
PPSZ for k ≥ 5: More Is Better

Dominik Scheder
Shanghai Jiaotong University

May 30, 2018

Abstract

We show that for k ≥ 5, the PPSZ algorithm for k-SAT runs ex-
ponentially faster if there is an exponential number of satisfying as-
signments. More precisely, we show that for every k ≥ 5, there is
a strictly increasing function f : [0, 1] → R with f(0) = 0 that has
the following property. If F is a k-CNF formula over n variables and
|sat(F)| = 2δn solutions, then PPSZ finds a satisfying assignment with
probability at least 2−ckn−o(n)+f(δ)n. Here, 2−ckn−o(n) is the success
probability proved by Paturi, Pudlák, Saks, and Zane [10] for k-CNF
formulas with a unique satisfying assignment.

Our proof rests on a combinatorial lemma: given a set S ⊆ {0, 1}n,
we can partition {0, 1}n into subcubes such that each subcube B con-
tains exactly one element of S. Such a partition B induces a distribu-
tion on itself, via Pr[B] = |B|/2n for each B ∈ B. We are interested in
partitions that induce a distribution of high entropy. We show that,
in a certain sense, the worst case (minS:|S|=s maxBH(B)) is achieved
if S is a Hamming ball. This lemma implies that every set S of expo-
nential size allows a partition of linear entropy. This in turn leads to
an exponential improvement of the success probability of PPSZ.

1 Introduction

The problem of finding a satisfying assignment of a propositional formula
in conjunctive normal form, short SAT, is one of the most important NP-
complete problems. If every conjunct, or clause, contains at most k literals,
we call the instance a k-CNF formula and the problem of finding a solu-
tion k-SAT. Many improved exponential algorithms for k-SAT have been
designed over the years. The currently fastest algorithm PPSZ, named after
its inventors Paturi, Pudlák, Saks, and Zane [10]. For k = 3 a tiny improve-
ment is known [5, 14], but for k ≥ 4 currently nothing beats PPSZ. The

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 113 (2018)

algorithm is beguilingly simple: iterate over the variables of F in random
order; when considering variable x, fix it to 0 or 1 randomly, unless the
correct value of x is obvious. To make this a formal algorithm, we have to
specify what obvious means. Formally, suppose we are given a correct but
incomplete heuristic P , which, when called on a formula F and variable x
returns P (F, x) ∈ {0, 1, ?}. We call the heuristic P correct if it never makes
a wrong assertion, that is, if P (F, x) = b ∈ {0, 1} then F |= (x = b), i.e.,
all satisfying assignments of F set x to b. We allow P to be incomplete,
that is, it may answer P (F, x) =? even if the correct value of x is already
determined, i.e., even if F |= (x = b) for some b ∈ {0, 1}. We state the
PPSZ algorithm formally below in Algorithm 1.

2 The PPSZ Algorithm

Algorithm 1 PPSZ

1: procedure ppsz(β, π, F, P)
2: α := the empty assignment on V
3: for x ∈ V in the order of π do
4: if P (F, x) ∈ {0, 1} then
5: α(x) := P (F, x)
6: else
7: α(x) := β(x)
8: end if
9: F := F |x=α(x).

10: end for
11: if F has been satisfied then
12: return α
13: else
14: return failure

15: end if
16: end procedure

Note that PPSZ has two sources of randomness: π, the random order in
which the variables are processed, and β, a random assignment in {0, 1}n
from which it reads the bit β(x) if the proof heuristic P fails to infer a value
for x. It will be convenient to specify π and β as explicit input parameters to
PPSZ; it is then the responsibility of the “user” to call PPSZ with random
π and β.

2

The success probability of PPSZ depends crucially on the power of P .
For example, if we chose P to be the “empty prover” that always answers
“?”, then PPSZ would amount to nothing more than pure guessing, and
its success probability would obviously be |sat(F)|

2n . If we were to let P be
the “complete prover” that outputs P (F, x) = b whenever F |= (x = b),
its success probability would be 1. Of course, this is unrealistic: such a
proof heuristic itself would be NP-hard. Consider the proof heuristic Pd,
which checks whether (x = b) can be derived from a set of up to d clauses
in F . Clearly, Pd can be implemented in polynomial time as long as d is a
constant; even for some slowly growing d = d(n) ∈ ω(1), we can implement
it in subexponential time. Paturi, Pudlák, Saks, and Zane [10] prove the
following bound on the success probability of PPSZ using the heuristic Pω(1):

Theorem 1 (PPSZ on Unique k-SAT [10]). Let F be a k-CNF formula with
exactly one satisfying assignment α. Then

Pr
π,β

[ppsz(β, π, F, Pω(1)) = α] ≥ 2−ckn−o(n) ,

where ck is defined as follows: consider the infinite (k− 1)-ary tree. Assign
every node u a random value π(u) ∈ [0, 1] and delete all nodes u with π(u) <
π(root). Then ck is the probability that the root is contained in an infinite
connected component.

3 PPSZ for General k-SAT—Previous Work

Intuitively, having many solutions should make it easier for a randomized
algorithm to find one. On second thought, though, having a unique solu-
tion might force F to have a special structure that can be exploited by an
algorithm. This seems to be the case for PPSZ, where the “critical clause
tree” is only guaranteed to exist if there is a unique solution. Still, with a
more careful analysis, Paturi, Pudlák, Saks, and Zane [10] are to show that
Theorem 1 holds also for General k-SAT, as long as k ≥ 5.

Their key idea is to fix a partition B of the search space {0, 1}n into
subcubes, such that every subcube B ∈ B contains exactly one solution α ∈
{0, 1}n. In a next step, they focus on analyzing Pr[ppsz returns α | β ∈ Bα],
the probability that PPSZ returns α, conditioned on β being in the unique
B-subcube Bα that contains α. For k ≥ 5, it turns out that a smaller Bα
is always better, so in the worst case Bα = {0, 1}n, meaning α is the only
solution. For k = 3, 4 this is not the case, and some “medium size” Bα turns

3

PPSZ, 1998

Rolf, 2006

Iwama, Tamaki, 2004

Schöning, 1998

Random Walk AlgorithmUnique General

More careful
analysis

Simple but clever

combination of both

Hofmeister, Schöning,
Schuler, Watanabe, 2002

Choose the initial

assignment in a better way

Baumer, Schuler, 2003
Even smarter choice of

initial assignment

Iwama, Seto, Takai,
Tamaki, 2010

Combine PPSZ with the

improved Schöning

Hertli, Moser, Scheder,
2011

Distinguish frozen and

liquid variables

Hertli, 2011
Breakthrough result:

radically different analysis

of PPSZ for General

k-SAT

Simpler proof of Hertli’s

result

Scheder, Steinberger, 2017

Subsum
ed

by
H

ertli, 2011

This work
Digging into the old

analysis of the general
case

4

out to be the worst case. Thus, their bounds for k = 3, 4, although better
than anything known before, are exponentially worse than the unique case.

The work of Paturi, Pudlák, Saks, and Zane [10] has triggered a series
of papers, all trying to narrow or close the gap. The impatient reader might
have a look at Figure 3. Iwama and Tamaki [9] observed β landing in a small
subcube immediately implies a better bound for Schöning’s Random Walk
algorithm, and achieved a substantial improvement. Rolf [12] made a small
progress by analyzing Pr[ppsz returns α | β ∈ Bα] more carefully. Iwama,
Seto, Takai, and Tamaki [8] further improved things by combining PPSZ
not with Schöning’s algorithm, but with an improved version of Schöning’s,
due to Hofmeister, Schöning, Schuler, and Watanabe [7] and Baumer and
Schuler [1]. Hertli, Moser, and Scheder [6] combined this with the idea of
liquid versus frozen variables. A variable x is liquid if both F |x=1 and F |x=0

are satisfiable. As long as the fraction of liquid variables is high, every step
by PPSZ (choose a variable at random and set it) has a high probability
of keeping F satisfiable. Once this fraction falls below a certain threshold,
they resort to the analysis of PPSZ. Combining this with [8], they obtain
yet another small improvement.

