
Time-Space Tradeoffs for Learning Finite Functions from
Random Evaluations, with Applications to Polynomials

Paul Beame∗

University of Washington
beame@cs.washington.edu

Shayan Oveis Gharan†

University of Washington
shayan@cs.washington.edu

Xin Yang∗

University of Washington
yx1992@cs.washington.edu

June 6, 2018

Abstract

We develop an extension of recent analytic methods for obtaining time-space tradeoff lower
bounds for problems of learning from uniformly random labelled examples. With our methods
we can obtain bounds for learning concept classes of finite functions from random evaluations
even when the sample space of random inputs can be significantly smaller than the concept
class of functions and the function values can be from an arbitrary finite set.

At the core of our results, we reduce the time-space complexity of learning from random
evaluations to the question of how much the corresponding evaluation matrix amplifies the
2-norms of “almost uniform” probability distributions. To analyze the latter, we formulate it
as a semidefinite program, and we analyze its dual. In order to handle function values from
arbitrary finite sets, we apply this norm amplification analysis to complex matrices.

As applications that follow from our new techniques, we show that any algorithm that
learns n-variate polynomial functions of degree at most d over F2 with success at least 2−O(n)

from evaluations on randomly chosen inputs either requires space Ω(nm/d) or 2Ω(n/d) time
where m = (n/d)Θ(d) is the dimension of the space of such polynomials. These bounds
are asymptotically optimal for polynomials of arbitrary constant degree since they match the
tradeoffs achieved by natural learning algorithms for the problems. We extend these results
to learning polynomials of degree at most d over any odd prime field Fp where we show that
Ω((mn/d) log p) space or time pΩ(n/d) is required.

To derive our bounds for learning polynomials over finite fields, we show that an analysis
of the dual of the corresponding semidefinite program follows from an understanding of the
distribution of the bias of all degree d polynomials with respect to uniformly random inputs.

∗Research supported in part by NSF grant CCF-1524246
†Research supported in part by NSF grant CCF-1552097 and ONR-YI grant N00014-17-1-2429

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 114 (2018)

1 Introduction

In supervised learning from labelled examples, the question of the sample complexity required
to obtain good generalization has been of considerable interest and research. However, another
important parameter is how much information from these samples needs to be kept in memory
in order to learn successfully. There has been a line of work improving the memory efficiency of
learning algorithms, and the question of the limits of such improvement has begun to be tackled
relatively recently. Shamir [15] and Steinhardt, Valiant, and Wager [17] both obtained constraints
on the space required for certain learning problems and in the latter paper, the authors asked
whether one could obtain strong tradeoffs for learning from random samples that yields a su-
perlinear threshold for the space required for efficient learning. Raz [13] showed that even given
exact information, if the space of a learning algorithm is bounded by a sufficiently small quadratic
function of the number of input bits, then the problem of online of learning parity functions given
exact answers on random samples requires an exponential number of samples even to learn parity
functions approximately.

More precisely, we consider problems of online learning from uniform random samples, in
which an unknown concept x is chosen uniformly from a set X of (multivalued) concepts and a
learner is given a stream of samples (a(1), b(1), (a(2), b(2)), · · · where each a(t) is chosen uniformly
at random from A and b(t) = L(a(t), x) for labelling function L which maps each pair (a, x) to the
outcome (or label) of the value of concept x ∈ X when given a ∈ A. The learner’s goal is either
that of identification “find x” or prediction “predict L(a, x) for randomly chosen a with significant
advantage over random guessing.” In the case of learning parities, X = A = {0, 1}n and L(a, x) =
a · x (mod 2). With high probability n + 1 uniformly random samples suffice to span {0, 1}n and
one can learn parities using Gaussian elimination with (n + 1)2 space. Alternatively, an algorithm
with only O(n) space can wait for a specific basis of vectors a to appear (for example the standard
basis) and store the resulting values; however, this takes Ω(2n) time. Raz [13] showed that either
Ω(n2) space or 2Ω(n) time is essential: even if the space is bounded by n2/25, 2Ω(n) queries are
required to learn x correctly with any probability that is 2−o(n). In follow-on work, Kol, Raz, and
Tal [9] showed that the same lower bound applies even if the input x is sparse.

We can view x as a linear function over F2, and, from this perspective, parity learning identifies
a linear function from evaluations over uniformly random inputs. A natural generalization asks if
a similar lower bound exists when we learn higher degree polynomials with bounded space. As a
motivating example, consider homogeneous quadratic functions over F2. Let m = (n+1

2) and X =

{0, 1}m, which we identify with the space of homogeneous quadratic polynomials in F2[z1, . . . , zn]

or, equivalently, the space of upper triangular Boolean matrices. This learning algorithm has
A = {0, 1}n and X = {0, 1}m, and the learning function L(a, x) = x(a) = ∑i6j xijaiaj mod 2,
or equivalently L(a, x) = aTxa when x is viewed as an upper triangular matrix.

Given a ∈ {0, 1}n and x ∈ {0, 1}m, we can view evaluating x(a) as computing aaT · x mod 2
where we interpret aaT as an element of {0, 1}m. For O(m) randomly chosen a ∈ {0, 1}n, the
vectors aaT almost surely span {0, 1}m and hence we can store m samples of the form (a, b) and
apply Gaussian elimination to determine x. This time, we only need n + 1 bits to store each
sample for a total space bound of O(nm). An alternative algorithm using O(m) space and time
2O(n) would be to look for a specific basis such as the basis consisting of the upper triangular parts

2

of {eieT
i | 1 6 i 6 n} ∪ {(ei + ej)(ei + ej)

T | 1 6 i < j 6 n}. Previous lower bounds for learning
do not apply to this problem1 because |A| � |X|. Our results imply that this tradeoff between
Ω(nm) space or 2Ω(n) time is inherently required to learn x with probability 2−o(n) or predict its
output with at least 2−o(n) advantage.

The techniques in [13] and [9] were based on fairly ad-hoc simulations of the original space-
bounded learning algorithm by a restricted form of linear branching program for which one can
measure progress at learning x using the dimension of the consistent subspace. More recent pa-
pers, by Moshkovitz and Moshkovitz [11] using graph mixing properties and by Raz [14] using
an analytic approach, considered more general tests and used a measure of progress based on
2-norms. While the method of [11] was not strong enough to reproduce the bound in [13] for the
case of parity learning, the methods of Raz [14] and the later improvement [12] by Moshkovitz
and Moshkovitz of [11] reproduced the parity learning bound and more.

In particular, Raz [14] defined a ±1 matrix M that is indexed by A × X. It is natural to see
M(a, x) as (−1)L(a,x) for a labelling function L that has labels in {0, 1}. The lower bound is gov-
erned by the (expectation) matrix norm of M, which is a function of the largest singular value of
M, and the progress is analyzed by bounding the impact of applying the matrix to probability
distributions with small expectation 2-norm. This method works if |A| > |X| - i.e., the sample
space of inputs is at least as large as the concept class - but it fails completely if |A| � |X|, which
is precisely the situation for learning quadratic functions. Indeed, none of the prior approaches
works in this case.

In our work we extend the analytic approach to capture general discrete problems of learning
from uniform random samples in which (1) the sample space of inputs can be much smaller than
the concept class and (2) members of the concept class can have values from an arbitrary finite
set, which we identify with {0, 1, . . . , r} for convenience. Our extensions come from two different
directions.

We define a property of matrices M that allows us to refine the notion of the largest singular
value and extend the method of Raz [14] to the cases that |A| � |X|. This property, which we
call the norm amplification curve of the matrix on the positive orthant, analyzes more precisely how
‖M · p‖2 grows as a function of ‖p‖2 for probability vectors p on X. The key reason that this is not
simply governed by the singular values is that the interior of the positive orthant can contain at
most one singular vector. We give a simple condition on the 2-norm amplification curve of M that
is sufficient to ensure that there is a time-space tradeoff showing that any learning algorithm for
M with success probability at least 2−εn for some ε > 0 either requires space Ω(mn) or time 2Ω(n).

For any fixed learning problem given by a matrix M, the natural way to express the amplifica-
tion curve at any particular value of ‖p‖2 yields an optimization problem given by a quadratic pro-
gram with constraints on ‖p‖2

2, ‖p‖1 and p > 0, and with objective function ‖Mp‖2
2 = 〈MT M, ppT〉

that seems difficult to solve. Instead, we relax the quadratic program to a semi-definite program
where we replace ppT by a positive semidefinite matrix U with the analogous constraints. We can
then obtain an upper bound on the amplification curve by moving to the SDP dual and evaluating
the dual objective at a particular Laplacian determined by the properties of MT M.

In order to handle concepts that are more than binary-valued2, we move to matrices whose

1Note that in [9] the lower bound applies in a dual case when the unknown x is sparse, and hence |X| � |A|.
2The formalization of Moshkovitz and Moshovitz [11, 12] does include the case of multivalued outcomes, though

3

entries are complex r-th roots of unity. Indeed, a single matrix M does not suffice for r > 3 and
we instead work with a family of complex matrices M(1), . . . , M(r−1), each associated with a dif-
ferent root of unity. We use the natural generalization of the norm amplification curve to complex
matrices and also generalize the semi-definite relaxation method to bound these curves using
(M(j))∗M(j) instead of MT M. We then show how the overall analytic approach can be carried
through with a modest number of changes from the binary-valued case.

Our lower bound shows that if the 2-norm amplification curve for M has (or, in the case of
r-valued labels, matrices M(1), . . . , M(r−1) have) the required property, then to achieve learning
success probability for M of at least |A|−ε for some ε > 0, either space Ω(log |A| · logr |X|) or time
|A|Ω(1) is required. This matches the natural upper bounds asymptotically over a wide range of
learning problems.

As applications, we focus on problems of learning polynomials of varying degrees over finite
fields. For matrices M associated with polynomials over F2, the property of the matrices MT M
required to bound the amplication curves for M correspond precisely to properties of the weight
distribution of Reed-Muller codes over F2. In the case of quadratic polynomials, this weight dis-
tribution is known exactly. In the case of higher degree polynomials, bounds on the weight distri-
bution of such codes, or more precisely on the bounds on the bias of random degree d polynomials
over F2 of Ben-Eliezer, Hod, and Lovett [3] are sufficient to let us show that learning polynomials
of degree at most d over Fn

2 from random inputs with probability 2−Ω(n/d) either requires space
Ω(nm/d) or time 2Ω(n/d).

We also analyze learning problems for the case of prime fields Fp for p odd using our multi-
valued techniques involving complex matrices. For Fp, even the cases of linear and affine poly-
nomials are new. We relate the norm amplification curves of the associated matrices to bounds on
the bias of random degree d polynomials over Fp. We also give a precise analysis of the bias of the
set of quadratic polynomials over Fn

p to derive tight time-space tradeoff lower bounds for learning
them. For larger degrees we apply bounds on the bias that we recently proved in a companion
paper ([2]).

Independent of the specific applications to learning from random examples that we obtain, the
measures of matrices that we introduce, the 2-norm amplification curve on the positive orthant,
and semi-definite relaxation approach seem likely to have significant applications in other contexts
outside of learning.

