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Abstract

Non-signaling games are an important object of study in the theory of computation, for their role
both in quantum information and in (classical) cryptography. In this work, we study the behavior of
these games under parallel repetition.

We show that, unlike the situation both for classical games and for two-player non-signaling games,
there are k-player non-signaling games (for k ≥ 3) whose values do not tend to 0 with sufficient parallel
repetition.

We show that in general:

1. Every game’s non-signaling value under parallel repetition is either lower bounded by a positive
constant or decreases exponentially with the number of repetitions.

2. Exponential decrease occurs if and only if the game’s sub-non-signaling value (Lancien and Winter,
CJTCS ’16) is less than 1.

We also analyze a specific 3k-player game (for every k ≥ 1), and show that its non-signaling value
remains exactly (2/3)k under any number of parallel repetitions.

Note: This is a continuation of a previously posted report https://eccc.weizmann.ac.il/report/

2017/178 containing significantly more general results. Section 6.1 of this report is contained nearly
verbatim in the previous report.
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1 Introduction

A multi-player game G consists of an interaction between a referee and k players P1, . . . , Pk. The referee
samples k questions q1, . . . , qk from some joint distribution π and sends qi to Pi. The players then, without
communicating amongst themelves, respond with answers a1, . . . , ak, and are judged to win or lose the game
according to a predicate W (q1, . . . , qk, a1, . . . , ak). The (classical) value of the game, denoted v(G), is the
maximum probability with which players can win. The study of multi-player games has been profoundly
impactful in diverse areas of theoretical computer science, with foundational applications in complexity
theory, hardness of approximation, and cryptography (see e.g., [BGKW88, BFL91, BFLS91, Kil92, FGL+96,
ALM+98, H̊as01]).

Parallel repetition is a natural and important operation on any game, originally motivated by its potential
application to the soundness amplification of interactive proof systems [FRS88, FL92]. In the n-fold parallel

repetition of G, denoted Gn, the referee now samples n independent sets of questions {(q(i)
1 , . . . , q

(i)
k )}ni=1

from π, and sends all n questions {q(i)
j }ni=1 to the jth player at once for each 1 ≤ j ≤ k. The players

are then required to win all n copies of the game; that is, the jth player must produce {a(i)
j }ni=1 so that

W (q
(i)
1 , . . . , q

(i)
k , a

(i)
1 , . . . , a

(i)
k ) = 1 for every 1 ≤ i ≤ n. Despite the simplicity of this transformation, it is

surprisingly tricky to analyze. It was initially claimed that v(Gn) is always equal to v(G)n [FRS88]. This
was quickly disproved, however, by Fortnow [For89] and Feige [Fei91], who constructed a two-player game
G satisfying v(G2) = v(G) < 1. However, Raz’s celebrated parallel repetition theorem proves that for any
non-trivial two-player game, the value of Gn decreases exponentially with n [Raz98]. That is, if v(G) < 1,
then v(Gn) ≤ v̄n for some v̄ < 1 that depends on G (but may be significantly larger than v(G)).

An important variant on the aforementioned classical value of a game is its non-signaling value vns,
originally defined with the intent of modeling players that may share quantum entanglement. This is the
players’ maximum winning probability with a relaxed non-communication restriction. Specifically, they may
communicate freely with one another to generate any distribution of answers (a1, . . . , ak) with a single caveat:
for each S ⊆ [k], the marginal distribution aS must be a function only of qS . While the distinction is
perhaps unintuitive, a game’s non-signaling value and classical value often differ. The usual example of this
is the (two-player) CHSH game [CHSH69], whose classical and non-signaling values are respectively 3/4 and
1.1

Specific non-signaling games have also recently found applications in cryptography. In particular,
they are used to construct multi-prover interactive proofs (MIPs) with soundness against non-signaling
provers [KRR13, KRR14]. Such MIPs are indispensable in obtaining non-interactive delegation of compu-
tation from standard assumptions [KRR13, KRR14, BHK17, BKK+18]. In this work, we focus on the
following question:

How does parallel repetition affects a game’s non-signaling value?

Prior Work on Non-Signaling Parallel Repetition In a simplification and generalization of Raz’s
work, Holenstein showed that if a two-player game G has non-signaling value v < 1, then the non-signaling
value of Gn is bounded by v̄n for some v̄ < 1 that depends only on v [Hol09].

The multi-player case was considered by Buhrman, Fehr, and Schaffner, who proved a similar result for
complete support games – games in which every combination of queries is asked with positive probabil-
ity [BFS14]. Their result comes with the caveat that v̄ depends not only on v, but also on the minimum
probability with which a query is asked. Arnon-Friedman, Renner, and Vidick give an alternative proof of
the same result, and they further note that any game G can be modified (by adding dummy queries) to have
complete support without significantly affecting its non-signaling value [FRV16].

At this point, we find it prudent to point out that games without complete support are quite important
in “practical” applications. In particular the non-signaling MIPs of [KRR13, KRR14] and of follow-up works
heavily rely on games whose query distributions have incomplete support. These MIPs can be viewed

1An arbitrarily large gap between the two values can be achieved by parallel repeating the CHSH game.
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as a family of games indexed by binary strings x, where for some time-T decidable language L, the non-
signalingvalue of game x indicates whether x ∈ L. In the MIPs of [KRR13, KRR14] and follow-ups, even the
support of the query distribution has size that is superpolynomial in T . Thus, the “dummy query” approach
of [FRV16] (or any approach that only tweaks the query distribution) inherently assigns T−ω(1) probability
to some query. As a result, the aforementioned bounds of [BFS14, FRV16] do not achieve even a constant
soundness error unless the number of repetitions is super-polynomial in T . This corresponds to a trivial
MIP, as a verifier can check for himself whether x ∈ L in time T with no error.

The results of [BFS14, FRV16] were generalized by Lancien and Winter [LW16], who defined a further
relaxation of a game’s non-signaling value, called its sub-non-signaling value (vsns). They show that this
value does behave nicely under parallel repetition: for any k-player game G with vsns(G) < 1, it holds for all
n that vsns(Gn) ≤ v̄n for a value v̄ < 1 that depends only on v and k.

Still, the question of how parallel repetition can affect a general game’s non-signaling value has remained
open.

1.1 Our Results

Perhaps our most surprising result is the following counterexample to parallel repetition. In multi-player
classical games [Ver96], two-player entangled games [Yue16], and two-player non-signaling games [Hol09],
it is known that the value of any non-trivial repeated game decreases to 0 after sufficiently many parallel
repetitions. For multi-player non-signaling games, we show that this does not hold in general.

Theorem 1 (Parallel Repetition Counterexample). For every k ≥ 3, there exists a k-player game G such
that vns(G) < 1 and vns(Gn) ≥ Ω(1) for all n ≥ 1.

We also prove that if the non-signaling value of the repeated game decays to 0, then the decay must be
exponential. This establishes a converse to the main result of [LW16], and is not at all obvious. In fact, there
are several contexts (e.g., classical multi-player games and entangled two-player games) where it is known
that the value of a game decays to 0 with sufficient parallel repetition, but it is not known (and is a major
open question) whether this decay is always exponential.

Theorem 2 (Parallel Repetition Dichotomy). For every game G, either vns(Gn) ≥ Ω(1) or vns(Gn) ≤
exp(−Ω(n)). The former occurs when vsns(G) = 1 and the latter occurs when vsns(G) < 1.

Thus our counterexample is general: for any game G with sub-non-signaling value 1, it holds that
vns(Gn) ≥ Ω(1). Finally, we show that if a game has sufficiently small non-signaling value, then the non-
signaling value of the repeated game decays exponentially.

Theorem 3 (Parallel Repetition Magic Value). For every k, there exists a constant αk > 0 such that if
vns(G) < αk, then vns(Gn) ≤ exp(−Ω(n)).

Theorems 1 to 3 each directly follow from our main lemma, which is simple both to state and to use, and
may be of independent interest.

Lemma 1 (Non-signaling Value Lower Bound). For every k, there exists a constant αk > 0 such that for
any k-player game G with vsns(G) = 1, it holds that vns(G) ≥ αk. Moreover, the maximum value of αk for

which this holds is bounded by 2−O(k2) ≤ αk ≤ 2O(k).

Beyond our general results, we also show that there are specific games whose non-signaling values do not
decrease at all under parallel repetition, subsuming Theorem 1.

Theorem 4 (Strong Parallel Repetition Counterexample). For every k ≥ 3, there exists a k-player game G
such that vns(G) < 1 and vns(Gn) = vns(G) for any n ≥ 1.
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Two-player games Multi-player games

Classical exp
(
−Ω

(
ε3n

log |A|

))
[Raz98, Hol09] O

(
1

Ackermann−1(n)

)
[Ver96]

Non-Signaling exp
(
−Ω

(
ε2n
))

[Hol09] ≥ Ω(1) [This Work]

Table 1: Known bounds on the worst-case (slowest) decay for v(Gn) or vns(Gn) for a game G with v(G) = 1−ε
or vns(G) = 1− ε respectively. A denotes the set of possible player answers in G. Ackermann−1 denotes the
inverse Ackermann function.

1.2 Our Techniques

We give an overview of the proof of our main technical lemma, Lemma 1. We prove Lemma 1 without
referencing sub-non-signaling strategies by (1) introducing a condition that is equivalent to a game G having
sub-non-signaling value 1 and (2) proving implications of this condition on the non-signaling value of G.

Suppose that G is a k-player game in which the joint distribution of questions asked is π (over a set
Q = Q1×· · ·×Qk), and the ith player’s answer is expected to lie in a set Ai. Let A = A1×· · ·×Ak. We will
often say “the support of G” to refer to the support of its question distribution π. We say “the S-marginal
support of G” to refer to the support of the marginal distribution πS .

An honest-referee non-signaling strategy for G is a function P̃ that maps q = (q1, . . . , qk) in the support of
G to a distribution on A, satisfying the following non-signaling “consistency” condition: for any q, q′ in the
support of G, if S ⊆ [k] is a set of coordinates for which qS = q′S , then it must also hold that P̃ (q)S = P̃ (q′)S .
This is in contrast to a (full) non-signaling strategy, which must be defined on the entirety of Q and must
satisfy the non-signaling condition for any q, q′ ∈ Q.