All improvements mentioned above suffer from three weaknesses: first,
they are very technical; second, the narrow the gap between general and
unique 3-SAT, but do not close it; third, to understand them one needs to
dig deep into the analysis of [10] and the workings of the proof heuristic
Pω(1). A breakthrough occurred in 2011, when Timon Hertli [4] published
an analysis of PPSZ for the general case that elegantly bypasses any analysis
of Pω(1) and thus is much simpler than the one in [10], uses almost no infor-
mation about the heuristic P , and therefore works for all k. Hertli’s analysis
is still quite technical and conveys little about “what is going on”. Recently,
John Steinberger and myself [14] gave an alternative proof of Hertli’s result
that is shorter and gives more intuition. Furthermore, it comes with a “lift-
ing theorem” stating that improving PPSZ for Unique k-SAT immediately
translates to a (smaller) improvement of PPSZ for general k-SAT. Together
with an algorithm of Hertli that slightly beats PPSZ for Unique 3-SAT [5],
this gives the currently best bounds for 3-SAT.

3.1 More Means Better?

Since Hertli [4] we know that the 2−ckn−o(n) bound holds for General k-SAT,
as well. An obvious question is whether having many solutions actually
increases the success probability of PPSZ. Before elaborating, let us think
how much improvement we can expect in the best case. Suppose we have

5

an algorithm with success probability pn. If F has 2δn assignments, it could
be the case that F ignores the first δn variables x1, . . . , xδn. and is a worst-
case instance on the remaining ones. So F is basically a worst-case instance
over (1 − δ)n variables and the best we can expect is a success probability
of p(1−δ)n. If indeed our algorithm achieves this bound, i.e., has success
probability at least p(1−δ)n for every k-CNF formula F on n variables with
|sat(F)| ≥ 2δn, we say that F scales optimally with the number of solutions.

Suppose g : [0, 1]→ R is some strictly increasing function with g(0) = 0
and thus g(δ) > 0 for every δ > 0. If our algorithm has success probability
at least p(1−g(δ)n) for every input k-CNF formula F with |sat(F)| ≥ 2δn, we
say that the algorithm scales with the number of solutions. Let us give some
known examples. In most cases, proving that an algorithm scales involves
a close look at is running time analysis plus some combinatorial statement
about the Hamming cube.

Example: Trivial Guessing. The pure guessing algorithm, which
simply guesses a solution and verifies it, has worst-case success probability
at least 2−n. If |sat(F)| = 2εn then it succeeds with probability 2(1−ε)n, so
it scales optimally with the number of solutions.

Example: PPZ algorithm. The PPZ algorithm (Paturi, Pudlák, and
Zane [11]) scales optimally with the number of solutions. This has been
shown by Calabro, Impagliazzo, Kabanets, and Paturi [3]. The proof relies
on the edge-isoperimetric inequality of the Hamming cube [2] and shows
that the worst case is attained if sat(F) is a subcube. I include the proof in
Appendix A.

Example: Schöning’s algorithm. Schöning’s random walk algo-
rithm [15] scales with the number of solutions, but we do not know whether
it scales optimally. This also seems to be an unpublished but well-known
result. The proof uses the vertex-isoperimetric inequality of the Hamming
cube [2] and shows that in the worst case, sat(F) is a Hamming ball (note
that this cannot be the case if F is a k-CNF formula, so the analysis is most
likely sub-optimal). I include a proof in Appendix B.

3.2 Our Contribution

Theorem 2. The PPSZ algorithm on k-SAT scales with the number of
satisfying assignments, as long as k ≥ 5. More precisely, for every k ≥ 5,
there is a strictly increasing function gk(δ) with gk(0) = 0 such that PPSZ,
called on a k-CNF formula F over n variables with at least 2δn satisfying
assignments, finds a solution with probability at least 2−ckn+gk(δ)n−o(n).

6

We obtain Theorem 2 by looking again at the analysis of Paturi, Pudlák,
Saks, and Zane [10] for the general case. This is surprising, since after
Hertli’s result [4], one would believe [10] and subsequent work had been
subsumed. I tried to prove something like Theorem 2 using the analysis
of Hertli [4] and of Steinberger and myself [14], bypassing the technicalities
of the proof heuristic Pω(1) and thus extending the theorem to k = 3, 4.
However, this approach has not born fruit as of now.

4 Proof of Theorem 2

If F has multiple solutions, the analysis of the unique case breaks down.
Indeed, any correct heuristic will fail to infer x = b if both values 0 and 1
are feasible for x. Paturi, Pudlák, Saks, and Zane [10] deal with this in an
ingenious way, which we now sketch.

Lemma 3 (Lemma 9 in [10]). For every non-empty S ⊆ {0, 1}n there is
a partition B = {Bα}α∈S of {0, 1}n into subcubes Bα such that each Bα
contains exactly one element from S, namely α. That is, Bα ∩ S = {α}.
We call B an S-partition of {0, 1}n.

Proof. If |S| = 1 the lemma holds trivially by setting B = {{0, 1}n}. Oth-
erwise, there must be a coordinate i such that Sb := {x ∈ S | xi = b} is
non-empty for both b = 0 and b = 1. Partition {0, 1}n in two parts along xi
and recurse on S0 and S1.

Note that this proof implicitly constructs a binary decision tree in which
every leaf is labeled by a unique α ∈ S. The assignments along the path
from the root to the tree define the subcube Bα.

Definition 4. An S-partition B defines a distribution on S (and thus on B)
in a natural way: PrB[α] := |Bα|/2n. One can sample from this distribution
by randomly descending from the root to a leaf in the aforementioned binary
tree. Alternatively, one can sample from B by choosing β ∈ {0, 1}n uniformly
at random and outputting the unique B ∈ B containing β.

The reader should take note that this partition only exists for the purpose
of the analysis. We do not try to explicitly construct this partition or the
corresponding tree; thus, when we say “sample from B”, we do not mean
it in any algorithmic sense. From now on, let S := sat(F) and fix an S-
partition B of {0, 1}n. We can look at Pr[ppsz(β, π, F, P) is successful] in a

7

more fine-grained way:

Pr
β,π

[success] =
∑
α∈S

Pr[β ∈ Bα] Pr[success | β ∈ Bα]

≥
∑
α∈S

Pr[β ∈ Bα] Pr[ppsz(β, π, F, P) = α | β ∈ Bα] . (1)

≥ min
α∈S

Pr[ppsz(β, π, F, P) = α | β ∈ Bα] . (2)

That is, we try to understand the probability that ppsz returns α, condi-
tioned on the fact that the random string β is in Bα to begin with! Why
does this make sense? Well, if Bα is small, then α and β already agree on
a large number of variables, and thus many guesses of ppsz will be correct
with probability 1. On the other hand, if Bα is large, then α is the only
solution in the quite large region Bα. This makes it easier for the heuristic
Pω(1) to spot the correct choices for some variables x. To make the previous
sentences precise, we would have to look in depth into the method of [10].
Instead we simply use the following corollary from [10]:

Lemma 5 (Corollary 14, page 360 in [10]). Let α ∈ sat(F) and let Bα its
subcube in the sat(F)-partition B and define ak := k−2

k−1 · 2ck . Then

Pr[ppsz(β, π, F, P) = α | β ∈ Bα] ≥ 2−ckn−o(n) · an−log |Bα|
k , (3)

where ck is defined in Theorem 1.

It turns out that ak > 1 for k ≥ 5 and thus the right hand side of (3) is
larger for smaller Bα. Paturi, Pudlák, Saks, and Zane used this inequality
to conclude that for k ≥ 5, the worst case happens if |Bα| = 2n, i.e., if there
is only one satisfying assignment. Lemma 5 comes a bit out of the blue.
For the curious reader, we sketch a proof in Appendix C. Going back to
inequality (1), we obtain a finer estimate:

Pr
β,π

[success] ≥
∑
α∈S

Pr[β ∈ Bα] Pr[ppsz(β, π, F, P) = α | β ∈ Bα] (by (1))

≥ 2−ckn−o(n) ·
∑
α∈S

|Bα|
2n
· an−log |Bα|

k (by (3))

= 2−ckn−o(n) · E
B∼B

[
a
− log2 PrB[B]
k

]
,

8

where we remember that B defines a probability distribution via Pr[B] :=
|B|
2n . By Jensen’s Inequality, the above is at least

2−ckn−o(n)a
EB∼B[− log2 PrB[B]]
k

=2−ckn−o(n)a
H(B)
k , (4)

whereH(B) is the Shannon entropy of B, viewed as a probability distribution
over subcubes B ∈ B. Since ak > 1, we get an exponential “bonus” if H(B)
is linear.

