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Abstract

Resolution over linear equations ([RT08]) is a natural extension of resolution
augmented with the ability to carry out basic counting. Denoted Res(linR), this
refutation system operates with disjunctions of linear equations (with 0-1 variables)
over a ring R to refute unsatisfiable propositional formulas. As observed recently
by, e.g., Kraj́ıček [Kra17] (cf. [IS14, KO18, GK18]), Res(linR) captures a “minimal”
extension of resolution with counting gates for which no (general, that is, dag-like)
super-polynomial lower bounds are known to date.

In this work we develop new lower bound techniques for resolution over lin-
ear equations and extend existing ones. We obtain a host of new lower bounds,
separations and upper bounds, while calibrating the relative strength of different
sub-systems. In particular, we establish the first known exponential-size dag-like
lower bound against resolution over linear equations refutations: we demonstrate
that the Subset Sum principle α1x1 + · · ·+αnxn = β, for β not in the image of the
linear form (under 0-1 assignments), requires refutations proportional to the size
of the image. This leads to exponential lower bounds when the field (as well as
the image) are sufficiently large. Taking this idea further, based on the image of a
generator matrix of a linear error-correcting code, we propose a hard candidate for
dag-like Res(linR) refutations over finite fields. As a modest step towards dag-like
lower bounds over finite fields we establish a strong lower bound against restricted
tree-like refutations for this hard candidate. Moreover, we separate the tree and
dag-like versions of Res(linF), when F is of characteristic zero, by employing (among
others) the notion of immunity from Alekhnovich-Razborov [AR01].

Turning to tree-like refutations over finite fields, we extend the work of Itsyk-
son and Sokolov [IS14] who obtained lower bounds over F2. We establish new
lower bounds and separations as follows: (i) for every pair of distinct primes p, q,
there exist CNF formulas with short tree-like refutations in Res(linFp) that re-
quire exponential-size tree-like Res(linFq) refutations; (ii) random k-CNF formulas
require exponential-size tree-like Res(linFp) refutations, for every prime p and con-
stant k; and (iii) exponential-size lower bounds for tree-like Res(linF) refutations
of the pigeonhole principle, for every field F.
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1 Introduction

1.1 Background

The resolution refutation system is among the most prominent and well-studied proposi-
tional proof system, and for good reasons: it is a natural and simple refutation system,
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that, at least in practice, is capable of being easily automatized. Furthermore, while
being non-trivial, it is simple enough to succumb to many lower bound techniques.

Formally, a resolution refutation of an unsatisfiable CNF formula is a sequence of
clauses D1, . . . , Dl = ∅, where ∅ is the empty clause, such that each Di is either a clause
of the CNF or is derived from previous clauses Dj, Dk, j ≤ k < i by means of applying
the following resolution rule: from the clauses C ∨ x and D ∨ ¬x derive C ∨D.

The tree-like version of resolution, where every occurrence of a clause in the refutation
is used at most once as a premise of a rule, is of particular importance, since it helps
us to understand certain kind of satisfiability algorithms known as DPLL algorithms
(cf. [Nor15]). DPLL algorithms are simple recursive algorithms for solving SAT that are
the basis of successful contemporary SAT-solvers. The transcript of a run of DPLL on an
unsatisfiable formula is a decision tree, which can be interpreted as a tree-like resolution
refutation. Thus, lower bounds on the size of tree-like resolution refutations imply lower
bounds on the run-time of DPLL algorithms.

In contrast to the apparent practical success of SAT-solvers, a variety of hard instances
that require exponential-size refutations have been found for resolution during the years.
Many classes of such hard instances are based on principles expressing some sort of
counting. One famous example is the pigeonhole principle, denoted PHPm

n , expressing
that there is no (total) injective map from a set with cardinality m to a set with cardinality
n if m > n [Hak85]. Another important example is Tseitin tautologies, denoted TSG,
expressing that the sum of the degrees of vertices in a graph G must be even [Tse68].

Since such counting tautologies are a source of hard instances for resolution, it is useful
to study extensions of resolution that can efficiently count, so to speak. This is important
firstly, because such systems may become the basis of more efficient SAT-solvers and
secondly, in order to extend the frontiers of lower bound techniques against stronger and
stronger propositional proof systems. Indeed, there are many works dedicated to the
study of weak systems operating with De Morgan formulas with counting connectives;
these are variations of resolution that operate with disjunctions of certain arithmetic
expressions.

One such extension of resolution was introduced by Raz and Tzameret [RT08] under
the name resolution over linear equations in which literals are replaced by linear equations.
Specifically, the system R(lin), which operates with disjunctions of linear equations over
Z was studied in [RT08]. This work demonstrated the power of resolution with counting
over the integers, and specifically provided polynomial upper bounds for the pigeonhole
principle and the Tseitin formulas, as well as other basic counting formulas. It also
established exponential lower bounds for a subsystem of R(lin), denoted R0(lin). Sub-
sequently, Itsykson and Sokolov [IS14] studied resolution over linear equations over F2,
denoted Res(⊕). They demonstrated the power of resolution with counting mod 2 as well
as its limitations by means of several upper and tree-like lower bounds. Moreover, [IS14]
introduces DPLL algorithms, which can “branch” on arbitrary linear forms over F2, as
well as parity decision trees, and showed a correspondence between parity decision trees
and tree-like Res(⊕) refutations. In both [RT08] and [IS14] the dag-like lower bound
question for resolution over linear equations remained open.

Apart from being a very natural refutation system, it has recently became evident that
understanding the proof complexity of resolution over linear equations is important for
the following reason: proving super-polynomial dag-like lower bounds against resolution
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over linear equations for prime fields and for the integers can be viewed as a first step
towards the long-standing open problems of AC0[p]-Frege and TC0-Frege lower bounds,
respectively. We explain this in what follows.

Resolution operates with clauses, which are De Morgan formulas (¬, unbounded fan-
in ∨ and ∧) of a particular kind, namely, of depth 1. Thus, from the perspective of
proof complexity, resolution is a fairly weak version of the propositional-calculus, where
the latter operates with arbitrary De Morgan formulas. Under a natural and general
definition, propositional-calculus systems go under the name Frege systems : they can be
(axiomatic) Hilbert-style systems or sequent-calculus style systems. The task of proving
lower bounds for general Frege systems is notoriously hard: no nontrivial lower bounds are
known to date. Basically, the strongest fragment of Frege systems, for which lower bounds
are known are AC0-Frege systems, which are Frege proofs operating with constant-depth
formulas. For example, both PHPm

n and TSG do not admit sub-exponential proofs in
AC0-Frege [Ajt88, PBI93, KPW95, BS02]. However, if we extend the De Morgan language
with counting connectives such as unbounded fan-in mod p (AC0[p]-Frege) or threshold
gates (TC0-Frege), then we step again into the darkness: proving super-polynomial lower
bounds for these systems is a long-standing open problem on what can be character-
ized as the “frontiers” of proof complexity. Recent works by Kraj́ıček [Kra17], Garlik-
Ko lodziejczyk [GK18] and Kraj́ıček-Oliveira [KO18] had suggested possible approaches
to attack dag-like Res(linF2) lower bounds (though this problem remains open to date).

1.2 Our Results and Techniques

In this paper we prove a host of new lower bounds, separations and upper bounds for
resolution over linear equations, including dag-like refutations. We focus mainly on finite
fields Fq, for different primes q, and fields of characteristic 0, most importantly the rational
numbers Q. Using our notation, R(lin) from [RT08] is simply Res(linZ) and Res(⊕) from
[IS14] is Res(linF2).

The refutation system Res(linR) is defined as follows (see [RT08]). The proof-lines of
Res(linR) are linear clauses , that is, disjunctions of linear equations. More formally,
they are disjunctions of the form:

(∑n

i=0
a1ixi + b1 = 0

)
∨ · · · ∨

(∑n

i=0
akixi + bk = 0

)
,

where k is some number (the width of the clause), and aji, bj ∈ R. The resolution rule is
the following:

from (C ∨ f = 0) and (D ∨ g = 0) derive (C ∨D ∨ (αf + βg) = 0),

where α, β ∈ R, and C,D some linear clauses. A Res(linR) refutation of an unsatisfiable
over 0-1 set of linear clauses C1, . . . , Cm is a sequence of proof-lines, where each proof-line
is either Ci, for i ∈ [m], a Boolean axiom (xi = 0 ∨ xi = 1) for a some variable xi (note
that a Boolean axiom is also a linear clause), or was derived from previous proof-lines
by the above resolution rule, or by the weakening rule that allows to extend clauses with
arbitrary disjuncts, or a simplification rule allowing to discard false constant linear forms
(e.g., 1 = 0) from a linear clause. The last proof-line in a refutation is the empty clause
(standing for the truth value false). The size of a Res(linR) refutation is the total size of
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all linear clauses in it, where the size of a linear clause is the total size of all the linear
forms in it, and where we write linear forms with ring coefficients in binary representation
(when it is clear how to do this, e.g., over the integers or the rationals).

We are interested in the following questions:

(Q1) For a given ring R, what kind of counting can be efficiently performed in Res(linR)
and tree-like Res(linR)?

(Q2) Can dag-like Res(linR) be separated from tree-like Res(linR)?

(Q3) Can tree-like systems for different rings R be separated?

In order to be able to do some non-trivial counting in tree-like versions of resolution
over linear equations we define a semantic version of the system as follows:

Tree-like Res(linR) with semantic weakening. The system Ressw(linR) is obtained
from Res(linR) by replacing the weakening and the simplification rules, as well as the
boolean axioms, with the semantic weakening rule (the symbol |= will denote in this
work semantic implication with respect to 0-1 assignments):

C (C |= D) .
D

Let k = char(R) be the characteristic of the ring R. In case k /∈ {1, 2, 3}, deciding whether
an R-linear clause D is a tautology (that is, holds for every 0-1 assignment to its variables)
is at least as hard as deciding whether a 3-DNF is a tautology (because over characteristic
k /∈ {1, 2, 3} linear equations can express conjunction of three conjuncts). For this reason
Ressw(linR) proofs cannot be checked in polynomial time and thus Ressw(linR) is not a
Cook-Reckhow proof system unless P = coNP (namely, the correctness of proofs in the
system cannot necessarily be checked in polynomial-time, as required by a Cook-Reckhow
propositional proof system [CR79]).

The reason for studying Ressw(linR) is mainly the following: Let Γ be an arbitrary
set of tautological R-linear clauses. Then, lower bounds for tree-like Ressw(linR) imply
lower bounds for tree-like Res(linR) with formulas in Γ as axioms. For example, in case
F is a field of characteristic 0, the possibility to do counting in tree-like Res(linF) is quite
limited. For instance, we show that 2x1 + · · · + 2xn = 1 requires an exponential-size
in n refutation (Corollary 30). On the other hand, such contradictions do admit short
tree-like Res(linF) refutations in the presence of the following generalized boolean axioms
(which is a tautological linear clause):

Im(f) :=
∨

A∈im2(f)
(f = A), (1)

where im2(f) is the image of f under 0-1 assignments. Similar to the way the Boolean
axioms (xi = 0)∨ (xi = 1) state that the possible value of a variable is either zero or one,
the Im(f) axiom states all the possible values that the linear form f can take. If a lower
bound holds for tree-like Ressw(linF) it also holds, in particular, for tree-like Res(linF)
with the axioms Im(f), and this makes tree-like Ressw(linF) a useful system, for which
lower bounds against are sufficiently interesting.

5



1.2.1 Lower Bounds and Separations in Characteristic Zero

First, we show that over any field F, whenever α1x1 + · · ·+ αnxn + β = 0 is unsatisfiable
(over 0-1 assignments), it requires dag-like Res(linF) refutations proportional to the image
of the linear form (under 0-1 assignments). Note that α1x1 + · · ·+αnxn +β = 0 expresses
the subset sum principle: α1x1 + · · · + αnxn = −β iff there is a subset of the integral
coefficients αi whose sum is precisely −β. Our result implies an exponential-lower bound
for dag-like Res(linF) refutations, as the following example shows:

Theorem (Theorem 18; Dag-like lower bound). If F is a field of characteristic zero, then
Res(linF) refutations of x1 + 2x2 + · · ·+ 2nxn + 1 = 0 are of size 2Ω(n).

The proof of this theorem introduces a new lower bound argument. Specifically, we
show (see Lemma 17) that every (dag- or tree-like) refutation of a subset sum principle of
the form f + β = 0 can be transformed without much increase in size into a normal form
refutation (in dag- or tree-like, resp.): a derivation of Im(f), combined with a successive
use of resolution with f + β = 0 to derive the empty clause. This then provides the
desired lower bound whenever Im(f) is sufficiently large.

The idea behind the normal form transformation is as follows: given a refutation
in which the only non-Boolean axiom is f + β = 0, we defer all resolution steps using
this axiom. Namely, we mimic the same refutation had we not used resolution with
f +β = 0. We show that in this case, each clause in the resulting refutation is essentially
a weakening of the original clause, possibly weakened by (i.e., is a disjunction with)
disjunct of the form f + b = 0, for some constant b. This concludes the argument, since
the last clause must be such a tautological weakening of the empty clause, but such a
tautology ought to be a weakening of the subset sum principle itself (note that every
proof-line in the transformation is a tautology (over 0-1 assignments), since the only
axioms used throughout the derivation are the Boolean axioms).

Moreover, we prove an exponential-size 2Ω(n) lower bound on tree-like Ressw(linF)
refutations of the pigeonhole principle PHPm

n for every field F (including finite fields).
This extends a previous result by Itsykson and Sokolov [IS14] for tree-like Res(linF2).
Together with the polynomial upper bound for PHPm

n refutations in dag-like Res(linF)
for fields F of characteristic zero demonstrated in [RT08], our results establish a separation
between dag-like Res(linF) and tree-like Ressw(linF) for characteristic zero fields.

Theorem (Theorem 31; Pigeonhole principle lower bounds). Let F be any field. Then

every tree-like Ressw(linF) refutation of ¬PHPm
n has size 2Ω(n−1

2 ).

Theorem (Theorem 16; Raz-Tzameret [RT08]; Short dag-like pigeonhole principle refu-
tations). For every ring R of characteristic zero there exists a Res(linR) refutation of
¬PHPm

n of polynomial size.

To prove Theorem 31, as well as some other lower bounds, we extend the Prover-
Delayer game technique as originated in Pudlak-Impagliazzo [PI00] for resolution, and
developed further by Itsykson-Sokolov [IS14] for Res(linF2), to general rings, including
characteristic zero rings. Specifically, to prove Theorem 31 we need to prove that Delayer’s
strategy from [IS14] is successful over any field. This argument is new, and uses a result
of Alon-Füredi [AF93] about the hyperplane coverings of the hypercube.
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We prove another separation between dag-like Res(linF) and tree-like Ressw(linF), as
follows. We define the image avoidance principle to be:

ImAv (x1 + · · ·+ xn) := {〈x1 + · · ·+ xn 6= k〉}k∈{0,...,n},

where 〈x1 + · · · + xn 6= k〉 :=
∨

k′∈{0,...,n}, k 6=k′ x1 + · · · + xn = k′. In words, the image
avoidance principle expresses the contradictory statement that for every 0 ≤ i ≤ n,
x1 + . . . + xn equals some element in {0, . . . , n} \ i.

Theorem (Corollary 12). For every ring R and every linear form f , there are polynomial-
size Res(linR) refutations of ImAv (f).