Remark 1.1. A common reflexive response to the definition of (full) non-signaling is that it somehow is too
stringent a requirement. After all, why must an (adversarial) player have a well-defined behavior on queries
that are never asked?

In many settings though, adversaries are automatically forced to have a well-defined behavior, even on
queries that are not typically asked. For instance, if an adversarial player strategy is a collection of physical
devices, then each device will do something on any query (including possibly refusing to answer or giving an
error message, in which case we say the device outputs ⊥). But this constitutes a response, which must not
signal.

Our conclusion is that an honest-referee non-signaling strategy is, on its own, reasonable only if it extends
to a full non-signaling strategy. However, as we demonstrate, the notion of an honest-referee non-signaling
strategy remains useful as a tool for the analysis and construction of non-signaling strategies.

It turns out (Proposition 3.6) that a game G has sub-non-signaling value 1 iff there is an honest-referee
non-signaling strategy P̃ that wins G with probability 1. To prove Lemma 1, we construct a full non-signaling
strategy P that has significant “agreement” with P̃ for any honest-referee non-signaling strategy P̃ .

A natural first attempt at constructing P might be to somehow extend P̃ into a full non-signaling
strategy. However, this approach is doomed to fail in general. A specific counterexample is given by the
“anti-correlation” games, first defined in [LW16, FRV16]. We include a formal description of these games
for completeness (and with slightly greater generality) in Definition 4.2. These games have honest-referee
non-signaling value 1 but non-signaling value less than 1.

Instead, we show that it is always possible to extend αk · P̃ for some constant 0 < αk < 1. Specifically,
we construct a non-signaling strategy P such that for every q in the support of G and every a ∈ A, it holds
that PrA←P (q)[A = a] ≥ αk · PrA←P̃ (q)[A = a]. This implies that P ’s winning probability for G is at least

αk times that of P̃ .

1.2.1 Three-Player Games

For simplicity of exposition, we first consider three-player games.
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The following somewhat easier task serves both as a building block and as a stepping stone in our
construction of P . For every S ⊆ {1, 2, 3} with |S| ≤ 2 and every q in QS (in particular, more than the S-
marginal support of G), we construct a distribution µS(q) on AS such that {µS(q)}S,q satisfies the following
consistency conditions.

Condition 1 (Agreement with P̃ ). For every q in the support of G and every S ⊆ {1, 2, 3} with |S| ≤ 2,
the marginal distribution P̃ (q)S is equal to µS(qS).

Condition 2 (Non-Signaling). The distribution µS(q)T depends only on T and qT , and not on S or the rest
of q. Formally: for any S, S′ ⊆ [3] with |S|, |S′| ≤ 2, any T ⊆ S ∩ S′, any q ∈ QS and q′ ∈ QS′ , if qT = q′T
then µS(q)T = µS′(q

′)T .

We define µS(q) in one of two different ways, depending on whether q is in the S-marginal support of G.

If Yes: Let q̄ be in the support of G such that q̄S = q. We then define µS(q)
def
= P̃ (q̄)S . This is

well-defined (i.e. does not depend on the choice of q̄) because P̃ is honest-referee non-signaling.

This “Yes” case behavior is sufficient to ensure that Condition 1 holds.

If No: This means that |S| = 2. Say that S = {i, j} for i < j. We define µS(q) to be the distribution
on (ai, aj) obtained by independently sampling ai ← µ{i}(qi) and aj ← µ{j}(qj).

Condition 2 holds because if (S, q) 6= (S′, q′) but qT = q′T , then |T | = 1. Both the “Yes” case and the “No”
case define µS(q) so that any 1-marginal µS(q)T depends only on qT . In the “Yes” case this follows from the
fact that P̃ is honest-referee non-signaling, and in the “No” case this follows from reduction to the “Yes”
case.

We now construct the (full) non-signaling strategy P in terms of the distributions {µS(q)}. We again
have two cases, this time corresponding to whether q is in the support of G.

If Yes: We define P (q) to be the distribution on (a1, a2, a3) obtained as follows. With probability 1/3
sample a ← P̃ (q). Otherwise (with probability 2/3), independently sample a1 ← P̃ (q)1, a2 ← P̃ (q)2,
and a3 ← P̃ (q)3.

This “Yes” case behavior is sufficient to ensure that P extends 1
3 · P̃ .

If No: We define P (q) to be the distribution on (a1, a2, a3) obtained as follows. Pick a uniformly
random i ← {1, 2, 3}, define S = {1, 2, 3} \ {i}, and independently sample aS ← µS(qS) and ai ←
µ{i}(qi).

It remains to verify that P is non-signaling. For this, we must check that for all q, q′ ∈ Q and all S ⊆ {1, 2, 3}
such that qS = q′S , it holds that

P (q)S = P (q′)S . (1)

If |S| = 0 then Eq. (1) is vacuous, and if |S| = 3 then Eq. (1) is trivial. We claim that without loss of
generality, we can focus on |S| = 2 as the remaining case. Indeed, suppose that we have established Eq. (1)
for all |S| = 2 (and all q, q′ for which qS = q′S). If qT = q′T for |T | = 1, then we can construct q̂ ∈ Q and
sets S, S′ ⊃ T (with |S| = |S′| = 2) such that qS = q̂S and q̂S′ = q′S′ . Thus,

P (q)T =
(
P (q)S

)
T

=
(
P (q̂)S

)
T

= P (q̂)T =
(
P (q̂)S′

)
T

=
(
P (q′)S′

)
T

= P (q′)T . (2)

Now without loss of generality suppose that S = {1, 2} (the other cases follow analogously due to the
symmetry of P ). For any q ∈ Q, if q is in the support of G, then

P (q) =
1

3
· P̃ (q){1,2,3} +

2

3
· P̃ (q){1} × P̃ (q){2} × P̃ (q){3}

and so

P (q)S =
1

3
· P̃ (q){1,2} +

2

3
· P̃ (q){1} × P̃ (q){2}. (3)
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If q is not in the support of G, then

P (q) =
1

3
·

 µ{1,2}(q{1,2})× µ{3}(q{3})
+µ{1,3}(q{1,3})× µ{2}(q{2})
+µ{2,3}(q{2,3})× µ{1}(q{1})


and so

P (q)S =
1

3
· µ{1,2}(q{1,2}) +

2

3
· µ{1}(q1)× µ{2}(q2). (4)

We now show that Eq. (1) holds for all q, q′ ∈ Q with qS = q′S for |S| = 2.

• If both q and q′ are in the support of G, then both P (q)S and P (q′)S are both given by Eq. (3), and
Eq. (1) follows respectively from the fact that P̃ is honest-referee non-signaling.

• If neither q nor q′ are in the support of G, then P (q)S and P (q′)S are given by Eq. (4), and Eq. (1)
follows from Condition 2.

• If exactly one of q and q′ is in the support of G, then Eq. (1) follows from Condition 1.

1.2.2 Games With More Than Three Players

We now return to the case that G is a general k-player game. In this case, we construct the non-signaling
strategy P from P̃ iteratively, as follows. We will maintain the invariant that at the ith step of our construc-
tion, we have two components:

• A collection of distributions µ(i) =
{
µ

(i)
S

}
|S|≤i, where for each S ⊆ [k] and q ∈ QS , µ

(i)
S (q) is a

distribution on AS .

• An honest-referee non-signaling strategy P̃ (i)

We will ensure that these components satisfy the following consistency conditions.

Condition 3 (Non-Signaling). For any S and q ∈ QS, the distribution µ
(i)
S (q)T depends only on T and qT ,

and not on S or the rest of q. Formally: for any S, S′ ⊆ [k] with |S|, |S′| ≤ i, any T ⊆ S ∩ S′, any q ∈ QS
and q′ ∈ QS′ , if qT = q′T then µ

(i)
S (q)T = µ

(i)
S′ (q

′)T .

Condition 4 (Agreement). For every q in the support of G and every S ⊆ [k] with |S| ≤ i, the marginal

distribution P̃ (i)(q)S is equal to µ
(i)
S (qS).

Condition 5. P̃ (i) is an extension of αi · P̃ for some αi > 0 – i.e., for each q in the support of G and each
a ∈ A, we have PrA←P̃ (i)(q)[A = a] ≥ αi · PrA←P̃ (q)[A = a].

To begin, we define µ
(1)
{i}(q)

def
= P̃ (q′){i} for any q′ that satisfies q′i = q, and we define P̃ (1) = P̃ . After k

steps, the resulting
{
µ

(k)
S

}
|S|=k constitutes our desired non-signaling strategy P .

Symmetric Marginal Compositions of P̃ (i). We will only ever construct P̃ (i+1) and µ(i+1) by applying
a very specific type of transformation, which we call a symmetric marginal composition (SMC), to P̃ (i) and
µ(i). This type of transformation generalizes what we did for three-player games in Section 1.2.1. There, P
(P̃ (3) in our current terminology) was constructed as a combination of two transformations applied to P̃ (2)

(which happened to be equal to P̃ ).

• The first transformation, which we denote by [3], generally takes as input some P̃ (i) and produces
P̃ (i+1) that on input q, samples and outputs the 3-marginal P̃ (i)(q){1,2,3} – which of course is all of

P̃ (i)(q). Thus [3] is the identity transformation.
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• The second transformation, which we denote by [1, 1, 1], generally takes as input P̃ (i) and produces
P̃ (i+1) that on input q, samples answers from each of the 1-marginals of P̃ (i) – that is, P̃ (i+1)(q)
independently samples aj ← P̃ (i)(q)j for each j ∈ {1, 2, 3} and outputs (a1, a2, a3).

In Section 1.2.1, we in fact defined P̃ (3) to select the first transformation of P̃ (2) with probability 1/3,
and to otherwise (with probability 2/3) select the second transformation of P̃ (2). We call this a “mixed”
transformation (in contrast to [3] and [1, 1, 1], which we call “pure” transformations), and denote it by the
linear combination 1

3 · [3] + 2
3 · [1, 1, 1].

