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Abstract

We show that a small subset of seeds of any strong extractor also gives a strong extractor with similar
parameters when the number of output bits is a constant. Specifically, if Ext : {0, 1}n × {0, 1}t →
{0, 1}m is a strong (k, ε)-extractor, then for at least 99% of choices of Õ(n ·2m/ε2) seeds, Ext restricted
to these seeds is a (k, 3ε)-extractor. Note that the degree of this restricted extractor is essentially optimal
for m = O(1). By combining this with the Leftover Hash Lemma, we deduce that there are strong
extractors outputting a constant number of bits with essentially optimal degree where each seed is a
linear function, or even a Toeplitz matrix, or a simply-implementable hash function. Although linear
extractors were known, such as the one by Trevisan [Tre01], it didn’t have close to optimal degree
(although it did output more bits), and it wasn’t known that most sets of linear functions give extractors.

While a simple application of the basic probabilistic method shows the existence of ordinary strong
extractors, this approach fails to show the existence of the restricted extractors we seek, or even linear
extractors. We therefore adopt a more sophisticated approach, using chaining as used by Rudra and
Wootters [RW14] and others, combined with the Beck-Fiala theorem from discrepancy theory.
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1 Introduction

Randomness plays a vital role in computer science, both in theory and in practice. For example, randomness
is provably necessary for many tasks in distributed computing and cryptography. At the same time, random
sources from the real world are often biased and defective. A randomness extractor is an efficient algorithm
that converts a “weak random source” into an almost uniform distribution. As is standard, we model a weak
random source as a probability distribution with min-entropy.

Definition 1.1 The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2

1

Pr[X = x]
.

It is impossible to construct a deterministic randomness extractor for all sources of min-entropy k [SV86],
even if k is as large as n − 1. Therefore a seeded extractor also takes as input an additional independent
uniform random string, called a seed, to guarantee that the output is close to uniform [NZ96]. We first define
the distance measure between probability distributions.

Definition 1.2 (Statistical distance) For any d ∈ N+, let Ud denote the uniform distribution over {0, 1}d.
For two random variablesW and Z with the same support, let ‖W −Z‖ denote the statistical (or variation)
distance

‖W − Z‖ = max
T⊆supp(W )

∣∣ Pr
w∼W

[w ∈ T ]− Pr
z∼Z

[z ∈ T ]
∣∣.

Next we define extractors and strong extractors.

Definition 1.3 (Extractors and strong extractors) A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is a
(k, ε)-extractor if for every source X with min-entropy k and an independent uniform distribution Y on
{0, 1}t,

‖Ext(X,Y )− Um‖ ≤ ε.

It is a strong (k, ε)-extractor if in addition, it satisfies
∥∥(Ext(X,Y ), Y

)
−
(
Um, Y

)∥∥ ≤ ε.
Extractors and its strong variant have been studied extensively in computer science and have found numer-
ous applications in seemingly unrelated areas beyond their original motivation (see the survey of Shaltiel
[Sha02]).

Most known extractors are sophisticated and complicated to implement in practice. This raises natural
questions — are there simple constructions like linear transformations and even simpler ones of Toeplitz
matrices? Are there extractors with good parameters and efficient implementations?

We explore these questions in the context of the extractor degree. We call 2t the degree of Ext, because
when Ext is viewed as a bipartite graph on {0, 1}n ∪ {0, 1}m, its left degree is 2t. Often the degree 2t is of
more interest than the seed length t. For example, in the list-decoding view [TZ04], it is the length of the
code. It is well known that the optimal degree of (k, ε)-extractors is Θ(n−k

ε2
), where the upper bound is from

the probabilistic method and the lower bound was shown by Radhakrishnan and Ta-Shma [RT00].
Minimizing the degree of an extractor is crucial for many applications. For example, when viewed as

a sampler, the degree is equivalent to the number of samples. When we simulate a probabilistic algorithm
using weak random sources, a straightforward approach is to run the algorithm on all outputs of an extractor
(cycling over all 2t seeds) and take the majority vote. At the same time, explicit constructions with an opti-
mal degree, even for constant error [Zuc07], have a variety of applications in theoretical computer science
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such as hardness of inapproximability and constructing almost optimal two source extractors and Ramsey
graphs [BDT17].

In this work, we present a probabilistic construction to improve the degree of any given strong extractor.
We show that it improves the degree of any strong extractor to almost optimal while keeping almost the
same parameters of min entropy and error, at least when outputting few bits. Given an extractor Ext :
{0, 1}n × {0, 1}t → {0, 1}m, we sample a few seeds from {0, 1}t and consider the new extractor, called a
restricted extractor, constituted by these seeds in this work.

Definition 1.4 Given an extractor Ext : {0, 1}n×{0, 1}t → {0, 1}m and a sequence of seeds (y1, · · · , yD)
where each yi ∈ {0, 1}t, we define the restricted extractor Ext(y1,··· ,yD) to be Ext restricted in the domain
{0, 1}n × [D] where Ext(y1,··· ,yD)(x, i) = Ext(x, yi).

Our main result is that given any strong (k, ε)-extractor Ext, most restrictions with a quasi-linear degree
Õ( n

ε2
) from Ext are strong (k, 3ε)-extractors for a constant number of output bits, despite the degree of Ext.

Theorem 1.5 There exists a universal constantC such that given any strong (k, ε)-extractor Ext : {0, 1}n×
{0, 1}t → {0, 1}m, forD = C · n·2m

ε2
·log2 n·2m

ε random seeds y1, . . . , yD ∈ {0, 1}t, Ext(y1,...,yD) is a strong
(k, 3ε)-extractor with probability 0.99.

Note that extractors with D = 2m are trivial, as we can set Ext(x, y) = y. We also observe that any
restriction of this trivial extractor requires D ≥ (1 − ε)2m to obtain error ε. Though the dependency 2m is
necessary for extractor restrictions, it may not be necessary for strong extractors.

For m = O(1), Theorem 1.5 improves the upper bound on the degree to Õ( n
ε2

) for a broad range
of strong extractors including strong AC0 extractors and sparse extractors, based on known constructions
[GVW15, CL16b, BG13]. We focus on its applications to simple strong extractors of linear transformations
and Toeplitz matrices and extremely efficient strong extractors. These results follow because almost univer-
sal hash families are good strong extractors (by the Leftover Hash Lemma [ILL89]) and the above functions
form almost universal hash families.

Definition 1.6 (Carter and Wegman [CW79]) LetH be a family of functions mapping {0, 1}n to {0, 1}m.
H is universal if

∀x, y ∈ {0, 1}n(x 6= y), Pr
h∼H

[h(x) = h(y)] ≤ 2−m.

Moreover, we say H is almost universal if,

∀x, y ∈ {0, 1}n(x 6= y), Pr
h∼H

[h(x) = h(y)] ≤ 2−m + 2−n.

1.1 Applications

We discuss the application of Theorem 1.5 on the almost-universal hash families in this section. Plugging
the strong extractors of all linear transformations and Toeplitz matrices [ILL89] in Theorem 1.5, our result
indicates that most strong extractors constituted by a quasi-linear number Õ( n

ε2
) of linear transformations

or Toeplitz matrices keep nearly the same parameters of the min-entropy and error, for a constant number of
output bits. We treat the subset {0, 1, 2, · · · , 2n − 1} the same as {0, 1}n and Fn2 in this work.

Corollary 1.7 There exists a universal constant C such that for any integers n,m, k, and ε > 0 with
k ≥ m + 2 log 1

ε , Ext(A1,...,AD) with D = C · n·2m
ε2
· log2 n·2m

ε random matrices A1, . . . , AD ∈ Fm×n2 ,
mapping from Fn2 × [D] to Fm2 as Ext(A1,...,AD)(x, i) = Ai · x, is a strong (k, 3ε)-extractor with probability
0.99.

Moreover, the same holds for D random Toeplitz matrices A1, . . . , AD ∈ Fn×m2 .
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Then we consider strong extractors from almost universal hash families, which have efficient implementa-
tions and wide applications in practice. We describe a few examples of almost universal hash families with
efficient implementations.

1. Linear Congruential Hash by Carter and Wegman [CW79]: for any n and m, let p be a prime > 2n

andH1 =
{
ha,b|a, b ∈ {0, 1, · · · , p−1}

}
be the hash family defined as ha,b(x) =

(
(ax+b) mod p

)
mod 2m for every x ∈ {0, 1, · · · , 2n − 1}.

2. Multiplicative Universal Hash by Dietzfelbinger et al. [DHKP97] and Woelfel [Woe99]: for any n
and m, let H2 =

{
ha,b|a ∈ {1, 3, 5, · · · , 2n − 1}, b ∈ {0, 1, · · · , 2n−m − 1

}
be the hash family

mapping {0, 1, · · · , 2n− 1} to {0, 1, · · · , 2m− 1} that first calculates (ax+ b) modulo 2n then takes
the high order m bits as the hash value. In C-code, this hash function could be implemented as
ha,b(x) = (a ∗ x+ b) >> (n−m) when n = 64.

