
Beating Brute Force for Polynomial Identity Testing

of General Depth-3 Circuits

V. Arvind∗ Abhranil Chatterjee† Rajit Datta‡

Partha Mukhopadhyay§

June 4, 2018

Abstract

Let C be a depth-3 ΣΠΣ arithmetic circuit of size s, computing a
polynomial f ∈ F[x1, . . . , xn] (where F = Q or C) with fan-in of product
gates bounded by d. We give a deterministic time 2d poly(n, s) polynomial
identity testing algorithm to check whether f ≡ 0 or not.

In the case of finite fields, for Char(F) > d we obtain a deterministic
algorithm of running time 2γ·d poly(n, s), whereas for Char(F) ≤ d, we
obtain a deterministic algorithm of running time 2(γ+2)·d log d poly(n, s)
where γ ≤ 5.

1 Introduction

Polynomial Identity Testing (PIT ) is the following well-studied algorith-
mic problem: Given an arithmetic circuit C computing a polynomial in
F[x1, . . . , xn], determine whether C computes an identically zero polynomial
or not. The problem can be presented either in the white-box model or in the
black-box model. In the white-box model, the arithmetic circuit is given ex-
plicitly as the input. In the black-box model, the arithmetic circuit is given
black-box access. I.e., the circuit can be evaluated at any point in Fn (or in Fn,
for a suitable extension field F ). In the last three decades, PIT has played a
pivotal role in many important results in complexity theory and algorithms: Pri-
mality Testing [AKS04], the PCP Theorem [ALM+98], IP = PSPACE [Sha90],
graph matching algorithms [Lov79, MVV87]. The problem PIT has a ran-
domized polynomial-time algorithm (more precisely, a co-RP algorithm) via the
Schwartz-Zippel-Lipton-DeMillo Lemma [Sch80, Zip79, DL78], but an efficient
deterministic algorithm is known only in some special cases. An important
result of Impagliazzo and Kabanets [KI04] (also, see [HS80, Agr05]) shows a

∗Institute of Mathematical Sciences (HBNI), Chennai, India, email:

arvind@imsc.res.in
†Institute of Mathematical Sciences (HBNI), Chennai, India, email:

abhranilc@imsc.res.in
‡Chennai Mathematical Institute, Chennai, India, email: rajit@cmi.ac.in
§Chennai Mathematical Institute, Chennai, India, email: partham@cmi.ac.in

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 111 (2018)



connection between the existence of a subexponential time PIT algorithm and
arithmetic circuit lower bounds.

We refer the reader to the survey of Shpilka and Yehudayoff [SY10] for
the exposition of important results in arithmetic circuit complexity, and the
polynomial identity testing problem.

Agrawal and Vinay [AV08] have shown that polynomial size degree-d n-

variate arithmetic circuits can be depth-reduced to ΣΠΣΠ circuits of nO(
√
d)

size. Thus, a nontrivial deterministic PIT algorithm for depth-4 (i.e., ΣΠΣΠ)
circuits would imply a nontrivial deterministic PIT algorithm for general arith-
metic circuits. Indeed, for characteristic zero fields, derandomization of PIT
even for depth-3 ΣΠΣ circuits would have a similar implication [GKKS13].

Motivated by the results of [KI04, Agr05, AV08], a large body of research
has focussed on PIT for restricted classes of depth-3 and depth-4 circuits. In
particular, a well-studied subclass of depth-3 arithmetic circuits are ΣΠΣ(k)
circuits (where the fan-in of the top + gate is bounded by k). Dvir and Sh-
pilka have shown a white-box quasi-polynomial time deterministic PIT algo-
rithm for ΣΠΣ(k) circuits [DS07]. Kayal and Saxena have given a deterministic
poly(dk, n, s) white-box algorithm for the same problem [KS07]. Following the
result of [KS07](also see [AM10] for a different analysis), Karnin and Shpilka
have given the first black-box quasi-polynomial time algorithm for ΣΠΣ(k) cir-
cuits [KS11]. Later, Kayal and Saraf [KS09] have shown a polynomial-time de-
terministic black-box PIT algorithm for the same class of circuits over Q or R.
Finally, Saxena and Sheshadhri have settled the problem for ΣΠΣ(k) completely
by giving a deterministic polynomial-time black-box algorithm [SS12] over any
field. We also note that Oliveira et al. have recently given a sub-exponential
PIT -algorithm for depth-3 and depth-4 multilinear formulas [dOSlV16].

Summary of our results.

For general depth-3 ΣΠΣ circuits with ×-gate fan-in bounded by d, to the best
of our knowledge, no deterministic algorithm with running time better than
min{dn,

(
n+d
d

)
} poly(n, d) is known. Our main results are the following.

Theorem 1. Let C be a ΣΠΣ circuit of size s, computing a polynomial f ∈
F[x1, . . . , xn] ( where F = Q or C) and the fan-in of the product gates of C
is bounded by d. We give a white-box deterministic polynomial time identity
testing algorithm to check whether f ≡ 0 or not in time 2d poly(n, s).

Over the fields of positive characteristic, we show the following result.

