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Abstract

Non-signaling strategies are a generalization of quantum strategies that have been studied
in physics over the past three decades. Recently, they have found applications in theoretical
computer science, including to proving inapproximability results for linear programming and
to constructing protocols for delegating computation. A central tool for these applications is
probabilistically checkable proofs (PCPs) that are sound against non-signaling strategies.

In this paper we prove that the exponential-length constant-query PCP construction due to
Arora et al. (JACM 1998) is sound against non-signaling strategies.

Our result offers a new length-vs-query tradeoff when compared to the non-signaling PCP of
Kalai, Raz, and Rothblum (STOC 2013 and 2014) and, moreover, may serve as an intermediate
step to a proof of a non-signaling analogue of the PCP Theorem.
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1 Introduction

Probabilistically Checkable Proofs (PCPs) [BFLS91; FGLSS96; AS98; ALMSS98] are proofs whose
validity can be checked by a probabilistic verifier that accesses only a few locations of the proof. PCPs
have numerous applications across the theory of computing, including to hardness of approximation
[FGLSS96] and delegation of computation [Kil92; Mic00].

A seminal result, known as the PCP Theorem [AS98; ALMSS98|, states that every language in
NTIME(T) can be probabilistically checked by a verifier that uses O(logT') random bits and makes
O(1) queries to a proof of length poly(T).!

In this paper we study PCPs that are sound against non-signaling strategies (nsPCPs). These
have recently found applications that appear out of the reach of (standard) PCPs, including 1-
round delegation of computation from falsifiable assumptions [KRR13; KRR14] and hardness of
approximation for linear programming [KRR16|. The efficiency measures achieved in known nsPCPs
appear suboptimal, which affects the quality of the corresponding applications. We thus ask whether
a non-signaling analogue of the PCP Theorem holds.

Below we explain the aforementioned notions, and then present our results in this direction.

Non-signaling strategies. Non-signaling strategies are a class of “non-local” correlations that
strictly generalize quantum strategies, and capture the minimal condition that spatially-isolated
parties cannot communicate instantaneously. They have been studied in physics for over three
decades [Ras85; KT92; PR94| in order to better understand quantum entanglement.

There are two definitions, corresponding to whether the strategy is meant to represent a function
or isolated parties; the former is the relevant one for nsPCPs [KRR13; KRR14].2 Given a locality
parameter k € N, a k-non-signaling function F extends the notion of a function f: D — {0, 1} as
follows: it is a collection {Fs}scp,sj<x Where each Fg is a distribution over {0, 1}° and, for every
two subsets S; and S each of size at most k, the restrictions of Fg, and Fg, to S1 NSy are equal
as distributions.® Note that if &k = |D| then F is a distribution over functions f: D — {0,1}.

Note that k-non-signaling functions are solutions to the linear program arising from the k-
relaxation in the Sherali-Adams hierarchy [SA90|. The variables are of the form X SF (forall S C D

of size at most k and b € {0,1}°) and express the probability of b in the distribution Fg; consistency
across subsets S and T is expressed using the natural linear constraints.*

Non-signaling PCPs. Recall that a classical PCP verifier is given oracle access to a proof
represented as a function f: D — {0,1}. The verifier uses random bits, makes a few queries to f,
and then accepts or rejects. Completeness requires that if the statement being checked is true then
there is a function f that makes the verifier always accept. Soundness requires that if the statement
being checked is false then every function f makes the verifier reject with high probability.

In the non-signaling setting, “proofs” are non-signaling functions rather than (classical) functions.
Soundness is correspondingly stronger: given a locality parameter £ € N, soundness requires that

n particular, for every language in NEXP = Uen NTIME(?”C), the verifier uses poly(n) random bits and makes
O(1) queries to a proof of length 2P°Y(™),

2The other definition underlies the notion of multi-prover interactive proofs that are sound against non-signaling
strategies (nsMIPs). Any nsPCP gives rise to an nsMIP with similar parameters. See [KRR13; KRR14| for details.

3A common relaxation of this condition only requires that the marginals Fsylsins, and Fs,|s,ns, are statistically
close, rather than equal; a further relaxation only requires these to be computationally close. While we only consider
the standard definition (the marginals must equal) we note that [CMS18| shows that this is almost without loss of
generality, as every statistically or computationally non-signaling strategy is close to an (exact) non-signaling strategy.