3. Shift Register Hash by Vazirani [Vaz87]: let p be a prime such that 2 is a generator modulo p and
a(i) denote the ith shift of a string a ∈ Fn2 , i.e., a(i) = ai+1ai+2 · · · ana1 · · · ai. For n = p − 1 and
any m ≤ n, let H3 =

{
ha|a ∈ Fp2

}
be the hash family mapping Fn2 to Fm2 as

(
〈a, 1 ◦ x〉, 〈a(1), 1 ◦

x〉, · · · , 〈a(m−1), 1 ◦ x〉
)
, where 〈w, z〉 denotes the inner product of w, z ∈ Fp2 in F2.

Because all these hash families are almost universal, by the Leftover Hash Lemma [ILL89], Ext(x, y) =
hy(x) is a strong extractor for all hash functions hy in one family. Plugging these extractors in Theorem 1.5,
we obtain strong extractors with almost optimal degree and efficient implementations for a constant number
of output bits.

Corollary 1.8 Let H be any almost universal hash family mapping {0, 1}n to {0, 1}m. There exists a
universal constant C such that for any integer k and ε > 0 with k ≥ m + 2 log 1

ε , Ext(h1,...,hD) with
D = C · n·2m

ε2
· log2 n·2m

ε random hash functions h1, · · · , hD ∼ H, defined as Ext(h1,··· ,hD)(x, i) = hi(x),
is a strong (k, 3ε)-extractor with probability 0.99.

1.2 Our techniques

For ease of exposition, let m = O(1) in this discussion. Because there are
(

2n

2k

)
subsets of size 2k, the

simple probabilistic method using the Chernoff bound and the union bound only provides an upper bound
O( (n−k)2k

ε2
). Our upper bound is a combination of discrepancy theory and tools from high dimensional prob-

ability. Recently, Cheraghchi et al. [CGV13] and Wootters [Woo13] have successfully applied techniques
from high dimension probability [LT91] such as symmetrization, Gaussianization, and chaining arguments
to coding theory, which showed random linear codes have nearly the same list-decoding capacity as ran-
dom codes. In a recent breakthrough, Rudra and Wootters [RW14] proved that a random puncturing of any
list-decodable code has near-optimal list-decoding rate using a chaining argument. In this work, we apply
the tools introduced by Rudelson and Vershynin [RV08], Cheraghchi et al. [CGV13], Wootters [Woo13],
and Rudra and Wootters [RW14] to the setting of extractors. We use techniques from discrepancy theory to
obtain an almost tight degree Õ( n

ε2
), which shaves a factor of poly(k) in the chaining argument of Rudra

and Wootters [RW14].
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1.3 Previous work.

In a seminal work, Impagliazzo, Levin, and Luby [ILL89] proved the Leftover Hash Lemma, i.e., all func-
tions from an almost universal hash family constitute a strong extractor. In particular, this implies that all
linear transformations and all Toeplitz matrices constitute strong extractors respectively.

Most previous research has focused on linear extractors, whose extractor functions are linear on the
random source for every fixed seed. Because of their simplicity and various applications such as building
blocks in extractors for structured sources [Li16, CL16a], there have been several constructions of linear
extractors with small degree. The first non trivial progress was due to Trevisan [Tre01], who constructed
the first linear extractor with a degree polynomial in n and ε (for entropy k = nΩ(1)). Based on Trevisan’s
work, Shaltiel and Umans [SU05] built linear extractors with almost linear degree for constant error. Later
on, Guruswami, Umans, and Vadhan [GUV09] constructed almost optimal linear condensers and vertex-
expansion expanders, which are variants of extractors and lead to an extractor with a degree n · poly(k/ε).
However, the GUV extractor is not linear. Moreover, it is still open whether the degree of linear extractors
could match the degree Θ(n−k

ε2
) of general extractors.

On the other hand, much less is known about extractors consisting of Toeplitz matrices. Prior to this
work, even for m = 2 output bits, the best known upper bound on extractors with Toeplitz matrices was
exponential in n by the Leftover Hash Lemma [ILL89] of all Toeplitz matrices.

At the same time, for many practical applications of cryptography, it is desirable to have an extractor
with a small degree that runs fast and is easy to implement. In this work, we consider efficient extrac-
tors from almost universal hash families, which are easier to implement than error-correcting codes and
expander graphs used in most known constructions of extractors. The most notable hash function is the
Multiplicative Universal Hash introduced by Dietzfelbinger et al. [DHKP97] (described in Section 1.1),
which runs significantly fast in practice and is extremely easy to implement [Tho]. Prior to this work, the
best known upper bounds on the degree of extractors from almost universal hash families were the Leftover
Hash Lemma [ILL89], which are exponential in the length of the random source n.

This theme of simple extractors also has been studied under another two models of computation: the
local computation model and constant-depth circuits AC0 by Bogdanov and Guo [BG13], Goldreich et
al. [GVW15], and Cheng and Li [CL16b]. Other work on improving the parameters of extractors focus on
the error and number of output bits. Raz et al. [RRV99] showed how to reduce the error and enlarge the
number of output bits of any given extractor by sacrificing the degree.

Organization. We introduce basic notation and tools in Section 2. In Section 3, we provide a proof
overview of Theorem 1.5. Then we prove Theorem 1.5 for extractors and a lower bound on the degree of
extractor restrictions. Next we show the version of Theorem 1.5 for strong extractors in Section 5. Finally,
we discuss a few possible future directions in Section 6.

2 Preliminaries

We use X . Y to denote the inequality X ≤ C ·Y for a universal constant C. For a subset S and integer k,
we use

(
S
k

)
to denote all subsets of size k in S. Given an integer n, we use [n] to denote the set {1, 2, · · · , n}.

For a random variable X on {0, 1}n and a function f from {0, 1}n, let f(X) denote the random variable
f(x) on the image of f when x ∼ X .

Given a subset Λ ∈ {0, 1}n, we consider the flat random source of the uniform distribution over Λ,
whose min-entropy is − log2

1
|Λ| = log2 |Λ|. Because any random source with min-entropy k is a linear
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combination of flat random sources of min-entropy k, we focus on flat random sources in the rest of this
work.

We state the Leftover Hash Lemma by Impagliazzo, Levin, and Luby [ILL89].

Lemma 2.1 For any n and m, let H be a family of T hash functions {h1, · · · , hT } mapping [2n] to [2m]
such that for any distinct x and y, Pr

h∼H
[h(x) = h(y)] ≤ 2−n + 2−m. Then Ext : {0, 1}n × [T ] → {0, 1}m

defined as Ext(x, y) = hy(x) is a strong (k, ε)-extractor for any k and ε satisfying k ≥ m+ 2 log 1
ε .

We always use N(0, 1) to denote the standard Gaussian random variable and use the following concen-
tration bound on Gaussian random variables [LT91].

Lemma 2.2 Given any n Gaussian random variables G1, · · · , Gn (not necessarily independent) where
each Gi has expectation 0 and variance σ2

i ,

E
[

max
i∈[n]
|Gi|

]
.
√

log n ·max
i∈[n]

{
σi
}
.

Let S be a subset of events,X a random variable, and f any function from S×supp(X) to R+. We state
the standard symmetrization and Gaussianization [LT91,RW14] that transform bounding max

Λ∈S

∑n
j=1 f(Λ, xi)

of n independent random variables x1, · · · , xn ∼ X to a Gaussian process.

Theorem 2.3 For any integer n and n independent random samples x1, · · · , xn from X ,

E
x1∼X,··· ,xn∼X

max
Λ∈S

n∑
j=1

f(Λ, xi)

 ≤ max
Λ∈S

E
x

 n∑
j=1

f(Λ, xj)

+
√

2π·E
x

 E
g∼N(0,1)n

max
Λ∈S

∣∣∣∣∣∣
n∑
j=1

f(Λ, xj)gj

∣∣∣∣∣∣
 .

The first term max
Λ∈S

E
x

[∑n
j=1 f(Λ, xj)

]
is the largest expectation over all events Λ, and the second term is

to bound the deviation of every event from its expectation simultaneously. For completeness, we provide a
proof of Theorem 2.3 in Appendix A.

We state the Beck-Fiala theorem in the discrepancy theory [Cha00].

Theorem 2.4 [Beck-Fiala theorem] Given a universe [n] and a collection of subsets S1, · · · , Sl such that
each element i ∈ [n] appears in at most d subsets, there exists an assignment χ : [n]→ {±1} such that for
each subset Sj , |

∑
i∈Sj χ(i)| < 2d.

3 Proof Overview

We sketch the proof of Theorem 1.5 in this section. For ease of exposition, we consider extractor restrictions
and bound their degree in two steps. Given any (k, ε)-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m, we first
bound the degree of Ext(y1,··· ,yD) to fool one fixed test T ∈ {0, 1}m. Then we generalize it to all statistical
tests in {0, 1}m.