In general, we represent a pure transformation by λ = [λ1, . . . , λm] for any λ1 ≥ · · · ≥ λm ≥ 1 with∑
j λj = k. This transformation acts on a k-player honest-referee non-signaling strategy P̃ (i) to produce

another k-player honest-referee strategy P̃ (i+1). This P̃ (i+1), on any input q in the support of G, acts as
follows.

1. Sample m pairwise disjoint subsets S1, . . . , Sm ⊆ [k] with |Sj | = λj for each j ∈ [m].

2. Independently sample aj ← P̃ (i)(q)Sj for each j ∈ [m].

3. Output the unique a∗ ∈ A obtained by composing each of the aj ’s. That is, the a∗ for which a∗Sj
= aj

for all j ∈ [m].

Finally, we say that a linear combination u =
∑

uλ · λ (for uλ ∈ R≥0) is an SMC if it is a probability
distribution over pure transformations – i.e., if

∑
uλ = 1. It turns out (Lemma 5.11) that any SMC

preserves honest-referee non-signaling. In general, we will define P̃ (i+1) by applying an SMC u(i) to P̃ (i).
For the moment, we leave u(i) unspecified.

Symmetric Marginal Compositions of µ(i). We now give a similar parameterization of our construction

of µ(i+1). First, for all S and all q in the S-marginal support of G, µ
(i+1)
S (q) is determined by our choice

of P̃ (i+1) and Condition 4. As for defining µ
(i+1)
S (q) when q is not in the S-marginal support of G, we first

simplify our lives in two ways.

• First, we note that it suffices to define µ
(i+1)
S (q) for |S| = i + 1. Indeed, if these distributions satisfy

the analogue of Condition 3, then for |T | ≤ i, we can define µ
(i+1)
T (q) as

(
µ

(i+1)
S (q′)

)
T

for any S ⊇ T
with |S| = i+ 1, and any q′ ∈ QS such that q′S = q.

• Second, we simplify Condition 3. Recall this requires that for all S, S′, all T ⊆ S ∩S′, and all q ∈ QS ,

q′ ∈ QS′ such that qT = q′T , it holds that
(
µ

(i+1)
S (q)

)
T

= µ
(i+1)
S′ (q′)

)
T

. In fact this holds as long as
it holds when |T | = i. Indeed, for smaller T we can deduce this via a chain of equalities similar to
Eq. (2).

Now fix |S| = i + 1, and fix q not in the S-marginal support of G. We will define µ
(i+1)
S (q) in terms of

µ(i) via a similar class of transformations to those that we used to define P̃ (i+1). Specifically, suppose that
i ≥ λ1 ≥ · · · ≥ λm ≥ 1 with

∑
j λj = i + 1. We then view λ = [λ1, . . . , λm] as acting on µ(i) to produce

µ
(i+1)
S (q) as follows. Specifically, µ

(i+1)
S (q) is the distribution obtained from the following sampling process.

1. Sample m pairwise disjoint subsets S1, . . . , Sm ⊆ S with |Sj | = λj for each j ∈ [m].

2. Independently sample aj ← µ
(i)
Sj

(qSj
) for each j ∈ [m].

3. Output the unique a∗ ∈ AS obtained by composing each of the aj ’s. That is, the a∗ for which a∗Sj
= aj

for all j ∈ [m].

In general, we will consider a mixed SMC of µ(i), given by a vector v(i) =
∑

v
(i)
λ · λ. We will use the same

vector v(i) for every S and q for which |S| = i+ 1 and q is not in the S-marginal support of G.
Thus, we have parameterized our candidate construction of P̃ (i+1) and µ(i+1) by two SMCs u(i) and v(i).

In this construction, P̃ (i+1) and µ(i+1) satisfy the “Agreement” property automatically. There are three
remaining properties that must hold.
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• P̃ (i+1) must extend a constant multiple of P̃ (i). This corresponds to u(i) containing [k] with positive
probability.

• P̃ (i+1) must be non-signaling. As noted earlier, this follows from the fact that all SMCs preserve
non-signaling.

• µ(i+1) must be non-signaling, despite the fact that µ
(i+1)
S (q) is defined via u(i) when q is in the S-

marginal support of G, and via v(i) otherwise.

The first and last conditions impose constraints on u(i) and v(i) that we show are always satisfiable (Sec-
tion 5.3).

2 Preliminaries

2.1 Notation and Terminology

A probability distribution on a finite set Ω is a function P : Ω → R≥0 satisfying
∑
ω∈Ω P (ω) = 1. We

write ∆(Ω) to denote the set of all probability distributions on Ω. A sub-probability distribution on Ω is a
function P : Ω→ R≥0 satisfying

∑
ω∈Ω P (ω) ≤ 1. We write ∆≤1(Ω) to denote the set of all sub-probability

distributions on Ω.

• For any (sub-)probability distribution P , let Supp (P ) denote the set of all ω ∈ Ω for which P (ω) > 0.

• For any (sub-)probability distribution P and n ∈ N, let Pn denote the product (sub-)probability
distribution Pn : Ωn → R≥0 defined by Pn(ω(1), . . . , ω(n)) =

∏
i P (ω(i)).

• We will denote the total variational distance between two (sub-)probability distributions P and Q by
dTV(P,Q), which is defined as half of their `1-distance:

dTV(X,Y )
def
=

1

2

∑
z∈Supp(X)∪Supp(Y )

|Pr[X = z]− Pr[Y = z]|.

We write P ≈ε Q if dTV(P,Q) ≤ ε.

• We now consider the case when Ω is a product of sets Ω1 × · · ·Ωk and S is a subset of [k].

– The restriction of Ω to S is ΩS =
∏
i∈S Ωi. For any ω ∈ Ω, the restriction of ω to S is ωS = (ωi)i∈S .

– For any (sub-)probability distribution P , the marginal (sub-)probability distribution PS : ΩS → R≥0

is defined by PS(ωS) =
∑
ω′∈Ω:ω′S=ωS

P (ω′).

2.2 Multi-player Games

Definition 2.1 (Multi-player Games). A k-player game is a tuple (Q,A, π,W ), where Q = Q1 × · · · × Qk
and A = A1 × · · · × Ak are finite sets, π : Q → R≥0 is a probability distribution, and W : Q×A → [0, 1] is
a “winning probability” function.

Definition 2.2 (Parallel Repetition). Given a k-player game G = (Q,A, π,W ) where Q = Q1 × · · · × Qk
and A = A1 × · · · × Ak, its n-fold parallel repetition is defined as the k-player game Gn def

= (Q′,A′, π′,W ′)
where Q′ def= Qn1 × · · · × Qnk , A′ def= An1 × · · · × Ank , π′(q)

def
=
∏n
i=1 π(q(i)), and W ′(q, a)

def
=
∏n
i=1W (q(i), a(i)).

In the above we write elements q ∈ Q′ as
(
{q(i)

1 }i∈[n], . . . , {q
(i)
k }i∈[n]

)
, we write qj to denote (q

(1)
j , . . . , q

(n)
j ),

and we write q(i) to denote (q
(i)
1 , . . . , q

(i)
k ). Our notation for components of elements of A′ is analogous.

Definition 2.3 (Strategies). A strategy for a game G = (Q,A, π,W ) is a function P : Q → ∆(A).
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Definition 2.4 (Local Strategies). A strategy P for a k-player game G = (Q,A, π,W ) is local if there are
functions {Pi : Qi → Ai}i∈[k] such that for every q, P (q) is the distribution outputting (P1(q1), . . . , Pk(qk))
with probability 1.

Definition 2.5 (Non-signaling Strategies). A strategy P for a k-player game G = (Q,A, π,W ) is non-
signaling if for every subset S ⊆ [k], there exists a function SimS : QS → ∆(AS) where for all q ∈ Q, it holds
that P (q)S = SimS(qS).

Definition 2.6 (Values of a Game). The value of a game G = (Q,A, π,W ) with respect to a strategy P for
G, denoted by v[P ](G), is the expected value of W (Q,A) in the probability space obtained by sampling Q← π
and A ← P (Q). The classical value of G, denoted by v(G) is the maximum value of G with respect to any
local strategy. The non-signaling value of G, denoted by vns(G), is the maximum value of G with respect to
any non-signaling strategy.

3 Generalizations of Non-signaling Strategies

[LW16] introduces the following generalization of non-signaling strategies, called sub-non-signaling strategies,
where P (q) is only required to be a sub-probability distribution.

Definition 3.1 (Sub-non-signaling Strategies [LW16]). A sub-non-signaling strategy P for a k-player game
G = (Q,A, π,W ) is a function P : Q → ∆≤1(A) satisfying the following property: for every S ⊆ [k], there
exists a function SimS : QS → ∆(AS) such that for every q ∈ Q and a ∈ AS, it holds that P (q)S(a) ≤
SimS(qS)(a).

Definition 3.2 (Sub-non-signaling Value). The sub-non-signaling value of G, denoted by vsns(G), is the
maximum of

∑
q∈Q π(q)

∑
a∈A P (q)(a)W (q, a) with respect to any sub-non-signaling strategy P .

In our work, it will be useful to consider the following generalization of non-signaling strategies where
the non-signaling condition is only required to hold over queries in Supp (π). Such strategies appear to be
non-signaling to an honest referee asking queries according to π.

Definition 3.3 (Honest-Referee Non-signaling Strategies). An honest-referee non-signaling strategy P for a
k-player game G = (Q,A, π,W ) is a function P : Supp (π) → ∆(A) satisfying the following property: for
every S ⊆ [k], there exists a function SimS : Supp (πS) → ∆(AS) such that for every q ∈ Supp (π), it holds
that P (q)S = SimS(qS).

Remark 3.4. We can view any non-signaling strategy P as a complete set of marginals {PS : QS →
∆(AS)}S⊆[k]: for any |S| ⊂ [k] and q ∈ QS, PS(q)

def
= P (q′)S for any q′ ∈ Q such that q′S = q. This is

well-defined (i.e., does not depend on the choice of q′) because P is non-signaling, so we have PS = SimS.
Similarly, we can view any honest-referee non-signaling strategy P as a complete set of marginals {PS :
Supp (πS)→ ∆(AS)}S⊆[k] where PS = SimS.