Related work: Independently and contemporaneously with our preliminary version ([1]), Garg,
Raz, and Tal [6] proved closely related results to ours for the case of binary labels. The funda-
mental techniques are similarly grounded in the approach of [14]. At the very high-level, they
prove very similar structural properties of the matrix M, namely, they show that it is an “L2 two-
source extractor” which can be seen to be equivalent to bounding our norm amplification curve for
learning matrices. More precisely, their “almost orthogonality property” essentially corresponds
to upper bounding Wκ(M∗M) for some threshold κ (see Definition 6.1 and Lemma 6.2). However,
since we use duality explicitly, our proof seems more amenable to extensions, particularly, when
we have more structure in the learning matrix M. Subsequently ([7]), they were also able to allow

they do not apply it to any examples and their mixing condition does not hold in the case of small input sample spaces

4

multivalued labels by extending the extractor approach to permit correlations between the sample
inputs and the concept.

2 Branching programs for learning

In order to be able to solve the learning problem given concept class X, sample space of inputs
A and labelling function L on A × X exactly we require that the learning function L have the
property that for all x 6= x′ ∈ X there exists an a ∈ A such that L(a, x) 6= L(a, x′). Note that the set
{0, 1, . . . , r− 1} of labels allows us to model any learning situation in which r different labels are
possible.

Following [13], the time and space of a learner are modelled simultaneously by expressing the
learner’s computation as a layered branching program: a finite rooted directed acyclic multigraph
with every non-sink node having outdegree r|A|, with one outedge for each (a, b) with a ∈ A
and b ∈ {0, 1, . . . , r − 1} that leads to a node in the next layer. Each sink node v is labelled by
some x′ ∈ X which is the learner’s guess of the value of the concept x. (In the case of prediction
we allow the sink label to be an arbitrary function from A to {0, 1, . . . , r − 1} denoting the best
prediction of the algorithm for each a ∈ A.)

The space S used by the learning branching program is the log2 of the maximum number of
nodes in any layer and the time T is the length of the longest path from the root to a sink.

The samples given to the learner (a(1), b(1)), (a(2), b(2)), . . . based on uniformly randomly cho-
sen a(1), a(2), . . . ∈ A and a concept x ∈ X determines a (randomly chosen) computation path in
the branching program. When we consider computation paths we include the concept x in their
description. The (expected) success probability of the learner is the probability for a uniformly
random concept x ∈ X that a random computation path given concept x reaches a sink node v
with label x′ = x (or with sufficiently good predictions on randomly chosen a ∈ A).

Progress towards identification Following [11] and [14] we measure progress towards identi-
fying x ∈ X using the “expectation 2-norm” over the uniform distribution: For any set S, and
f : S → R, define ‖ f ‖2 =

(
Es∈RS f 2(s)

)1/2
= (∑s∈S f 2(s)/|S|)1/2. Define ∆X to be the space of

probability distributions on X. Consider the two extremes for the expectation 2-norm of elements
of ∆X: If P is the uniform distribution on X, then ‖P‖2 = |X|−1. This distribution represents the
learner’s knowledge of the concept x at the start of the branching program. On the other hand if
P is point distribution on any x′, then ‖P‖2 = |X|−1/2.

For each node v in the branching program, there is an induced probability distribution on X,
P′x|v which represents the distribution on X conditioned on the fact that the computation path
passes through v. It represents the learner’s knowledge of x at the time that the computation
path has reached v. Intuitively, the learner has made significant progress towards identifying the
concept x if ‖P′x|v‖2 is much larger than |X|−1, say ‖P′x|v‖2 > |X|δ/2 · |X|−1 = |X|−(1−δ/2).

The general idea will be to argue that for any fixed node v in the branching program that is at
a layer t that is |A|o(1), the probability over a randomly chosen computation path that v is the first
node on the path for which the learner has made significant progress is |X|−Ω(logr |A|). Since by
assumption of correctness the learner makes significant progress with at least |X|−ε probability,
there must be at least |X|Ω(logr |A|) such nodes and hence the space must be Ω(log |X| logr |A|).

5

Given that we want to consider the first vertex on a computation path at which significant
progress has been made, it is natural to truncate a computation path at v if significant progress
has been already been made at v (and then one should not count any path through v towards the
progress at some subsequent node w). Following [14], for technical reasons we will also truncate
the computation path in other circumstances: if the concept x has too high probability at v, or
if the next edge is labelled by a pair (a, b) for which the value on input a of random concepts
whose computation path reaches v is significantly biased away from the uniform distribution on
{0, 1 . . . , r− 1}.

Like Raz [14], we use an analytic approach to understanding the progress and the bias. In [14],
only binary feedback is possible and progress is analyzed in terms of the matrix properties of
a learning matrix M given by M(a, x) = (−1)L(a,x), which is viewed as the learning problem
specification. This form is particularly convenient since it allows one to represent the predictability
of outcomes under a distribution P on X in terms of a matrix vector product. That is, (M ·P)(a) =
Ex∼P[(−1)L(a,x)] is the expected bias of a concept distributed according to P on input a.

It would be natural to try to extend this analytic approach for r > 2 by replacing (−1)L(a,x)

by ωL(a,x) where ω = e2πi/r is a primitive r-th root of unity. However, for r > 3, simply having
Ex∈RX[ω

f (x)] small does not imply that f is close to uniformly distributed on {0, 1, . . . , r − 1}.
Nonetheless, by setting gk = Prx∈RX[f (x) = k] we can apply the following proposition, which
is a standard method using exponential sums, to show that bounding |Ex∈RX[ω

j· f (x)]| for all j ∈
{1, . . . , r− 1} is sufficient to show that f is close to uniformly distributed. We include its proof for
completeness.

Proposition 2.1. Suppose that ∑r−1
k=0 gk = 1 and define g(z) = ∑r−1

k=0 gkzk. If |g(ω j)| < ε for all j ∈
{1, . . . , r− 1} then for all k ∈ {0, 1, . . . , r− 1}, |gk − 1

r | 6 ε.

Proof. Write s(z) = ∑r−1
k=0 zk and observe that s(1) = r but s(ω j) = 0 for all j ∈ {1, . . . , r − 1}.

Define h(z) = g(z) − 1
r · s(z). Observe that h(z) = ∑r−1

k=0 hkzk where hk = gk − 1
r so it suffices

to prove that |hk| 6 ε for all k ∈ {0, 1, . . . , r}. Note that h(1) = 0, and h(ω j) = g(ω j) for all
j ∈ {1, . . . , r − 1}. Therefore |h(ω j)| 6 ε for all j ∈ {0, 1 . . . , r − 1}. If we let h = (h0, . . . , hr−1)

T

be the vector of coefficients and v = (h(1), h(ω), . . . , h(ωr−1))T be the vector of values of h, we
have V(ω) · h = v where V(ω) is the usual r× r Vandermonde matrix for the powers of ω. Now
V(ω)−1 = V(ω−1)/r, the matrix of the discrete Fourier transform; so in particular, for every
k ∈ {0, 1, . . . , r− 1},

hk =
1
r
·

r−1

∑
j=0

ω−jkvj.

Hence |hk| 6 1
r ·∑

r−1
j=0 |vj| 6 ε since every |vj| 6 ε, which suffices to prove the proposition.

Therefore, instead of the single ± matrix M given by M(a, x) = (−1)L(a,x), we will analyze
the learning problem given by L using r − 1 different3 complex matrices M(j) ∈ CA×X for j ∈
{1, . . . , r − 1} given by M(j)(a, x) = ω j·L(a,x). We now define the probability distributions and
truncation process for computation paths inductively as follows:

3In Proposition 2.1 one can observe that |g(ω j)| = |g(ωr−j)| so d(r− 1)/2ematrices suffice, but we find it convenient
to argue using all r− 1 matrices; however, this does imply that a single matrix suffices when r = 3.

6

Definition 2.2. We define probability distributions Px|v ∈ ∆X and the (δ, α, γ)-truncation of the compu-
tation paths inductively as follows:

• If v is the root, then Px|v is the uniform distribution on X.

• (Significant Progress) If ‖Px|v‖2 > |X|−(1−δ/2) then truncate all computation paths at v. We call
vertex v significant in this case.

• (High Probability) Truncate the computation paths at v for all concepts x′ for which Px|v(x′) >
|X|−α. Let High(v) be the set of such concepts.

• (High Bias) Truncate any computation path at v if it follows an outedge e of v with label (a, b) for
which |(M(j) · Px|v)(a)| > |A|−γ for some j ∈ {1, . . . , r− 1}. That is, we truncate the paths at v if
the label outcome for the next sample for a ∈ A is too predictable given the knowledge that the path
was not truncated previously and arrived at v.

• If v is not the root then define Px|v to be the conditional probability distribution on x over all compu-
tation paths that have not previously been truncated and arrive at v.

For an edge e = (v, w) of the branching program, we also define a probability distribution Px|e ∈ ∆X,
which is the conditional probability distribution on X induced by the truncated computation paths that pass
through edge e.

With this definition, it is no longer immediate from the assumption of correctness that the
truncated path reaches a significant node with at least |A|−ε probability. However, we will see
that a single assumption about the matrices M(j) will be sufficient to prove both that this holds
and that the probability is |X|− logr |A| that the path reaches any specific node v at which significant
progress has been made.

3 Norm amplification by matrices on the positive orthant

By definition, for P ∈ ∆X, and M ∈ CA×X, ‖M · P‖2
2 = Ea∈R A[|(M · P)(a)|2]. Observe that for

P = Px|v and M = M(j) for j ∈ {1, . . . , r − 1}, the values |(M(j) · Px|v)(a)| are the quantities that
we test to determine whether an edge labelled a is a high bias edge that causes the truncation of the
computation path. Therefore ‖M(j) · Px|v‖2

2 is the expected square of this bias value for uniformly
random inputs at v.

If we have not learned the concept x, we would not expect to be able to predict its value on
a random input; moreover, since any path that would follow a high bias input is truncated, it
is essential to argue that ‖M(j) · Px|v‖2 remains small at any node v where there has not been
significant progress.

In [14] there is a single ±1 matrix M and ‖M · Px|v‖2 is bounded using the matrix norm ‖M‖2

given by ‖M‖2 = sup f :X→R
f 6=0
‖M · f ‖2/‖ f ‖2, where the numerator is an expectation 2-norm over A

and the denominator is an expectation 2-norm over X. Thus ‖M‖2 =
√
|X|/|A| · σmax(M), where

σmax(M) is the largest singular value of M and
√
|X|/|A| is a normalization factor.

In the case of the matrix M associated with parity learning, |A| = |X| = 2n and all the singular
values are equal to

√
|X| so ‖M‖2 =

√
|X| = 2n/2. With this bound, if v is not a node of significant

7

progress then ‖Px|v‖2 6 2−(1−δ/2)n and hence ‖M · Px|v‖2 6 2−(1−δ)n/2 which is 1/|A|(1−δ)/2 and
hence small.

However, even in the case of learning quadratic functions over F2, the largest singular value
of the matrix M is still

√
|X| (the uniform distribution on X is a singular vector) and so ‖M‖2 =

|X|/
√
|A|. But in that case, when ‖Px|v‖2 is |X|−(1−δ/2) we conclude that ‖M‖2 · ‖Px|v‖2 is at most

|X|δ/2/
√
|A| which is much larger than 1 and hence a useless bound on ‖M · Px|v‖2.

