
Resolution with Counting:

Dag-Like Lower Bounds and Different Moduli

Fedor Part∗ Iddo Tzameret†

November 13, 2020

Abstract

Resolution over linear equations introduced in (Raz & Tzameret 2008) is a natural ex-
tension of the popular resolution refutation system, augmented with the ability to carry
out basic counting. Denoted Res(linR), this refutation system operates with disjunctions
of linear equations with boolean variables over a ring R, to refute unsatisfiable sets of
such disjunctions. Beginning in (Raz & Tzameret 2008), through the work of (Itsykson &
Sokolov 2020) which focused on tree-like lower bounds, this refutation system was shown to
be fairly strong1. Subsequent work (cf. [21, 19, 22, 15]) made it evident that establishing
lower bounds against general Res(linR) refutations is a challenging and interesting task since
the system captures a “minimal” extension of resolution with counting gates for which no
super-polynomial lower bounds are known to date.

We provide the first super-polynomial size lower bounds against general (dag-like) reso-
lution over linear equations refutations in the large characteristic regime. In particular we

prove that the subset-sum principle 1 +
n∑

i=1

2ixi = 0 requires refutations of exponential-size

over Q. We use a novel lower bound technique: we show that under certain conditions
every refutation of a subset-sum instance f = 0 must pass through a fat clause consisting
of the equation f = α for every α in the image of f under boolean assignments, or can
be efficiently reduced to a proof containing such a clause. We then modify this approach
to prove exponential lower bounds against tree-like refutations of any subset-sum instance
that depends on n variables, hence also separating tree-like from dag-like refutations over
the rationals.

We then turn to the finite fields regime, showing that the work of Itsykson and Sokolov
[19] who obtained tree-like lower bounds over F2 can be carried over and extended to every
finite field. We establish new lower bounds and separations as follows: (i) for every pair of
distinct primes p, q, there exist CNF formulas with short tree-like refutations in Res(linFp

)
that require exponential-size tree-like Res(linFq

) refutations; (ii) random k-CNF formulas
require exponential-size tree-like Res(linFp

) refutations, for every prime p and constant k;
and (iii) exponential-size lower bounds for tree-like Res(linF) refutations of the pigeonhole
principle, for every field F.

1 Introduction

The resolution refutation system is among the most prominent and well-studied propositional
proof systems, and for good reasons: it is a natural and simple refutation system, that, at least

∗JetBrains Research, St. Petersburg, Russia. fedor.part@gmail.com
†Department of Computer Science, Royal Holloway, University of London. iddo.tzameret@gmail.com
1Similar extensions of resolution, with integral inequalities have been introduced earlier in Krajicek [20]

under the name R(CP). Res(linZ) was shown in [29] to simulate R(CP) when the coefficients in inequalities are
polynomially bounded.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 117 (2018)

in practice, is capable of being easily automatized. Furthermore, while being non-trivial, it is
simple enough to succumb to many lower bound techniques.

Formally, a resolution refutation of an unsatisfiable CNF formula is a sequence of clauses
D1, . . . , Dl = ∅, where ∅ is the empty clause, such that each Di is either a clause of the CNF or
is derived from previous clauses Dj , Dk, j ≤ k < i by means of applying the following resolution
rule: from the clauses C ∨ x and D ∨ ¬x derive C ∨D.

The tree-like version of resolution, where every occurrence of a clause in the refutation is used
at most once as a premise of a rule, is of particular importance, since it helps us to understand
certain kind of satisfiability algorithms known as DPLL algorithms (cf. [26]). DPLL algorithms
are simple recursive algorithms for solving SAT that are the basis of successful contemporary
SAT solvers. The transcript of a run of DPLL on an unsatisfiable formula is a decision tree,
which can be interpreted as a tree-like resolution refutation. Thus, lower bounds on the size
of tree-like resolution refutations imply lower bounds on the run-time of DPLL algorithms
(though it is important to clarify that contemporary SAT solvers utilize more than the strength
of tree-like resolution).

In contrast to the apparent practical success of SAT solvers, a variety of hard instances
that require exponential-size refutations have been found for resolution during the years. Many
classes of such hard instances are based on principles expressing some sort of counting. One
famous example is the pigeonhole principle, denoted PHPm

n , expressing that there is no (total)
injective map from a set with cardinality m to a set with cardinality n if m > n [17]. Another
important example is Tseitin tautologies, denoted TSG, expressing that the sum of the degrees
of vertices in a graph G must be even [31].

Since such counting tautologies are a source of hard instances for resolution, it is useful to
study extensions of resolution that can efficiently count, so to speak. This is important firstly,
because such systems may become the basis of more efficient SAT solvers and secondly, in order
to extend the frontiers of lower bound techniques against stronger and stronger propositional
proof systems. Indeed, there are many works dedicated to the study of weak systems operating
with De Morgan formulas with counting connectives; these are variations of resolution that
operate with disjunctions of certain arithmetic expressions.

One such extension of resolution was introduced by Raz and Tzameret [29] under the name
resolution over linear equations in which literals are replaced by linear equations. Specifically,
the system R(lin), which operates with disjunctions of linear equations over Z was studied in [29].
This work demonstrated the power of resolution with counting over the integers, and specifically
provided polynomial upper bounds for the pigeonhole principle and the Tseitin formulas, as well
as other basic counting formulas. It also established exponential lower bounds for a subsystem
of R(lin), denoted R0(lin). Subsequently, Itsykson and Sokolov [19] studied resolution over
linear equations over F2, denoted Res(⊕). They demonstrated the power of resolution with
counting mod 2 as well as its limitations by means of several upper and tree-like lower bounds.
Moreover, [19] introduced DPLL algorithms, which can “branch” on arbitrary linear forms over
F2, as well as parity decision trees, and showed a correspondence between parity decision trees
and tree-like Res(⊕) refutations. In both [29] and [19] the dag-like lower bound question for
resolution over linear equations remained open.

Apart from being a very natural refutation system, understanding the proof complexity of
resolution over linear equations is important for the following reason: proving super-polynomial
dag-like lower bounds against resolution over linear equations for prime fields and for the integers
can be viewed as a first step towards the long-standing open problems of AC0[p]-Frege and TC0-
Frege lower bounds, respectively. We explain this in what follows.

Resolution operates with clauses, which are De Morgan formulas (¬, unbounded fan-in ∨
and ∧) of a particular kind, namely, of depth 1. Thus, from the perspective of proof complexity,

2

resolution is a fairly weak version of the propositional calculus, where the latter operates with
arbitrary De Morgan formulas. Under a natural and general definition, propositional calculus
systems go under the name Frege systems: they can be (axiomatic) Hilbert-style systems or
sequent calculus style systems. A particular choice of the formalism is not important: a classical
result by Reckhow [30] assures us that all Frege systems are polynomially equivalent. The task
of proving lower bounds for general Frege systems is notoriously hard: no nontrivial lower
bounds are known to date. Basically, the strongest fragment of Frege systems, for which lower
bounds are known are AC0-Frege systems, which are Frege proofs operating with constant-depth
formulas. For example, both PHPm

n and TSG do not admit sub-exponential proofs in AC0-Frege
[1, 27, 23, 7, 18]. However, if we extend the De Morgan language with counting connectives such
as unbounded fan-in mod p (AC0[p]-Frege) or threshold gates (TC0-Frege), then we step again
into the darkness: proving super-polynomial lower bounds for these systems is a long-standing
open problem on what can be characterized as the “frontiers” of proof complexity. Recent works
by Kraj́ıček [21], Garlik-Ko lodziejczyk [15] and Kraj́ıček-Oliveira [22] had suggested possible
approaches to attack dag-like Res(linF2) lower bounds (though this problem remains open to
date).

1.1 Our Results and Techniques

In this work we prove a host of new lower bounds, separations and upper bounds for resolution
over linear equations. Our first technical contribution is a dag-like refutation lower bound
over large characteristic fields. Conceptually, the proof idea exploits two main properties that
recently have been found useful in proof complexity:

(i) Single axiom: the hard instance consists of a single unsatisfiable axiom (for boolean
assignments)

1 +
n∑

i=1

2ixi = 0 (1)

(unlike, for instance, a set of clauses).

(ii) Large coefficients: the hard instance uses coefficients of exponential magnitude (though
their bit-size is polynomial, and we consider coefficients to be written in binary in proofs).

Although employing different approaches, both of these properties played a recent role in proof
complexity lower bounds. Forbes et al. [14] used subset-sum variants (that is, unsatisfiable linear
equations with boolean variables) to establish lower bounds on subsystems of the ideal proof
system (IPS) over large characteristic fields, where IPS is the strong proof system introduced
by Grochow and Pitassi [16]. It is essential in both [14] and our work that the hard instance
takes the form of a single unsatisfiable axiom. Subsequently, in a recent work, Alekseev et al. [3]
established conditional exponential-size lower bounds on full IPS refutations over the rationals
of the same subset-sum instance (1), where the use of big coefficients is again essential to the
lower bound. We explain our dag-like lower bound in Section 1.1.2.

The next contribution we make is a systematic development of new kinds of lower bound
techniques against tree-like resolution over linear equations, both over the rationals and over
finite fields. To this end we develop new and extend existing combinatorial techniques such as
the Prover-Delayer game method as originated in Pudlak and Impagliazzo [28] for resolution,
and developed further by Itsykson and Sokolov [19]. Moreover, we provide new applications in
proof complexity of different combinatorial results; this include bounds on the size of essential
coverings of the hypercube from Linial and Radhakrishnan [24], a result about the hyperplane
coverings of the hypercube by Alon and Füredi [4] and the notion of immunity from Alekhnovich

3

and Razborov [2]. We further non-trivially extend the well-established principle of size-width
tradeoffs in resolution [8] to the setting of Res(linR) (though it is important to note that most
of our lower bounds do not follow from this tradeoff result).

1.1.1 Background

For a ring R, the refutation system Res(linR) is defined as an extension of the resolution refu-
tation system as follows (see Raz and Tzameret [29]). The proof-lines of Res(linR) are called
linear clauses (sometimes called simply clauses), which are defined as disjunctions of linear
equations with duplicate linear equations contracted. More formally, they are disjunctions of
the form: (∑n

i=1
a1ixi + b1 = 0

)
∨ · · · ∨

(∑n

i=1
akixi + bk = 0

)
,

where k is some number (the width of the clause), and aji, bj ∈ R. The resolution rule is the
following:

from (C ∨ f = 0) and (D ∨ g = 0) derive (C ∨D ∨ (αf + βg) = 0),

where α, β ∈ R, and where C,D are linear clauses. A Res(linR) refutation of a set of linear
clauses C1, . . . , Cm that is an unsatisfiable over 0-1 is a sequence of proof-lines, where each
proof-line is either Ci, for i ∈ [m], a boolean axiom (xi = 0 ∨ xi = 1) for some variable xi,
or was derived from previous proof-lines by the above resolution rule, or by the weakening
rule that allows to extend clauses with arbitrary disjuncts, or a simplification rule allowing
to discard false constant linear polynomials (e.g., 1 = 0) from a linear clause (with duplicate
linear equations automatically contracted once they turn out after an inference rule). The last
proof-line in a refutation is the empty clause (standing for the truth value false).

The size of a Res(linR) refutation is the total size of all the clauses in the derivation, where
the size of a clause is defined to be the total number of occurrences of variables in it plus the
total size of all the coefficient occurring in the clause. The size of a coefficient when using
integers (or integers embedded in characteristic zero rings) is the standard size of the binary
representation of integers (nevertheless, when we talk about “big” or “exponential” coefficients
and “polynomially bounded” coefficients, etc., we mean that the magnitude of the coefficients
is big (exponential) or polynomially bounded).

We are generally interested in the following questions:

(Q1) For a given ring R, what kind of counting can be efficiently performed in Res(linR) and
tree-like Res(linR)?

(Q2) Can dag-like Res(linR) be separated from tree-like Res(linR)?

(Q3) Can tree-like systems for different rings R be separated?

Tree-like Res(linR) with semantic weakening. In order to be able to do some non-trivial
counting in tree-like versions of resolution over linear equations we define a semantic version of
the system as follows.

The system Ressw(linR) is obtained from Res(linR) by replacing the weakening and the
simplification rules, as well as the boolean axioms, with the semantic weakening rule (the
symbol |= will denote in this work semantic implication with respect to 0-1 assignments):2

C (C |= D) .
D

4

The reason for studying Ressw(linR) is mainly the following: In case F is a field of charac-
teristic 0, the possibility to do counting in tree-like Res(linF) is quite limited. For instance, we
show that 2x1+ · · ·+2xn = 1 requires refutations of exponential in n size (Theorem 34). On the
other hand, such contradictions do admit short tree-like Res(linF) refutations in the presence
of the following generalized boolean axioms (which is a tautological linear clause, over 0-1):

Im(f) :=
∨

A∈im2(f)
(f = A), (2)

where im2(f) is the image of a linear polynomial f under 0-1 assignments. (Similar to the way
the boolean axioms (xi = 0) ∨ (xi = 1) state that the possible value of a variable is either zero
or one, the Im(f) axiom states all the possible values that the linear polynomial f can have.)

Let Γ be an arbitrary set of tautological R-linear clauses. Then, it is possible to show that
lower bounds for tree-like Ressw(linR) imply lower bounds for tree-like Res(linR) with formulas
in Γ as axioms. If a lower bound holds for tree-like Ressw(linF) it also holds, in particular, for
tree-like Res(linF) with the axioms Im(f), and this makes tree-like Ressw(linF) a useful system,
for which lower bounds against are sufficiently interesting.

1.1.2 Characteristic Zero Lower Bounds

For characteristic zero fields we will use mainly the rational number field Q (though many
of the results hold over any characteristic zero rings). First, we show that over Q, whenever
α1x1 + · · · + αnxn + β = 0 is unsatisfiable (over 0-1 assignments), it has polynomial dag-like
Res(linQ) refutations if the coefficients are polynomially bounded in magnitude, while it re-
quires exponential dag-like Res(linQ) refutations for some subset-sum instances with exponential-
magnitude coefficients. Note that α1x1 + · · ·+αnxn +β = 0 expresses the subset-sum principle:
α1x1 + · · · + αnxn = −β is satisfiable iff there is a subset of the integral coefficients αi whose
sum is precisely −β. The lower bound is stated in the following theorem:

Theorem (Theorem 19; Main dag-like lower bound). Any Res(linQ) refutation of 2x1 + 4x2 +
· · ·+ 2nxn + 1 = 0 requires size 2Ω(n).

The proof of this theorem introduces a new lower bound technique. We show that every
(dag- or tree-like) refutation π of 2x1+4x2+· · ·+2nxn+1 = 0 can be transformed without much
increase in size into a derivation of a certain “fat” (exponential-size) clause Cπ from boolean
axioms only.3 In order to prove that Cπ is fat, we ensure that every disjunct g = 0 in Cπ has
at most 2cn satisfying boolean assignments, for some constant c < 1. Because Cπ is derived
from boolean axioms alone, it must be a boolean tautology, that is, it must have 2n satisfying
assignments. Since every disjunct in Cπ is satisfied by at most 2cn assignments, the number of
disjuncts in the clause is at least 2(1−c)n. Since our constructed derivation is not much larger
than the original refutation, the size of the original refutation must be 2Ω(n).

This proof relies in an essential way on the fact that the coefficients of the linear form have
exponential magnitude. Indeed, every contradiction of the form f = 0 can be shown to admit

2Let k = char(R) be the characteristic of the ring R. In case k /∈ {1, 2, 3}, deciding whether an R-linear clause
D is a tautology (that is, holds for every 0-1 assignment to its variables) is at least as hard as deciding whether a
3-DNF is a tautology (because over characteristic k /∈ {1, 2, 3} linear equations can express conjunction of three
conjuncts). For this reason Ressw(linR) proofs cannot be checked in polynomial time and thus Ressw(linR) is
not a Cook-Reckhow proof system unless P = coNP (namely, the correctness of proofs in the system cannot
necessarily be checked in polynomial-time, as required by a Cook-Reckhow propositional proof system [13]; see
Section 2.2).

3The notion of showing that a refutation must go though a fat (i.e., wide) clause is well established in resolution
lower bounds. However, we note that our lower bound is completely different from the known size-width based
resolution lower bounds (as formulated in a generic way in the work of Ben-Sasson and Wigderson [8]).

5

polynomial-size dag-like Res(linQ) refutations whenever the coefficients of f are polynomially
bounded. A natural question is whether in the case of bounded coefficients, f = 0 can be
efficiently refuted already by tree-like Res(linQ) refutations. The question turns out to be non-
trivial, and we provide a negative answer:

Theorem (Theorem 34; Subset-sum tree-like lower bounds). Let f be any linear polynomial
over Q, which depends on n variables. Then tree-like Res(linQ) refutations of f = 0 are of size
2Ω(
√
n).

The proof is in two stages. First, we use a transformation analogous to the one used for
the dag-like lower bound to reduce the lower bound problem for refutations of f = 0 to a lower
bound problem for derivations of clauses of a certain kind. Namely, we transform any tree-like
refutation π of f = 0 to a tree-like derivation of Cπ from boolean axioms without much increase
in size. The only difference is that this time we ensure that in every disjunct g = 0 of Cπ, the
linear polynomial g depends on at least n

2 variables.
Second, we prove that tree-like Res(linQ) derivations of such a Cπ are large:

Theorem (Theorem 32). Any tree-like Res(linQ) derivation of any tautology of the form∨
j∈[N] gj = 0, for some positive N , where each gj is linear over Q and depends on at least

n
2 variables, is of size 2Ω(

√
n).

To prove this, as well as some other lower bounds, we extend the Prover-Delayer game
technique as originated in Pudlak-Impagliazzo [28] for resolution, and developed further by
Itsykson-Sokolov [19] for Res(linF2), to general rings, including characteristic zero rings (see
Sec. 8.1).4

We define a non-trivial strategy for Delayer in the corresponding game and prove that it
guarantees

√
n coins using a bound on the size of essential coverings of the hypercube from Linial

and Radhakrishnan [24]. The relation between Prover-Delayer games and tree-like Res(linQ)
refutations allows us to conclude that the size of tree-like Res(linQ) refutations must be 2Ω(

√
n).