For any fixed test T ∈ {0, 1}m, we consider the expected error of a random restricted extractor in the
test T :

E
y1,··· ,yD∼{0,1}t

 max
Λ∈({0,1}

n

2k
)

D∑
i=1

Pr
x∼Λ

[Ext(x, yi) ∈ T ]

 . (1)
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We apply a chaining argument to prove that D = Õ( n
ε2

) suffices to bound (1) by D( |T |2m + 2ε), which
improves the naive union bound over all flat sources Λ with min entropy k.

By Theorem 2.3, it suffices to consider the expectation of every Λ and bound the deviation of every Λ

from its expectation simultaneously by a Gaussian process. The expectation of every Λ is at mostD( |T |2m +ε)
from the property of Ext. Then we bound the Gaussian process

E
g∼N(0,1)D

[
max

Λ

∣∣∣∣ D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]
· gi
∣∣∣∣
]
.
√
nD · logD for any y1, · · · , yD.

To bound this, by Dudley’s entropy Theorem, we plan to find a small covering by balls of vectors{(
Pr[Ext(Λ, yi) ∈ T ]

)
i∈[D]

∣∣∣∣Λ ∈ ({0, 1}n2k

)}
in RD under the Euclidean norm. One natural method to construct the covering and bound its radius is
Maurey’s empirical method (namely the probabilistic method), which is also the chaining argument used by
Rudra and Wootters [RW14]. In this proof, we provide an alternative method to bound the covering radius
based on the Beck-Fiala Theorem 2.4, which shaves an extra factor of poly(k) in the previous method.

Next we strengthen the guarantee in (1) to a high probability event:

Pr
y1,··· ,yD

 max
Λ∈({0,1}

n

2k
)

D∑
i=1

(
Pr
x∼Λ

[Ext(x, yi) ∈ T ]− |T |
2m

)
≤ D · 3ε

 ≥ 1−δ after enlarging D to Õ

(
n log 1

δ

ε2

)
.

(2)

We will rewrite max
Λ∈({0,1}

n

2k
)

∑D
i=1

(
Pr
x∼Λ

[Ext(x, yi) ∈ T ]− |T |2m

)
as the `∞-norm of a vector with dimension(

2n

2k

)
, where each coordinate corresponds to one subset Λ. Because this vector is a summation of D vectors

corresponding to D independent random variables y1, · · · , yD, we apply a vector-concentration bound in
Banach spaces from Ledoux and Talagrand [LT91] to prove (2).

To finish the proof of Theorem 1.5 for extractors, we set δ in (2) to be less than 1
22m and apply a union

bound over all statistical tests in {0, 1}m. To prove Theorem 1.5 for strong extractors, we follow the same
outline and tailor the chaining argument for strong extractors.

4 Extractors

We study restricted extractors in this section and prove Theorem 1.5 for extractors. The main result in this
section is that most sequences of Õ(n·2

m

ε2
) seeds from any given extractor constitute a restricted extractor

with nearly the same parameters of min entropy and error. On the other hand, we show that for certain
extractors, the degree of its restrictions is Ω(2m) to guarantee any constant error.

We first consider the upper bound on the degree of restricted extractors for all entropy-k flat sources
fooling one fixed statistical test.

Lemma 4.1 Let Ext : {0, 1}n × {0, 1}t → {0, 1}m be an (k, ε)-extractor and D = C · n·log2 n
ε

ε2
for a

universal constant C. Given any subset T ⊆ {0, 1}m, for D independently random seeds y1, · · · , yD in
{0, 1}t,

E
y1,··· ,yD

[
max

Λ:|Λ|=2k

D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]]
≤ D ·

(
|T |
2m

+ 2ε

)
. (3)
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Proof. We symmetrize and Gaussianize the L.H.S. of (3) by Theorem 2.3:

E
y1,··· ,yD

[
max

Λ:|Λ|=2k

D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]]
(4)

≤max
Λ

E
y1,··· ,yD

[
D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]]
+
√

2π E
y1,··· ,yD

[
E

g∼N(0,1)D

[
max

Λ

∣∣∣∣ D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]
· gi
∣∣∣∣
]]

.

(5)

Because Ext is an extractor for entropy k sources with error ε, the first term

max
|Λ|=2k

E
y1,··· ,yD

[

D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]
] ≤ D · ( |T |

2m
+ ε).

The technical result is a bound on the Gaussian process for any y1, · · · , yD.

Claim 4.2 For any y1, · · · , yD, E
g∼N(0,1)D

[
max

Λ:|Λ|=2k

∣∣∣∣∑D
i=1 Pr

[
Ext(Λ, yi) ∈ T

]
· gi
∣∣∣∣] ≤ C0 ·

√
nD · logD

for some universal constant C0.

We defer the proof of Claim 4.2 to Section 4.1.

By choosing the constant C large enough, for D = C
n log2 n

ε
ε2

, we can ensure that C0

√
nD · logD ≤ εD

5 .
This bounds (5) by D · ( |T |2m + ε) + εD. ut

Next, we show that a restricted extractor is good with high probability. To do this, we provide a concen-

tration bound on max
|Λ|=2k

{∑D
i=1 Pr

[
Ext(Λ, yi) ∈ T

]}
. We prove that a restricted extractor with D random

seeds achieves the guarantee in Lemma 4.1 with probability 1− δ after enlarging D by a factor of Õ(log 1
δ ).

Lemma 4.3 For any δ > 0, let D = C ′ · n·log 1
δ

ε2
· log2 n·log 1

δ
ε for a universal constant C ′. Given any (k, ε)-

extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m and any subset T ⊆ {0, 1}m, for D independently random
seeds y1, · · · , yD in {0, 1}t,

Pr
y1,··· ,yD

[
max

Λ:|Λ|=2k

{
D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]
− D · |T |

2m

}
≤ D · 3ε

]
≥ 1− δ.

We defer the proof of Lemma 4.3 to Section 4.2. Finally we state the result about extractors.

Theorem 4.4 Let Ext : {0, 1}n × {0, 1}t → {0, 1}m be a (k, ε)-extractor and D = C · n·(log 1
δ

+2m)

ε2
·

log2 n·(log 1
δ

+2m)

ε for a universal constant C. For a random sequence (y1, · · · , yD) where each yi ∼ {0, 1}t,
the restricted extractor Ext(y1,··· ,yD) is a (k, 2ε)-extractor with probability 1− δ.

Proof. We choose the error probability to be δ
22m in Lemma 4.3 and apply a union bound over all possible

statistical tests T in {0, 1}m. ut

For extractors, we show that 2m dependence in the degree is necessary.
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Claim 4.5 There exists a (k = 1, ε = 0)-extractor Ext such that for any constant ε′ ≤ 1/2 and k′ > 0, any
restriction Ext(y1,··· ,yD) requires D = Ω(2m) to be an (k′, ε′)-extractor.

Proof. Let us consider the extractor Ext : {0, 1}n × {0, 1}m → {0, 1}m defined as Ext(x, y) = y. From
the definition, it is an (k = 1, ε = 0)-extractor. On the other hand, Ext(y1, · · · , yD) is an (k′, 0.5)-extractor
only if D ≥ 0.5 · 2m. ut

However, this lower bound may not be necessary for strong extractors.

4.1 Proof of Claim 4.2

Given y1, · · · , yD and T , for any subset Λ, we use ~p(Λ) to denote the vector
(

Pr
[
Ext(Λ, y1) ∈ T

]
, · · · ,Pr

[
Ext(Λ, yD) ∈

T
])

. Let t = 10 be a fixed parameter in this proof.

We rewrite the Gaussian process

E
g∼N(0,1)D

 max
Λ∈({0,1}

n

2k
)

∣∣∣∣ D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]
· gi
∣∣∣∣
 = E

g∼N(0,1)D

 max
Λ∈({0,1}

n

2k
)

∣∣〈~p(Λ), g〉
∣∣ .

We construct a sequence of subsets Ft−1,Ft, · · · ,Fk of vectors in RD and a sequence of maps πj :({0,1}n
2k

)
→ Fj for each j from t − 1 to k. We first set Fk to be the subset of all vectors in the Gaussian

process, i.e., Fk =
{
~p(Λ)

∣∣Λ ∈ ({0,1}m
2k

)}
and πk(Λ) = ~p(Λ). For convenience, we set Ft−1 = {~0} and

πt−1(Λ) = ~0 for any Λ ∈
({0,1}n

2k

)
and specify Fj and πj for j ∈ [t, k − 1] later. For any ~p(Λ) in the

Gaussian process, we use the equation ~p(Λ) =
∑t

j=k πj
(
Λ
)
− πj−1

(
Λ
)

to rewrite it:

E
g∼N(0,1)n

 max
Λ∈({0,1}

n

2k
)

∣∣〈~p(Λ), g〉
∣∣ = E

g

 max
Λ∈({0,1}

n

2k
)

∣∣∣∣
〈

t∑
j=k

πj
(
Λ
)
− πj−1

(
Λ
)
, g

〉∣∣∣∣
 (6)

= E
g

 max
Λ∈({0,1}

n

2k
)

t∑
j=k

∣∣∣∣ 〈πj(Λ)− πj−1

(
Λ
)
, g
〉 ∣∣∣∣
 (7)

=
t∑

j=k

E
g

 max
Λ∈({0,1}

n

2k
)

∣∣∣∣ 〈πj(Λ)− πj−1

(
Λ
)
, g
〉 ∣∣∣∣
 (8)

.
t∑

j=k

√
log(|Fj | · |Fj−1|) · max

Λ∈({0,1}
n

2k
)

∥∥πj(Λ)− πj−1

(
Λ
)∥∥

2
. (9)

Here (9) follows from the union bound over Gaussian random variables — Lemma 2.2. In the rest of this
proof, we provide upper bounds on

∥∥πj(Λ)− πj−1

(
Λ
)∥∥

2
and |Fj | to finish the calculation of (9).