“4In fact it suffices to only have variables of the form X 5,15 since all other probabilities can be computed from these.



every k-non-signaling function F makes the nsPCP verifier reject with high probability.

Efficiency measures of a nsPCP include familiar notions such as proof length (defined as |D|)
and the verifier’'s randomness and query complexity. In addition, the locality parameter k controls
how hard it is to attain soundness: the smaller k is, the larger the set of non-signaling functions
that the verifier could face. (Note that k-non-signaling implies (k — 1)-non-signaling.)

There is a qualitative difference between the complexity classes captured by PCPs and by nsPCPs;
namely, while PCPs capture non-deterministic time languages, nsPCPs capture deterministic ones.
Indeed, the aforementioned PCP Theorem implies that it is NEXP-hard to approximate the maximum
acceptance probability of a PCP verifier (that uses polynomial randomness). In contrast, computing
the maximum acceptance probability of an nsPCP verifier that uses r random bits reduces to a linear
program with 2P°Y("%) variables and constraints, a problem solvable in EXP = U,enDTIME(2").

If & = 2, the linear program is solvable in PSPACE [Ito10], which is a tight upper bound [IKMO09|.
For k > 2 little is known, except for a seminal result of Kalai, Raz, and Rothblum [KRR13; KRR14],
which shows that for k£ = poly(n) it is EXP-hard to approximate a nsPCP verifier’s maximum accep-
tance probability. In more detail, every language in DTIME(T') has a verifier that uses poly(logT")
random bits and makes poly(logT') queries to a proof of length poly(7'); soundness holds against
poly(log T')-non-signaling functions; the verifier runs in time n - poly(log T') and space poly(log T').?
The nsPCP Conjecture. The nsPCP construction behind the above result is a whitebox
modification of early PCP constructions [BFL91; BFLS91|, and achieves efficiency similar to those.
However, modern “PCP technology” goes well beyond these early constructions, via tools such as
proof composition [AS98] and proofs of proximity [DR04; BGHSV06], and enables better efficiency,
including the PCP Theorem. Yet, current “nsPCP technology” is limited to the above results, and
the question of whether a non-signaling analogue of the PCP Theorem holds remains open.

Question 1.1. Is it true that every language in DTIME(T) has an nsPCP verifier that uses O(logT)
random bits, makes O(1) queries, and is sound against O(1)-non-signaling functions?
(As above, we also require that the verifier runs in time n - poly(logT') and space poly(logT).)

An affirmative answer to the above question would, e.g., improve the hardness result for linear
programming in [KRR16|, by yielding a reduction that outputs a linear program of polynomial,
rather than a quasipolynomial, size. While we do not know if an affirmative answer exists (and we
cannot prove that it does not exist), it is clear that the (very few) tools that we have to construct
and analyze nsPCPs are far from this goal. In this paper we make headway towards this goal.

1.1 Towards a nsPCP Theorem

In [ALMSS98]| a key step towards the PCP Theorem is to prove a weaker result in which the proof
has ezponential, rather than polynomial, size (and so the randomness complexity of the verifier is
polynomial rather than logarithmic). Namely, one proves that every language in NTIME(T') has a
PCP verifier that uses poly(T) random bits and makes O(1) queries to a proof of length 2PO¥(T).
In this paper we ask whether a non-signaling analogue of this result holds for the class DTIME(T).

Question 1.2. Is it true that every language in DTIME(T) has an nsPCP verifier that uses poly(T)
random bits, makes O(1) queries, and is sound against O(1)-non-signaling functions?

® Achieving time and space complexities that are o(T) is important for applications. This is not surprising as every
language in DTIME(T') has a trivial nsPCP verifier that runs in time 7": the verifier that simply decides the language,
without asking any queries. This is unlike the case of PCPs for NTIME(T'), where time complexity is less critical.



We propose this question as a relaxation that, not only is interesting in its own right, but is
likely to shed light on Question 1.1. However, one must be careful with the precise formulation of
Question 1.2. If the verifier can use poly(7") random bits then it can simply decide the language by
running in time 7', without making any queries. To recover a nontrivial question, we require that
in order to decide whether an instance z is in a language L € DTIME(T") the nsPCP verifier first
generates queries via a poly(7)-time sampler that is input oblivious (knows the length of = but not
x itself), and then rules according to a o(T)-time decision predicate that knows z. We stress that
all PCP /nsPCP verifiers discussed in this paper are input oblivious.