Indeed, the same kind of problem occurs in using the method of Raz [14] for any learning
problem for which |A| is |X|o(1): If v is a child of the root of the branching program at which the
more likely outcome b of a single randomly chosen input a ∈ A is remembered, then ‖Px|v‖2 6√

2/|X|. However, in this case |(M · Px|v)(a)| = 1 and so ‖(M · Px|v)‖2 > |A|−1/2. It follows that
‖M‖2 > |X|/(2|A|)1/2 and when |A| is |X|o(1) the derived upper bound on ‖M · Px|v′‖2 at nodes
v′ where ‖Px|v′‖2 > 1/|X|1−δ/2 will be larger than 1 and therefore useless.

We need a more precise way to bound ‖M · P‖2 as a function of ‖P‖2 than using the single
number ‖M‖2. To do this we will need to use the fact that P ∈ ∆X – it has a fixed `1 norm and
(more importantly) it is non-negative and therefore lies in the positive orthant.

Definition 3.1. For M ∈ CA×X the 2-norm amplification curve of M, τM : [0, 1]→ R is given by

τM(δ) = sup
P∈∆X

‖P‖261/|X|1−δ/2

log|A|(‖M · P‖2).

In other words, whenever ‖P‖2 is at most |X|−(1−δ/2), ‖M · P‖2 is at most |A|τM(δ). To prove
our lower bounds we will bound the norm amplification curves τM(j) for all j ∈ {1, . . . , r− 1}.

4 Theorems

Our general lower bound for learning problems over arbitrary finite label sets is given by follow-
ing theorem.

Theorem 4.1. There are constants c1, c2, c3 > 0 such that the follow holds. Let L : A×X → {0, 1, . . . , r−
1} be a labelling function and for j = 1, · · · , r− 1 define the matix M(j) ∈ CA×X by M(j)(a, x) = ω j·L(a,x)

where ω = e2πi/r and assume4 that |A| 6 |X|. Suppose that for 0 < δ′ < 1 we have τM(j)(δ′) 6 −γ′ < 0
for all j ∈ {1, · · · , r− 1}. Then, for ε > c1 min(δ′, γ′) > 0, β > c2 min(δ′, γ′) > 0, and η > c3 δ′ γ′ >

0, any algorithm that solves the learning problem for L with success probability at least |A|−ε or advantage
> |A|−ε/2 either requires space at least η log2 |A| logr |X| or time at least |A|β.

Applications to learning polynomials There are many potential applications of the above the-
orem but for this paper we focus learning polynomials from their evaluations over finite fields
of various sizes. The bounds are derived using the semidefinite programming approach given in
Section 6 together with analyses for polynomials given in Section 7.

4We could write the statement of the theorem to apply to all A and X by replacing each occurrence of |A| in the
lower bounds with min(|A|, |X|). When |A| > |X| and r = 2, we can use ‖M‖2 to bound τM(δ′) which yields the
bound given in [14]

8

Learning polynomials over F2 We first consider the case of polynomials over F2 which yield
a binary labelling set. In this case ω = −1 and there is only one matrix M, whose entries are
M(a, x) = (−1)L(a,x) as in [14].

The case of linear functions over F2 is just the parity learning problem. For learning higher
degree polynomials over F2 we obtain the following bounds on the norm amplification curves of
their associated matrices:

Theorem 4.2. The following norm amplification bounds hold:

(a) For all δ ∈ [0, 1], the matrix M for learning quadratic functions over Fn
2 satisfies

τM(δ) 6 −(1−δ)
8 + 5+δ

8n .

(b) For any ζ > 0, there are constants δ, γ with 0 < δ < 1/2 and γ > 0 such that for d 6 (1− ζ)n the
matrix M for learning functions of degree 6 d over Fn

2 satisfies τM(δ) 6 −γ/d.

Theorem 4.2 is proved in Section 7. The case for quadratic polynomials over F2 follows from
properties of the weight distribution of Reed-Muller codes RM(n, 2) shown by [16] and [10]. The
case for higher degree polynomials over F2 follows from tail bounds on the bias of F2 polynomials
given by [3].

Using these bounds together with Theorem 4.1 yields the following:

Theorem 4.3. There are constants ε, ζ > 0 such that the following hold:

(a) Let m = (n+1
2) for positive integer n. Any algorithm for learning quadratic functions over Fn

2 that
succeeds with probability at least 2−εn requires space Ω(nm) or time 2Ω(n).

(b) Let n > 0 and d > 0 be integers such that d 6 (1− ζ) · n and let m = ∑d
i=0 (

n
i). Any algorithm

for learning polynomial functions of degree at most d over Fn
2 that succeeds with probability at least

2−εn/d requires space Ω(nm/d) or time 2Ω(n/d).

These bounds are tight for constant d since they match the resources used by the natural learn-
ing algorithms described in the introduction up to constant factors in the space bound and in the
exponent of the time bound.

Learning polynomials over Fp for odd prime p. The following theorem bounds the norm am-
plification curves for polynomials of various degrees over odd prime fields.

Theorem 4.4. Let p be an odd prime. For all δ ∈ (0, 1) and for all j ∈ F∗p,

(a) the matrices M(j) for learning linear functions over Fn
p satisfy τM(j)(δ) 6 − 1−δ

2 ,

(b) the matrices M(j) for learning affine functions over Fn
p satisfy τM(j)(δ) 6 − 1−δ

2 + δ
2n ,

(c) the matrices M(j) for learning quadratic functions over Fn
p satisfy τM(j)(δ) 6

−(1−δ)
4 + 2

n , and

(d) for any 0 < ζ < 1/2, there are δ, γ with 0 < δ < 1/2 and γ > 0 such that for d 6 ζn, the matrices
M(j) for learning functions of degree 6 d over Fn

p satisfy τM(j)(δ) 6 −γ/d.

9

The proof of Theorem 4.4 is in Section 7. Parts (a) and (b) are almost immediate. The proof of
part (c) involves a tight structural characterization of quadratic polynomials over Fp. The proof of
part (d) for d > 3 uses tail bounds on the bias of polynomials of degree at most d over Fp recently
proved by the authors in a companion paper ([2]).

Using the bounds on the norm amplification curves of Theorem 4.4 together with Theorem 4.1,
we immediately obtain the time-space tradeoff lower bounds in following theorem.

Theorem 4.5. Let p be an odd prime. There is an ε > 0 such that the following hold:

(a) Any algorithm for learning linear or affine functions over Fn
p from their evaluations that succeeds

with probability at least p−εn requires time pΩ(n) or space Ω(n2 log p).

(b) Let m = (n+2
2). Any algorithm for learning quadratic functions over Fn

p that succeeds with probabil-
ity at least p−εn requires space Ω(nm log p) or time pΩ(n).

(c) There are constants ζ, ε > 0 such that for 3 6 d 6 (1− ζ) · n and for m equal to the number of
monomials of degree at most d over Fn

p, any algorithm for learning polynomial functions of degree at
most d over Fn

p that succeeds with probability at least p−εn/d requires space Ω(log p · nm/d) or time
pΩ(n/d).

5 Lower Bounds for Learning Finite Functions from Random Samples

In this section we prove Theorem 4.1. Let 0 < δ′ < 1 be the value given in the statement of the
theorem. To do this we define several positive quantities based on δ′ that will be useful:

• δ = δ′/6,

• α = 1− 2δ,

• γ = minj{−τM(j)(δ′)/2},

• β = min(γ, δ)/8, and

• ε = β/2.

Let B be a learning branching program for L with length at most |A|β− 1 and success probability at
least |A|−ε of identifying the concept (or producing a prediction advantage of more than |A|−ε/2).

We will prove that B must have width |X|Ω(δγ logr |A|). We first apply the (δ, α, γ)-truncation
procedure given in Definition 2.2 to yield Px|v and Pe|v for all vertices v in B.

The following simple technical lemmas are analogues of ones proved in [14], though we struc-
ture our argument somewhat differently. The first uses the bound on the amplification curve of
the matrices M(j) for j ∈ [r− 1] in place of its matrix norm.

Lemma 5.1. Suppose that vertex v in B is not significant. Then

Pra∈R A[∃j ∈ {1, · · · , r− 1}, |(M(j) · Px|v)(a)| > |A|−γ] 6 (r− 1) · |A|−2γ.

10

Proof. Since v is not significant ‖Px|v‖2 6 |X|−(1−δ/2). For fixed j ∈ {1, · · · , r− 1}, by definition of
τM(j) ,

Ea∈R A[|(M(j) · Px|v)(a)|2] = ‖M(j) · Px|v‖2
2 6 |A|

2τ
M(j) (δ) 6 |A|2τ

M(j) (δ
′) 6 |A|−4γ.

Therefore, by Markov’s inequality,

Pra∈R A[|(M(j) · Px|v)(a)| > |A|−γ] = Pra∈R A[|(M(j) · Px|v)(a)|2 > |A|−2γ] 6 |A|−2γ.

Hence by a union bound,

Pra∈R A[∃j ∈ {1, · · · , r− 1}, |(M(j) · Px|v)(a)| > |A|−γ] 6 (r− 1) · |A|−2γ.

The second is trivial in the case that r = 2 but requires a proof for larger r.

Lemma 5.2. Suppose that vertex v in B is not significant and that a ∈ A has the property that for all
j ∈ [r− 1], |(M(j) · Px|v)(a)| < |A|−γ. Then for all b ∈ {0, 1, . . . , r− 1},∣∣∣Prx′∼Px|v [L(a, x′) = b]− 1

r

∣∣∣ 6 |A|−γ.

Proof. We apply Proposition 2.1: For b ∈ {0, 1, . . . , r − 1}, write gb = Prx′∼Px|v [L(a, x′) = b] and
define g(z) = ∑r−1

b=0 gbzb. Observe that for j ∈ {1, . . . , r− 1},

g(ω j) =
r−1

∑
b=0

Prx′∼Px|v [L(a, x′) = b] ·ω jb

=
r−1

∑
b=0

∑
x′∈X

Px|v(x′) · 1L(a,x′)=b ·ω jb

= ∑
x′∈X

Px|v(x′) ·
r−1

∑
b=0

1L(a,x′)=b ·ω jb

= ∑
x′∈X

Px|v(x′) ·ω j·L(a,x′)

=(M(j) · Px|v)(a).

Therefore |g(ω j)| = |(M(j) · Px|v)(a)| < A−γ. Applying Proposition 2.1 immediately yields the
lemma.

Lemma 5.3. Suppose that vertex v in B is not significant. Then

Prx′∼Px|v [x
′ ∈ High(v)] 6 |X|−δ.

Proof. Since v is not significant,

Ex′∼Px|v [Px|v(x′)] = ∑
x′∈X

(Px|v(x′))2 = |X| · ‖Px|v‖2
2 6 |X|−(1−δ) = |X|−(α+δ).

Therefore since α = 1− 2δ, by Markov’s inequality,

Prx′∼Px|v [x
′ ∈ High(v)] = Prx′∼Px|v [Px|v(x′) > |X|−α] 6 |X|−δ.