Moreover, as a corollary of Theorem 32 we obtain a lower bound on tree-like Res(linQ)
derivations (in contrast to refutations) of Im(f) :

Corollary (Corollary 33). Let f be any linear polynomial over Q that depends on n variables.
Then tree-like Res(linQ) derivations of Im(f) are of size 2Ω(

√
n).

We also use Prover-Delayer games to prove an exponential-size 2Ω(n) lower bound on tree-
like Ressw(linF) refutations of the pigeonhole principle PHPm

n for every field F (including finite
fields). This extends a previous result by Itsykson and Sokolov [19] for tree-like Res(linF2).

Theorem (Theorem 37; Pigeonhole principle lower bounds). Let F be any (possibly finite) field.

Then every tree-like Ressw(linF) refutation of ¬PHPm
n has size 2Ω(n−1

2).

Together with the polynomial upper bounds for PHPm
n refutations in dag-like Res(linF) for

fields F of characteristic zero demonstrated by Raz and Tzameret [29], Theorem 37 establishes
a separation between dag-like Res(linF) and tree-like Ressw(linF) for characteristic zero fields,
for the language of unsatisfiable formulas in CNF:

Corollary. Over fields of characteristic zero F, Res(linF) has an exponential speed-up over
tree-like Res(linF) as refutation systems for unsatisfiable formulas in CNF.

4We note here (see Remark 1 in the next sub-section) that the lower bounds that we prove using Prover-
Delayer games techniques in case char(F) = 0 do not follow from lower bounds for Polynomial Calculus using
size-width relations.

6

To prove Theorem 37 we need to prove that Delayer’s strategy from [19] is successful over
any field. This argument is new, and uses a result of Alon-Füredi [4] about the hyperplane
coverings of the hypercube.

We prove another separation between dag-like Res(linQ) and tree-like Ressw(linQ), as follows.
For any ring R we define the image avoidance principle to be:

ImAv (x1 + · · ·+ xn) := {〈x1 + · · ·+ xn 6= k〉}k∈{0,...,n},

where 〈x1 + · · ·+ xn 6= k〉 :=
∨

k′∈{0,...,n}, k 6=k′ x1 + · · ·+ xn = k′. In words, the image avoidance
principle expresses the contradictory statement that for every 0 ≤ i ≤ n, x1 + · · · + xn equals
some element in {0, . . . , n}\i. In more generality, let f be a linear form over Q and let im2(f) be
the image of f under 0-1 assignments to its variables. Define 〈f 6= A〉 :=

∨
A 6=B∈im2(f)

(f = B),
where A ∈ Q. We define

ImAv (f) := {〈f 6= A〉 : A ∈ im2(f)} . (3)

Corollary (Corollary 14). For every ring R and every linear form f the contradiction ImAv (f)
admits polynomial-size Res(linR) refutations.

Theorem (Theorem 36). We work over Q. Let f = ǫ1x1 + · · · + ǫnxn, where ǫi ∈ {−1, 1}.
Then any tree-like Ressw(linQ) refutation of ImAv (f) is of size at least 2

n
4 .

The lower bound in Theorem 36 is one more novel application of the Prover-Delayer game
argument, combined with the notion of immunity from Alekhnovich and Razborov [2], as we
now briefly explain.

Let f be a linear form as in Theorem 36. We consider an instance of the Prover-Delayer
game for ImAv (f). A position in the game is determined by a set Φ of linear non-equalities
of the form g 6= 0, which we think of as the set of non-equalities learned up to this point by
each Prover. In the beginning Φ is empty. We define Delayer’s strategy in such a way that
for Φ an end-game position, there is a satisfiable subset Φ′ = {g1 6= 0, . . . , gm 6= 0} ⊆ Φ such
that Φ′ |= f = A for some A ∈ Q, and Delayer earns at least |Φ′| = m coins. Because Q is of
characteristic zero, it follows that f ≡ A + 1 (mod 2) |=f 6= A |= g1 · . . . · gm = 0 and thus the
n
4 -immunity of f ≡ A + 1(mod 2) ([2]) implies m ≥ n

4 . To conclude, by a standard argument if

Delayer always earns n
4 coins, then the shortest proof is of size at least 2

n
4 .

Table 1 sums up our knowledge up to this point with respect to Q (and for some cases any
characteristic 0 field):

n∑
i=1

2xi = 1
n∑

i=1
2ixi = −1 ImAv

(
n∑

i=1
xi

)
PHPm

n (CNF) Im

(
n∑

i=1
xi

)

t-l Res(linQ) 2Ω(
√
n) 2Ω(n) 2Ω(n) 2Ω(n) 2Ω(

√
n)

t-l Ressw(linQ) poly poly 2Ω(n) 2Ω(n) poly

Res(linQ) poly 2Ω(n) poly poly [29] poly

Table 1: Lower and upper bounds for Q. The notation t-l Res(linR) stands for tree-like Res(linR). The
rightmost column describes bounds on derivations, in contrast to refutations. All results except the
upper bound on PHP are from the current work.

7

1.1.3 Finite Fields Lower Bounds

We now turn to resolution over linear equations in finite fields. We obtain many new tree-like
lower bounds (see Table 2).

We already discussed above lower bounds for the pigeonhole principle which hold both for
positive and zero characteristic. We furthermore prove a separation between tree-like Res(linFpk

)
(resp. tree-like Ressw(linFpk

)) and tree-like Res(linFql
) (resp. tree-like Ressw(linFql

)) for every pair
of distinct primes p 6= q and every k, l ∈ N \ {0}. The separating instances are mod p Tseitin

formulas TS
(p)
G,σ (written as CNFs), which are reformulations of the standard Tseitin graph

formulas TSG for counting mod p. Furthermore, we establish an exponential lower bound for
tree-like Ressw(linFpc) on random k-CNFs.5

The lower bounds for tree-like Res(linF) for finite fields F are obtained via a variant of the
size-width relation for tree-like Res(linF) together with a translation to polynomial calculus
over the field F, denoted PCF [10], such that Res(linF) proofs of width ω are translated to PCF

proofs of degree ω (the width ω of a clause is defined to be the total number of disjuncts in a
clause). This establishes the lower bounds for the size of tree-like Res(linF) proofs via known
lower bounds on PCF degrees ([2]).

We show that
ω0(φ ⊢⊥) = O

(
ω0(φ) + logSt-l Res(linR)(φ ⊢⊥)

)
,

where ω0 is what we call the principal width, which counts the number of linear equations in
clauses when we treat as identical those defining parallel hyperplanes, and St-l Res(linR)(φ ⊢⊥)
denotes the minimal size of a tree-like Res(linR) refutation of φ.

Specifically, over finite fields the following upper and lower bounds provide exponential
separations:

Theorem (Theorem 43; Size-width relation). Let φ be an unsatisfiable set of linear clauses
over a field F. The following relation between principal width and size holds for both tree-like
Res(linF) and tree-like Ressw(linF): S(φ ⊢⊥) = 2Ω(ω0(φ⊢⊥)−ω0(φ)). If F is a finite field, then the
same relation holds for the (standard) width of a clause ω.

This extends to every field a result by Garlik-Ko lodziejczyk [15, Theorem 14] who showed a
size-width relation for a system denoted tree-like PKid

O(1)(⊕), which is a system extending tree-

like Res(linF2) by allowing arbitrary constant-depth De Morgan formulas as inputs to ⊕ (XOR
gates) (though note that our result does not deal with arbitrary constant-depth formulas).

Theorem (Theorem 44). Let F be a field and π be a Res(linF) refutation of an unsatisfiable
CNF formula φ. Then, there exists a PCF refutation π′ of (the arithmetization of) φ of degree
ω(π).

Corollary (Corollary 45; Tseitin mod p lower bounds). For any fixed prime p there exists a
constant d0 = d0(p) such that the following holds. If d ≥ d0, G is a d-regular directed graph
satisfying certain expansion properties, and F is a finite field such that char(F) 6= p, then every

tree-like Res(linF) refutation of the Tseitin mod p formula ¬TS
(p)
G,σ has size 2Ω(dn).

Corollary (Corollary 46; Random k-CNF formulas lower bounds). Let φ be a randomly gener-

ated k-CNF with clause-variable ratio ∆, and where ∆ = ∆(n) is such that ∆ = o
(
n

k−2
2

)
, and

5We thank Dmitry Itsykson for telling us about the lower bound for random k-CNF for the case of tree-like
Res(linF2

), that was proved by Garlik and Ko lodziejczyk using size-width relations (unpublished note). Our
result extends Garlik and Ko lodziejczyk’s result to all finite fields. Similar to their result, we use a size-width
argument and simulation by the polynomial calculus to establish the lower bound.

8

let F be a finite field. Then, every tree-like Res(linF) refutation of φ has size 2
Ω

(

n

∆2/(k−2)·log∆

)

with probability 1− o(1).

Remark 1. We stress that the size-width relation of Theorem 43 cannot be used for transferring
PCF degree lower bounds to tree-like Res(linF) size lower bounds in case char(F) = 0. This is
due to the essential difference between principal width and width in this case. Thus, all the lower
bounds that we prove using Prover-Delayer games techniques in case char(F) = 0 do not follow
from lower bounds for PCF.

Table 2 shows the results for Res(linR) over finite fields.

Ax = b TS
(−)
G,σ TS

(q)
G,σ random k-CNF PHPm

n

t-l Res(linFpk
) 2Ω(n) poly 2Ω(dn) 2

Ω

(

n

∆2/(k−2)·log∆

)

2Ω(n)

t-l Res(⊕) poly [19] poly [19] 2Ω(dn) 2
Ω

(

n

∆2/(k−2)·log∆

)

[15] 2Ω(n) [19]

t-l Ressw(linFpk
) poly poly ? ? 2Ω(n)

Table 2: Lower bounds over finite fields. Here G is d-regular graph and ∆ is the clause density (number
of clauses divided by the number of variables), Ax = b stands for a linear system over Fpk that has no

0-1 solutions in the first and the third rows, and in the second row the linear system Ax = b is over F2.

The notation TS
(−)
G,σ stands for TS

(p)
G,σ in the first and the third rows and for TS

(2)
G,σ in the second row.

t-l Res(linR) stands for tree-like Res(linR), and p 6= q are primes (in the second row and third column
we assume q 6= 2). Circled “?” denotes an open problem. The results marked with [19, 15] were proved
in the respective papers. All other results are from the current work.

1.1.4 Complexity of Linear Systems

The tree-like Res(linF) upper bounds for mod p Tseitin formulas in the case char(F) = p stem
from the following proposition:

Proposition (Proposition 15; Upper bounds on unsatisfiable linear systems). Let F be a field
and assume that the linear system Ax = b, where A is a k × n matrix over F, has no solutions
(over F). Let φ be a CNF formula encoding the linear system Ax = b. Then, there exist tree-like
Res(linF) refutations of φ of size polynomial in the sum of sizes of encodings of all coefficients
in A.

The upper bound in Proposition 15 applies only to linear systems that are unsatisfiable over
the whole field F. But does any system Ax = b over F that has a satisfying assignment over F,
but not over 0-1 assignments, admit polynomial-size Res(linF) refutations?

For fields F with char(F) ≥ 5 or char(F) = 0 it is known that 0-1 satisfiability of Ax = b
is NP-complete (see Sec. 2.4). This means that unless coNP = NP there exist 0-1 unsatisfiable
linear systems that require superpolynomial dag-like Res(linF) refutations. Moreover, the re-
duction R from k-UNSAT is such that φ ∈ k-UNSAT has Res(linF) refutations of size S iff the
system R(φ) has Res(linF) refutations of size O(S). Thus, in general proving lower bounds for
linear systems can be as hard as proving lower bounds for CNFs: lower bounds for some linear
systems imply lower bounds for CNFs.

A substantial part of this paper is devoted to the study of Res(linF) complexity of linear
systems, for which we obtain both lower and upper bounds. This includes the lower bounds for

9

Subset Sum principles: as our dag-like Res(linF) lower bounds described above (Theorem 19)
show, in case char(F) = 0 there exists a 0-1 unsatisfiable family of linear systems f = 0, each
linear system having a single equation f = 0, with coefficients growing exponentially in the
number of variables n, that requires exponential in n dag-like Res(linF) refutations. But what
if F is finite of fixed cardinality q? In this case it is easy to show that the simplest one-equation
instance f = 0 is always 0-1 satisfiable (unless f depends on O(|F|) variables). Thus, a hard
linear system f1 = 0, . . . , fm = 0 over a finite field F must contain several equations. Moreover,
to obtain super-polynomial lower bounds the number of equations m must satisfy m = ω(log n),
as implied by the following upper bound:

Theorem (Theorem 20; Upper bound on 0-1 unsatisfiable linear systems). Let Af1,...,fm : Fn →
Fm be an affine map x 7→ (f1(x), . . . , fm(x)), where f1, . . . , fm are linear polynomials. If the
system f1 = 0, . . . , fm = 0 is unsatisfiable over 0-1, that is, if 0 /∈ im2(Af1,...,fm x), then there
exists a Res(linF) refutation of this system of size poly(n + |im2(Af1,...,fm x)|).

In case of finite fields, an unconditional explicit tree-like Res(linF) lower bound for linear
systems can be obtained via PCF using size-width relation for finite fields (Theorem 43) and
Proposition 6. In particular, hard instances of the form Ax = b can be constructed by applying
the reduction R from k-SAT in the proof of NP-completeness of 0-1 satisfiability of linear systems
6 to, say, mod 2 Tseitin formulas. Our work implies an exponential lower bound for the size of
tree-like Res(linF) refutations of these systems (for large enough, but constant, characteristic)
and we conjecture that they are hard for dag-like Res(linF) as well.

1.1.5 Nondeterministic Linear Decision Trees

There is a well-known size preserving (up to a constant factor) correspondence between tree-like
resolution refutations for unsatisfiable formulas φ and decision trees, which solve the following
problem: given an assignment ρ for the variables of φ, determine which clause C ∈ φ is falsified
by querying values of the variables under the assignment ρ. In Itsykson-Sokolov [19] this corre-
spondence was generalized to tree-like Res(⊕) refutations and parity decision trees. In Beame
et al. [5] an analogous correspondence was shown for tree-like R(CP) refutations7 and decision
trees that branch on linear inequalities. In the current work we initiate the study of linear
decision trees and their properties over different characteristics, extending the correspondence
of [19] to a correspondence between tree-like Res(linR) (and tree-like Ressw(linR)) derivations
to what we call nondeterministic linear decision trees (NLDT).

NLDTs for an unsatisfiable set of linear clauses φ are binary rooted trees, where every edge
is labeled with a non-equality f 6= 0 for a linear form f and every leaf is labeled with a linear
clause C ∈ φ, which is violated by the non-equalities on the path from the root to the leaf.
(Note that in the same manner that in a (boolean) decision tree (which corresponds to a tree-
like resolution refutation) we go along a path from the root to a leaf, choosing those edges that
violate a literal xi or ¬xi, in an NLDT we branch along a path that violates equalities f = 0,
or equivalently, certifies non-equalities of the form f 6= 0.)

Theorem (Theorem 23). If φ is an unsatisfiable CNF formula, then every tree-like Res(linR)
or tree-like Ressw(linR) refutation can be transformed into a corresponding NLDT for φ of the
same size up to a constant factor, and vice versa (note that the NLDTs for the two types of
refutations are different).

6A clause (x1 ∨ · · · ∨ xk) can be written as x1 + · · · + xk = 1 + u1 + · · · + uk−1 if char(F) > k or char(F) = 0,
where ui are new variables

7R(CP) is a system operating with disjunctions of integer linear inequalities f ≥ 0

10

2 Preliminaries

2.1 Notation

Denote by [n] the set {1, . . . , n}. We use x1, x2, . . . to denote variables, both propositional and
algebraic. Let f be a linear polynomial (equivalently, an affine function) over a ring R, that is, a
function of the form

∑n
i=1 aixi+a0 with ai ∈ R. We sometimes refer to a linear form as a hyper-

plane, since the assignments that nullify a linear form determines a hyperplane. We denote by
im2(f) the image of f under 0-1 assignments to its variables; 〈f 6= A〉 :=

∨
A 6=B∈im2(f)

(f = B),
where A ∈ R.

A linear clause is a formula of the form (
∑n

i=1 a1ixi + b1 = 0) ∨ · · · ∨ (
∑n

i=1 akixi + bk = 0)
with x1, . . . , xn variables, and aij , bi’s ring elements (when the ring is specified in advanced).
We sometimes abuse notation by writing a linear equation as

∑n
i=0 a1ixi = −b1 instead of∑n

i=0 a1ixi + b1 = 0. We assume that all the disjuncts in a linear clause are distinct.
For φ a set of clauses or linear clauses, vars(φ) denotes the set of variables occurring in φ

and let Vars denote the set of all variables.
Let A be a matrix over a ring. We introduce the notation Ax + b for a system of linear

non-equalities, where a non-equality means 6= (note the difference between Ax + b, which
stands for Ai · x 6= bi, for all rows Ai in A, and Ax 6= b, which stands for Ai · x 6= bi, for some
row Ai in A).

If f is a linear polynomial over R and A is a matrix over R, denote by |f | the sum of sizes
of encodings of coefficients in f and by |A| the sum of sizes of encodings of elements in A.

If C = (
∨

i∈[m] fi = 0) is a linear clause, denote by ¬C the set of non-equalities {fi 6= 0}i∈[m].
Conversely, if Φ = {fi 6= 0}i∈[n] is a set of non-equalities, denote ¬Φ :=

∨
i∈[m] fi = 0.

If φ is a set of linear clauses over a ring R and D is a linear clause over R, denote by∧
C∈φC |= D and

∧
C∈φC |=R D semantic entailment over 0-1 and R-valued assignments

respectively.
Let l be a linear polynomial not containing the variable x. If C is a linear clause, denote by

C ↾x←l the linear clause, which is obtained from C by substituting l for x everywhere in C. If
φ = {Ci}i∈I is a set of clauses, denote φ ↾x←l:= {Ci ↾x←l}i∈I . We define a linear substitution
ρ to be a sequence (x1 ← l1, . . . , xn ← ln) such that each linear polynomial li does not depend
on xi. For a clause or a set of clauses φ we define φ ↾ρ:= (. . . ((φ ↾x1←l1) ↾x2←l2) . . .) ↾xn←ln .