In this paper we study Question 1.2 by analyzing a natural candidate construction, and ask:

Is the exponential-length O(1)-query PCP of [ALMSS98] sound against O(1)-non-signaling functions?

Hereafter, we consider the complexity class DSIZE(S) (languages decidable by uniform circuits
of size S(n)) instead of the class DTIME(T) (languages decidable by machines in time T'(n)) because
our results, like their classical counterparts, are most easily stated in terms of uniform circuits. This
change is only for simplicity, as DTIME(T") C DSIZE(poly(T)).

1.2 Main theorem

In this paper we prove that the exponential-length constant-query PCP construction of [ALMSS9S8]
(without modifications) is sound against non-signaling functions. We obtain the following theorem.

Theorem 1 (main theorem). Every language L € DSIZE(S) has an input-oblivious nsPCP verifier
that uses O(S?) random bits, makes 11 queries, and is sound against O(log® S)-non-signaling
functions. The query sampler runs in time O(S?), and the decision predicate runs in time O(n).

The theorem is close to answering Question 1.2, which asks for soundness against O(1)-non-signaling
functions. (See Fig. 1 for a comparison with the classical result on nondeterministic languages.)
At the same time, some may consider Ito’s algorithm [Itol10] as evidence that soundness against
O(1)-non-signaling functions is too much to hope for. Understanding this gap needs further research.

Our result is incomparable to the nsPCP of [KRR13; KRR14], where the nsPCP verifier uses
poly(log S) random bits to make poly(logS) queries. The fact that we prove soundness only
against O(log? S)-non-signaling functions (rather than O(1)-non-signaling functions) is somewhat
undesirable, as this implies that the corresponding nsMIP requires O(log2 S) provers. That said,
the nsMIP of [KRR13; KRR14] requires many more provers: poly(log.S) with the degree in the
polynomial much larger than 2. Another feature of our result is that we have “room” to achieve
smaller soundness error without using additional provers; for example, by asking more queries to
the O(log® S) provers, we can achieve a sub-constant soundness error of 2-9(085),

Finally, our result is the first to demonstrate that a classical PCP construction is secure against
non-signaling functions, without any modifications. This should be compared to the construction
considered in [KRR13; KRR14] that, while modeled after the PCP in [BFL91; BFLS91], includes

several notable modifications that are needed in the soundness proof.

1.3 Main lemmas

We outline the ideas behind our theorem in Section 2. Concretely, we highlight several statements,
which we deem of independent interest, that we prove on the way to the theorem.



complexity | type of | soundness | proof
construction reference class PCP error length | randomness | queries locality
ALMSS verifier | [ALMSS98] | NSIZE(S) PCP 1-1/36 ) n/a
| 20(5%) 0(5?) 11
+ linearity test | Theorem 1 | DSIZE(S) | ns PCP | 1—1/107 O(log? S)
[ALMSS98| | NSIZE(S) LPCP 3/4 n/a
ALMSS verifier |— 0(S?) 0(S) 4
Theorem 2 | DSIZE(S) | ns LPCP 39/40 O(log S)

Figure 1: The (linear) ALMSS verifier in different PCP settings.

Recall that the exponential-length constant-query PCP in [ALMSS98] is obtained in two steps.
First, construct a constant-query verifier where soundness holds as long as the proof string is a linear
function; this is known as a linear PCP. Second, use a linearity test [BLR93| and self-correction to
compile this linear PCP into a (standard) PCP, where soundness holds against arbitrary proofs.

Our approach follows the same two steps, but adapted to the non-signaling setting. This also
departs from the approach in [KRR14|, which does not make use of any property testing results.

Note, however, that it is a priori not clear what is the non-signaling analogue of a linear function.
A natural attempt would be to say that a non-signaling function F is linear iff it passes the BLR
linearity test with probability 1 (where the probability is over the test and F). But this attempt is
awkward, because the definition depends on a local test, and avoids discussing “global” structure.

A recent work [CMS18] tells us that the right definition is to say that F is linear iff it corresponds
to a quasi-distribution over linear functions. A quasi-distribution is a probability distribution where
the weights can be any real number and are not restricted to be in [0, 1]. Quasi-distributions over
functions arise in this context because they are an equivalent description of non-signaling functions.

In light of the above, the notion of a non-signaling linear PCP (nsLPCP) is immediate: the
definition requires soundness to hold against all linear non-signaling functions.

