∈Fq

Pr[f(X) = i ∧ g(X) = j] = 1.

Note that for any u, v ∈ Fq, to bound PrX∼UFnq
[f(X) = u|g(X) = v], it suffices to bound

au,v. Summing over all Sβ,λ containing au,v in the sum, we have

∑
β,λ∈Fq :∃t,λ−βt=u∧t=v

Sβ,λ =
∑
β∈Fq

Sβ,u+βv =
∑
β∈Fq

∑
t∈Fq

au+β(v−t),t =
∑
t∈Fq

∑
β∈Fq

au+β(v−t),t

 .
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Notice that, when t 6= v,
∑

β∈Fq au+β(v−t),t =
∑

i∈Fq ai,t as q is a prime. Thus,

∑
t∈Fq

∑
β∈Fq

au+β(v−t),t

 =
∑
t6=v

∑
i∈Fq

ai,t

+
∑
β∈Fq

au,v = 1−

∑
i∈Fq

ai,v

+ qau,v.

To sum up, we prove that

1−

∑
i∈Fq

ai,v

+ qau,v =
∑
β∈Fq

Sβ,u+βv.

Combining with the fact that Sβ,u+βv ≤ 1/q + ε, we have

au,v ≤
1

q

∑
i∈Fq

ai,v

+ ε =
1

q
Pr[g(X) = v] + ε.

Therefore, Pr[f(X) = u|g(X) = v] = au,v
Pr[g(X)=v]

≤ 1
q

+ ε
Pr[g(X)=v]

.

Lemma A.2 (Lemma 7.5, restated). For a random variable Z over Fq and each j ∈ Fq, if
Pr[Z = j] ≤ 1/q + δ, then Z is qδ-biased.

Proof. Let
Pr[Z = j] = 1/q + δ − αj,

where αj ≥ 0. Notice that

1 =
∑
j∈Fq

Pr[Z = j] =
∑
j∈Fq

(1/q + δ − αj) = 1 + qδ −
∑
j∈Fq

αj.

That is,
∑

j∈Fq αj = qδ. Therefore, the bias of Z can be bounded as follows.

bias(Z) =

∣∣∣∣∣∣
∑
j∈Fq

wj (1/q + δ − αj)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
j∈Fq

wj (1/q + δ)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j∈Fq

wjαj

∣∣∣∣∣∣
≤ 0 +

∑
j∈Fq

|αj| =
∑
j∈Fq

αj = qδ.

Recall that Pd denotes the set of all polynomials of degree at most d over Fq, and Vd,n
denotes the set of the specific products Πi∈[k] (1− pi(X)q−1) for any positive integer k and
any n-variate polynomials p1(x), . . . , pk(x) ∈ Pd.

Lemma A.3 (Lemma 7.6, restated). An n-bit algebraic source of degree d over Fq iff it is a
Vd,n-recognizable source.
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Proof. Let UV denote an arbitrary algebraic source over Fq, where V is an algebraic set of
degree d defined by n-variate polynomials p1, . . . , pk ∈ Pd. By Fermat’s Little Theorem, for
each pi, we know 1 − pi(x)q−1 = 1 iff pi(x) = 0 over Fq. Namely, V can be viewed as the
set of 1-inputs of the function

∏
i∈[k](1− pi(x)q−1). That is, the uniform distribution over V

is also the source recognizable by
∏

i∈[k](1 − pi(x)q−1) ∈ Vd,n. In other words, an algebraic
source of degree d over Fq is a Vd,n-recognizable source.

For the other direction, let Uf denote an arbitrary Vd,n-recognizable source, where f =∏
i∈[k](1−pi(x)q−1) ∈ Vd,n with deg(pi) ≤ d for each i ∈ [k]. By the fact that 1−pi(x)q−1 = 1

iff pi(x) = 0, we have f−1(1) = {x ∈ Fnq |pi(x) = 0,∀i ∈ [k]}. Hence, f−1(1) is the algebraic
set defined by p1(x), . . . , pk(x) ∈ Pd, i.e., f−1(1) is an algebraic set of degree d over n bits.
Therefore, Uf is an n-bit algebraic source of degree d.

Lemma A.4 (Lemma 7.7, restated). If f : Fnq → Fq is a function such that Cor(f, Pd) ≤ ε,
then Cor(f,Vd,n) ≤ 2ε.

The lemma follows because the L1 norm of the Fourier transform of any one-point indi-
cator function Π

(
1− xq−1

i

)
over Fq is at most 2.

Proof. We need to show that if for any p ∈ Pd Cor(f, p) = |Eeq [f + p]| ≤ ε, then for any
product Πi∈[k] (1− pi(X)q−1) where p1, . . . , pk ∈ Pd, we have

Cor
(
f,Πi∈[k]

(
1− pi(X)q−1

))
=
∣∣Eeq [f + Πi∈[k]

(
1− pi(X)q−1

)]∣∣ ≤ 2ε.

Consider the Fourier expansion of the function

eq

∏
i∈[k]

(1− yq−1
i )

 =
∑
β 6=0k

f̂βeq

∑
i∈[k]

βiyi

+ (1− 1/qk) + w/qk,

where f̂β = Eeq[
∏

i∈[k](1− y
q−1
i ) +

∑
i∈[k] βiyi].