Two upper bounds for
∥∥πj(Λ)− πj−1

(
Λ
)∥∥

2
. We provide two methods to bound

∥∥πj(Λ)− πj−1

(
Λ
)∥∥

2
in (9). In this proof, for any map πj and Λ, we always choose the map πj(Λ) = p(Λ′) for some subset Λ′.
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Claim 4.6 Given |Λ0| ≥ D2, there always exists Λ1 ⊆ Λ0 with size |Λ1| ∈
[
|Λ0|/2 − 2D, |Λ0|/2 + 2D

]
such that

‖~p(Λ0)− ~p(Λ1)‖2 ≤ 6D1.5/|Λ0|.

Proof. We plan to use the Beck-Fiala Theorem 2.4 to find Λ1 given Λ0. Let the ground set be Λ0 and the

collection of subsets be Si =

{
α ∈ Λ0

∣∣∣∣Ext(α, yi) ∈ T} for each i ∈ [D] and SD+1 = Λ0. Because the

degree is at most D + 1, Theorem 2.4 implies an assignment χ : Λ0 → {±1} satisfying that for each Si,

|
∑

α∈Si χ(α)| < 2(D + 1). We set Λ1 =

{
α ∈ Λ0

∣∣∣∣χ(α) = 1

}
.

Because |
∑

α∈Λ0
χ(α)| < 2(D+ 1),

∣∣Λ1 − |Λ0|
2

∣∣ < (D+ 1) ≤ 2D. At the same time, for each i ∈ [D]

and Si,
∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣− |Si|2 < (D + 1).

To finish the proof, we prove
∣∣Pr[Ext(Λ0, yi) ∈ T ]− Pr[Ext(Λ1, yi) ∈ T ]

∣∣ ≤ 6D
|Λ0| .∣∣Pr[Ext(Λ0, yi) ∈ T ]− Pr[Ext(Λ1, yi) ∈ T ]

∣∣
=

∣∣∣∣∣∣∣∣
|Si|
|Λ0|

−

∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ1|

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
|Si|
|Λ0|

−

∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ0|/2

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ0|/2

−

∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ1|

∣∣∣∣∣∣∣∣
<

2(D + 1)

|Λ0|
+

∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣ ·
∣∣∣∣|Λ0|/2− |Λ1|

∣∣∣∣
|Λ0|/2 · |Λ1|

<
2(D + 1)

|Λ0|
+

(D + 1)

|Λ0|/2
≤ 6D

|Λ0|
.

From the definition of ~p(Λ0) =

(
Pr
[
Ext(Λ0, y1) ∈ T

]
, · · · ,Pr

[
Ext(Λ0, yD) ∈ T

])
, this implies

‖~p(Λ0)− ~p(Λ1)‖2 ≤ 6D1.5/|Λ0|. ut

Next we provide an alternative bound for Λ0 with a small size using the probabilistic method.

Claim 4.7 Given any Λ0 of size at least 100, there always exists Λ1 ⊆ Λ0 with size |Λ1| ∈
[
|Λ0|/2 −√

|Λ0|, |Λ0|/2 +
√
|Λ0|

]
such that

‖~p(Λ0)− ~p(Λ1)‖2 ≤ 6
√
D/|Λ0|.

Proof. We first show the existence of Λ1 with the following two properties:

1. |Λ1| ∈
[
|Λ0|/2−

√
|Λ0|, |Λ0|/2 +

√
|Λ0|

]
.

2.
∑

i∈[D]

(∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣− ∣∣∣∣{α ∈ Λ0

∣∣Ext(α, yi) ∈ T}∣∣∣∣/2)2

≤ D · |Λ0|.
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We pick each element α ∈ Λ0 to Λ1 randomly and independently with probability 1/2. For the first property,
E
Λ1

[(
|Λ1| − |Λ0|/2

)2]
= |Λ0|/4 implies it holds with probability at least 3/4.

At the same time,

E
Λ1

∑
i∈[D]

(∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣− ∣∣∣∣{α ∈ Λ0

∣∣Ext(α, yi) ∈ T}∣∣∣∣/2)2
 =

∑
i∈[D]

∣∣∣∣{α ∈ Λ0

∣∣Ext(α, yi) ∈ T}∣∣∣∣/4
implies the second property holds with probability at least 3/4. Therefore there exists Λ1 satisfying both
properties.

Now let us bound ‖~p(Λ0)− ~p(Λ1)‖2:∑
i∈[D]

(Pr[Ext(Λ0, yi) ∈ T ]− Pr[Ext(Λ1, yi) ∈ T ])2

≤2
∑
i∈[D]


∣∣∣∣{α ∈ Λ0

∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ0|

−

∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ0|/2


2

+ 2
∑
i∈[D]


∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ0|/2

−

∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ1|


2

≤ 8

|Λ0|2
∑
i∈[D]

(∣∣∣∣{α ∈ Λ0

∣∣Ext(α, yi) ∈ T}∣∣∣∣/2− ∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣)2

+2
∑
i∈[D]

∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣2 · ( |Λ1| − |Λ0|/2
|Λ1| · |Λ0|/2

)2

≤ 8D

|Λ0|
+ 2

∑
i∈[D]

|Λ0|
|Λ0|2/4

≤ 16D/|Λ0|.

ut

Constructions of Fj . We construct Fk−1, · · · ,Ft to fit in with Claim 4.6 and 4.7. We define two param-
eters s(j)l and s(j)u on the order of 2j for each Fj such that

Fj =

{
~p(Λ)

∣∣∣∣Λ ∈ ({0, 1}ns(j)l

)
∪
(
{0, 1}n

s(j)l + 1

)
∪ · · · ∪

(
{0, 1}n

s(j)u

)}
.

We start with s(k)l = s(k)u = 2k and define s(j)l and s(j)u from j = k − 1 to t.

1. j > 2 logD+ 8: we define s(j)l = s(j+1)l
2 − 2D and s(j)u = s(j+1)u

2 + 2D. In this proof, we bound
2j − 4D ≤ s(j)l ≤ s(j)u ≤ 2j + 4D.

2. j ≤ 2 logD + 8: we define s(j)l = s(j+1)l
2 −

√
s(j + 1)l and s(j)u = s(j+1)u

2 +
√
s(j + 1)u. We

bound 0.8 · 2j ≤ s(j)l ≤ s(j)u ≤ 1.4 · 2j by induction. The base case is j > 2 logD + 8, which is
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proved above. Because 2D is always less than
√
s(j + 1)l for j > 2 logD + 8,

s(j)l
2j

=

j∏
i=k−1

2s(i)l
s(i+ 1)l

≥
j∏

i=k−1

(1− 2√
s(i+ 1)l

) ≥ 1−
j∑

i=k−1

2√
s(i+ 1)l

.

By induction,
∑j

i=k−1
2√

s(i+1)l
≤
∑t

i=k−1
2√

0.8·2j
≤ 0.2 given t = 10. Similarly,

s(j)u
2j

=

j∏
i=k−1

2s(i)u
s(i+ 1)u

≤
j∏

i=k−1

(1 +
2√

s(i+ 1)u
).

By induction,
∑j

i=k−1
2√

s(i+1)u
≤
∑t

i=k−1
2√

1.4·2j
≤ 0.2 given t = 10, which implies s(j)u

2j
≤ 1.4.

Constructions of πj . Next we define πj from j = k to j = t by induction. The base case is j = k such
that πj(Λ) = ~p(Λ) for any Λ of size 2k. Given Λ and πj(Λ) ∈ Fj , we define πj−1(Λ) using Claim 4.6
or 4.7. From the definition of Fj , πj(Λ) = ~p(Λj) for some Λj with size in [s(j)l, s(j)u].

For j > 2 logD + 8, we apply Claim 4.6 on Λj to find Λj−1 of size |Λj−1| ∈ [|Λj | − 2D, |Λj | + 2D]
satisfying ‖~p(Λj)− ~p(Λj−1)‖2 ≤ 6D1.5/|Λj |.

For j ≤ 2 logD+8, we apply Claim 4.7 on Λj to find Λj−1 of size |Λj−1| ∈ [|Λj |−
√
|Λj |, |Λj |+

√
|Λj |]

satisfying ‖~p(Λj)− ~p(Λj−1)‖2 ≤ 6
√
D/|Λj |.