The first step in our proof is showing that the linear PCP verifier of [ALMSS98] (the “ALMSS
verifier”), when used for deterministic computations, is sound against linear non-signaling functions.

Theorem 2. The (input oblivious) ALMSS verifier, for a given language L € DSIZE(S), uses O(S)
random bits, makes 4 queries, and is sound against linear O(log S)-non-signaling functions.

See Fig. 1 for a comparison with the classical result showing soundness against linear functions.

In order to “lift” Theorem 2 to Theorem 1, we need a suitable linearity test.

The linearity test of [BLR93| was recently analyzed in the non-signaling setting by [CMS18], who
proved that any k-non-signaling function F that passes the linearity test with probability 1—¢ can be
self-corrected to a | k/2|-non-signaling function F that is 2°®*)e-close to a linear | k/2]-non-signaling
function L. (Self-correction and closeness have precise meanings, discussed later.) However, we
cannot directly use [CMS18|)’s result, because in our theorem the locality parameter k is required to
be super-constant (k = O(log S) in Theorem 2), and thus the bound on the distance between F and
L is too large, even when considering only query sets of small size. Specifically, we need the distance
to be a sufficiently small constant on query sets of size 4 (the number of queries in Theorem 2).

We solve this problem by extending the result in [CMS18] in a black-box way and proving that
the distance between F and £ on a query set @ is only O(|Q|/¢), provided that the error € and
L’s locality are sufficiently small. Crucially, if |@Q| is constant, so is the distance between F and L.




The proof of this statement involves analyzing the repeated linearity test, whose behavior in the
non-signaling setting is quite subtle when compared to the classical setting (see Section 2.6).

Theorem 3. Let k,k € N and e € (0,1/400] be such that k = Q((k+1log 1) k). If a k-non-signaling
function F: {0,1}" — {0,1} passes the linearity test with probability at least 1 — e then there exists
a linear k-non-signaling function L£: {0,1}" — {0,1} such that for all query sets Q C {0,1}" with
size |Q| < k and for all events E C {0,1}9 it holds that

Pr[F(Q) € E] - Pr[£(Q) € E]| < O(IQ|Ve)

The above result on linearity testing enables us to transform our nsLPCP, and more generally
any nsLPCP, into a corresponding nsPCP with minimal changes in parameters (the transformation
is exactly the classical compiler). This is the last key statement in the proof of our main theorem.

Lemma 1.3. For every ¢ € [0,1], if a language L has an nsLPCP where the verifier uses r random
bits, makes q queries, and has soundness error 1 — ¢ against linear k-non-signaling functions
L:{0,1}* — {0,1}, then L has an nsPCP where the verifier uses r + O(qf) random bits, makes O(q)
queries, and has soundness error 1 — O,(¢?) against O.(k?)-non-signaling functions F: {0,1}* —
{0,1}. (Furthermore, if the former is input oblivious, so is the latter.)

1.4 Enriching the toolkit for non-signaling PCPs

Progress in our understanding of PCPs has typically moved hand in hand with progress in our
understanding of low-degree testing. In particular, many PCP constructions follow this blueprint:
(1) a low-degree test that, via only a few queries, ensures that a given proof conforms to a specified
algebraic encoding; (2) a probabilistic test that, assuming the proof is (essentially) given in this
encoding, ensures that the statement being checked is true with high probability.

In contrast, while the nsPCP in [KRR14] is reminiscent of this blueprint, its analysis does not
follow it, despite the fact that the construction is modeled after the PCP in [BFL91; BFLS91|, for
which the two-step analysis is possible (in the classical setting). The lack of such general paradigms
means that we lack general design principles to construct better nsPCPs.

This state of affairs raises the intriguing question of whether a theory of low-degree testing (and,
more generally, property testing) is feasible in the non-signaling setting and, moreover, whether one
can build on it to construct nsPCPs in order to make further progress towards Question 1.1.

An additional contribution of our work is to enrich the current “non-signaling toolkit”, by
demonstrating an example where the aforementioned blueprint is both possible and useful.

Namely, building on the work of [CMS18] on linearity testing, our results provide a modular
paradigm that not only simplifies the overall analysis, thereby enabling us to assert that the
construction of [ALMSS98| with no modifications is sound against non-signaling strategies, but also
(as discussed later) clarifies the technical barriers that separate us from answering Question 1.2. All
this suggests that our techniques will be helpful for constructing more efficient nsPCPs.