Theorem (Theorem 29). Let f = ǫ1x1 + · · · + ǫnxn, where ǫi ∈ {−1, 1} ⊂ F, and let F
be a field of characteristic zero. Then, the following hold:

1. Any tree-like Ressw(linF) refutation of ImAv (f) is of size at least 2
n
4 .

2. Any tree-like Res(linF) derivation of any clause, that is weakening of Im(f) of the
form

∨
a∈X

f = a, is of size at least 2
n
4 .

Together with the above mentioned normal form lemma (Lemma 17) that we establish
for (both dag- and tree-like) refutations of Im(f), we get the following:

Corollary (Corollary 30). Let f and F be as in the previous theorem. Then the shortest
tree-like Res(linF) refutation of f = n + 1 is of size at least 2

n
4 .

The lower bounds in Theorem 29 and Corollary 30 above are novel applications of the
Prover-Delayer game argument, combined with the notion of immunity from Alekhnovich
and Razborov [AR01], as we now explain briefly.

Let f be a linear form as in Theorem 29. We consider two instances of the Prover-
Delayer game: for ImAv (f) and for Im(f). A position in the games is determined by
a set Φ of linear non-equalities of the form g 6= 0, which we think of as the set of
non-equalities learned up to this point by Prover. For each of the two games we define
Delayer’s strategy in such a way that for Φ an end-game position, there is a satisfiable
subset Φ′ = {g1 6= 0, . . . , gm 6= 0} ⊆ Φ such that Φ′ |= f = A for some A ∈ F, and
Delayer earns at least |Φ′| = m coins. Because F is of characteristic zero, it follows
that f ≡ A + 1 (mod 2) |=f 6= A |= g1 · . . . · gm = 0 and thus the n

4
-immunity of f ≡

A + 1(mod 2) ([AR01]) implies m ≥ n
4
. To conclude, we use a standard argument that

shows that if Delayer always earns n
4

coins, then the shortest proof is of size at least 2
n
4 .

Table 1 sums up our knowledge up to this point with respect to characteristic 0 fields.

1.2.2 Lower Bounds and Separations in Finite Fields

We now turn to resolution over linear equations in finite fields. We obtain many new
tree-like lower bounds over finite fields (Table 2), and suggest a hard candidate for dag-
like lower bounds over finite fields, providing as a modest first step towards this goal
a restricted tree-like lower bound for this candidate. We start with the tree-like lower
(and upper) bounds. The hard candidate for dag-like Res(linFp), and the lower bound we
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n∑
i=1

2xi = 1
n∑

i=1

2ixi = −1 ImAv

(
n∑

i=1

xi

)
PHPm

n Im

(
n∑

i=1

xi

)

t-l Res(linF) 2Ω(n) 2Ω(n) 2Ω(n) 2Ω(n) 2Ω(n)

t-l Ressw(linF) poly poly 2Ω(n) 2Ω(n) poly

Res(linF) poly 2Ω(n) poly poly [RT08] poly

Table 1: Lower and upper bounds for fields of characteristic 0. The notation t-l Res(linR) stands
for tree-like Res(linR). The rightmost column describes bounds on derivations, in contract to
refutations.

obtain for this candidate (which is based on the Gilbert bound on linear error correcting
codes) follows.

We have already discussed above lower bounds for the pigeonhole principle which hold
both for infinite and finite fields. We furthermore prove a separation between tree-like
Res(linFpk

) and tree-like Res(linFql
) for every pair of distinct primes p 6= q and every

k, l ∈ N \ {0}. The separating instances are mod p Tseitin formulas TS
(p)
G,σ (written as

CNFs), which are reformulations of the standard Tseitin graph formulas TSG for counting
mod p. Furthermore, we establish an exponential lower bound for tree-like Res(linFpk

) on

random k-CNFs.1

The lower bounds for tree-like Res(linF) for finite fields F are obtained via a variant
of the size-width relation for tree-like Res(linF) together with a translation to polynomial
calculus over the field F, denoted PCF [CEI96], such that Res(linF) proofs of width ω
are translated to PCF proofs of degree ω (the width ω of a clause is defined to be the
total number of disjuncts in a clause). This establishes the lower bounds for the size of
tree-like Res(linF) proofs via lower bounds on PCF degrees.

We show that

ω0(φ ⊢⊥) = O
(
ω0(φ) + log St-l Res(linR)(φ ⊢⊥)

)
,

where ω0 is what we call the principal width, which counts the number of linear equa-
tions in clauses when we treat as identical those defining parallel hyperplanes, and
St-l Res(linR)(φ ⊢⊥) denotes the minimal size of a tree-like Res(linR) refutation of φ.

Specifically, over finite fields the following upper and lower bounds provide exponential
separations:

Theorem (Theorem 37; Size-width relation). Assume φ is an unsatisfiable CNF for-
mula. The following relation between principal width and size holds for tree-like Res(linF):
S(φ ⊢⊥) = 2Ω(ω0(φ⊢⊥)−ω0(φ)). If F is a finite field, then the same relation holds for the
(standard) width of a clause ω.

1We thank Dmitry Itsykson for telling us about the lower bound for random k-CNF for the case of
tree-like Res(linF2

), that was proved by Garlik and Ko lodziejczyk using size-width relations (unpublished
note). Our result extends Garlik and Ko lodziejczyk’s result to all finite fields. Similar to their result, we
use a size-width argument and simulation by the polynomial calculus to establish the lower bound.
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This extends to every field a result by Garlik-Ko lodziejczyk [GK18, Theorem 14] who
showed a size-width relation for a system denoted tree-like PKid

O(1)(⊕), which is a system
extending tree-like Res(linF2) by allowing arbitrary constant-depth De Morgan formulas
as inputs to ⊕ (XOR gates) (though note that our result does not deal with arbitrary
constant-depth formulas).

Theorem (Theorem 38). Let F be a field and π be a Res(linF) refutation of an unsatisfi-
able CNF formula φ. Then, there exists a PCF refutation π′ of (the arithmetization of)
φ of degree ω(π).

Corollary (Corollary 39; Tseitin mod p lower bounds). For any fixed prime p there exists
a constant d0 = d0(p) such that the following holds. If d ≥ d0, G is a d-regular directed
graph satisfying certain expansion properties, and F is a finite field such that char(F) 6= p,

then every tree-like Res(linF) refutation of the Tseitin mod p formula ¬TS
(p)
G,σ has size

2Ω(dn).

Corollary (Corollary 40; Random k-CNF formulas lower bounds). Let φ be a randomly
generated k-CNF with clause-variable ratio ∆, and where ∆ = ∆(n) is such that ∆ =

o
(
n

k−2
2

)
, and let F be a finite field. Then, every tree-like Res(linF) refutation of φ has

size 2
Ω

(

n

∆2/(k−2)
·log∆

)

with probability 1− o(1).

Table 2 shows the results for Res(linR) over finite fields.

Ax = b TS
(−)
G,σ TS

(q)
G,σ random k-CNF PHPm

n

t-l Res(linFpk
) ? poly 2Ω(dn) 2

Ω

(

n

∆2/(k−2)
·log∆

)

2Ω(n)

t-l Res(⊕) poly [IS14] poly [IS14] 2Ω(dn) 2
Ω

(

n

∆2/(k−2)
·log∆

)

[GK18] 2Ω(n)
[IS14]

t-l Ressw(linFpk
) poly poly ? ? 2Ω(n)

Table 2: Lower bounds over finite fields. Here G is d-regular graph and ∆ is the clause density
(number of clauses divided by the number of variables), Ax = b stands for a linear system over
Fpk that has no 0-1 solutions in the first and the third rows, and in the second row the linear

system Ax = b is over F2. The notation TS
(−)
G,σ stands for TS

(p)
G,σ in the first and the third rows

and for TS
(2)
G,σ in the second raw. t-l Res(linR) stands for tree-like Res(linR), and p 6= q are

primes (in the second raw and third column we assume q 6= 2). Circled “?” denotes an open
problem. The results marked with [IS14, GK18] were proved in the corresponding papers. All
other results are from the current work.

Hard Candidate for Dag-Like Lower Bounds over Finite Fields The tree-like
Res(linF) upper bounds for mod p Tseitin formulas in the case char(F) = p stem from
the following proposition:
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Proposition (Proposition 13; Upper bounds on unsatisfiable linear systems). Let F be
a field and assume that the linear system Ax = b, where A is a k × n matrix over F,
has no solutions (over F). Let φ be a CNF formula encoding the linear system Ax = b.
Then, there exist tree-like Res(linF) refutations of φ of size polynomial in the sum of sizes
of encodings of all coefficients in A.

The upper bound in Proposition 13 applies only to linear systems that are unsatisfi-
able over the whole field F. But does any system Ax = b over F that has a satisfying
assignment over F, but not over 0-1 assignments, admit polynomial-size Res(linF) refuta-
tions?

As our dag-like Res(linF) lower bounds described above (Theorem 18) show, in case
char(F) = 0 there exists a 0-1 unsatisfiable family of linear systems f = 0, each linear
system having a single equation f = 0, with coefficients growing exponentially in the
number of variables n, that requires exponential in n dag-like Res(linF) refutations. But
what if F is finite of fixed cardinality q? In this case it is easy to show that the simplest one-
equation instance f = 0 is always 0-1 satisfiable (unless f depends on O(|F|) variables).
Thus, a hard linear system f1 = 0, . . . , fm = 0 over a finite field F must contain several
equations. Moreover, to obtain super-polynomial lower bounds the number of equations
m must satisfy m = ω(log n), as implied by the following upper bound:

Theorem (Theorem 20; Upper bound on 0-1 unsatisfiable linear systems). Let Af1,...,fm :
Fn → Fm be an affine map x 7→ (f1(x), . . . , fm(x)), where f1, . . . , fm are linear forms. If
the system f1 = 0, . . . , fm = 0 is unsatisfiable over 0-1, that is, if 0 /∈ im2(Af1,...,fm x),
then there exists a Res(linF) refutation of this system of size poly(n + |im2(Af1,...,fm x)|).

Our success in proving exponential dag-like lower bounds for linear systems (indeed,
note the the lower bound in Theorem 18 is for a 0-1 unsatisfiable linear system) in char-
acteristic 0 suggests that, possibly, similar lower bounds for finite fields are approachable
as well. However, as of now, we do not have even tree-like lower bounds for linear sys-
tems over finite fields. The complexity of 0-1 unsatisfiable linear systems over a field in
general seems to be poorly understood: for example, to the best of our knowledge, no
lower bound is known for the degree of PCF refutations of linear systems.

We suggest a construction of a linear system, which is a hard candidate for Res(linF)
over finite fields. The instance is constructed specifically to be provably hard for a simple
and natural model of decision trees, which can be simulated both by tree-like Res(linF)
and PCF and reflects a natural strategy to refute 0-1 unsatisfiable linear systems. Such
a strategy for refuting Ax = b can informally be described as follows: select variables
and try to assign them 0-1 values until the system (Ax = b) ↾ρ becomes unsatisfiable
over F, where ρ is the current assignment, and refute it by a polynomial-size refutation,
guaranteed by Proposition 13 (above). Formally, a decision tree for Ax = b is a binary
decision tree, where every leaf is marked with unsatisfiable over F system (Ax = b) ↾ρ,
where ρ consists of variable assignments on the path from the root to the leaf.

The matrix A of the hard candidate is constructed as a generator matrix of a linear
error-correcting (n, k, d)q code, where n is the code length, k is the dimension of the code
space, d is the minimal distance of the code and q = |F|. The parameter k is chosen to
be large enough to ensure that qk > 2n and thus there exists some b such that Ax = b
has no 0-1 solutions. On the other hand, d = Ω( n

logn
) is chosen to be large enough to
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ensure that all the leaves of a decision tree for Ax = b are sufficiently deep in the tree: if
ρ assigns at most k < d variables, then the code generated by A ↾ρ has minimal distance
of at least d−k and therefore A ↾ρ has full rank. The existence of this code is guaranteed
by the Gilbert bound.

Theorem (Theorem 22; Lower bound for decision trees on linear systems). For every
n ∈ N there exists a 0-1 unsatisfiable linear system Ax = b over a finite field Fq, q > 2,

with n variables, such that any decision tree for this system is of size 2Ω( n
logn).

1.2.3 Nondeterministic Linear Decision Trees

There is well-known size preserving (up to a constant factor) correspondence between tree-
like resolution refutations for unsatisfiable formulas φ and decision trees, which solve the
following problem: given an assignment ρ for the variables of φ, determine which clause
C ∈ φ is falsified by querying values of the variables under the assignment ρ. In Itsykson-
Sokolov [IS14] this correspondence was generalized to tree-like Res(⊕) refutations and
parity decision trees. In the current work we initiate the study of linear decision trees
and their properties over different characteristics, extending the correspondence to a
correspondence between tree-like Res(linR) (and tree-like Ressw(linR)) derivations to what
we call nondeterministic linear decision trees (NLDT).

NLDTs for an unsatisfiable set of linear clauses φ are binary rooted trees, where every
edge is labeled with a non-equality f 6= 0 for a linear form f and every leaf is labeled
with a linear clause C ∈ φ, which is violated by the non-equalities on the path from the
root to the leaf. (Note that in the same manner that in a (boolean) decision tree (which
corresponds to a tree-like resolution refutation) we go along a path from the root to a
leaf, choosing those edges that violate a literal xi or ¬xi, in an NLDT we branch along
a path that violates equalities f = 0, or equivalently, certifies non-equalities of the form
f 6= 0.)

Theorem (Theorem 24). If φ is an unsatisfiable CNF formula, then every tree-like
Res(linR) or tree-like Ressw(linR) refutation can be transformed into an NLDT for φ
of the same size up to a constant factor, and vise versa.

2 Preliminaries

2.1 Notation

Denote by [n] the set {1, . . . , n}. We use x1, x2, . . . to denote variables, both propositional
and algebraic. Let f be a linear form (equivalently, an affine function) over a ring R, that
is, a function of the form

∑n

i=1 aixi + a0 with ai ∈ R. We sometimes refer to a linear
form as a hyperplane, since a linear form determines a hyperplane. We denote by im2(f)
the image of f under 0-1 assignments to its variables; 〈f 6= A〉 :=

∨
A 6=B∈im2(f)

(f = B),
where A ∈ R.

For φ a set of clauses or linear clauses (i.e., disjunctions of linear equations; see Section
1.2), vars(φ) denotes the set of variables occurring in φ and let Vars denote the set of all
variables.
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Let A be a matrix over a ring. We introduce the notation Ax + b for a system
of linear non-equalities, where a non-equality means 6= (note the difference between
Ax + b, which stands for Ai · x 6= bi, for all rows Ai in A, and Ax 6= b, which stands for
Ai · x 6= bi, for some row Ai in A).

If f is a linear form over R and A is a matrix over R, denote by |f | the sum of sizes
of encodings of coefficients in f and by |A| the sum of sizes of encodings of elements in
A.

If C = (
∨

i∈[m] fi = 0) is a linear clause, denote by ¬C the set of non-equalities

{fi 6= 0}i∈[m]. Conversely, if Φ = {fi 6= 0}i∈[n] is a set of non-equalities, denote ¬Φ :=∨
i∈[m] fi = 0.

If φ is a set of linear clauses over a ring R and D is a linear clause over R, denote by∧
C∈φ C |= D and

∧
C∈φC |=R D semantic entailment over 0-1 and R-valued assignments

respectively.
Let l be a linear form not containing the variable x. If C is a linear clause, denote

by C ↾x←l the linear clause, which is obtained from C by substituting l for x everywhere
in C. If φ = {Ci}i∈I is a set of clauses, denote φ ↾x←l:= {Ci ↾x←l}i∈I . We define a linear
substitution ρ to be a sequence (x1 ← l1, . . . , xn ← ln) such that each linear form li does
not depend on xi. For a clause or a set of clauses φ we define φ ↾ρ:= (. . . ((φ ↾x1←l1) ↾x2←l2

) . . .) ↾xn←ln .