Theorem 2. Let C be a ΣΠΣ circuit of size s, computing a polynomial f ∈
F[x1, . . . , xn] and the fan-in of the product gates of C is bounded by d. For
Char(F) > d, we give a white-box deterministic polynomial time identity testing
algorithm to check whether f ≡ 0 or not in time 2γ·d poly(n, s). The constant γ
is at most 5.

As an immediate corollary we get the following.

2



Corollary 1. Let C be a depth-3 ΣΠΣ circuit of size s, computing a polynomial
f ∈ F[x1, . . . , xn] and the fan-in of the product gates of C is bounded by c log n)
for some constant c ( where F = Q or C or a finite field such that Char(F) >
c log n) . We give a deterministic poly(n, s) time identity testing algorithm to
check whether f ≡ 0 or not.

Over the fields of smaller characteristic, we have the following result.

Theorem 3. Let C be a ΣΠΣ circuit of size s, computing a polynomial f ∈
F[x1, . . . , xn] and the fan-in of the product gates of C is bounded by d. For
Char(F) ≤ d, we give a white-box deterministic polynomial time identity testing
algorithm to check whether f ≡ 0 or not in time 2(γ+2)·d log d poly(n, s). The
constant γ is at most 5.

2 Organization

The paper is organized as follows. Section 3 covers the background materials.
In Section 4, we prove Theorem 1 that shows a deterministic 2d ·poly(n) PIT for
depth-3 circuits over Q and C. The PIT algorithms for depth-3 circuits over
finite fields are presented in Section 5, where we prove Theorems 2 and 3.

3 Preliminaries

For a monomial m and a polynomial f , let [m]f denote the coefficient of the
monomial m in f . We denote the field of rational numbers as Q, and the field
of complex numbers as C. Depth-3 Σ[s]Π[d]Σ circuits computing polynomials in
F[x1, x2, . . . , xn] are of the following form:

C(x1, . . . , xn) =

s∑
i=1

d∏
j=1

Li,j(x1, . . . , xn),

where each Li,j is an affine linear form over F.
We refer to them as ΣΠΣ circuits for unspecified s and d.
We recall a well-known fact which states that for the purpose of solving PIT ,

it suffices to consider homogeneous circuits. We use the notation Σ[s]Π[d]Σ to
denote homogeneous depth-3 circuits of top sum gate fan-in s, product gates
fan-in bounded by d.

Fact 1. Let C(x1, . . . , xn) be a Σ[s]Π[d]Σ circuit. Then C ≡ 0 if and only if
zdC(x1/z, . . . , xn/z) ≡ 0 where z is a new variable.

We say a monomial m is of type e = (e1, e2, . . . , eq) if m = xe1i1 x
e2
i2
. . . x

eq
iq

for

e1 ≤ e2 ≤ . . . ≤ eq and each ij is distinct. For the monomial m = xe1i1 x
e2
i2
. . . x

eq
iq

we use m! to denote the product e1!·e2! · · · ek! as a convenient abuse of notation.

3



Connection to noncommutative computation

In this paper, we will also deal with the free noncommutative ring F〈Y 〉, where
Y is a set of noncommuting variables. In this ring, monomials are words in Y ∗

and polynomials in F〈Y 〉 are F-linear combinations of words. We define non-
commutative arithmetic circuits essentially as their commutative counterparts.
The only difference is that at each product gate in a noncommutative circuit
there is a prescribed left to right ordering of its inputs.

Given a noncommutative monomial m = yi1yi2 . . . yid of degree d and a
permutation σ ∈ Sd, we use mσ to denote the position-permuted monomial
yiσ(1)yiσ(2) . . . yiσ(d) .

For our PIT algorithms over finite fields given in Section 5, we will be
applying the Raz-Shpilka PIT algorithm [RS05] for noncommutative algebraic
branching programs. For this purpose, we prescribe a way of transforming a
given commutative circuit C computing a polynomial in F[x1, x2, . . . , xn] to a
noncommutative version Cnc. The circuit Cnc is defined by fixing an ordering
of the inputs to each product gate in C and replacing xi by the noncommutative
variable yi, 1 ≤ i ≤ n. Thus, Cnc will compute a polynomial fncC in the ring
F〈Y 〉, where Y = {y1, y2, . . . , yn} are n noncommuting variables.

Remark 1. We stress that the above transformation of a commutative circuit
C to a noncommutative circuit Cnc does not preserve polynomial identities.
However, given a commutative ΣΠΣ circuit C, we will suitably “symmetrize”
it to obtain Ĉ ensuring that the noncommutative version Ĉnc is identically zero
iff C ≡ 0.

We recall the definition of Hadamard Product of two polynomials. The
concept of Hadamard product is particularly useful in noncommutative compu-
tations [AJ09,AS18].

Definition 1. Given two degree d polynomials f, g ∈ F[x1, x2, . . . , xn], the
Hadamard Product f ◦ g is defined as

f ◦ g =
∑
m

([m]f · [m]g) m.

For the PIT purpose in the commutative setting, we adapt the notion of
Hadamard Product suitably and define a scaled version of Hadamard Product
of two polynomials.