Lemma 6. Any set S ⊆ {0, 1}n of size 2Ω(n) has an S-partition B for which
H(B) ∈ Ω(n). More formally, there is a strictly increasing function g(δ) with
g(0) = 0 such that every S ⊆ {0, 1}n of size |S| = 2δn has an S-partition of
entropy at least g(δ) · n.

Together with (4), this proves Theorem 2. It remains to prove the lemma.

4.1 High-Entropy Tree-like Partitions—Proof of Lemma 6

Let T be a binary decision tree over n variables. Every path from the root to
a node corresponds naturally to a partial assignment, and thus a subcube.
We can imagine every node, in particular every leaf, being labeled with a
subcube of {0, 1}n. In this way, a binary decision tree induces a partition
of {0, 1}n into subcubes. Note that the correspondence between decision
trees and partitions is neither unique nor complete—a partition might be
defined by different decision trees, and some partitions cannot be defined by
a decision tree at all.

9

000 100

110010

011 111

101001

000 100

110010

011 111

101001

x2

x1

00∗ 10∗

x3

∗11x1

010 110

This is a treelike partition.
It can be described by a
binary decision tree.
In this case, the tree happens
to be unique.

This is not a treelike parti-
tion and cannot be described
by a decision tree.

0

0 0

0

1

1

1

1

The problem is that even if S is exponential, there might be S-partitions
B of constant entropy. For example, consider the set S consisting of all
strings x ∈ {0, 1}n in which a pair of consecutive 0’s is followed by yet
another 0 (and thus yet another, until the string is “full”). We now build
a partition by always splitting on the first possible variable, in the order
x1, x2, . . . , xn. If we take a random walk down from the root, we reach a leaf
as soon as we go left twice in a row, since this means setting xi = xi+1 = 0.
If we imagine the tree to go on forever, it takes on expectation four steps
until we reach a leaf. Since the tree is finite, the true expectation will be a
bit smaller. In any case, H(B) ≤ 4 for the partition defined by this tree. A
quick induction shows that |S| = Fn+3 − 1, where Fn is the nth Fibonacci
number, so |S| is clearly exponential in n.

So not every S-partition will have linear entropy. We will have to be a
little bit careful how to construct the partition. We will give three different
proofs.

First proof of Lemma 6. Let Bn(d) := {x ∈ {0, 1}n | |x|1 ≤ d} be the Ham-
ming ball of radius d around 0, and define Φn(d) := |Bn(d)| =

(
n
0

)
+
(
n
1

)
+

· · · +
(
n
d

)
. Let d be the largest integer such that |S| ≥ Φn(d). The Sauer-

Shelah Lemma [13, 16] states that there is a set I ⊆ [n] of size d that is
shattered by S, i.e., S|I = {0, 1}I . Imagine a decision tree of depth d query-
ing the variables of I, in any order. Each leaf of this tree is labeled with a
subcube B of {0, 1}n, and S∩B 6= ∅. Thus, we can extend this decision tree

10

at every leaf, refining the partition until each subcube contains exactly one
element of S. We obtain a partition B of min-entropy at least d, and thus
H(B) ≥ Hmin(B) ≥ d. Note that if |S| ≥ 2δn then d ≥ (H−1(δ) − o(1)) · n,
where H is the binary entropy function, so d ∈ Ω(n).

If S = Bn(d), then any treelike S-partition has a leaf at depth d, so
Hmin(B) = d, and in this sense the above proof is optimal. However, one
checks that H(B) ≈ 2d (we will give an exact formula below), so the above
proof is suboptimal concerning H.

Second proof of Lemma 6. Sampling x ∈ S uniformly at random gives us
a random variable of entropy Ω(n). By sub-additivity of entropy, there is
a coordinate i ∈ [n] such that xi has entropy Ω(1). If we split S along
coordinate i, both sets S0, S1 have size at least Ω(|S|). That is, we lose a
constant factor along every edge, and thus every leaf of the tree has linear
depth. We obtain an S-partition with Hmin(B) ∈ Ω(n).

Although not needed to obtain our main result, it is natural to ask
which set S behaves worst in this context. The next lemma, proved in the
appendix, shows that the worst case is achieved by Hamming balls. This is
the third proof of Lemma 6.

Lemma 7. Let Bn(d) := {x ∈ {0, 1}n | |x|1 ≤ d} be the Hamming ball of
radius d centered at 0. Note that by symmetry, all treelike Bn(d)-partitions
have the same entropy gn(d). Let S ⊆ {0, 1}n be a set of size |S| = |Bn(d)| =
Φn(d). Then there is a treelike S-partition B of entropy gn(d).

A rough estimate gives us that gn(d) ≈ 2d if d/n < 1/2 and n is large
(2d is the expected position of the dth 1 in an infinite random bit string).
We also have a precise formula:

gn(d) = 2d+
n · Φn(d− 1)− d · Φn+1(d)

2n
.

We prove this formula in Lemma 14 below.

5 Proof of Lemma 7—Hamming Balls are Worst

For a non-empty set S ⊆ {0, 1}n, let h(S) := maxH(B), where the maximum
is taken over all S-partitions of {0, 1}n. Let ht(S) be the corresponding
expression, where we maximize only over treelike partitions. Clearly, h(S) ≥
ht(S). In this section we prove Lemma 7 by showing that Hamming balls

11

sets minimize ht(S). To make this precise, let Bn(d) := {x ∈ {0, 1}n | |x|1 ≤
d} and Φn(d) = |Bn(d)| =

(
n
≤d
)

=
∑d

i=0

(
n
i

)
. The following theorem is

equivalent to Lemma 7.

Theorem 8. Of all sets S of size Φn(d), the one minimizing ht is the
Hamming ball. That is, ht(S) ≥ ht(Bn(d)) if |S| = Φn(d).

We will prove this theorem by constructing a treelike S-partition. For
this, we choose a coordinate i that partitions S into two parts S0, S1 in the
most equitable way. Then we apply induction to S0 and S1. The problem
with this approach is that even if S has the size of a Hamming ball, S0 and
S1 need not. We therefore need to generalize the statement of the theorem
to cover sets S of all sizes. First, define gn(d) := ht(Bn(d)). It is easy to see
that gn(d) ≈ 2d for large values of n: in an infinite random string, where
does the dth 1 appear? At position 2d on expectation. In Lemma 14 below,
we will give an explicit formula for gn(d). For now, the following recurrence
will be enough.

Lemma 9. The function gn(d) satisfies the following recurrence:

gn(d) =


0 if d = 0 ,
n if d = n ,

1 + gn−1(d−1)+gn−1(d)
2 otherwise.

Proof. If d = 0 then the partition contains only one part. If d = n then
the Hamming ball is the whole cube, and each x ∈ {0, 1}n is in its own
part, giving entropy n. Otherwise, assume without loss of generality that
the treelike partition splits along some xn and then recurses on the (n− 1)-
dimensional Hamming balls of radius d (left child, for xn = 0) and d − 1
(right child, for xn = 1). Thus, the total expected depth is 1 plus the average
of the expected depths of the two subtrees.

Define a function fn by setting fn(s) = gn(d) if s = Φn(d); for all other
values of s ∈ [0, 2n] we interpolate linearly between these points. Thus,
fn(s) is a piecewise linear function.

Lemma 10. The function fn is concave on [0, 2n].

The proof of this lemma is a tedious computation. We defer it to the
end of this section. From now on, we aim to show that ht(S) ≥ fn(|S|).

12

To build our treelike partition, we split S along the “most equitable co-
ordinate”. More formally, for a set S ⊆ {0, 1}n, an index 1 ≤ i ≤ n, and
a value b ∈ {0, 1}, define Sib := {x ∈ S | xi = b}. Clearly, S = Si0 ∪ Si1 is
a bipartition of S, for any i. We are interested in a most equitable parti-
tion, that is, an index i that maximizes min{|Si0|, |Si1|}. Using information
theoretic tools, it is easy to prove the following lemma:

Lemma 11. Let p ∈ [0, 1/2] be the unique number such that |S| = 2H(p)·n.
Then there exists an index i such that |Si0| and |Si1| are both at least p · |S|.