2.2 Propositional Proof Systems

A clause is an expression of the form l1 ∨ · · · ∨ lk, where li is a literal, where a literal
is a propositional variable x or its negation ¬x. A formula is in Conjunctive Normal
Form (CNF) if it is a conjunction of clauses. A CNF can thus be defined simply as a
set of clauses. The choice of a reasonable binary encoding of sets of clauses allows us
to define the language UNSAT ⊂ {0, 1}∗ of unsatisfiable propositional formulas in CNF.
We sometimes interpret an element in UNSAT as a formula and sometimes as a set of
clauses. Dually, a formula is in Disjunctive Normal Form (DNF) if it is a disjunction of
conjunctions of literals and TAUT is the language of tautological propositional formulas
in DNF. There is a bijection between TAUT and UNSAT, which preserves the size of the
formula, given by negation.

A formula is in k-CNF (resp. k-DNF) if it is in CNF (resp. DNF) and every clause
(resp. conjunct) has at most k literals. k-UNSAT (resp. k-TAUT) is the language of
unsatisfiable (resp. tautological) formulas in k-CNF (resp. k-DNF).

Definition 1 (Cook-Reckhow propositional proof system [CR79]). A propositional proof
system Π is a polynomial time computable onto function Π : {0, 1}∗ → TAUT.

Π-proofs of φ ∈ TAUT are elements in Π−1(φ). Definition 1 can be generalized
to arbitrary languages: proof system for a language L is polynomial time computable
onto function Π : {0, 1}∗ → L. In particular, a refutation system Π is a proof system
for UNSAT. Post-composition with negation turns a propositional proof system into a
refutation system and vise versa.

Denote by S(π), and alternatively by |π|, the size of the binary encoding of a proof
π in a proof system Π. For φ ∈ UNSAT and a refutation system Π denote by SΠ(φ ⊢⊥)
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(we sometimes omit the subscript Π when it is clear from the context) the minimal size
of a Π-refutation of φ.

The resolution system (which we denote also by Res) is a refutation system, based on
the following rule, allowing to derive new clauses from given ones:

C ∨ x D ∨ ¬x (Resolution rule).
C ∨D

A resolution derivation of a clause D from a set of clauses φ is a sequence of clauses
(D1, . . . , Ds ≡ D) such that for every 1 ≤ i ≤ s either Di ∈ φ or Di is obtained from
previous clauses by applying the resolution rule. A resolution refutation of φ ∈ UNSAT
is a resolution derivation of the empty clause from φ, which stands for the truth value
False.

A resolution derivation is tree-like if every clause in it is used at most once as a premise
of a rule. Accordingly, tree-like resolution is the resolution system allowing only tree-like
refutations.

Let F be a field. A polynomial calculus [CEI96] derivation of a polynomial q ∈
F[x1, . . . , xn] from a set of polynomials P ⊆ F[x1, . . . , xn] is a sequence (p1, . . . , ps), pi ∈
F[x1, . . . , xn] such that for every 1 ≤ i ≤ s either pi = x2

j − xj, pi ∈ P or pi is obtained
from previous polynomials by applying one of the following rules:

f g
(α, β ∈ F, f, g ∈ F[x1, . . . , xn])

αf + βg

f
(f ∈ F[x1, . . . , xn]) .

x · f

A polynomial calculus refutation of P ⊆ F[x1, . . . , xn] is a derivation of 1. The degree
d(π) of a polynomial calculus derivation π is the maximal total degree of a polynomial
appearing in it. This defines the proof system PCF for the language of unsatisfiable
systems of polynomial equations over F. It can be turned into a proof system for k-
UNSAT via arithmetization of clauses as follows: (x1 ∨ . . . ∨ xk ∨ ¬y1 ∨ . . . ∨ ¬yl) is
represented as (1− x1) · . . . · (1− xk) · y1 · . . . · yl = 0.

2.3 Hard Instances

2.3.1 Pigeonhole Principle

The pigeonhole principle states that there is no injective mapping from the set [m] to the
set [n] for m > n. Elements of the former and the latter sets are referred to as pigeons and
holes, respectively. The CNF formula, denoted PHPm

n , encoding the negation of this prin-
ciple is defined as follows. Let the set of propositional variables {xi,j}i∈[m],j∈[n] correspond
to the mapping from [m] to [n], that is, xi,j = 1 iff the ith pigeon is mapped to the jth

hole. Then ¬PHPm
n := Pigeonsmn ∪ Holesmn ∈ UNSAT, where Pigeonsmn = {∨j∈[n] xi,j}i∈[m]

are axioms for pigeons and Holesmn = {¬xi,j ∨ ¬xi′,j}i 6=i′∈[m],j∈[n] are axioms for holes.
Weaker (namely, easier to refute) versions of ¬PHPm

n are obtained by augmenting
it with the functionality axioms Funcmn := {¬xi,j ∨ ¬xi,j′}i∈[m],j 6=j′∈[n] (¬FPHPm

n ) or the
surjectivity axioms Surjmn := {∨i∈[m] xi,j}j∈[n] (¬onto-PHPm

n ).
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2.3.2 Mod p Tseitin Formulas

We use the version given in [AR01] (which is different from the one in [BGIP01, RT08]).
Let G = (V,E) be a directed d-regular graph. We assign to every edge (u, v) ∈ E a

corresponding variable x(u,v). Let σ : V → Fp. The Tseitin mod p formulas ¬TS
(p)
G,σ are

the CNF encoding of the following equations for all u ∈ V :

∑

(u,v)∈E

x(u,v) −
∑

(v,u)∈E

x(v,u) ≡ σ(u) mod p . (2)

Note that we use the standard encoding of boolean functions as CNF formulas and the
number of clauses, required to encode these equations is O(2d|V |). ¬TS

(p)
G,σ is unsatisfiable

if
∑

u∈V σ(u) 6≡ 0 mod p. To see this, note that if we sum (2) over all nodes u ∈ V we
obtain precisely

∑
u∈V σ(u) which is different from 0 mod p; but on the other hand, in

this sum over all nodes u ∈ V each edge (u, v) ∈ E appears once with a positive sign as
an outgoing edge from u and with a negative sign as an incoming edge to v, meaning the
the total sum is 0, which is a contradiction.

In particular, ¬TS
(2)
G,σ are the classical Tseitin formulas [Tse68] and TS

(2)
G,1, where 1

is the constant function v 7→ 1 (for all v ∈ V ), expresses the fact that the sum of total
degrees (incoming + outgoing) of the vertices is even.

The proof complexity of Tseitin tautologies depends on the properties of the graph G.
For example, if G is just a union of Kd+1 (the complete graphs on d + 1 vertices), then
they are easy to prove. On the other hand, they are known to be hard for some proof
systems if G satisfies certain expansion properties.

Let G = (V,E) be an undirected graph. For U,U ′ ⊆ V define e(U,U ′) := {(u, u′) ∈
E | u ∈ U, u′ ∈ U ′}. Consider the following measure of expansion for r ≥ 1:

cE(r,G) := min
|U |≤r

e(U, V \U)

|U |

G is (r, d, c)-expander if G is d-regular and cE(r,G) ≥ c. There are explicit constructions
of good expanders. For example:

Proposition 1 (Lubotzky et. al [LPS88]). For any d, there exists an explicit construction
of d-regular graph G, called Ramanujan graph, which is (r, d, d(1− r

n
)−2
√
d− 1)-expander

for any r ≥ 1.

Proposition 2 (Alekhnovich-Razborov [AR01]). For any fixed prime p there exists a
constant d0 = d0(p) such that the following holds. If d ≥ d0, G is a d-regular Ramanujan
graph on n vertices (augmented with arbitrary orientation of its edges) and char(F) 6= p,

then for every function σ such that ¬TS(p)
G,σ ∈ UNSAT every PCF refutation of ¬TS(p)

G,σ

has degree Ω(dn).

2.3.3 Random k-CNFs

A random k-CNF is a formula φ ∼ Fn,∆
k with n variables that is generated by picking

randomly and independently ∆ · n clauses from the set of all
(
n

k

)
· 2k clauses.
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Proposition 3 (Alekhnovich-Razborov [AR01]). Let φ ∼ Fn,∆
k , k ≥ 3 and ∆ = ∆(n) is

such that ∆ = o
(
n

k−2
2

)
. Then every PCF refutation of φ has degree Ω

(
n

∆2/(k−2)·log∆

)

with probability 1− o(1) for any field F.

2.4 Error-correcting codes

Definition 2 ([BBF+06]). Let A : Fk
q →֒ Fn

q be a linear embedding. The image C = im(A)
of A is called (n, k, d)q-code if dH(x, y) ≥ d for any x, y ∈ C, where dH(x, y) = |{i | xi 6=
yi}| is the Hamming distance. The matrix of A is called generator matrix for C.

Theorem 4 (Gilbert bound [BBF+06]). If q is a power of a prime and n, k, d ∈ N, n ≥ k
are such that inequality

d∑

i=1

(
n
i

)
· (q − 1)i < qn−k+1

holds, then there exists an (n, k, d)q-code.

3 Resolution over Linear Equations for General

Rings

In this section we define and outline some basic properties of systems that are exten-
sions of resolution, where clauses are disjunctions of linear equations over a ring R:
(
∑n

i=0 a1ixi + b1 = 0) ∨ · · · ∨ (
∑n

i=0 akixi + bk = 0) (see Section 1.2). Disjunctions of this
form are called linear clauses.

The rules of Res(linR) are as follows (cf. [RT08]):

C ∨ f(x) = 0 D ∨ g(x) = 0
(Resolution) (α, β ∈ R)

C ∨D ∨ (αf(x) + βg(x)) = 0

C ∨ a = 0(Simplification) (0 6= a ∈ R)
C

C(Weakening)
C ∨ f(x) = 0

where f(x), g(x) are linear forms over R and C,D are linear clauses. The Boolean axioms
(which are also linear clauses) are defined as follows:

xi = 0 ∨ xi = 1, for xi a variable

A Res(linR) derivation of a linear clause D from a set of linear clauses φ is a sequence
of linear clauses (D1, . . . , Ds ≡ D) such that for every 1 ≤ i ≤ s either Di ∈ φ or is a
Boolean axiom or the axiom 0 = 0 or Di is obtained from previous clauses by applying
one of the rules above. A Res(linR) refutation of an unsatisfiable set of linear clauses φ
is a Res(linR) derivation of the empty clause (which stands for false) from φ. The size

of a Res(linR) derivation is the total size of all the clauses in the derivation, where the
size of a clause is defined to be the total number of occurrences of variables in it plus the
total size of all the coefficient occurring in the clause. The size of a coefficient when using
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integers (or integers embedded in characteristic zero rings) will be the standard size of
the binary representation of integers.

In this definition we assume that R is a non-trivial (R 6= 0) ring such that there are
polynomial-time algorithms for addition, multiplication and taking additive inverses.

Along with size, we will be dealing with two complexity measures of derivations: width
and principal width.

Definition 3. A clause C = (f1 = 0∨· · ·∨fm = 0) has width ω(C) = m and principal

width ω0(C) =
∣∣{fi}i∈[m]/∼

∣∣ where ∼ identifies R-linear forms fi = 0 and fj = 0 if they
define parallel hyperplanes, that is, if fi = Afj + B or fj = Afi + B for some A,B ∈ R.
For µ ∈ {ω, ω0}, the measure µ associated with a Res(linR) derivation π = (D1, . . . , Ds)
is µ(π) := max1≤i≤s µ(Di). For φ ∈ UNSAT, denote by µ(φ ⊢⊥) the minimal value of
µ(π) over all Res(linR) refutations π.

Proposition 5. Res(linR) is sound and complete. It is also implicationally complete,
that is if φ is a set of linear clauses and C is a linear clause such that φ |= C, then there
exists a Res(linR) derivation of C from φ.

Proof: The soundness can be checked by inspecting that each rule of Res(linR) is sound.
Implicational completeness (and thus completeness) follows from Proposition 25.

We now define two systems of resolution with linear equations over a ring, where some
of the rules are semantic: Ressw(linR) and Sem-Res(linR). Ressw(linR) is obtained from
Res(linR) by replacing the boolean axioms with 0 = 0, discarding simplification rule and
replacing the weakening rule with the following semantic weakening rule:

C(Semantic weakening) (C |= D)
D

The system Sem-Res(linR) has no axioms except for 0 = 0, and has only the following
semantic resolution rule:

C C ′(Semantic resolution) (C ∧ C ′ |= D)
D

It is easy to see that Res(linR) ≤p Ressw(linR) ≤p Sem-Res(linR), where P ≤p Q
denotes that Q polynomially simulates P .

In contrast to the case R = F2 (see [IS14]), for rings R with char(R) /∈ {1, 2, 3} both
Ressw(linR) and Sem-Res(linR) are not Cook-Reckhow proof systems, unless P = NP:

Proposition 6. The following decision problem is coNP-complete: given a linear clause
over a ring R with char(R) /∈ {1, 2, 3} decide whether it is a tautology under 0-1 assign-
ments.

Proof: Consider a 3-DNF φ and encode every conjunct (xσ1
i1
∧ · · · ∧ xσk

ik
) ∈ φ, 1 ≤ k ≤

3, σi ∈ {0, 1} as the equation (1− 2σ1)x1 + · · ·+ (1− 2σk)xk = k− (σ1 + · · ·+ σk), where
x0 := x, x1 := ¬x. Then φ is tautological if and only if the disjunction of these linear
equations is tautological (that is, for every 0-1 assignment to the variables at least one
of the equations hold, when the equations are computed over a ring with characteristic
zero or finite characteristic bigger than 3).
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We leave it as an open question to determine the complexity of verifying a correct
application of the semantic weakening in case char(R) = 3 or in case char(R) = 2 and
R 6= F2. In the case R = F2 the negation of a clause is a system of linear equations
and thus the existence of solutions for it can be checked in polynomial time. Therefore
Ressw(linF2) is a Cook-Reckhow propositional proof system. The definitions of Res(linF2),
Ressw(linF2) and Sem-Res(linF2) coincide with the definitions of syntactic Res(⊕), Res(⊕)
and Ressem(⊕) from [IS14], respectively2. As showed in [IS14], Res(linF2), Ressw(linF2)
and Sem-Res(linF2) are polynomially equivalent.

We now show that if char(R) /∈ {1, 2, 3}, then Ressw(linR) is polynomially bounded
as a proof system for 3-UNSAT (that is, admits polynomial-size refutation for every
instance):

Proposition 7. If char(R) /∈ {1, 2, 3}, then dag-like Ressw(linR) and tree-like Sem-
Res(linR) are polynomially bounded (not necessarily Cook-Reckhow) propositionally
proof systems for 3-UNSAT.

Proof: Let φ(x1, . . . , xn) = {Ci}i∈[m] ∈ 3-UNSAT. Given C = (xσ1
j1
∨ . . . ∨ xσk

jk
) define

lin(¬C) := ((2σ1 − 1)xj1 + . . . + (2σk − 1)xjk − (σ1 + . . . + σk)) where σi ∈ {0, 1}, jl ∈
[n], x0 := x, x1 := ¬x. The linear clause lin(¬φ) :=

∨
i∈[m] lin(¬Ci) = 0 is a tautology

(under 0-1 assignments) and thus can be derived in Ressw(linR) in a single step as a
weakening of 0 = 0 or resolving 0 = 0 with 0 = 0 in tree-like Sem-Res(linR).