Definition 2. Given two degree d polynomials f, g ∈ F[x1, x2, . . . , xn], the
scaled version of the Hadamard Product f ◦s g is defined as

f ◦s g =
∑
m

(m! · [m]f · [m]g) m,

where m = xe1i1 x
e2
i2
. . . xerir for some r ≤ d and m! = e1! · e2! · · · er!, as already

defined.
For solving PIT over Q, it suffices to compute f ◦s f(1, 1, . . . , 1). This

is because all monomials in f ◦s f have nonnegative coefficients. Thus, f ◦s

4



f(1, 1, . . . , 1) 6= 0 if and only if f 6≡ 0. In the case F = C, it suffices to compute
f ◦s f̄(1, 1, . . . , 1) where f̄ denotes the polynomial obtained by conjugating every
coefficient of f .

We also recall a result of Ryser [Rys63] that gives a Σ[2n]Π[n]Σ circuit for
the Permanent polynomial of n× n symbolic matrix.

Lemma 1 (Ryser [Rys63]). For a matrix X with variables xij : 1 ≤ i, j ≤ n
as entries,

Perm(X) = (−1)n
∑
S⊆[n]

(−1)|S|
n∏
i=1

∑
j∈S

xij

 .

Remark 2. We note here that Ryser’s formula holds over all fields F. Fur-
thermore, if X is a matrix of free noncommuting variables yij : 1 ≤ i, j ≤ n as
entries, then too Ryser’s formula holds. More precisely, we have

Perm(X) = (−1)n
∑
S⊆[n]

(−1)|S|
n∏
i=1

∑
j∈S

yij

 ,

where the order of linear forms in each product gate is increasing order of index
i.

The following simple lemma about the coefficient of a monomial in a product
of homogeneous linear forms is important for the paper.

Lemma 2. For a degree-d monomial m = xi1xi2 · · ·xid (where the variables

can have repeated occurrences) and a homogeneous ΠΣ circuit C =
∏d
j=1 Lj,

the coefficient of monomial m in C is given by:

[m]C =
1

m!

∑
σ∈Sd

d∏
j=1

([xij ]Lσ(j)).

Proof. We assume without loss of generality that the monomial m =
xi1xi2 · · ·xid is such that repeated variables are adjacent, where the first e1
variables are xj1 , and the next e2 variables are xj2 and so on until the last eq
variables are xjq , and the xjk , 1 ≤ k ≤ q are distinct variables.

We notice that the monomial m can be generated C by first fixing an order
σ : [d] 7→ [d] for multiplying the d linear forms as Lσ(1)Lσ(2) · · ·Lσ(d), and then
multiplying the coefficients of variable xik , 1 ≤ k ≤ d picked successively from
linear forms Lσ(k), 1 ≤ k ≤ d. However, these d! orderings repeatedly count
terms.

We claim that each distinct product of coefficients term is counted exactly
m! times. Let Ek ⊆ [d] denote the interval Ek = {j | ek−1 + 1 ≤ j ≤ ek}, 1 ≤
k ≤ q, where we set e0 = 0.

Now, to see the claim we only need to note that two permutations σ, τ ∈ Sd
give rise to the same product of coefficients term iff σ(Ek) = τ(Ek), 1 ≤ k ≤ q.
Thus, the number of permutations τ that generate the same term as σ is m!.

Therefore the actual coefficient [m]C, which is the sum of distinct product
of coefficients is given by 1

m!

∑
σ∈Sd

∏d
j=1([xij ]Lσ(j)), which completes the proof.

5



Perfect Hash Functions

We recall the notion of perfect hash functions from [NSS95, AG10]. An (n, k)-
family of perfect hash functions is a collection of functions F from [n] to [k] such
that for every subset S ⊆ [n] of size k, there exists at least one function f ∈ F
such that f is one-one on S. Explicit deterministic construction of (n, k)-family
of perfect hash function is well-known [NSS95, AG10]. For the best known
construction, the size of the family is ekkO(log k) log n, and the running time of
the construction is O(ekkO(log k) log n).

4 PIT for ΣΠΣ circuits over Q and C

We first outline the main ideas of the PIT algorithm over Q. For two
polynomials f and g of degree d, consider their Hadamard product f ◦ g =∑

m[m]f · [m]g ·m. Clearly, since f ◦ f has nonnegative coefficients, f ≡ 0 if
and only if f ◦f(1, . . . , 1) = 0. Thus, given a circuit computing a polynomial f ,
if we can compute a circuit for f ◦ f then we can check if f ≡ 0. Actually, we
will use a slightly different product which we call the scaled Hadamard product
defined as

f ◦s g =
∑
m

m! · [m]f · [m]g ·m.

Notice that computing a circuit for f ◦sf also suffices to solve the PIT problem.
Clearly, f ≡ 0 if and only if f ◦s f(1 . . . , 1) = 0.

As already observed, we can assume w.l.o.g. that the given circuit is ho-
mogeneous. Given a Σ[s]Π[d]Σ circuit computing a homogeneous polynomial f ,
our aim is to compute a circuit for f ◦s f efficiently. Since the scaled Hadamard
product distributes over addition, it suffices to compute the scaled Hadamard
product of two Π[d]Σ circuits C1 and C2. We will obtain a Σ[2d]Π[d]Σ circuit
of size 2d poly(s, n, d) for C1 ◦s C2. Surprisingly, we can use Ryser’s 2d poly(d)
sized depth-3 formula for the permanent of a d× d matrix to obtain a depth-3
circuit for C1 ◦s C2.