Also note that this lemma is approximately tight if S is a Hamming
ball. However, we want to that the Hamming ball is exactly optimal, thus
Lemma 11 is not good enough. Before proving an optimal lemma, let us
consider how B := Bn(d) splits along a coordinate. If we fix xi to be 0,
we are left with n − 1 coordinates, up to d of which can be 1. That is,
|Bi

0| = Φn−1(d). If we fix xi to be 1, we are left with n− 1 coordinates, up
to d− 1 of which can be 1. Thus, |Bi

1| = Φn−1(d− 1). Clearly |Bi
1| ≤ |Bi

0|.
The next lemma claims that every set S of size Φn(s) can be split at least
as equitably as the Hamming ball Bn(d).

Lemma 12. If S ⊆ {0, 1}n has size Φn(d), then there exists an index i such
that |Si0| and |Si1| are both at least Φn−1(d− 1).

Proof. We can assume without loss of generality that |Si0| ≥ |Si1| for all i,
that is, every coordinate i is biased towards 0. To see this, note that we can
always reflect everything along a coordinate i without changing any combi-
natorial structure. Note that also |Bi

0| ≥ |Bi
1| holds for every i. Thus, it

suffices to show that |Si1| ≥ |Bi
1| for some index i.

For a set S ⊆ {0, 1}n, define the weight of S to be w(S) :=
∑

x∈S |x|1,
i.e., the total Hamming weight of all its elements. Which set of size Φn(d)
minimizes w(S)? Obviously the one whose elements are as close to 0 as
possible: the Hamming ball. In other words, w(S) ≥ w(B).

Note that w(S) =
∑n

i=1 |Si1| for every set S ⊆ {0, 1}n. First, this implies
that w(B) = nΦn−1(d − 1). Second, by an averaging argument, it implies

that there exists an index i for which |Si1| ≥ w(S)
n ≥ w(B)

n = Φn−1(d−1).

We need a generalization of Lemma 12 that covers the case that S does
not have the size of a Hamming ball.

Lemma 13. Suppose S ⊆ {0, 1}n has size (1 − α)Φn(d) + αΦn(d + 1) for
some α ∈ [0, 1]. Then there exists an index i such that |Si0| and |Si1| are both
at least (1− α)Φn−1(d− 1) + αΦn−1(d).

13

That is, the lower bound from Lemma 12 interpolates linearly if S does
not have the size of a Hamming ball.

Proof. The size of S is |S| = (1−α)Φn(d)+αΦn(d+1) = Φn(d)+α(Φn(d+
1)−Φn(d)) = Φn(d)+α

(
n
d+1

)
. Write m = α

(
n
d+1

)
. As above, we assume that

any coordinate i is biased towards 0, that is, |Si0| ≥ |Si1|. Which set of size
|S| minimizes w(S)? By the same thought as in the previous proof, it is a set
that contains Bn(d) plus m additional elements of Hamming weight d + 1.
Thus, we get w(S) ≥ w(Bn(d))+m(d+1) = nΦn−1(d−1)+α

(
n
d+1

)
· (d+1).

Since w(S) =
∑n

i=1 |Si1|, an averaging argument shows that there is some
index i such that

|Si1| ≥Φn−1(d− 1) + α ·
(

n

d+ 1

)
· d+ 1

n

=Φn−1(d− 1) + α ·
(
n− 1

d

)
= (1− α)Φn−1(d− 1) + αΦn−1(d) .

This concludes the proof.

In words, if S has the size of a Hamming ball Bn(d), then there is a
coordinate that partitions S at least as equitably as Bn(d); if the size of S
is between that of two Hamming balls of radii d and d+ 1, then the “equi-
tableness” of the best bipartition interpolates linearly between that of those
two balls.

We are now ready to prove ht(S) ≥ fn(|S|) by induction. Let d and α ∈
[0, 1] be such that |S| = (1−α)Φn(d)+αΦn(d+1). Find the most equitable
coordinate i, that is, the one maximizing min(|Si0|, |Si1|). By removing the
ith coordinate, the sets Si0, Si1 correspond to sets S0, S1 ∈ {0, 1}n−1. By
induction, S0 and S1 have a treelike partition of entropy at least fn−1(|S0|)
and fn−1(|S1|), respectively. Thus, we conclude that

ht(S) ≥1 +
fn−1(|S0|) + fn−1(|S1|)

2

Assuming without loss of generality that |S0| ≥ |S1|, we obtain by Lemma 13
that |S1| ≥ L := (1− α)Φn−1(d− 1) + αΦn−1(d) and |S0| ≤ U := |S| − L =
(1 − α)Φn−1(d) + αΦn−1(d + 1).1 Recall that fn is a concave function, as
stated in Lemma 10. Thus, the whole picture looks like this:

1To see the last inequality, note that Φn(d) = Φn−1(d− 1) + Φn−1(d).

14

|S|/2L U|S1| |S0|

f(L)

f(U)

f(|S1|)

f(|S0|)

We abbreviate fn−1 as f in the above picture and the computation below.
We see that concavity of fn−1 implies that

ht(S) ≥1 +
f(|S0|) + f(|S1|)

2

≥1 +
f(L) + f(U)

2

=1 +
f((1− α)Φn−1(d− 1) + αΦn−1(d)) + f((1− α)Φn−1(d) + αΦn−1(d+ 1))

2
.

Since f is linear on the interval [Φn−1(d−1),Φn−1(d)] and on [Φn−1(d),Φn−1(d+
1)], the above expression equals

1 +
(1− α)(f(Φn−1(d− 1)) + f(Φn−1(d))) + α(f(Φn−1(d)) + f(Φn−1(d+ 1)))

2

=(1− α) · 1 + f(Φn−1(d− 1)) + f(Φn−1(d))

2
+ α · 1 + f(Φn−1(d)) + f(Φn−1(d+ 1))

2

=(1− α) · 1 + gn−1(d− 1) + gn−1(d)

2
+ α · 1 + gn−1(d) + gn−1(d+ 1)

2
=(1− α)gn(d) + αgn(d+ 1) = f(|S|) ,

15

where the penultimate equality follows from Lemma 9 and the last equality
from the definition of fn and |S| = (1−α)Φn(d) +αΦn(d+ 1). This finishes
the proof.

5.1 Proof of Lemma 10

Recall that we defined gn(d) to be ht(Bn(d)). In Lemma 9 we stated a

recurrence for gn: gn(d) = 1+ gn−1(d)+gn−1(d+1)
2 . We will now give an explicit

formula for gn(d):

Lemma 14. gn(d) = 2d+
n·(n
≤d−1)−d·(

n+1
≤d)

2n .

Of course one could prove this lemma by induction, showing that the
expression satisfies the recurrence of Lemma 9. This is a bit unsatisfactory,
since it does not explain how one could possibly find the above explicit
formula. We give a more “combinatorial” proof.

Proof. Imagine an infinite string x = x1x2 The probability that the dth

1 appears at position i is
(i−1
d−1)
2i

. Indeed, there are 2i ways to choose x1, ..., xi,

and for exactly
(
i−1
d−1

)
of them do we have a 1 at position i and d−1 many 1’s

in the positions 1, . . . , i−1. Also, the probability that the x1, . . . , xn contain

fewer than n 1’s is
(n
≤d−1)

2n . We can thus write down an exact formula for
gn(d):

gn(d) =

n∑
i=0

i ·
(
i−1
d−1

)
2i

+ n ·
(

n
≤d−1

)
2n

.

We finish the proof by showing that the first sum equals 2d− d·(n+1
≤d)

2n .

Proposition 15. The following identity holds:

n∑
i=0

i ·
(
i−1
d−1

)
2i

= 2d−
d ·
(
n+1
≤d
)

2n
.