In tree-like Sem-Res(linR) the disjunct lin(¬Ci) = 0 can be eliminated from lin(¬φ)
by a single resolution with Ci, thus the empty clause is derived by a sequence of m
resolutions of lin(¬φ) with C1, . . . , Cm.

Similarly, the disjuncts lin(¬Ci) = 0 are eliminated from lin(¬φ) in Ressw(linR), but
with a few more steps. Let D0 be the empty clause and Ds+1 := Ds ∨ lin(¬Cs+1) =
0, 0 ≤ s < m. Assume Ds+1 is derived and assume without loss of generality, that
Cs+1 = (x1 = 1 ∨ . . . ∨ xk = 1) and thus lin(¬Cs+1) = (−x1 − . . .− xk). Derive Ds

as follows. Resolve Ds+1 with Cs+1 on lin(¬Cs+1) + (xk − 1) to get the clause E1 :=
Ds ∨ (−x1 − . . .− xk−1 − 1) = 0∨ x1 = 1∨ . . .∨ xk−1 = 1 and apply semantic weakening
to get E ′1 := Ds∨x1 = 1∨ . . .∨xk−1 = 1. Resolve Ds+1 with E ′1 on lin(¬Cs+1)+(xk−1−1)
and apply semantic weakening to get the clause E ′2 := Ds∨x1 = 1∨ . . .∨xk−2 = 1. After
k steps the clause Ds = E ′k can be derived.

The following proposition is straightforward, but useful as it allows, for example, to
transfer results about Res(linQ) to Res(linZ).

Proposition 8. If R is an integral domain and Frac(R) is its field of fractions, then
Res(linR) is equivalent to Res(linFrac(R)) and tree-like Res(linR) is equivalent to tree-like
Res(linFrac(R)).

Proof: Every proof in Res(linR) is also a proof in Res(linFrac(R)). To get the con-
verse, just multiply every line by the least common multiple of all the coefficients
in the Res(linFrac(R)) proof. If a1, . . . , aN ∈ R is the list of denominators of all
the coefficients in a Res(linFrac(R)) proof π, then under a reasonable encoding of R:
|lcm(a1, . . . , aN)| ≤ |a1| + · · · + |aN | ≤ |π|. Therefore the corresponding Res(linR) proof
is of size at most O(|π|2).

2There is, however, one minor difference in the formulation of syntactic Res(⊕) and Res(linF2
): the

former does not have the boolean axioms, but has an extra rule (addition rule).
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3.1 Basic Counting in Res(linR) and Ressw(linR)

Here we introduce several unsatisfiable sets of linear clauses that express some counting
principles, and serve to exemplify the ability of dag-like Res(linR), tree-like Res(linR) and
tree-like Ressw(linR) to reason about counting, for a ring R. We then summarize what
we know about refutations of these instance in our different systems, proving along the
way some upper bounds and stating some lower bounds proved in the sequel.

Our unsatisfiable instances are the following:

Linear systems: If A = (B|b) is an m× (n+ 1) matrix over R, where the B sub-matrix

consists of the first n columns, such that Bx = b has no 0-1 solutions, then (Bi is
the ith row in B):

LinSys(A) := {Bi · x = bi}i∈[m] . (3)

Subset Sum: Let f be a linear form over R such that 0 /∈ im2(f). Then,

SubSum(f) := {f = 0} . (4)

Image avoidance: Let f be a linear form over R and recall the notation 〈f 6= A〉 from
Sec. 2.1. We define

ImAv (f) := {〈f 6= A〉 : A ∈ im2(f)} . (5)

We also consider the following (tautological) generalization of the Boolean axiom
x = 0 ∨ x = 1.

Image axiom: For f a linear form, define

Im(f) :=
∨

A∈im2(f)

f = A . (6)

The complexity of Res(linR) derivations of Im(f) clauses is related to the complexity
of Res(linR) refutations of SubSum(f): we prove that out of any refutation of SubSum(f)
a derivation of Im(f) of the same size (up to a constant) can be constructed (Lemma 17)
and vise versa (proof of Proposition 10).

Dag-like Res(linR)

Upper bounds. For any given linear form f , Im(f) has a Res(linR)-derivation of
polynomial-size (in the size of Im(f)):

Proposition 9. Let f =
∑n

i=1 aixi + b be a linear form over R. There exists a Res(linR)
derivation of Im(f) of size polynomial in |Im(f)| and of principal width at most 3.

Proof: We construct derivations of Im
(∑k

i=1 aixi + b
)
, 0 ≤ k ≤ n, inductively on k.

Base case: k = 0. In this case Im(b) is just the axiom b = b and thus derived in one step.
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Induction step: Let fk :=
∑k

i=1 aixi + b and assume Im(fk) was already derived.

Derive C0 :=
(∨

A∈im2(fk)
fk + ak+1xk+1 = A

)
∨ xk+1 = 1 from Im(fk) by |im2(fk)|

many resolution applications with xk+1 = 0 ∨ xk+1 = 1. Similarly derive C1 :=(∨
A∈im2(fk)

fk + ak+1xk+1 = A + ak+1

)
∨ xk+1 = 0 and obtain Im(fk+1) by resolving C0

with C1 on xk+1. The size of the derivation is n · |Im(f)|, and as there is no clause with
more than 3 equations that determines non-parallel hyperplanes, hence the principal
width of the derivation is at most 3.

Proposition 10. For every linear form f such that 0 /∈ im2(f), the contradiction
SubSum(f) admits Res(linR) refutation of size polynomial in |Im(f)|.

Proof: First construct the shortest derivation of Im(f), and then by a sequence of |im2(f)|
many application of the resolution rule with f = 0 derive the empty clause. By Proposi-
tion 9 the resulting refutation is of polynomial in |Im(f)| size.

Proposition 11. Let f be a linear form over R, a ∈ im2(f) and φ = {〈f 6= b〉}b∈im2(f), b 6=a.
Then there exists Res(linR) derivation π of f = a from φ, such that S(π) = poly(|φ|) and
ω0(π) ≤ 3.

Proof: Let A1, . . . , AN = a be an enumeration of all the elements in im2(f). By Propo-
sition 9 there exists a derivation of

(∨
i≥1 f = Ai

)
of principal width at most 3. For

1 < k < N , we derive C :=
(∨

i≥k+1 f = Ai

)
from

(∨
i≥k f = Ai

)
= (C ∨ f = Ak) and

〈f 6= Ak〉 = (C ∨ f = A1 ∨ · · · ∨ f = Ak−1) in k − 1 steps as follows: at the sth step we
get (C ∨ f − f = As−Ak ∨ f = As+1∨ · · · ∨ f = Ak−1) = (C ∨ f = As+1∨ · · · ∨ f = Ak−1)
by resolving C ∨ f = As ∨ · · · ∨ f = Ak−1 with C ∨ f = Ak. We thus obtain a derivation
of principal width ω0 ≤ 3 and of size (1 + · · ·+ (N − 2))|f | = (N−1)(N−2)

2
|f |.

Corollary 12. For every linear form f the contradiction ImAv (f) admits polynomial-size
Res(linR) refutations.

Proof: Pick some a ∈ im2(f). By Proposition 11 there is a derivation of f = a from
ImAv (f) of polynomial size. This derivation can be extended to a refutation of ImAv (f)
by a sequence of resolution rule applications of f = a with 〈f 6= a〉 ∈ ImAv (f).

The only Res(linR) upper bounds for LinSys(A) we have so far are tree-like. So for
LinSys(A) we refer the reader to the tree-like Res(linR) upper bounds further in this
section.

Lower bounds. In Sec. 4.1 we prove an exponential lower bound for SubSum(f) in case f
is a linear form with large coefficients (Theorem 18).

Tree-like Res(linR)

Upper bounds. In case R is a finite ring, in Sec. 5.1 we prove that the clauses in Im(f)
admit derivations of polynomial size (Theorem 26). Obviously, in that case (R is finite)
any unsatisfiable R-linear equation f = 0 has at most |R| variables and SubSum(f) are
always refutable in constant size. In case R is a field of characteristic zero we prove a
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lower bound for Im(f), SubSum(f) and ImAv (f) for a specific f with small coefficients
(see the lower bounds below).

In case a matrix A = (B|b) with entries in a field F defines a system of equations
Bx = b, that is unsatisfiable under arbitrary F-valued assignments (not just under 0-1
assignments), we prove a polynomial upper bound for tree-like Res(linF) refutations of
LinSys(A).

Proposition 13. If a m × (n + 1) matrix A = (B|b) with entries in a field F is such
that Bx = b has no F-valued solutions, then there exists tree-like Res(linF) refutation of
LinSys(A) of linear size.

Proof: It is a well-known fact from linear algebra that Bx = b has no F-valued solutions
iff there exists α ∈ Fm such that αTB = 0 and αT b = 1. Therefore, by m− 1 resolutions
of B1x−b1 = 0, . . . , Bmx−bm = 0 we can derive −α1(B1x−b1)− . . .−αm(Bmx−bm) = 0,
which is 1 = 0.

Lower bounds. Let F be a field of characteristic zero. In Sec. 4.1 we prove tree-
like Res(linF) exponential-size lower bounds for derivations of Im(f) and refutations of
SubSum(f) and ImAv (f) whenever f is of the form f = ǫ1x1 + . . . + ǫnxn − A for some
ǫi ∈ {−1, 1}, A ∈ F (Proposition 29 and Corollary 30).

Tree-like Ressw(linR)

Upper bounds. Most of the instances above admit short derivations/refutations in
tree-like Ressw(linR): Im(f) is semantic weakening of 0 = 0 and thus derivable in one
step; The empty clause is a semantic weakening of SubSum(f) and LinSys(A) and thus
can be refuted via deriving

∨
i∈[m]〈Aix − bi 6= 0〉 as a semantic weakening of 0 = 0 and

resolving it with equalities in LinSys(A) = {Aix− bi = 0}i∈[m].
Lower bounds. In case F is a field of characteristic zero, ImAv (f) are hard even for
tree-like Ressw(linR) whenever f is of the form f = ǫ1x1 + . . . + ǫnxn − A for some
ǫi ∈ {−1, 1}, A ∈ F (Proposition 29).

3.2 CNF Upper Bounds for Res(linR)

In this section we outline two basic polynomial upper bounds, which we use to establish
our separations in subsequent sections: short tree-like Res(linR) refutations for CNF
encodings of linear systems over a ring R, and short Res(linR) refutations for ¬PHPm

n .
Together with our lower bounds, these imply the separation between tree-like Res(linF)
and tree-like Res(linF′), where F,F′ are fields of positive characteristic such that char(F) 6=
char(F′). The short refutation of the pigeonhole principle will imply a separation between
dag-like and tree-like Res(linF) for fields F of characteristic 0.

In what follows we consider standard CNF encodings of linear equations f = 0 where
the linear equations are considered as Boolean functions (i.e., functions from 0-1 assign-
ments to {0, 1}); we do not use extension variable in these encodings.

Proposition 14. Let F be a field and Ax = b be a system of linear equations that has no
solution over F, where A is k×n matrix with entries in F, and Ai denotes the ith row in A.
Assume that φi is a CNF encoding of Ai ·x− bi = 0, for i ∈ [k]. Then, there exists a tree-
like Res(linF) refutation of φ = {φi}i∈[k] of size polynomial in |φ|+∑

i∈[k]

∣∣Ai ·x− bi = 0
∣∣.
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Proof: The idea is to derive the actual linear system of equations from their CNF encod-
ing, and then refute the linear system using a previous upper bound (Proposition 13).

If ni is the number of variables in Ai ·x−bi = 0, then |φi| = Θ(2ni). By Proposition 25
proved in the sequel there exists a tree-like Res(linF) derivation of Ai · x− bi = 0 from φi

of size O(2ni |Ai · x− bi = 0|) = O(|φi| ·
∣∣Ai · x− bi = 0

∣∣).
By Proposition 13 there exists a tree-like Res(linF) refutation of

{Ai · x− bi = 0}i∈[k] of size O
(∑

i∈[k] |Ai · x− bi = 0|
)

. The total size of

the resulting refutation of φ is O
(∑

i∈[k]

∣∣φi| · |Ai · x− bi = 0
∣∣
)

and thus is

O

((∑
i∈[k] |φi|+

∑
i∈[k] |Ai · x− bi = 0|

)2
)

= O

((
|φ|+ ∑

i∈[k] |Ai · x− bi = 0|
)2
)

.

As a corollary we get the polynomial upper bound for the Tseitin formulas (see
Sec. 2.3.2 for the definition):

Theorem 15. Let G = (V,E) be a d-regular directed graph, p a prime number, σ : V →
Fp such that

∑
u∈V σ(u) 6≡ 0 (mod p), then ¬TS

(p)
G,σ admit tree-like Res(linFp) refutations

of polynomial size.

Proof: ¬TS
(p)
G,σ is an unsatisfiable system of linear equations over Fp (note that no assign-

ment of F-elements to the variables in ¬TS
(p)
G,σ is satisfying, and so we do not need to use

the (non-linear) Boolean axioms to get the unsatisfiability of the system of equations).

Therefore, by Proposition 14 there exists a tree-like Res(linFp) refutation of ¬TS
(p)
G,σ of

polynomial size.

Theorem 16 ([RT08]). Let R be a ring such that char(R) = 0. There exists a Res(linR)
refutation of ¬PHPm

n of polynomial size.

Proof: This follows from the upper bound of [RT08] for Res(linZ) and the fact that any
Res(linZ) proof can be interpreted as Res(linR) if R is of characteristic 0.

4 Dag-Like Lower Bounds

4.1 Dag-Like Lower Bounds for the Subset Sum Principle

One straightforward way to refute SubSum(f), namely f = β for β outside the image of f ,
in (either dag- or tree-like) Res(linR) is this: first use the Boolean axioms to derive Im(f),
and then apply resolution with f = β to cut all equations in Im(f) (see, for example,
Proposition 10). In this section we prove (Lemma 17) that if F is a field, then this is
essentially the only way to refute SubSum(f). As a corollary, this establishes (Theorem
18) an exponential lower bound for dag-like Res(linF) refutations of SubSum(f), for every
f with exponentially large |Im(f)|.

Note that for |Im(f)| to be exponentially large, the values of the coefficients in f
must also be exponentially large. In the next section we will prove an exponential
lower bound for tree-like Res(linF) derivations of Im(f) for an f with small coefficients,
which by Lemma 17 implies exponential lower bounds on tree-like Res(linF) refutations
of SubSum(f).
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Lemma 17 (Normal form transformation). Let f = 0 be a single unsatisfiable linear
equation over some field F. Then, every Res(linF) (resp. tree-like Res(linF)) refutation of
f = 0 can be transformed into the following derivation with the same size, up to a linear
in the size of f factor: a Res(linF) (resp. tree-like Res(linR)) derivation of a weakening of
Im(f) from the Boolean axioms followed by a sequence of applications of the resolution rule
with f = 0 and the simplification rule. This weakening of Im(f) is of the form

∨
a∈A

f = a,

where 0 /∈ A.