Notice that Eeq[
∑

i∈[k] βiyi] = 0 if β 6= 0k. Thus,

|f̂β| =

∣∣∣∣∣eq[1] +
∑

y 6=0k eq[
∑

i∈[k] βiyi]

qk

∣∣∣∣∣ =

∣∣∣∣∣eq[1] +
∑

y∈Fkq
eq[
∑

i∈[k] βiyi]− eq[0]

qk

∣∣∣∣∣ ≤ 2

qk
.

Now, substituting each yi by pi and multiplying eq[f ] on both sides, we have

∣∣Eeq [f(X) + Πi∈[k]

(
1− pi(X)q−1

)]∣∣ ≤∑
β 6=0k

|f̂β|

∣∣∣∣∣∣Eeq
f(X) +

∑
i∈[k]

βipi(X)

∣∣∣∣∣∣ .
Note that

∣∣∣Eeq [f +
∑

i∈[k] βipi(X)
]∣∣∣ ≤ ε as

∑
i∈[k] βipi(X) ∈ Pd. In other words,∣∣∣∣∣∣Eeq

f +
∏
i∈[k]

(1− pki (X))

∣∣∣∣∣∣ ≤
∑
β 6=0k

|f̂β|

 ε ≤ 2ε.
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Lemma A.5 (Lemma 7.8, restated). Let q be any prime number, t > 0 be any integer, and

h : Fnq → Fq be any function. If δd(h) ≥ q/(d+ 1)2d+1, then for any v ∈ Fn/tq with t non-zero
coordinates,

δd(h
v) ≥ q − 1

q
− q − 1

q

3t

q2(d+ 1)22d+3
.

Recall that δd(f) = minp∈Pd PrX∼UFnq
[f(x) 6= p(x)]. Furthermore, let f+t : (Fnq )t → Fq

denote the sum over Fq of t independent copies of f , namely, f+t(x1, . . . , xn) =
∑

i∈[t] f(xi),
and for any vector v ∈ Fmq , f v denote the linear combination of m copies of f according to
v, i.e., f v(x1, x2, . . . , xm) :=

∑
i∈[m] vif(xi), where x1, . . . , xm ∈ Fnq .

Note that Bogdanov, Kawachi and Tanaka proved the following XOR lemma for polyno-
mials over prime fields.

Lemma A.6. [BKT13, Theorem 1.1] Let q be any prime number, t > 0 be any integer, and
f : Fnq → Fq be any function. If δd(f) ≥ q/(d+ 1)2d+1, then

δd(f
+t) >

q − 1

q

(
1− exp

(
− 3t

q2(d+ 1)22d+3

))
.

We note that with some modifications, their proof proves Lemma 7.8. Thus, we first
briefly describe their proof, and then give our proof.

In their proof, for a function f : Fnq → Fq and any integer d, they prove two lemmas on
relations between the distance from degree-d polynomials, δd(f), and the Gowers uniformity
Ud+1(f) and between the Gowers uniformity and the rejection probability, ρd(f), of a specific
low-degree test for polynomial. They proved that ρd(f) ≥ min{δd(f)/q, 1/(d+1)2d+1}, stated
as Theorem 3.2, and ρd(f) = ρd(αf) for any α ∈ F∗q.

More precisely, for a function f : Fnq → Fq and a vector y ∈ Fnq , we take ∆y(f) to be the
directional derivative of f in direction y by setting ∆yf(x) = f(x + y) − f(x). On vectors
y1, . . . , yk, the derivative of f is recursively defined as ∆y1,...,yk(f) := ∆y1,...,yk−1

(∆ykf). Then,
for every integer k ≥ 0, the degree-k Gowers uniformity Uk(f) is defined as

Uk(f) := Ex,y1,...,yk∈Fnq
[
w∆y1,...,yk

f(x)
]
.

Formally, we state the two lemmas as follows.

Lemma A.7. [BKT13, Lemma 4.2][DISTANCE TO UNIFORMITY] For any function f :
Fnq → Fq and any integer d ≥ 0,

δd(f) ≥ q − 1

q

(
1− Ea∈F∗q

[
(Ud+1(af))1/2d+2

])
.

Lemma A.8. [BKT13, Lemma 4.3][UNIFORMITY TO TEST] For any function f : Fnq →
Fq and any integer d ≥ 0,

Ud+1(f) < 1− 3

q2
ρd(f).

Now, we give the proof of Lemma 7.8, based on the above two lemmas and the properties
of ρd(f).
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Proof. By Lemma A.7 and the averaging principle, there is an α ∈ F∗q such that,

δd(h
v) ≥ q − 1

q

(
1− Ud+1(αhv)1/2d+2

)
.

By the definition of the Ud+1, we know the the Gowers uniformity is multiplicative for
functions over disjoint sets of input variables. That is,

Ud+1(αhv) = Ud+1

∑
i∈[m]

αvih

 =
∏
i∈[m]

Ud+1(αvih).

Note that if vi = 0, then Ud+1(αvih) = Ud+1(0) = 1. Thus, it suffices to consider those t
non-zero vi’s. By Lemma A.8, Ud+1(αvih) ≤ 1− 3

q2ρd(αvih) = 1− 3
q2ρd(h) for αvi 6= 0. That

is,

Ud+1(αhv) ≤
(

1− 3

q2
ρd(h)

)t
.

Note that ρd(h) ≥ min{δd(h)/q, 1/(d + 1)2d+1} = 1/(d + 1)2d+1. Thus, it is not hard to

calculate that δd(h
v) ≥ q−1

q

(
1− Ud+1(αhv)1/2d+2

)
≥ q−1

q
− q−1

q
exp(− 3t

q2(d+1)22d+3 ).
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