Proof. First, observe that

n∑
i=0

i ·
(
i− 1

d− 1

)
· 2−i =

∞∑
i=0

i ·
(
i− 1

d− 1

)
· 2−i −

∞∑
i=n+1

i ·
(
i− 1

d− 1

)
· 2−i . (5)

16

The first sum evaluates to 2d. To see this, note that the first sum is the
expectation of the index at which the dth 1 appears in the infinite string
x1x2x3 This is 2d. Thus, let us work on the second sum:

∞∑
i=n+1

i ·
(
i− 1

d− 1

)
· 2−i =

∞∑
i=n+1

d ·
(
i

d

)
· 2−i

=d ·
∞∑

i=n+1

Pr[x1 + · · ·+ xi = d]

=d · E [|{i ≥ n+ 1 | x1 + · · ·+ xi = d}|]

Focus on the set {i ≥ n + 1 | x1 + · · · + xi = d}. If the (d + 1)st 1 appears
within x1, . . . , xn+1, then this set is empty. Otherwise, it includes all indices
from (including) the dth 1 (or from n + 1, whichever comes later) to (not
including) the (d + 1)st 1. Now if the dth 1 comes after n + 1, then the
expected size of this set is 2—it takes on average two tosses until we see the
next 1, after the dth. If the dth is among the positions 1, . . . , n + 1, then,
conditioned on the next 1 coming after n+ 1, it is again 2. The probability
that the (d+ 1)st 1 comes strictly after n+ 1 is

(
n+1
≤d
)
· 2−(n+1). Thus,

∞∑
i=n+1

i ·
(
i− 1

d− 1

)
· 2−i = d · E [|{i ≥ n+ 1 | x1 + · · ·+ xi = d}|]

=2 · d ·
(
n+ 1

≤ d

)
· 2−(n+1) = d ·

(
n+ 1

≤ d

)
· 2−n

This concludes the proof.

In the rest of this section we prove that our piecewise linear function
fn : [0, 2n]→ R is concave. Since f is piecewise linear, it suffices to show that
f is concave at values s = Φn(d) for 1 ≤ d ≤ n−1. For this, we have to show
that the point (Φn(d), gn(d)) lies above the line ` from (Φn(d−1), gn(d−1))
to (Φn(d + 1), gn(d + 1)). Note that we can write Φn(d) = aΦn(d + 1) +
(1 − a)Φn(d − 1) for a unique a ∈ [0, 1]. The y-coordinate of the line ` at
position x = Φn(d) is agn(d+ 1) + (1− a)gn(d− 1). Thus, we have to show
that agn(d+ 1) + (1− a)gn(d− 1) ≤ gn(d). It is easy to see that the value
of a is

a =
Φn(d)− Φn(d− 1)

Φn(d+ 1)− Φ(d− 1)
=

(
n
d

)(
n
d+1

)
+
(
n
d

) =

(
n
d

)(
n+1
d+1

) =
d+ 1

n+ 1
.

17

Now let us show the above claimed inequality:

agn(d+ 1) + (1− a)gn(d− 1) ≤ gn(d) ⇐⇒
(d+ 1)2ngn(d+ 1) + (n− d)2ngn(d− 1) ≤ (n+ 1)2ngn(d) .

The left-hand side of this claimed inequality equals

(d+ 1)
(
2n+1(d+ 1) + nΦn(d)− (d+ 1)Φn+1(d+ 1)

)
+(n− d)

(
2n+1(d− 1) + nΦn(d− 2)− (d− 1)Φn+1(d− 1)

)
and the right-hand side equals

(n+ 1)d2n+1 + n(n+ 1)Φn(d− 1)− d(n+ 1)Φn+1(d) .

Expanding and comparing these expressions becomes longish, so let us break
us down both sides and their difference separately for the coefficients of
n2, d2, nd, n, d, and 1, respectively.

left-hand side right-hand side

n2 Φn(d− 2) Φn(d− 1)

d2 −Φn+1(d+ 1) + Φn+1(d− 1) = −
(
n+1
d+1

)
−
(
n+1
d

)
= −

(
n+2
d+1

)
0

nd Φn(d) + 2n+1 − Φn(d− 2)− Φn+1(d− 1) 2n+1 − Φn+1(d)

n Φn(d)− 2n+1 + Φn+1(d− 1) Φn(d− 1)

d 3× 2n+1 − 2 · Φn+1(d+ 1)− Φn+1(d− 1) 2n+1 − Φn+1(d)

1 2n+1 − Φn+1(d+ 1) 0

Let us now compute the right-hand side minus the left-hand side. Using the
recurrence Φn+1(d) = Φn(d) + Φn(d − 1) and Φn(d) = Φn(d − 1) +

(
n
d

)
, we

can further simplify the expressions:

right-hand side minus left-hand side simplified

n2
(
n
d−1

) (
n
d−1

)
d2

(
n+2
d+1

) (
n+2
d+1

)
nd −2

(
n+1
d

)
−2
(
n+1
d

)
n 2n+1 − Φn+1(d− 1)−

(
n
d

)
2n+1 − 2Φn(d) +

(
n+1
d

)
d −2× 2n+1 + 2Φn+1(d) + 2

(
n+1
d+1

)
−
(
n+1
d

)
−2× 2n+1 + 4Φn(d) + 2

(
n
d+1

)
−
(
n+1
d

)
1 Φn+1(d+ 1)− 2n+1 −2n+1 + 2Φn(d) +

(
n
d+1

)
Let us now collect things again, separating terms containing a binomial
coefficients from those containing 2n+1 or Φn(d). The difference between

18

the right-hand and the left-hand side equals

2 · (2n − Φn(d)) · (n− 2d− 1)+

n2

(
n

d− 1

)
+ d2

(
n+ 2

d+ 1

)
− 2nd

(
n+ 1

d

)
+ n

(
n+ 1

d

)
+ 2d

(
n

d+ 1

)
− d
(
n+ 1

d

)
+

(
n

d+ 1

)
The second line looks complicated. However, by multiplying the second line
by (d+1)!(n−d+1)!

n! and expanding each binomial coefficient as
(
n
d

)
= n!

d!(n−d)! ,

one obtains that the second line equals 2(n− d)
(
n
d

)
. Thus, the difference is

2 · (2n − Φn(d)) · (n− 2d− 1) + 2(n− d)

(
n

d

)
.

We can further simplify this expression by defining r := n− d and replacing
d by n− r. Using the fact that

(
n
d

)
=
(
n
r

)
and 2n − Φn(d) = Φn(r − 1) and

dividing everything by 2, we conclude that the above expression is twice the
one below:

∆n(r) := Φn(r − 1)(2r − n− 1) + r

(
n

r

)
.

With the next proposition, we show that ∆n(r) ≥ 0 for all 1 ≤ r ≤ n− 1.

Proposition 16. ∆n(r) ≥ 0 is non-negative for all 1 ≤ r ≤ n− 1.

Proof. We proceed by induction. For r = 1, we obtain ∆n(1) = Φn(0)(2 −
n − 1) +

(
n
1

)
= 1. This also covers the case n = 2 since for n = 2 the only

possible value for r is 1 (recall that 1 ≤ r ≤ n− 1). So we can now assume
that n ≥ 3. What about r = n− 1? In this case, 2r− n− 1 = n− 3 ≥ 0, so
both terms above are non-negative. For n ≥ 3 and 2 ≤ r ≤ n − 2 we know
by induction that

∆n−1(r) = Φn−1(r − 1)(2r − n) + r

(
n− 1

r

)
≥ 0 and

∆n−1(r − 1) = Φn−1(r − 2)(2r − 2− n) + (r − 1)

(
n− 1

r − 1

)
≥ 0 .

Also, applying the recursive formula Φn(r) = Φn−1(r) + Φn−1(r − 1) and(
n
r

)
=
(
n−1
r

)
+
(
n−1
r−1

)
we see that

∆n(r) = (Φn−1(r − 1) + Φn−1(r − 2))(2r − n− 1) + r

((
n− 1

r

)
+

(
n− 1

r − 1

))
.

Finally, we compute ∆n(r)−∆n−1(r)−∆n−1(r − 2):

∆n(r)−∆n−1(r)−∆n−1(r − 2) = −Φn−1(r − 1) + Φn−1(r − 2) +

(
n− 1

r − 1

)
= 0 .

Thus, ∆n(r)) = ∆n−1(r) + ∆n−1(r − 2) ≥ 0.

19

6 Conclusion and Open Questions

The biggest drawback of our result is that is does not apply for k = 3, 4.
Indeed, the appeal of Timon Hertli’s work [4] is that it generalizes the anal-
ysis of PPSZ to all k and that it treats the workings of the proof heuristic as
a black box. Our proof above does not—it relies on Lemma 9 in [10], which
in turn looks deeply into the details of the proof heuristic Pω(1).