Proof: Let π = (D1, . . . , DN) be a shortest Res(linF) refutation of f = 0 and let n be the
number of variables in f and A the size of the largest coefficient in f (where size here
is the bit-size of the binary representation of A). We construct a derivation π̂ of Im(f)
of size O(A · n · S2(π)), followed by a sequence of applications of the resolution rule with
f = 0 that eliminate all the disjuncts in Im(f) (so that π̂ combined with the eliminations
of the disjuncts in Im(f) forms the final refutation). The derivation π̂ is achieved by
eliminating all applications of resolution with f = 0 from π.

Formally, we proceed by induction on k to prove the following:

Induction statement: If π≤k := (D1, . . . , Dk) is the sequence of first k proof-lines in π,

then there exists a Res(linF) derivation π̂k = (D̂1, . . . , D̂l), for some l ≤ k, such that:

1. π̂k contains no application of the resolution rule with f = 0;

2. there is a (total) injective map τ : [l] → [k] such that if Dτ(i) is
∨

t∈[m] gt = 0, for

i ∈ [l], then

D̂i =


 ∨

t∈[m]

gt + atf = 0 ∨
∨

t∈[s]

f + bt = 0


 ,

for some a1, . . . , am ∈ F and b1, . . . , bs ∈ F∗. In other words, D̂i can be viewed as a
weakening of Dτ(i) with equations of the form f − bt = 0, and with atf added to all
the linear equations in Dτ(i).

We assume without loss of generality that π does not contain applications of the
weakening rule and whenever the simplification rule is used to derive D from D ∨ a =
0, a ∈ F∗, in π, everywhere further in π the clause D ∨ a = 0 is never used as a premise,
rather the simplified clause D is used instead.

Before proving the induction statement above, we now argue that this statement
concludes the proof of the lemma. We need the following simple claim, which is evident
by a simple inspection of the inductive construction of π̂≤k below:

Claim. Every Di in π has a corresponding clause according to τ in π̂, apart from those
clauses in π whose all predecessors in the proof are (possibly a weakening of) f = 0.3

Suppose that the number of lines in π is r. Since π is a refutation, the last linear
clause Dr in π is the empty clause. Since, the empty clause is not semantically implied
by f = 0 (over F-elements)4, it must be that the empty clause has a corresponding source
according to τ . Hence, the last linear clause in π̂≤r is a disjunction of equations of the

3A weakening of f = 0 is af = 0, for a ∈ F.
4Note that we must use both the Boolean axioms and f = 0 to semantically imply False.
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form atf = 0 or f +bt = 0, for scalars at, bt. Since π̂≤r is a legitimate Res(linF) derivation,
where the only axioms used are the Boolean ones, by soundness of Res(linF) it must hold
that this last clause in π̂≤r is a tautology (i.e., always holds over 0-1 assignments), which
means that it must be a weakening of SubSum(f).

Base case: If D1 6= (f = 0), then let D̂1 = D1 and τ : [1]→ [1] be the identity. Otherwise
let π̂1 be empty.
Induction step: Assume 1 ≤ k < N , and assume that π≤k = (D1, . . . , Dk), π̂k =

(D̂1, . . . , D̂l), l ≤ k and τ : [l] → [k] satisfy the conditions above. Consider the possi-
ble cases in which Dk+1 is derived:
Case 1: Axiom Dk+1 = (f = 0). Let π̂k+1 := π̂k.

Case 2: Boolean axiom Dk+1 = (x = 0 ∨ x = 1). Let π̂k+1 := (D̂1, . . . , D̂l, Dk+1) and
τ(l + 1) := k + 1.
Case 3: Resolution of Di = (

∨
t∈[m] gt = 0 ∨ h = 0), i ≤ k, with Dj = (

∨
t∈[m′] g

′
t =

0 ∨ h′ = 0), j ≤ k, yielding:

Dk+1 =


 ∨

t∈[m]

gt = 0 ∨
∨

t∈[m′]

g′t = 0 ∨ αh + βh′ = 0


 , α, β ∈ F .

If i, j are both not in the image of τ , then let π̂k+1 := π̂k.
If exactly one of i, j is in the image of τ , then assume without loss of generality

that i is in the image of τ . It must hold that Dj = (h′ = 0) = (f = 0), and we let

D̂l+1 = D̂τ−1(i) and τ(l+ 1) := k+ 1, where D̂τ−1(i) = (
∨

t∈[m] gt +atf = 0∨∨t∈[s] f + bt =

0 ∨ (αh + βh′)− βf = 0).

If i, j both are in the image of τ , then we have D̂τ−1(i) = (
∨

t∈[m] gt + atf = 0 ∨ h +

am+1f = 0 ∨ ∨
t∈[s] f + bt = 0) and D̂τ−1(j) = (

∨
t∈[m′] g

′
t + a′tf = 0 ∨ h′ + a′m′+1f = 0 ∨∨

t∈[s′] f + b′t = 0). Let

D̂l+1 :=

( ∨

t∈[m]

gt + atf = 0 ∨
∨

t∈[m′]

g′t + a′tf = 0 ∨
∨

t∈[s]

f + bt = 0

∨
∨

t∈[s′]

f + b′t = 0 ∨ αh + βh′ + (αam+1 + βa′m′+1)f = 0

)

and τ(l + 1) := k + 1.
Case 4: The clause Dk+1 = (

∨
t∈[m] gt = 0) is the result of a simplification of Di =

(
∨

t∈[m] gt = 0 ∨ a = 0), for a ∈ F∗ and i ∈ [k]. It must hold that i is in the image of

τ and if D̂τ−1(i) = (
∨

t∈[m] gt + atf = 0 ∨ ∨
t∈[s] f + bt = 0 ∨ a + am+1f = 0) we define

D̂l+1 := D̂τ−1(i) and τ(l + 1) := k + 1.

As a corollary we obtain the following dag-like Res(linF) lower bound:

Theorem 18. Let F be a field. The size of the shortest (dag-like) Res(linF) refutation
of SubSum(f) is lower bounded by |Im(f)|. In particular, if char(F) = 0 the shortest
Res(linF) refutation of SubSum(x1 + 2x2 + · · ·+ 2nxn + 1) is of size 2Ω(n).
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4.2 Towards Dag-Like Lower Bounds on Linear Systems over

Finite Fields

In this section we extend some of the results for the case of a single 0-1 unsatisfiable
equation f = 0 (Subset Sum) to the case of arbitrary 0-1 unsatisfiable linear systems
f1 = 0, . . . , fm = 0 over arbitrary fields, including finite fields. Firstly, we show that
refutations of f1 = 0, . . . , fm = 0 admit a normal form, generalising the normal form in
Lemma 17. Both for dag- and tree-like lower bounds for f = 0 we used the normal form
transformation to reduce proving a lower bound for refutations of f = 0 to proving a
lower bound for derivations of Im(f). The similar step might be useful for proving bounds
on general linear systems. Secondly, we prove an upper bound, which is polynomial in
|im2(Ax)|, where A = Af1,...,fm : Fn → Fm is affine map x 7→ (f1(x), . . . , fm(x)). In
contrast to the case of a single equation f = 0, the size of the image |im2(Ax)| does
not fully characterise the size of the shortest Res(linF) refutation of f1 = 0, . . . , fm = 0:
there is an example, where |im2(Ax)| is large, but S(f1 = 0, . . . , fm = 0 ⊢ ∅) is small.
We conclude this section with a superpolynomial lower bound on linear systems for a
restricted tree-like Res(linF).

4.2.1 Normal Form and An Upper Bound

Denote by 〈Af1,...,fm x 6= 0〉 the linear clause (〈f1 6= 0〉 ∨ · · · ∨ 〈fm 6= 0〉). The clause
〈Af1,...,fm x 6= 0〉 is a tautology iff the system f1 = 0, . . . , fm = 0 is 0-1 unsatisfiable.
Therefore, any 0-1 unsatisfiable system f1 = 0, . . . , fm = 0 can be refuted by first deriving
〈Af1,...,fm x 6= 0〉 from Boolean axioms and then resolving it with f1 = 0, . . . , fm = 0. In
Proposition 19 below we prove that any refutation π of f1 = 0, . . . , fm = 0 can be
transformed into a refutation of this form and of size polynomial in |π|+ |Im(f1)|+ · · ·+
|Im(fm)|. In case |Im(fi)| are polynomially bounded for all i ∈ [m] and, specifically, when
the coefficients of fi are small, this implies that the normal form is at most polynomially
larger than the original refutation.

Proposition 19 (Normal form transformation for linear systems). Let F be any field and
π be a Res(linF) refutation of f1 = 0, . . . , fm = 0. Then there exists a Res(linF) derivation
π′ of 〈Af1,...,fm x 6= 0〉 of size poly(|π|+ |Im(f1)|+ · · ·+ |Im(fm)|).

Proof: By Proposition 9 there exist derivations π0
i : ⊢ Im(fi) of size poly(|Im(fi)|) for all

i ∈ [m]. An application of weakening to Im(fi) extends π0
i to a derivation πi : ⊢ (fi =

0 ∨ 〈Af1,...,fm x 6= 0〉) for each i ∈ [m]. Composition of {πi}i∈[m] with π ∨ 〈Af1,...,fm x 6= 0〉
results in a derivation of 〈Af1,...,fm x 6= 0〉 of size poly(|π|+ |Im(f1)|+ · · ·+ |Im(fm)|).

We now prove an upper bound for derivations of 〈Ax 6= 0〉 in terms of |im2(Ax)|.

Theorem 20. Let f1 = 0, . . . , fm = 0 be a 0-1 unsatisfiable system with n variables.
There exists a derivation of 〈Af1,...,fm x 6= 0〉 of size poly(n + |im2(Af1,...,fm x)|).

Proof: We arrange the derivation in n layers L0, . . . , Ln in such a way that L0 :=
{〈Af1,...,fm x 6= 0〉} and

Lk := {(〈f1 ↾x1←ǫ1,...,xk←ǫk 6= 0〉 ∨ . . . ∨ 〈fm ↾x1←ǫ1,...,xk←ǫk 6= 0〉)}ǫ∈{0,1}k
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It is easy to see, that the following map is an embedding Lk →֒ im2(Af1,...,fm x):

(〈f1 ↾x1←ǫ1,...,xk←ǫk 6= 0〉 ∨ . . . ∨ 〈fm ↾x1←ǫ1,...,xk←ǫk 6= 0〉) 7→
(f1(ǫ1, . . . , ǫk, 0, . . . , 0), . . . , fm(ǫ1, . . . , ǫk, 0, . . . , 0))

Therefore |Lk| ≤ |im2(Af1,...,fm x)|.
It remains to note that every clause in Lk can be derived from clauses in Lk+1 in

O(|im2(Af1,...,fm x)|) steps. Indeed, if C ∈ Lk, then C ↾xk+1←0∈ Lk+1 and C ↾xk+1←1∈ Lk+1,
and C can be derived from C ↾xk+1←0 and C ↾xk+1←1 and the axiom (xk+1 = 0∨xk+1 = 1)
in a standard way.

Remark 21. In contrast to the case of a single equation, dag-like Res(linF) refutations
of f1 = 0, . . . , fm = 0 for m ≥ 2 are not lower-bounded by |im2(Af1,...,fm x)| in general.
For example, the system x1 − 2xn+1 = 0, xn − 2x2n = 0, x2n+1 + xn+1 + . . . + x2n − 2 = 0
has refutation of size O(n), but |im2(Af1,...,fm x)| = 2Ω(n).

4.2.2 Lower Bound for Restricted Tree-Like Res(linF)

We define the following natural model of decision trees, certifying 0-1 unsatisfiability of
linear systems over F:

Definition 4. Let Ax = b be a 0-1 unsatisfiable linear system over F. A decision tree T
for Ax = b is a binary tree, such that:

• Every internal node is labelled with a variable xi and two branches correspond to
assignments xi ← 0 and xi ← 1.

• If ρv is the variable assignment made along the path from the root to a leaf v, the
system (Ax = b) ↾ρv is unsatisfiable over the whole field F (not just over 0-1).

It is easy to see that this model of decision trees can be simulated by tree-like Res(linF).
We argue that this model captures the strength of a natural fragment of tree-like Res(linF).
If T is a decision tree for the system f1 = 0, . . . , fm = 0 then a corresponding tree-like
proof π for every leaf v in T derives the set of clauses






fk ↾ρv= 0 ∨

∨

i∈[n]|ρv(i) 6=∗

xi = 1− ρv(i)







k∈[m]

where ρv : [n] 7→ {0, 1, ∗} (ρv(i) = ∗ iff xi is unassigned) is the assignment at v. By the
leaf condition in Definition 4 the system f1 ↾ρv= 0, . . . , fm ↾ρv= 0 is unsatisfiable over
F, therefore there exist a1, . . . , am ∈ F such that a1f1 ↾ρv + · · · + amfm ↾ρv= 1 and the
proof π uses this to derive further the clause

∨
i∈[n]|ρv(i) 6=∗

xi = 1 − ρv(i) from the clauses

above for every leaf v. This is the only place, where counting is essentially used in π,
the rest of the proof is just a standard resolution refutation obtained from T by the well-
known correspondence between decision trees and tree-like resolution refutations. It is an
interesting question whether this fragment is strictly weaker than full tree-like Res(linF).

We now prove a sub-exponential lower bound for this model and, consequently, for
the corresponding fragment of tree-like Res(linF).
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Theorem 22. For every n ∈ N there exists a 0-1 unsatisfiable linear system Ax = b
over a finite field Fq, q > 2 with n variables such that any decision tree for this system is

of size 2Ω( n
logn).

Proof: We construct the matrix A as a generator matrix of a linear (n, k, d)q = (n, n
log q

+

1,Ω( n
log n

))q error-correcting code (Definition 2).

The condition k > n
log q

, which this code satisfies, assures that qk > 2n and therefore

there exists b ∈ Fk
q such that Ax = b is 0-1 unsatisfiable.

Note that depths of all leaves in any decision tree for Ax = b are at least d. Indeed,
if k < d variables are substituted at v by ρv, then the minimal distance of the code,
generated by A ↾ρv , is at least d− k and, in particular, A ↾ρv has full rank, therefore v is

not a leaf. Thus any decision tree for Ax = b has size at least 2d = 2Ω( n
logn

).
The existence of such a code is guaranteed by the Gilbert bound (Theorem 4). Recall

that the Gilbert bound claims the existence of a linear (n, k, d)q code whenever

d∑

i=1

(
n
i

)
· (q − 1)i < qn−k+1

holds. In our case, if we assign d = n
10 logn

:

d∑

i=1

(
n
i

)
· (q − 1)i < d · q

d logn
log q · qd ≤ n

10 log n
· qn( 1

10 log q
+ 1

logn
) < qn(1−

1
log q

)+1 .

5 Tree-Like Lower Bounds

5.1 Nondeterministic Linear Decision Trees

In this section we extend the classical correspondence between tree-like resolution refuta-
tions and decision trees (cf. [BKS04]) to tree-like Res(linR) and tree-like Ressw(linR). We
define nondeterministic linear decision trees (NLDT), which generalize parity decision
trees, proposed in [IS14] for R = F2, to arbitrary rings. We shall use these trees in the
sequel to establish some of our upper and lower bounds (though not for our dag-like lower
bounds).

Let φ be a set of linear clauses (that we wish to refute) and Φ a set of linear non-
equalities over R (that we take as assumptions). Consider the following two decision
problems:

DP1 Assume Φ |= ¬φ. Given a satisfying Boolean assignment ρ to Φ, determine which
clause C ∈ φ is violated by ρ by making queries of the form: which of f |ρ 6= 0 or
g|ρ 6= 0 hold for linear forms f, g in case f |ρ + g|ρ 6= 0.