11

Lemma 5.4. The probability, over uniformly random x′ ∈ X and uniformly random computation path C in
B given concept x′, that the truncated version T of C reaches a significant vertex of B is at least 1

2 |A|−β/2.

Proof. Let x′ be chosen uniformly at random from X and consider the truncated path T. T will not
reach a significant vertex of B only if one of the following holds:

1. T is truncated at a vertex v where Px|v(x′) > |X|−α.

2. T is truncated at a vertex v because the next edge of C is labeled by (a, b) where |(M(j) ·
Px|v)(a)| > |A|−γ for some j ∈ {1, · · · , r− 1}.

3. T ends at a leaf that is not significant.

By Lemma 5.3, for each vertex v on C, conditioned on the truncated path reaching v, the probability
that Px|v(x′) > |X|−α is at most |X|−δ. Similarly, by Lemma 5.1, for each v on the path, conditioned
on the truncated path reaching v, the probability that |(M(j) · Px|v)(a)| > |A|−γ for any j ∈ [r− 1]
is at most (r − 1) · |A|−2γ. Therefore, since T has length at most |A|β, the probability that T is
truncated at v for either reason is at most |A|β((r− 1) · |A|−2γ + |X|−δ) < r · |A|−β since |A| 6 |X|
and β < min(γ, δ/2).

(Readers who wish to focus on identification may find it easier on first reading to skip to the alternative
proof at the end of this argument.) For any sink node v of B, let Trunc(v) denote the probability that
the random computation path C for a random concept x′ chosen uniformly from X is truncated,
conditioned on the computation on x′ ending at v. By Markov’s inequality, the probability that
the computation path for a random concept x′ ends at vertex v with Trunc(v) > 2r · |A|−β/2 is less
than 1

2 |A|−β/2.
Let fv : A→ {0, 1, . . . , r− 1} denote the function labelling node v which encapsulates the best

prediction of the algorithm for the label of each point in A. (This will simply be some x′′ ∈ X in the
case of identification rather than prediction.) We argue that if v is not significant and Trunc(v) 6
2r|A|−β/2 then fv provides little advantage in predicting L(·, x′).

By Lemmas 5.1 and 5.2, if v is not significant then

Prx′∼Px|v, a∈R A[L(a, x′) = fv(a)] 6
1
r
+ |A|−γ + (r− 1) · |A|−2γ.

Now Px|v is the distribution on concepts x′ ∈ X conditioned on their (randomly chosen) com-
putation path reaching v and not being truncated. On the other hand, correctness is defined
with respect to randomly chosen computation paths independent of truncation. However, if
Trunc(v) 6 2r · |A|−β/2, then over the distribution independent of truncation we obtain that the
probability conditioned on x′ reaching v of predicting L(a, x′) is at most

1
r
+ |A|−γ + (r− 1) · |A|−2γ + 2r · |A|−β/2 6

1
r
+ |A|−ε/2

which is a prediction advantage of at most |A|−ε/2. Therefore none of the nodes non-significant
nodes v with small Trunc(v) can contribute to the |A|−ε success probability and hence the proba-
bility that the computation reaches a significant node must be at least the success probability |A|−ε

of having a large advantage minus the probability that the computation on x′ reaches a sink vertex
v with Trunc(v) > 2r · |A|−β/2, which is |A|−ε − 1

2 |A|−β/2 = 1
2 |A|−β/2 as required.

12

(An alternative simpler argument that may be a bit more intuitive for the case of identification.) If T
reaches a leaf v that is not significant then, conditioned on arriving at v, the probability that the
concept x′ equals the label of v is at most maxx′′∈X Px|v(x′′). Now

maxx′′∈X Px|v(x′′)
|X|1/2 6 ‖Px|v‖2 < |X|−(1−δ/2)

since v is not significant, so we have maxx′′∈X Px|v(x′′) < |X|−(1−δ)/2 = |X|−(α+δ)/2 and the prob-
ability that B is correct conditioned on the truncated path reaching a leaf vertex that is not signifi-
cant is less than |X|−(α+δ)/2 6 |X|−β 6 |A|−β since |A| 6 |X|.

Since B is correct with probability at least |A|−ε = |A|−β/2 and these three cases in which T
does not reach a significant vertex account for correctness at most (r + 1) · |A|−β, which is much
less than 1

2 · |A|−β/2, T must reach a significant vertex with probability at least 1
2 |A|−β/2.

The following lemma is the the key to the proof of the theorem.

Lemma 5.5. Let s be any significant vertex of B. There is an η = δγ/2 > 0 such that for a uniformly
random x chosen from X and a uniformly random computation path C, the probability that its truncation
T ends at s is at most |X|−η logr |A|.

The proof of Lemma 5.5 requires a delicate progress argument and is deferred to the next
subsection. We first show how Lemmas 5.4 and 5.5 immediately imply Theorem 4.1.

Proof of Theorem 4.1. By Lemma 5.4, for x chosen uniformly at random from X and T the trun-
cation of a uniformly random computation path given concept x, T ends at a significant ver-
tex with probability at least |A|−β/2/2. On the other hand, by Lemma 5.5, for any significant
vertex s, the probability that T ends at s is at most |X|−η logr |A|. Therefore the number of sig-
nificant vertices must be at least 2|X|η logr |A|/|A|β/2 and since B has length at most |A|β, there
must be at least 2|X|η logr |A|/|A|3β/2 significant vertices in some layer. Hence B requires space
Ω(δγ log2 |X| logr |A|).

5.1 Progress towards significance

In this section we prove Lemma 5.5 showing that for any particular significant vertex s a random
truncated path reaches s only with probability |X|−Ω(δγ logr |A|). For each vertex v in B let Pr[v]
denote the probability over a random concept x, that the truncation of a random computation
path in B given concept x visits v and for each edge e in B let Pr[e] denote the probability over a
random concept x, that the truncation of a random computation path in B for x traverses e.

Since B is a leveled branching program, the vertices of B may be divided into disjoint sets Vt

for t = 0, 1, . . . , T where T is the length of B and Vt is the set of vertices at distance t from the root,
and disjoint sets of edges Et for t = 1, . . . , T where Et consists of the edges from Vt−1 to Vt. For
each vertex v ∈ Vt−1, note that by definition we only have

Pr[v] > ∑
(v,w)∈Et

Pr[(v, w)]

13

since some truncated paths may terminate at v.
For each t, since the truncated computation path visits at most one vertex and at most one

edge at level t, we obtain a sub-distribution on Vt in which the probability of v ∈ Vt is Pr[v]
and a corresponding sub-distribution on Et in which the probability of e ∈ Et is Pr[e]. We write
v ∼ Vt and e ∼ Et to denote random selection from these sub-distributions, where the outcome ⊥
corresponds to the case that no vertex (respectively no edge) is selected.

Fix some significant vertex s. We consider the progress that a truncated path makes as it moves
from the start vertex to s. We measure the progress at a vertex v as

ρ(v) =
〈Px|v,Px|s〉
〈Px|s,Px|s〉

.

Clearly ρ(s) = 1. We first see that ρ starts out at a tiny value.

Lemma 5.6. If v0 is the start vertex of B then ρ(v0) 6 |X|−δ.

Proof. By definition, Px|v0
is the uniform distribution on X. Therefore

〈Px|v0
,Px|s〉 = Ex′∈X[|X|−1 · Px|s(x′)] = |X|−2 · ∑

x′∈X
Px|v0

(x′) = |X|−2

since Px|s is a probability distribution on X. On the other hand, since s is significant, 〈Px|s,Px|s〉 =
‖Px|s‖2

2 > |X|δ · |X|−2. The lemma follows immediately.

Since the truncated path is randomly chosen, the progress towards s after t steps is a random
variable. We show that not only is the increase in this expected value of this random variable in
each step very small, its higher moments also increase at a very small rate. Define

Φt = Ev∼Vt [(ρ(v))
γ logr |A|]

where we extend ρ and define ρ(⊥) = 0. We will show that for s ∈ Vt, Φt is still |X|−Ω(δγ logr |A|),
which will be sufficient to prove Lemma 5.5.

Therefore, Lemma 5.5, and hence Theorem 4.1, will follow from the following lemma.

Lemma 5.7. For every t with 1 6 t 6 |A|β − 1,

Φt 6 Φt−1 · (1 + |A|−2β) + |X|−γ logr |A|.

Proof of Lemma 5.5 from Lemma 5.7. By definition of Φt and Lemma 5.6 we have Φ0 6 |X|−δγ logr |A|.
By Lemma 5.7, for every t with 1 6 t 6 |A|β − 1,

Φt 6
t

∑
j=0

(1 + |A|−2β)j · |X|−δγ logr |A| < (t + 1) · (1 + |A|−2β)t · |X|−δγ logr |A|.

In particular, for every t 6 |A|β − 1,

Φt 6 |A|β · (1 + |A|−2β)|A|
β · |X|−δγ logr |A| 6 e1/|A|β · |A|β · |X|−δγ logr |A|.

Now fix t∗ to be the level of the significant node s. Every truncated path that reaches s will have
contribution to Φt∗ of (ρ(s))γ logr |A| = 1 times its probability of occurring. Therefore the truncation
of a random computation path reaches s with probability at most |X|−η logr |A| for η = δγ/2 and
|A|, |X| sufficiently large, which proves the lemma.

14

We now focus on the proof of Lemma 5.7. Because Φt depends on the sub-distribution over
Vt and Φt−1 depends on the sub-distribution over Vt−1, it is natural to consider the analogous
quantities based on the sub-distribution over the set Et of edges that join Vt−1 and Vt. We can
extend the definition of ρ to edges of B, where we write

ρ(e) =
〈Px|e,Px|s〉
〈Px|s,Px|s〉

.

Then define
Φ′t = Ee∼Et [(ρ(e))

γ logr |A|].

Intuitively, there is no gain of information in moving from elements Et to elements of Vt. More
precisely, we have the following lemma:

Lemma 5.8. For all t, Φt 6 Φ′t.

Proof. Note that for v ∈ Vt, since the truncated paths that follow some edge (u, v) ∈ Et are pre-
cisely those that reach v, by definition, Pr[v] = ∑(u,v)∈Et

Pr[(u, v)]. Since the same applies sep-
arately to the set of truncated paths for each concept x′ ∈ X that reach v, for each x′ ∈ X we
have

Pr[v] · Px|v(x′) = ∑
(u,v)∈Et

Pr[(u, v)] · Px|(u,v)(x′).

Therefore,

Pr[v] ·
〈Px|v,Px|s〉
〈Px|s,Px|s〉

= ∑
(u,v)∈Et

Pr[(u, v)] ·
〈Px|(u,v),Px|s〉
〈Px|s,Px|s〉

;

i.e., Pr[v] · ρ(v) = ∑(u,v)∈Et
Pr[(u, v)] · ρ((u, v)). Since Pr[v] = ∑(u,v)∈Et

Pr[(u, v)], by the convexity
of the map s 7→ sγ logr |A| we have

Pr[v] · (ρ(v))γ logr |A| 6 ∑
(u,v)∈Et

Pr[(u, v)] · (ρ((u, v))γ logr |A|.

Therefore

Φt = ∑
v∈Vt

Pr[v] · (ρ(v))γ logr |A| 6 ∑
v∈Vt

∑
(u,v)∈Et

Pr[(u, v)] · (ρ((u, v)))γ logr |A|

= ∑
e∈Et

Pr[e] · (ρ(e))γ logr |A| = Φ′t.