Thus |Λj−1| is always in [s(j − 1)l, s(j − 1)u], which indicates ~p(Λj−1) is in Fj−1. We set πj−1(Λ) =
~p(Λj−1).

To finish this proof, we plug 0.8 · 2j ≤ s(j)l ≤ s(j)u ≤ 1.4 · 2j and |Fj | =
∑s(j)u

i=s(j)l

(
2n

i

)
≤ (s(j)u −

s(j)l + 1) ·
(

2n

s(j)u

)
≤ 2j · 2n·2j ≤ 22n·2j into (9).

t∑
j=k

√
log(|Fj | · |Fj−1|) · max

Λ∈({0,1}
n

2k
)

∥∥πj(Λ)− πj−1

(
Λ
)∥∥

2

≤
2 logD+9∑
j=k

√
4n · 2j · 6D1.5/s(j)l +

t∑
j=2 logD+8

√
4n · 2j · 6

√
D/s(j)l

.
2 logD+9∑
j=k

√
n · 2j ·D1.5/2j +

t∑
j=2 logD+8

√
n · 2j ·

√
D/2j

≤
2 logD+9∑
j=k

√
nD · D

2j/2
+

t∑
j=2 logD+8

√
nD

. logD ·
√
nD.

4.2 Larger degree with high confidence

We finish the proof of Lemma 4.3 in this section. Given (y1, · · · , yD) ∈ {0, 1}t×D and T , we consider the

error vector in R(2n

2k):

Err(y1, · · · , yD) =

(
D∑
i=1

(
Pr[Ext(Λ, yi) ∈ T ]− T

2m
))

Λ∈({0,1}
n

2k
)

.
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Because max
Λ:|Λ|=2k

∑D
i=1

(
Pr
[
Ext(Λ, yi) ∈ T

]
− |T |2m

)
≤ ‖Err(y1, · · · , yD)‖∞, we will prove

Pr
y1,··· ,yD

[‖Err(y1, · · · , yD)‖∞ ≥ 3εD] ≤ δ for D = C ′ ·
n · log 1

δ

ε2
· log2 n · log 1

δ

ε
. (10)

Since Err(y1, · · · , yD) = Err(y1, ∅, · · · , ∅) + Err(∅, y2, ∅, · · · , ∅) + · · · + Err(∅, · · · , ∅, yD), we plan to
apply a concentration bound to prove (10).

Our main tool is a concentration inequality of Ledoux and Talagrand [LT91] for symmetric vectors. For
convenience, we use the following version for any Banach space from Rudelson and Vershynin, which is
stated as Theorem 3.8 in [RV08].

Theorem 4.8 Given a Banach space with norm ‖ · ‖, let Y1, · · · , Ym be independent and symmetric random
vectors taking values in it with ‖Yj‖ ≤ r for all j ∈ [m]. There exists an absolute constant C1 such that for
any integers l ≥ q, and any t > 0, the random variable ‖

∑m
j=1 Yj‖ satisfies

Pr
Y1,··· ,Ym

‖ m∑
j=1

Yj‖ ≥ 8q E
[
‖

m∑
j=1

Yj‖
]

+ 2r · l + t

 ≤ (
C1

q
)l + 2 exp(− t2

256q E[‖
∑m

j=1 Yj‖]2
).

To apply this theorem for symmetric random vectors, we symmetrize our goal Err(y1, · · · , yD) as fol-
lows. Given a subset T ⊆ {0, 1}m and 2D seeds (y1, · · · , yD) and (z1, · · · , zD), we define a vector ∆y,z

from
({0,1}n

2k

)
to R:

∆y,z(Λ) =
D∑
i=1

(Pr[Ext(Λ, yi) ∈ T ]− Pr[Ext(Λ, zi) ∈ T ])

We use the `∞ norm in this section:

‖∆y,z‖∞ = max
Λ∈({0,1}

n

2k
)
|∆y,z(Λ)|.

Next we use the following Lemma to bridge Theorem 4.8 for symmetric random vectors and our goal (10).

Lemma 4.9 When we generate y = (y1, · · · , yD) and z = (z1, · · · , zD) independently from the uniform
distribution of {0, 1}D×t, for Err(y) over the random choices y = (y1, · · · , yD),

Pr
y

[
‖Err(y)‖∞ ≥ 2E

y
[‖Err(y)‖∞] + δ

]
≤ 2 · Pr

y,z
[‖∆y,z‖∞ ≥ δ] .

Proof. Let Z and Z ′ be independent identically distributed non-negative random variables. We use the
following fact from [RV08]

Pr
[
Z ≥ 2E[Z] + δ

]
≤ 2 Pr

[
Z − Z ′ ≥ δ

]
. (11)

The reason is that

Pr
Z

[Z ≥ 2E[Z] + δ] ≤ Pr
Z,Z′

[
Z − Z ′ ≥ δ|Z ′ ≤ 2E[Z]

]
≤

Pr
[
Z − Z ′ ≥ δ ∧ Z ′ ≤ 2E[Z]

]
PrZ′

[
Z ′ ≤ 2E[Z ′]

] ≤
Pr
[
Z − Z ′ ≥ δ

]
1/2

.
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By plugging Z = ‖Err(y)‖∞ in (11),

Pr
y

[
‖Err(y)‖∞ ≥ 2E

y
[‖Err(y)‖∞] + δ

]
≤ 2 Pr

y,z
[‖Err(y)‖∞ − ‖Err(z)‖∞ ≥ δ]

=2 Pr
y,z

 max
Λ∈({0,1}

n

2k
)


∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, yi) ∈ T

]
− D · |T |

2m

∣∣∣∣
− max

Λ∈({0,1}
n

2k
)


∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, zi) ∈ T

]
− D · |T |

2m

∣∣∣∣
 ≥ δ

 .
At the same time, for any y = (y1, · · · , yD) and z = (z1, · · · , zD)

max
Λ∈({0,1}

n

2k
)


∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, yi) ∈ T

]
− D · |T |

2m

∣∣∣∣
− max

Λ∈({0,1}
n

2k
)


∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, zi) ∈ T

]
− D · |T |

2m

∣∣∣∣


≤ max
Λ∈({0,1}

n

2k
)


∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, yi) ∈ T

]
− D · |T |

2m

∣∣∣∣− ∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, zi) ∈ T

]
− D · |T |

2m

∣∣∣∣


≤ max
Λ∈({0,1}

n

2k
)


∣∣∣∣
∑
i∈[D]

Pr
[
Ext(Λ, yi) ∈ T

]
− D · |T |

2m

−
∑
i∈[D]

Pr
[
Ext(Λ, zi) ∈ T

]
− D · |T |

2m

∣∣∣∣


= max
Λ∈({0,1}

n

2k
)


∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, yi) ∈ T

]
−
∑
i∈[D]

Pr
[
Ext(Λ, zi) ∈ T

]∣∣∣∣
 = ‖∆y,z‖∞

From the discussion above, we have

Pr
y

[
‖Err(y)‖∞ ≥ 2E

y
[‖Err(y)‖∞] + δ

]
≤2 Pr

y,z
[‖∆y,z‖∞ ≥ δ] .

ut

Proof of Lemma 4.3. From Lemma 4.9, it is enough to use Theorem 4.8 to show a concentration bound on
∆y,z . We first bound E[‖Erry‖∞] and E[‖∆y,z‖∞]. Notice that the proofs of Theorem 2.3 and Lemma 4.1
indicate

E [‖Erry‖∞] =E

[
max

Λ:|Λ|=2k

∣∣∣∣∣
D∑
i=1

(
Pr
[
Ext(Λ, yi) ∈ T

]
− |T |

2m

)∣∣∣∣∣
]

≤E
[

max
Λ:|Λ|=2k

{∣∣∣∣ D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]
− E
y′

[
D∑
i=1

Pr
[
Ext(Λ, y′i) ∈ T

]] ∣∣∣∣
+

∣∣∣∣Ey′
[
D∑
i=1

Pr
[
Ext(Λ, y′i) ∈ T

]]
− D · |T |

2m

∣∣∣∣}]

≤
√

2π E
y

 E
g∼N(0,1)n

 max
Λ∈({0,1}

n

2k
)

D∑
i=1

Pr[Ext(Λ, yi) ∈ T ] · gi

+ ε ·D by Claim A.1

≤C2

√
nD · logD + εD. by Claim 4.2
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Similarly,

E[‖∆y,z‖∞] = E
y,z

 max
Λ∈({0,1}

n

2k
)

∣∣∣∣ D∑
i=1

(Pr[Ext(Λ, yi) ∈ T ]− Pr[Ext(Λ, zi) ∈ T ])

∣∣∣∣


≤
√

2π E
y

 E
g∼N(0,1)n

 max
Λ∈({0,1}

n

2k
)

D∑
i=1

Pr[Ext(Λ, yi) ∈ T ] · gi

 by Claim A.1

≤ C2

√
nD · logD by Claim 4.2

Now we rewrite ∆y,z(Λ) =
∑D

i=1 (Pr[Ext(Λ, yi) ∈ T ]− Pr[Ext(Λ, zi) ∈ T ]) as the summation of D
symmetric and independent random variables ∆yi,zi(Λ) = (Pr[Ext(Λ, yi) ∈ T ]− Pr[Ext(Λ, zi) ∈ T ]) for
Λ ∈

({0,1}n
2k

)
. Next we bound each term

r = max
yi,zi

{
‖∆yi,zi‖∞

}
= max

yi,zi,Λ∈(
{0,1}n

2k
)

∣∣∣∣Pr[Ext(Λ, yi) ∈ T ]− Pr[Ext(Λ, zi) ∈ T ]

∣∣∣∣ ≤ 1.