DP2 Similar to DP1, only that we assume Φ |=R ¬φ, and given R-valued assignment ρ,
satisfying Φ, we ask to find a clause C ∈ φ falsified by ρ.
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Below we define NLDTs of types DTsw(R) and DT(R), which provide solutions to
DP1 and DP2, respectively. The root of a tree is labeled with a system Φ, the edges
in a tree are labeled with linear non-equalities of the form f 6= 0 and the leaves are
labeled with clauses C ∈ φ. Informally, at every node v there is a set Φv of all learned
non-equalities, which is the union of Φ and the set of non-equalities along the path from
the root to the node. If v is an internal node, two outgoing edges f 6= 0 and g 6= 0 define
a query to be made at v, where f + g 6= 0 is a consequence of Φv. If v is a leaf, then
Φv ∪ Φ contradicts a clause C ∈ φ.

Starting from the root, based on the assignment ρ, we go along a path, from the
root to a leaf, by choosing in each node to go along the left edge f 6= 0 or the right
edge g 6= 0, depending on whether f |ρ 6= 0 or g|ρ 6= 0. Note that f |ρ 6= 0 and g|ρ 6= 0
may not be mutually exclusive, and this is why the decision made in each node may be
nondeterministic.

Definition 5 (Nondeterministic linear decision tree NLDT; DT(R), DTsw(R)). Let φ be
a set of linear clauses and Φ be a set of linear non-equalities over a ring R. A nondeter-
ministic linear decision tree T of type DT(R) and of type DTsw(R) for (φ,Φ) is a binary
rooted tree, where every edge is labeled with some linear non-equality f 6= 0, in such a
way that the conditions below hold. In what follows, for a node v, we denote by Φr❀v the
set of non-equalities along the path from the root r to v and by Φv the set Φr❀v ∪Φ. We
say that Φv is the set of learned non-equalities at v.

1. Let v be an internal node. Then v has two outgoing edges labeled by linear non-
equalities fv 6= 0 and gv 6= 0, such that:

• If T ∈ DT(R), then αfv + βgv 6= 0 ∈ Φv ∪ {a 6= 0 | a ∈ R \ 0} for some
α, β ∈ R.

• If T ∈ DTsw(R), then Φv |= αfv + βgv 6= 0 for some α, β ∈ R.

2. A node v is a leaf if there is a linear clause C ∈ φ ∪ {0 = 0} which is violated by
Φv in the following sense:

• If T ∈ DT(R), then ¬C ⊆ Φv ∪ {a 6= 0 | a ∈ R \ 0}.
• If T ∈ DTsw(R), then Φv |= ¬C.

In case Φ is empty, we sometimes simply write that the NLDT is for φ instead of
(φ, ∅).

Assume Φ |= ¬φ. Then an NLDT for (φ ∪ {x = 0 ∨ x = 1 | x ∈ vars(φ)},Φ) of type
DT(R) can be converted into an NLDT of type DTsw(R) for (φ,Φ) by truncating all
maximal subtrees with all leaves from {x = 0 ∨ x = 1 | x ∈ vars(φ)} and marking their
roots with arbitrary clauses from φ.

Below we give several examples (and basic properties) of NLDTs.

Example 1 Let φ be a set of clauses, representing unsatisfiable CNF. Then any stan-
dard decision tree on Boolean variables is an NLDT for φ∪{x = 0∨x = 1 | x ∈ vars(φ)}
of type DT(R), where a branching on the value of a variable x is realized by branching
on (1− x) + x 6= 0 to either 1− x 6= 0 or x 6= 0. This is illustrated by (the proof of) the
following proposition:
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Proposition 23. If Φ is a set of linear non-equalities and φ is a set of linear clauses
over R such that Φ |= ¬φ, then there exists a DT(R) tree for (φ ∪ {x = 0 ∨ x = 1 | x ∈
vars(φ ∪ {¬Φ})},Φ) of size O(2n|Φ|), where n = |vars(φ ∪ {¬Φ})|.

Proof: Let vars(φ ∪ {¬Φ}) = {x1, . . . , xn} and fix an ordering on these variables. Con-
struct a tree T0 with 2n nodes, that branches on x1, . . . , xn, in this order. Thus, in every
leaf v of T0 a total assignment to the variables is determined (i.e., Φv = {xi 6= νi}i∈[n] ∪Φ
for some νi ∈ {0, 1}). Since Φ |= ¬φ, this assignment violates either some clause
C = (f1 = 0 ∨ · · · ∨ fm = 0) in φ or some non-equality g 6= 0 in Φ. We augment
T0 to T by attaching a subtree to every leaf v of T0 depending on whether the former or
latter condition holds for v, as follows:
Case 1: {xi 6= νi}i∈[n] |= ¬C. We attach a subtree to v that makes m sequences of
branches as follows. If fi = a1x1 + . . .+anxn + b then a1(1− ν1) + . . .+an(1− νn) + b 6= 0
holds and the ith sequence is the following sequence of “substitutions”: (a1x1+a2(1−ν2)+
. . .+an(1−νn)+b)+(a1(1−ν1)−a1x1) 6= 0 to a1x1+a2(1−ν2)+. . .+an(1−νn)+b 6= 0 and
a1(1−ν1)−a1x1 6= 0, . . . , (a1x1+ . . .+an−1xn−1+an(1−νn)+b)+(an(1−νn)−anxn) 6= 0
to fi 6= 0 and an(1 − νn) − anxn 6= 0. All the right branches lead to nodes u such that
{xi 6= 0, xi 6= 1} ⊆ Φu for some i ∈ [n] and thus they satisfy the DT(R) leaf condition
in Definition 5. Such a sequence indeed performs substitutions: the edge to the leftmost
node is fi 6= 0 and as we go upwards, we apply the substitutions xn ← 1 − νn, . . . ,
x1 ← 1− ν1 to this non-equality.

In the leftmost node w in the end of the mth sequence, {f1 6= 0, . . . , fm 6= 0} ⊆ Φw

holds and thus again C is violated at w in the sense of Definition 5 and therefore w is a
legal DT(R)-leaf.
Case 2: {xi 6= νi}i∈[n] |= g = 0, where g 6= 0 ∈ Φv. Let g = a1x1 + . . .+anxn + b. Attach
to v a subtree that makes the following branches: (a1(1− ν1) + a2x2 + . . . + anxn + b)−
(a1(1−ν1)−a1x1) 6= 0 to (a1(1−ν1)+a2x2+. . .+anxn+b) 6= 0 and a1(1−ν1)−a1x1 6= 0,. . . ,
(a1(1− ν1) + . . .+ an−1(1− νn−1) + an(1− νn) + b)− (an(1− νn)− anxn) 6= 0 to 1 6= 0 and
a1(1− ν1)− a1x1 6= 0. All leaves of the subtree satisfy the condition for DT(R) leaves in
Definition 5.

The tree T is a DT(R) tree for (φ,Φ).

Example 2 Let φ be as in Example 1. Parity decision trees, as defined in [IS14], are
NLDTs for φ of type DTsw(F2): branching on the value of an F2-linear form f is realized
by branching from (1− f) + f 6= 0 to 1− f 6= 0 and f 6= 0. And the converse also holds:
a branching of f + g 6= 0 to f 6= 0 and g 6= 0, where, say, f is a non-constant F2-linear
form, is equivalent to branching on the value of f .

Example 3 Let φ = {f1 = 0, . . . , fm = 0}, where f1, . . . , fm are R-linear forms such
that f1 + . . . + fm = 1. Then a polynomial-size NLDT of type DT(R) for φ makes the
following branchings, where all right edges lead to a leaf: (f1 + . . .+ fm−1) + fm 6= 0 (this
is just 1 6= 0) to f1 + . . . + fm−1 6= 0 and fm 6= 0, . . . , f1 + f2 6= 0 to f1 6= 0 and f2 6= 0.

We now show the equivalence between NLDTs and tree-like Res(linR) proofs.

Theorem 24. Let φ be a set of linear clauses over a ring R and Φ be a set of linear non-
equalities over R. Then, there exist decision trees DT(R) (resp. DTsw(R)) for (φ ∪ {x =
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0 ∨ x = 1 | x ∈ vars(φ)},Φ) (resp. (φ,Φ)) of size s iff there exist tree-like Res(linR)
(resp. tree-like Ressw(linR)) derivations of the clause ¬Φ =

∨
f 6=0∈Φ f = 0 from φ of size

O(s).

Proof: (⇒) Let Tφ be an NLDT of type DT(R) or DTsw(R) for φ. We construct a tree-like
Res(linR) or tree-like Ressw(linR) derivation from Tφ, respectively, as follows. Consider
the tree of clauses π0, obtained from Tφ by replacing every vertex u with the clause ¬Φu.
This tree is not a valid tree-like derivation yet. We augment it to a valid derivation π by
appropriate insertions of applications of weakening and simplification rules.

Case 1: If ¬Φu ∈ π0 is a leaf, then Φu violates a clause D ∈ φ∪{0 = 0}. By condition 2
in Definition 5, ¬Φu must be a weakening of D (syntactic for Tφ ∈ DT(R) and semantic
for Tφ ∈ DTsw(R)) and we add D as the only child of this node.

Case 2: Let ¬Φu ∈ π0 be an internal node with two outgoing edges labeled with fu 6= 0
and gu 6= 0.

If Tφ ∈ DT(R), then αfu + βgu 6= 0 ∈ Φu ∪ {a 6= 0 | a ∈ R \ 0}. Apply resolution to
¬Φl(u) = (¬Φu ∨ fu = 0) and ¬Φr(u) = (¬Φu ∨ gu = 0) to derive ¬Φu ∨ αfu + βgu = 0.
In case αfu + βgu 6= 0 ∈ Φu this clause coincides with ¬Φu and no additional steps
are required. In case αfu + βgu 6= 0 ∈ {a 6= 0 | a ∈ R \ 0} insert an application of the
simplification rule to get a derivation of ¬Φu.

If Tφ ∈ DTsw(R), Φu |= αfu + βgu 6= 0, we derive ¬Φu ∨ αfu + βgu = 0 from
¬Φl(u) = (¬Φu ∨ fu = 0) and ¬Φr(u) = (¬Φu ∨ gu = 0) by an application of the resolution
rule and then deriving ¬Φu by an application of the semantic weakening rule.

(⇐) Conversely, assume π is a tree-like Res(linR) or a tree-like Ressw(linR) derivation
of a (possibly empty) clause C from φ. In what follows, when we say weakening we
mean syntactic or semantic weakening depending on π being a tree-like Res(linR) or a
tree-like Ressw(linR) derivation, respectively.

Let the edges in the proof-tree of π be directed from conclusion to premises. We turn
this proof-tree into a decision tree Tπ for (φ,¬C) as follows. Every node of outgoing degree
2 in the proof-tree π is a clause obtained from its children by a resolution rule. For each
such node C ∨D∨ (αf + βg = 0) we label its outgoing edges to C ∨ f = 0 and D∨ g = 0
with f 6= 0 and g 6= 0, respectively. We contract all unlabeled edges, which are precisely
those corresponding to applications of weakening and simplification rules. If C1, . . . , Ck

is a maximal (with respect to inclusion) sequence of weakening and simplification rule
applications (the latter occur only in Res(linR) derivations), then we contract it to Ck. In
this way we obtain the tree Tπ, where every edge is labeled with linear non-equality and
every node u is labeled with a clause Cu such that if f 6= 0 and g 6= 0 are labels of edges
to the left l(u) and to the right r(u) children respectively, then Cu is a weakening and a
simplification (the latter again in case of Res(linR)) of the clause C ∨D ∨ αf + βg = 0
for some α, β ∈ R, such that Cl(u) = (C ∨ f = 0), Cr(u) = (D ∨ g = 0).

We now prove that Tπ is a valid decision tree of type DT(R) (respectively, DTsw(R))
if π is a tree-like Res(linR) derivation (respectively, tree-like Ressw(linR) derivation).

Case 1: Assume π is tree-like Res(linR) derivation. We prove inductively that for every
node u in Tπ we have ¬Cu ⊆ Φu.
Base case: u is the root r. We have Φr = ¬C = ¬Cr.
Induction step: For any other node u assume ¬Cp ⊆ Φp ∪{a 6= 0 | a ∈ R \ 0} holds for its
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parent node p. Let f 6= 0 be the label on the edge from p to u. Then Cu = (C ∨ f = 0)
for some clause C and Cp must be of the form (C ∨ D) for some clause D, and hence
¬Cu ⊆ ¬C ∪ {f 6= 0} ⊆ ¬Cp ∪ {f 6= 0} ⊆ Φp ∪ {f 6= 0} = Φu.

Now we show that Tπ satisfies the conditions of Definition 5 for DT(R) trees.

• (Internal nodes) Let u be an internal node of Tπ with outgoing edges labeled with
f 6= 0 and g 6= 0. Cu must be both a weakening and a simplification of (C∨αf+βg =
0) for some α, β ∈ R and a linear clause C. If αf + βg 6= 0 ∈ {a 6= 0 | a ∈ R \ 0},
then the condition trivially holds, otherwise αf + βg = 0 cannot be eliminated via
simplification and thus αf +βg 6= 0 ∈ ¬Cu and ¬Cu ⊆ Φu imply αf +βg 6= 0 ∈ Φu

and the condition for internal nodes in Definition 5 is satisfied.

• (Leaves) Let u be a leaf of Tπ. Then Cu must be both a weakening and a simpli-
fication of some clause C in φ ∪ {x = 0 ∨ x = 1 | x ∈ vars(φ)} ∪ {0 = 0}, that is
Cu = (C ∨ D) for some clause D. Therefore ¬Cu ⊆ Φu implies that C is falsified
by Φu.

Case 2: Assume π is a tree-like Ressw(linR) derivation. We prove inductively that for
every node u in Tπ, Cu |= ¬Φu holds.
Base case: u is the root r and we have ¬Φr = C = Cr.
Induction step: u is a node which is not the root. If Cp |= ¬Φp holds for its parent p
and f 6= 0 is the label on the edge from p to u, then (C ∨ D ∨ αf + βg = 0) |= Cp,
Cu = (C ∨ f = 0) for some α, β ∈ R a linear form g and some linear clauses C,D.
Therefore, Cu = (C ∨ f = 0) |= (Cp ∨ f = 0) |= (¬Φp ∨ f = 0) = ¬Φu.

We now show that Tπ satisfies the conditions of Definition 5 for DTsw(R) trees.

• (Internal nodes) Let u be an internal node of Tπ with outgoing edges labeled with
f 6= 0 and g 6= 0. Then (C ∨ αf + βg = 0) |= Cu for some α, β ∈ R and a linear
clause C. Therefore Cu |= ¬Φu implies Φu |= αf + βg 6= 0.

• (Leaves) Let u be a leaf of Tπ. Then Cu must be a weakening of some clause C in
φ∪{0 = 0}, that is, Cu = (C ∨D) for some clause D. Therefore Cu |= ¬Φu implies
that C is falsified by Φu.

An immediate corollary is the following:

Proposition 25. If φ ∪ {C} is a set of linear clauses over a ring R such that φ |= C,
then there exists a tree-like Res(linR) derivation of C from φ of size O(2n|C|), where
n =

∣∣vars(φ ∪ {C})
∣∣.

Proof: By Proposition 23 there exists a DT(R) tree for (φ ∪ {x = 0 ∨ x = 1 | x ∈
vars(φ ∪ {C})},¬C) of size O(2n|C|) and, thus, by Theorem 24 there exists a tree-like
Res(linR) derivation of C from φ of size O(2n|C|).

