
Hardness of improper one-sided learning of conjunctions for all

uniformly falsifiable CSPs

Alexander Durgin and Brendan Juba∗

Washington University in St. Louis
{a.durgin,bjuba}@wustl.edu

June 20, 2018

Abstract

We consider several closely related variants of PAC-learning in which false-positive and
false-negative errors are treated differently. In these models we seek to guarantee a given, low
rate of false-positive errors and as few false-negative errors as possible given that we meet the
false-positive constraint. Bshouty and Burroughs first observed that learning conjunctions in
such models would enable PAC-learning of DNF in the usual distribution-free model; in turn,
results of Daniely and Shalev-Shwartz establish that learning of DNF would imply algorithms
for refuting random k-SAT using far fewer constraints than believed possible. Such algorithms
would violate a slight strengthening of Feige’s R3SAT assumption, and would violate the RCSP
hypothesis of Barak et al. We show here that actually, an algorithm for learning conjunctions in
this model would have much more far-reaching consequences: it gives refutation algorithms for
all predicates that are falsified by one of the uniform constant strings. To our knowledge, this
is the first hardness result of improper learning for such a large class of natural average-case
problems with natural distributions.

1 Introduction

We consider the following, closely related learning models:

(i) In Pitt and Valiant’s heuristic learning model (Pitt and Valiant, 1988), one seeks a “rule of
thumb” that commits (almost) no false-positive errors, and matches the best true-positive
rate of members of a given class.

(ii) In Kalai, Kanade, and Mansour’s positive-reliable learning model (Kalai et al., 2012), one
seeks a classifier that, again, commits almost no false-positive errors, and almost matches the
false-negative rate of the optimal classifier that makes no false-positive errors.

(iii) In Juba’s learning to abduce model (Juba, 2016), one seeks a “hypothesis” condition with
probability as large as possible such that in the corresponding conditional probability distri-
bution over examples, the label is almost always true, thus “empirically entailed.”
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The only differences are that Kalai et al. formulate their problem as minimizing false-negatives as
opposed to maximizing the positive classification rate, and Juba essentially formulates the problem
in terms of precision rather than the raw false-positive rate. Thus, in the realizable setting (where
a perfect rule exists) all three models are computationally equivalent. (We establish this in the
appendix for completeness.)

Conjunctions are among the simplest and least-expressive nontrivial representations. They
present a natural starting point for studying the extent of learnability in any model. Moreover,
conjunctions are of particular significance to the learning to abduce model. In the usual formula-
tion of abduction as a reasoning task, conjunctions are widely considered to be the most natural
hypothesis formulation. For example a typical application of abduction is in diagnosing faulty
circuits, and the hypothesis explaining a given output is usually a conjunction of faults at various
points in the circuit. Indeed, many classical formulations of the abduction task in AI only con-
sidered conjunctive hypotheses (e.g., ATMS Reiter and de Kleer (1987)). Thus, conjunctions can
be considered to be the central representation class for abduction, and therefore the learnability of
that class in Juba’s model is particularly significant.

It is therefore somewhat surprising and unfortunate that all evidence to date suggests that
conjunctions are not learnable in these models. The first results concerned the “proper learning”
variant of the task, in which we seek the representation of a specific conjunction solving the task:
Pitt and Valiant showed this problem to be NP-hard (Pitt and Valiant, 1988); indeed, Bshouty
and Burroughs 2005 noted that it follows from results of H̊astad 1996 that even getting a n1−γ-
approximation to the optimal positive classification rate for this problem (for any constant γ > 0)
is NP-hard.

Bshouty and Burroughs 2005 showed furthermore that even for the “improper” variant in which
any representation will do, we cannot obtain any polynomial approximation for the positive classifi-
cation rate, or else we would obtain an algorithm for PAC-learning DNF in the usual, distribution-
free model. This was the central problem in computational learning theory raised by Valiant 1984,
and the state-of-the-art algorithm for this problem requires 2O(n1/3) time and examples (Klivans
and Servedio, 2004). Until recently, the only evidence for the hardness of learning DNF was its
notoriety. But, Daniely and Shalev-Shwartz 2016, building on techniques pioneered by Daniely et
al. 2014, show that learning DNF is hard given that it is hard to distinguish random k-CNFs on nf(k)

constraints from satisifiable k-CNFs for any f(k) = ω(1). This assumption is a slight strengthening
of Feige’s R3SAT hypothesis, Feige (2002) which (only) asserts that no polynomial-time algorithm
can distinguish random 3-CNFs of size O(n) from satisfiable 3-CNFs. These connections show,
in turn that improper learning of conjunctions is intractible under the same assumptions. Thus,
furthermore, learning of any representation that can express a conjunction is also intractable in
these models. Since almost all natural representations can express conjunctions (except disjunc-
tions and parities, which are learnable (Bshouty and Burroughs, 2005; Kanade and Thaler, 2014;
Juba, 2016)), this essentially settles the extent of learnability in these models.