We remark that an analogous modular approach has also been successful in the setting of
quantum strategies. Indeed, Ito and Vidick [IV12] construct an MIP for NEXP that is sound against
entangled provers, and their proof works by first analyzing the multilinearity test against quantum
adversaries, and then building on their testing result to prove soundness of the proof system.



1.5 Concurrent work

In a concurrent work, Kiyoshima [Kiy18] studies the soundness of ALMSS-type PCPs against
non-signaling strategies. Kiyoshima proves that, for a sufficiently large security parameter ¢ (at least
logarithmic in the circuit size), the ¢t-repetition of a O(t)-query modification of the ALMSS-verifier
has soundness error negl(t) against O(t?)-non-signaling functions. In comparison, we prove that
the unmodified 11-query ALMSS PCP has soundness error O(1) against O(log? S)-non-signaling
strategies (and also that a modification of its t-repetition has soundness error exp(—t) for every
t = Q(log S)). While both our analysis and Kiyoshima’s analysis avoid the use of an augmented
circuit (necessarily so as it would have had exponential size), our techniques differ. Kiyoshima
conducts a direct analysis of the PCP verifier, while we adopt a modular approach in which we
first prove soundness against linear non-signaling strategies (a simpler task), and then, building
on a recent analysis of the linearity test [CMS18|, we deduce soundness against all non-signaling
strategies. We consider the modular and simple analysis in our work to be of independent interest.
Kiyoshima additionally proves that soundness holds against computational non-signaling strategies, a
relaxation where the marginal distributions on intersections are only required to be computationally
close. Our results directly extend to computational non-signaling strategies as every computational
non-signaling strategy is close to an exact non-signaling strategy (as proved in [CMS18]).

In another concurrent work, Holmgren and Rothblum [HR18| study the problem of constructing
PCPs/MIPs in which the prover is very efficient in time and space [BC12], in the non-signaling
setting. While they consider a construction that is more closely related to the PCP in [BFL9I1;
BFLS91] (honest proofs are encoded via low-degree polynomials rather than linear functions), their
soundness analysis also has the feature that it avoids the use of an augmented circuit.

1.6 Open problems

The question of whether the exponential-length constant-query PCP of [ALMSS98] is sound against
O(1)-non-signaling functions remains open. A concrete approach to affirmatively answer this
question is to prove that the linear PCP verifier of [ALMSS98] is sound against k-non-signaling
functions for k = O(1), rather than k = O(log S) as in Theorem 2. (Our generic compiler from
Lemma 1.3 would then take care of the rest.) Another intriguing possibility is that an affirmative
answer to Question 1.2 could come from a different exponential-size constant-query PCP. However,
the result due to [Itol0] shows that the class of nsMIPs with 2 provers equals PSPACE, which
possibly suggests that soundness against O(1)-non-signaling functions is too much to hope for.

Moreover, while our results can be interpreted as progress towards a non-signaling analogue of
the PCP Theorem (Question 1.1), it remains unclear whether such an analogue holds, and more
investigations in nsPCPs are needed. We believe that our work and our new techniques can inform
such investigations.



2 Techniques

We outline the techniques used to prove our results. First, in Section 2.1, we explain the trans-
formation from a nsLPCP to a corresponding nsPCP. Next, in Sections 2.2 to 2.5 we discuss the
nsLPCP on which we apply this transformation, namely, the ALMSS verifier [ALMSS98]. Finally,
in Section 2.6, we discuss linearity testing with low error, which underlies the transformation.

2.1 From nsLPCP to nsPCP

We discuss the transformation from nsLPCP to nsPCP (Lemma 1.3). We first recall the classical
transformation from LPCP to PCP, and then explain how to achieve its non-signaling analogue.

The classical case. The classical transformation from LPCP to PCP relies on the following tools.

e Testing linearity. Given a boolean function f: {0,1}* — {0,1}, the linearity test draws random
z,y € {0,1}¢ and checks that f(x)+ f(y) = f(z +y) [BLR93|. If the test passes with probability
1 — ¢, then f is e-close to a linear function f*: {0,1}* — {0,1} [BLR93; BCHKS96].

o Self-correction. Given f that is e-close to a linear function f*, one can create a probabilistic
oracle O that, given any = € {0, 1}, returns f*(x) with probability 1 — 2. Namely, O samples a
random z € {0, 1}, queries f on z + z and z, and answers with f(z +z) — f(2).