For the F = C case a modification of the above method works. Given
a circuit C computing f ∈ C[x1, x2, . . . , xn], we first construct a circuit C̄
computing f̄ ∈ C[x1, x2, . . . , xn], obtained by conjugating coefficients of the
linear forms in C. The coefficients C ◦s C̄ are squares of the absolute values of
the coefficients of f . Hence, evaluating C ◦s C̄ at (1, 1, . . . , 1) yields the desired
PIT .

Now we are ready to prove Theorem 1.
Proof of Theorem 1. We present the proof only for F = Q. For C, we
only need a minor modification as explained in Remark 3. Given the cir-
cuit C we compute C ◦s C and evaluate at (1, 1, . . . , 1) point. Notice that
over rationals, C ◦s C has non-negative coefficients. This also implies that
C ≡ 0 if and only if C ◦s C(1, 1, . . . , 1) = 0. So it is sufficient to show that
C ◦s C(1, . . . , 1) can be computed deterministically in time 2d poly(s, n). Since
the scaled Hadamard Product distributes over addition, we only need to show
that the scaled Hadamard Product of two ΠΣ circuits can be computed effi-
ciently.

6



Lemma 3. Given two homogeneous Π[d]Σ circuits C1 =
∏d
i=1 Li and C2 =∏d

i=1 L
′
i we have:

C1 ◦s C2 =
∑
σ∈Sd

d∏
i=1

(Li ◦s L′σ(i)).

Proof. We prove the formula monomial by monomial. Let m = xi1xi2 . . . xid be
a monomial in C1 (Note that i1, i2, . . . , id need not be distinct).

Now let m be a monomial that appears in both C1 and C2. From Lemma 2
the coefficients are

[m]C1 = α1 =
1

m!

∑
σ∈Sd

d∏
j=1

[xij ]Lσ(j)


and

[m]C2 = α2 =
1

m!

∑
π∈Sd

d∏
j=1

[xij ]L
′
π(j)


respectively.

From the definition 2 we have

[m](C1 ◦s C2) = m! · α1 · α2.

Now let us consider the matrix T where Tij = Li ◦s L′j : 1 ≤ i, j ≤ d and

Perm(T ) =
∑

σ∈Sd
∏d
i=1 Li ◦s L′σ(i). The coefficient of m in Perm(T ) is

[m] Perm(T ) =
∑
σ∈Sd

[m]

 d∏
j=1

Lj ◦s L′σ(j)

 .

Similar to Lemma 2, we notice the following.

[m] Perm(T ) =
∑
σ∈Sd

1

m!

∑
π∈Sd

d∏
j=1

[xij ](Lπ(j) ◦s L′σ(π(j)))

=
1

m!

∑
σ∈Sd

∑
π∈Sd

d∏
j=1

([xij ]Lπ(j)) · ([xij ]L′σ(π(j)))

=
1

m!

∑
σ∈Sd

∑
π∈Sd

d∏
j=1

([xij ]Lπ(j)) ·
d∏
j=1

([xij ]L
′
σ(π(j)))

=
∑
π∈Sd

 d∏
j=1

([xij ]Lπ(j)) ·
1

m!

∑
σ∈Sd

d∏
j=1

([xij ]L
′
σ(π(j)))


= m! · 1

m!

∑
π∈Sd

 d∏
j=1

([xij ]Lπ(j)) ·
1

m!

∑
σ∈Sd

d∏
j=1

([xij ]L
′
σ(π(j)))

 .

Clearly, for any fixed π ∈ Sd, we have that
∑

σ∈Sd
∏d
j=1[xij ]L

′
σ(π(j)) = m!α2.

Hence, [m] Perm(T ) = m! · α1 · α2 and the lemma follows.

7



Lemma 4. Given two Π[d]Σ circuits C1 and C2 we can compute a Σ[2d]Π[d]Σ
for C1 ◦s C2 in time 2d poly(n, d).

Proof. From Lemma 3 we observe that Perm(T ) gives a circuit for C1 ◦s C2.

A Σ[2d]Π[d]Σ circuit for Perm(T ) can be computed in 2d poly(n, d) time using
Lemma 1.

Now we show how to take the scaled Hadamard Product of two ΣΠΣ circuits.

Lemma 5. Given two ΣΠ[d]Σ circuits C =
∑s

i=1 Pi and C̃ =
∑s̃

i=1 P̃i We can

compute a Σ[2dss̃]Π[d]Σ circuit for C ◦s C̃ in time 2d poly(s, s̃, d, n).

Proof. We first note that by distributivity,

C ◦s C̃ =
s∑
i=1

s̃∑
j=1

Pi ◦s P̃j .

Using Lemma 4 for each pair Pi ◦s P̃j we get a Σ[2d]Π[d]Σ circuit Pij . Now

the formula
∑s

i=1

∑s̃
j=1 Pij is a Σ[2dss̃]Π[d]Σ formula which can be computed in

2d poly(s, s̃, d, n) time.

Now given a Σ[s]Π[d]Σ circuit C we can compute C ◦sC using Lemma 5 and
finally evaluating C ◦s C(1, 1, . . . , 1) completes the PIT algorithm. Clearly all
the computation can be done in 2d poly(s, n) time. This completes the proof of
Theorem 1.