Therefore, to prove Lemma 5.7 it suffices to prove that the same statement holds with Φt re-
placed by Φ′t; that is,

Ee∈Et [(ρ(e))
γ logr |A|] 6 (1 + |A|−2β) · Ev∈Vt−1 [(ρ(v))

γ logr |A|] + |X|−γ logr |A|

Et is the disjoint union of the out-edges Γout(v) for vertices v ∈ Vt−1, so it suffices to show that for
each v ∈ Vt−1,

∑
e∈Γout(v)

Pr[e] · (ρ(e))γ logr |A| 6 (1 + |A|−2β) · Pr[v] · (ρ(v))γ logr |A| + |X|−γ logr |A| · Pr[v]. (1)

15

Since any truncated path that follows e must also visit v, we can write Pr[e|v] = Pr[e]/Pr[v].
Moreover, both ρ(v) and ρ(e) have the same denominator 〈Px|s,Px|s〉 and therefore, by definition,
inequality (1), and hence Lemma 5.7, follows from the following lemma.

Lemma 5.9. For v ∈ Vt−1,

∑
e∈Γout(v)

Pr[e|v] · 〈Px|e,Px|s〉γ logr |A| 6 (1 + |A|−2β) · 〈Px|v,Px|s〉γ logr |A| + |X|−γ logr |A|.

Before we prove Lemma 5.9, we first prove some technical lemmas, the first relating the distri-
butions for v ∈ Vt−1 and edges e ∈ Et and the last upper bounding ‖Px|s‖2.

Lemma 5.10. Suppose that v ∈ Vt−1 is not significant and e = (v, w) ∈ Et has Pr[e] > 0 and label (a, b).
Then for x′ ∈ X, Px|e(x′) > 0 only if x′ /∈ High(v) and L(a, x′) = b, in which case

Px|e(x′) = c−1
e · Px|v(x′)

where ce > 1
r − |A|−γ − |X|−δ.

Proof. If there exists j ∈ {1, · · · , r − 1} such that |(M(j) · Px|v)(a)| > |A|−γ then by definition of
truncation we also will have Pr[e] = 0. Therefore, since Pr[e] > 0, e is not a high bias edge – that
is, ∀j ∈ [r− 1], |(M(j) · Px|v)(a)| < |A|−γ. We now use Lemma 5.2 to derive that

Prx′∼Px|v [L(a, x′) = b] >
1
r
− |A|−γ.

Let Ee(x′) be the event that both L(a, x′) = b and x′ /∈ High(v) and define

ce = Prx′∼Px|v [Ee(x′)].

If Ee(x′) fails to hold for all x′, i.e., x′ ∈ High(v) or L(a, x′) 6= b, then any truncated path for concept
x′ that reaches v will not continue along e and hence Pr[e] = 0. On the other hand, since Pr[e] > 0,
if Ee(x′) holds for some concept x′ then any truncated path for x′ that reaches v will continue
precisely if the input chosen at v is a, which happens with probability |A|−1 for each such x′. The
total probability over x′ ∈ X, conditioned that the truncated path on x′ reaches v and that the path

continues along e is then |A|−1 · ce. Therefore, if x′ ∈ Ee then Px|e(x′) =
|A|−1·Px|v(x′)
|A|−1·ce

= c−1
e ·Px|v(x′).

Now by Lemma 5.3,
Prx′∼Px|v [x

′ ∈ High(v)] 6 |X|−δ

and so
ce = Prx′∼Px|v [L(a, x′) = b and x′ /∈ High(v)] >

1
r
− |A|−γ − |X|−δ

as required.

We use this lemma together with an argument similar to that of Lemma 5.8 to upper bound
‖Px|s‖2 for our significant vertex s.

Lemma 5.11. ‖Px|s‖2 6 2r · |X|−(1−δ/2).

16

Proof. The main observation is that s is the first significant vertex of any truncated path that
reaches it and so the probability distributions of each of the immediate predecessors v of s must
have bounded expectation 2-norm and, by Lemma 5.10 and the proof idea from Lemma 5.8, the
2-norm of the distribution at s cannot grow too much larger than those at its immediate predeces-
sors.

By Lemma 5.10, if e = (v, s) and Pr[e] > 0, then

‖Px|e‖2 6 c−1
e · ‖Px|v‖ 6 c−1

e |X|−(1−δ/2) 6 2r · |X|−(1−δ/2)

since v is not significant and ce > 1
r − |A|−γ − |X|−δ > 1

2r for |A| and |X| sufficiently large. Let
Γin(s) be the set of edges (v, s) in B. Pr[s] = ∑e=(v,s)∈Γin(s) Pr[e] and for each x′ ∈ X,

Pr[s] · Px|s(x′) = ∑
e=(v,s)∈Γin(s)

Pr[e] · Px|e(x′).

Since Pr[s] = ∑e=(v,s)∈Γin(s) Pr[e], by convexity of the map r 7→ r2, we have

Pr[s] · (Px|s(x′))2 6 ∑
e=(v,s)∈Γin(s)

Pr[e] · (Px|e(x′))2.

Summing over x′ ∈ X we have

Pr[s] · ‖Px|s‖2
2 6 ∑

e=(v,s)∈Γin(s)
Pr[e] · ‖Px|e‖2

2

6 ∑
e=(v,s)∈Γin(s)

Pr[e] · (2r · |X|−(1−δ/2))2 = Pr[s] · (2r · |X|−(1−δ/2))2.

Therefore ‖Px|s‖ 6 2r · |X|−(1−δ/2) as required since Pr[s] > 0.

To complete the proof of Lemma 5.7, and hence Lemma 5.5, it only remains to prove Lemma 5.9.

5.1.1 Proof of Lemma 5.9

Since we know that if v ∈ Vt−1 is significant then any edge e ∈ Γout(v) has Pr[e] = 0, we can
assume without loss of generality that v is not significant.

Define g : X → R by
g(x′) = Px|v(x′) · Px|s(x′)

and note that 〈Px|v,Px|s〉 = Ex′∈X[g(x′)]. For x′ ∈ X define

f (x′) =

{
g(x′) x′ /∈ High(v)

0 otherwise

and let F = ∑x′∈X f (x′). For every edge e where 〈Px|e,Px|s〉 > 0, we have F > 0.
The function f induces a new probability distribution on X, P f , given by P f (x′) =

f (x′)/ ∑x∈X f (x) = f (x′)/F in which each point x′ ∈ X \ High(v) is chosen with probability
proportional to its contribution to 〈Px|v,Px|s〉 and each x′ ∈ High(v) has probability 0.

17

CLAIM: Let (a, b) be the label on an edge e, then

〈Px|e,Px|s〉 6 (rce)
−1 · (1+

r−1

∑
j=1
|(M(j) ·P f)(a)|) · F/|X| 6 (rce)

−1 · (1+
r−1

∑
j=1
|(M(j) ·P f)(a)|) · 〈Px|v,Px|s〉

where ce is given by Lemma 5.10.
We first prove the claim. By Lemma 5.10 and the definition of f ,

Px|e(x′) · Px|s(x′) =

{
c−1

e · f (x′) if L(a, x′) = b

0 otherwise.

Therefore

〈Px|e,Px|s〉 = Ex′∈RX[Px|e(x′) · Px|s(x′)] = Ex′∈RX[c−1
e f (x′) · 1L(a,x′)=b]

Let z = M(1)(a, x′) · ω−b. Then z ∈ {1, ω, · · · , ωr−1}. The indicator function 1L(a,x′)=b is 1 when
z = 1, and 1L(a,x′)=b is 0 when z = ω, · · · , ωr−1. By interpolation we have

1L(a,x′)=b =
1
r

r−1

∑
j=0

zj

Notice that zj = ω−bj ·M(j)(a, x′) for j = 1, · · · , r− 1, so we have

〈Px|e,Px|s〉 = Ex′∈RX

[
c−1

e f (x′) · (1 +
r−1

∑
j=1

ω−b·j ·M(j)(a, x′))/r

]

= (rce)
−1 ·

(
Ex′∈RX[f (x′)] +

r−1

∑
j=1

ω−bj · Ex′∈RX[M(j)(a, x′) · f (x′)]

)

6 (rce)
−1 ·

(
Ex′∈RX[f (x′)] +

r−1

∑
j=1

∣∣∣Ex′∈RX[M(j)(a, x′) · f (x′)]
∣∣∣)

= (rce)
−1 · |X|−1 · F ·

1 +
∑r−1

j=1

∣∣∣Ex′∈RX[M(j)(a, x′) · f (x′)]
∣∣∣

F
]

= (rce)

−1 · |X|−1 · F · (1 +
r−1

∑
j=1
|(M(j) · P f)(a)|)

6 (rce)
−1 · (1 +

r−1

∑
j=1
|(M(j) · P f)(a)|) · 〈Px|v,Px|s〉

since |X|−1 · F = Ex′∈RX[f (x′)] 6 Ex′∈RX[g(x′)] = 〈Px|v,Px|s〉, which proves the claim.

By Lemma 5.10, rce > 1 − r · |A|−γ − r · |X|−δ and so (rce)−1 6 1 + |A|−σ 6 2 for σ =

min(γ, δ)/2 and sufficiently large |A| since |A| 6 |X|. We consider two cases:

18

CASE F 6 |X|−1: In this case, since P f is a probability distribution, for every a ∈ A and j ∈
[r− 1], we have |(M(j) ·P f)(a)| 6 maxx′∈X |M(j)(a, x′)| = 1 and from the claim we obtain for every
edge e ∈ Γout(v), 〈Px|e,Px|s〉 6 r · (rce)−1 · |X|−2. Therefore ∑e∈Γout(v) Pr[e|v] · 〈Px|e,Px|s〉γ logr |A| is
at most (2r · |X|−2)γ logr |A| 6 |X|−γ logr |A| for |X| > 2r.

CASE F > |X|−1: In this case we will show that ‖P f ‖2 is not too large and use this together with
the bound on the 2-norm amplification curve of each M(j) to show that ‖M(j) · P f ‖2 is small for
each j = 1, · · · , r− 1. This will be important because of the following connection:

By the Claim, we have

∑
e∈Γout(v)

Pr[e|v] · 〈Px|e,Px|s〉γ logr |A| 6 ∑
e∈Γout(v)

Pr[e|v] · [(rce)
−1 · (1 +

r−1

∑
j=1
|(M(j) · P f)(ae)|)]γ logr |A|

· 〈Px|v,Px|s〉γ logr |A|

(2)

where ae is the input labelling edge e. By definition, for each a ∈ A there are precisely r edges
e0, · · · , er−1 ∈ Γout(v) with aei = a for i = 0, · · · , r − 1 and ∑r−1

i=0 Pr[ei|v] 6 1/|A| since the next
input is chosen uniformly at random from A. (It would be equality but some inputs a have high
bias and in that case Pr[ei|v] = 0 for all i.) Previously, we also observed that (rce)−1 6 1 + |A|−σ

where σ = min(γ, δ)/2. Therefore,

∑
e∈Γout(v)

Pr[e|v] · 〈Px|e,Px|s〉γ logr |A|

6 ∑
a∈A

1
|A| [(1 + |A|

−σ) · (1 +
r−1

∑
j=1
|(M(j) · P f)(ae)|)]γ logr |A| · 〈Px|v,Px|s〉γ logr |A|

= (1 + |A|−σ)γ logr |A| · Ea∈R A[(1 +
r−1

∑
j=1
|(M(j) · P f)(ae)|)γ logr |A|] · 〈Px|v,Px|s〉γ logr |A|.