The above tools imply a transformation from LPCP to PCP: given access to an arbitrary function

f:{0,1}¢ — {0,1}, the PCP verifier runs the linearity test and then runs the LPCP verifier by

self-correcting each of its queries. If the LPCP verifier makes ¢ queries and has soundness error +,

then the resulting PCP verifier makes 3 + 2¢ queries and has soundness error max{1 — ¢,y + 2¢¢},

where ¢ is (a bound on) the distance of f to linear functions. This soundness error is bounded by
— ﬁ (the maximum is when the two terms equal), which is bounded away from 1.

If desired, the soundness error can be made arbitrarily close to v by repeating the linearity test.
Given a parameter t, the repeated linearity test samples z;,1; € {0,1}* for each i € [t] and checks
that f(z;) + f(yi) = f(x; + y;) for all ¢ € [t]. Now, the PCP verifier makes 3t + 2¢ queries and has
soundness error max{(1 —¢)*, v + 2¢e}, which for suitable € and ¢t = O., .(q) is arbitrarily close to ~.

The non-signaling case. We follow the structure of the classical transformation. However, the
non-signaling case not only calls for a different analysis but also raises a problem that we must solve.

The linearity test in the non-signaling setting has the following guarantee |[CMS18]: if F is
a k-non-signaling function such that Pr,, r[F(z) + F(y) = F(xz +y)] > 1 — ¢ then F can be
self-corrected (in the natural way) to a (k/2)-non-signaling function F that is 2°®e-close to a
linear non-signaling function £. Note that self-correction is already part of the conclusion.

The above result appears sufficient for compiling a nsLPCP verifier into a corresponding nsPCP
verifier. Namely, given a k-non-signaling function F: {0,1}¢ — {0,1}, the nsPCP verifier checks
that F(x) + F(y) = F(x +y) for random z,y € {0, 1} and also checks that the nsLPCP verifier

N

accepts F. Analogously to before, if the nsLPCP verifier makes ¢ queries and has soundness error

against linear (kg?’)—non—signaling functions, then the resulting PCP verifier makes 3 + 2¢ queries

and has soundness error max{1 — ¢,y 4+ 20)¢} against arbitrary k-non-signaling functions.

However, our analysis of the ALMSS verifier (the nsLPCP that we use) will require locality
k = Q(log N ), which means that the additive term 20 ¢ grows with N. This precludes achieving a
constant soundness error with constant query complexity.



The foregoing motivates the problem of testing linearity of non-signaling functions with low
error: how do we ensure that F is sufficiently close to a linear non-signaling function £? We stress
that while in the classical case improving the “quality” of the self-correction has a straightforward
solution (repeat the linearity test, and do self-correction), in the non-signaling case this problem
is quite involved. Moreover, we do not wish to modify in any way the classical compiler, and thus
relying on additional queries (even if only a constant number depending on ¢ and ¢) is not an option.

We discuss our solution to this problem later on in Section 2.6, thereby providing the missing
ingredient of our compiler from nsLPCP to nsPCP. In the meantime, in Sections 2.2 to 2.5, we
discuss how we prove that the ALMSS verifier is secure against linear non-signaling functions.

2.2 The linear ALMSS verifier against linear non-signaling functions

Our goal is to establish that the linear PCP verifier of [ALMSS98] (the “ALMSS verifier”) is
sound against linear non-signaling functions, and thus prove that every language L € DSIZE(S)
has a constant-query nsLPCP verifier that is sound against linear O(log.S)-non-signaling functions.
Note that we invoke the ALMSS verifier on deterministic (DSIZE) computations, rather than on
nondeterministic (NSIZE) computations as in the classical case. We now recall the ALMSS verifier.

Let L € DSIZE(S) be a language, and let {C), },en be a uniform boolean circuit family of size
N := 5(n) that decides L (for all z € {0,1}", « € L iff C),(z) = 1). Hereafter we omit the subscript
in C), as it is clear from context. Given an input z, one can express the condition “C'(z) =1” as a
system of simple equations over C’s wires W; the variables are w = (wq, ..., wy), one per wire. We
use the convention that the input wires are wq, ..., w, and the output wire is wy. To ensure input
consistency we need that w; = x; for every j € {1,...,n}; to ensure correct gate computations
we need that, for every j € {n+1,..., N}, w; is the correct combination of the variables used to
compute it (e.g., if w; is the output of an AND gate with inputs w;, and wj, then the equation is
w; = wj, - Wj,); to ensure that the output is 1 we need that wy = 1. This can be summarized as a
system of M := N + 1 equations {P;(wW) = ¢;};en, Where Py, ..., Py are quadratic polynomials
(each involving at most three variables in w) and ¢y, ..., cp are boolean constants.