The pioneering work of Daniely et al. 2014 had earlier obtained a number of strong hardness
of improper learning results, using assumptions about the hardness of random CSPs for unusual
predicates, that were unfortunately subsequently falsified by Allen et al. 2015. While the current,
random k-SAT variant used by Daniely and Shalev-Shwartz has yet to be falsified (and indeed
seems plausible) and PAC-learning of DNF still seems formidable, it is still desirable to have
stronger evidence for the hardness of these problems. But, the hardness of learning has almost
always been based on the hardness of specific problems, such as the aforementioned hardness of

2



specific random CSP refutation problems, the hardness of specific cryptographic problems, such as
integer factoring (Kearns and Valiant, 1994) or shortest vector problems (Klivans and Sherstov,
2009), or the hardness of planted clique (Berthet and Rigollet, 2013). Applebaum et al. 2008
obtained evidence that such a result for improper learning based on NP-hardness is implausible:
most simple kinds of reductions would imply the polynomial-time hierarchy collapses, and more
complex reductions would yield a generic reduction to construct weak one-way functions from
arbitrary problems in NP that are hard on average. Moreover, no natural problem with a natural
distribution has yet been shown to be complete for the average-case analogues of NP1 so hardness
for the average-case analogues of NP seem beyond our current reach, at least.

Our results. We show that the task of improper learning of conjunctions is hard unless most
random k-CSPs can be weakly refuted: specifically, for every predicate that is falsified by some
uniform assignment (i.e., all-0s or all-1s for Boolean CSPs), if it is intractable to distinguish random
systems on nf(k) constraints from systems with a satisfying assignment for f(k) = ω(1), then
improper learning of conjunctions is also intractable. This includes almost all CSPs considered
in the literature which tend to be nontrivial, monotone CSPs, as well as more exotic predicates
such as not-all-equal-SAT, random predicates (with probability 3/4), and notably the XOR⊕MAJ
predicate introduced by Applebaum and Lovett 2018 as a candidate hard predicate for PRGs in
NC0 achieving high stretch. We stress that to our knowledge, this is the first example of hardness
of improper learning for such a large class of problems.

We note that Barak et al. 2013 had explicitly conjectured that a basic semidefinite program
should be optimal for weak refutation of all predicates with a constant constraint-to-varible ratio.
By contrast, we only require that refutation is hard for some predicate on nf(k) constraints for ar-
bitrarily slowly growing f(k). In particular, Kothari et al. 2017 show that the usual sum-of-squares
formulation cannot efficiently refute such instances whenever there is a 2f(k) + 1-wise independent
distribution on the satisfying assignments of the predicate. (We say that such predicates “support
2f(k) + 1-wise independence.”) Therefore, unless we can improve upon the sum-of-squares algo-
rithm for refutation on nf(k) constraints for all CSPs that are falsified by some constant assignment
and support 2f(k) + 1-wise independence, there is no polynomial-time algorithm for learning con-
junctions in these models. Kothari et al. note that for the same family of predicates, it furthermore
follows from work by Lee et al. 2015 that no polynomial-size semidefinite programming extended
formulation will succeed for the same family and same number of constraints. Therefore, again, a
polynomial time algorithm for learning conjunctions in this model will establish that no semidef-
inite programming formulations are optimal for any of these predicates (in stark contrast to the
conjucture of Barak et al. 2013).

Technical overview. Our techniques are inspired by the previous works by Daniely et al. 2014
and Daniely and Shalev-Shwartz 2016. For our problems, however, we find a substantially more
direct reduction than either of these works. As a consequence of the simplicity of this argument,
it applies to the large class of predicates described above. At a high level, we can describe the
reduction for the abduction or heuristic learning variants of the problem as follows: we map the
constraints of a given input system to examples labeled 0, and add a set of examples encoding
random constraints with label 1. Our task is then to find a conjunction that selects a subset of

1In particular, this is in contrast to specific works where either the distribution is natural and the problem is not
(Impagliazzo and Levin, 1990, e.g.,) or where the problem is natural and the distribution is not (Livne, 2010).
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the random constraints and does not pick up any constraints of the input system. We note that
for any candidate assignment to the input system, there is a specific set of literals that maps the
assignment to the constant string that would falsify the predicate on every subset. If there is a
satisfying assignment to the system, then constraints containing these literals for that assignment
cannot appear in the system. But, they do appear in a random system with constant probability. So,
a conjunction that checks that all variables either do not appear in the predicate, or appear in the
literals that map the assignment to the falsifying string will solve the abduction task. By contrast, if
the input system was random, then the labels are independent of the examples, and no conjunction
can solve the task. Therefore, finding a good solution to the abduction task distinguishes random
constraints from constraints of a satisfiable system.