2.2 Propositional Proof Systems

A clause is an expression of the form l1 ∨ · · · ∨ lk, where li is a literal, where a literal is a
propositional variable x or its negation ¬x. A formula is in Conjunctive Normal Form (CNF) if
it is a conjunction of clauses. A CNF can thus be defined simply as a set of clauses. The choice of
a reasonable binary encoding of sets of clauses allows us to define the language UNSAT ⊂ {0, 1}∗
of unsatisfiable propositional formulas in CNF. We sometimes interpret an element in UNSAT
as a formula and sometimes as a set of clauses. Dually, a formula is in Disjunctive Normal
Form (DNF) if it is a disjunction of conjunctions of literals and TAUT is the language of
tautological propositional formulas in DNF. There is a bijection between TAUT and UNSAT,
which preserves the size of the formula, given by negation.

A formula is in k-CNF (resp. k-DNF) if it is in CNF (resp. DNF) and every clause (resp. con-
junct) has at most k literals. k-UNSAT (resp. k-TAUT) is the language of unsatisfiable
(resp. tautological) formulas in k-CNF (resp. k-DNF).

Definition 1 (Cook-Reckhow propositional proof system [13]). A propositional proof system
Π is a polynomial time computable onto function Π : {0, 1}∗ → TAUT.

11

Π-proofs of φ ∈ TAUT are elements in Π−1(φ). Definition 1 can be generalized to arbitrary
languages: proof system for a language L is polynomial time computable onto function Π :
{0, 1}∗ → L. In particular, a refutation system Π is a proof system for UNSAT. Post-composition
with negation turns a propositional proof system into a refutation system and vise versa.

Denote by S(π), and alternatively by |π|, the size of the binary encoding of a proof π in a
proof system Π. For φ ∈ UNSAT and a refutation system Π denote by SΠ(φ ⊢⊥) (we sometimes
omit the subscript Π when it is clear from the context) the minimal size of a Π-refutation of φ.

The resolution system (which we denote also by Res) is a refutation system, based on the
following rule, allowing to derive new clauses from given ones:

C ∨ x D ∨ ¬x (Resolution rule).
C ∨D

A resolution derivation of a clause D from a set of clauses φ is a sequence of clauses
(D1, . . . , Ds ≡ D) such that for every 1 ≤ i ≤ s either Di ∈ φ or Di is obtained from pre-
vious clauses by applying the resolution rule. A resolution refutation of φ ∈ UNSAT is a
resolution derivation of the empty clause from φ, which stands for the truth value False.

A resolution derivation is tree-like if every clause in it is used at most once as a premise of a
rule. Accordingly, tree-like resolution is the resolution system allowing only tree-like refutations.

Let F be a field. A polynomial calculus [10] derivation of a polynomial q ∈ F[x1, . . . , xn]
from a set of polynomials P ⊆ F[x1, . . . , xn] is a sequence (p1, . . . , ps), pi ∈ F[x1, . . . , xn] such
that for every 1 ≤ i ≤ s either pi = x2j − xj , pi ∈ P or pi is obtained from previous polynomials
by applying one of the following rules:

f g
(α, β ∈ F, f, g ∈ F[x1, . . . , xn])

αf + βg

f
(f ∈ F[x1, . . . , xn]) .

x · f

A polynomial calculus refutation of P ⊆ F[x1, . . . , xn] is a derivation of 1. The degree d(π) of
a polynomial calculus derivation π is the maximal total degree of a polynomial appearing in
it. This defines the proof system PCF for the language of unsatisfiable systems of polynomial
equations over F. It can be turned into a proof system for k-UNSAT via arithmetization of
clauses as follows: (x1∨. . .∨xk∨¬y1∨. . .∨¬yl) is represented as (1−x1)·. . .·(1−xk)·y1·. . .·yl = 0.

2.3 Hard Instances

2.3.1 Pigeonhole Principle

The pigeonhole principle states that there is no injective mapping from the set [m] to the set
[n], for m > n. Elements of the former and the latter sets are referred to as pigeons and
holes, respectively. The CNF formula, denoted PHPm

n , encoding the negation of this principle
is defined as follows. Let the set of propositional variables {xi,j}i∈[m],j∈[n] correspond to the

mapping from [m] to [n], that is, xi,j = 1 iff the ith pigeon is mapped to the jth hole. Then
¬PHPm

n := Pigeonsmn ∪ Holesmn ∈ UNSAT, where Pigeonsmn = {∨j∈[n] xi,j}i∈[m] are axioms for
pigeons and Holesmn = {¬xi,j ∨ ¬xi′,j}i 6=i′∈[m],j∈[n] are axioms for holes.

2.3.2 Mod p Tseitin Formulas

We use the version given in [2] (which is different from the one in [9, 29]). Let G = (V,E) be
a directed d-regular graph. We assign to every edge (u, v) ∈ E a corresponding variable x(u,v).

Let σ : V → Fp. The Tseitin mod p formulas ¬TS
(p)
G,σ are the CNF encoding of the following

equations for all u ∈ V :

12

∑

(u,v)∈E
x(u,v) −

∑

(v,u)∈E
x(v,u) ≡ σ(u) mod p . (4)

Note that we use the standard encoding of boolean functions as CNF formulas and the number of

clauses, required to encode these equations is O(2d|V |). ¬TS
(p)
G,σ is unsatisfiable if

∑
u∈V σ(u) 6≡

0 mod p. To see this, note that if we sum (4) over all nodes u ∈ V we obtain precisely∑
u∈V σ(u) which is different from 0 mod p; but on the other hand, in this sum over all nodes

u ∈ V each edge (u, v) ∈ E appears once with a positive sign as an outgoing edge from u
and with a negative sign as an incoming edge to v, meaning the the total sum is 0, which is a
contradiction.

In particular, ¬TS
(2)
G,σ are the classical Tseitin formulas [31] and TS

(2)
G,1, where 1 is the

constant function v 7→ 1 (for all v ∈ V), expresses the fact that the sum of total degrees
(incoming + outgoing) of the vertices is even.

The proof complexity of Tseitin tautologies depends on the properties of the graph G. For
example, if G is just a union of Kd+1 (the complete graphs on d+1 vertices), then they are easy
to prove. On the other hand, they are known to be hard for some proof systems if G satisfies
certain expansion properties.

Let G = (V,E) be an undirected graph. For U,U ′ ⊆ V define e(U,U ′) := {(u, u′) ∈ E |u ∈
U, u′ ∈ U ′}. Consider the following measure of expansion for r ≥ 1:

cE(r,G) := min
|U |≤r

e(U, V \U)

|U |

G is (r, d, c)-expander if G is d-regular and cE(r,G) ≥ c. There are explicit constructions of
good expanders. For example:

Proposition 2 (Lubotzky et. al [25]). For any d, there exists an explicit construction of d-
regular graph G, called Ramanujan graph, which is (r, d, d(1− r

n
)− 2

√
d− 1)-expander for any

r ≥ 1.

Proposition 3 (Alekhnovich-Razborov [2]). For any fixed prime p there exists a constant
d0 = d0(p) such that the following holds. If d ≥ d0, G is a d-regular Ramanujan graph on n
vertices (augmented with arbitrary orientation of its edges) and char(F) 6= p, then for every

function σ such that ¬TS(p)G,σ ∈ UNSAT every PCF refutation of ¬TS(p)G,σ has degree Ω(dn).

2.3.3 Random k-CNFs

A random k-CNF is a formula φ ∼ Fn,∆
k with n variables that is generated by picking randomly

and independently ∆ · n clauses from the set of all
(
n
k

)
· 2k clauses.

Proposition 4 (Alekhnovich-Razborov [2]). Let φ ∼ Fn,∆
k , k ≥ 3 and ∆ = ∆(n) is such that

∆ = o
(
n

k−2
2

)
. Then every PCF refutation of φ has degree Ω

(
n

∆2/(k−2)·log∆

)
with probability

1− o(1) for any field F.

2.4 Complexity of Linear Systems

It is a well-known fact that deciding 0-1 satisfiability of linear systems over Fp, p ≥ 5 or of linear
systems over Q (even if coefficients are small) are NP-complete problems. Indeed, for example,
the 3-clause (x1 ∨ ¬x2 ∨ x3) can be represented as the linear equation with additional boolean
variables y1, y2: x1 + (1− x2) + x3 = 1 + y1 + y2. In this way k-SAT reduces to 0-1 satisfiability
of linear systems over a field of characteristic 0 or p > k.

13

Theorem 5. The problem of deciding 0-1 satisfiability of linear systems over a field of char-
acteristic 0 or p ≥ 5 is NP-complete. In case of characteristic 0 this also holds if the size of
coefficients is required to be bounded by a constant.

The mapping R of k-CNFs to linear systems described above can be used to translate lower
bounds on degree of PCF refutations from k-CNFs to linear systems.

Proposition 6. If φ ∈ k-UNSAT and F is a field such that char(F) > k or char(F) = 0, then
φ admits PCF refutations of degree d iff R(φ) admits PCF refutations of degree O(d).

Proof: Denote σ the mapping from literals to linear polynomials such that: σ(x) := x and
σ(¬x) := 1 − x. Let τ be the following mapping from clauses to linear polynomials: τ(l1 ∨
· · · ∨ ls) := σ(l1) + · · · + σ(ls) − 1 − y

(1)
l1∨···∨ls − · · · − y

(s−1)
l1∨···∨ls , where y

(i)
l1∨···∨ls are auxiliary

boolean variables. Then R translates φ = {Ci}i∈[m] to the 0-1 unsatisfiable linear system L:
τ(C1) = 0, . . . , τ(Cm) = 0.

Assume L has PCF refutation π of degree d. If x1, . . . , xn are variables of φ, then all the

auxiliary variables y
(i)
Cj

can be substituted with polynomials v
(i)
Cj

(x1, . . . , xn) of degree at most

k such that Cj |= (τ(Cj) ↾ρv) = 0, where ρv stands for the substitution and the entailment is
over 0-1 assignments. It is easy to see that π can be extended to the proof π ↾ρv of degree at
most k · d, where all the auxiliary variables are substituted with the corresponding polynomials.
Due to implicational completeness of PCF, there are PCF derivations πj : Cj ⊢ (τ(Cj) ↾ρv) = 0
of degree at most k. Composition of {πj}j∈[m] with π ↾ρv gives a PCF refutation of degree at
most k · d.

Conversely, if π is a PCF refutation of φ of degree d, then the composition of derivations
τ(Cj) = 0 ⊢ Cj with π gives a refutation of L of degree at most max(k, d).

Remark. Note that the sizes of PCF proofs of φ and R(φ) in the construction in the proof of
Proposition 6 are the same up to a factor depending on k.

3 Resolution over Linear Equations for General Rings

In this section we define and outline some basic properties of systems that are extensions of res-
olution, where clauses are disjunctions of linear equations over a ring R: (

∑n
i=0 a1ixi + b1 = 0)∨

· · · ∨ (
∑n

i=0 akixi + bk = 0). Recall that disjunctions of this form are called linear clauses, and
that we assume that all disjuncts are distinct, hence we automatically contract duplicate linear
equations in case a duplicate turns up once an inference rule is applied. We sometimes abuse
notation by writing a linear equation as (

∑n
i=0 a1ixi = −b1) instead of (

∑n
i=0 a1ixi + b1 = 0).

The rules of Res(linR) are as follows (cf. [29]):

C ∨ f(x) = 0 D ∨ g(x) = 0
(Resolution) (α, β ∈ R)

C ∨D ∨ (αf(x) + βg(x)) = 0

C ∨ a = 0(Simplification) (0 6= a ∈ R)
C

C(Weakening)
C ∨ f(x) = 0

where f(x), g(x) are linear forms over R and C,D are linear clauses. Note that contraction
of duplicates disjuncts is done automatically when applying the resolution and the weakening
rules. The boolean axioms are defined as follows:

xi = 0 ∨ xi = 1, for xi a variable

14

A Res(linR) derivation of a linear clause D from a set of linear clauses φ is a sequence of linear
clauses (D1, . . . , Ds ≡ D) such that for every 1 ≤ i ≤ s either Di ∈ φ or is a boolean axiom or
Di is obtained from previous clauses by applying one of the rules above. A Res(linR) refutation
of an unsatisfiable set of linear clauses φ is a Res(linR) derivation of the empty clause (which
stands for false) from φ. The size of a Res(linR) derivation is the total size of all the clauses
in the derivation, where the size of a clause is defined to be the total number of occurrences
of variables in it plus the total size of all the coefficient occurring in the clause. The size of a
coefficient when using integers (or integers embedded in characteristic zero rings) will be the
standard size of the binary representation of integers.

In this definition we assume that R is a non-trivial (R 6= 0) ring such that there are
polynomial-time algorithms for addition, multiplication and taking additive inverses.

Along with size, we will be dealing with two complexity measures of derivations: width and
principal width.

Definition 2. A clause C = (f1 = 0∨· · ·∨fm = 0) has width ω(C) = m and principal width

ω0(C) =
∣∣{fi}i∈[m]/∼

∣∣ where ∼ identifies R-linear polynomials fi = 0 and fj = 0 if they define
parallel hyperplanes, that is, ∼ is the transitive closure of the relation that identifies fi and fj
if Afi +Bfj +C = 0 for some A 6= 0, B 6= 0, C ∈ R. For µ ∈ {ω, ω0}, the measure µ associated
with a Res(linR) derivation π = (D1, . . . , Ds) is µ(π) := max1≤i≤s µ(Di). For φ ∈ UNSAT,
denote by µ(φ ⊢⊥) the minimal value of µ(π) over all Res(linR) refutations π.

Note that in the definition above the constant disjuncts a = 0, a ∈ R count towards the
width and principal width.

Proposition 7. Res(linR) is sound and complete as a propositional proof system.

Proof: The soundness can be checked by inspecting that each rule of Res(linR) is sound. Com-
pleteness follows from a simple observation that Res(linR) simulates resolution: from C∨xi = 0
and D ∨ 1− xi = 0 derive C ∨D ∨ 1 = 0 and apply simplification.

In Section 6 (Corollary 25) we also prove implicational completeness of Res(linR) with respect
to linear clauses.

We now define two systems of resolution with linear equations over a ring, where some of
the rules are semantic: Ressw(linR) and Sem-Res(linR). Ressw(linR) is obtained from Res(linR)
by replacing the boolean axioms with 0 = 0, discarding simplification rule and replacing the
weakening rule with the following semantic weakening rule:

C(Semantic weakening) (C |= D)
D

The system Sem-Res(linR) has no axioms except for 0 = 0, and has only the following
semantic resolution rule:

C C ′(Semantic resolution) (C ∧ C ′ |= D)
D

It is easy to see that Res(linR) ≤p Ressw(linR) ≤p Sem-Res(linR), where P ≤p Q denotes
that Q polynomially simulates P .

In contrast to the case R = F2 (see [19]), for rings R with char(R) /∈ {1, 2, 3} both
Ressw(linR) and Sem-Res(linR) are not Cook-Reckhow proof systems, unless P = NP:

Proposition 8. The following decision problem is coNP-complete: given a linear clause over a
ring R with char(R) /∈ {1, 2, 3} decide whether it is a tautology under 0-1 assignments.

15

Proof: Consider a 3-DNF φ and encode every conjunct (xσ1
i1
∧· · ·∧xσk

ik
) ∈ φ, 1 ≤ k ≤ 3, σi ∈ {0, 1}

as the equation (1− 2σ1)x1 + · · ·+ (1− 2σk)xk = k − (σ1 + · · ·+ σk), where x0 := x, x1 := ¬x.
Then φ is tautological if and only if the disjunction of these linear equations is tautological
(that is, for every 0-1 assignment to the variables at least one of the equations hold, when the
equations are computed over a ring with characteristic zero or finite characteristic bigger than
3).

We leave it as an open question to determine the complexity of verifying a correct applica-
tion of the semantic weakening in case char(R) = 3 or in case char(R) = 2 and R 6= F2. In the
case R = F2 the negation of a clause is a system of linear equations and thus the existence of
solutions for it can be checked in polynomial time. Therefore Ressw(linF2) is a Cook-Reckhow
propositional proof system. The definitions of Res(linF2), Ressw(linF2) and Sem-Res(linF2) co-
incide with the definitions of syntactic Res(⊕), Res(⊕) and Ressem(⊕) from [19], respectively8.
As showed in [19], Res(linF2), Ressw(linF2) and Sem-Res(linF2) are polynomially equivalent.

We now show that if char(R) /∈ {1, 2, 3}, then Ressw(linR) is polynomially bounded as a
proof system for 3-UNSAT (that is, admits polynomial-size refutation for every instance):

Proposition 9. If char(R) /∈ {1, 2, 3}, then dag-like Ressw(linR) and tree-like Sem-Res(linR)
are polynomially bounded (not necessarily Cook-Reckhow) propositionally proof systems for
3-UNSAT.

Proof: Let φ(x1, . . . , xn) = {Ci}i∈[m] ∈ 3-UNSAT. Given C = (xσ1
j1
∨. . .∨xσk

jk
) define lin(¬C) :=

((2σ1 − 1)xj1 + . . . + (2σk − 1)xjk − (σ1 + . . . + σk)) where σi ∈ {0, 1}, jl ∈ [n], x0 := x, x1 :=
¬x. The linear clause lin(¬φ) :=

∨
i∈[m] lin(¬Ci) = 0 is a tautology (under 0-1 assignments)

and thus can be derived in Ressw(linR) in a single step as a weakening of 0 = 0 or resolving
0 = 0 with 0 = 0 in tree-like Sem-Res(linR).

In tree-like Sem-Res(linR) the disjunct lin(¬Ci) = 0 can be eliminated from lin(¬φ) by a
single resolution with Ci, thus the empty clause is derived by a sequence of m resolutions of
lin(¬φ) with C1, . . . , Cm.

Similarly, the disjuncts lin(¬Ci) = 0 are eliminated from lin(¬φ) in Ressw(linR), but with
a few more steps. Let D0 be the empty clause and Ds+1 := Ds ∨ lin(¬Cs+1) = 0, 0 ≤ s < m.
Assume Ds+1 is derived and assume without loss of generality, that Cs+1 = (x1 = 1∨ . . .∨xk =
1) and thus lin(¬Cs+1) = (−x1 − . . .− xk). Derive Ds as follows. Resolve Ds+1 with Cs+1

on lin(¬Cs+1) + (xk − 1) to get the clause E1 := Ds ∨ (−x1 − . . .− xk−1 − 1) = 0 ∨ x1 =
1 ∨ . . . ∨ xk−1 = 1 and apply semantic weakening to get E′1 := Ds ∨ x1 = 1 ∨ . . . ∨ xk−1 = 1.
Resolve Ds+1 with E′1 on lin(¬Cs+1) + (xk−1 − 1) and apply semantic weakening to get the
clause E′2 := Ds∨x1 = 1∨ . . .∨xk−2 = 1. After k steps the clause Ds = E′k can be derived.