6.1 More General Setting?

One hope is to refine the analysis of Steinberger and myself [14]. Treelike
partitions also appear there (albeit implicitly). The trouble is that in [14],
the decision tree queries the variables in a random order, and thus we do
not have the luxury of choosing an adequate or even optimal S-partition.
Indeed, it is easy to construct sets S of exponential size such that Eπ[H(Bπ)]
is sublinear, where Bπ is the treelike S-partition defined by querying the
variables in the order of π. One such example would be S := Bd(n) ∪ {x ∈
{0, 1}n | x1 = · · · = xn/2 = 1} for d being some large constant. Querying
the variables in random order, it will only take a constant number of steps
until a “wrong” decision xi = 0 for i ≤ n/2 is made, from which on we are
left with at most |Bd(n)| ≤ nd elements. Indeed, the expected entropy will
be logarithmic.

6.2 Easier Proof that Hamming Balls are Worst

Is there an easier proof of Theorem ? Our proof is a tedious induction with
lots of calculations. It would be nice to have a more “combinatorial” one,
maybe along the lines of the proof of the vertex isoperimetric inequality of
the Hamming cube.

6.3 General S-Partitions

We proved that every set S of size |S| = Bn(d) has as treelike S-partition
whose entropy is at least that of a treelike partition of Bn(d). We also
gave an explicit formula for the latter, which is roughly equal to 2d when
d/n < 1/2. However, as illustrated above, not all S-partitions are treelike
partitions. This raises the question whether Bn(d) allows partitions of higher
entropy than treelike ones. I think not, but I do not have a proof.

More formally, remember that we defined h(S) := maxH(B), where
the maximum is taken over all S-partitions. Taking the maximum over all
treelike partitions, we obtain ht(S).

20

Conjecture 17. Treelike partitions are optimal for the Hamming ball: h(Bn(d)) =
ht(Bn(d)).

Finally let us define non-adaptive treelike partitions, which query the
variables in a fixed ordering π, but are allowed to skip a variable xi if its
value in the remaining set is already fixed. Let hna(S) denote the maximum
entropy of a non-adaptive treelike partition. Clearly hna(S) ≤ ht(S) ≤
h(S). Also, our first proof of Lemma 6 shows that hna(S) ∈ Ω(n) if S has
exponential size.

Question 18. What is the relation between hna(S), ht(S), and h(S)? How
far can they be apart?

Here is an example of a set S ⊆ {0, 1}4 for which ht(S) < h(S) = 3:

0000 1000

1100
0100

0110 1110

1010

0010

0001 1001

1101
0101

0111 1111

1011

0011

The above partition induces the uniform distribution over S and thus h(S) =
3. It is easy to check that no treelike partition can achieve a uniform distri-
bution.

Next, we will give a set S ⊆ {0, 1}4 that has a treelike partition achieving
the uniform distribution, giving entropy 3.

21

0000 1000

1100
0100

0110 1110

1010

0010

0001 1001

1101
0101

0111 1111

1011

0011

x4

x1 x2

x1

0

0 0

0

1

1

1

1

x3

0 1

x3

0 1

x2

0 1

Again, it is easy to check that the only way to achieve the uniform distri-
bution is to (1) first query x4; (2) querying x1 or x2, depending on whether
x4 = 0 or x4 = 1. Thus, the optimal tree must be adaptive, and thus
hna(S) < ht(S) = 3.

References

[1] S. Baumer and R. Schuler. Improving a probabilistic 3-sat algorithm
by dynamic search and independent clause pairs. In E. Giunchiglia and
A. Tacchella, editors, Theory and Applications of Satisfiability Test-
ing, 6th International Conference, SAT 2003. Santa Margherita Ligure,
Italy, May 5-8, 2003 Selected Revised Papers, volume 2919 of Lecture
Notes in Computer Science, pages 150–161. Springer, 2003.

[2] B. Bollobás. Combinatorics: Set Systems, Hypergraphs, Families of
Vectors, and Combinatorial Probability. Cambridge University Press,
New York, NY, USA, 1986.

[3] C. Calabro, R. Impagliazzo, V. Kabanets, and R. Paturi. The complex-
ity of unique k-sat: An isolation lemma for k-cnfs. J. Comput. Syst.
Sci., 74(3):386–393, 2008.

22

[4] T. Hertli. 3-SAT faster and simpler—unique-SAT bounds for PPSZ hold
in general. In 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science—FOCS 2011, pages 277–284. IEEE Computer Soc.,
Los Alamitos, CA, 2011.

[5] T. Hertli. Breaking the PPSZ Barrier for Unique 3-SAT. In J. Esparza,
P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, editors, Automata,
Languages, and Programming - 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I,
volume 8572 of Lecture Notes in Computer Science, pages 600–611.
Springer, 2014.

[6] T. Hertli, R. A. Moser, and D. Scheder. Improving PPSZ for 3-SAT
using critical variables. In Proceedings of STACS, pages 237–248, 2011.

[7] T. Hofmeister, U. Schöning, R. Schuler, and O. Watanabe. A proba-
bilistic 3-sat algorithm further improved. In H. Alt and A. Ferreira,
editors, STACS 2002, 19th Annual Symposium on Theoretical Aspects
of Computer Science, Antibes - Juan les Pins, France, March 14-16,
2002, Proceedings, volume 2285 of Lecture Notes in Computer Science,
pages 192–202. Springer, 2002.

[8] K. Iwama, K. Seto, T. Takai, and S. Tamaki. Improved randomized
algorithms for 3-sat. In O. Cheong, K. Chwa, and K. Park, editors,
Algorithms and Computation - 21st International Symposium, ISAAC
2010, Jeju Island, Korea, December 15-17, 2010, Proceedings, Part
I, volume 6506 of Lecture Notes in Computer Science, pages 73–84.
Springer, 2010.

[9] K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. In Pro-
ceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 328–329 (electronic), New York, 2004. ACM.

[10] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved
exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364 (elec-
tronic), 2005.

[11] R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. Chicago
J. Theoret. Comput. Sci., pages Article 11, 19 pp. (electronic), 1999.

[12] D. Rolf. Improved Bound for the PPSZ/Schöning-Algorithm for 3-
SAT. Journal on Satisfiability, Boolean Modeling and Computation,
1:111–122, 2006.

23

[13] N. Sauer. On the density of families of sets. Journal of Combinatorial
Theory, Series A, 13(1):145 – 147, 1972.

[14] D. Scheder and J. P. Steinberger. PPSZ for General k-SAT - mak-
ing Hertli’s analysis simpler and 3-SAT faster. In R. O’Donnell, ed-
itor, 32nd Computational Complexity Conference, CCC 2017, July 6-
9, 2017, Riga, Latvia, volume 79 of LIPIcs, pages 9:1–9:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[15] U. Schöning. A probabilistic algorithm for k-SAT and constraint sat-
isfaction problems. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, pages 410–414. IEEE Computer So-
ciety, Los Alamitos, CA, 1999.

[16] S. Shelah. A combinatorial problem; stability and order for models
and theories in infinitary languages. Pacific Journal of Mathematics,
41(1):247–261, 1972.

A PPZ Scales Optimally

In our terminology, the PPZ algorithm is the special case of PPSZ using P1

as a proof heuristic. That is, in every step is checks whether the variable
to be set is already contained in a unit clause. If so, it sets it accordingly,
otherwise it guesses its truth value. For a satisfying assignment α let I(α)
denote the number of variables x such that α ⊕ x 6∈ sat(F). Here, α ⊕ x is
the assignment obtained from α by flipping its value on x. Paturi, Pudlák,
and Zane [11] prove that

Pr[PPZ returns α] ≥ 2−n+I(α)/k .

This is not stated as a separate lemma in [11], but it is well-known and
follows from Lemma 2 in [11] (the Satisfiability Coding Lemma) by Jensen’s
Inequality. Now let S := sat(F) be the set of satisfying assignments and
suppose |S| = 2δn. By the above inequality, we obtain

Pr[PPZ succeeds] ≥
∑
α∈S

2−n+I(α)/k = |S| E
α∈S

[
2−n+I(α)/k

]
≥ |S|2−n+Eα∈S [I(α)]/k .