To prove the lemma we therefore need to bound Ea∈R A[(1 + ∑r−1
j=1 |(M(j) · P f)(ae)|)γ logr |A|]. We

will bound this by first analyzing ‖M(j) · P f ‖2 for each j.
Fix j. By definition,

‖ f ‖2
2 = Ex′∈RX1x′/∈High(v) · P2

x|v(x′) · P2
x|s(x′) 6 |X|−2α · Ex′∈RXP2

x|s(x′) = |X|−2α · ‖Px|s‖2
2.

Therefore, by Lemma 5.11, and the fact that F > |X|−1,

‖P f ‖2 =
‖ f ‖2

F
6
|X|−α · ‖Px|s‖2

|X|−1 6 |X|(1−α) · 2r · |X|−(1−δ/2) = |X|1−α+δ/2+log|X| 2r · |X|−1.

Since, for sufficiently large |X|,

1− α + δ/2 + log|X| 2r = 2δ + δ/2 + log|X| 2r 6 3δ = δ′/2,

we have ‖P f ‖2 6 |X|−(1−δ′/2). So, definition of τ we have ‖M(j) · P f ‖2 6 |A|τM(j) (δ
′) 6 |A|−2γ.

Thus Ea∈R A[|(M(j) · P f)(a)|2] = ‖M(j) · P f ‖2
2 6 |A|−4γ. So, by Markov’s inequality,

Pra∈R A[|(M(j) · P f)(a)| > |A|−γ] = Pra∈R A[|(M(j) · P f)(a)|2 > |A|−2γ] 6 |A|−2γ.

19

By a union bound,

Pra∈R A

[
∃j ∈ [r− 1], |(M(j) · P f)(a)| > |A|−γ

]
6 (r− 1) · |A|−2γ.

Therefore, since we always have |(M(j) · P f)(a)| 6 1,

Ea∈R A[(1 +
r−1

∑
j=1
|(M(j) · P f)(a)|γ logr |A|]

6Ea∈R A

[
1∀j∈[r−1], |(M(j)·P f)(a)|6|A|−γ · (1 + (r− 1) · |A|−γ)γ logr |A|

]
+ Ea∈R A

[
1∃j∈[r−1], |(M(j)·P f)(a)|>|A|−γ · rγ logr |A|

]
6(1 + (r− 1) · |A|−γ)γ logr |A| + (r− 1) · |A|−2γ · |A|γ

=(1 + (r− 1) · |A|−γ)γ logr |A| + (r− 1) · |A|−γ 6 1 + |A|−γ/2

for γ logr |A| sufficiently large. Therefore, the total factor increase over 〈Px|v,Px|s〉γ logr |A| is at most
(1+ |A|−σ)γ logr |A| · (1+ |A|−γ/2) where σ = min(γ, δ)/2. Therefore, for sufficiently large |A| this
is at most 1 + |A|−min(γ,δ)/4. Since β 6 min(γ, δ)/8 this is at most 1 + |A|−2β as required to prove
Lemma 5.9.

6 An SDP Relaxation for Norm Amplification on the Positive Orthant

For a matrix M ∈ CA×X,
τM(δ) = sup

P∈∆X
‖P‖261/|X|1−δ/2

log|A|(‖M · P‖2).

That is, τM(δ) = 1
2 log|A|OPTM,δ where OPTM,δ is the optimum of the following quadratic pro-

gram:
Maximize ‖M · P‖2

2 = 〈M · P, M · P〉,
subject to:

∑
i∈X

Pi = 1,

∑
i∈X

P2
i 6 |X|δ−1,

Pi > 0 for all i ∈ X.

(3)

20

Instead of attempting to solve (3), presumably a difficult quadratic program, we consider the
following semidefinite program (SDP):

Maximize 〈M∗M, U〉 · |X|2/|A|
subject to:

[V] U � 0,

[w] ∑
i,j∈X

Uij = 1,

[z] ∑
i∈X

Uii 6 |X|δ−1,

Uij ∈ R, Uij > 0 for all i, j ∈ X.

(4)

Recall that M∗ is the conjugate transpose of M. Note that for any P ∈ ∆X achieving the optimum
value of (3) the positive semidefinite matrix U = P · PT has the same value in (4) (where the
|X|2/|A| factor accounts for the difference in scaling factors based on the dimensions for the two
expectation inner products), and hence (4) is an SDP relaxation of (3).

But this is not a standard SDP, since M is over C and M∗M might contain complex entries. In
order to apply techniques on real matrices, we define N : X×X → R as N(x, x′) = Re(M∗M(x, x′)),
that is, N is the real part of M∗M. Then we have the following (real) program:

Maximize 〈N, U〉 · |X|2/|A|
subject to:

[V] U � 0,

[w] ∑
i,j∈X

Uij = 1,

[z] ∑
i∈X

Uii 6 |X|δ−1,

Uij > 0 for all i, j ∈ X.

(5)

The key observation is that (4) and (5) have the same optimal value. This is because for any
U ∈ RX×X,

|X|2〈M∗M, U〉 = ∑
i,j
(M∗M)ij ·Uij = ∑

ij
Re((M∗M)ij) ·Uij + i ·∑

x,x′
Im((M∗M)ij) ·Uij

Since M∗M is a Hermitian matrix, we have (M∗M)ij = (M∗M)ji. But U is real symmetric, so we
have ∑i,j Im((M∗M)ij) ·Uij = 0, namely

|X|2〈M∗M, U〉 = ∑
i,j

Re((M∗M)ij) ·Uij = |X|2〈N, U〉

and we only need to consider the real parts. In order to upper bound the value of (5), we consider

21

its dual program:

Minimize w + z · |X|δ−1

subject to:

[U] V � 0,

[Uii] w + z > Vii + Nii/|A|, for all i ∈ X

[Uij] w > Vij + Nij/|A|, for all i 6= j ∈ X

z > 0

(6)

or equivalently,
Minimize w + z · |X|δ · |X|−1

subject to:

V � 0,

zI + wJ > V + N/|A|,
z > 0.

(7)

where I is the identity matrix and J is the all 1’s matrix over X× X.
Any dual solution of (7) yields an upper bound on the optimum of (4) and hence OPTM,δ and

τM(δ). To simplify the complexity of analysis we restrict ourselves to considering semidefinite
matrices V that are suitably chosen Laplacian matrices. For any set S in X × X and any α : S →
R+ the Laplacian matrix associated with S and α is defined by L(S,α) := ∑(i,j)∈S α(i, j)Lij where
Lij = (ei − ej)(ei − ej)

T for the standard basis {ei}i∈X . Intuitively, in the dual SDP (7), by adding
matrix V = LS,α for suitable S and α depending on M we can shift weight from the off-diagonal
entries of N to the diagonal where they can be covered by the z + w entries on the diagonal rather
than being covered by the w values in the off-diagonal entries. This will be advantageous for
us since the objective function has much smaller coefficient for z which helps cover the diagonal
entries than coefficient for w, which is all that covers the off-diagonal entries.

Definition 6.1. Suppose that N ∈ RX×X is a symmetric matrix. For κ ∈ R+, define

Wκ(N) = max
i∈X

∑
j∈X: Ni,j>κ

(Ni,j − κ).

The following lemma is the basis for our bounds on τM(δ).

Lemma 6.2. Let κ ∈ R+. Then

OPTM,δ 6 (κ + Wκ(N) · |X|δ−1)/|A|.

Proof. For each off-diagonal entry of N with N(i, j) > κ, include matrix Lij with coefficient
(N(i, j)− κ)/|A| in the sum for the Laplacian V. By construction, the matrix V + N/|A| has off-
diagonal entries at most κ/|A| and diagonal entries at most (κ + Wκ(N))/|A|. The solution to (7)
with w = κ/|A| and z = Wκ(N)/|A| is therefore feasible, which yields the bound as required.

It may not be easy to bound Wκ(N) directly, since the real part of M∗M may not have good
structure. Fortunately, we have the following measure:

22

Definition 6.3. Let M ∈ CA×X be a complex matrix. For κ ∈ R+, define

W̃κ(M) = max
i∈X

∑
j∈X: |(M∗M)i,j|>κ

(|(M∗M)i,j| − κ)

.

Proposition 6.4. Let κ ∈ R+. Then Wκ(N) 6 W̃κ(M)

Proof. Whenever Ni,j > κ, we have |(M∗M)i,j| > Ni,j > κ. Moreover, this gives |(M∗M)i,j| − κ >
Ni,j − κ. Then the statement follows the two definitions.

For specific matrices M, we obtain the required bounds on τM(δ) < 0 for some 0 < δ < 1 by
showing that we can set κ = |A|γ for some γ < 1 and obtain that Wκ(N) or W̃κ(M) is at most
κ · |X|γ′ for some γ′ < 1.

7 Applications to Learning Polynomial Functions over Finite Fields

In this section, we prove all the bounds on the norm amplification curves needed to obtain the
lower bounds on learning polynomials discussed in Section 4. We use the strategy in Section 6 by
studying the Wκ function for matrices associated with learning polynomials over finite fields. We
show that the values of this function are determined by the weight distribution and expected bias
of these polynomials.

7.1 The Bias of F2 Polynomials and the Weight Distribution of Reed-Muller Codes

Let d > 2 be an integer. For any integer n > d, consider the learning problem for F2 polyno-
mials in n variables of degree at most d, That is A = Fn

2 and, expressing polynomials by their
coefficients, we have X = Fm

2 where m = ∑d
i=0 (

n
d) and for a ∈ A and x ∈ X, L(a, x) = x(a) =

∑S:06|S|6d xS ∏i∈S ai over F2.
Recall that since the range of L is {0, 1}, we have a N = MT ·M where M(a, x) = (−1)L(a,x) =

(−1)x(a). Let Mx denote the x-th column of M where x ∈ {0, 1}n. Then Nxy = 2n · 〈Mx, My〉.

Proposition 7.1. Let 0 = 0m. Then 〈Mx, My〉 = 〈M0, Mx+y〉.

Proof.

〈Mx, My〉 = Ea∈Fn
2
Mx(a)My(a) = Ea∈Fn

2
(−1)x(a)(−1)y(a) = Ea∈Fn

2
(−1)x(a)+y(a)

= Ea∈Fn
2
(−1)(x+y)(a) = Ea∈Fn

2
M0(a)Mx+y(a) = 〈M0, Mx+y〉

Since the mapping y 7→ x + y for x ∈ Fm
2 is 1-1 on Fm

2 , every row of Nx for x ∈ X contains
the same multi-set of values. Therefore, in order to analyze the function Wκ(N), we only need to
examine the fixed row N0 of N, where each entry

N0x = ∑
a∈Fn

2

M(a, x) = ∑
a∈Fn

2

(−1)x(a).