The following proposition is analogous to the fact that vns(Gn) ≥ vns(G)n and implies that if vhr-ns(G) = 1,
then also vhr-ns(Gn) = 1 for every n.

Proposition 3.5. For any game G and any number of repetitions n, it holds that vhr-ns(Gn) ≥ vhr-ns(G)n.

Proof. Let G = (Q,A, π,W ) be a k-player game, and let P : Supp (π) → ∆(A) be an honest-referee non-
signaling strategy for G. Let Gn = (Qn,An, πn,Wn) denote the n-fold parallel repetition of G.

Define
Pn : Supp (πn)→ ∆(An)

Pn(q(1), . . . , q(n))(a(1), . . . , a(n)) =

n∏
i=1

P (q
(i)
1 , . . . , q

(i)
k )(a

(i)
1 , . . . , a

(i)
k ),
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which is well-defined because (q(1), . . . , q(n)) ∈ Supp (πn) iff for all i ∈ [n], (q
(i)
1 , . . . , q

(i)
k ) ∈ Supp (π). It is easy

to verify that Pn is an honest-referee non-signaling strategy for Gn since for any (q(1), . . . , q(n)) ∈ Supp (πn),

we can define SimS(q
(1)
S , . . . , q

(n)
S ) =

∏
i SimS(q

(i)
S ). Also, it is clear that v[Pn](Gn) = v[P ](G)n.

For several of our corollaries, it will be useful to relate the sub-non-signaling value and honest-referee
non-signaling value of a game G. For this, we have the following proposition.

Proposition 3.6. For any game G, vsns(G) = 1 iff vhr-ns(G) = 1.

Proof. Let G = (Q,A, π,W ) be any k-player game.

Claim 3.7. If vsns(G) = 1 then vhr-ns(G) = 1.

Proof. Suppose that P : Q → ∆≤1(A) is a sub-non-signaling strategy for G such that v[P ](G) =
1. Since v[P ](G) = 1, it must hold for all q ∈ Supp (π) that P (q) is a probability distribution,
i.e.

∑
a∈A P (q)(a) = 1. Therefore for each S ⊆ [k], P (q)S is a probability distribution.

Since P is sub-non-signaling, there exists SimS : QS → ∆(AS) such that for all q ∈ Q and
all a ∈ AS , it holds that P (q)S(a) ≤ SimS(qS)(a). Since P (q)S is a probability distribution,
SimS(qS) must also be a probability distribution. Therefore, for any q ∈ Supp (π) and any
S ⊆ [k], it holds that P (q)S = SimS(qS) so P is in fact honest-referee non-signaling.

Claim 3.8. If vhr-ns(G) = 1 then vsns(G) = 1.

Proof. Suppose that P̃ : Supp (π) → ∆(A) is an honest-referee non-signaling strategy with
v[P̃ ](G) = 1. Extend P̃ to P : Q → ∆≤1(A) by defining P (q) to be the zero sub-probability
distribution for all q /∈ Supp (π). Clearly v[P ](G) = v[P̃ ](G) = 1.

It remains to establish that P is sub-non-signaling: For each S ⊆ [k], define SimS so that for
any q ∈ Supp (π), SimS(qS) = P̃ (q)S – this is possible because P̃ is honest-referee non-signaling.
For q′ 6∈ Supp (πS), define SimS(q′) arbitrarily. Now clearly for any q ∈ Q and any a ∈ AS , it
holds that P (q)S(a) ≤ SimS(qS)(a).

Proposition 3.6 follows directly from Claims 3.7 and 3.8.

4 Main Lemma and Implications

We prove the theorems outlined in Section 1.1 assuming our main lemma, whose proof is deferred to Section 5.
The main theorems are stated here with greater generality in the context of honest-referee non-signaling
strategies.

Lemma 1 (Non-signaling Value Lower Bound). For every k, there exists a constant αk > 0 such that for
any k-player game G, it holds that vns(G) ≥ αk · vhr-ns(G).

From here on, we write αk to refer to the maximum value for which Lemma 1 holds. We have made no
attempt to optimize αk, but a loose accounting of our proof shows that αk ≥ 2−O(k2). Conversely, Theorem 4
below shows that αk ≤ 2−Ω(k).

To show that there are counterexamples to non-signaling parallel repetition, we show that there exist
games whose sub-non-signaling values are 1 but whose non-signaling values are less than 1.

Proposition 4.1. For every k ≥ 3, there exists a k-player game G for which vhr-ns(G) = 1 (i.e. vsns(G) = 1)
and vns(G) < 1.

One example of such a game is the “anti-correlation game”. The three-player version of this game was
described in [FRV16, LW16] an example of a game whose non-signaling value is less than 1, but whose
sub-non-signaling value is 1.
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Definition 4.2 (Anti-Correlation Game). The k-player anti-correlation game G̃k is the game (Q̃k, Ãk, π̃k, W̃k)
where Q̃k = {0, 1}k, Ãk = [k− 1]k, π̃k is the uniform distribution on k-bit strings of Hamming weight k− 1,
and

W̃k(q, a) =

{
1 if for all i 6= j ∈ [k] such that qi = qj = 1, it holds that ai 6= aj

0 otherwise.

Proof of Proposition 4.1. Let G be the k-player anti-correlation game G̃k. For 1 ≤ ` ≤ k, let h` ∈ {0, 1}k
denote the string of Hamming weight k − 1 with 0 in the `th coordinate.

Define P : Supp (π̃k)→ ∆(Ãk) as follows: P (h`) chooses a random element of [k−1] for a` and a random
permutation of [k−1] for (ai)i 6=`. This is an honest-referee non-signaling strategy: for any h`, hm ∈ Supp (π̃k),
the marginals P (h`)S and P (hm)S , where S = [k] \ {`,m}, are both equivalent to choosing a (k − 2)-sized
subset of [k − 1] and a random permutation of these elements. For distinct i, j 6= `, we have ai 6= aj so

vhr-ns[P ](G̃k) = 1. Thus vhr-ns(G̃k) = 1 (by Proposition 3.6, this is equivalent to vsns(G̃k) = 1).
For any non-signaling P ′ : Q̃k → ∆(Ãk) and any h` ∈ Supp (π̃k), P ′(h`)[k]\{`} = P ′(1k)[k]\{`} by non-

signaling. Thus Pr`,P ′(h`)[W̃k(h`, P
′(h`)) = 1] = Pr`,P ′(1k)[W̃k(h`, P

′(1k)) = 1]. This equals the probability

that P ′(1k)[k]\{`} is a permutation of [k − 1]. By the Pigeonhole principle, every element in Supp
(
P ′(1k)

)
has an element of [k − 1] appearing in at least two indices so this probability is at most 2/k.

Theorem 1 (Parallel Repetition Counterexample). For every k ≥ 3, there exists a k-player game G such
that vns(G) < 1 and vns(Gn) ≥ αk for all n ≥ 1, where αk is the constant in Lemma 1.

Proof. This follows immediately from Propositions 3.6 and 4.1: for the anti-correlation game G̃k, it holds
that vhr-ns(G̃k) = 1 =⇒ vhr-ns(G̃nk ) = 1 =⇒ vns(G̃nk ) ≥ αk.

Theorem 2 (Parallel Repetition Dichotomy). For every game G, either vns(Gn) ≥ Ω(1) or vns(Gn) ≤
exp(−Ω(n)). The former occurs when vsns(G) = 1 and the latter occurs when vsns(G) < 1.

Proof. If vsns(G) < 1, then by [LW16, Theorem 4], we have vns(Gn) ≤ vsns(Gn) ≤ e−Ω(n).
If vsns(G) = 1, then by Proposition 3.6 vhr-ns(G) = 1. Then by Proposition 3.5, vhr-ns(Gn) ≥ vhr-ns(G)n = 1,

so vhr-ns(Gn) = 1 for all n ≥ 1. By Lemma 1, this implies that vns(Gn) ≥ αk = Ω(1).

Theorem 3 (Parallel Repetition Magic Value). For every k-player game G, if vns(G) < αk, then vns(Gn) ≤
exp(−Ω(n)) where αk is the constant in Lemma 1.

Proof. If vns(G) < αk, then by Lemma 1, we have vsns(G) < 1. Then by [LW16], it holds that vns(Gn) ≤
vsns(Gn) ≤ exp(−Ω(n)).

Upper Bounding the Magic Value Given Theorem 3, it is natural to ask whether αk is optimal: For
each k, what is the largest value βk such that for every k-player game G, vns(G) < βk implies vns(Gn) ≤
exp(−Ω(n))? Theorem 1 shows that βk < 1, and Theorem 3 shows that βk ≥ αk, which our proof of

Lemma 1 shows to be at least 2−k
2

. This is a large gap, but Theorem 4 shows that βk ≤ exp(−Ω(k)). The
proof is in Section 6: the main tool is a “distributed” form of repetition that does exponentially decrease
the non-signaling value of a game, but linearly increases the number of players.

Theorem 4 (Strong Parallel Repetition Counterexample). There is a sequence of games {Gk}k≥3, with Gk
a k-player game, such that vns(Gk) ≤ exp(−Ω(k)) and vns(Gnk ) ≥ αk for all n ≥ 1.

5 Proof of Main Lemma

5.1 Technical Tools

We begin with preliminaries which will be useful in the proof of Lemma 1. Throughout this section, let
G = (Q,A, π,W ) be any fixed k-player game.
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Definition 5.1 (Partitions of Natural Numbers). For n ∈ N, a partition λ of n is a weakly decreasing
sequence [λ1, . . . , λm] of non-negative integers such that

∑
i λi = n. Occasionally it is convenient to think

of λ as an infinite sequence, in which case we set λi = 0 for all i > m. We denote by Λn the set of all
partitions of n and we denote by Λ≤dn the set of all partitions of n whose largest component is at most d.

Young diagrams graphically represent partitions – a partition λ = [λ1, . . . , λm] of n is represented by an
array of m left-justified rows of unit squares, where the ith row from top to bottom contains λi squares.