(6)

Note that Eα[I(α)] = 1
|S|
∑

α I(α) = 1
|S|e(S, S̄), where e(S, S̄) is the num-

ber of edges from S to its complement, if we view {0, 1}n as a graph (the

24

Hamming cube). The edge isoperimetric inequality of the Hamming cube [2]
states that e(S, S̄) ≥ |S|(n − log |S|) = 2δn(n − δn), which is tight if S is a
subcube of dimension δn. Thus, we see that (6) is at least

|S|2−n+(n−δn)/k = 2δn−n+(n−δ)n/k = 2−n(1−δ)(1−1/k) ,

and thus PPZ scales optimally with the number of satisfying assignments.

B Schöning Scales

Schöning’s Random Walk Algorithm samples a uniformly random assign-
ment β ∈ {0, 1}n. It then applies 3n local correction steps: as long as β
violates some clause {u1, . . . , uk}, it picks some ui at random from this clause
and flips its value under β, thus satisfying this clause (and possibly violating
some others). Schöning showed that if the input formula is a k-CNF formula
and α is some satisfying assignment, then the local correction phase finds
some satisfying assignment (possibly different from α) with probability at
least

1

poly(n)
(k − 1)−d(α,β),

where d is the Hamming distance on {0, 1}n, i.e., the number of variables on
which α and β disagree. Note that β is random, so d(α, β) = X1 + · · ·+Xn,
where Xi is 1 if α(xi) 6= β(xi) and 0 otherwise. Those variables are all
independent and therefore

E
β

[
(k − 1)−d(α,β)

]
=

n∏
i=1

E
[
(k − 1)−Xi

]
=

(
k

2(k − 1)

)n
.

For example, this means that Schöning’s algorithm has a success probability
of (3/4)n/poly(n) on satisfiable 3-CNF formulas.

Towards analyzing Schöning’s Algorithm for formulas with many satis-
fying assignments, let S := sat(F). Since the choice of α ∈ S is arbitrary,
we observe that the above probability is actually at least

1

poly(n)
(k − 1)−d(β,S),

where d(β, S) is the Hamming distance from β to the closest α ∈ S. For i ∈ N
and a set A ⊆ {0, 1}n let Γi(A) := {y ∈ {0, 1}n | d(y,A) ≤ i}. Let B(n, r) :=
{x ∈ {0, 1}n | d(x, 0) ≤ r} be the Hamming ball of radius r centered at the

25

all-0-vector. The vertex isoperimetric inequality of the Hamming cube [2]
states that if |A| ≥ |B(n, r)| then |Γi(A)| ≥ |Γi(B(n, r))| = |B(n, r+ i)|. Let
r be the largest integer such that |S| ≥ |B(n, r)| and let S∗ := B(n, r). Let
Y ∈ {0, 1}n be a random point in the Hamming cube and let D := d(Y, S)
and D∗ := d(Y, S∗). D and D∗ are random variables, and the above vertex
isoperimetric inequality states that Pr[D ≤ i] ≥ Pr[D∗ ≤ i]. In other words,
D∗ statistically dominates D, and therefore

Pr[Schöning succeeds] ≥ 1

poly
E
β

[
(k − 1)−d(β,S)

]
=

1

poly
E
[
(k − 1)−D

]
≥ 1

poly
E
[
(k − 1)−D

∗
]
. (7)

This means that under the above analysis, Schöning’s algorithm performs
worst if sat(F) forms a Hamming ball. Now if |S| ≥ 2δn then r ≥ ρn− o(n),
where ρ is such that H(ρ) = δ, H being the binary entropy function. From

this it follows easily that (7) is exponentially larger than
(

k
2(k−1)

)n
if δ > 0.

We spare the reader the details of calculating exact bounds, since the
above analysis is most likely suboptimal, anyway: the set sat(F) cannot
possibly be a Hamming ball of radius Ω(n) if F is a k-CNF. Thus, an
analysis that takes into account the fact that F is a k-CNF might reveal a
much better scaling behavior. However, no such analysis is known to me at
this point in time.

C Analysis of PPSZ for General k-SAT—Proof of
Lemma 5

In this section we sketch the proof of Lemma 5. This is basically a summary
of Section 4 in [10], including all main arguments but skipping over some
details and calculations. Our aim is to be sufficiently detailed so that all
gaps could be filled by the reader given a moderate amount of time and
sufficient motivation. For full detail, we refer the reader to [10].

Lemma 19 (Lemma 5, restated). Let α ∈ sat(F) and let Bα its subcube in
the sat(F)-partition B and define ak := k−2

k−1 · 2ck . Then

Pr[ppsz(β, π, F, P) = α | β ∈ Bα] ≥ 2−ckn · an−log |Bα|
k · 2−o(n) , (8)

where ck is defined in Theorem 1.

26

Let F be a CNF formula and α ∈ sat(F) a solution. In a thought
experiment, we call PPSZ (refer to the pseudocode in Algorithm 1) with
ppsz(α, π, F, P). Yes, we actually feed the solution α into it. Observe that
this always returns α, no matter what π or P is. We define some bookkeeping
variables. For x ∈ V (F), let Cx(π, α) be 1 if PPSZ was not able to infer α(x)
using the heuristic P—that is, if PPSZ sets x in the else-clause in Line 7.
Otherwise, if PPSZ sets x in the then-clause in Line 5 we set Cx(π, α) = 0.
Finally, C(π, α) =

∑
x∈V (F)Cx(π, α). Note that C(π, α) is the number of

bits PPSZ looks up in β. Note that ppsz(β, π, F, P) returns α if and only if
α and β agree on all variables where PPSZ probes β. Thus,

Pr
β

[ppsz(β, π, F, P) = α] = 2−C(π,α), (9)

for every fixed π, and

Pr
β,π

[ppsz(β, π, F, P) = α] = E
π

[
2−C(π,α)

]
≥ 2−Eπ [C(π,α)] ,

which follows from Jensen’s Inequality. By linearity of expectation we get
that Eπ[C(π, α)] =

∑
x∈V (F) Eπ[Cx(π, α)]. If α is the unique satisfying as-

signment, we could now focus on analyzing E[Cx(π, α)]. In the case of
multiple solutions, though, we have to be a bit more careful.

Let S = sat(F) and fix an S-partition B. From now on, we fix a solution
α ∈ sat(F) and let B = Bα be the unique subcube B ∈ B containing
α, and α is the unique satisfying assignment in B. We assume without
loss of generality that α = (1, . . . , 1). Thus, B is of the form B = {β ∈
{0, 1}n | β(y) = 1 ∀y ∈ VD} for some VD ⊆ V . Let VN := V \ VD. Paturi,
Pudlák, Saks, and Zane call VD the defining variables and VN the non-
defining variables of B. Note that |B| = 2|VN |. The trick is now to condition
on β ∈ B. Instead of (9) we obtain

Pr
β∈B

[ppsz(β, π, F, P) = α] = 2
−

∑
x∈VN

Cx(π,α)
,

since under the condition β ∈ B, β and α already agree on every y ∈ VD with
probability one. We could now directly apply Jensen’s inequality, but this
will not be enough. The reason is that Jensen’s inequality can be very loose∑

x∈VN Cx(π, α) varies much with π. So let us think for a minute which per-
mutations π are “good” for us. We want the sum to be small. Some thought
shows that moving x to the back of π can only decrease Cx(π, α). Of course,
not all x can be at the end of π; however, we only sum over x ∈ VN . Thus, it

27

would be beneficial for us if all y ∈ VD tended to occur towards the beginning
of π. Note that we choose π uniformly from all permutations. From now
on, it will make more sense to think of π as a function π : V → [0, 1], where
each π(x) is chosen independently and uniformly at random from [0, 1]. Let

Γ be the event Γ :=
{
π | π(y) ≤ k−1

k−2 ∀y ∈ VD
}

. This event happens with

probability
(
k−1
k−2

)|VD|
; conditioned on Γ, non-defining variables y ∈ VN tend

to come earlier in π than defining variables x ∈ VD. Formally, we get

Pr
β∈B,π

[ppsz(β, π, F, P) = α] = E
π

[
2
−

∑
x∈VN

Cx(π,α)
]

≥ Pr[Γ] · E
π∈Γ

[
2
−

∑
x∈VN

Cx(π,α)
]

≥ Pr[Γ] · 2−
∑
x∈VN

Eπ∈Γ[Cx(π,α)]
. (10)

From now on, we will analyze Eπ∈Γ[Cx(π, α)] for a fixed non-defining variable
x ∈ VN . Note that F and α are fixed, too, and we assume α = (1, . . . , 1) for
notational convenience.