We choose the parameters q = 2C1 = Θ(1), l = log 1
δ ≤ εD/10, t = εD/3 and plug them in Theo-

rem 4.8 to bound

Pr
[
‖∆y,z‖∞ ≥ 8q · C2

√
nD · logD + 2r · l + t

]
≤ 2−l + 2e

− t2

256q E[‖∆y,z‖∞]2 ≤ 3δ

while 8q · C2

√
nD · logD + 2r · l + t ≤ 0.8εD.

Since E[‖Err(y)‖∞] ≤ 1.1εD, we have Pr[‖Err(y)‖∞ ≥ 3 · εD] ≤ 3δ. ut

5 Strong Extractors

We extend our techniques to strong extractors in this section.

Theorem 5.1 Let D = C · n·2m
ε2
· (log n

ε + m)2 for a universal constant C and Ext : {0, 1}n × {0, 1}t →
{0, 1}m be any strong (k, ε)-extractor. For D independently random seeds y1, · · · , yD, Ext(y1,··· ,yD) is a
strong extractor for entropy k sources with expected error 2ε.

The proof of Theorem 5.1 follows the same outline of the proof of Lemma 4.1 with different parameters.
We apply a chaining argument to bound the L1 error of all entropy k sources Λ:

max
|Λ|=2k


D∑
i=1

 ∑
α∈{0,1}m

|Pr[Ext(Λ, yi) = α]− 2−m|

 ,

instead of bounding the error over all statistical tests in degree D strong extractors. For completeness, we
provide the proof in Appendix B.

Similar to Lemma 4.3, when we enlarge the degree by a factor of Õ(log 1
δ ), we improve the guarantee

to a high probability 1− δ instead of an expected error.

Corollary 5.2 For any δ > 0, let D = C · n·2
m log 1

δ
ε2

· log2 n·2m log 1
δ

ε for a universal constant C. Given any
strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m, for D independently random seeds y1, · · · , yD,
Ext(y1,··· ,yD) is a strong (k, 3ε)-extractor with probability at least 1− δ.
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6 Conclusion and future work

We have shown that a quasi-linear number of random seeds from any given extractor constitute a restricted
extractor with nearly the same parameters of min entropy and error, though outputting a constant number of
bits. In particular, this implies the existence of quasi-linear degree strong extractors from Toeplitz matrices
with a constant number of output bits.

Even for a large output, we show that a quasi-linear number of random seeds from any given extractor
fool any fixed statistical test for all sources with fixed-entropy. A natural question is whether the 2m de-
pendence in the degree of restricted strong extractors is necessary or not. We discuss the bottleneck of our
approach and possible future directions in the rest of this section.

Chaining argument on strong extractors. Let us consider the chaining argument of strong extractors on
the L1 error ‖Ext(Λ, yi)−Um‖1 =

∑
α∈{0,1}m

|Pr[Ext(Λ, yi) = α]− 2−m|. We symmetrize and Gaussianize

E
y1,··· ,yD

 max
Λ∈({0,1}

n

2k
)

∑D
i=1 ‖Ext(Λ, yi)− Um‖1

 to

max
Λ

E
y1,··· ,yD

[
D∑
i=1

‖Ext(Λ, yi)− Um‖1

]
+
√

2π E
y1,··· ,yD

E
g

[
max

Λ

∣∣∣∣〈(‖Ext(Λ, yi)− Um‖1)i=1,··· ,D, g

〉∣∣∣∣]︸ ︷︷ ︸
A Gaussian process P

.

In our proof of Theorem 5.1, we use the following relaxation to bound the distance of two vectors in the
Gaussian process P corresponding to two subsets Λ and Λ′:∥∥∥(‖Ext(Λ, yi)− Um‖1)i=1,··· ,D −

(
‖Ext(Λ′, yi)− Um‖1

)
i=1,··· ,D

∥∥∥2

2
(12)

=
D∑
i=1

(
‖Ext(Λ, yi)− Um‖1 − ‖Ext(Λ′, yi)− Um‖1

)2 (13)

≤
D∑
i=1

(‖Ext(Λ, yi)− Ext(Λ′, yi)‖1)2. (14)

The shortcoming of our approach is that the subset chaining argument provides a tight analysis on (14) but
not (12).

We show that the Gaussian process under the distance (14) is Ω(
√

2m) from the Sudakov minoration.
For example, let us consider the distance of the first coordinate ‖Ext(Λ, y1) − Ext(Λ′, y1)‖1. Because of
the existence of codes with constant rate and linear distance, there exists l = exp(2m) subsets T1, · · · , Tl in
{0, 1}m such that |Ti \ Tj | = Ω(2m) for any i 6= j. Let Λ1, · · · ,Λl be the inverse images of T1, · · · , Tl in
Ext(·, y1). Then ‖Ext(Λi, y1) − Ext(Λj , y1)‖1 = Ω(1) for any i 6= j from the distance of the code, which
indicates the Gaussian process is Ω(2m) from the Sudakov minoration for the distance (14).

One possible approach is to construct a chain of the Gaussian process P for specific strong extractors
based on the seeds y1, · · · , yD. For example, when Ext is the linear extractor of all linear transformation,
Ext(x, y1), · · · ,Ext(x, yD) correspond toD linear transformationsA1(x), · · · , AD(x). A interesting direc-
tion is to build a chaining argument based on these D linear transformations A1, · · · , AD instead of using
the chain of subsets of size 2k−1, 2k−2, · · · , O(1) for any A1, · · · , AD.
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Explicit Extractors. Although our results indicate that Õ( n
ε2

) random Toeplitz matrices or universal hash
functions constitute a good extractor for a constant number of output bits, it is unclear how to derandomize
the chaining argument to obtain an explicit one. One open question is to construct explicit extractors of the
above forms with degree polynomial in n and ε.

Other combinatorial objects. Another question is to generalize our results to other combinatorial objects
such as condensers and bipartite expanders. For example, bipartite graphs of low degree Reed-Solomon
codes on Fkq ∪ (Fq × Fq), where each vertex in Fkq is a degree (k − 1) polynomial p(x) with q neighbors{(
α, p(α)

)∣∣α ∈ Fq
}

, are unbalanced expanders with large left-degree q. One method to reduce the degree
q is to sample D random β1, · · · , βD ∈ Fq and restrict the right hand side to {β1 × Fq, · · · , βD × Fq}. The
open problem is how large D should be to guarantee it is still an unbalanced expander.
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A Symmetrization and Gaussianization

We finish the proof of Theorem 2.3 in this section. We first symmetrize it by

E
x1,··· ,xn

max
Λ

n∑
j=1

f(Λ, xj)

 = E
x1,··· ,xn

max
Λ

 n∑
j=1

f(Λ, xj)− E
x′1,··· ,x′n

[

n∑
j=1

f(Λ, x′j)] + E
x′1,··· ,x′n

[

n∑
j=1

f(Λ, x′j)]


≤ max

Λ
E
x′

 n∑
j=1

f(Λ, x′j)

+ E
x

max
Λ

∣∣∣∣∣∣
n∑
j=1

f(Λ, xj)− E
x′

[

n∑
j=1

f(Λ, x′j)]

∣∣∣∣∣∣
 .

Then we apply Gaussianization on the second term.

Claim A.1 Let g = (g1, · · · , gn) denote the Gaussian vector sampled from N(0, 1)n,

E
x

max
Λ

∣∣∣∣∣∣
n∑
j=1

f(Λ, xj)− E
x′

[
n∑
j=1

f(Λ, x′j)]

∣∣∣∣∣∣
 ≤ √2π · E

x

E
g

max
Λ

∣∣∣∣∣∣
n∑
j=1

f(Λ, xj)gj

∣∣∣∣∣∣
 .