2 Preliminaries

2.1 Abductive learning problem

First, we describe the one-sided learning model in which we are studying the learnability of con-
junctions (as described by Juba 2016).

Definition 1 For a class H of Boolean formulas over Boolean attributes x1, . . . , xn, the abduction
task is as follows. We are given as input m independent examples x(1), . . . , x(m) from an arbitrary
distribution D over {0, 1}n (assignments to the n attributes), a query formula c(x) over x1, . . . , xn,
and an alphabet A ⊆ {x1, . . . , xn}, for which there exists h∗ ∈ H only using attributes in A such
that Pr[c(x) = 1|h∗(x) = 1] = 1 and Pr[h∗(x) = 1] ≥ µ. Then, with probability 1 − δ, in time
polynomial in n, 1/µ, 1/ε, and 1/δ, we find an explanation h ∈ H only using attributes in A such
that

(i) Pr[c(x) = 1|h(x) = 1] ≥ 1− ε and
(ii) Pr[h(x) = 1] ≥ 1/p(1/µ, n, 1/(1− ε)) for some positive polynomial p.

So, in the case of there being a good (“µ-plausible”) explanation for the sample data (an h ∈ H
with no error on its support), an efficient abductive learner in this model will probably output
an approximately correct hypothesis (on its support) with the plausibility (size of the support)
depending only polynomially on n, 1µ ,

1
ε ,

1
δ .

2.2 Constraint satisfaction problems

The hard problem we reduce to abducing conjunctions is that of distinguishing satisfiable instances
of constraint satisfaction problems (CSP) from large enough random instances for at least one
predicate out of a large class of predicates. We formally describe our problem as follows:

Definition 2 (Constraint satisfaction problems) We call a boolean function
P : {0, 1}k → {0, 1} a k-predicate and say that C : {0, 1}n → {0, 1} is a P -constraint if ∃`1, ..., `k ∈
{x1,¬x1, ..., xn,¬xn} such that C(x) = P (`1(x), ..., `k(x)) and each variable seen in the choice of `i
is distinct. We denote the set of all P -constraints by CSPP .

For k-predicate P , we say that a random algorithm A solves the problem of distinguishing be-
tween satisfiable and random instances of P -constraints of sizem(n) if on input S = {C1, ..., Cm(n)} ⊆
CSPP the following holds:
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(i) If there exists x ∈ {0, 1}n such that for each i ∈ [m(n)] we have Ci(x) = 1, then A(S) outputs
“satisfiable” with probability at least 3

4 with respect to the internal randomness of A and

(ii) If each Ci ∈ S is drawn uniformly random from all of the P -constraints and independently
from the other P -constraints, then for almost-all choices of S, A(S) outputs “random” with
probability at least 3

4 with respect to the internal randomness of A.

If there is no such A that runs in time poly(n), then we say that this problem is hard. Otherwise,
we say that this problem is easy.

In particular, the CSP-based hardness assumption we will reduce from is of the following form:

Assumption 3 (Uniformly Falsified CSP Hardness (UFC)) There exists some k-predicate
P such that either P (0, 0, ..., 0) = 0 or P (1, 1, ..., 1) = 1 and some function f(k) = ω(1) for which
it is hard to distinguish between satisfiable and random instances of P -constraints of size nf(k).

Definition 4 We say that a computational problem is UFC-hard if it being efficiently solvable
contradicts assumption 3.

2.3 Scattering and explainability

Analogous to distinguishing between random and satisfiable instances of CSP problems, our reduc-
tion will make use of the following problem of distinguishing between scattered and explainable
samples:

Definition 5 ((H, µ)-explainable and scattered samples) Let
S = {(x1, y1), ..., (xm(n), ym(n))} ⊆ {0, 1}n × {0, 1} be a labeled sample.

• We say that S is (H, µ)-explainable for µ > 0 if there exists h∗ ∈ H such that

(i) 1
m(n)

m(n)∑
i=1

1{x|h∗(x)=1}(xi) ≥ µ

(ii) For each i ∈ [m(n)], h∗(xi) = 1 =⇒ yi = 1

• We say that a distribution over ({0, 1}n × {0, 1})m is scattered if for S ∼ D the examples
(xi, yi) are independent and identically distributed, and the yi in particular are Bernoulli(12)
random variables that are independent of xi.