The following proposition is straightforward, but useful as it allows, for example, to transfer
results about Res(linQ) to Res(linZ).

Proposition 10. If R is an integral domain and Frac(R) is its field of fractions, then Res(linR)
is equivalent to Res(linFrac(R)) and tree-like Res(linR) is equivalent to tree-like Res(linFrac(R)).

Proof: Every proof in Res(linR) is also a proof in Res(linFrac(R)).
To get the converse, we get rid of fractions by multiplying Res(linFrac(R)) proof-lines by

elements in R as follows. Assume the Res(linFrac(R)) proof π starts with linear clauses {Ci}
over R. By induction on the number of steps in π we construct a Res(linR) refutation π′ such
that if C := (

∨
i gi = 0) is a line in π, then C̃ := (

∨
iAigi = 0) is the corresponding line in

8There is, however, one minor difference in the formulation of syntactic Res(⊕) and Res(linF2
): the former

does not have the boolean axioms, but has an extra rule (addition rule).

16

π′, where Ai ∈ R. Moreover, we ensure that if {b1, . . . , bk} is the multiset of denominators of
coefficients appearing in the derivation of C, then all coefficients Ai ∈ R divide the product
k∏

j=1
bj . And finally we ensure that for all i the coefficients in Aigi are all from R.

The base case is immediate. Consider a resolution step in π: let (C ∨f = 0) and (D∨g = 0)
derive (C∨D∨ a

b
f + c

d
g = 0) for some a, b, c, d ∈ R. By induction hypothesis we have derivations

of (C̃ ∨Af = 0) and (C̃ ∨Bg = 0) in π′. We now derive:

(C̃ ∨ D̃ ∨ ((lcm(A,B)/A) · a · d) ·Af + ((lcm(A,B)/B) · b · c) ·Bg = 0)

where lcm(A,B) denotes the least common multiple of A and B. It is easy to see that L :=
lcm(A,B) · b · d divides the product of all denominators appearing in the derivation of (C ∨
D ∨ a

b
f + c

d
g = 0) in π. If in the original proof a

b
f + c

d
g = 0 was contracted with the identical

disjunct, which was multiplied by M in the new proof, we multiply the corresponding disjuncts
in the new proof be lcm(L,M)/L and lcm(L,M)/M respectively and apply the contraction.

If a1, . . . , aN ∈ R is the list of denominators of all the coefficients in a Res(linFrac(R)) proof

π, then under a reasonable encoding of R: |
N∏
i=1

aj | ≤ |a1| + · · · + |aN | ≤ |π|. Therefore the

corresponding Res(linR) proof is of size at most O(|π|2).

3.1 Basic Counting in Res(linR) and Ressw(linR)

Here we introduce several unsatisfiable sets of linear clauses that express some counting
principles, and serve to exemplify the ability of dag-like Res(linR), tree-like Res(linR) and
tree-like Ressw(linR) to reason about counting, for a ring R. We then summarize what we
know about refutations of these instances in our different systems, proving along the way some
upper bounds and stating some lower bounds proved in the sequel.

Our unsatisfiable instances are the following:

Linear systems: If A = (B|b) is an m× (n + 1) matrix over R, where the B sub-matrix

consists of the first n columns, such that Bx = b has no 0-1 solutions, then (Bi is the ith
row in B):

LinSys(A) := {Bi · x = bi}i∈[m] . (5)

Subset Sum: Let f be a linear form over R such that 0 /∈ im2(f). Then,

SubSum(f) := {f = 0} . (6)

Image avoidance: Let f be a linear form over R and recall the notation 〈f 6= A〉 from Sec. 2.1.
We define

ImAv (f) := {〈f 6= A〉 : A ∈ im2(f)} . (7)

We also consider the following (tautological) generalization of the boolean axiom x = 0∨x =
1.

Image axiom: For f a linear form, define

Im(f) :=
∨

A∈im2(f)

f = A . (8)

17

Dag-Like Res(linR)

Upper bounds. For any given linear polynomial f , Im(f) has a Res(linR)-derivation of
polynomial-size (in the size of Im(f)):

Proposition 11. Let f =
∑n

i=1 aixi+b be a linear polynomial over R. There exists a Res(linR)
derivation of Im(f) of size polynomial in |Im(f)| and of principal width at most 3.

Proof: We construct derivations of Im
(∑k

i=1 aixi + b
)
, 0 ≤ k ≤ n, inductively on k.

Base case: k = 0. In this case Im(b) is just the axiom b = b and thus derived in one step.

Induction step: Let fk :=
∑k

i=1 aixi + b and assume Im(fk) was already derived.

Derive C0 :=
(∨

A∈im2(fk)
fk + ak+1xk+1 = A

)
∨ xk+1 = 1 from Im(fk) by |im2(fk)|

many resolution applications with xk+1 = 0 ∨ xk+1 = 1. Similarly derive C1 :=(∨
A∈im2(fk)

fk + ak+1xk+1 = A + ak+1

)
∨ xk+1 = 0 and obtain Im(fk+1) by resolving C0 with

C1 on xk+1. The size of the derivation is n · |Im(f)|, and as there is no clause with more than 3
equations that determines non-parallel hyperplanes, hence the principal width of the derivation
is at most 3.

Proposition 12. For every linear polynomial f such that 0 /∈ im2(f), the contradiction
SubSum(f) admits Res(linR) refutation of size polynomial in |Im(f)|.
Proof: First construct the shortest derivation of Im(f), and then by a sequence of |im2(f)| many
application of the resolution rule with f = 0 derive the empty clause. By Proposition 11 the
resulting refutation is of polynomial in |Im(f)| size.

Proposition 13. Let f be a linear polynomial over R, a ∈ im2(f) and
φ = {〈f 6= b〉}b∈im2(f), b 6=a. Then there exists Res(linR) derivation π of f = a from φ,
such that S(π) = poly(|φ|) and ω0(π) ≤ 3.

Proof: Let A1, . . . , AN = a be an enumeration of all the elements in im2(f). By Proposition 11

there exists a derivation of
(∨

i≥1 f = Ai

)
of principal width at most 3. For 1 < k < N , we

derive C :=
(∨

i≥k+1 f = Ai

)
from

(∨
i≥k f = Ai

)
= (C ∨ f = Ak) and 〈f 6= Ak〉 = (C ∨

f = A1 ∨ · · · ∨ f = Ak−1) in k − 1 steps as follows: at the sth step we get (C ∨ f − f =
As − Ak ∨ f = As+1 ∨ · · · ∨ f = Ak−1) = (C ∨ f = As+1 ∨ · · · ∨ f = Ak−1) by resolving
C ∨ f = As ∨ · · · ∨ f = Ak−1 with C ∨ f = Ak. We thus obtain a derivation of principal width

ω0 ≤ 3 and of size (1 + · · ·+ (N − 2))|f | = (N−1)(N−2)
2 |f |.

Corollary 14. For every ring R and every linear polynomial f the contradiction ImAv (f)
admits polynomial-size Res(linR) refutations.

Proof: Pick some a ∈ im2(f). By Proposition 13 there is a derivation of f = a from ImAv (f)
of polynomial size. This derivation can be extended to a refutation of ImAv (f) by a sequence
of resolution rule applications of f = a with 〈f 6= a〉 ∈ ImAv (f).

In Section 5.1 we prove an upper bound for LinSys(A) in terms of the size of the image of the
affine map, corresponding to A (Theorem 20). All other Res(linR) upper bounds for LinSys(A)
are tree-like. So for more LinSys(A) upper bounds we refer the reader to the tree-like Res(linR)
upper bounds further in this section.

Lower bounds. In Sec. 4 we prove an exponential lower bound for SubSum(f) in case f is a
linear polynomial with large coefficients (Theorem 19).

18

Tree-Like Res(linR)

Upper bounds. In case R is a finite ring, in Sec. 6 we prove that the clauses in Im(f) admit
derivations of polynomial size (Theorem 26). Obviously, in that case (R is finite) any unsatis-
fiable R-linear equation f = 0 has at most |R| variables and SubSum(f) are always refutable
in constant size. In contrast, in case R = Q we prove a lower bound for Im(f), SubSum(f) and
ImAv (f) for a specific f with small coefficients (see the lower bounds below).

In case a matrix A = (B|b) with entries in a field F defines a system of equations Bx = b,
that is unsatisfiable under arbitrary F-valued assignments (not just under 0-1 assignments), we
prove a polynomial upper bound for tree-like Res(linF) refutations of LinSys(A).

Proposition 15. If a m×(n+1) matrix A = (B|b) with entries in a field F is such that Bx = b
has no F-valued solutions, then there exists tree-like Res(linF) refutation of LinSys(A) of linear
size.

Proof: It is a well-known fact from linear algebra that Bx = b has no F-valued solutions iff
there exists α ∈ Fm such that αTB = 0 and αT b = 1. Therefore, by m − 1 resolutions of
B1x− b1 = 0, . . . , Bmx− bm = 0 we can derive −α1(B1x− b1)− . . .−αm(Bmx− bm) = 0, which
is 1 = 0.

Lower bounds. In Sec. 4 we prove tree-like Res(linQ) exponential-size lower bounds for deriva-
tions of Im(f) and refutations of SubSum(f) for any f (Corollary 33 and Theorem 34). For
ImAv (f) whenever f is of the form f = ǫ1x1 + . . . + ǫnxn − A for some ǫi ∈ {−1, 1}, A ∈ F the
lower bound holds even for the stronger system tree-like Ressw(linF) (see below).

Tree-Like Ressw(linR)

Upper bounds. Most of the instances above admit short derivations/refutations in
tree-like Ressw(linR): Im(f) is semantic weakening of 0 = 0 and thus derivable in one step;
The empty clause is a semantic weakening of SubSum(f) and LinSys(A) and thus can be re-
futed via deriving

∨
i∈[m]〈Aix− bi 6= 0〉 as a semantic weakening of 0 = 0 and resolving it with

equalities in LinSys(A) = {Aix− bi = 0}i∈[m].
Lower bounds. In case F is a field of characteristic zero, ImAv (f) are hard even for
tree-like Ressw(linR) whenever f is of the form f = ǫ1x1 + . . . + ǫnxn − A for some ǫi ∈
{−1, 1}, A ∈ F (Theorem 36).

4 Dag-Like Lower Bounds

In this section we prove an exponential lower bound on the size of dag-like Res(linQ) refutations
of SubSum(f), where f = 1 + 2x1 + · · ·+ 2nxn.

The argument proceeds by considering refutations of f = 0, and then roughly mimicking the
same refutation while “ignoring” all the resolution rule applications with the (only non-boolean)
axiom f = 0. In this way we obtain a derivation of a clause from only the boolean axioms.
We introduce the concept of stability for Res(linQ), which is a property of linear forms that is
maintained under such refutation-to-derivation transformations: if a linear form f possesses a
property that is stable for Res(linQ), then a refutation of f = 0 can be transformed with not
much increase in size to a derivation of a linear clause ∨i(gi = 0) in which every gi has that
property. The property that we use, together with the observation that ∨i(gi = 0) must be
a tautology since it is derivable from only the boolean axioms, will immediately imply that
∨i(gi = 0) is big, hence concluding the lower bound.

19

More precisely, our refutation-to-derivation transformation is defined as a mapping that
sends every refutation π of f = 0 to a derivation π′ from the boolean axioms of some clause Cπ,
in such a way that π′ satisfies two properties:

1. π′ is at most polynomially larger than π;

2. Cπ is exponentially large.

We ensure that the second property holds by defining the property of linear polynomials that
is stable for Res(linQ) to hold iff a linear form has at most 2cn satisfying assignments, for some
constant c < 1. This, together with the observation that Cπ must be a boolean tautology,
because it is derivable from the boolean axioms only, implies that Cπ must be of exponential
size (since Cπ has 2n satisfying assignments and each disjunct contributes at most 2cn satisfying
assignments). Therefore, by the first property, the original refutation π must be of exponential
size.

The fact that f has exponentially large coefficients is essential in our proof that Cπ is of
exponential size. All contradictions of the form f = 0, where f has polynomially bounded
coefficients, have polynomial dag-like Res(linQ) refutations and, thus, there is no hope to prove
strong bounds for dag-like refutations in this case. However, in Sec. 8.2 we prove that any
f = 0, as long as f depends on n variables, must have tree-like Res(linQ) refutations of size
at least 2Ω(

√
n). The argument relies on a similar transformation from refutations π of f = 0

to derivations of some Cπ and in this way reduces the problem to proving size lower bounds
against tree-like Res(linQ) derivations of Cπ from the boolean axioms. The difference is in the
stable property that we use: for the tree-like lower bounds we define the stable property to hold
iff a linear form depends on at least n

2 variables (that is, there are at least n
2 variables with

nonzero coefficients in it).
Denote by F[x1, . . . , xn]≤1 the set of linear polynomial over the field F.

Definition 3 (Stable property for Res(linF)). Let f be a linear polynomial over a field F with
n variables and let P : F[x1, . . . , xn]≤1 → {0, 1} be a property of linear polynomials over F that
is closed under nonzero scalar products, namely if P(g) (that is, P(g) = 1) then also P(αg) for
all nonzero α ∈ F and linear polynomials g. We say that P is stable for Res(linF) with respect
to f whenever the following both hold:

1. for all b ∈ F, P(b + f) = 1;

2. for all linear polynomials g and for all but at most one a ∈ F: P(g + af) = 1.

We now show that stable properties are preserved under refutation-to-derivation transfor-
mations:

Lemma 16. Let f be a linear polynomial with n variables over a field F and let the property P
be stable for Res(linF) with respect to f . Then, if there exists Res(linF) (resp. tree-like Res(linF))
refutation of f = 0 of size S, then there exists Res(linF) (resp. tree-like Res(linF)) derivation of
size O(n · S3) from the boolean axioms only of a linear clause

∨
j∈[N] gj = 0 (for some positive

N), where P(gj) = 1 for every j ∈ [N].

Proof: We first sketch the plan of the proof. Assume that π is a Res(linF) refutation of f = 0.
By refraining from performing the resolution rule application with f = 0 in π we transform the
refutation into a derivation π′ of some clause C, such that P(g) = 1 for every disjunct g = 0 in
C. We do this in such a way that π′ is not much larger than π: |π′| = O(n · |π|3).

Denote by π≤k the fragment of π that consists of the first k lines of π. By induction on k
we define a derivation π′k of some clauses Dk from boolean axioms alone. The derivations π′k

20

are defined together with a surjective function Mk from lines of π≤k to lines of π′k such that if

D =

(
∨

t∈[m]

gt = 0

)
is a line in π≤k, then

Mk(D) =


 ∨

t∈[m]

gt + atf = 0


 ∨

∨

s∈[m′]

hs = 0 (9)

is a line in π′k, where at ∈ F and each hs is a linear polynomial. Mk is a surjection because it
is a mapping between lines in the original refutation to lines in a corresponding proof in which
we do not perform the resolution rule applications with f = 0, hence some lines in π≤k will
not have corresponding lines in the new derivation. We show that Mk(D) satisfies the following
properties:

1. For each hs = 0, P(hs) = 1.

2. Let HD be the set of all disjuncts hs in Mk(D) in the new derivation π′ as in (9). Then
the total number of distinct such disjuncts summing over all refutation-lines in π′k is not

too large:
∣∣∣
⋃

D∈π≤k
HD

∣∣∣ ≤ 2|π≤k|.

3. The numbers at and coefficients of hs are not too large: their bit-size does not exceed the
maximal bit-size of coefficients in π.

Before we proceed to the inductive definition of π′k, we finish the proof assuming that π′k
described above exists. If l is the length of π, then π′ := π′l contains a derivation of Ml(∅), where
∅ denotes the empty clause. Hence, all the disjuncts in Ml(∅) are hs in the notation of (9), and
by condition 1 above they all have P(hs) = 1. For the size upper bound we need to show that
|π′l| = O(n · S3) where S = |π≤l|. By condition 2 above we have |π′l| ≤ 2S · (max size of hs) +
S · (max size of

∨
t∈[m](gt + atf = 0) as in (9)). By condition 3 above the maximal size of hs ≤

n · (max bit-size in πl) ≤ n · S, and (max size of
∨

t∈[m](gt + atf = 0) as in (9)) ≤ S + m · n ·
(max size of at) ≤ O(n · S2), and we are done.

We now turn to the inductive construction of π′k.

Base case: Define π′0 to be the empty derivation.
Induction step: Assume π′k and Mk satisfy the properties above and k is smaller than the length
of π. If D is the last line of π≤k+1, then Mk+1 extends Mk to D and π′k+1 either extends π′k with
Mk+1(D) or coincides with π′k. Consider the possible cases in which the last line D of π≤k+1 is
derived:
Case 1: Boolean axiom: D = (xi = 0∨xi = 1). Then π′k+1 extends π′k with D and Mk+1(D) =
D.
Case 2: D = (f = 0). Then π′k+1 extends π′k with the axiom 0 = 0 and Mk+1(D) = (f−f = 0).
Case 3: D is derived by resolution:

D = (C1 ∨ C2 ∨ αG1 + βG2 = 0)

from some previous lines in π≤k

(C1 ∨G1 = 0) and (C2 ∨G2 = 0)

21

Write Ci =
∨

t∈[mi]

g
(i)
t = 0. By induction hypothesis Mk(Ci ∨ Gi = 0) is of the form (i = 1, 2;

Ai ∈ F):

Mk(Ci ∨Gi = 0) =


Gi + Aif = 0 ∨

∨

t∈[mi]

g
(i)
t + a

(i)
t f = 0


 ∨

∨

s∈[m′
i]

h(i)s = 0

Define Mk+1(D) to be the following resolution of Mk(C1 ∨ G1 = 0) ∈ π′k with Mk(C2 ∨
G2 = 0) ∈ π′k:

Mk+1(D) :=


αG1 + βG2 + (αA1 + βA2)f = 0 ∨

∨

i=1,2

∨

t∈[mi]

g
(i)
t + a

(i)
t f = 0


∨

∨
∨

i=1,2

∨

s∈[m′
i]

h(i)s = 0 .