C.1 Critical Clause Trees

The central combinatorial object in analyzing Eπ∈Γ[Cx(π, α)] is the critical
clause tree. In this tree T , every node u will have a variable label var(u), and
some might have a clause label clause(u). Additionally, every node u has
an assignment label αu obtained as follows: we start with the assignment α;
then we walk from the root of T to u, switching α(y) for every variable label
encountered on that path, including that of the root and that of u. Every
node in T labeled with a defining variable will be a leaf.

1. Start with T being a single node u and set its variable label var(u) to
be x. Note that αu is the assignment that sets x to 1 and all other
variables to 0. We do not assign it a clause label yet.

2. While there exists a leaf u with var(u) ∈ VN :

(a) Note that αu differs from α only on the variables appearing on
the path from the root to u. All those variables are non-defining,
so αu ∈ B. Since αu 6= α, it is not a satisfying assignment, and
therefore some clause C ∈ F violated by αu. Set clause(u) := C.

(b) For every negative literal v̄ ∈ C, create a child for u; make v its
variable label.

28

3. A leaf u of T with a defining clause label is called a safe leaf.

Suppose node u has clause label C = y1∨ . . . yr∨ z̄1∨ z̄s. From the way T
is constructed, it is clear that u has s children with variable labels z1, . . . , zs.
Since α satisfies C, it holds that r ≥ 1. Thus, if F is a k-CNF formula then
s ≤ k − 1. In other words, every node in T has at most k − 1 children.
Also, αu(yi) = 0 and thus yi must be the variable label of an ancestor of u
(possibly u itself). Furthermore, αu(zj) = 1, thus zj does not occur as the
variable label of any ancestor of u. Thus, var(u) 6= var(v) whenever u is an
ancestor of v. This in turn implies that the construction of T terminates, as
T has depth at most n. The following figure gives an example of a critical
clause tree for

F = (x ∨ ȳ ∨ z̄) ∧ (x ∨ y ∨ ū) ∧ (z ∨ ā ∨ v̄) ∧ (x ∨ z ∨ a) ∧ (x ∨ v ∨ w̄)

and VD = {u,w}.

x

xȳz̄

y

xyū

z

zāv̄

u a

xza

v

xvw̄

w

Note that the left-most leaf and the right-most leaf are labeled with a defin-
ing variable and thus are safe leaves. The middle leaf, with clause label
x ∨ z ∨ u, is different: its assignment α ⊕ x ⊕ z ⊕ a violates some clause,
namely x ∨ z ∨ a. However, there are no negative literals in this clause and
thus this node has no children.

For a set W ⊆ V (F) \ {x}, let TW denote the tree obtained from the
critical clause tree by removing all nodes u with var(u) ∈ W and all its
descendants.

29

Lemma 20. If TW contains no safe leaf, then clause(TW)|W=1 implies x =
1.

Here clause(TW) is the formula formed by collecting all clause labels in
TW , and W = 1 is the restriction obtained by setting to 1 all variables
y ∈ W . For example, suppose W = {u, v}. Then TW contains the root
and its two children, and the left child of its right child; clause(TW) =
(x∨ ȳ ∨ z̄)∧ (x∨ y ∨ ū)∧ (z ∨ ā∨ v̄)∧ (x∨ z ∨ a). Thus, clause(TW)|W=1 =
(x∨ ȳ ∨ z̄)∧ (x∨ y)∧ (z ∨ ā)∧ (x∨ z ∨ a), which clearly implies x = 1. The
proof of the lemma is not difficult and we omit it.

Suppose PPSZ uses the proof heuristic PD for some D ∈ N. For π :
V (F) → [0, 1] let W := {y ∈ V (F) | π(y) < π(x)}. Let ED be the event
(viewed as a set of π’s) that TW contains no safe leaf and |clause(TW)| ≤ D.

Corollary 21. If ED happens then Cx(π, α) = 0.

Let Ẽd be the event that TW contains no safe leaf and no node of depth
greater than d. Obviously, if Ẽd happens then E2d+1 happens. Thus, if
PPSZ uses the proof heuristic PD with D = 2d+1, then Eπ∈Γ[Cx(π, α)] ≤
1 − Prπ∈Γ[Ẽd]. Paturi, Pudlák, Saks, and Zane [10] show that Ẽd is least
likely to happen if all variable labels of T are distinct. Since we want to
lower bound Pr[Ẽd], we will from now on assume that all variable labels are
distinct. Since F is a k-CNF formula, every node in T has at most k − 1
children. We now extend T to T̃ in the following way: if a node u is not a
safe leaf, we create new children until u has exactly k−1 children; we repeat
the process at the children of u, potentially creating an infinite tree. Thus,
in T̃ every node either (1) is a safe leaf, (2) has k− 1 children; furthermore,
all variable labels in T̃ are distinct. For this, we assume an infinite supply
of variable labels. Let V (T̃) be the (possibly infinite) set of all nodes of T̃ .

We sample π(y) ∈
[
0, k−1

k−2

]
if y is a safe leaf and π(z) ∈ [0, 1] otherwise. Let

W be the set of all nodes u ∈ V (T̃) for which π(u) < π(root). As before T̃W
is the tree obtained from T̃ by deleting all nodes in W and its descendants.
Let E∞ be the event that T̃W is finite and has no safe leaf. The following
lemma is not difficult to prove.

Lemma 22. Prπ∈Γ[ED] ≥ Pr[E∞]− ε for some ε that converges to 0 as D
grows.

Note that Pr[E∞] depends on the structure of T̃ . We start by analyzing
T∞, the infinite (k − 1)-ary tree, which has no safe leaves. Let E′∞ be the
event that T∞W is finite. Let us define the conditional probability

Q(r) := Pr[E′∞ | π(x) = r] .

30

Under the condition π(x) = r, every node is in W with probability r, and
all events [y ∈ W] are independent. For T∞W to be finite, the following has
to happen for every child y of the root: (1) y itself is deleted, which happens
with probability r; or (2) y is not deleted, but the subtree rooted at y is itself
finite after deletion. The second case happens with probability (1− r)Q(r).
Thus, we obtain the equation

Q(r) = (r + (1− r)Q(r))k−1 . (11)

Clearly, 1 is a solution of this equation. It follows from the theory of Galton-
Watson branching processes that Q(r) is the smallest value in [0, 1] satisfying
(11). For r ≥ k−2

k−1 this is 1, for r < k−2
k−1 we get Q(r) < 1. From here on,

it is not difficult to show that Pr[E∞] is minimized if T̃ has no safe leaves.
In fact, the k−1

k−2 showing up in the definition of Γ is chosen exactly to make
this proof go through. Removing the conditioning on π(x) = r one obtains

Pr[ED] ≥
∫ 1

0
Q(r)dr − ε.

Note that ck = 1−
∫ 1

0 Q(r)dr is the probability that the root of the infinite
(k − 1)-ary tree is contained in an infinite component after the random
deletion step. Putting everything together, one obtains

Lemma 23. Let x ∈ VN . Then Eπ∈Γ[Cx(π, α)] ≤ ck − ε.

Recall that ε converges to 0 as D grows. Thus, if we use Pω(1), i.e., PD
for D = D(n) a growing function, ε becomes o(1). Plugging this lemma into
(10, we obtain

Pr
β∈B,π

[ppsz(β, π, F, P) = α] ≥ Pr[Γ] · 2−
∑
x∈VN

Eπ∈Γ[Cx(π,α)]

≥
(
k − 2

k − 1

)|VD|
· 2−ck|VN |−o(n)

= 2−ckn−o(n)

(
k − 2

k − 1
· 2ck

)|VD|
= 2−ckn−o(n)

(
k − 2

k − 1
· 2ck

)n−log2 |B|
.

This is exactly what the lemma states.

31

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