Definition 6 (Distinguishing explainable from scattered samples) For hypothesis class H,
we say that a random algorithm A solves the problem of distinguishing between (H, µ)-explainable
samples and scattered samples of size m(n) if on input S = {(x1, y1), ..., (xm(n), ym(n))} ⊆ {0, 1}n×
{0, 1}, A has the following two behaviors:

(i) if S is (H, µ)-explainable, then A(S) outputs “explainable” with probability at least 3
4 with

respect to the internal randomness of A.

(ii) If S is drawn from a scattered distribution, then with probability 1− on(1) with respect to the
choice of S, A(S) will output “scattered” with probability at least 3

4 with respect to the internal
randomness of A.
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If there is no such A that runs in time poly(n), then we say that this problem is hard. Otherwise,
we say that this problem is easy.

In particular, our reduction will relate the problem of distinguishing (H, µ)-explainable from
scattered examples to the abductive learnability of H. The basic idea behind this relationship
is similar to that of Daniely et al., in that since any efficient abductive learner can use at most
a polynomial number of bits to describe an output hypothesis, it will almost certainly output a
poorly performing explanation in the scattered case. Meanwhile, in the explainable case, it will do
well by assumption. We will give a full proof in the next section.

3 Main Result: One-Sided Improper Learning of Conjunctions
Refutes All Uniformly Falsifiable Random CSPs

Our main result concludes that under assumption 3 abductively learning conjunctions is hard, even
improperly:

Theorem 7 (Hardness of improperly abductively learning conjunctions) It is UFC-hard
to improperly abduce conjunctions.

The method behind our result is based on that of Daniely et al. Namely, we will reduce the
(hard) problem of distinguishing between satisfiable and random CSP instances to the problem of
distinguishing between conjunctively explainable and scattered samples. The idea will be to label
the set of input constraints negatively, then to randomly (with probability 1

2) replace constraints
with (uniformly) random positively labeled constraints. We will then encode the constraints (as
a collection of literals) into a larger set of Boolean attributes. In the case that the input system
is satisfiable, due to our mild assumption that P is false on either the all 0 or all 1 input, any
satisfying assignment induces a mapping h∗ : {0, 1}2n → {0, 1} (computable by a conjunction) from
the encoded constraints to {0, 1} such that for P -constraint C and encoding function enc : CSPP →
{0, 1}2n we have h∗(enc(C)) = 1 only if C(x∗) = 0, i.e., there exists a conjunctive explanation for
the encoded input system of constraints. In the random case, on the other hand, there is almost
always no such explanation h∗. Hence, any efficient abductive learner for conjunctions will be able
to solve our original CSP problem.

Note that for brevity the following analysis will be for the case that P (0, 0, . . . , 0) = 0, but if we
do not have falsification on all 0’s and instead have falsification of P on all 1’s (P (1, 1, . . . , 1) = 0),
that the analysis is much the same. Furthermore, we note that our argument extends directly to
all constant size alphabets Γ given a suitable notion of “literals:” we only require that for any pair
of symbols σ, τ ∈ Γ, there is a literal function that takes σ to τ (the literals are “1-transitive”). In
particular, the constant shift literals used by Georgiou et al. 2009 will suffice.

3.1 The reduction

First, we will describe our encoding of CSPP over n variables as elements of {0, 1}2n. Let enc :
CSPP → {0, 1}2n, where for C = P (`i1 , . . . `ik), enc(C) = z such that when we identify {0, 1}2n
with {0, 1}n×[2], z(i,1) = 1 ⇐⇒ either xi does not appear in any literal `q of C or xi appears as
a literal itself in C, and similarly z(i,2) = 1 ⇐⇒ either xi does not appear in any literal `q of C
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or ¬xi appears as a literal itself in C. Hence, every index of enc(C) is 1 unless the negation of the
associated literal appears in the constraint C.

We now describe the algorithm itself. Let Hcon denote the hypothesis class of conjunctions
over n variables and let P denote a k-predicate over n variables. Let A denote an algorithm that
efficiently distinguishes between (Hcon, µ)-explainable (with respect to µ = µ(n, k)) and scattered
samples of size nd. Then the following is a polynomial time algorithm for the problem of dis-
tinguishing between satisfiable and random instances of P -constraints of size nd, by reducing to
the problem of distinguishing between (Hcon, µ)-explainable and scattered samples of size nd over
{0, 1}2n:

Algorithm: A′

Input : S = {C1, . . . , Cnd} ⊆ CSPP
Output: Either “satisfiable” or “random”

1 Let S′ = {(C1, 0), . . . , (Cnd , 0)} by labeling each input constraint 0

2 for i← 1 to nd do
3 With probability 1

2 replace, in S, labeled example (Ci, 0) with labeled example (C, 1) for
C chosen uniformly at random.