The derivation π′k+1 extends π′k with Mk+1(D). It remains to be shown that Mk+1(D) is of the
required form and it satisfies properties 1–3 above.

If we consider the clause D = (αG1 + βG2 = 0 ∨ C1 ∨ C2) as a multiset of disjuncts and
C1, C2, as usual, as sets of disjuncts, there can be up to three identical copies of some disjunct
g = 0 (from C1, from C2 and from {αG1 +βG2 = 0}) that are contracted to a single disjunct in
the clause D. In Mk+1(D) these copies can be different because of different “+af” terms and,
thus, can be non-contractible.

For every disjunct g = 0 in D, denote by Fg the set of up to three disjuncts in Mk+1(D) that

correspond to g, namely, (g
(i)
j + a

(i)
j f = 0) ∈ Fg if g = g

(i)
j and (αG1 + βG2 + (αA1 + βA2)f =

0) ∈ Fg if g = αG1 + βG2. For every g = 0 ∈ D, pick one element g + af = 0 ∈ Fg, which
minimises P(g+af) (minimises in the sense of P as a function ranging over {0, 1}), and denote

X the set of these elements. Denote Y :=
(⋃

g=0∈D Fg

)
\X. Write Mk+1(D) as follows:

Mk+1(D) =


 ∨

g+af=0∈X
g + af = 0


 ∨


 ∨

i=1,2

∨

s∈[m′
i]

h(i)s = 0 ∨
∨

g+af=0∈Y
g + af = 0




Here we mean that
∨

g+af=0∈Y
g + af = 0 is part of

∨
s∈[m′]

hs = 0 in the notation of (9), that is, it

is considered a part of HD.
We now show that Mk+1 satisfies all the desired properties 1–3 above:

1. For every h
(i)
s = 0, P(h

(i)
s) = 1 holds by induction hypothesis. For every g + af = 0 ∈ Y ,

P(g + af) = 1 holds by definition of Y and the fact that P is stable for Res(linF) with
respect to f (and hence there can be at most one a′ ∈ F such that P(g + a′f) = 0).

2. Note that |HD\{h(i)s = 0}i,s| ≤ 2|D|, because the size of each Fg is at most 3. And by
induction hypothesis |⋃D̃∈π≤k

HD̃| ≤ 2|π≤k|.

It follows that |⋃D̃∈π≤k
HD̃ ∪HD| = |

⋃
D̃∈π≤k

HD̃ ∪ (HD\{h(i)s = 0}i,s)| ≤ |
⋃

D̃∈π≤k
HD̃|+

|HD\{h(i)s = 0}i,s| ≤ 2|π≤k|+ 2|D| ≤ 2|π≤k+1|.

3. The absolute values of coefficients in π′k+1 do not exceed the maximal absolute value of
coefficients in π.

22

Case 4: D is derived by simplification from a line D∨b = 0 in π≤k. If D =

(
∨

t∈[m]

gt = 0

)
, then

Mk(D ∨ b = 0) has the form: Mk(D ∨ b = 0) =

(
∨

t∈[m]

gt + atf = 0

)
∨ b+ af = 0∨ ∨

s∈[m′]

hs = 0.

If a = 0, we apply simplification to Mk(D ∨ b = 0) to derive Mk+1(D) :=(
∨

t∈[m]

gt + atf = 0

)
∨ ∨

s∈[m′]

hs = 0 and let π′k+1 extend π′k .

Otherwise, if a 6= 0, we define Mk+1(D) to be Mk+1(D) := Mk(D ∨ b = 0) and π′k+1 := π′k.
Case 5: D is derived by weakening from a line C of π≤k: D = (C ∨ g = 0) for some g. Define
Mk+1(D) := (Mk(C) ∨ g = 0) and let π′k+1 extend π′k with Mk+1(D).

Lemma 17. Let g : Zn → Z be a linear function and let I = im2(g) be the image of g under
boolean assignments and K = g−1(0)∩{0, 1}n be the “boolean kernel” of g. Then, |I| · |K| ≤ 3n.

Proof: Intuitively as the image of g under boolean assignments becomes bigger it must be the
boolean kernel of g, which sends all points to the same point 0 in the image, becomes smaller.

For every element a ∈ I choose some va ∈ {0, 1}n such that g(va) = a. Consider the set
X := {va+u}a∈I,u∈K ⊂ {0, 1, 2}n, where va+u means the vector resulting from coordinate-wise
addition of {0, 1}n values (with 1 + 1 = 2, namely the addition is over Z). Notice that |X| ≤ 3n.
Hence it suffices to prove that |X| = |I| · |K|. For this we show that each different pair a, u with
a ∈ I and u ∈ K induces a distinct vector va + u in X.

Assume that g =
∑

i αixi + β, with αi, β ∈ Z. If va + u = va′ + u′, then we have g(va) +
g(u) − β =

∑
i αi(vai + ui) + β + β − β = g(va + u) = g(va′ + u′) = g(va′) + g(u′) − β. Since

u, u′ ∈ K we have g(u) = g(u′) = 0, and hence g(va) = g(va′). Hence, by definition of va, a = a′

and va = va′ , and since va + u = va′ + u′, we conclude also that u = u′.

Lemma 18. Let the property P on linear polynomials over Q be defined as follows: P(g) = 1
iff g = 0 has at most 2(0.5·log 3)n 0-1 solutions. Then P is stable for Res(linF) with respect to
f = 1 + 2x1 + · · ·+ 2nxn.

Proof: First, note that P is closed under scalar products: both g = 0 and αg = 0 have the same
number of satisfying assignments, for any nonzero α ∈ Q. Second, P(b + f) = 1 for all b ∈ Q,
because f : {0, 1} → [1, 2n+1−1] is a bijection, hence b+ f = 0 has always at most one solution.

It thus remains to show that for all linear polynomials g and all a ∈ F but at most one
P(g + af) = 1. We use the following claim:

Claim. Let g : Zn → Z be a linear function. For any a ∈ Z\{0} one of the following holds:

1. g = 0 has at most 3
n
2 0-1 solutions;

2. g + af = 0 has at most 3
n
2 0-1 solutions.

Proof of claim: For every b ∈ Z, there exists at most one boolean assignment that satisfies both
g = b and b+ af = 0. Therefore the number of 0-1 solutions of g + af = 0 is at most the size of
the boolean image im2(g) of g. By Lemma 17 either |im2(g)| ≤ 3

n
2 or |g−1(0) ∩ {0, 1}n| ≤ 3

n
2 .

Claim

Consider b 6= b′ ∈ Z. Let h be any linear function, then if we take g := h + bf , a := b′ − b
the claim implies that either h + bf or h + b′f has at most 3

n
2 solutions. Therefore for every h

there exists at most one b ∈ Z such that h + bf = 0 has more than 3
n
2 solutions, which means

that P is stable as required.

23

Theorem 19. Let f = 1 + 2x1 + · · ·+ 2nxn. Any Res(linQ) refutation of f = 0 is of size 2Ω(n).

Proof: By Lemma 18 the property of linear polynomials g over Q that holds iff g = 0 has at
most 2(0.5·log 3)n 0-1 solutions is stable for Res(linQ) with respect to f . Thus, by Lemma 16, if
π is a refutation of f = 0, then there exists a derivation π′ of some clause C =

∨
j∈[N] gj = 0

from the boolean axioms, where each gj = 0 has at most 2(0.5·log 3)n 0-1 solutions. Moreover
|π′| = O(n · |π|3). Since C must be a boolean tautology (which is satisfied by 2n assignments)
it must contain at least 2(1−0.5·log 3)n disjuncts (because every disjunct contributes at most
2(0.5·log 3)n satisfying assignments). Therefore |π| = 2Ω(n).

5 Linear Systems with Small Coefficients

In this short section we study 0-1 unsatisfiable linear systems over finite fields (in contrast to
CNF formulas, for example).

We prove an upper bound, which is polynomial in |im2(Ax)|, where A = Af1,...,fm : Fn → Fm

is an affine map x 7→ (f1(x), . . . , fm(x)). In contrast to the case of a single equation f = 0,
the size of the image |im2(Ax)| does not fully characterise the size of the shortest Res(linF)
refutation of f1 = 0, . . . , fm = 0: there is an example, where |im2(Ax)| is large, but the size for
refuting f1 = 0, . . . , fm = 0 is small.

5.1 Upper Bound for Linear Systems

Denote 〈Af1,...,fm x 6= 0〉 the linear clause (〈f1 6= 0〉 ∨ · · · ∨ 〈fm 6= 0〉). The clause 〈Af1,...,fm x 6=
0〉 is a tautology iff the system f1 = 0, . . . , fm = 0 is 0-1 unsatisfiable. Therefore, any 0-1
unsatisfiable system f1 = 0, . . . , fm = 0 can be refuted by first deriving 〈Af1,...,fm x 6= 0〉 from
boolean axioms and then resolving it with f1 = 0, . . . , fm = 0. We now prove an upper bound
for derivations of 〈Ax 6= 0〉 in terms of |im2(Ax)|.

Theorem 20. Let f1 = 0, . . . , fm = 0 be a 0-1 unsatisfiable system with n variables. There
exists a derivation of 〈Af1,...,fm x 6= 0〉 of size poly(n + |im2(Af1,...,fm x)|).

Proof: We arrange the derivation in n layers L0, . . . , Ln in such a way that L0 := {〈Af1,...,fm x 6=
0〉} and

Lk := {(〈f1 ↾x1←ǫ1,...,xk←ǫk 6= 0〉 ∨ . . . ∨ 〈fm ↾x1←ǫ1,...,xk←ǫk 6= 0〉)}ǫ∈{0,1}k

It is easy to see, that the following map is an embedding Lk →֒ im2(Af1,...,fm x):

(〈f1 ↾x1←ǫ1,...,xk←ǫk 6= 0〉 ∨ . . . ∨ 〈fm ↾x1←ǫ1,...,xk←ǫk 6= 0〉) 7→
(f1(ǫ1, . . . , ǫk, 0, . . . , 0), . . . , fm(ǫ1, . . . , ǫk, 0, . . . , 0))

Therefore |Lk| ≤ |im2(Af1,...,fm x)|.
It remains to note that every clause in Lk can be derived from clauses in Lk+1 in

O(|im2(Af1,...,fm x)|) steps. Indeed, if C ∈ Lk, then C ↾xk+1←0∈ Lk+1 and C ↾xk+1←1∈ Lk+1,
and C can be derived from C ↾xk+1←0 and C ↾xk+1←1 and the axiom (xk+1 = 0 ∨ xk+1 = 1) in
a standard way.

Remark 21. In contrast to the case of a single equation, dag-like Res(linF) refutations of
f1 = 0, . . . , fm = 0 for m ≥ 2 are not lower-bounded by |im2(Af1,...,fm x)| in general. For
example, the system x1 − 2xn+1 = 0, . . . , xn − 2x2n = 0, xn+1 + . . . + x2n − 1 = 0 has refutation
of size O(n), but |im2(Af1,...,fm x)| = 2Ω(n).

24

6 Nondeterministic Linear Decision Trees

In this section we extend the classical correspondence between tree-like resolution refutations
and decision trees (cf. [6]) to tree-like Res(linR) and tree-like Ressw(linR). We establish some
upper bounds on such decision trees which in turn imply short tree-like Res(linR) refutations.

We define nondeterministic linear decision trees (NLDT), which generalize parity decision
trees, proposed in [19] for R = F2, to arbitrary rings. We shall use these trees in the sequel to
establish some of our upper and lower bounds (though not for our dag-like lower bounds).

Let φ be a set of linear clauses (that we wish to refute) and Φ a set of linear non-equalities
over R (that we take as assumptions). Consider the following two decision problems:

DP1 Assume Φ |= ¬φ. Given a satisfying boolean assignment ρ to Φ, determine which clause
C ∈ φ is violated by ρ by making queries of the form: which of f |ρ 6= 0 or g|ρ 6= 0 holds
for linear forms f, g in case f |ρ + g|ρ 6= 0.

DP2 Similar to DP1, only that we assume Φ |=R ¬φ, and given R-valued assignment ρ, satis-
fying Φ, we ask to find a clause C ∈ φ falsified by ρ.

Below we define NLDTs of types DTsw(R) and DT(R), which provide solutions to DP1 and
DP2, respectively. The root of a tree is labeled with a system Φ, the edges in a tree are labeled
with linear non-equalities of the form f 6= 0 and the leaves are labeled with clauses C ∈ φ.
Informally, at every node v there is a set Φv of all learned non-equalities, which is the union
of Φ and the set of non-equalities along the path from the root to the node. If v is an internal
node, two outgoing edges f 6= 0 and g 6= 0 define a query to be made at v, where f + g 6= 0 is a
consequence of Φv. If v is a leaf, then Φv ∪ Φ contradicts a clause C ∈ φ.

Starting from the root, based on the assignment ρ, we go along a path, from the root to a
leaf, by choosing in each node to go along the left edge f 6= 0 or the right edge g 6= 0, depending
on whether f |ρ 6= 0 or g|ρ 6= 0. Note that f |ρ 6= 0 and g|ρ 6= 0 may not be mutually exclusive,
and this is why the decision made in each node may be nondeterministic.

Definition 4 (Nondeterministic linear decision tree NLDT; DT(R), DTsw(R)). Let φ be a set
of linear clauses and Φ be a set of linear non-equalities over a ring R. A nondeterministic linear
decision tree T of type DT(R) and of type DTsw(R) for (φ,Φ) is a binary rooted tree, where
every edge is labeled with some linear non-equality f 6= 0, in such a way that the conditions
below hold. In what follows, for a node v, we denote by Φr❀v the set of non-equalities along the
path from the root r to v and by Φv the set Φr❀v ∪ Φ. We say that Φv is the set of learned
non-equalities at v.

1. Let v be an internal node. Then v has two outgoing edges labeled by linear non-equalities
fv 6= 0 and gv 6= 0, such that:

• If T ∈ DT(R), then αfv + βgv 6= 0 ∈ Φv ∪ {a 6= 0 | a ∈ R \ 0} for some α, β ∈ R.

• If T ∈ DTsw(R), then Φv |= αfv + βgv 6= 0 for some α, β ∈ R.

2. A node v is a leaf if there is a linear clause C ∈ φ ∪ {0 = 0} which is violated by Φv in
the following sense:

• If T ∈ DT(R), then ¬C ⊆ Φv ∪ {a 6= 0 | a ∈ R \ 0}.
• If T ∈ DTsw(R), then Φv |= ¬C.

25

In case Φ is empty, we sometimes simply write that the NLDT is for φ instead of (φ, ∅).
Assume Φ |= ¬φ. Then an NLDT for (φ ∪ {x = 0 ∨ x = 1 |x ∈ vars(φ)},Φ) of type DT(R)

can be converted into an NLDT of type DTsw(R) for (φ,Φ) by truncating all maximal subtrees
with all leaves from {x = 0∨x = 1 |x ∈ vars(φ)} and marking their roots with arbitrary clauses
from φ.

Below we give several examples (and basic properties) of NLDTs.

Example 1 Let φ be a set of clauses, representing unsatisfiable CNF. Then any standard
decision tree on boolean variables is an NLDT for φ ∪ {x = 0 ∨ x = 1 |x ∈ vars(φ)} of type
DT(R), where a branching on the value of a variable x is realized by branching on (1−x)+x 6= 0
to either 1− x 6= 0 or x 6= 0. This is illustrated by (the proof of) the following proposition:

Proposition 22. If Φ is a set of linear non-equalities and φ is a set of linear clauses over R
such that Φ |= ¬φ, then there exists a DT(R) tree for (φ∪{x = 0∨x = 1 |x ∈ vars(φ∪{¬Φ})},Φ)
of size O(2n|Φ|), where n = |vars(φ ∪ {¬Φ})|.

Proof: Let vars(φ ∪ {¬Φ}) = {x1, . . . , xn} and fix an ordering on these variables. Construct a
tree T0 with 2n nodes, that branches on x1, . . . , xn, in this order. Thus, in every leaf v of T0 a
total assignment to the variables is determined (i.e., Φv = {xi 6= νi}i∈[n]∪Φ for some νi ∈ {0, 1}).
Since Φ |= ¬φ, this assignment violates either some clause C = (f1 = 0 ∨ · · · ∨ fm = 0) in φ or
some non-equality g 6= 0 in Φ. We augment T0 to T by attaching a subtree to every leaf v of T0

depending on whether the former or latter condition holds for v, as follows:
Case 1: {xi 6= νi}i∈[n] |= ¬C. We attach a subtree to v that makes m sequences of branches as
follows. If fi = a1x1 + . . .+anxn + b then a1(1− ν1) + . . .+an(1− νn) + b 6= 0 holds and the ith
sequence is the following sequence of “substitutions”: (a1x1 +a2(1−ν2) + . . .+an(1−νn) + b) +
(a1(1− ν1)− a1x1) 6= 0 to a1x1 + a2(1− ν2) + . . .+ an(1− νn) + b 6= 0 and (1− ν1)−x1 6= 0, . . . ,
(a1x1 + . . .+an−1xn−1+an(1−νn)+b)+(an(1−νn)−anxn) 6= 0 to fi 6= 0 and (1−νn)−xn 6= 0.
All the right branches lead to nodes u such that {xi 6= 0, xi 6= 1} ⊆ Φu for some i ∈ [n] and
thus they satisfy the DT(R) leaf condition in Definition 4. Such a sequence indeed performs
substitutions: the edge to the leftmost node is fi 6= 0 and as we go upwards, we apply the
substitutions xn ← 1− νn, . . . , x1 ← 1− ν1 to this non-equality.