23

For x ∈ X, define weight(x) = |{a ∈ Fn
2 : x(a) = 1}|. By definition, for x ∈ Fm

2 , N0x =

∑a∈Fn
2
(−1)x(a) = 2n − 2 · weight(x). Thus, understanding the function Wκ(N) that we use to

derive our bounds via Theorem 4.3 reduces to understanding the distribution of weight(x) for
x ∈ X. In particular, our goal of showing that for some κ for which (κ + Wκ(N))/2n is at most
22τn for some τ < 0 follows by showing that the distribution of weight(x) is tightly concentrated
around 2n/2.

We can express this question in terms of the Reed-Muller error-correcting code RM(d, n) over
F2 (see, e.g. [4]).

Definition 7.2. The Reed-Muller code RM(d, n) over F2 is the set of vectors {G · x | x ∈ {0, 1}m} where
G is the 2n ×m matrix for m = ∑d

t=0 (
n
t) over F2 with rows indexed by vectors a ∈ {0, 1}n and columns

indexed by subsets S ⊆ [n] with |S| 6 d given by G(a, S) = ∏i∈S ai.

Evaluating weight(x) for all x ∈ {0, 1}m is that of understanding the distribution of Hamming
weights of the vectors in RM(d, n), a question with a long history.

Quadratic polynomials over F2 For the special case that d = 2, Sloane and Berlekamp [16]
derived an exact enumeration of the number of vectors of each weight in RM(2, n).

Proposition 7.3 ([16]). The weight of every codeword of RM(2, n) is of the form 2n−1 ± 2n−i for some
integer i with 1 6 i 6 dn/2e or precisely 2n−1 and the number of codewords of weight 2n−1 + 2n−i or
2n−1 − 2n−i is precisely

2i(i+1)
i−1

∏
j=0

2n−2j(2n−2j−1 − 1)
22(j+1) − 1

.

(Though the original proof used other methods, a simpler alternative proof by McEliece [10]
follows from a lemma of Dickson [5] giving a normal form theorem for quadratic polynomials
over F2t . We will use a similar approach when we analyze quadratic polynomials over Fpt .)

Proof of Theorem 4.2 (a). Let the threshold κ = 2n−k for some integer k to be determined later. By
Lemma 6.2 with X = {0, 1}m, for (3), we have OPTM,δ 6 (κ + Wκ(N)2(δ−1)m)/2n where N = MT ·
M. By definition for all x ∈ X we have N0x = 2n − 2 ·weight(x) and by Proposition 7.3, we know
that if 2n − 2 ·weight(x) > 0 then it is 2n−i+1 for some 1 6 i 6 dn/2e. Also by Proposition 7.3, the
number, ci, of x ∈ X such that N0x = 2n−i+1 is at most

2i(i+1)
i−1

∏
j=0

2n−2j(2n−2j−1 − 1)
22(j+1) − 1

6 22(i−1)n.

Therefore, by definition of Wκ and Proposition 7.1, for any x ∈ X we have

Wκ(N) 6 ∑
y∈X:Nxy>2n−k

Nxy =
k

∑
i=1

ci · 2n−i+1 6
k

∑
i=1

22(i−1)n · 2n−i+1 =
k

∑
i=1

2(2n−1)(i−1)+n < 2(2n−1)k.

Thus for any k,

OPTM,δ 6 (2n−k + 2(2n−1)k+(δ−1)m)/2n 6 2−k + 2(2n−1)k−(1−δ)n(n+1)/2−n.

24

The first term is larger for k 6 (1− δ)n/4 + (3− δ)/4 so to balance them as much as possible
we choose k = b(1− δ)n/4 + (3− δ)/4c > (1− δ)n/4− (1 + δ)/4. Hence OPTM,δ 6 2 · 2−k 6

2−
1−δ

4 n+ 5+δ
4 Therefore, τM(δ) = 1

2 log2n OPTM,δ 6 − (1−δ)
8 + (5+δ)

8n as required.

Polynomials of degree d > 2 over F2 For the case that d > 2, the minimum distance, the smallest
weight of a non-zero codeword, in RM(d, n) is known to be 2n−d but for 2 < d < n− 2, no exact
enumeration of the weight distribution of the code RM(d, n) is known. It was a longstanding
problem even to approximate the number of codewords of different weights in RM(d, n). Rela-
tively recently, bounds on these weights (or more precisely the associated biases) that are good
enough for our purposes were shown by Ben-Eliezer, Hod, and Lovett [3].

Proposition 7.4. For ε > 0 there are constants c1, c2 with 0 < c1, c2 < 1 such that if p is a uniformly
random degree d polynomial over Fn

2 and d 6 (1− ε)n then

Pr[|Ea∈{0,1}n(−1)p(a)| > 2−c1n/d] 6 2−c2 ∑d
i=0 (

n
i).

From this form we can obtain the bound on the norm amplification curve of the associated
matrix fairly directly.

Proof of Theorem 4.2 (b). Fix ε > 0 and let 0 < c1, c2 < 1 be the constants depending on ε from
Proposition 7.4. Let δ = c2/2 so 0 < δ < 1/2. Let M be the 2n × 2m matrix associated with
learning polynomials of degree at most d over F2, let N = MT ·M and Setting κ = 2(1−c1/d)n, by
Proposition 7.4 at most 2(1−c2)m polynomials p have entries N0p larger than κ. Each such entry has
value at most 2n so Wκ(N) 6 2n · 2(1−c2)m. by Lemma 6.2 with X = {0, 1}m we have

OPTM,δ 6 (κ + Wκ(N) · 2(δ−1)m)/2n 6 2−c1n/d + 2(δ−c2)m+1 6 2−c1n/d + 21−δm

which is at most 2−c′n/d for some constant c′ > 0. Hence τM(δ) 6 −c′/d.

7.2 The Bias of Fp Polynomials for Odd Prime p

Let d > 1 be an integer and p be an odd prime. For any integer n > d, consider the learning prob-
lem for Fp polynomials in n variables of degree at most d. Unlike the case over F2, the monomials
are not necessarily multilinear but can have degree at most p− 1 in each variable. LetMp(d, n)
be the set of monomials in n variables of total degree at most d and degree at most p− 1 in each
variable. That is A = Fn

p and, expressing polynomials by their coefficients, we have X = Fm
p where

m = |Mp(d, n)| is the number of monomials of total degree at most d and degree at most p− 1
in each variable. As in the case of F2, m is the dimension of a Reed-Muller code RMp(d, n) over
Fp, and for a ∈ A and x ∈ X, L(a, x) = x(a) ∈ Fp. For d > p there is no convenient closed form
known for |Mp(d, n)| but the following is known:

Proposition 7.5. For d < p, |Mp(d, n)| = (n+d
d) and for 2 < p 6 d 6 n, ∑d

i=0 (
n
d) 6 |Mp(d, n)| 6

(n+d
d).

25

Since p > 2, the learning problem for Fp polynomials is governed by p− 1 complex matrices
M(1), . . . , M(p−1) where M(j)(a, x) = ω j·x(a) and ω = e2πi/p. We need to bound the norm am-
plification curves of all these matrices. We will relate these curves to the values of biasj(x) for
j ∈ {1, . . . , p− 1} and x ∈ X, where

biasj(x) = Ea∈R Aω j·x(a).

Fix an arbitrary j∗ ∈ {1, . . . , p − 1}, For N = (M(j∗))∗ · M(j∗), the (x, y) entry of N is
pn〈M(j∗)

x , M(j∗)
y 〉 where 〈·, ·〉 is the complex inner product.

Proposition 7.6. Let 0 = 0m. Then for x, y ∈ X, 〈M(j∗)
x , M(j∗)

y 〉 = 〈M
(j∗)
0 , M(j∗)

y−x〉.

Proof.

〈M(j∗)
x , M(j∗)

y 〉 = Ea∈Fn
p
M(j∗)

x (a)M(j∗)
y (a) = Ea∈Fn

p
ω−j∗·x(a)ω j∗·y(a) = Ea∈Fn

p
ω−j∗·x(a)+j∗·y(a)

= Ea∈Fn
p
ω j∗(y−x)(a) = Ea∈Fn

p
M(j∗)

0 (a)M(j∗)
y−x(a) = 〈M(j∗)

0 , M(j∗)
y−x〉

Since the mapping y 7→ y − x for x ∈ Fm
p is 1-1 on Fm

p , every row of Nx for x ∈ X contains
the same multi-set of values. Therefore, in order to analyze the function W̃κ(N), we only need to
examine the fixed row N0 of N. where each entry

N0x = ∑
a∈Fn

p

ω j∗·x(a) = pn · biasj∗(x).

Therefore we have shown the following:

Lemma 7.7. Let j∗ ∈ {1, . . . , p − 1}. For every v ∈ C, the number of entries in each row of N =

(M(j∗))∗ ·M(j∗) equal to v is precisely the number of polynomials x ∈ X such that pn · biasj∗(x) = v.

Therefore, to bound W̃κ(N) it suffices to bound the numbers of polynomials x ∈ X such that
|biasj∗(x)| is large.

Affine Functions over Fp For d = 1, an x ∈ X = Fn+1
p yields the function x(a) = x0 + ∑n

i=1 xiai.
Unless x1 = · · · = xn = 0, for every k ∈ Fp we have exactly pn−1 values a ∈ Fn

p for which x(a) = k
and hence biasj∗(x) = 0. For each of the remaining p inputs with x1 = · · · = xn = 0 and different
values for x0, we get biasj∗(x) = ω j∗·x0 and hence |biasj∗(x)| = 1. In this case we choose κ = 0 and
observe that W̃0(N) = pn+1. Therefore for any δ with 0 6 δ 6 1, we have

OPTM(j∗),δ 6 pn+1|X|δ−1/|A| = p1+(δ−1)(n+1) = (pn)−(1−δ)+δ/n,

so τM(j∗)(δ) = 1
2 log|A|OPTM(j∗),δ 6 − 1−δ

2 + δ
2n . This proves Theorem 4.4 (a). If we only took linear

functions instead of affine functions, all non-zero x would be balanced and the term δ
2n would

not appear. (This is the analog of the parity learning bound for higher moduli.) This proves
Theorem 4.4 (b).

26

Quadratic Polynomials over Fp

Lemma 7.8. Let p be an odd prime and n > 2 be an integer. Let X be the set of quadratic polynomials over
A = Fn

p. Then for j∗ ∈ {1, . . . , p− 1},

1. For any x ∈ X, biasj∗(x) = 0 or |biasj∗(x)| ∈ {p−n/2, p(n−1)/2, · · · , p−1/2, 1}.

2. For 0 6 k 6 n the number of x ∈ X such that |biasj∗(x)| = p−k/2 is less than pkn+2k+1.

To prove Lemma 7.8 we start with the following structure lemma for quadratic polynomials
over fields of odd characteristic. This lemma is an easier analog of Dickson’s Lemma for charac-
teristic 2 [5] and is well known but we include a proof for completeness.