4 end
5 Let E = {(enc(C1), b1), . . . , (enc(Cnd), bnd)}, where bi is the label of the ith example after

the randomizing loop.
6 if A(E) = “explainable” then
7 return “satisfiable”
8 else
9 return “random”

10 end

3.2 Correctness of the reduction

We will now establish the correctness of this algorithm:

Lemma 8 On input a satisfiable system of constraints for some uniformly falsifiable k-constraint
P , the algorithm A′ will output “satisfiable” with probability at least 3

4 . And if S is random, then
A′ will return “random” with probability at least 3

4 for a 1− on(1)-fraction of choices of S.

We consider each of the two cases of the problem separately. In the case that S is structured
(satisfiable) we will show that with probability at least 3

4 we output “satisfiable”. And, in the
unstructured case (S is random), we will show that over a 1−on(1) fraction of all choices of S with
probability at least 3

4 A
′ outputs “random”. And then afterwards, we will prove the main theorem

of the paper.

Claim 9 If S = {C1, ..., Cnd} is satisfiable, then E is (Hcon, µ)-explainable with respect to any

µ < 1
2k+1 −

√
2k+1

nd ln 4 with probability at least 3
4 .

Proof: Let x∗ be a satisfying assignment for {C1, ..., Cnd} and consider the following h∗ ∈ Hcon:
h∗(z) =

∧n
i=1 αi where
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αi =

{
z(i,1), if x∗i = 0

z(i,2), if x∗i = 1

In words, h∗(enc(C)) = 0 if and only if some literal belonging to C is satisfied by the assignment
x∗. Hence, if we have h∗(enc(C)) = 1 on a µ fraction of E, then we are done.

Let Xi be the indicator random variable that is 1 if and only if h∗(enc(Ci)) = 1. We make
two observations. First, we note that if h∗(enc(Ci)) = 1 then the label of the ith sample is also 1.
Second, we note that E[Xi] = (12)( 1

2k
). And so, by application of the usual multiplicative Chernoff

bounds:

Pr
[ nd∑
i=1

Xi < µnd
]
< exp

(
−
(1

2

)
(

1

2k+1
− µ)2

( 1

2k+1

)
nd
)

And so, in order to pick µ so that this probability h∗ does a poor job at explaining the labeling
is less than 1

4 we need

exp
(
−
(1

2

)
(

1

2k+1
− µ)2

( 1

2k+1

)
nd
)
<

1

4

and continuing with elementary manipulations we find that happens when

µ <
1

2k+1
−
√

2k+1

nd
ln 4

and so we are done.
Thus, our reduction maps satisfiable instances of P -constraints to to conjunctively explainable

instances over the boolean cube.
Next, observe that in the case of S being drawn uniformly at random, that for almost all

choices of S, with probability at least 3
4 with respect to the internal randomness of the algorithm,

we will output “random”. Indeed, we observe that the distribution induced by the algorithm on
samples over {0, 1}2n×{0, 1} is scattered in the random case, and so, by assumption that A solves
the problem of distinguishing between (Hcon, µ)-explainable and scattered samples we have this
guarantee:

Claim 10 If S is drawn uniformly at random, then for a 1− on(1) fraction of the possible S, with
probability at least 3

4 A
′ will return “random.”

Proof: As A′ outputs “random” whenever A outputs “scattered” on its input E, and we are
given that A outputs “scattered” with probability 3

4 for a 1−on(1)-fraction of the possible samples
produced by a scattered distribution, it suffices to argue that E is indeed scattered.

Indeed, since {C1, . . . , Cnd} is by assumption a collection of mutually independent and uniformly
random constraints, in particular the set of literals appearing in each Ci is an independent and uni-
formly random set of k literals on distinct variables. Observe that this remains true even if we
sample a new, independent constraint for Ci in the first loop of A′. Hence, {enc(C1), . . . , enc(Cnd)}
is, by construction, a collection of mutually independent and identically distributed random vari-
ables. Moreover, our choice of whether or not to resample Ci and replace its label with 1 is an
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independent Bernoulli trial, and as the new constraint Ci was (once again) independently and uni-
formly sampled, we find that indeed the labels yi are independent and unbiased Bernoulli random
variables. Thus we see that E is a scattered sample as claimed.