Remark 3. To adapt the algorithm over C, we need to just compute C ◦s C̄
where C̄ is the polynomial obtained from C by conjugating each coefficient.
Note that a circuit computing C̄ can be obtained from C by just conjugating the
scalars that appear in the linear forms of C. This follows from the fact that the
conjugation operation distributes over addition and multiplication. Now we have
[m](C ◦s C̄) = |[m]C|2, so the coefficients are all positive and thus evaluating
C ◦s C̄(1, 1, . . . , 1) is sufficient for the PIT algorithm.

5 PIT for ΣΠΣ circuits over finite fields

In this section we present the PIT algorithms for ΣΠΣ circuits over finite fields
in two subsections: the Char(F) > d case and the Char(F) ≤ d case respectively,
where d is the formal degree of the given ΣΠΣ circuit.

5.1 Over large characteristic

We first outline the algorithm for fields F such that Char(F) > d, where d is
the formal degree of the given ΣΠΣ circuit. Since Char(F) = p > d, it turns
out that the notion of scaled Hadamard product is still useful for us, as m! 6= 0
(mod p) in F. However, we cannot simply evaluate the circuit at some specific

8



point to perform the PIT since the final sum could be zero (for instance, a
multiple of p).

At this point, we will apply ideas from noncommutative computation.
Suppose the PIT instance is a homogeneous degree-d polynomial f ∈

F[x1, x2, . . . , xn] given by circuit C. As explained in Section 3, we can consider
the corresponding noncommutative circuit Cnc which computes a noncommu-
tative homogeneous degree-d polynomial f ′ ∈ F〈y1, y2, . . . , yn〉.

Every monomial m of f can appear as different noncommutative monomials
m′ in f ′. We use the notation m′ → m to denote that m′ ∈ Y ∗ will be
transformed to m by substituting xi for yi, 1 ≤ i ≤ n. Then, we observe that

[m]f =
∑
m′→m

[m′]f ′. (1)

Clearly, the noncommutative circuit Cnc is not directly useful for PIT, be-
cause Cnc may compute a nonzero polynomial even when C ≡ 0. However, we
observe that the following symmetrization trick will preserve identity. We first
explain how permutations σ ∈ Sd act on the set of degree-d monomials Y d (and
hence, by linearity, act on homogeneous degree-d polynomials).

For each monomial m′ = yi1yi2 · · · yid , the permutation σ ∈ Sd maps m′ to
the monomial m′σ which is defined as m′σ = yiσ(1)yiσ(2) · · · yiσ(d) . Consequently,
by linearity, f ′ =

∑
m′∈Y d [m

′]f ′ ·m′ is mapped by σ to the polynomial f ′σ =∑
m′∈Y d [m

′]f ′ ·m′σ.
The following proposition tells us a simple way of transforming PIT for

commutative circuits to PIT for noncommutative circuits.

Proposition 1. Suppose Char(F) > d. For a homogeneous degree d polynomial
f ∈ F[x1, x2, . . . , xn] given by circuit C, and the corresponding noncommuta-
tive circuit Cnc computing f ′ ∈ F〈y1, y2, . . . , yn〉 consider the “symmetrized”
polynomial

f∗ =
∑
σ∈Sd

f ′σ.

Then the commutative polynomial f is identically zero iff the noncommuta-
tive polynomial f∗ ∈ F〈y1, y2, . . . , yn〉 is identically zero.

Proof. Let f =
∑

m[m]f ·m and f ′ =
∑

m′ [m
′]f ′ ·m′. Notice that

[m]f =
∑
m′→m

[m′]f ′.

Now, we write

f∗ =
∑
m′′

[m′′]f∗ ·m′′.

The group Sd acts on Y d (degree d monomials in Y ) by permuting the coor-
dinates. Suppose m = xe1i1 · · ·x

eq
iq

is a type e = (e1, . . . , eq) degree-d monomial

over X and m′′ → m. Then, by the Orbit-Stabilizer lemma the orbit Om′′ of
m′′ has size d!

m! . It follows that [m′′]f∗ =
∑

m′∈Om′′
m! · [m′]f ′ = m! · [m]f . Thus,

[m′′]f∗ = 0 if and only if [m]f = 0, which proves the proposition.

9



Thus, in order to check if the polynomial f computed by a commutative
circuit C is identically zero, we can instead check if the noncommutative
polynomial f∗ ≡ 0. Clearly, if we have a small algebraic branching program
(ABP) for f∗, we can use the deterministic identity testing algorithm of Raz
and Shpilka [RS05] to do PIT for f∗ and hence for f . We manage to do
precisely this in the next result. Now we are ready to prove Theorem 2.

Proof of Theorem 2. We can write f =
∑s

i=1

∏d
j=1 Lij , for homogeneous linear

forms Lij . Now, the corresponding noncommutative polynomial f ′ is defined
by the natural order of the j indices.

We claim that the noncommutative polynomial f∗ defined in Proposition 1
has a noncommutative Σ[2d·s]Π[d]Σ formula. Once we prove the claim we are
done, because we can apply the Raz-Shpilka deterministic PIT algorithm to
this formula and obtain the desired PIT, as a consequence of Proposition 1.