For example, the partition [2, 1] of 3 is represented by and the partition [3, 3, 1] of 7 is represented by

. Many natural combinatorial operations on partitions have simple interpretations as operations on

the corresponding Young diagrams.

Definition 5.2 (Vector Space of Partitions). We denote by R(Λn) the space of all formal linear combinations
of partitions of n with coefficients in R. We view R(Λn) as a

∣∣Λn∣∣-dimensional vector space over R in the
natural way.

We denote by R≥0(Λn) the vectors in R(Λn) with nonnegative coefficients. We denote by ∆(Λn) the
vectors in R(Λn) with nonnegative coefficients summing to 1. These vectors can be thought of as probability
distributions over partitions of n.

Definition 5.3 (Reduction Operator). For each n ∈ N, we define the reduction operator

R : Λn → ∆(Λn−1) ⊂ R(Λn−1),

which maps a partition λ of n to a distribution R(λ) on partitions of n − 1 as follows. For λ ∈ Λn and
λ′ ∈ Λn−1, if for some i ∈ N it holds that

λ′ = [λ1, . . . , λi−1, λi − 1, λi+1, . . .], (5)

then the coefficient of λ′ in R(λ) is R(λ)λ′
def
= 1

n

∑
j:λj=λi

λj. If Eq. (5) does not hold for any i, then

R(λ)λ′
def
= 0. We extend the reduction operator to R : R(Λn) → R(Λn−1) by linearity, i.e. for v ∈ R(Λn),

we define R
(∑

λ∈Λn
vλ · λ

) def
=
∑
λ∈Λn

vλ · R
(
λ
)
.

When λ is a partition of n, the reduction operator has a simple interpretation as an operation on the
Young diagram for λ. Sample a random square of the Young diagram for λ and delete it. Then rearrange
the rows to get a valid Young diagram, i.e. rearrange the rows so they are weakly decreasing in length. As
defined, R(λ)λ′ equals the probability of obtaining λ′ after this operation, so R(λ) is indeed a distribution
on partitions of n− 1.

This operation is illustrated in Figs. 1 and 2.

⇒ ⇒

Figure 1: To remove specified squares from a Young diagram (here, black squares), first left-justify all
remaining squares, then re-arrange rows in order of decreasing width.

Definition 5.4 (Partitions of Sets). We say that a tuple of pairwise disjoint sets (Si)i = (S1, . . . , Sm) is
a partition of S if S = ∪iSi and |S1| ≥ . . . ≥ |Sm|. We denote by Λ(S) the set of partitions of S, and we
denote by Λ≤d(S) the set of partitions of S where the largest component has size at most d.

We say that (S1, . . . , Sm) is a partition of S with shape λ if λ = [|S1|, . . . , |Sm|]. For any partition λ and
any set S with |S| = |λ|, we write λ(S) to denote the set of partitions of S with shape λ.

If u ∈ ∆(Λd) is a distribution of partitions of d, then we write u(S) ∈ ∆(Λ(S)) to denote the distribution
of partitions of S obtained by first sampling a partition λ from u, and then choosing a uniformly random
partition of S from λ(S).
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Figure 2: Examples of how R operates on Young diagrams

5.2 Marginal Strategies and Symmetric Marginal Compositions (SMCs)

We now describe a notion of a “marginal” non-signaling strategy for a game that will be useful as an
intermediate step in constructing (full) non-signaling strategies.

Definition 5.5 (Marginal Non-Signaling Strategies). A d-ary marginal non-signaling strategy for G is a
collection of functions µ =

{
µS : QS → ∆(AS)

}
S⊆[k],|S|=d such that for all S, S′ ⊆ [k] with |S| = |S′| = d

and for all q ∈ QS , q′ ∈ QS′ , it holds that µS(q)T = µS′(q
′)T where T ⊆ S ∩ S′ is the largest set such that

qT = q′T .

This notion coincides with the notion of non-signaling strategies when d = k.

Remark 5.6. As with strategies and honest-referee strategies, any d-ary marginal non-signaling strategy µ =
{µS : QS → ∆(AS)}S⊆[k],|S|=d can be extended to a larger set of marginals {µS : QS → ∆(AS)}S⊆[k],|S|≤d
such that for all S, S′ ⊆ [k] with |S|, |S′| ≤ d and for all q ∈ QS , q′ ∈ QS′ , it holds that µS(q)T = µS′(q

′)T
where T ⊆ S ∩ S′ is the largest set for which qT = q′T .

Specifically, for any |S| < d and q ∈ QS, one defines µS(q)
def
= µT (q′)S for any T ⊃ S and q′ ∈ QT such

that |T | = d and q′S = q. This is well-defined (i.e., does not depend on the choice of T and q′) because µ is
(marginal) non-signaling.

In the strategies we construct, every answer distribution is obtained by composing, or “gluing together”
the marginal answer distributions of another strategy. The precise way in which the original strategy’s joint
distribution is viewed as a collection of different marginal distributions to be glued together is specified by
a partition of the relevant players.

Definition 5.7 (SMCs of Marginal Strategies). For any S ⊆ [k], any d-ary marginal non-signaling strategy
µ = {µS′ : QS′ → ∆(AS′)}S′⊆[k],|S′|=d, and any partition (S1, . . . , Sm) ∈ Λ≤d(S), we define the (S1, . . . , Sm)-
symmetric marginal composition of µ for S as follows:

µ(S1,...,Sm) : QS → ∆(AS)

µ(S1,...,Sm)(q)(a)
def
=

m∏
i=1

µSi
(qSi

)(aSi
).

More generally, for any u ∈ ∆(Λ≤d(S)), we define the u-symmetric marginal composition of µ for S as
follows:

µu
def
=

∑
(S1,...,Sm)∈Supp(u)

u(S1,...,Sm) · µ(S1,...,Sm).

Note that
∑
a∈AS

µ(S1,...,Sm)(q)(a) =
∏m
i=1

(∑
aSi
∈ASi

µSi
(qSi

)(aSi
)
)

= 1 so µ(S1,...,Sm)(q) is indeed a

distribution over AS .
We also define an analogous operation for honest-referee non-signaling strategies.
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Definition 5.8 (SMCs of Honest-referee Strategies). For any S ⊆ [k], any honest-referee non-signaling
strategy P : Supp (π)→ ∆(A), and any partition (S1, . . . , Sm) ∈ Λ(S), we define the (S1, . . . , Sm)-symmetric
marginal composition of P for S as follows:

P(S1,...,Sm) : Supp (πS)→ ∆(AS)

P(S1,...,Sm)(q)(a)
def
=

m∏
i=1

PSi
(qSi

)(aSi
).

More generally, for any u ∈ ∆(Λ(S)), we define the u-symmetric marginal composition of P for S as
follows:

Pu
def
=

∑
(S1,...,Sm)∈Supp(u)

u(S1,...,Sm) · P(S1,...,Sm).

We now characterize the marginal distributions of symmetric marginal compositions, in particular relating
them to the reduction operator described in Definition 5.3.

Lemma 5.9. For any d-ary marginal non-signaling strategy µ, any set S ⊆ [k], any u ∈ ∆(Λ≤d|S|), any

q ∈ QS, and any T ⊆ S it holds that
(
µu(S)(q)

)
T

= µ(R|S|−|T |(u))(T )(qT ).

Proof. By linearity, we may assume without loss of generality that u is just a single partition λ ∈ Λ≤d|S| .

Then, µλ(S)(q) is by definition the following distribution over a′ ∈ AS :

µλ(S)(q)(a
′) =

1

|λ(S)|
·

∑
(Si)i∈λ(S)

∏
i

µSi(qSi)(a
′
Si

).

Because the sets in (Si)i are pairwise disjoint, the T -marginal distribution µλ(S)(q)T over a ∈ AT is:

µλ(S)(q)T (a) =
1

|λ(S)|
·

∑
(Si)i∈λ(S)

∏
i

(
µSi(qSi)

)
T

(aSi∩T ).

Since µ is d-ary marginal non-signaling, this can be written as

µλ(S)(q)T (a) =
1

|λ(S)|
·

∑
(Si)i∈λ(S)

∏
i

µSi∩T (qSi∩T )(aSi∩T ).

Writing v =
∑
λ′∈Λ|T |

vλ′ · λ′ as shorthand for R|S|−|T |(λ), by definition µv(T )(qT ) is the following

distribution over a ∈ AT :

µv(T )(qT )(a) =
∑

λ′∈Λ|T |

vλ′ ·
1

|λ′(T )|
·

∑
(Ti)i∈λ′(T )

∏
i

µTi
(qTi

)(aTi
).

Therefore, µλ(S)(q)T and µv(T )(qT ) can each be viewed as distributions on AT that take the following form:

1. Sample a partition (Ti)i of T as follows:

(a) In the case of µλ(S)(q)T , we first sample (Si)i ← λ(S), and then set Ti = Si ∩ T .

(b) In the case of µv(T )(qT ), we directly sample (Ti)i ← R|S|−|T |(λ)(T ).

2. Independently sample aTi
← µTi

(qTi
) for each i.

3. Output the unique a ∈ AT that is consistent with each of the chosen values aTi .

It thus suffices to prove the following claim.
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Pλ(S)(q)T : ⇒
6 9 4 2
1 3 7
8
5

⇒
4 2

1 3

5

⇒
4 2
1 3
5

Pv(T ) : ⇒ ⇒ ⇒
4 2
1 3
5

Figure 3: Illustration of Claim 5.10 in the case S = [9], λ = [4, 3, 1, 1] and T = [5]

Claim 5.10. The distributions on (Ti)i induced by steps 1a and 1b are identical.

Proof. The easiest way to see this is through an equivalent reformulation of step 1a. Namely, we think of
obtaining (Si)i ← λ(S) by filling in the squares of the Young diagram for λ with the elements of S in a
uniformly random order, and defining Si to be the set of elements in the ith row. Then, it is easy to see that
(1) the elements of S\T are uniformly distributed (without replacement) in the resulting Young tableau, and
(2) conditioned on their positions, the elements of T are uniformly distributed in the remaining positions.