Thus, our reduction maps random CSP instances to scattered samples, and (by Claim 9) mapped
satisfiable CSP instances to “explainable” samples. Since by hypothesis A is able to distinguish
scattered from “explainable” samples, our reduction is correct.

3.3 Proof of the main theorem

Theorem 7 (Hardness of improperly abductively learning conjunctions) It is UFC-hard
to improperly abduce conjunctions.

Proof: Toward a contradiction let L be an efficient abductive learner of Hcon. We take

g(n, µ, ε, δ) ≥ Ω(
((

1 − ε)µn
)d)

(for some constant d) to be the lower bound of the plausibility

of L’s output explanation guaranteed by definition of L being an efficient abductive learner when
there is a µ-plausible explanation.

Hence, for each fixed choice of δ, ε ∈ (0, 1) there is some d > 0 such that (i) L reads and writes
fewer than (nµ)d bits over its execution, including those used to read the input examples and the
bits required to describe an output explanation. In particular, the number of samples read and
used by the algorithm is at most (nµ)d, and (ii) (nµ)d ≥ 1

g(n,µ,ε,δ) .

Let q = d + 1 and let k be large enough such that f(k) ≥ 3q. Recall that for our reduction
to distinguish between satisfiable and random samples our analysis requires that our subroutine
A be able to efficiently distinguish between (Hcon, µ)-explainable and scattered samples for some

1
2k+2 ≤ µ < 1

2k+1 . Notice that for sufficiently large n, i.e., n > 1
µd

, we have nd+1 >
(
n
µ

)d
, that is,

nq ≥ (nµ)d.

Now consider the following algorithm that on input S ⊆ {0, 1}n×{0, 1} of size n3q distinguishes
between the case that S is (Hcon, µ)-explainable for such a µ and the case that S is scattered:

Algorithm: L′

Input : S = {(x1, y1), . . . , (xn3q , yn3q)}
Output: Either “explainable” or “random”

1 Run L with the following parameters: Examples drawn uniformly (with replacement) from
S as the input example set, µ as above, δ = 1

8 , and ε = 1
4 and let h be the output

explanation hypothesis.

2 if If 1
n3q

n3q∑
i=1

1{(x,y)∈S|h(x)=1}(xi) ≥ g(n, µ, ε, δ) and Err{(x,y)∈S|h(x)=1}(h) < 1
4 then

3 return “explainable”
4 else
5 return “random”
6 end

Where we define

ErrA(h) =
1

|A|
∑

(x,y)∈A

1{(x,y)∈A|y=0}(x, y)

i.e., the fraction of false positives h produces over S.
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Suppose that S is (Hcon, µ)-explainable, then by assumption of L being an abductive learner,
for large enough n, with probability at least 1− δ > 3

4 it will return an h satisfying the condition in
line 2 of the algorithm (since L must work with respect to the uniform distribution over examples
we are using) and L′ will return “explainable”.

Now suppose that instead S is drawn from a scattered distribution. We bound the probability
that h does well (that it satisfies the conditions of line 2). Let us fix an arbitrary h that may be
output by L. Note that when h passes the first condition, on the number of positive classifications,
since we have chosen q so that g(n, µ, ε, δ) ≥ n−q, h must be positive on at least n2q examples
from S. Since S is scattered, for this fixed h, half of the examples from S it classifies positively
are false-positives in expectation. Note that since the labels yi are independent of the examples
xi in a scattered distribution, conditioning on h passing the first check on the number of positive
classifications leaves the distribution on labels uniform. Therefore, by a Chernoff bound, the
probability that fewer than 1/4 of the at least n2q examples h classifies postively are false positive
errors is at most e−n

2q/8. And since there are at most 2n
q

possible output hypotheses of L, by
applying the union bound over these the probability that the output of L has error lower than 1

4 is

at most 2n
q
e−n

2q/8 = e−n
q(nq/8−ln 2). We conclude that with probability 1 − on(1) over choices of

S, L′ will return “random” with probability 7/8. Hence, overall, for sufficiently large n L′ reutrns
“random” with probability greater than 3/4 as needed.

And thus, if there were an efficient abductive learner L for Hcon we would contradict the UFC
assumption as follows. We first take L′ above as the A subroutine of A′, which efficiently solves
the problem of distinguishing between (Hcon, µ)-explainable and scattered samples when we have
such an efficient abductive learner L, for all large enough k, and then use our algorithm A′ to solve
the problem of distinguishing between satisfiable and random CSP instances for some hard choice
of P , k, and f(k). This contradicts the UFC assumption.