Now, consider one of the ΠΣ subcircuits of C, say, Pi = Li1Li2 · · ·Lid. Then
P ′i = L′i1L

′
i2 · · ·L′id, where L′ij is obtained from Lij by replacing variables xk

with the noncommutative variable yk for each k. Now, we claim the following.

Claim 1.
P ∗i =

∑
σ∈Sd

L′iσ(1)L
′
iσ(2) · · ·L

′
iσ(d).

Proof. Let us proof the claim monomial by monomial. Fix a monomial m′′ in P ∗i
such that m′′ → m. Suppose m′′ = yk1yk2 . . . ykd . Note that, m = xk1xk2 . . . xkd .
Recall from Proposition 1, [m′′]P ∗i = m! · [m]Pi. Now, the coefficient of m′′ in∑

σ∈Sd
∏d
j=1 L

′
iσ(j) is

[m′′]

∑
σ∈Sd

d∏
j=1

L′iσ(j)

 =
∑
σ∈Sd

d∏
j=1

[ykj ]L
′
iσ(j).

Let us notice that, [ykj ]L
′
iσ(j) = [xkj ]Liσ(j). Hence,

[m′′]

∑
σ∈Sd

d∏
j=1

L′iσ(j)

 =
∑
σ∈Sd

d∏
j=1

[xkj ]Liσ(j).

Now, the claim directly follows from Lemma 2 as
∑

σ∈Sd
∏d
j=1[xkj ]Liσ(j) =

m! · [m]Pi.

Now define the d × d matrix Ti such that each row of Ti is just the linear
forms L′i1, L

′
i2, . . . , L

′
id appearing in Pi. The (noncommutative) permanent of

Ti is given by

Perm(Ti) =
∑
σ∈Sd

d∏
j=1

L′iσ(j),

which is just P ∗i .
We now apply Ryser’s formula given by Lemma 1 (noting the fact that

it holds for the noncommutative permanent too), to express Perm(Ti) as a

10



depth-3 homogeneous noncommutative Σ[2d]Π[d]Σ formula. It follows that
f∗ =

∑s
i=1 Perm(Ti) has a Σ[2d·s]Π[d]Σ noncommutative formula.

Now we apply the identity testing algorithm of Raz and Shpilka for noncom-
mutative ABPs to this Σ[2d·s]Π[d]Σ noncommutative formula to get the desired
result [RS05]. The bound on γ comes from Theorem 4 of their paper [RS05].
This completes the proof of Theorem 2.

Notice that, the statement of Claim 1 does not hold for an arbitrary poly-
nomial over finite fields F where Char(F) = p ≤ d. To be more precise, for
a given homogeneous degree d polynomial f over Fp, if f has a monomial m
of form xe1i1 x

e2
i2
. . . x

eq
iq

where ei ≥ p for some i ∈ [q] then m! = 0 (mod p) and

for each m′′ such that m′′ → m, [m′′]f∗ = 0. Hence, this strategy of applying
the noncommutative identity testing algorithm of Raz and Shpilka [RS05] to
conclude the identity of f fails in small characteristics.

Remark 4. If the given ΣΠ[d]Σ circuit computes a multilinear polynomial then
m! = 1 for every monomial and Theorem 2 works for fields of small character-
istic also.

5.2 Over small characteristic

In this section we extend the PIT results over finite fields F of small charac-
teristic such that Char(F) ≤ d where d is the formal degree of the given circuit.

Over finite fields F of small characteristic such that Char(F) = p ≤ d where d
is the formal degree of the given ΣΠΣ circuit, the previous strategy of applying
the noncommutative identity testing algorithm of Raz and Shpilka [RS05] to
conclude the identity of f fails in general.

Inspired by Remark 4 we reduce the problem of identity testing of general
ΣΠΣ circuit over Fp (which is given as an input) to many instances of PIT of
multilinear ΣΠΣ circuits and invoke the algorithm of Theorem 2 to solve the
problem over the fields of small characteristic. To do this, we partition the
monomials by their types. Let f be a polynomial and e be fixed type, we define
fe as the restriction of f on the monomials of that type. Clearly that reduces
the PIT problem of general depth-3 circuits to identity testing of each fe. To
do PIT on fe, we first construct a ΣΠΣ∧ circuit that computes fe with some
spurious terms. Then we encode the circuit to a ΣΠΣ circuit computing a
multilinear polynomial and use Hadamard product and perfect hash families to
get multilinear circuits each covering some parts of fe. By the exhaustiveness
property of perfect hash families, we ensure that if fe has nonzero monomial
one of the multilinear circuits detects it.

Before going into the details let us first introduce the notion of type of a
monomial.

Definition 3. Let m = xe1i1 x
e2
i2
. . . x

eq
iq

be a monomial of total degree d over the
variables x1, . . . , xn where e1 ≤ e2 ≤ . . . ≤ eq and each ij is distinct. Then the
type of m is the q-tuple e = (e1, e2, . . . , eq).