In the leftmost node w in the end of the mth sequence, {f1 6= 0, . . . , fm 6= 0} ⊆ Φw holds and
thus again C is violated at w in the sense of Definition 4 and therefore w is a legal DT(R)-leaf.
Case 2: {xi 6= νi}i∈[n] |= g = 0, where g 6= 0 ∈ Φv. Let g = a1x1 + . . . + anxn + b. Attach
to v a subtree that makes the following branches: (a1(1 − ν1) + a2x2 + . . . + anxn + b) −
(a1(1 − ν1) − a1x1) 6= 0 to (a1(1 − ν1) + a2x2 + . . . + anxn + b) 6= 0 and (1 − ν1) − x1 6= 0,. . . ,
(a1(1 − ν1) + . . . + an−1(1 − νn−1) + an(1 − νn) + b) − (an(1 − νn) − anxn) 6= 0 to 1 6= 0 and
(1−νn)−xn 6= 0. All leaves of the subtree satisfy the condition for DT(R) leaves in Definition 4.

The tree T is a DT(R) tree for (φ,Φ).

Example 2 Let φ be as in Example 1. Parity decision trees, as defined in [19], are NLDTs
for φ of type DTsw(F2): branching on the value of an F2-linear form f is realized by branching
from (1 − f) + f 6= 0 to 1 − f 6= 0 and f 6= 0. And the converse also holds: a branching of
f + g 6= 0 to f 6= 0 and g 6= 0, where, say, f is a non-constant F2-linear form, is equivalent to
branching on the value of f .

Example 3 Let φ = {f1 = 0, . . . , fm = 0}, where f1, . . . , fm are R-linear forms such that
f1 + . . . + fm = 1. Then a polynomial-size NLDT of type DT(R) for φ makes the following
branchings, where all right edges lead to a leaf: (f1 + . . . + fm−1) + fm 6= 0 (this is just 1 6= 0)
to f1 + . . . + fm−1 6= 0 and fm 6= 0, . . . , f1 + f2 6= 0 to f1 6= 0 and f2 6= 0.

26

We now show the equivalence between NLDTs and tree-like Res(linR) proofs.

Theorem 23. Let φ be a set of linear clauses over a ring R and Φ be a set of linear non-equalities
over R. Then, there exist decision trees DT(R) (resp. DTsw(R)) for (φ ∪ {x = 0 ∨ x = 1 |x ∈
vars(φ)},Φ) (resp. (φ,Φ)) of size s iff there exist tree-like Res(linR) (resp. tree-like Ressw(linR))
derivations of the clause ¬Φ =

∨
f 6=0∈Φ f = 0 from φ of size O(s).

Proof: (⇒) Let Tφ be an NLDT of type DT(R) or DTsw(R) for φ. We construct a tree-like
Res(linR) or tree-like Ressw(linR) derivation from Tφ, respectively, as follows. Consider the tree
of clauses π0, obtained from Tφ by replacing every vertex u with the clause ¬Φu. This tree
is not a valid tree-like derivation yet. We augment it to a valid derivation π by appropriate
insertions of applications of weakening and simplification rules.

Case 1: If ¬Φu ∈ π0 is a leaf, then Φu violates a clause D ∈ φ ∪ {0 = 0}. By condition 2
in Definition 4, ¬Φu must be a weakening of D (syntactic for Tφ ∈ DT(R) and semantic for
Tφ ∈ DTsw(R)) and we add D as the only child of this node.

Case 2: Let ¬Φu ∈ π0 be an internal node with two outgoing edges labeled with fu 6= 0 and
gu 6= 0.

If Tφ ∈ DT(R), then αfu +βgu 6= 0 ∈ Φu∪{a 6= 0 | a ∈ R \ 0}. Apply resolution to ¬Φl(u) =
(¬Φu ∨ fu = 0) and ¬Φr(u) = (¬Φu ∨ gu = 0) to derive ¬Φu ∨ αfu + βgu = 0. In case
αfu + βgu 6= 0 ∈ Φu this clause coincides with ¬Φu and no additional steps are required. In
case αfu + βgu 6= 0 ∈ {a 6= 0 | a ∈ R \ 0} insert an application of the simplification rule to get a
derivation of ¬Φu.

If Tφ ∈ DTsw(R), Φu |= αfu + βgu 6= 0, we derive ¬Φu ∨ αfu + βgu = 0 from ¬Φl(u) =
(¬Φu ∨ fu = 0) and ¬Φr(u) = (¬Φu ∨ gu = 0) by an application of the resolution rule and then
deriving ¬Φu by an application of the semantic weakening rule.

(⇐) Conversely, assume π is a tree-like Res(linR) or a tree-like Ressw(linR) derivation of a
(possibly empty) clause C from φ. In what follows, when we say weakening we mean syntactic
or semantic weakening depending on π being a tree-like Res(linR) or a tree-like Ressw(linR)
derivation, respectively.

Let the edges in the proof-tree of π be directed from conclusion to premises. We turn this
proof-tree into a decision tree Tπ for (φ,¬C) as follows. Every node of outgoing degree 2 in
the proof-tree π is a clause obtained from its children by a resolution rule. For each such node
C ∨D ∨ (αf + βg = 0) we label its outgoing edges to C ∨ f = 0 and D ∨ g = 0 with f 6= 0 and
g 6= 0, respectively. We contract all unlabeled edges, which are precisely those corresponding to
applications of weakening and simplification rules. If C1, . . . , Ck is a maximal (with respect to
inclusion) sequence of weakening and simplification rule applications (the latter occur only in
Res(linR) derivations), then we contract it to Ck. In this way we obtain the tree Tπ, where every
edge is labeled with linear non-equality and every node u is labeled with a clause Cu such that
if f 6= 0 and g 6= 0 are labels of edges to the left l(u) and to the right r(u) children respectively,
then Cu is a weakening and a simplification (the latter again in case of Res(linR)) of the clause
C ∨D ∨ αf + βg = 0 for some α, β ∈ R, such that Cl(u) = (C ∨ f = 0), Cr(u) = (D ∨ g = 0).

We now prove that Tπ is a valid decision tree of type DT(R) (respectively, DTsw(R)) if π is
a tree-like Res(linR) derivation (respectively, tree-like Ressw(linR) derivation).

Case 1: Assume π is tree-like Res(linR) derivation. We prove inductively that for every node
u in Tπ we have ¬Cu ⊆ Φu.
Base case: u is the root r. We have Φr = ¬C = ¬Cr.
Induction step: For any other node u assume ¬Cp ⊆ Φp∪{a 6= 0 | a ∈ R \0} holds for its parent
node p. Let f 6= 0 be the label on the edge from p to u. Then Cu = (C ∨ f = 0) for some clause

27

C and Cp must be of the form (C ∨D) for some clause D, and hence ¬Cu ⊆ ¬C ∪ {f 6= 0} ⊆
¬Cp ∪ {f 6= 0} ⊆ Φp ∪ {f 6= 0} = Φu.

Now we show that Tπ satisfies the conditions of Definition 4 for DT(R) trees.

• (Internal nodes) Let u be an internal node of Tπ with outgoing edges labeled with f 6= 0
and g 6= 0. Cu must be both a weakening and a simplification of (C ∨ αf + βg = 0) for
some α, β ∈ R and a linear clause C. If αf + βg 6= 0 ∈ {a 6= 0 | a ∈ R \ 0}, then the
condition trivially holds, otherwise αf + βg = 0 cannot be eliminated via simplification
and thus αf + βg 6= 0 ∈ ¬Cu and ¬Cu ⊆ Φu imply αf + βg 6= 0 ∈ Φu and the condition
for internal nodes in Definition 4 is satisfied.

• (Leaves) Let u be a leaf of Tπ. Then Cu must be both a weakening and a simplification
of some clause C in φ ∪ {x = 0 ∨ x = 1 |x ∈ vars(φ)} ∪ {0 = 0}, that is Cu = (C ∨D) for
some clause D. Therefore ¬Cu ⊆ Φu implies that C is falsified by Φu.

Case 2: Assume π is a tree-like Ressw(linR) derivation. We prove inductively that for every
node u in Tπ, Cu |= ¬Φu holds.
Base case: u is the root r and we have ¬Φr = C = Cr.
Induction step: u is a node which is not the root. If Cp |= ¬Φp holds for its parent p and f 6= 0
is the label on the edge from p to u, then (C ∨D ∨ αf + βg = 0) |= Cp, Cu = (C ∨ f = 0) for
some α, β ∈ R a linear form g and some linear clauses C,D. Therefore, Cu = (C ∨ f = 0) |=
(Cp ∨ f = 0) |= (¬Φp ∨ f = 0) = ¬Φu.

We now show that Tπ satisfies the conditions of Definition 4 for DTsw(R) trees.

• (Internal nodes) Let u be an internal node of Tπ with outgoing edges labeled with f 6= 0
and g 6= 0. Then (C ∨ αf + βg = 0) |= Cu for some α, β ∈ R and a linear clause C.
Therefore Cu |= ¬Φu implies Φu |= αf + βg 6= 0.

• (Leaves) Let u be a leaf of Tπ. Then Cu must be a weakening of some clause C in
φ ∪ {0 = 0}, that is, Cu = (C ∨D) for some clause D. Therefore Cu |= ¬Φu implies that
C is falsified by Φu.

An immediate corollary is the following:

Proposition 24. If φ∪{C} is a set of linear clauses over a ring R such that φ |= C, then there
exists a tree-like Res(linR) derivation of C from φ of size O(2n|C|), where n =

∣∣vars(φ∪ {C})
∣∣.

Proof: By Proposition 22 there exists a DT(R) tree for (φ ∪ {x = 0 ∨ x = 1 |x ∈ vars(φ ∪
{C})},¬C) of size O(2n|C|) and, thus, by Theorem 23 there exists a tree-like Res(linR) deriva-
tion of C from φ of size O(2n|C|).

Corollary 25. The system Res(linR) is implicationally complete, that is if φ is a set of linear
clauses and C is a linear clause such that φ |= C, then there exists a Res(linR) derivation of C
from φ.

We construct an NLDT to prove the following upper bound:

Proposition 26. Let R be a finite ring, f = a1x1 + · · · + anxn a linear form over R, sf the
size of Im(f) (i.e., the size of its encoding) and df = |im2(f)|. Then, there exists a tree-like
Res(linR) derivation of Im(f) of size O(sfn

2df).

28

Proof: We construct a decision tree of type DT(R) of size O(sfn
2df) with the system Φr =

{f 6= A}A∈im2(f) at its root r. By Theorem 23 this implies the existence of a tree-like Res(linR)
proof of Im(f) of the same size.

Let f (1) := a1x1+ · · ·+a⌊n
2
⌋x⌊n

2
⌋ and f (2) := a⌊n

2
⌋+1x⌊n

2
⌋+1+ · · ·+anxn. The decision tree for

Im(f)is constructed recursively as a tree of height 2df , where a subtree for Im
(
f (1)

)
or for Im

(
f (2)

)

is hanged from each leaf. At every node u of depth d the system of non-equalities is of the form:

Φu = Φr ∪ Φ
(1)
u ∪ Φ

(2)
u , where Φ

(i)
u ⊆ {f (i) 6= A}A∈im2(f (i)), i ∈ {1, 2} and |Φ(1)

u |+ |Φ(2)
u | = d. A

node u is a leaf if and only if Φ
(i)
u = {f (i) 6= A}A∈im2(f (i)) for some i ∈ {1, 2}. The branching at

an internal node u is made by the non-equality f (1)−A1+f (2)−A2 6= 0, for some Ai ∈ im2(f
(i))

where f (i) − Ai /∈ Φ
(i)
u , i ∈ {1, 2}. The size sn of this tree can be upper bounded as follows:

sn ≤ 22df s⌊n
2
⌋+1 + sf22df = O(sfn

2df).

7 CNF Upper Bounds for Res(linR)

In this section we outline two basic polynomial upper bounds, which we use to establish our
separations in subsequent sections: short tree-like Res(linR) refutations for CNF encodings of
linear systems over a ring R, and short Res(linR) refutations for ¬PHPm

n . Together with our
lower bounds, these imply the separation between tree-like Res(linF) and tree-like Res(linF′),
where F,F′ are fields of positive characteristic such that char(F) 6= char(F′). The short refuta-
tion of the pigeonhole principle will imply a separation between dag-like and tree-like Res(linF)
for fields F of characteristic 0.

In what follows we consider standard CNF encodings of linear equations f = 0 where the
linear equations are considered as boolean functions (i.e., functions from 0-1 assignments to
{0, 1}); we do not use extension variable in these encodings.

Proposition 27. Let F be a field and Ax = b be a system of linear equations that has no
solution over F, where A is k × n matrix with entries in F, and Ai denotes the ith row in A.
Assume that φi is a CNF encoding of Ai · x − bi = 0, for i ∈ [k]. Then, there exists a tree-like
Res(linF) refutation of φ = {φi}i∈[k] of size polynomial in |φ|+∑i∈[k]

∣∣Ai · x− bi = 0
∣∣.

Proof: The idea is to derive the actual linear system of equations from their CNF encoding, and
then refute the linear system using a previous upper bound (Proposition 15).

If ni is the number of variables in Ai · x − bi = 0, then |φi| = Θ(2ni). By Proposition 24
proved in the sequel there exists a tree-like Res(linF) derivation of Ai ·x− bi = 0 from φi of size
O(2ni |Ai · x− bi = 0|) = O(|φi| ·

∣∣Ai · x− bi = 0
∣∣).

By Proposition 15 there exists a tree-like Res(linF) refutation of {Ai · x− bi = 0}i∈[k]
of size O

(∑
i∈[k] |Ai · x− bi = 0|

)
. The total size of the resulting refutation of φ is

O
(∑

i∈[k]
∣∣φi| · |Ai · x− bi = 0

∣∣
)

and thus is O

((∑
i∈[k] |φi|+

∑
i∈[k] |Ai · x− bi = 0|

)2)
=

O

((
|φ|+∑i∈[k] |Ai · x− bi = 0|

)2)
.

As a corollary we get the polynomial upper bound for the Tseitin formulas (see Sec. 2.3.2
for the definition):

Theorem 28. Let G = (V,E) be a d-regular directed graph, p a prime number, σ : V → Fp such

that
∑

u∈V σ(u) 6≡ 0 (mod p), then ¬TS
(p)
G,σ admit tree-like Res(linFp) refutations of polynomial

size.

29

Proof: ¬TS
(p)
G,σ is an unsatisfiable system of linear equations over Fp (note that no assignment

of F-elements to the variables in ¬TS
(p)
G,σ is satisfying, and so we do not need to use the (non-

linear) boolean axioms to get the unsatisfiability of the system of equations). Therefore, by

Proposition 27 there exists a tree-like Res(linFp) refutation of ¬TS
(p)
G,σ of polynomial size.

Theorem 29 (Raz and Tzameret [29]). Let R be a ring such that char(R) = 0. There exists a
Res(linR) refutation of ¬PHPm

n of polynomial size.

Proof: This follows from the upper bound of [29] for Res(linZ) and the fact that any Res(linZ)
proof can be interpreted as Res(linR) if R is of characteristic 0.

8 Tree-Like Lower Bounds

In this section we deal with tree-like refutations (over large and small fields). In Section 8.1
we present the Prover-Delayer game for our model.In Section 8.2 we establish lower bounds on
tree-like refutations of subset sum instances with small coefficients and derivations of related
instances. In Section 8.3 we establish tree-like lower bounds for the pigeonhole principle.

8.1 Prover-Delayer Games

The Prover-Delayer game is an approach to obtain lower bounds on resolution refutations
introduced by Pudlák and Impagliazzo [28]. The idea is that the non-existence of small decision
trees, and hence small tree-like resolution refutations for an unsatisfiable formula can be phrased
in terms of the existence of a certain strategy for Delayer in a game against Prover, associated
with the unsatisfiable formula. Prover wants to conclude the proof as quickly as possible while
Delayer wishes to delay the conclusion and earn as much coins as possible. We define such games
GR and GR

sw for decision trees DT(R) and DTsw(R), respectively. Below we show (Lemma 30)
that the existence of certain strategies for Delayer in GR and GR

sw imply lower bounds on the
size of DT(R) and DTsw(R) trees, respectively.

The game. Let φ be a set of linear clauses and Φs be a set of linear non-equalities. Consider
the following game between two parties called Prover and Delayer. The game goes in rounds,
consisting of one move of Prover followed by one move of Delayer. The position in the game is
determined by a system of linear non-equalities Φ, which is extended by one non-equality after
every round. The starting position is Φs.

In each round, Prover presents to Delayer a possible branching f 6= 0 and g 6= 0 over a
linear non-equality f + g 6= 0, such that f + g 6= 0 ∈ Φ ∪ {a 6= 0 | a ∈ R \ 0} in game GR or
Φ |= f +g 6= 0 in game GR

sw. After that, Delayer chooses either f 6= 0 or g 6= 0 to be added to Φ,
or leaves the choice to the Prover and thus earns a coin. The game GR finishes when ¬C ⊆ Φ
for some C ∈ φ ∪ {0 = 0}, and GR

sw finishes when Φ |= ¬C for some clause C ∈ φ ∪ {0 = 0}.
We use the term strategy for Delayer to refer to a set of branching choices made based on

the position in the game and the branching options presented.

Lemma 30. If there exists a strategy with a starting position Φs for Delayer in the game GR

(respectively, GR
sw) that guarantees at least c coins on a set of linear clauses φ, then the size of

a DT(R) (respectively DTsw(R)) tree for φ, with the system Φs at the root, must be at least 2c.

Proof: Assume that T is a tree of type DT(R) (respectively, DTsw(R)) for φ. We define an
embedding of the full binary tree Bc of height c to T inductively as follows. We simulate
Prover in the game GR (respectively, GR

sw) by choosing branchings from T and following to a

30

subtree chosen by the Delayer until Delayer decides to earn a coin and leaves the choice to the
Prover or until the game finishes. In case we are at a position where Delayer earns a coin, and
which corresponds to a vertex u in T , we map the root of Bc to u and proceed inductively by
embedding two trees Bc−1 to the left and right subtrees of u, corresponding to two choices of
the Prover.

8.2 Lower Bounds for the Subset Sum with Small Coefficients

In this section we prove tree-like Res(linQ) lower bounds for SubSum(f) (namely, f = 0) includ-
ing instances where the coefficients of f have small magnitude, as well as tree-like Ressw(linQ)
lower bounds for ImAv (±x1 ± · · · ± xn) (for all possible +/− signs for each of the variables xi).