4 Directions for future work

The main intuition behind our reduction is that the literals of a conjunction can encode any fixed
assignment as the preimage of (0, 0, . . . , 0) or (1, 1, . . . , 1). Thus, we can distinguish satisfiable from
random formulas for a large family of predicates. But, it seems plausible that this observation
can be pushed further—although our knowledge that the distribution is uniform in one case made
the analysis of the reduction easy, this observation about the connection between conjunctions and
assignments does not rely on the uniform distribution. We thus ask whether the class of problems
against which we show hardness can be broadened further. In particular, somewhat ambitiously, is
it possible to show average case NP-hardness?

In another direction, we have positive results for the agnostic variant of this model: we have a
Õ(
√
n)-approximation to the optimal disjunction (Zhang et al., 2017) (based on an earlier algorithm

by Peleg 2007) and a simple Õ(s log logn) approximation to the optimal size-s disjunction (Juba
et al., 2018). We would like to know how close to optimal either of these algorithms are. We note
that Daniely 2016 has succeeded at using similar techniques (but based on strong assumptions
about refuting random XOR) to show ω(1) lower bounds for the blow-up of agnostically learning
halfspaces in the standard improper supervised learning model.2 Noting the relative simplicity
of the reductions for the one-sided error models we consider, we are optimistic that it might be

2Daniely also obtains a 2log1−ε n lower bound for very strong assumptions – for polylogarithmic k, Daniely requires
refuting random k-XOR to remain hard with up to nO(k) constraints.
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possible to extend Daniely’s techniques to analyze the blow-up needed for one-sided learning of
disjunctions.

Appendix

A Computational equivalence of abduction from examples and
reliable learning

Kalai et al. 2012 proposed models for “reliable” learning in which false positives and false negatives
are treated as fundamentally different. In particular, in positive-reliable learning, one seeks to
guarantee that the false positive rate of the classifier is below a given tolerance ε. The false negative
rate is then minimized, subject to this hard constraint on the false positive rate. Formally:

Definition 11 (Positive-reliable learning (Kalai et al., 2012)) For a representation class C
of c : {0, 1}n → {0, 1} the distribution-independent positive-reliable learning task is as follows.
One is given access to independent examples from an arbitrary distribution D over {0, 1}n×{0, 1},
and input parameters ε, δ ∈ (0, 1]. With probability at least 1 − δ, the algorithm should produce a
hypothesis h : {0, 1}n → {0, 1} such that

(i) Pr(x,b)∈D[h(x) = 1 ∧ b = 0] ≤ ε and
(ii) Pr(x,b)∈D[h(x) = 0 ∧ b = 1] ≤ minc∈C:Pr[c(x)=1∧b=0]=0 Pr(x,b)∈D[c(x) = 0 ∧ b = 1] + ε.

When an algorithm solves this task by producing h ∈ C, we say that the algorithm is proper.

This definition was intended to capture applications such as spam filtering where (i) no simple
classifier can achieve 100% accuracy and (ii) we are more willing to tolerate a few spam e-mails
than the loss of legitimate e-mails to the filter.

It turns out that this asymmetric treatment of false positives and false negatives is what we
require for abduction. We will focus on the case where the “plausibility” (Pr[h(x) = 1]) is near-
optimal.

Theorem 12 If positive-reliable learning can be solved for a concept class C in time T (n, 1/ε, 1/δ),
abduction for the class C can be solved with 1/p(1/µ, n, 1/(1 − ε)) = (1 − ε)µ in time T (n, 2

µε ,
1
δ ).

Conversely, If abduction can be solved in time T (n, 1/µ, 1/ε, 1/δ), with 1/p(1/µ, n, 1/(1 − ε)) =
(1− ε)µ, then positive reliable learning can be achieved in time

O

(
T

(
n,

1

µ
,
2

ε
,
1

δ

)
log

1

ε
+

1

ε3
log

1

ε
log

1

δ

)
.

The same results hold for both improper and proper versions of the problem as long as the all-false
concept is in C.

Proof: Abduction from positive reliable learning. Given a query formula ψ, we will extend
our examples x to labeled examples (x, b) by putting b = ψ(x), and we will delete the attributes
that do not lie in the alphabet.