Proof. Let g denote a sequence of n independent Gaussian random variables. We first use the convexity of
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the | · | function to move E
x′

to the left hand side:

E
x

max
Λ

∣∣∣∣∣∣
n∑
j=1

f(Λ, xj)− E
x′

[
n∑
j=1

f(Λ, x′j)]

∣∣∣∣∣∣
 ≤ E

x

max
Λ

E
x′

∣∣∣∣∣∣
n∑
j=1

f(Λ, xj)−
n∑
j=1

f(Λ, x′j)

∣∣∣∣∣∣


(
use max

i
E
G

[Gi] ≤ E
G

[max
i
Gi] to move E

x′
out
)

≤ E
x,x′

max
Λ

∣∣∣∣∣∣
n∑
j=1

f(Λ, xj)−
n∑
j=1

f(Λ, x′j)

∣∣∣∣∣∣


(
use the fact E[|gj |] =

√
2/π

)

≤
√
π/2 E

x,x′

max
Λ

∣∣∣∣∣∣
n∑
j=1

(
f(Λ, xj)− f(Λ, x′j)

)
· E
gj
|gj |

∣∣∣∣∣∣


(
use the convexity of | · | to move E

g

)

≤
√
π/2 E

x,x′

max
Λ

E
g

∣∣∣∣∣∣
n∑
j=1

(
f(Λ, xj)− f(Λ, x′j)

)
· |gj |

∣∣∣∣∣∣


(
use max

i
E
G

[Gi] ≤ E
G

[max
i
Gi] to move E

g
out
)

≤
√
π/2 E

x,x′
E
g

max
Λ

∣∣∣∣∣∣
n∑
j=1

(
f(Λ, xj)− f(Λ, x′j)

)
· |gj |

∣∣∣∣∣∣


(
use the symmetry of f(Λ, xj)− f(Λ, x′j)

)

=
√
π/2E

g
E
x,x′

max
Λ

∣∣∣∣∣∣
n∑
j=1

(
f(Λ, xj)− f(Λ, x′j)

)
· gj

∣∣∣∣∣∣


(
use the triangle inequality

)

≤
√
π/2 E

x,x′
E
g

max
Λ

∣∣∣∣∣∣
n∑
j=1

f(Λ, xj)gj

∣∣∣∣∣∣+ max
Λ

∣∣∣∣∣∣−
n∑
j=1

f(Λ, x′j)gj

∣∣∣∣∣∣


(
use the symmetry of gj

)

≤
√

2πE
x
E
g

max
Λ

∣∣∣∣∣∣
n∑
j=1

f(Λ, xj)gj

∣∣∣∣∣∣
 .

ut

Remark A.2 We use the independence between x1, · · · , xn in the third last step.
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B Strong Linear Extractors: Proof of Theorem 5.1

We finish the proof of Theorem 5.1 by showing D random seeds constitute a strong extractor:

E
y1,··· ,yD

 max
Λ∈({0,1}

n

2k
)

D∑
i=1

∑
α∈{0,1}m

∣∣∣∣ Pr
x∼Λ

[Ext0(x, yi) = α]− 2−m
∣∣∣∣
 ≤ 4εD. (15)

For convenience, we use Pr[Ext0(Λ, yi) = α] to denote Prx∼Λ[Ext0(x, yi) = α] and Erry(Λ) to denote the
error of the seed y and subset Λ , i.e., Erry(Λ) =

∑
α∈{0,1}m

∣∣Pr[Ext0(Λ, y) = α] − 2−m
∣∣. We use these

notations to rewrite (15) as

E
y1,··· ,yD

 max
Λ∈({0,1}

n

2k
)

D∑
i=1

Erryi(Λ)

 .
Then we symmetrize and Gaussianize it by Theorem 2.3:

E
y

 max
Λ∈({0,1}

n

2k
)

D∑
i=1

Erryi(Λ)

 ≤ max
Λ∈({0,1}

n

2k
)
E
y

[
D∑
i=1

Erryi(Λ)

]
+
√

2πE
y

E
g

 max
Λ∈({0,1}

n

2k
)

∣∣ D∑
i=1

Erryi(Λ) · gi
∣∣ .
(16)

Because Ext0 is a strong extractor, the first term E
y1,··· ,yD

[∑D
i=1 Erryi(Λ)

]
is at most 2εD for any Λ of size

2k.
To bound the second term in (16), we fix the seeds y1, · · · , yD and bound the Gaussian process.

Claim B.1 For any seeds y1, · · · , yD, E
g

 max
Λ∈({0,1}

n

2k
)

∣∣∣∣ ∑
i∈[D]

Erryi(Λ) · gi
∣∣∣∣
 ≤ C0(logD + m)

√
nD · 2m for

a constant C0.

We defer the proof of this claim to Section B.1. We finish the proof by bounding (15) as follows:

E
y1,··· ,yD

 max
Λ∈({0,1}

n

2k
)

D∑
i=1

Erryi(Λ)


≤
√

2π · E
y1,··· ,yD

E
g

 max
Λ∈({0,1}

n

2k
)

∣∣∣∣∣∑
i

Erryi(Λ) · gi

∣∣∣∣∣
+ εD

≤
√

2π · C0(logD +m)
√
nD · 2m +D · ε.

We choose D = 10C2
0 ·

n(log n
ε

+m)2·2m
ε2

such that

E
y1,··· ,yD

 max
Λ∈({0,1}

n

2k
)

D∑
i=1

Erryi(Λ)

 ≤ 4εD.

This indicates the error of the strong linear extractor constituted by A1, · · · , AD is 2ε in statistical distance.
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B.1 Proof of Claim B.1

We prove Claim B.1 in this section. We fix a parameter t = 8 in this proof.
Recall that y1, · · · , yD are fixed in this section, we use Err(Λ) to denote the vector (Erry1(Λ), · · · ,ErryD(Λ)).

We rewrite the Gaussian process as

E
g

 max
Λ∈(2n

2k)

∣∣∣∣∣∣
∑
i∈[D]

Erryi(Λ) · gi

∣∣∣∣∣∣
 = E

g

[
max

Λ∈(2n

2k)

∣∣∣∣〈Err(Λ), g
〉∣∣∣∣
]
.

We define a sequence of subsets Ft−1,Ft,Ft+1, · · · ,Fk of vectors in RD where Ft−1 = {~0}, |Fi| =

poly(
(

2n

2i

)
), and Fk =

{
Err(Λ)

∣∣Λ ∈ ({0,1}n
2k

)}
. For each i from t to k, we construct a map πi : Fk → Fi,

except that πk is the identity map and πt−1(v) = ~0 for any v. For any vector v ∈ Fk,

v =

t∑
j=k

πj(v)− πj−1(v).

We plug these notations into the Gaussian process:

E
g

[
max

Λ∈(2n

2k)

∣∣∣∣〈Err(Λ), g
〉∣∣∣∣
]

= E
g

[
max
v∈Fk

∣∣∣∣〈v, g〉∣∣∣∣] (17)

= E
g

max
v∈Fk

∣∣∣∣〈 t∑
j=k

πj(v)− πj−1(v), g
〉∣∣∣∣
 (18)

≤ E
g

max
v∈Fk

t∑
j=k

∣∣∣∣〈πj(v)− πj−1(v), g
〉∣∣∣∣
 (19)

≤
t∑

j=k

E
g

[
max
v∈Fk

∣∣∣∣〈πj(v)− πj−1(v), g
〉∣∣∣∣] (20)

.
t∑

j=k

√
log |Fj | · |Fj−1| ·max

v
‖πj(v)− πj−1(v)‖2. (21)

We first construct Fj from j = k to j = t then define their maps πk−1, · · · , πt. To construct Fj , we will
specify two parameters s(j)l = s(j)u = Θ(2j) for the size of Λ such that

Fj =

{
Err(Λ)

∣∣Λ ∈ ({0, 1}n
s(j)l

)
∪
(
{0, 1}n

s(j)l + 1

)
· · · ∪

(
{0, 1}n

s(j)u

)}
.

Notice that the size of each subset Fj is bounded by

|Fj | ≤
(

2n

s(j)l

)
+ · · ·+

(
2n

s(j)u

)
.

The base case is s(k)l = s(k)u = 2k and Fk =
{
Err(Λ)

∣∣Λ ∈ ({0,1}n
2k

)}
.
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Construction of Fj for j > 4 logD+m: s(j)l = s(j+ 1)l/2− 2D and s(j)u = s(j+ 1)u/2 + 2D. We
bound s(j)l ≥ 2j − 4D and s(j)u ≤ 2j + 4D for all j > 4 logD +m.

Construction of Fj for j ≤ 4 logD+m: s(j)l = s(j+ 1)l/2−
√
s(j + 1)l and s(j)u = s(j+ 1)u/2 +√

s(j + 1)u. We bound s(j)l ≥ 0.8 · 2j because s(t)l/2t =
∏t
j=k−1

2s(j)l
s(j+1)l

is at least

(1− 2√
s(t+ 1)l

) · (1− 2√
s(t+ 2)l

) · · · (1− 2√
s(k)l

) ≥ 1−
k∑

j=t+1

2√
s(j)l

≥ 1−
k∑

j=t+1

2√
0.8 · 2j

≥ 0.8.