The proof of the tree-like Res(linQ) lower bounds for SubSum(f) proceeds in two steps.
Assume that f depends on n variables (namely, n variables appear in the linear polynomial f).
First, as in the proof of the dag-like lower bounds in Sec. 4 we use Lemma 16 to transform
refutations π of f = 0 to derivations π′ of a clause Cπ from only the boolean axioms. We ensure
that π′ is not much larger than π and Cπ possesses the following property, which makes it hard
to derive in tree-like tree-like Res(linQ): for every disjunct g = 0 in Cπ the linear polynomial g
depends on at least n

2 variables. Second, we use Prover-Delayer games to prove the lower bound
for tree-like Res(linQ) derivations of any clause with this property. The proof that Delayer’s
strategy succeeds to earn sufficiently many coins is guaranteed by a bound on the size of essential
coverings of hypercubes by Linial and Radhakrishnan [24].

Definition 5. Let H be a set of hyperplanes in Qn. We say that H forms an essential cover

of the boolean cube Bn = {0, 1}n if:

• Every point of Bn is covered by some hyperplane in H (a hyperplane determined by a
linear equation h = 0 is said to cover a point b ∈ Bn iff b satisfies the equation).

• No proper subset H′ (H covers Bn.

• No axis in Qn is parallel to all hyperplanes in H. In other words, if H = {H1, . . . , Hm}
and fi = 0 is the linear equation defining Hi, i ∈ [m], then every variable xj, j ∈ [n],
occurs with nonzero coefficient in some fi.

Theorem 31 ([24]). Any essential cover of the cube Bn in Qn must contain at least 1
2(
√

4n + 1+
1) hyperplanes.

We use Prover-Delayer games to prove the lower bound below.

Theorem 32. Every tree-like Res(linQ) derivation of every tautology of the form
∨

j∈[N] gj = 0,
for some positive N , where each gj is linear over Q and depends on at least n

2 variables, is of

size 2Ω(
√
n).

Proof: According to the definitions in Sec. 8.1 the corresponding Prover-Delayer game is on
0 = 0 and starts with the position

Φr = {gj 6= 0 | j ∈ [N]} .

The game finishes at a position Φ, where {xi 6= 0, xi 6= 1} ⊆ Φ for some i ∈ [n] or 0 6= 0 ∈ Φ.
We now define a Delayer’s strategy that guarantees Ω(

√
n) coins and by Lemma 30 obtain

the lower bound.
If Φ is a position in the game, denote by Φc ⊂ Φ the subset of so-called “coin” non-equalities,

that is, non-equalities that were chosen by Prover when Delayer decided to leave the choice to

31

Prover and earn a coin. The number |Φc| is then precisely the number of coins earned by Delayer
at Φ.

Let us first informally explain the idea behind the strategy of Delayer. Throughout the game
Delayer ignores the original non-equalities from Φr and ensures that Φ \ Φr is 0-1 satisfiable
while trying to earn as many coins as possible. Roughly speaking, Delayer wants to let Prover
make a choice between h1 6= 0 and h2 6= 0 whenever Φ \ Φr does not semantically imply hi = 0
over 0-1 assignments. But Delayer replaces this semantic test with a syntactic test by keeping
a partial assignment ρI for variables in I ⊆ [n] such that (Φ \ Φr) ↾ρI does not imply h = 0 for
any h: in that case Delayer can check whether either h1 ↾ρI or h2 ↾ρI is zero polynomial and
if not, leave the choice to Prover. Having such partial assignment ρI constructed guarantees a
lower bound for the number of coins: |Φc| = Ω(

√
|I|) by the Theorem 31. Moreover in the end

of the game gj ↾ρI must be a zero polynomial for some j ∈ [N] and thus |I| ≥ n
2 − 1, which

implies the required lower bound on the number of coins.
We now turn to the formal proof. Throughout the game Delayer constructs a partial assign-

ment ρI for variables in I ⊆ [n] and a set of non-equalities ΦI ⊆ Φc, such that:

1. |ΦI | = Ω(
√
|I|);

2. for all g 6= 0 ∈ (Φ ↾ρI) \ (Φc ↾ρI), the function g depends on at least n
2 − |I| variables;

3. ΦI contains variables only from I;

4. Φc ↾ρI is 0-1 satisfiable.

In the beginning both ρI and ΦI are empty.
Let the position in the game be defined by a system Φ and let the branching chosen by the

Prover be h1 6= 0 and h2 6= 0, where h1 + h2 6= 0 ∈ Φ. Delayer does the following. Before
making any decision Delayer checks if there exists some nonconstant linear h with variables in
[n] \ I such that (Φc ↾ρI) ∪ {h 6= 0} is unsatisfiable over 0-1.

In case it holds, Ψ := (Φc \ΦI) ↾ρI ∪{h 6= 0} must be 0-1 unsatisfiable. Consider a minimal
subset Ψ′ ⊆ Ψ such that Ψ′ is 0-1 unsatisfiable and denote I ′ ⊆ [n] the set of variables that
occur in Ψ′. As Ψ′′ := Ψ′ \ {h 6= 0} is 0-1 satisfiable, there exists an assignment ρI′ for
variables in I ′ that satisfies Ψ′′. Delayer extends the assignment ρI with ρI′ to ρI∪I′ and defines
ΦI∪I′ := ΦI ∪Ψ′′.

If Ψ′ = {h1 6= 0, . . . , hk 6= 0}, then the hyperplanes H1, . . . , Hk defined by the equations
h1 = 0, . . . , hk = 0 form an essential cover of the cube B|I′|. Therefore, by Theorem 31,

|Ψ′′| = |Ψ′| − 1 ≥ 1
2 ·
√
|I ′| and thus |ΦI∪I′ | ≥ 1

2 ·
√
|I|+ 1

2 ·
√
|I ′| ≥ 1

2 ·
√
|I ∪ I ′|.

If necessary, Delayer repeats the above procedure constructing extensions ρI1 ⊂ · · · ⊂ ρIL
and ΦI1 ⊂ · · · ⊂ ΦIL , where I1 = I ⊂ . . . ⊂ IL, until there is no h 6= 0 inconsistent with Φc ↾ρIL
as described above. The new value of I is set to IL. After that Delayer does the following:

1. if h1 ↾ρI= 0, then choose h2 6= 0;

2. otherwise, if h2 ↾ρI= 0, then choose h1 6= 0;

3. if none of the above cases hold, leave the choice to Prover and earn a coin.

Denote by Φ′ and Φ′c ⊆ Φ′ the new position and the subset of “coin” non-equalities, respec-
tively, after the choice is made. It is easy to see that the property that any h 6= 0 ∈ (Φ′ ↾ρI
) \ (Φ′c ↾ρI) depends on at least n

2 − |I| variables still holds.
It follows from the definition of Delayer’s strategy that Φc is always 0-1 satisfiable. Therefore

if Φ is the endgame position, that is if 0 6= 0 ∈ Φ or {xi 6= 0, xi 6= 1} ⊂ Φ for some i ∈ [n], then

32

0 6= 0 ∈ (Φ ↾ρI) \ (Φc ↾ρI) or {xi 6= 0, xi 6= 1} ⊂ (Φ ↾ρI) \ (Φc ↾ρI) respectively. This implies that
|I| ≥ n

2 − 1 and therefore |Φc| ≥ |ΦI | ≥ 1
2 ·
√
|I| = Ω(

√
n). Thus the number of coins earned by

Delayer is Ω(
√
n).

Corollary 33. Let f be any linear polynomial over Q that depends on n variables. Then
tree-like Res(linQ) derivations of Im(f) are of size 2Ω(

√
n).

Theorem 34 (Subset sum tree-like lower bounds). If f is a linear polynomial over Q that
depends on n variables and 0 /∈ im2(f), then every tree-like Res(linQ) refutation of f = 0 is of
size 2Ω(

√
n).

Proof: Consider the following predicate P on linear polynomials: P(g) = 1 iff g depends on at
least n

2 variables. It is easy to see that P is a stable property for Res(linQ) with respect to f .
Therefore by Lemma 16 for every refutation π of f = 0 there exists a derivation π′ of a clause
Cπ from the boolean axioms such that |π′| = O(n · |π|3) and P(g) for every g = 0 in Cπ. Thus,
by Theorem 32 |π′| = 2Ω(

√
n) and |π| = 2Ω(

√
n).

Lemma 35. Let Φ be a satisfiable system of m non-equalities over Q. If Φ |= ǫ1x1+· · ·+ǫnxn =
A for some ǫi ∈ {−1, 1} ⊂ Q, A ∈ Q, then m ≥ n

4 .

Note that A must be an integer (inside Q), since the coefficients of variables are all −1, 1,
and the variables themselves are boolean (since |= stands for semantic implication over 0-1
assignments only).

Proof: Let Φ = {a1 ·x+b1 6= 0, . . . , am ·x+bm 6= 0} and put σ = A mod 2, f = ǫ1x1+· · ·+ǫnxn.
Then

f ≡ 1− σ (mod 2) |= f 6= A

|= (a1 · x + b1) · . . . · (am · x + bm) = 0.

By Theorem 4.4 in Alekhnovich-Razborov [2], the function f ≡ 1 − σ (mod 2) is n
4 -immune,

that is, the degree of any non-zero polynomial g such that f ≡ 1− σ (mod 2) |= g = 0 must be
at least n

4 . Therefore m ≥ n
4 .

Theorem 36. We work over Q. Let f = ǫ1x1 + · · · + ǫnxn, where ǫi ∈ {−1, 1}. Then any
tree-like Ressw(linQ) refutation of ImAv (f) is of size at least 2

n
4 .

Proof: According to the definitions in Sec. 8.1 the corresponding Prover-Delayer game is on
ImAv (f) and starts with the empty position. The game finishes at a position Φ, where Φ |=
f −A = 0 for some A ∈ im2(f).

We now define a Delayer’s strategy that guarantees n
4 coins and by Lemma 30 obtain the

lower bound.
The strategy is as follows. Let the position in the game be defined by a system Φ and let

the branching chosen by the Prover be g1 6= 0 and g2 6= 0, where Φ |= g1 + g2 6= 0. Delayer does
the following:

1. if g2 6= 0 is inconsistent with Φ, but g1 6= 0 is consistent with Φ, then choose g1 6= 0;

2. if g1 6= 0 is inconsistent with Φ, but g2 6= 0 is consistent with Φ, then choose g2 6= 0;

3. if none of the above holds, then leave the choice to the Prover and earn a coin.

33

We now prove that this strategy guarantees the required number of coins.

Suppose that the game has finished at a position Φ. The strategy of Delayer guarantees that
Φ is satisfiable and Φ contradicts a clause 〈f 6= A〉 of ImAv (f), that is Φ |= f −A = 0 for some
A ∈ im2(f). Let ζ1, . . . , ζℓ be the set of non-equalities in Φ, in the order they were added to Φ.
Let Ψ ⊆ Φ be the set of all ζi, i ∈ [ℓ], such that ζi is not implied by previous non-equalities ζj ,
for j < i. Then, Delayer earns at least |Ψ| coins, Ψ |= f = A, and by Lemma 35 we conclude
that |Ψ| ≥ n

4 .

8.3 Lower Bounds for the Pigeonhole Principle

Here we prove that every tree-like Ressw(linF) refutations of ¬PHPm
n must have size at least

2Ω(n−1
2

) (see Sec. 2.3.1 for the definition of ¬PHPm
n). Together with the upper bound for dag-like

Res(linF) (Theorem 29) this provides a separation between tree-like and dag-like Ressw(linF)
in the case char(F) = 0, for formulas in CNF. The lower bound argument is comprised of
exhibiting a strategy for Delayer in the Prover-Delayer game. Delayer’s strategy is similar to
that in [19]. However, the proof that Delayer’s strategy guarantees sufficiently many coins relies
on Lemma 38, which is a generalization of Lemma 3.3 in [19] for arbitrary fields. Since the proof
of Lemma 3.3 in [19] for the F2 case does not apply to arbitrary fields, our proof is different,
and uses a result from Alon-Füredi [4] on the hyperplane coverings of the hypercube.

Theorem 37. For every field F, the shortest tree-like Ressw(linF) refutation of ¬PHPm
n has size

2Ω(n−1
2

).

Proof: We prove that there exists a strategy for Delayer in the ¬PHPm
n game, which guarantees

Delayer to earn n−1
2 coins. Following the terminology in [19], we call an assignment xi,j 7→ αij ,

for α ∈ {0, 1}mn, proper if it does not violate Holesmn , namely, if it does not send two distinct
pigeons to the same hole. We need to prove several lemmas before concluding the theorem.

Lemma 38. Let Ax + b be a system of k linear non-equalities over a field F with n variables
and where x = 0 is a solution, that is, 0 + b. If k < n, then there exists a non-zero boolean
solution to this system.

Proof: Let a1, . . . , ak be the rows of the matrix A. The boolean solutions to the system Ax + b
are all the points of the n-dimensional boolean hypercube Bn := {0, 1}n ⊂ Fn, that are not
covered by the hyperplanes H := {a1x − b1 = 0, . . . , akx − bk = 0}. We need to show that if
k < n and 0 ∈ Bn is not covered by H, then some other point in Bn is not covered by H as
well. This follows from [4]:

Corollary from Alon-Füredi [4, Theorem 4]. Let Y (l) :=
{(y1, . . . , yn) ∈ Fn | ∀i ∈ [n], 0 < yi ≤ 2, and

∑n
i=1 yi ≥ l} . For any field F, if k hyper-

planes in Fn do not cover Bn completely, then they do not cover at least M(2n− k) points from
Bn, where

M(l) := min
(y1,...,yn)∈Y (l)

∏

1≤i≤n
yi .

Thus, if k < n hyperplanes do not cover Bn completely, then they do not cover at least
M(n + 1) points. The set Y (n + 1) in the Corollary above consists of all tuples (y1, . . . , yn),
where yi = 2 for some i ∈ [n] and yj = 1 for j ∈ [n], j 6= i. Therefore M(n + 1) = 2.

For two boolean assignments α, β ∈ {0, 1}n, denote by α ⊕ β the bitwise xor of the two
assignments.

34

Lemma 39. Let Ax + b be a system of k linear non-equalities over a field F with n > k variables
and let α ∈ {0, 1}n be a solution to the system. Then, for every choice I of k+1 bits in α, there
exists at least one i ∈ I so that flipping the ith bit in α results in a new solution to Ax + b. In
other words, if I ⊆ [n] is such that |I| = k + 1, then there exists a boolean assignment β 6= 0
such that {i | βi = 1} ⊆ I and A(α⊕ β) + b.

Proof: Let I ⊆ {0, 1}n. Denote by A⋆
I the matrix with columns {(1−2αi)ai | i ∈ I}, where ai is

the ith column of A. That is, A⋆
I is the matrix A restricted to columns i with i ∈ I and where

column i flips its sign iff αi is 1.
Assume that β ∈ {0, 1}n is nonzero and all its 1’s must appear in the indices in I, that is,

{i | βi = 1} ⊆ I. Given a set of indices J ⊆ [n], denote by βJ the restriction of β to the indices
in J . Similarly, for a vector v ∈ Fn, vJ denotes the restriction of v to the indices in J .

Claim. A(α⊕ β) + b iff A⋆
IβI + b−Aα.

Proof of claim: We prove that A(α ⊕ β) = A⋆
IβI + Aα. Consider any row v in A, and the

corresponding row v⋆
I in A⋆

I . Notice that v · (α ⊕ β) (for “·” the dot product) equals the dot
product of v and α⊕ β, where both vectors are restricted only to those entries in which α and
β differ. Considering entries outside I, by assumption we have β[n]\I = 0, which implies that

v[n]\I · (α⊕ β)[n]\I = v[n]\I · α[n]\I . (10)

On the other hand, considering entries inside I, we have

vI · (α⊕ β)I = vI · αI + v⋆
I · βI . (11)

Equation (11) can be verified by inspecting all four cases for the ith bits in α, β, for i ∈ I, as
follows: for those indices i ∈ I, such that αi = 1 and βi = 0, only vI ·α contributes to the right
hand side in (11). If αi = 1 and βi = 1, then by the definition of A⋆

I , the two summands in
the right hand side in (11) cancel out. The cases αi = 0, βi = 1 and αi = βi = 0, can also be
inspected to contribute the same values to both sides of (11).

The two equations (10) and (11) concludes the claim. Claim

We know that Aα + b, and we wish to show that for some nonzero β ∈ {0, 1}n where
{i | βi = 1} ⊆ I, it holds that A(α ⊕ β) + b. By the claim above it remains to show the
existence of such β where A⋆

IβI + b−Aα. But notice that b−Aα + 0, since Aα + b, and that
A⋆

IβI is a matrix of dimension k× (k + 1). Therefore, by Lemma 38, the system A⋆
IβI + b−Aα

has a nonzero solution, that is, there exists a β 6= 0 for which all ones are in the I entries, such
that A⋆

IβI + b−Aα.

Lemma 40. Assume that a system Ax + b of k ≤ n−1
2 non-equalities over F with variables

{xi,j}(i,j)∈[m]×[n] has a proper solution. Then, for every i ∈ [m] there exists a proper solution to
the system, that satisfies the clause

∨
j∈[n] xi,j. In other words, for every pigeon, there exists a

proper solution that sends the pigeon to some hole.

Proof: We first show that if there exists a proper solution of Ax + b, then there exists a proper
solution of this system with at most k ones. Let α be a proper solution with at least k + 1 ones.
If I is a subset of k + 1 ones in α, then Lemma 39 assures us that some other proper solution
can be obtained from α by flipping some of these ones (note that flipping one to zero preserves
the properness of assignments). Thus the number of ones can always be reduced until it is at
most k.

Let α be a proper solution with at most k ones. The condition k ≤ n−1
2 implies that there

are n − k ≥ k + 1 free holes. Let J be a subset of size k + 1 of the set of indices of free holes.

35

Then for any i ∈ [m] some of the bits in I = {(i, j) | j ∈ J} can be flipped and still satisfy
Ax + b, by Lemma 39. (As before, flipping from one to zero maintains the properness of the
solution.) Hence, the resulting proper solution must satisfy the clause

∨
j∈[n] xi,j .

We now describe the desired strategy for Delayer.