Thus, we can equivalently think of step 1a as first obtaining a partition of |T | by choosing and removing
|S| − |T | random squares from the Young diagram for λ, and then obtaining a partition of T by filling in the
squares of the resulting Young diagram with the elements of T . But this is exactly equivalent to step 1b.
The equivalence is illustrated in Fig. 3.

This concludes the proof of Lemma 5.9.

Lemma 5.11. For any honest-referee non-signaling strategy P : Supp (π) → ∆(A), any set S ⊆ [k], any
u ∈ ∆(Λ|S|), any q ∈ Supp (πS), and any T ⊆ S, it holds that

(
Pu(S)(q)

)
T

= P(R|S|−|T |(u))(T )(qT ).

Proof. The proof of Lemma 5.9 applies to any q ∈ Q where µT (qT ) is defined for all T ⊆ S. Although P is
only defined over Supp (π) and hence is not a d-ary marginal non-signaling strategy, the marginal distribution
PT (qT ) is defined for all q ∈ Supp (πS) and T ⊆ S. Thus the proof of Lemma 5.11 follows identically to that
of Lemma 5.9.

5.3 R Identities

In this section we establish identities involving partitions and the R operator that will prove useful in our
proof of the main lemma. In particular, in Section 5.4 these identities will be crucial for obtaining a player
strategy that is both non-signaling and also non-trivially related to an arbitrary specified honest-referee
non-signaling strategy.

For any partition λ = [λ1, . . . , λm] of d and k ≥ d, let Γk(λ) denote the partition λ′ obtained by extending
λ to a partition of k by adding k − d single 1’s; that is,

λ′i =


λi if 1 ≤ i ≤ m
1 if m < i ≤ m+ k − d
0 otherwise.

We will find it convenient to impose the standard lexicographical ordering on partitions, also known as
the dictionary ordering.

Definition 5.12 (Lexicographical Ordering). Under the lexicographical ordering, also known as the dictionary
ordering, we say for two partitions λ and λ′ that λ is larger than λ′, denoted λ � λ′, if there exists j ∈ N
such that λi = λ′i for all i ∈ {1, . . . , j − 1}, and λj > λ′j. We equivalently say that λ′ is smaller than λ and
write λ′ ≺ λ.
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We recall that Definition 5.12 defines a total ordering on Λn for every n. That is, (1) for any λ, λ′ ∈ Λn,
exactly one of λ � λ′, λ ≺ λ′, and λ = λ′ is true, and (2) the relation � (and therefore also ≺) is transitive:
if λ � λ′ and λ′ � λ′′, then λ � λ′′. In particular, any finite set of partitions has a maximum element under
�.

Definition 5.13. For any non-zero vector w ∈ R(Λd), if λ is the lexicographically largest λ ∈ Λd whose
coefficient in w is non-zero, and α is the coefficient of λ in w, then we say that λ is the leading partition of
w, α is the leading coefficient of w, and α · λ is the leading term of w.

Lemma 5.14. For any d ∈ N, there exist vectors v0,v1 ∈ R≥0(Λd) such that the coefficient of [d] in v0 is
1, the coefficient of [d] in v1 is 0, and R(v0) = R(v1).

Proof. Let v0 and v1 be defined as follows.2

v0 =

bd/2c∑
i=0

(
d

2i

)
· Γd([d− 2i])

v1 =

b(d−1)/2c∑
i=0

(
d

2i+ 1

)
· Γd([d− 2i− 1])

For each 0 ≤ j ≤ d, it holds that

R
(
Γd([j])

)
=


Γd−1([0]) if j = 0
j
d · Γd−1

(
[j − 1]

)
+
(
1− j

d

)
· Γd−1

(
[j]
)

if 0 < j < d

Γd−1([d− 1]) if j = d.

Thus, R(v0 − v1) is a linear combination of
{

Γd−1([j])
}d−1

j=0
. For each 0 ≤ j ≤ d − 1, Γd−1([j]) appears

in the reduction of Γd([j]) and Γd([j + 1]) so the coefficient of Γd−1([j]) in R(v0 − v1) is

(−1)d−j ·
(
d

j

)
·
(

1− j

d

)
+ (−1)d−(j+1) ·

(
d

j + 1

)
· j + 1

d
= (−1)d−j

((
d− 1

j

)
−
(
d− 1

j

))
= 0.

R
(

1 · + 3 ·
)

= R
(

3 · + 1 ·
)

R

1 · + 6 · + 1 ·

 = R

4 · + 4 ·


R

1 · + 10 · + 5 ·

 = R

5 · + 10 · + 1 ·


Figure 4: The statement of Lemma 5.14 in the cases d = 3, d = 4, and d = 5.

Lemma 5.15. For any d, k ∈ N such that d < k and any vector v ∈ R≥0(Λd), there exist vectors u ∈ R≥0(Λk)
and δ ∈ R≥0(Λd) such that

1. Rk−d(u) = v + δ, and

2The authors originally obtained these vectors via an iterative process similar to the proof of Lemma 5.15
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2. The coefficient of [k] in u is equal to the coefficient of [d] in v.

Proof. We construct u and δ via an iterative process. That is, we construct sequences
{
u(i) ∈ R≥0(Λk)

}
i≥0

and
{
δ(i) ∈ R≥0(Λd)

}
i≥0

satisfying the invariant that for each i, the coefficient of [k] in u(i) is equal to the

coefficient of [d] in v.

We also guarantee the following “progress” condition: The leading partition of w(i) def
= v+δ(i)−Rk−d(u(i))

is lexicographically strictly decreasing with i up until some i∗ ≤ |Λd|, at which point w(i∗) = 0. Together
with the above invariant, this implies that (u(i∗), δ(i∗)) are the desired vectors, proving Lemma 5.15. It thus
remains only to construct {(u(i), δ(i))}i≥0.

Let v[d] denote the coefficient of [d] in v. We define u(0) = v[d] · [k] and δ(0) = 0. For i > 0, if w(i−1) = 0,

then we are done. Otherwise, let αi · λ(i) denote the leading term of w(i−1). Then:

• If αi > 0, let βi denote the coefficient of λ(i) in Rk−d
(
Γk(λ(i))

)
. Define u(i) = u(i−1) + αi

βi
· Γk(λ(i)),

and define δ(i) = δ(i−1).

• If αi < 0, define u(i) = u(i−1), and define δ(i) = δ(i−1) − αi · λ(i).

Then it suffices to establish the following claims.

Claim 5.16. The coefficient of [k] in u(i) is equal to the coefficient of [d] in v.

Proof. The proof is by induction. For i = 0, this is true by construction. For i > 0, it holds
because u(i−1) and u(i) differ at most in the coefficient of Γk(λ(i−1)). But Γk(λ(i−1)) 6= [k]
because λ(i−1) ∈ Λd for d < k.

Claim 5.17. The vectors u(i) and δ(i) have non-negative coefficients.

Proof. The proof follows immediately by induction.

Claim 5.18. For each i, if w(i) 6= 0, then either w(i+1) = 0 or the leading term of w(i+1) is
lexicographically smaller than the leading term of w(i).

Proof. The proof is by induction. Suppose that w(i−1) 6= 0 and that its leading term is λ(i) with
coefficient αi 6= 0. If αi < 0, then the claim follows from the fact that w(i)−w(i−1) = −αi ·λ(i).
If αi > 0, then the claim follows from the fact that w(i)−w(i−1) = −αi

βi
·Γk(λ(i)), and the fact

that the leading term of Γk(λ(i)) is βi · λ(i).

Since Λd is a finite set, the leading term of w(i) can strictly decrease for at most |Λd| iterations, resulting
in some i∗ ≤ |Λd| for which w(i∗) = 0. Then setting u = u(i∗) and δ = δ(i∗) completes the proof of
Lemma 5.15.

5.4 Proof of Lemma 1

Proof of Lemma 1. Let G be any game (Q,A, π,W ). We generically transform any honest-referee non-
signaling strategy P̃ : Supp (π) → ∆(A) for G into a (fully) non-signaling strategy Pns : Q → ∆(A) such
that v[Pns](G) ≥ αk · v[P̃ ](G) for some constant αk > 0 (that does not depend on G).

We will show by induction that for each d ∈ [k], there is a d-ary marginal non-signaling strategy µ(d) =

{µ(d)
S : QS → ∆(AS)}S⊆[k],1≤|S|≤d for G and an honest-referee non-signaling strategy P̃ (d) for G satisfying:

1. Consistency on d-marginals: For any q ∈ Supp (π) and S ⊆ [k] with |S| = d, we have
(
P̃ (d)(q)

)
S

=

µ
(d)
S (qS).
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2. Closeness to P̃ : For each q ∈ Supp (π), it holds that P̃ (d)(q) is a convex combination

αk,d · P̃ (q) + (1− αk,d) · E(d)(q)

for some absolute constant αk,d > 0 and a (possibly P̃ -dependent) distribution E(d)(q).

We then conclude by defining Pns
def
= µ

(k)
[k] .

When d = 1, we define P̃ (1) def
= P̃ . For each i ∈ [k] and q ∈ Qi, let q′ ∈ Supp (π) be such that q′i = q and

define µ
(1)
{i}(q)

def
= P̃ (q′){i}. Such a q′ always exists, as without loss of generality Supp (π){i} = Qi. Moreover,

because P̃ is (honest-referee) non-signaling, the distribution P̃ (q′){i} does not depend on the choice of q′.

Thus µ(1) is a well-defined 1-ary marginal non-signaling strategy.
Assume that properties 1 and 2 hold for an honest-referee non-signaling strategy P̃ (d−1) and a (d − 1)-

ary marginal non-signaling strategy µ(d−1) = {µ(d−1)
S : QS → ∆(AS)}S⊆[k],|S|=d−1. Then, for a choice of

u∗0 ∈ ∆(Λk) and v∗0,v
∗
1 ∈ ∆(Λd) to be specified later, we define

P̃ (d)(q)
def
= P̃

(d−1)
u∗0([k])(q)

and for all |S| = d (extending to |S| < d as described in Remark 5.6),

µ
(d)
S (q)

def
=


P̃

(d−1)
v∗0(S) (q) if q ∈ Supp (πS)

µ
(d−1)
v∗1(S)(q) otherwise.