We construct an NLDT to prove the following upper bound:

Proposition 26. Let R be a finite ring, f = a1x1 + · · ·+ anxn a linear form over R, sf
the size of Im(f) (i.e., the size of its encoding) and df = |im2(f)|. Then, there exists a
tree-like Res(linR) derivation of Im(f) of size O(sfn

2df ).
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Proof: We construct a decision tree of type DT(R) of size O(sfn
2df ) with the system

Φr = {f 6= A}A∈im2(f) at its root r. By Theorem 24 this implies the existence of a
tree-like Res(linR) proof of Im(f) of the same size.

Let f (1) := a1x1 + · · ·+ a⌊n
2
⌋x⌊n

2
⌋ and f (2) := a⌊n

2
⌋+1x⌊n

2
⌋+1 + · · ·+ anxn. The decision

tree for Im(f)is constructed recursively as a tree of height 2df , where a subtree for Im
(
f (1)

)

or for Im
(
f (2)

)
is hanged from each leaf. At every node u of depth d the system of non-

equalities is of the form: Φu = Φr∪Φ
(1)
u ∪Φ

(2)
u , where Φ

(i)
u ⊆ {f (i) 6= A}A∈im2(f (i)), i ∈ {1, 2}

and |Φ(1)
u | + |Φ(2)

u | = d. A node u is a leaf if and only if Φ
(i)
u = {f (i) 6= A}A∈im2(f (i))

for some i ∈ {1, 2}. The branching at an internal node u is made by the non-equality

f (1)−A1+f (2)−A2 6= 0, for some Ai ∈ im2(f
(i)) where f (i)−Ai /∈ Φ

(i)
u , i ∈ {1, 2}. The size

sn of this tree can be upper bounded as follows: sn ≤ 22df s⌊n
2
⌋+1+sf22df = O(sfn

2df ).

5.2 Prover-Delayer Games

The Prover-Delayer game is an approach to obtain lower bounds on resolution refutations
introduced by Pudlák and Impagliazzo [PI00]. The idea is that the non-existence of small
decision trees, and hence small tree-like resolution refutations, for an unsatisfiable formula,
can be phrased in terms of the existence of a certain strategy for Delayer in a game against
Prover, associated to the unsatisfiable formula. We define such games GR and GR

sw for
decision trees DT(R) and DTsw(R), respectively. Below we show (Lemma 27) that the
existence of certain strategies for the Delayer in GR and GR

sw imply lower bounds on the
size of DT(R) and DTsw(R) trees, respectively.

The game. Let φ be a set of linear clauses and Φs be a set of linear non-equalities.
Consider the following game between two parties called Prover and Delayer. The game
goes in rounds, consisting of one move of Prover followed by one move of Delayer. The
position in the game is determined by a system of linear non-equalities Φ, which is
extended by one non-equality after every round. The starting position is Φs.

In each round, Prover presents to Delayer a possible branching f 6= 0 and g 6= 0
over a linear non-equality f + g 6= 0, such that f + g 6= 0 ∈ Φ ∪ {a 6= 0 | a ∈ R \ 0} or
Φ |= f + g 6= 0 in GR and GR

sw, respectively. After that, Delayer chooses either f 6= 0 or
g 6= 0 to be added to Φ, or leaves the choice to the Prover and thus earns a coin. The
game GR finishes, when ¬C ⊆ Φ for some C ∈ φ ∪ {0 = 0}, and GR

sw finishes, when
Φ |= ¬C for some clause C ∈ φ ∪ {0 = 0}.

Lemma 27. If there exists a strategy with a starting position Φs for Delayer in the game
GR (respectively, GR

sw) that guarantees at least c coins on a set of linear clauses φ, then
the size of a DT(R) (respectively DTsw(R)) tree for φ, with the system Φs in the root,
must be at least 2c.

Proof: Assume that T is a tree of type DT(R) (respectively, DTsw(R)) for φ. We define
an embedding of the full binary tree Bc of height c to T inductively as follows. We
simulate Prover in the game GR (respectively, GR

sw) by choosing branchings from T and
following to a subtree chosen by the Delayer until Delayer decides to earn a coin and
leaves the choice to the Prover or until the game finishes. In case we are at a position
where Delayer earns a coin, and which corresponds to a vertex u in T , we map the root
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of Bc to u and proceed inductively by embedding two trees Bc−1 to the left and right
subtrees of u, corresponding to two choices of the Prover.

5.3 Lower Bounds for the Subset Sum with Small Coefficients

Note that Theorem 18 only gives a lower bound for SubSum(f) if the coefficients of f are
large enough. In what follows (Theorem 29) we prove that this lower bound holds for
tree-like Res(linR) even for small coefficients.

Lemma 28. Let Φ be a satisfiable system of m non-equalities over a field F of char-
acteristic 0. If Φ |= ǫ1x1 + · · · + ǫnxn = A for some ǫi ∈ {−1, 1} ⊂ F, A ∈ F, then
m ≥ n

4
.

Note that A must be an integer (inside F), since the coefficients of variables are all
−1, 1, and the variables themselves are Boolean (since |= stands for semantic implication
over 0-1 assignments only).

Proof: Let Φ = {a1 · x + b1 6= 0, . . . , am · x + bm 6= 0} and put σ = A mod 2, f =
ǫ1x1 + · · ·+ ǫnxn. Then

f ≡ 1− σ (mod 2) |= f 6= A

|= (a1 · x + b1) · . . . · (am · x + bm) = 0.

By Theorem 4.4 in Alekhnovich-Razborov [AR01], the function f ≡ 1− σ (mod 2) is n
4
-

immune, that is, the degree of any non-zero polynomial g such that f ≡ 1−σ (mod 2) |=
g = 0 must be at least n

4
. Therefore m ≥ n

4
.

Theorem 29. Let f = ǫ1x1 + · · · + ǫnxn, where ǫi ∈ {−1, 1} ⊂ F, and F is field of
char(F) = 0. Then the following holds:

1. Any tree-like Res(linF) derivation of any clause of the form
∨
a∈X

f = a, where 0 /∈

X, im2(f) ⊆ X, is of size at least 2
n
4 .

2. Any tree-like Ressw(linF) refutation of ImAv (f) is of size at least 2
n
4 .

Proof: We use Prover-Delayer games to show the lower bounds. By the definition of the
games (Sec. 5.2), in the former case the game GF is on {xi = 0 ∨ xi = 1}i∈[n] and starts
with the position

Φr = {f − A 6= 0 | A ∈ X} ,
and in the latter case GF

sw is on ImAv (f) and starts with the empty position Φr = ∅.
The former game GF finishes at a position Φ, where {xi 6= 0, xi 6= 1} ⊆ Φ for

some i ∈ [n] or 0 6= 0 ∈ Φ. The latter game GF
sw finishes at a position Φ, where

Φ |= f = A, A /∈ X.
We show that the following Delayer strategy guarantees n

4
coins for both games. This,

together with Lemma 27, implies the lower bounds.
The strategy is as follows: let the position in the game be defined by a system Φ and

let the branching chosen by the Prover be g1 6= 0 and g2 6= 0. Consider Φ′ = Φ \ Φr.
Thus, Delayer does the following:
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1. if Φ′ |= g2 = 0, but Φ′ 6|= g1 = 0, then choose g1 6= 0;

2. if Φ′ |= g1 = 0, but Φ′ 6|= g2 = 0 then choose g2 6= 0;

3. if none of the above holds, or both Φ′ |= g2 = 0 and Φ′ |= g1 = 0 hold, then leave
the choice to the Prover and earn a coin.

We now prove that this strategy guarantees the required number of coins in both
games.

Consider the game GF. Suppose the game has finished at a position Φ. Let Φu be a
position, where Φ′u = Φu\Φr first became unsatisfiable (over 0-1, that is). Such a position
must exist, by the definition of a final state in the game. That is, if {xi 6= 0, xi 6= 1} ⊆ Φ
for some i ∈ [n] or 0 6= 0 ∈ Φ, then {xi 6= 0, xi 6= 1} ⊆ Φ′ or 0 6= 0 ∈ Φ′, respectively.

Let Φp(u) be the position preceding immediately position Φu, and let Prover present
the branching g1 6= 0 and g2 6= 0 to Delayer in position Φp(u), for some g1 +g2 6= 0 ∈ Φp(u).

Claim. Both Φ′p(u) |= g1 = 0 and Φ′p(u) |= g2 = 0.

Proof of claim: Φ′u = Φu \Φr (and thus also Φu), is unsatisfiable by assumption. Suppose
by a way of contradiction that Φ′p(u) 6|= g1 = 0 or Φ′p(u) 6|= g2 = 0.

Case 1: If Φ′p(u) 6|= g1 = 0 and Φ′p(u) |= g2 = 0, then by the strategy assumed above,
Delayer chooses to branch on g1 6= 0. By definition of the game, g1 6= 0 is now added to
Φp(u) and thus Φu = Φp(u) ∪{g1 6= 0}. But Φ′u ⊆ Φ′p(u) ∪{g1 6= 0} is satisfiable in contrast
to our assumption.
Case 2: If Φ′p(u) 6|= g2 = 0 and Φ′p(u) |= g1 = 0, then this is similar to Case 1.

Case 3: If both Φ′p(u) 6|= g1 = 0 and Φ′p(u) 6|= g2 = 0, then this is similar to the previous
cases. Claim

By the claim, Φ′p(u) |= g1 + g2 = 0. We know by assumption on position Φu that Φ′p(u)
is satisfiable and Φ′p(u) ∪ {g1 + g2 6= 0} is unsatisfiable. Therefore, g1 + g2 6= 0 /∈ Φ′p(u)
is not a tautology over 0-1 assignments and this excludes the option that g1 + g2 is a
non-zero constant. Recall that g1 + g2 6= 0 is the non-equality picked by Prover to branch
on when in state Φp(u). As g1 + g2 is non-constant, this means that g1 + g2 6= 0 ∈ Φp(u) =
Φ′p(u) ∪ Φr. But since g1 + g2 6= 0 /∈ Φ′p(u), we have g1 + g2 6= 0 ∈ Φr, which means that
g1 + g2 ≡ f − A, A ∈ X.

Let ζ1, . . . , ζℓ be the set of non-equalities in Φ′p(u), in the order they were added to

Φ′p(u). Let Ψ′p(u) ⊆ Φ′p(u) be the set of all ζi, i ∈ [ℓ], such that ζi is not implied by
previous non-equalities ζj, for j < i. Note that at any position Φ if Case 1 or Case 2
of the Delayer’s strategy hold, then the non-equality g 6= 0 chosen by Delayer satisfies
Φ′ |= g 6= 0. Therefore the number of coins earned by Delayer at Φp(u) is at least |Ψ′p(u)|
and Ψ′p(u) |= f = A, by the previous paragraph. Lemma 28 implies that |Ψ′p(u)| ≥ n

4
.

Consider the game GF
sw. This is similar to the argument for GF. Suppose that the

game has finished at a position Φ. Thus, Φ must be satisfiable and contradict a clause
〈f 6= A〉 of ImAv (f). Therefore, Φ |= f = A for some A ∈ im2(f). Denote by Ψ ⊆ Φ
the subsystem of non-equalities that are not implied by previous ones (similar to the
argument for the game GF above). Then, Delayer earns at least |Ψ| coins, Ψ |= f = A,
and by Lemma 28 we conclude that |Ψ| ≥ n

4
.
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Corollary 30. Let f and F be as in Proposition 29. Then the shortest tree-like Res(linF)
refutation of f = n + 1 is of size at least 2

n
4 .

Proof: Follows from Lemma 17 and Theorem 29.

5.4 Lower Bounds for the Pigeonhole Principle

Here we prove that every tree-like Ressw(linF) refutations of ¬PHPm
n must have size

at least 2Ω(n−1
2

) (see Sec. 2.3.1 for the definition of ¬PHPm
n ). Together with the upper

bound for dag-like Res(linF) (see Sec. 3.2) this provides a separation between tree-like and
dag-like Ressw(linF) in the case char(F) = 0. The lower bound argument is comprised of
exhibiting a strategy for Delayer in the Prover-Delayer game. Delayer’s strategy is similar
to that in [IS14]. However, the proof that Delayer’s strategy guarantees sufficiently many
coins relies on Lemma 32, which is a generalization of Lemma 3.3 in [IS14] for arbitrary
fields. Since the proof of Lemma 3.3 in [IS14] for the F2 case does not apply to arbitrary
fields, our proof is different, and uses a result from Alon-Füredi [AF93] on the hyperplane
coverings of the hypercube.

Theorem 31. For every field F, the shortest tree-like Ressw(linF) refutation of ¬PHPm
n

has size 2Ω(n−1
2

).

Proof: We prove that there exists a strategy for Delayer in the ¬PHPm
n game, which

guarantees Delayer to earn n−1
2

coins. Following the terminology in [IS14], we call an
assignment xi,j 7→ αij, for α ∈ {0, 1}mn, proper if it does not violate Pigeonsmn , namely, if
it does not send two distinct pigeons to the same hole. We need to prove several lemmas
before concluding the theorem.

Lemma 32. Let Ax + b be a system of k linear non-equalities over a field F with n
variables and where x = 0 is a solution, that is, 0 + b. If k < n, then there exists a
non-zero boolean solution to this system.

Proof: Let a1, . . . , ak be the rows of the matrix A. The boolean solutions to the system
Ax + b are all the points of the n-dimensional boolean hypercube Bn := {0, 1}n ⊂ Fn,
that are not covered by the hyperplanes H := {a1x− b1 = 0, . . . , akx− bk = 0}. We need
to show that if k < n and 0 ∈ Bn is not covered by H, then some other point in Bn is
not covered by H as well. This follows from [AF93]:

Corollary from Alon-Füredi [AF93, Theorem 4]. Let Y (l) :=
{(y1, . . . , yn) ∈ Fn | ∀i ∈ [n], 0 < yi ≤ 2, and

∑n

i=1 yi ≥ l} . For any field F, if k hy-
perplanes in Fn do not cover Bn completely, then they do not cover at least M(2n − k)
points from Bn, where

M(l) := min
(y1,...,yn)∈Y (l)

∏

1≤i≤n

yi .

Thus, if k < n hyperplanes do not cover Bn completely, then they do not cover at
least M(n + 1) points. The set Y (n + 1) in the Corollary above consists of all tuples
(y1, . . . , yn), where yi = 2 for some i ∈ [n] and yj = 1 for j ∈ [n], j 6= i. Therefore
M(n + 1) = 2.
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For two Boolean assignments α, β ∈ {0, 1}n, denote by α ⊕ β the bitwise xor of the
two assignments.

Lemma 33. Let Ax + b be a system of k linear non-equalities over a field F with n > k
variables and let α ∈ {0, 1}n be a solution to the system. Then, for every choice I of k+1
bits in α, there exists at least one i ∈ I so that flipping the ith bit in α results in a new
solution to Ax + b. In other words, if I ⊆ [n] is such that |I| = k + 1, then there exists
a boolean assignment β 6= 0 such that {i | βi = 1} ⊆ I and A(α⊕ β) + b.

Proof: Let I ⊆ {0, 1}n. Denote by A⋆
I the matrix with columns {(1 − 2αi)ai | i ∈ I},

where ai is the ith column of A. That is, A⋆
I is the matrix A restricted to columns i with

i ∈ I and where column i flips its sign iff αi is 1.
Assume that β ∈ {0, 1}n is nonzero and all its 1’s must appear in the indices in I,

that is, {i | βi = 1} ⊆ I. Given a set of indices J ⊆ [n], denote by βJ the restriction of β
to the indices in J . Similarly, for a vector v ∈ Fn, vJ denotes the restriction of v to the
indices in J .