The notion of types is helpful in the following sense. Let Xd be the set of all
monomials of degree d over {x1, . . . , xn}. Define Xd,e as the set of monomials

11



of type e in Xd. For a homogeneous degree d polynomial f , fe is defined as
fe =

∑
m∈Xd,e [m]f · m. Moreover, if we define T as the set of all types for

degree d monomials then

Xd =
+⋃

e∈T
Xd,e,

i.e. Xd is the disjoint union of each Xd,e. Therefore, f =
∑

e∈T fe. We make
the following important observation.

Observation 1. f ≡ 0 if and only if fe ≡ 0 for each e ∈ T .

To effectively use typed part of a polynomial for a specific type, the following
notion of Hadamard Product is very useful. Given two linear forms L1 =∑n

i=1 aixi and L2 =
∑n

i=1 bixi, define

L1 ◦p L2 =
n∑
i=1

ai · bi x2i .

We can naturally extend the notion to define L1 ◦p . . . ◦p Ld.
Given a type e = (e1, e2, . . . , eq) and a product of linear forms L1L2 · · ·Ld

where Li may be same as Lj for distinct i, j, we define

Lj,ej = Le[j−1]+1 ◦p Le[j−1]+2 ◦p . . . ◦p Le[j−1]+ej

where e[j−1] =
∑j−1

t=1 et. For any σ ∈ Sd we define,

Lσj,ej = Lσ(e[j−1]+1) ◦p Lσ(e[j−1]+2) ◦p . . . ◦p Lσ(e[j−1]+ej).

For a fixed type e = (e1, e2, . . . , eq), from the proof of Lemma 2 we recall
the definition of Ek ⊆ [d] which denotes the interval Ek = {j | ek−1 + 1 ≤
j ≤ ek}, 1 ≤ k ≤ q, where we set e0 = 0. We say that σ, π ∈ Sd are identical
permutations with respect to the type e if σ(Ek) = π(Ek) for 1 ≤ k ≤ q.

Clearly the above relation is an equivalence relation on Sd which partitions
the set of permutations. We construct the set Ae of distinct permutations by
choosing one permutation from each equivalence class.

Lemma 6. For any monomial m = xe1i1 x
e2
i2
. . . x

eq
iq

of degree d and of type e =

(e1, e2, . . . , eq) and a homogeneous Π[d]Σ circuit P =
∏d
j=1 Lj we have:

[m]P =
∑
σ∈Ae

d∏
j=1

[xij ]Lσ(j) =
∑
σ∈Ae

q∏
j=1

[x
ej
ij

]Lσj,ej .

Proof. The proof directly follows from Lemma 2.

Now we apply a diagonal trick to carefully merge the linear forms in a ΠΣ
circuit and obtain a ΠΣ∧ circuit. For each product gate Pi =

∏d
j=1 Lij , we

define the polynomial

Pi,e =
∑
σ∈Ae

q∏
j=1

Lσij,ej .

12



Notice that, all the monomials of Pi,e are of form xe1i1 x
e2
i2
. . . x

eq
iq

where each
ij may not be distinct, but for those monomials m where each ij is distinct,
[m]Pi,e = [m]P from Lemma 6.

Now we give the proof of Theorem 3.
Proof of Theorem 3. Given the ΣΠΣ circuit C =

∑s
i=1 Pi, we construct

the following ΣΠΣ∧ circuit Ce =
∑s

i=1 Pi,e. Now we introduce a set of new
variables {zi,ej}i∈[n],j∈[q] to make Ce multilinear. We replace x

ej
i with zi,ej at

the bottom of the circuit Ce and get a multilinear ΣΠΣ circuit, call it C ′e. Now
for a monomial mz = zi1,ei1zi2,ei2 . . . ziq ,eiq , if i1, i2, . . . , iq are distinct then mz

is uniquely decoded into the monomial mx = x
ei1
i1
x
ei2
i2
. . . x

eiq
iq

and Lemma 6 tells
us that

[mz]C
′
e = [mx]Ce = [mx]C.

Hence, we are only left with the following problem. Given a ΣΠ[q]Σ circuit
C ′e computing a multilinear homogeneous polynomial over {zi,ej}i∈[n],j∈[q], we

want to get another ΣΠ[q]Σ circuit Ĉe keeping only the monomials of the form
zi1,e1zi2,e2 . . . ziq ,eq with distinct ij . We do not extract all these monomials at
once, instead we use a (n, q)-perfect hash family F and extract those multilinear
monomials that are hashed by a function ζ ∈ F . We achieve this by creating a
Π[q]Σ circuit that contains monomials hashed by ζ and take Hadamard Product
with C ′e.

For a fixed type e = (e1, e2, . . . , eq), define E as the set of distinct ej ’s. For
each type e and each function ζ ∈ F we construct the following ΠΣ circuit:

Pζ,e =

q∏
j=1

∑
ê∈E

∑
i∈ζ−1(j)

zi,ê

 .

Note that all monomials of Pζ,e have distinct first indices, and using
Lemma 3 we construct

C ′ζ,e = C ′e ◦s Pζ,e.

Now C ′ζ,e is a ΣΠ[q]Σ circuit computing a multilinear polynomial and from
Remark 4 we know that we can apply Theorem 2 to do PIT . The correctness
of the algorithm follows from the following claim.

Claim 2. C ≡ 0 if and only if C ′ζ,e ≡ 0 for each e ∈ T and for each ζ ∈ F .