For this definition to make sense, we must ensure that v∗1 ∈ ∆(Λ≤d−1
d ).

Let v0,v1 ∈ R≥0(Λd) be vectors, whose existence is guaranteed by Lemma 5.14, such that the coefficient
of [d] in v0 is 1, the coefficient of [d] in v1 is 0, and R(v0) = R(v1).

Now we apply Lemma 5.15 to v0 to obtain vectors u0 ∈ R≥0(Λk) and δ ∈ R≥0(Λd) such that Rk−d(u0) =
v0 + δ and the coefficient of [k] in u0, like the coefficient of [d] in v0, is equal to 1. Then clearly u0,v0 + δ,
and v1 + δ all have nonnegative coefficients, and moreover the sum of their coefficients is the same. The
latter follows from the fact that R preserves coefficient sums, along with the facts that R(v0) = R(v1) and
Rk−d(u0) = v0 + δ. We scale all three vectors so that their coefficients sum to 1, and let u∗0 ∈ ∆(Λk) and
v∗0,v

∗
1 ∈ ∆(Λd) denote the resulting vectors. Since each vector is scaled by the same factor, it holds that

Rk−d(u∗0) = v∗0 and R(v∗0) = R(v∗1).

Claim 5.19. P̃ (d) is a honest-referee non-signaling strategy.

Proof. For any q, q′ ∈ Supp (π) , T ⊆ [k] such that qT = q′T , we have(
P̃

(d−1)
u∗0([k])(q)

)
T

= P̃
(d−1)

(Rk−|T |(u∗0))(T )
(qT ) = P̃

(d−1)

(Rk−|T |(u∗0))(T )
(q′T ) =

(
P̃

(d−1)
u∗0([k])(q

′)
)
T
.

The first and third equalities follow from Lemma 5.11, and the second follows from the assumption that
qT = q′T . But the left-hand side and right-hand sides are respectively equal to P̃ (d)(q)T and P̃ (d)(q′)T , which
we have therefore shown to be equal.

Claim 5.20. µ(d) is a d-ary marginal non-signaling strategy.

Proof. For any S, S′ ⊆ [k] with |S| = |S′| = d and any q ∈ QS , q′ ∈ QS′ , let T ⊆ S ∩ S′ be the largest set

such that qT = q′T . We want to establish that µ
(d)
S (q)T = µ

(d)
S′ (q′)T . We have the following cases:
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• If q ∈ Supp (π)S and q′ ∈ Supp (π)S′ , then we have(
P̃

(d−1)
v∗0(S) (q)

)
T

= P̃
(d−1)

(Rd−|T |(v∗0))(T )
(qT ) = P̃

(d−1)

(Rd−|T |(v∗0))(T )
(q′T ) =

(
P̃

(d−1)
v∗0(S′)(q

′)
)
T
.

The first and third equalities follow from Lemma 5.11, the middle equality from the assumption that

qT = q′T , and the left and right-hand sides are respectively equal to µ
(d)
S (q)T and µ

(d)
S′ (q′)T by definition.

• If q 6∈ Supp (π)S and q′ 6∈ Supp (π)S′ , then we have(
µ

(d−1)
v∗1(S)(q)

)
T

= µ
(d−1)

(Rd−|T |(v∗1))(T )
(qT ) = µ

(d−1)

(Rd−|T |(v∗1))(T )
(q′T ) =

(
µ

(d−1)
v∗1(S′)(q

′)
)
T
.

The first and third equalities follow from Lemma 5.9, the middle equality from the assumption that

qT = q′T , and the left and right-hand sides are respectively equal to µ
(d)
S (q)T and µ

(d)
S′ (q′)T by definition.

• Otherwise, without loss of generality suppose that q ∈ Supp (π)S and q′ 6∈ Supp (π)S′ . Then |T | ≤ d−1
and we have(

P̃
(d−1)
v∗0(S) (q)

)
T

= P̃
(d−1)

(Rd−|T |(v∗0))(T )
(qT ) = µ

(d−1)

(Rd−|T |(v∗1))(T )
(q′T ) =

(
µ

(d−1)
v∗1(S′)(q

′)
)
T
.

The first and third equalities follow from Lemmas 5.9 and 5.11. The second equality follows from the
identity R(v∗0) = R(v∗1) (implying Rn(v∗0) = Rn(v∗1) for any n ∈ N) and by the guarantee that P̃ (d−1)

and µ(d−1) agree on marginals of arity at most d− 1 over Supp (π)T which qT = q′T lies in.

By the definition of µ(d), this shows that
(
µ

(d)
S (q)

)
T

=
(
µ

(d)
S′ (q′)

)
T

in any of the cases.

Finally, we show that µ(d) and P̃ (d) satisfy the consistency and closeness conditions defined above. This
will complete the inductive step.

Claim 5.21 (Consistency). For any q ∈ Supp (π) and S ⊆ [k] with |S| = d, we have
(
P̃ (d)(q)

)
S

= µ
(d)
S (qS).

Proof. Since Rk−d(u∗0) = v∗0, we have(
P̃

(d−1)
u∗0([k])(q)

)
S

= P̃
(d−1)

(Rk−|S|(u∗0))(S)
(qS) = P̃

(d−1)
v∗0(S) (qS).

The first equality is by Lemma 5.11, and the second is by Lemma 5.9. So by the definition of P̃ (d) and µ(d),

we have
(
P̃ (d)(q)

)
S

= µ
(d)
S (qS).

Claim 5.22 (Closeness). For each q ∈ Supp (π), it holds that P̃ (d)(q) is a convex combination

αk,d · P̃ (q) + (1− αk,d) · E(d)(q)

for some distribution E(d)(q), which could be arbitrary, and a constant αk,d > 0 that depends only on k and
d.

Proof. By definition, P̃ (d)(q) is a convex combination of all “marginal compositions” P̃
(d−1)
(Si)i

(q), where (Si)i
is a partition of S = {1, . . . , k} with shape λ for some λ ∈ Λk whose coefficients in v∗0 are non-zero. In
particular, this includes the singleton partition (S) of S – recall that by construction the coefficient of [k] in
u∗0 is non-zero.

Thus there is some positive α such that P̃ (d)(q) can be written as α · P̃ (d−1)(q) + (1−α) ·E′(q) for some
constant α > 0 and some distribution E′(q) ∈ ∆(A).

By the inductive hypothesis, P̃ (d−1)(q) = αk,d−1 · P̃ (q) + (1− αk,d−1) · E(d−1)(q). Therefore, P̃ (d) =

αk,d−1 · α · P̃ (q) + (1− αk,d−1 · α) · E(d)(q) for some distribution E(d)(q) ∈ ∆(A).

The claim follows by setting αk,d
def
= αk,d−1 · α.

We conclude the proof of Lemma 1 by setting Pns
def
= µ

(k)
[k] . Letting αk = αk,k, we have vns(G) ≥ v[Pns](G) ≥

αk · v[P̃ ](G) for any honest-referee non-signaling P̃ , so vns(G) ≥ αk · vhr-ns(G).
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6 Strong Parallel Repetition Counterexample

Theorem 4. For every k ≥ 3, there exists a k-player game G such that vns(Gn) = (2/3)bk/3c for any n ≥ 1.

We first prove the theorem in the case k = 3 in Section 6.1. In this case, the game is the three-player
anti-correlation game G̃3 = ({0, 1}3, {0, 1}3, π̃3, W̃3) defined in Definition 4.2. Then we show via distributed
repetition that for any k ≥ 3, this implies a k-player game satisfying Theorem 4.

6.1 A Non-signaling Strategy for G̃n3 with Value 2/3

Proposition 4.1 shows that the non-signaling value of G̃3 (and hence of G̃n3 ) is at most 2/3. Now we show
that the hardness of this game is completely non-amplifying. That is, we construct a non-signaling strategy
for G̃n3 that achieves value 2/3.

Proposition 6.1. For every n ≥ 1, vns(G̃n3 ) = 2/3.

Proof. We give a non-signaling strategy P for G̃n3 and show that v[P ](G̃n3 ) = 2/3.

Construction 6.2. Given q = (q(1), . . . , q(n)), P samples answers a = (a(1), . . . , a(n)) as follows.

• If no q(i) is equal to 111, then:

1. Sample b← Ber(1/3), i.e. b = 1 with probability 2/3 and b = 0 otherwise.

2. Sample each a(i) independently and uniformly at random, subject to the constraint that if q
(i)
j =

q
(i)
k = 1 for some j 6= k, then a

(i)
j ⊕ a

(i)
k = b.

• If some q(i) is equal to 111, then:

1. Sample t← {1, 2, 3} uniformly at random.

2. Sample each a(i) independently and uniformly at random, subject to the constraint that if q
(i)
j =

q
(i)
k = 1 for some j 6= k, then:

– If j = t or k = t, then a
(i)
j 6= a

(i)
k .

– Otherwise, a
(i)
j = a

(i)
k .

Loosely speaking, in the first case, P randomly decides with probability 1/3 to lose all instances of G3.
In the second case, P randomly chooses a designated player t to disagree with all other players receiving
1. It may seem strange that in the first case, P artificially chooses to lose all the games. However, this is
necessary for the existence of a consistent answer distribution when all players receive 1 queries.

We claim that the value of G̃n3 with respect to P is 2/3. This is solely determined by P ’s behavior in
the first case, because for honestly generated queries, no q(i) is ever equal to 111. In the first case, with

probability 2/3 (whenever b = 1), the answers a
(i)
j and a

(i)
k corresponding to the “1” queries in the ith game

satisfy a
(i)
j 6= a

(i)
k for every i, so P wins G̃n3 with probability 2/3.

It remains to verify that P is non-signaling, i.e. that for all sets S ⊆ {1, 2, 3}, the distribution P (q)S
depends only on qS . This is trivially true when |S| = 0 or |S| = 3. The remaining cases are |S| = 1 and
|S| = 2.