Suppose there exists c∗ ∈ C such that Pr[c∗(x) = 1 ∧ b = 0] = 0 and Pr[c∗(x) = 1] ≥ µ for our
given µ. We will call the positive reliable learning algorithm on ε′ = εµ/2 and the desired δ. Then
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with probability 1− δ, the algorithm returns a hypothesis h (on the alphabet attributes) such that
Pr[h(x) = 1 ∧ b = 0] ≤ ε′ = εµ/2 and

Pr[h(x) = 0 ∧ b = 1] ≤ min
c:Pr[c(x)=1∧b=0]=0

Pr[c(x) = 0 ∧ b = 1] + ε′

= Pr[b = 1]− max
c:Pr[c(x)=1∧b=0]=0

Pr[c(x) = 1] + ε′

≤ Pr[b = 1]− µ+ ε′

= Pr[b = 1]− (1− ε/2)µ

We therefore find

Pr[h(x) = 1] = Pr[h(x) = 1 ∧ b = 0] + Pr[h(x) = 1 ∧ b = 1]

= Pr[h(x) = 1 ∧ b = 0] + Pr[b = 1]− Pr[h(x) = 0 ∧ b = 1]

≥ 0 + (1− ε/2)µ

so the second condition is satisfied. Returning to the first condition, since µ ≤ 1
1−ε/2 Pr[h(x) = 1],

Pr[h(x) = 1 ∧ b = 0] ≤ ε

2

1

1− ε/2
Pr[h(x) = 1]

≤ εPr[h(x) = 1]

so our first condition is also satisfied. Thus, h is a solution to the abduction task for µ and ε; and,
if the positive reliable learning algorithm is proper, then h ∈ C as well.

Positive reliable learning from abduction. We will extend our examples to contain a new
attribute b (not in the alphabet) that contains the labels for positive-reliable learning. In general,
our query to the algorithm will be of the form “b.”

We next note that we can use binary search to optimize the value of µ for which the abduction
algorithm succeeds at finding an explanation at a cost of O(log 1

µ) calls to the algorithm. After
each call, by the Chernoff bound, we can test if the returned explanation has probability at least
(1− ε)µ using O( 1

ε2µ
log 1

δ ) time and examples. If the largest µ is at most ε, then we will argue that
the all-false concept is a solution to the positive-reliable learning problem, and hence this overhead
is at most O(log 1

ε ) calls to the distribution search algorithm and O( 1
ε3

log 1
δ log 1

ε ) time for testing
the hypotheses.

Consider the hypothesis h produced by the abduction algorithm on input parameters ε/2 and δ.
We will interpret h as a rule for predicting the labels for positive-reliable learning. With probability
1− δ, its false positive rate is

Pr[h(x) = 1 ∧ b = 0] ≤ (ε/2) Pr[h(x) = 1] ≤ ε/2.

Now, note that

Pr[h(x) = 1] = Pr[h(x) = 1 ∧ b = 0] + Pr[h(x) = 1 ∧ b = 1]

≤ Pr[h(x) = 1 ∧ b = 1] + ε/2.

12



Since, supposing first that the optimal µ ≥ ε, also

Pr[h(x) = 1] ≥ (1− ε/2) max
c:Pr[c(x)=1∧b=0]=0

Pr[c(x) = 1]

≥ max
c:Pr[c(x)=1∧b=0]=0

Pr[c(x) = 1 ∧ b = 1]− ε/2

we have
Pr[h(x) = 1 ∧ b = 1] ≥ max

c:Pr[c(x)=1∧b=0]=0
Pr[c(x) = 1 ∧ b = 1]− ε.

Therefore, since for any c

Pr[h(x) = 0 ∧ b = 1] + Pr[h(x) = 1 ∧ b = 1] = Pr[b = 1]

= Pr[c(x) = 0 ∧ b = 1] + Pr[c(x) = 1 ∧ b = 1],

subtracting each side from Pr[b = 1] gives

Pr[h(x) = 0 ∧ b = 1] ≤ min
c:Pr[c(x)=1∧b=0]=0

Pr[c(x) = 0 ∧ b = 1] + ε

as needed. We now furthermore note that if instead maxc∈C:Pr[c(x)=1∧b=0] Pr[c(x) = 1] ≤ ε, then the
false-positive rate of the all-false concept is zero, and the optimal false-negative rate is at most ε,
as needed. Therefore, the all-false concept is a solution. Moreover, if the abduction algorithm was
proper and the all-false concept is in C, either way we also have h ∈ C.

Discussion. The proof of Theorem 12 highlights the close connection between the two models.
It also clarifies the main distinction between them, that the all-false concept may make sense for
positive-reliable learning, but it is never a legitimate output for abduction: After all, the all-false
concept corresponds to an event of probability zero, and our probability space is discrete. Relatedly,
there is a need to “terminate the search early” when the probability of positive examples is very
small and the all-zero concept is a good approximator. This is because we require at least 1/µ
examples to detect an event of probability µ with constant confidence. The running time of the
optimization version of abduction (used in the reduction of positive-reliable learning to abduction)
therefore inherently depends on 1/µ, whereas positive-reliable learning should not depend on such
a µ parameter.
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