Proof. From observation 1 we know that C ≡ 0 if and only if fe ≡ 0 for each
e ∈ T . Now each C ′ζ,e contains encodings of monomials of fe that are hashed
by ζ, and by the property of the perfect hash family the collection {C ′ζ,e}ζ∈F
covers every monomial of fe. Thus if C has a non-zero monomial m of type e,
its encoding mz is also present in some C ′ζ,e with [mz]C

′
ζ,e = [m]C.

Our algorithm computes circuits C ′ζ,e for each e ∈ T and ζ ∈ F and runs
the algorithm of Raz and Shpilka [RS05] on C ′ζ,e. If the size of C is s then the

size of C ′ζ,e is 2d log ds, the algorithm of Raz and Shpilka [RS05] on each of these

takes 2γd log d poly(n, d, s) time. We need to do PIT for each C ′ζ,e and there are

|T | · |F| ≤ 22d log d many circuits. Thus the running time of the algorithm is
2(γ+2)d log d poly(n, s, d). This completes the proof of Theorem 3.

13



References

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random gen-
erators. In FSTTCS 2005: Foundations of Software Technology and
Theoretical Computer Science, 25th International Conference, pages
92–105, 2005.

[AJ09] Vikraman Arvind and Pushkar S. Joglekar. Arithmetic circuits,
monomial algebras and finite automata. In Mathematical Foun-
dations of Computer Science 2009, 34th International Symposium,
MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28,
2009. Proceedings, pages 78–89, 2009.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in
P. Ann. of Math, 160(2):781–793, 2004.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and
Mario Szegedy. Proof verification and the hardness of approximation
problems. J. ACM, 45(3):501–555, 1998.

[AM10] Vikraman Arvind and Partha Mukhopadhyay. The ideal mem-
bership problem and polynomial identity testing. Inf. Comput.,
208(4):351–363, 2010.

[AS18] Vikraman Arvind and Srikanth Srinivasan. On the hardness of the
noncommutative determinant. Computational Complexity, 27(1):1–
29, 2018.

[AV08] Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at
depth four. In Proceedings-Annual Symposium on Foundations of
Computer Science, pages 67–75. IEEE, 2008.

[DL78] Richard A. DeMillo and Richard J. Lipton. A probabilistic remark
on algebraic program testing. Inf. Process. Lett., 7:193–195, 1978.

[dOSlV16] Rafael Mendes de Oliveira, Amir Shpilka, and Ben lee Volk. Subex-
ponential size hitting sets for bounded depth multilinear formulas.
Computational Complexity, 25(2):455–505, 2016.

[DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with two
queries and polynomial identity testing for depth 3 circuits. SIAM
J. Comput., 36(5):1404–1434, 2007.

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad
Saptharishi. Arithmetic circuits: A chasm at depth three. In FOCS,
pages 578–587, 2013.

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing polynomials which
are easy to compute (extended abstract). In Proceedings of the
12th Annual ACM Symposium on Theory of Computing, 1980, pages
262–272, 1980.

14



[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing poly-
nomial identity tests means proving circuit lower bounds. Compu-
tational Complexity, 13(1-2):1–46, 2004.

[KS07] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for
depth 3 circuits. Computational Complexity, 16(2):115–138, 2007.

[KS09] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial iden-
tity testing for depth 3 circuits. In 50th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2009, pages 198–207,
2009.

[KS11] Zohar Shay Karnin and Amir Shpilka. Black box polynomial identity
testing of generalized depth-3 arithmetic circuits with bounded top
fan-in. Combinatorica, 31(3):333–364, 2011.

[Lov79] László Lovász. On determinants, matchings, and random algo-
rithms. In FCT, pages 565–574, 1979.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Match-
ing is as easy as matrix inversion. Combinatorica, 7(1):105–113,
1987.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity
testing in non-commutative models. Computational Complexity,
14(1):1–19, 2005.

[Rys63] H.J. Ryser. Combinatorial Mathematics. Carus mathematical mono-
graphs. Mathematical Association of America, 1963.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of
polynomial identities. J. ACM, 27(4):701–717, 1980.

[Sha90] Adi Shamir. IP=PSPACE. In 31st Annual Symposium on Foun-
dations of Computer Science, St. Louis, Missouri, USA, October
22-24, 1990, Volume I, pages 11–15, 1990.

[SS12] Nitin Saxena and C. Seshadhri. Blackbox identity testing for
bounded top-fanin depth-3 circuits: The field doesn’t matter. SIAM
J. Comput., 41(5):1285–1298, 2012.

[AG10] Noga Alon and Shai Gutner. Balanced families of perfect hash func-
tions and their applications. ACM Trans. Algorithms, 6(3):54:1–
54:12, 2010.

[NSS95] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Split-
ters and near-optimal derandomization. In 36th Annual Symposium
on Foundations of Computer Science, Milwaukee, Wisconsin, 23-25
October 1995, pages 182–191, 1995.

15



[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey
of recent results and open questions. Foundations and Trends in
Theoretical Computer Science, 5(3-4):207–388, 2010.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In
Symbolic and Algebraic Computation, EUROSAM ’79, An Inter-
national Symposiumon Symbolic and Algebraic Computation, pages
216–226, 1979.

16

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