Delayer’s Strategy: Let a position in the game be defined by the system of non-equalities Φ and
assume that the branching chosen by Prover is f0 6= 0 or f1 6= 0, where Φ |= f0 + f1 6= 0. The
only objective of Delayer is to ensure that the system Φ has proper solutions. Delayer uses the
opportunity to earn a coin whenever both Φ∪ {f0 6= 0} and Φ∪ {f1 6= 0} have proper solutions
by leaving the choice to Prover. Otherwise, in case Φ ∧ Pigeonsmn |= fi = 0, for some i ∈ {0, 1},
Delayer chooses f1−i 6= 0, which must satisfy Φ∧Pigeonsmn |= f1−i 6= 0, and so the sets of proper
solutions of Φ and Φ ∪ {f1−i 6= 0} are identical.

This strategy ensures, that for every end-game position Φ, Φ has proper solutions and
Φ |= ¬Holesmn . Note that Φ has the same proper solutions as Φ′, obtained by throwing away
from Φ all non-equalities that were added by Delayer when making a choice. Therefore, if
Φ |= ¬Holesmn , then Φ′ ∧ Pigeonsmn |= ¬Holesmn and thus |Φ′| > n−1

2 by Lemma 40.
Since |Φ′| is precisely the number of coins earned by Delayer, this gives the desired lower

bound.

9 Size-Width Relation and Simulation by Polynomial Calculus

In this section we prove a size-width relation for tree-like Res(linF) (Theorem 43) over a field F,
which then implies an exponential lower bound on the size of tree-like Ressw(linF) refutations in
terms of the principal width of refutations (Definition 2). The connection between the principal
width and the degree of PC refutations for finite fields F, together with lower bounds on degree
of PC refutations from [2] on Tseitin mod p formulas and random CNFs, imply exponential
lower bounds for the size of tree-like Res(linF) for these instances (Corollaries 45 and 46).

Proposition 41. Let F be a field and φ = {Ci}1≤i≤m be a set of F-linear clauses and x ∈
vars(φ). Assume that l is an F-linear form in the variables vars(φ) \ {x}. Then, there is a
Res(linF) derivation π of {Ci ↾x←l ∨〈x− l 6= 0〉}1≤i≤m from φ of size polynomial in |φ|+ |Im(l)|
and such that ω0(π) ≤ ω0(φ) + 2.

Proof: The clause x− l = 0 ∨ 〈x− l 6= 0〉 is derivable in Res(linF) in polynomial in |Im(l)| size
by Proposition 11. Assume

C =

(∨
j∈[k]

fj + ajx + b
(1)
j = 0 ∨ · · · ∨ fj + ajx + b

(Nj)
j = 0

)
,

where x /∈ vars(fi) and we have grouped disjuncts so that ω0(C) = k. Then we resolve
these groups one by one with x − l = 0 ∨ 〈x − l 6= 0〉 and after N1 + . . . + Nk steps yield(∨

j∈[k] fj + ajl + b
(1)
j = 0 ∨ · · · ∨ fj + ajl + b

(Nj)
j = 0 ∨ 〈x− l 6= 0〉

)
. It is easy to see that the

principal width never exceeds k + 2 along the way. Therefore ω0(π) ≤ ω0(φ) + 2.

Corollary 42. Let F be a field and φ = {Ci}1≤i≤m be a set of F-linear clauses and x ∈ vars(φ).
Suppose that l is a F-linear form with variables vars(φ)\{x} and that π is a Res(linF) refutation
of φ ↾x←l ∪{l = 0 ∨ l = 1}. Then, there exists a Res(linF) derivation π̂ of 〈x− l 6= 0〉 from φ,
such that S(π̂) = O(S(π) + |Im(l)|) and ω0(π̂) ≤ max (ω0(π) + 1, ω0(φ) + 2). Additionally, there
is a refutation π̂′ of φ ∪ {x− l = 0} where ω0(π̂

′) ≤ max(ω0(π), ω0(φ) + 2).

36

Proof: By Proposition 41 there exists a derivation πs of

{Ci ↾x←l ∨〈x− l 6= 0〉}1≤i≤m ∪ {l = 0 ∨ l = 1 ∨ 〈x− l 6= 0〉}

from φ of width at most ω0(φ) + 2. Composing πs with π ∨ 〈x− l 6= 0〉 yields the derivation π̂
of 〈x− l 6= 0〉 from φ.

Moreover, by taking the derivation πs and adding to it the axiom x− l = 0, and then using a
sequence of resolutions of πs with x−l = 0, we obtain a derivation of φ ↾x←l ∪{l = 0∨l = 1} from
φ∪{x− l = 0}. The latter derivation composed with π yields the refutation π̂′ of φ∪{x− l = 0}
of width at most max(ω0(π), ω0(φ) + 2).

Theorem 43. Let φ be an unsatisfiable set of linear clauses over a field F. The following
size-width relation holds for both tree-like Res(linF) and tree-like Ressw(linF):

S(φ ⊢⊥) = 2Ω(ω0(φ⊢⊥)−ω0(φ)) .

Proof: We prove by induction on n, the number of variables in φ, the following:

ω0(φ ⊢⊥) ≤ ⌈log2 S(φ ⊢⊥)⌉+ ω0(φ) + 2 .

Base case: n = 0. Thus φ must contain only linear clauses a = 0, for a ∈ F, and the principal
width for refuting φ is therefore 1.

Induction step: Let π be a tree-like refutation of φ = {C1, . . . , Cm} such that S(π) = S(φ ⊢⊥)
(i.e., π is of minimal size). Without loss of generality, we assume that the resolution rule in π is
only applied to simplified clauses, that is clauses not containing disjuncts 1 = 0 in case of tree-
like Res(linF) and not containing unsatisfiable f = 0, 0 /∈ im2(f) in case of tree-like Ressw(linF).
The former can be eliminated by the simplification rule and the latter by the semantic weakening
rule. By this assumption, the empty clause at the root of π is derived in tree-like Res(linF)
(resp. tree-like Ressw(linF)) as a simplification (resp. weakening) of an unsatisfiable h = 0 (1 = 0
in case of tree-like Res(linF)) equation, which is derived by application of the resolution rule.
Denote the left and right subtrees, corresponding to the premises of h = 0, by π1 and π2,
respectively.

The roots of π1 and π2 must be of the form f1 = 0 and f2 = 0, respectively, where f1−f2 = h.
Therefore,

f1 = l(x1, . . . , xn−1) + anxn and f2 = l(x1, . . . , xn−1) + anxn − h ,

for some l(x1, . . . , xn−1) =
∑n−1

i=1 aixi + B, where ai, B ∈ F.
Assume without loss of generality that an 6= 0 and S(π1) ≤ S(π2). We now use the induction

hypothesis to construct a narrow derivation π•1 of f1 = 0 such that

ω0(π
•
1) ≤ ⌈log2 S(π1)⌉+ 1 + ω0(φ) + 2

≤ ⌈log2 S(π)⌉+ ω0(φ) + 2 .

For every nonzero A ∈ im2(f1) define the partial linear substitution ρA as xn ← (A −
l(x1, . . . , xn−1))a−1n . Thus, f1 ↾ ρA = A. The set of linear clauses

φ ↾ρA ∪
{

(A− l)a−1n = 0 ∨ (A− l)a−1n = 1
}

(12)

is unsatisfiable and has n− 1 variables, and is refuted by π1 ↾ρA .

37

By induction hypothesis there exists a (narrow) refutation πA
1 of (12) with

ω0(π
A
1) ≤ ⌈log2 S(π1 ↾ρA)⌉+ ω0(φ) + 2

≤ ⌈log2 S(π1)⌉+ ω0(φ) + 2 .

By Corollary 42 there exists a derivation π̂A
1 of 〈l + anxn 6= A〉 from φ such that ω0(π̂

A
1) ≤

max(ω0(π
A
1) + 1, ω0(φ) + 2) ≤ ⌈log2 S(π1)⌉ + ω0(φ) + 3. By Proposition 13 there exists a

derivation π•1 of f1 = 0 such that ω0(π
•
1) ≤ ⌈log2 S(π1)⌉+ ω0(φ) + 3 ≤ ⌈log2 S(π)⌉+ ω0(φ) + 2.

Consider the following substitution ρ: xn ← −l·a−1n . Then, π2|ρ is a derivation of h = 0 from
φ|ρ ∪ {−l · a−1n = 0 ∨ −l · a−1n = 1}, which we augment to refutation π′2 by taking composition
with simplification (resp. weakening) in case of tree-like Res(linF) (resp. tree-like Ressw(linF)).
By induction hypothesis there exists a refutation π•2 of width

ω0(π
•
2) ≤ ⌈log2(S(π′2) + 1)⌉+ ω0(φ) + 2

≤ ⌈log2 S(π)⌉+ ω0(φ) + 2 ,

and thus by Corollary 42 there exists a refutation π̂•2 of φ ∪ {f1 = 0} of width ω0(π̂
•
2) ≤

⌈log2 S(π)⌉ + ω0(φ) + 2. The combination of π̂•2 and π•1 gives a refutation of φ of the desired
width.

Theorem 44. Let F be a field, char(F) > 0 and π be a Res(linF) refutation of an unsatisfiable
set of linear clauses φ. Then, there exists a PCF refutation π′ of (the arithmetization of) φ of
degree O(ω(π)).

Proof: The idea is to replace every clause C = (f1 = 0∨ . . .∨fm = 0) in π by its arithmetization
a(C) := f1 · . . . · fm, and then augment this sequence to a valid PCF derivation by simulating
all the rule applications in π by several PCF rule applications.
Case 1: If D = (C ∨ g1 = 0 ∨ . . . ∨ gm = 0) is a weakening of C, then apply the product and
the addition rules to derive a(D) = a(C) · g1 · . . . · gm from a(C).
Case 2: If D is a simplification of D ∨ 1 = 0, then a(D) = a(D ∨ 1 = 0).
Case 3: If D = (x = 0∨ x = 1) is a a boolean axiom, then a(D) = x2 − x is an axiom of PCF.
Case 4: If D = (C ∨ C ′ ∨ E ∨ αf + βg = 0) is a result of resolution of (C ∨ E ∨ f = 0) and
(C ′ ∨ E ∨ g = 0), where C and C ′ do not contain the same disjuncts, then by the product and
addition rules of PC we derive a(C) · a(C ′) · a(E) · f from a(C ∨ E ∨ f = 0) = a(C) · a(E) · f ,
and also derive a(C) · a(C ′) · a(E) · g from a(C ′ ∨E ∨ g = 0) = a(C ′) · a(E) · g, and then apply
the addition rule to derive a(C) · a(C ′) · a(E) · (αf + βg).

If C,C ′, E do not contain the disjunct αf + βg, then the derived polynomial a(C) · a(C ′) ·
a(E)·(αf+βg) is just a(D) and we are done. Otherwise, a(D) has the form a(D) = P ·(αf+βg),
whereas we derived P · (αf + βg)2. In that case note that if p = char(F) > 0, then for every
polynomial Q PCF derives Q from Q2 and Boolean axioms in degree at most deg(Q) · p due to
the identity Q2 ·Qp−2 = Q modulo Boolean axioms.

It is easy to see that the degree of the resulting PCF refutation is O(ω(π)).

As a consequence of Theorems 43 and 44, and the relation ω0 ≥ 1
|F|ω as well as the results

from [2], we have the following:

Corollary 45. For every prime p there exists a constant d0 = d0(p) such that the following
holds. If d ≥ d0, G is a d-regular Ramanujan graph on n vertices (augmented with arbitrary
orientation to its edges) and F is a finite field with char(F) 6= p, then for every function σ such

that ¬TS(p)G,σ ∈ UNSAT, every tree-like Res(linF) refutation of ¬TS(p)G,σ has size 2Ω(dn).

38

Proof: Corollary 4.5 from [2] states that the degree of PCF refutations of ¬TS
(p)
G,σ is Ω(dn).

Theorem 44 implies that the principal width of Res(linF) refutations of ¬TS
(p)
G,σ is Ω(1

|F|dn) =

Ω(dn) and thus by Theorem 43 the size is 2Ω(dn).

Corollary 46. Let φ ∼ Fn,∆
k , k ≥ 3 and ∆ = ∆(n) be such that ∆ = o(n

k−2
2) and let F be

any finite field. Then every tree-like Res(linF) refutation of φ has size 2
Ω

(

n

∆2/(k−2)·log∆

)

with
probability 1− o(1).

Proof: Corollary 4.7 from [2] states that the degree of PCF refutations of φ ∼ Fn,∆
k , where

k ≥ 3, is Ω(dn) with probability 1 − o(1). Theorem 44 implies that the principal width of
Res(linF) refutations of φ ∼ Fn,∆

k is Ω(1
|F|dn) = Ω(dn) and thus by Theorem 43 the size of the

refutations is 2Ω(dn) with probability 1− o(1).

Acknowledgments

We wish to thank Dima Itsykson and Dima Sokolov for very helpful comments concerning this
work, and telling us about the lower bound on random k-CNF formulas for tree-like Res(linF2)
that can be achieved using the results of Garlik and Ko lodziejczyk. We thank Edward Hirsch
for spotting a gap in the initial proof of the dag-like lower bound concerning the use of the
contraction rule, and Fedor Petrov for very useful discussions. Lastly, we are grateful to the
anonymous reviewers of the extended abstract as well as the journal version of this work, who
contributed to improving the exposition.

References

[1] Miklós Ajtai. The complexity of the pigeonhole principle. In Proceedings of the IEEE 29th Annual
Symposium on Foundations of Computer Science, pages 346–355, 1988. 1

[2] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus: non-
binomial case. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science
(Las Vegas, NV, 2001), pages 190–199. IEEE Computer Soc., Los Alamitos, CA, 2001. 1.1, 1.1.2,
1.1.3, 2.3.2, 3, 4, 8.2, 9, 9, 9, 9

[3] Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, and Iddo Tzameret. Semi-algebraic proofs,
IPS lower bounds, and the τ -conjecture: can a natural number be negative? In Proccedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA,
June 22-26, 2020, pages 54–67. ACM, 2020. 1.1

[4] Noga Alon and Zoltán Füredi. Covering the cube by affine hyperplanes. Eur. J. Comb., 14(2):79–83,
March 1993. 1.1, 1.1.2, 8.3, 8.3

[5] Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov, Toniann
Pitassi, and Robert Robere. Stabbing planes. In Anna R. Karlin, editor, 9th Innovations in The-
oretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA,
volume 94 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
1.1.5

[6] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res., 22:319–351, 2004. 6

[7] Eli Ben-Sasson. Hard examples for the bounded depth Frege proof system. Comput. Complexity,
11(3-4):109–136, 2002. 1

[8] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. J. ACM,
48(2):149–169, 2001. 1.1, 3

39

[9] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps between
degrees for the polynomial calculus modulo distinct primes. J. Comput. System Sci., 62(2):267–289,
2001. Special issue on the 14th Annual IEEE Conference on Computational Complexity (Atlanta,
GA, 1999). 2.3.2

[10] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm to
find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on the Theory of
Computing (Philadelphia, PA, 1996), pages 174–183, New York, 1996. ACM. 1.1.3, 2.2

[11] Stephen A. Cook and Robert A. Reckhow. Corrections for “On the lengths of proofs in the propo-
sitional calculus (preliminary version)”. SIGACT News, 6(3):15–22, July 1974. 12

[12] Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the propositional calculus
(preliminary version). In STOC1974, pages 135–148, 1974. For corrections see Cook-Reckhow [11].
13

[13] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. J.
Symb. Log., 44(1):36–50, 1979. This is a journal-version of Cook-Reckhow [12] and Reckhow [30]. 2,
1

[14] Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof complexity lower
bounds from algebraic circuit complexity. In 31st Conference on Computational Complexity, CCC
2016, May 29 to June 1, 2016, Tokyo, Japan, pages 32:1–32:17, 2016. 1.1

[15] Michal Garlik and Lezsek Ko lodziejczyk. Some subsystems of constant-depth Frege with parity.
ACM Transactions on Computational Logic, 19(4), 2018. (document), 1, 1.1.3, 1.1.3, 2

[16] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial
identity testing: The ideal proof system. J. ACM, 65(6):37:1–37:59, 2018. 1.1

[17] Armin Haken. The intractability of resolution. Theoret. Comput. Sci., 39(2-3):297–308, 1985. 1

[18] Johan H̊astad. On small-depth frege proofs for tseitin for grids. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages
97–108, 2017. 1

[19] Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two. Ann. Pure
Appl. Log., 171(1), 2020. Extended abstract appeared initially in MFCS 2014. (document), 1, 1.1,
1.1.2, 1.1.3, 2, 1.1.5, 3, 3, 6, 6, 8.3, 8.3

[20] Jan Kraj́ıček. Discretely ordered modules as a first-order extension of the cutting planes proof
system. The Journal of Symbolic Logic, 63(4):1582–1596, 1998. 1

[21] Jan Kraj́ıcek. A feasible interpolation for random resolution. Logical Methods in Computer Science,
13(1), 2017. (document), 1

[22] Jan Kraj́ıcek and Igor Carboni Oliveira. On monotone circuits with local oracles and clique lower
bounds. Chicago J. Theor. Comput. Sci., 2018, 2018. (document), 1

[23] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the size of bounded
depth Frege proofs of the pigeonhole principle. Random Structures Algorithms, 7(1):15–39, 1995. 1

[24] Nathan Linial and Jaikumar Radhakrishnan. Essential covers of the cube by hyperplanes. Journal
of Combinatorial Theory, Series A, 109:331–338, 2005. 1.1, 1.1.2, 8.2, 31

[25] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, Sep
1988. 2

[26] Jakob Nordström. On the interplay between proof complexity and sat solving. ACM SIGLOG News,
2(3):19–44, August 2015. 1

[27] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the pigeonhole
principle. Comput. Complexity, 3(2):97–140, 1993. 1

40

[28] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k -sat (preliminary
version). In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
January 9-11, 2000, San Francisco, CA, USA., pages 128–136, 2000. 1.1, 1.1.2, 8.1

[29] Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs. Ann. Pure
Appl. Logic, 155(3):194–224, 2008. 1, 1, 1.1.1, 1.1.2, 1.1.2, 2.3.2, 3, 29, 7

[30] Robert A. Reckhow. On the lengths of proofs in the propositional calculus. PhD thesis, University
of Toronto, 1976. 1, 13

[31] Grigori Tseitin. On the complexity of derivations in propositional calculus. Studies in constructive
mathematics and mathematical logic Part II. Consultants Bureau, New-York-London, 1968. 1, 2.3.2

41

— Page left blank for ECCC stamp —

42

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