Claim. A(α⊕ β) + b iff A⋆
IβI + b− Aα.

Proof of claim: We prove that A(α ⊕ β) = A⋆
IβI + Aα. Consider any row v in A, and

the corresponding row v⋆
I in A⋆

I . Notice that v · (α⊕ β) (for “·” the dot product) equals
the dot product of v and α ⊕ β, where both vectors are restricted only to those entries
in which α and β differ. Considering entries outside I, by assumption we have β[n]\I = 0,
which implies that

v[n]\I · (α⊕ β)[n]\I = v[n]\I · α[n]\I . (7)

On the other hand, considering entries inside I, we have

vI · (α⊕ β)I = vI · αI + v⋆
I · βI . (8)

Equation (8) can be verified by inspecting all four cases for the ith bits in α, β, for i ∈ I,
as follows: for those indices i ∈ I, such that αi = 1 and βi = 0, only vI · α contributes
to the right hand side in (8). If αi = 1 and βi = 1, then by the definition of A⋆

I , the
two summands in the right hand side in (8) cancel out. The cases αi = 0, βi = 1 and
αi = βi = 0, can also be inspected to contribute the same values to both sides of (8).

The two equations (7) and (8) concludes the claim. Claim

We know that Aα + b, and we wish to show that for some nonzero β ∈ {0, 1}n where
{i | βi = 1} ⊆ I, it holds that A(α ⊕ β) + b. By the claim above it remains to show the
existence of such β where A⋆

IβI + b − Aα. But notice that b − Aα + 0, since Aα + b,
and that A⋆

IβI is a matrix of dimension k× (k + 1). Therefore, by Lemma 32, the system
A⋆

IβI + b−Aα has a nonzero solution, that is, there exists a β 6= 0 for which all ones are
in the I entries, such that A⋆

IβI + b− Aα.

Lemma 34. Assume that a system Ax + b of k ≤ n−1
2

non-equalities over F with
variables {xi,j}(i,j)∈[m]×[n] has a proper solution. Then, for every i ∈ [m] there exists a
proper solution to the system, that satisfies the clause

∨
j∈[n] xi,j. In other words, for

every pigeon, there exists a proper solution that sends the pigeon to some hole.
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Proof: We first show that if there exists a proper solution of Ax + b, then there exists a
proper solution of this system with at most k ones. Let α be a proper solution with at
least k + 1 ones. If I is a subset of k + 1 ones in α, then Lemma 33 assures us that some
other proper solution can be obtained from α by flipping some of these ones (note that
flipping one to zero preserves the properness of assignments). Thus the number of ones
can always be reduced until it is at most k.

Let α be a proper solution with at most k ones. The condition k ≤ n−1
2

implies that
there are n− k ≥ k + 1 free holes. Let J be a subset of size k + 1 of the set of indices of
free holes. Then for any i ∈ [m] some of the bits in I = {(i, j) | j ∈ J} can be flipped and
still satisfy Ax + b, by Lemma 33. (As before, flipping from one to zero maintains the
properness of the solution.) Hence, the resulting proper solution must satisfy the clause∨

j∈[n] xi,j .

We now describe the desired strategy for Delayer.

Delayer’s Strategy: Let a position in the game be defined by the system of non-equalities Φ
and assume that the branching chosen by Prover is f0 6= 0 or f1 6= 0, where Φ |= f0+f1 6= 0.
The only objective of Delayer is to ensure that the system Φ has proper solutions. Delayer
uses the opportunity to earn a coin whenever both Φ ∪ {f0 6= 0} and Φ ∪ {f1 6= 0} have
proper solutions by leaving the choice to Prover. Otherwise, in case Φ∧Pigeonsmn |= fi = 0,
for some i ∈ {0, 1}, Delayer chooses f1−i 6= 0, which must satisfy Φ∧Pigeonsmn |= f1−i 6= 0,
and so the sets of proper solutions of Φ and Φ ∪ {f1−i 6= 0} are identical.

This strategy ensures, that for every end-game position Φ, Φ has proper solutions and
Φ |= ¬Holesmn . Note that Φ has the same proper solutions as Φ′, obtained by throwing
away from Φ all non-equalities that were added by Delayer when making a choice. There-
fore, if Φ |= ¬Holesmn , then Φ′ ∧ Pigeonsmn |= ¬Holesmn and thus |Φ′| > n−1

2
by Lemma 34.

Since |Φ′| is precisely the number of coins earned by Delayer, this gives the desired
lower bound.

6 Size-Width Relation and Simulation by Polyno-

mial Calculus

In this section we prove a size-width relation for tree-like Res(linR) (Theorem 37), which
then implies an exponential lower bound on the size of tree-like Ressw(linR) refutations
in terms of the principal width of refutations (Definition 3). The connection between
the principal width and the degree of PC refutations for finite fields F, together with
lower bounds on degree of PC refutations from [AR01] on Tseitin mod p formulas and
random CNFs, imply exponential lower bounds for the size of tree-like Ressw(linF) for
these instances (Corollaries 39 and 40).

Proposition 35. Let φ = {Ci}1≤i≤m be a set of linear clauses and x ∈ vars(φ). Assume
that l is a linear form in the variables vars(φ)\{x}. Then, there is a Res(linR) derivation
π of {Ci ↾x←l ∨〈x− l 6= 0〉}1≤i≤m from φ of size polynomial in |φ|+ |Im(l)| and such that
ω0(π) ≤ ω0(φ) + 2.
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Proof: The clause x− l = 0∨〈x− l 6= 0〉 is derivable in Res(linR) in polynomial in |Im(l)|
size by Proposition 9. Assume

C =

(∨
j∈[k]

fj + ajx + b
(1)
j = 0 ∨ · · · ∨ fj + ajx + b

(Nj)
j = 0

)
,

where x /∈ vars(fi) and we have grouped disjuncts so that ω0(C) = k. Then we resolve
these groups one by one with x− l = 0 ∨ 〈x− l 6= 0〉 and after N1 + . . . + Nk steps yield(∨

j∈[k] fj + ajl + b
(1)
j = 0 ∨ · · · ∨ fj + ajl + b

(Nj)
j = 0 ∨ 〈x− l 6= 0〉

)
. It is easy to see that

the principal width never exceeds k + 2 along the way. Therefore ω0(π) ≤ ω0(φ) + 2.

Corollary 36. Let φ = {Ci}1≤i≤m be a set of linear clauses and x ∈ vars(φ). Suppose
that l is a linear form with variables vars(φ) \ {x} and that π is a Res(linR) refutation of
φ ↾x←l ∪{l = 0∨ l = 1}. Then, there exists a Res(linR) derivation π̂ of 〈x− l 6= 0〉 from φ,
such that S(π̂) = O(S(π)+ |Im(l)|) and ω0(π̂) ≤ max (ω0(π) + 1, ω0(φ) + 2). Additionally,
there is a refutation π̂′ of φ ∪ {x− l = 0} where ω0(π̂

′) ≤ max(ω0(π), ω0(φ) + 2).

Proof: By Proposition 35 there exists a derivation πs of

{Ci ↾x←l ∨〈x− l 6= 0〉}1≤i≤m ∪ {l = 0 ∨ l = 1 ∨ 〈x− l 6= 0〉}

from φ of width at most ω0(φ)+2. Composing πs with π∨〈x−l 6= 0〉 yields the derivation
π̂ of 〈x− l 6= 0〉 from φ.

Moreover, by taking the derivation πs and adding to it the axiom x − l = 0, and
then using a sequence of resolutions of πs with x − l = 0, we obtain a derivation of
φ ↾x←l ∪{l = 0 ∨ l = 1} from φ ∪ {x − l = 0}. The latter derivation composed with π
yields the refutation π̂′ of φ ∪ {x− l = 0} of width at most max(ω0(π), ω0(φ) + 2).

Theorem 37. Let φ be an unsatisfiable set of linear clauses over a field F. The following
size-width relation holds for both tree-like Res(linF) and tree-like Ressw(linF):

S(φ ⊢⊥) = 2Ω(ω0(φ⊢⊥)−ω0(φ)) .

Proof: We prove by induction on n, the number of variables in φ, the following:

ω0(φ ⊢⊥) ≤ ⌈log2 S(φ ⊢⊥)⌉+ ω0(φ) + 2 .

Base case: n = 0. Thus φ must contain only linear clauses a = 0, for a ∈ F, and the
principal width for refuting φ is therefore 1.

Induction step: Let π be a tree-like refutation of φ = {C1, . . . , Cm} such that S(π) =
S(φ ⊢⊥) (i.e., π is of minimal size). Without loss of generality, we assume that the
resolution rule in π is only applied to simplified clauses, that is clauses not containing
disjuncts 1 = 0 in case of tree-like Res(linF) and not containing unsatisfiable f = 0, 0 /∈
im2(f) in case of tree-like Ressw(linF). The former can be eliminated by the simplification
rule and the latter by the semantic weakening rule. By this assumption, the empty
clause at the root of π is derived in tree-like Res(linF) (resp. tree-like Ressw(linF)) as
a simplification (resp. weakening) of an unsatisfiable h = 0 (1 = 0 in case of tree-like
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Res(linF)) equation, which is derived by application of the resolution rule. Denote the left
and right subtrees, corresponding to the premises of h = 0, by π1 and π2, respectively.

The roots of π1 and π2 must be of the form f1 = 0 and f2 = 0, respectively, where
f1 − f2 = h. Therefore,

f1 = l(x1, . . . , xn−1) + anxn and f2 = l(x1, . . . , xn−1) + anxn − h ,

for some l(x1, . . . , xn−1) =
∑n−1

i=1 aixi + B, where ai, B ∈ F.
Assume without loss of generality that an 6= 0 and S(π1) ≤ S(π2). We now use the

induction hypothesis to construct a narrow derivation π•1 of f1 = 0 such that

ω0(π
•
1) ≤ ⌈log2 S(π1)⌉+ 1 + ω0(φ) + 2

≤ ⌈log2 S(π)⌉+ ω0(φ) + 2 .

For every nonzero A ∈ im2(f1) define the partial linear substitution ρA as xn ←
(A− l(x1, . . . , xn−1))a

−1
n . Thus, f1 ↾ ρA = A. The set of linear clauses

φ ↾ρA ∪
{

(A− l)a−1n = 0 ∨ (A− l)a−1n = 1
}

(9)

is unsatisfiable and has n− 1 variables, and is refuted by π1 ↾ρA .
By induction hypothesis there exists a (narrow) refutation πA

1 of (9) with

ω0(π
A
1 ) ≤ ⌈log2 S(π1 ↾ρA)⌉+ ω0(φ) + 2

≤ ⌈log2 S(π1)⌉+ ω0(φ) + 2 .

By Corollary 36 there exists a derivation π̂A
1 of 〈l+anxn 6= A〉 from φ such that ω0(π̂

A
1 ) ≤

max(ω0(π
A
1 ) + 1, ω0(φ) + 2) ≤ ⌈log2 S(π1)⌉ + ω0(φ) + 3. By Proposition 11 there exists

a derivation π•1 of f1 = 0 such that ω0(π
•
1) ≤ ⌈log2 S(π1)⌉ + ω0(φ) + 3 ≤ ⌈log2 S(π)⌉ +

ω0(φ) + 2.
Consider the following substitution ρ: xn ← −l · a−1n . Then, π2|ρ is a derivation

of h = 0 from φ|ρ ∪ {−l · a−1n = 0 ∨ −l · a−1n = 1}, which we augment to refutation π′2
by taking composition with simplification (resp. weakening) in case of tree-like Res(linF)
(resp. tree-like Ressw(linF)). By induction hypothesis there exists a refutation π•2 of width

ω0(π
•
2) ≤ ⌈log2(S(π′2) + 1)⌉+ ω0(φ) + 2

≤ ⌈log2 S(π)⌉+ ω0(φ) + 2 ,

and thus by Corollary 36 there exists a refutation π̂•2 of φ ∪ {f1 = 0} of width ω0(π̂
•
2) ≤

⌈log2 S(π)⌉ + ω0(φ) + 2. The combination of π̂•2 and π•1 gives a refutation of φ of the
desired width.

Theorem 38. Let F be a field and π be a Res(linF) refutation of an unsatisfiable set of
linear clauses φ. Then, there exists a PCF refutation π′ of (the arithmetization of) φ of
degree ω(π).

Proof: The idea is to replace every clause C = (f1 = 0 ∨ . . . ∨ fm = 0) in π by its
arithmetization a(C) := f1 · . . . · fm, and then augment this sequence to a valid PCF

derivation by simulating all the rule applications in π by several PCF rule applications.
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Case 1: If D = (C ∨ g1 = 0∨ . . .∨ gm = 0) is a weakening of C, then apply the product
and the addition rules to derive a(D) = a(C) · g1 · . . . · gm from a(C).
Case 2: If D is a simplification of D ∨ 1 = 0, then a(D) = a(D ∨ 1 = 0).
Case 3: If D = (x = 0 ∨ x = 1) is a a Boolean axiom, then a(D) = x2 − x is an axiom
of PCF.
Case 4: If D = (C ∨ C ′ ∨ E ∨ αf + βg = 0) is a result of resolution of (C ∨ E ∨ f = 0)
and (C ′ ∨ E ∨ g = 0), where C and C ′ do not contain the same disjuncts, then by the
product and addition rules of PC we derive a(C) ·a(C ′) ·a(E) ·f from a(C∨E∨f = 0) =
a(C)·a(E)·f , and also derive a(C)·a(C ′)·a(E)·g from a(C ′∨E∨f = 0) = a(C ′)·a(E)·f ,
and then apply the addition rule to derive a(C) · a(C ′) · a(E) · (αf + βg) = a(D).

It is easy to see that the degree of the resulting PCF refutation is at most ω(π).

As a consequence of Theorems 37 and 38, and the relation ω0 ≥ 1
|F|
ω as well as the

results from [AR01], we have the following:

Corollary 39. For every prime p there exists a constant d0 = d0(p) such that the follow-
ing holds. If d ≥ d0, G is a d-regular Ramanujan graph on n vertices (augmented with
arbitrary orientation to its edges) and F is a finite field with char(F) 6= p, then for every

function σ such that ¬TS(p)
G,σ ∈ UNSAT, every tree-like Res(linF) refutation of ¬TS(p)

G,σ

has size 2Ω(dn).

Proof: Corollary 4.5 from [AR01] states that the degree of PCF refutations of ¬TS
(p)
G,σ is

Ω(dn). Theorem 38 implies that the principal width of Res(linF) refutations of ¬TS
(p)
G,σ

is Ω( 1
|F|
dn) = Ω(dn) and thus by Theorem 37 the size is 2Ω(dn).

Corollary 40. Let φ ∼ Fn,∆
k , k ≥ 3 and ∆ = ∆(n) be such that ∆ = o(n

k−2
2 ) and let F

be any finite field. Then every tree-like Res(linF) refutation of φ has size 2
Ω

(

n

∆2/(k−2)
·log∆

)

with probability 1− o(1).

Proof: Corollary 4.7 from [AR01] states that the degree of PCF refutations of φ ∼ Fn,∆
k ,

where k ≥ 3, is Ω(dn) with probability 1 − o(1). Theorem 38 implies that the principal
width of Res(linF) refutations of φ ∼ Fn,∆

k is Ω( 1
|F|
dn) = Ω(dn) and thus by Theorem 37

the size of the refutations is 2Ω(dn) with probability 1− o(1).
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