These cases are easier to verify when keeping in mind the structure of P : based on q, P probabilistically
chooses a set of constraints on a(1), . . . , a(n). Each constraint specifies the equality or inequality of different
components of each a(i). P then independently chooses a(i) satisfying the constraints. Thus, to demonstrate
that the distribution of aS depends only on qS , it suffices to show that the distribution of the constraints on
aS depends only on qS .
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Case 1: |S| = 1. For any q, we claim that the distribution P (q)S is uniformly random on {0, 1}n, and
thus depends only on qS (in fact, on nothing) as required.

This holds because all constraints chosen by P satisfy

• Symmetry: The constraints only enforce equality or inequality of specific bits of a. Thus, when a is
chosen uniformly at random to satisfy these constraints, each individual bit of a is equally likely to be
0 or 1.

• Independence: Each constraint only relates the bits of a single a(i). Thus, a
(1)
S , . . . , a

(n)
S are independent

as random variables.

Case 2: |S| = 2. For any q, we claim that (a
(1)
S , . . . , a

(n)
S ) = P (q)S is distributed as follows. For concrete-

ness say that S = {j, k}. For any q, we have:

• With probability 2/3, the constraints generated by P on a
(i)
S are that a

(i)
S ∈ {01, 10} for all i for which

q
(i)
S = 11. In particular, P generates these constraints if b = 1 (when no q(i) is 111), and when t ∈ S

(when some q(i) is 111).

• Otherwise the constraints generated by P on a
(i)
S are that a

(i)
S ∈ {00, 11} for all i for which q

(i)
S = 11.

We note that P may also generate constraints on a(i) beyond those explicitly mentioned above, specifically

when q
(i)
j = 1 for some j /∈ S. However, inspection of P reveals that these constraints do not affect the

distribution of a
(i)
S . For example, suppose that S = {1, 2}, q(i) = 111, and t = 2. Then the constraints

generated by P require not only that a
(i)
1 6= a

(i)
2 , but also that a

(i)
1 = a

(i)
3 and a

(i)
2 6= a

(i)
3 . In this case, the

latter two constraints are redundant : whenever a
(i)
1 6= a

(i)
2 , they are satisfiable for a unique choice of a

(i)
3 .

Thus, the redundant constraints do not affect the distribution of a
(i)
S .

6.2 Proof of Theorem 4

Definition 6.3 (Distributed Repetition). Given a k-player game G = (Q,A, π,W ) where Q = Q1 ×
· · · × Qk and A = A1 × · · · × Ak, its `-fold distributed repetition is defined as the k′-player game G‖` =
(Q‖`,A‖`, π‖`,W ‖`) for k′ = k · ` where:

• Q‖` def
= Q′1 × · · · × Q′k′ , where Q′i = Qj for the unique j ∈ [k] such that j ≡ i (mod k),

• A‖` def
= A′1 × · · · × A′k′ , where A′i = Aj for the unique j ∈ [k] such that j ≡ i (mod k),

• π‖`(q1, . . . , qk′)
def
=
∏`−1
i=0 π(qi·k+1, . . . , qi·k+k), and

• W ‖`
(
(q1, . . . , qk′), (a1, . . . , ak′)

) def
=
∏`−1
i=0 W

(
(qi·k+1, . . . , qi·k+k), (ai·k+1, . . . , ai·k+k)

)
.

Theorem 4 follows from Proposition 6.4 below. The proposition is folklore, but we include a proof for
completeness, as we could not find one in the literature.

Proposition 6.4. For any game G, its `-fold distributed repetition G‖` satisfies vns(G‖`) = vns(G)`.

Proof. First we show that vns(G‖`) ≥ vns(G)`. Suppose that G = (Q,A, π,W ) is a k-player game, and let P
be a non-signaling strategy for G such that v[P ](G) = vns(G). Define the following strategy for G‖`:

P ‖`(q1, . . . , q`·k)
def
=

`−1∏
i=0

P (qi·k+1, . . . , qi·k+k) .

That is, P ‖`(q1, . . . , q`·k) is the distribution on (a1, . . . , a`·k) obtained by independently sampling

(ai·k+1, . . . , ai·k+k)← P (qi·k+1, . . . , qi·k+k)

for each i ∈ {0, . . . , `− 1}.
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Claim 6.5. v[P ‖`](G‖`) =
(
v[P ](G)

)`
= vns(G)`.

Proof. This follows directly from the definition of G‖` and P ‖`.

Claim 6.6. P ‖` is non-signaling.

Proof. For any q, q′ ∈ Q‖`, we need to show that if qS = q′S , then aS and a′S are identically distributed in
the probability space defined by sampling

(a1, . . . , a`·k)← P ‖`(q)

(a′1, . . . , a
′
`·k)← P ‖`(q′).

Let Si denote the set S ∩ {i · k + 1, . . . , i · k + k}. By definition of P ‖`, the tuples
{

(ai·k+1, . . . , ai·k+k)
}`−1

i=0

are mutually independent, as are the tuples
{

(a′i·k+1, . . . , a
′
i·k+k)

}`−1

i=0
. Thus, it suffices for us to show that

for each i ∈ {0, . . . , ` − 1}, aSi and a′Si
are identically distributed. This in turn follows from the definition

of P ‖` and the fact that P is non-signaling.

Now we show that vns(G‖`) ≤ vns(G)`. The bound holds trivially when ` = 1. For ` > 1, we proceed by
induction. Suppose we have established that vns(G‖`−1) ≤ vns(G)`−1.

Suppose for the sake of contradiction that there exists a non-signaling strategy P for G‖` for which
v[P ](G‖`) > vns(G)`. We will construct a non-signaling strategy P ′ for G for which v[P ′](G) > vns(G), which
is impossible.

We define P ′(q1, . . . , qk) to be the distribution on (a1, . . . , ak) obtained by the following process.

1. Sample (qi·k+1, . . . , qi·k+k)← π for each i ∈ {1, . . . , `− 1}.

2. Sample (a1, . . . , a`·k)← P (q1, . . . , q`·k).

3. If W
(
qi·k+1, . . . , qi·k+k, ai·k+1, . . . , ai·k+k

)
= 1 for each i ∈ {1, . . . , ` − 1}, then output (a1, . . . , ak).

Otherwise, try again (from step 1).

For this to be a well-defined distribution, there must be a finite number of iterations with probability 1.
This holds because v[P ](G‖`) > 0, so the process halts on Step 3 with constant probability in each iteration.

Claim 6.7. P ′ is non-signaling.

Proof. Consider any (q1, . . . , qk), (q′1, . . . , q
′
k) ∈ Q and S ⊆ [k] such that qS = q′S , and consider the probability

space defined by sampling

(qi·k+1, . . . , qi·k+k)← π for each i ∈ {1, . . . , `− 1}

(a1, . . . , a`·k)← P (q1, . . . , qk, qk+1, . . . , q`·k)

(a′1, . . . , a
′
`·k)← P (q′1, . . . , q

′
k, qk+1, . . . , q`·k).

Since P is non-signaling, (
(qi·k+q, . . . , qi·k+k), aS

)
(6)

and (
(qi·k+q, . . . , qi·k+k), a′S

)
(7)

are identically distributed. P ′(q1, . . . , qk)S is obtained as a deterministic function of Eq. (6), and P ′(q′1, . . . , q
′
k)S

is obtained as the same deterministic function of Eq. (7). Hence, P ′(q1, . . . , qk)S and P ′(q′1, . . . , q
′
k)S are equal

as distributions.
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To relate the values v[P ](G‖`) and v[P ′](G), we define P ′′(q1, . . . , q(`−1)·k) to be the distribution on
(a1, . . . , a(`−1)·k) obtained by sampling (q(`−1)·k+1, . . . , q`·k)← π and (a1, . . . , a`·k)← P (q1, . . . , q`·k).

Claim 6.8. P ′′ is non-signaling.

Proof. Follows from the definition of P ′′ and the fact that P is non-signaling.

Consider the probability space defined by sampling

(qi·k+1, . . . , qi·k+k)← π for each i ∈ {0, . . . , `− 1}

(a1, . . . , a`·k)← P (q1, . . . , q`·k)

For i ∈ {0, . . . , ` − 1}, let Wi denote the event3 that W
(
(qi·k+1, . . . , qi·k+k), (ai·k+1, . . . , ai·k+k)

)
= 1. We

then have

v[P ](G‖`) = Pr[W1 ∧ . . . ∧W`−1] · Pr[W0|W1 ∧ . . . ∧W`−1]

= v[P ′′](G‖`−1) · E(q1,...,qk)

[
Pr [W0|(q1, . . . , qk),W1 ∧ · · · ∧W`−1]

]
= v[P ′′](G‖`−1) · v[P ′](G)

≤ vns(G‖`−1) · vns(G)

≤ vns(G)`,

where the last inequality is by the inductive hypothesis. This establishes that vns(G‖`) ≤ vns(G)`, completing
the proof of Proposition 6.4.

Proof of Theorem 4. We prove Theorem 4 when k is a multiple of 3; the more general case follows by adding
one or two dummy players. For k = 3, the three-player anti-correlation game G̃3 has vns(G̃n3 ) = 2/3 for any
n ≥ 1 by Proposition 6.1.

If k = 3` for ` > 1, the k-player game in question is G def
= (G̃3)‖`. To analyze the non-signaling value

of its n-fold parallel repetition, we first observe that game Gn is equivalent to (G̃n3 )‖`. Thus, applying
Proposition 6.4 to the game G̃n3 , we obtain

vns(Gn) = vns

(
(G̃n3 )‖`

)
= vns(G̃n3 )` = (2/3)`.
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[LW16] Cécilia Lancien and Andreas Winter. Parallel repetition and concentration for (sub-)no-signalling
games via a flexible constrained de finetti reduction. Chicago J. Theor. Comput. Sci., 2016, 2016.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.

[Ver96] Oleg Verbitsky. Towards the parallel repetition conjecture. Theor. Comput. Sci., 157(2):277–282,
1996.

24



[Yue16] Henry Yuen. A parallel repetition theorem for all entangled games. In ICALP, volume 55 of
LIPIcs, pages 77:1–77:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

25

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