Similarly, we bound s(j)u ≤ 1.4 · 2j because

(1+
2√

s(t+ 1)u
)·(1+

2√
s(t+ 2)u

) · · · (1+
2√
s(k)u

) ≤ 1+2

k∑
j=t+1

2√
s(j)u

≤ 1+2

k∑
j=t+1

2√
1.4 · 2j

≤ 1.4.

Construction of πj: we construct the map πj from j = k− 1 to j = t and bound ‖πj+1(v)− πj(v)‖2 for
each v ∈ Fk in (21). We first use the Beck-Fiala Theorem in the discrepancy method to construct πj with
j > 4 logD +m then use a randomized argument to construct πj with j ≤ 4 logD +m.

Claim B.2 Given Λ ≥ D4 and D seeds y1, · · · , yD, there always exists Λ′ ⊆ Λ with size |Λ′| ∈
[
|Λ|/2 −

2D, |Λ|/2 + 2D
]

such that
‖Err(Λ)− Err(Λ′)‖2 ≤ 6D1.5 · 2m/|Λ|.

Proof. We plan to use the Beck-Fiala Theorem from the discrepancy method. We define the ground set
S = Λ and m = 2m ·D + 1 subsets T1, · · · , Tm to be

T(i−1)2m+α =
{
x ∈ Λ

∣∣Ext(x, yi) = α
}

for each α ∈ [0, · · · , 2m − 1] and i ∈ [D]

and the last Tm = S = Λ. Notice that the degree of every element x ∈ Λ is D + 1.
From the Beck-Fiala Theorem, there always exists χ : Λ→ {±1} such that

for any i ∈ [m], |
∑
x∈Ti

χ(x)| < 2D + 2.

We choose Λ′ = {x|χ(x) = 1}. From the guarantee of Tm, we know |Λ′| ∈
[
|Λ|/2 ± (D + 1)

]
. Next we

consider ‖Err(Λ)− Err(Λ′)‖2.
We fix α ∈ {0, 1}m and i ∈ [D] and bound (Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α])2 as follows.

(Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α])2

≤2

(
Pr[Ext(Λ, yi) = α]− |{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|/2

)2

+ 2

(
|{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|/2
− Pr[Ext(Λ′, yi) = α]

)2

≤2

(
|{x ∈ Λ|Ext(x, yi) = α}| − 2|{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|

)2

+ 2

(
|{x ∈ Λ′|Ext(x, yi) = α}| · ( 1

|Λ|/2
− 1

|Λ′|
)

)2

≤2(
3D

|Λ|
)2 + 2

(
|{x ∈ Λ′|Ext(x, yi) = α}| · |Λ|/2− |Λ|

′

|Λ|/2 · |Λ′|

)2

≤18D2

|Λ|2
+ 2(

2D

|Λ|/2
)2 = 26D2/|Λ|2.
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We bound ‖Err(Λ)− Err(Λ′)‖22 using the above inequality.

‖Err(Λ)− Err(Λ′)‖22 =
D∑
i=1

 ∑
α∈{0,1}m

|Pr[Ext(Λ, yi) = α]− 2−m| − |Pr[Ext(Λ′, yi) = α]− 2−m|

2

≤
D∑
i=1

 ∑
α∈{0,1}m

|Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α]|

2

≤ 2m
D∑
i=1

∑
α∈{0,1}m

(
Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α]

)2
≤ 26D3 · 22m/|Λ|2.

ut

Claim B.3 Given any Λ of size at least 100, there always exists Λ′ ⊆ Λ with size |Λ′| ∈
[
|Λ|/2 −√

|Λ|, |Λ|/2 +
√
|Λ|
]

such that

‖Err(Λ)− Err(Λ′)‖2 ≤ 6
√
D · 2m/|Λ|.

Proof. We show the existence of Λ′ by the probabilistic method of picking each element in Λ to Λ′ with
probability 1/2. Because E[|Λ′|] = |Λ|

2 and E[(|Λ′| − |Λ|2 )2] = |Λ|
4 , Λ′ satisfies

|Λ′| ∈
[ |Λ|

2
−
√
|Λ|, |Λ|

2
+
√
|Λ|
]

with probability at least 3/4 from the Chebyshev inequality. (22)

Next we consider

E
Λ′

∑
i∈[D]

∑
α∈{0,1}m

(∣∣{x ∈ Λ′|Ext(x, yi) = α}
∣∣− ∣∣{x ∈ Λ|Ext(x, yi) = α}

∣∣/2)2


=
∑
i∈[D]

∑
α∈{0,1}m

E
Λ′

[(∣∣{x ∈ Λ′|Ext(x, yi) = α}
∣∣− ∣∣{x ∈ Λ|Ext(x, yi) = α}

∣∣/2)2]
=
∑
i∈[D]

∑
α∈{0,1}m

∣∣{x ∈ Λ|Ext(x, yi) = α}
∣∣/4 = D · |Λ|/4.

With probability 3/4,∑
i∈[D]

∑
α∈{0,1}m

(∣∣{x ∈ Λ|Ext(x, yi) = α}
∣∣/2− ∣∣{x ∈ Λ′|Ext(x, yi) = α}

∣∣)2 ≤ D · |Λ|. (23)

We set Λ′ to be a subset satisfying equations (22) and (23) and consider ‖Err(Λ)− Err(Λ′)‖2.
We fix α ∈ {0, 1}m and i ∈ [D] and bound (Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α])2 as follows.
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(Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α])2

≤2

(
Pr[Ext(Λ, yi) = α]− |{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|/2

)2

+ 2

(
|{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|/2
− Pr[Ext(Λ′, yi) = α]

)2

≤2

(
|{x ∈ Λ|Ext(x, yi) = α}| − 2|{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|

)2

+ 2

(
|{x ∈ Λ′|Ext(x, yi) = α}| · ( 1

|Λ|/2
− 1

|Λ′|
)

)2

≤8

(∣∣{x ∈ Λ|Ext(x, yi) = α}|/2− |{x ∈ Λ′|Ext(x, yi) = α}
∣∣)2

|Λ|2
+ 20

|{x ∈ Λ′|Ext(x, yi) = α}|
|Λ|2

, (*)

where we use the property (22) in the last step to bound the second term. Next we bound ‖Err(Λ) −
Err(Λ′)‖22 base on the above inquality:

‖Err(Λ)− Err(Λ′)‖22 =

D∑
i=1

 ∑
α∈{0,1}m

|Pr[Ext(Λ, yi) = α]− 2−m| − |Pr[Ext(Λ′, yi) = α]− 2−m|

2

≤
D∑
i=1

 ∑
α∈{0,1}m

|Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α]|

2

≤ 2m
D∑
i=1

∑
α∈{0,1}m

(
Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α]

)2 next apply (*)

≤ 8 · 2m
∑
i,α

(∣∣{x ∈ Λ|Ext(x, yi) = α}|/2− |{x ∈ Λ′|Ext(x, yi) = α}
∣∣)2

|Λ|2

+ 20 · 2m
∑
i,α

|{x ∈ Λ′|Ext(x, yi) = α}|
|Λ|2

≤ 8 · 2m 2D · |Λ|
|Λ|2

+ 20 · 2mD · |Λ|
|Λ|2

≤ 36D · 2m

|Λ|
.

ut

Now we define our map πj : Fk → Fj from j = k to t by induction. The base case πk is the identity
map. Then we define πj−1 given πj .

For j > 4 logD+m, given Λ ∈
({0,1}n

2k

)
, let v = πj

(
Err(Λ)

)
be the vector in Fj . From the definition of

Fj , there exists Λj of size between [s(j)l, s(j)u] such that v = Err(Λj). Let Λj−1 be the subset satisfying
the guarantee in Claim B.2 for Λj . We set πj−1

(
Err(Λ)

)
= Err(Λj−1).

Similarly, for j ≤ 4 logD + m, given u = Err(Λ) and πj(u) = Err(Λj) for Λ of size 2k, we define
πj−1(u) = Err(Λj−1) where Λj−1 is the subset satisfying the guarantee in Claim B.3 for Λj .

To finish the calculation of (21), we bound |Fj | by

|Fj | ≤
(

2n

s(j)l

)
+ · · ·+

(
2n

s(j)u

)
≤ 2 · 2j ·

(
2n

1.8 · 2j

)
≤ 22n2j .
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From the all discussion above, we bound the Gaussian process in (21) as

E
g

[
max

Λ∈(2n

2k)

∣∣∣∣〈|Pj(Λ)− 2−m ·~1|, g
〉∣∣∣∣
]
.

t∑
j=k

√
log |Fj | · |Fj−1| ·max

v
‖πj(v)− πj−1(v)‖2

≤
4 logD+m∑

j=k

√
2n · 2j · (10D1.5 · 2m−j) +

t∑
j=4 logD+m

√
2n · 2j · 10

√
D · 2m−j

.
4 logD+m∑

j=k

√
n · (D1.5 · 2m)

2j/2
+

t∑
j=4 logD+m

√
2nD · 2m

.
√
n · (D1.5 · 2m)

D2 · 2m/2
+ (4 logD +m) ·

√
2nD · 2m

.(4 logD +m) ·
√

2nD · 2m.
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