Lemma 7.9. Let p be an odd prime and integer t > 1. For every quadratic polynomial q over Fpt in
variables z = (z1, . . . , zn), there is an invertible affine transformation T over Fpt such that for z′ = T(z),
there is a unique k 6 n, and (c1, . . . , ck) ∈ {1, · · · , p− 1}k, and an affine form ` over Fpt in n− k variables
such that:

q(z) =
k

∑
i=1

ciz′i
2
+ `(z′k+1, · · · , z′n)

Proof. We show this by induction on n. The statement is clearly true when n = 0. Assume that
this is true for any polynomial in n− 1 variables. We have several cases when q has n variables:
CASE 1: q is affine: Then the statement is true with k = 0.
CASE 2: q contains some square term bi · z2

i : In this case we can write q as bi · z2
i + `i · zi + q′, where

`i is affine, q′ is a quadratic polynomial, and neither of them involves zi. Then we can define

z′i = zi + 2−1b−1
i · `i

since b−1
i and 2−1 are defined in field Fpt because bi 6= 0 and the characteristic p is odd. Also define

q′′ = q′ − 2−2b−1
i `2

i . Thus

bi(z′i)
2 + q′′

= bi(z′i)
2 + q′ − 2−2b−1

i `2
i

= bi(zi + 2−1b−1
i · `i)

2 + q′ − 2−2b−1
i `2

i

= bi(z2
i + b−1

i `i · zi + 2−2b−2
i `2

i) + q′ − 2−2b−1
i `2

i

= bi · z2
i + `i · zi + q′ = q.

Define Ti to be the map which sets z′j = zj for j 6= i and replaces zi with z′i according to the above
formula. Clearly by the definition of z′i, Ti is an affine map; moreover, it is invertible, with T−1

i
setting zi = z′i − 2−1b−1

i · `i and leaving all other zj for j 6= i unchanged. By definition, q′′ is a
quadratic form defined only on the m− 1 variables z1, . . . , zi−1, zi+1, . . . , zm, a property inherited
from q′ and `i. Let Pin be the permutation that swaps positions i and n and leaves the rest alone
and define q′′′ = Pin(q′′).

27

We now can apply the inductive hypothesis to q′′′ and derive that there is an invertible affine
mapping T′ on the n− 1 variables (excluding zi) and some k′ together with constants a′1, . . . , a′k′ ∈
F∗p, yielding variables z′′1 , . . . , z′′n−1 as affine functions of the previous values such that

q′′′ =
k′

∑
j=1

ciz′′j
2
+ `′′(z′′k′+1, . . . , z′′n−1).

We can extend T′ to an affine transformation T′′ on n variables by keeping the n-th variable un-
changed.

Finally, define k = k′ + 1, ck = bi and the invertible affine transformation, T = Pnk ◦
T′′ ◦ Pin ◦ Ti where Pnk is the permutation that swaps positions k and n. Then T(z) =

(z′′1 , . . . , z′′k−1, z′i, z′′k+1, . . . , z′′n−1, z′′k).

T(q) =
k−1

∑
j=1

ciz′′j
2
+ ck(z′i)

2 + `′′(z′′k+1, . . . , z′′n−1, z′′k)

which is of the required form.
CASE 3: q has no squared terms and is not affine. Then q must contain some cross term bij · zizj

for i 6= j. Here we can use the identity

zizj = 2−2 · ((zi + zj)
2 − (zi − zj)

2)

and let Sij be the affine mapping that leaves all other variables unchanged and assigns z′i =

2−1(zi + zj) and z′j = 2−1(zi − zj) which exists since 2 is invertible over Fpt . Sij is clearly in-
vertible since zi = z′i + z′j and zj = z′i − z′j. Hency, for z′ = Sij(z), we have q(z) = qij(z′) for some
quadratic qij that has two squared terms (z′i)

2 and (z′j)
2 and hence is covered by Case 2 above. Let

T2 be the resulting affine transformation derived for qij. It follows that T = T2 ◦ Sij is the required
transformation for q.

Lemma 7.9 provides a clean way of studying the bias of quadratic polynomials. For any in-
vertible affine mapping T on Fn

p, for y ∈ X and x(z) = y(T(z)), we have x ∈ X and

biasj∗(x) = Ea∈Fn
p
ω j∗·x(a) = Ea∈Fn

p
ω j∗·y(T(a)) = Eb∈Fn

p
ω j∗y(b) = biasj∗(y)

since T is a bijection on Fn
p.

We therefore first analyze the polynomials of the normal form in Lemma 7.9. Let y(z) =

∑k
i=1 ciz2

i + `(zk+1, . . . , zn) where each c1, . . . , ck 6= 0. Write ` = c0 + ∑n
i=k+1 cizi. If there is any j

with k + 1 6 j 6 n such that cj 6= 0 then then biasj∗(y) = 0 just as in the affine case. Therefore it
remains to consider

y(z) =
k

∑
i=1

ciz2
i + c0 for c1, . . . , ck ∈ F∗p, c0 ∈ Fp. (8)

Observe that the number of such y is (p− 1)k p < pk+1. Furthermore,

pn · |biasj∗(y)| = | ∑
a∈Fn

p

ω j∗·∑k
i=1 cia2

i +c0 | = pn−k ·
k

∏
i=1
|

p−1

∑
ai=0

ω j∗·cia2
i |

28

The term ∑
p−1
ai=0 ω j∗·cia2

i in the product is called a quadratic Gauss sum and has been studied previ-
ously. For our purpose, we need the following result:

Proposition 7.10 (Proposition 6.3.2 in [8]). Let p be an odd prime. For c ∈ {1, · · · , p− 1},

|
p−1

∑
j=0

ω cj2 | = √p.

Therefore setting c = ci · j∗ for the i-th term, we have |biasj∗(y)| = p−k/2. We now put things
together to prove Lemma 7.8.

Proof of Lemma 7.8. By Lemma 7.9, since biasj∗ is preserved under invertible linear transformations
T of the inputs, it follows that every polynomial x such that biasj∗(x) 6= 0 must have |biasj∗(x)| =
p−k/2 for some non-negative integer k 6 n. Moreover, the number of polynomials x whose normal
form y of the form (8) is at most the number of affine transformations that define z′1, . . . , z′k in terms
of z1, . . . , zk which is (pn+1)k since there are precisely pn+1 affine functions on Fn

p. Therefore the
total number of x such that biasj∗(x) = p−k/2 is less than p(n+1))k · pk+1 = pnk+2k+1.

Now we can use Proposition 7.8 to prove part (c) of Theorem 4.4.

Proof of Theorem 4.4 (c). Proposition 7.8 implies that for N = (M(j∗)) ∗ ·M(j∗),

Wpn−k/2(N) 6 W̃pn−k/2(N) 6
k−1

∑
t=0

pn−t/2 · ptn+2t+1 = pn+1 · pkn+3k/2 − 1
pn+3/2 − 1

6 pkn+3k/2

Therefore if we set k = b 1−δ
2 nc > 1−δ

2 n− 1, then by Lemma 6.2, since |X| = p(
n+2

2) we have

OPTM(j∗),δ 6 p−k + p−n · pkn+3k/2+(δ−1)(n+2
2) 6 2p−k 6 p−

1−δ
2 n+2

Therefore,

τM(j∗)(δ) =
1
2

logpn OPTM(j∗),δ 6
1− δ

4
+

1
n

Since j∗ was an arbitrary fixed element of {1, . . . , p− 1}, the theorem follows.

Polynomials of degree d > 2 over Fp Similar to the F2 case, we need to understand the weight
distribution of Reed-Muller codes over Fp. In our companion paper [2] we give the following esti-
mate which is the analogue for odd prime fields of the bounds of Ben-Eliezer, Hod, and Lovett [3].

Proposition 7.11 ([2]). For 0 < ε < 1/2, for all j ∈ F∗p, there are constants c1, c2 depending on ε with
0 < c1, c2 < 1 such that if f is a uniformly random degree d polynomial over Fn

p and d 6 εn then

Pr[|biasj∗(f)| > p−c1n/d] 6 p−c2m.

From this form we can obtain the bound on the norm amplification curve of the associated
matrix fairly directly, and complete our proof of Theorem 4.4.

29

Proof of Theorem 4.4 (d). Fix ε > 0, j ∈ F∗P, and let 0 < c1, c2 < 1 be the constants depending on
ε from Proposition 7.4. Let δ = c2/2 so 0 < δ < 1/2. For N = (M(j∗))∗ · M(j∗), when we set
κ = p(1−c1/d)n, Proposition 7.11 implies that at most p(1−c2)m polynomials f satisfy |N0 f | > κ. The
norm of each entry is at most pn so W̃κ(N) 6 pn · p(1−c2)m. by Lemma 6.2 with X = Fm

p we have

OPTM,δ 6 (κ + Wκ(N) · p(δ−1)m)/pn 6 p−c1n/d + p(δ−c2)m+1 6 p−c1n/d + p1−δm

which is at most p−c′n/d for some constant c′ > 0. Hence τM(j∗)(δ) 6 −c′/d.

References

[1] Paul Beame, Shayan Oveis Gharan, and Xin Yang. Time-space tradeoffs for learning from
small test spaces: Learning low degree polynomial functions. Technical Report TR17-120,
Electronic Colloquium on Computational Complexity (ECCC), 2017.

[2] Paul Beame, Shayan Oveis Gharan, and Xin Yang. On the bias of Reed-Muller codes over
odd prime fields. ArXiv, 2018.

[3] Ido Ben-Eliezer, Rani Hod, and Shachar Lovett. Random low-degree polynomials are hard to
approximate. Computational Complexity, 21(1):63–81, 2012.

[4] Elwyn R Berlekamp. Algebraic Coding Theory. McGraw-Hill, 1968.

[5] Leonard E. Dickson. Linear Groups with an Exposition of the Galois Field Theory. B.G. Trubner,
Leipzig, 1901.

[6] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space tradeoffs for learning.
Technical Report TR17-121, Electronic Colloquium on Computational Complexity (ECCC),
2017.

[7] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for
learning. In Proceedings of the Fiftieth Annual ACM on Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, 2018. To appear.

[8] Kenneth Ireland and Michael Rosen. A classical introduction to modern number theory, vol-
ume 84. Springer Science & Business Media, 2013.

[9] Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 1067–1080, 2017.

[10] Robert James McEliece. Linear recurring sequences over finite fields. PhD thesis, California
Institute of Technology, 1967.

[11] Dana Moshkovitz and Michal Moshkovitz. Mixing implies lower bounds for space bounded
learning. In Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The
Netherlands, 7-10 July 2017, pages 1516–1566, 2017.

30

[12] Dana Moshkovitz and Michal Moshkovitz. Entropy samplers and strong generic lower
bounds for space bounded learning. In 9th Innovations in Theoretical Computer Science Con-
ference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 28:1–28:20, 2018.

[13] Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.
In Proceedings, 57th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2016,
New Brunswick, New Jersey, USA, pages 266–275, October 2016.

[14] Ran Raz. A time-space lower bound for a large class of learning problems. In Proceedings, 58th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, California,
USA, pages 732–742, October 2017.

[15] Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learning
and estimation. In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, pages 163–171, Montreal, Quebec, Canada, 2014.

[16] Neil J. A. Sloane and Elwyn R. Berlekamp. Weight enumerator for second-order Reed-Muller
codes. IEEE Trans. Information Theory, 16(6):745–751, 1970.

[17] Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical
queries. In Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York, USA,
pages 1490–1516, 2016.

31

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