The ALMSS verifier is given below. We overload notation and use P; to also denote the upper
triangular matrix in {0,1}"Y” such that Pj(w) = (Pj,w ® w); that is, if Pj(w) = Zf\il a;w; +
Y i<icir<n @ipwiwyr, then P; has a; in the diagonal entry (i,i) and a;; in the entry (i,i), for
1<i<i <N. Also, for a € {0,1}", D, is the diagonal matrix in {0,1}"° whose diagonal is a.

The ALMSS verifier, given input = € {0, 1}" and oracle access to a linear non-signaling function

£:{0,1}¥* = {0,1}, works as follows:

1. Use the circuit C' and input  to construct the matrices Py, ..., Py € {0,1}V * and constants
c1,...,cp € {0,1}, which represent the computation of C' on x.

2. Draw random s € {0,1}™, u,v, € {0,1}", and query £ on the set {Zj\il $;Pj, Dy, Dy, u®v}.

3. Check that E(ijvil 5;Pj) = Z]]Vil s;jc; and that £(Dy)L(D,) = L(u @ v).

If C(x) = 1, the honest proof is the linear function 7: {0,1}Y* — {0,1} where 7(2) := (w@w, Z) =
Zm,e[ N] Wiwy - Z; i where w; is now the value of the i-th wire in the computation of C' on x.

The challenge is to prove that the ALMSS verifier is sound against linear non-signaling functions.
Namely, we must show that if there is a linear non-signaling function £ that is accepted with good
probability then x € L, or equivalently that C'(x) = 1. We discuss this in the next sub-sections.
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2.3 A linear local assignment generator suffices

The first step in our soundness analysis shows that, to establish that C'(x) = 1, it suffices to construct
a linear local assignment generator with sufficiently small error.

A linear k-local assignment generator for (C,z) with error ¢ is a linear k-non-signaling function
A: {0,1}¥ — {0,1} that individually satisfies each of the M constraints with probability 1 —e (over
the randomness of A). Namely, (a) foreachi € {1,...,n}, Pr[A(e;) = ;] > 1—¢; (b) for each i € {n+
1,..., N}, if w; is the output of a unary gate g with input w; then Pr[A(e;) = g(A(ej))] > 1 —¢, else
if w; is the output of a binary gate g with inputs wj, ,w;, then Pr[A(e;) = g(A(e;,), Alej,))] > 1 —¢;
(c) Pr[A(en) = 1] > 1 — . (Here e; is the i-th vector in the standard basis.)

Lemma (informal). If there exists a k-local assignment generator for (C,z) with error ¢ for
k=Q(ogN) and ¢ = O(m), then C(z) = 1.

We sketch the proof of this lemma. The transcript of the computation of C' on z is the unique
correct assignment to all the wires. We say that a wire w; € W of C is correct whenever A(e;)
equals the value contained in this transcript; more generally, we say that a vector z € {0,1}¥ is
correct if A(z) equals the value of z in the linear extension of the transcript. Below, we partition C’s
wires W into layers Wy, ..., Wx according to depth. (We assume layered circuits; see Section 3.1.)

As a warmup, suppose for now that k£ > N. The probability that all wires in W are correct
is at least 1 — |WWj| e, and the probability that all the gates are correct is at least 1 — ZhHZQ |Wh|e.
Therefore by union bound, the probability that all wires in the circuit are correct is at least
1-— Zthl |W}| e, because if all the input wires are correct and all the gates are computed correctly,
then all the wires in the circuit are correct. In particular, we deduce that the output wire is correct
with probability 1 — Zthl |[Whle =1— |W]e =1— Ne. Since the output wire is 1 with probability
1—¢, and € = O(%), we conclude that Pr[C(z) = 1] > 0, and thus C(z) = 1.

The above argument requires that £k > N, because we have to simultaneously “view” assignments
to all wires in the circuit. While the argument can be easily modified so that we only require k to
be at least twice the width of C, the latter may still be much larger than O(log N).

Using the linearity of A, however, we can modify the argument to merely require & = Q(log N).
For each layer h, we define an event E}j, such that if Ej holds, then any wire in layer h is correct with
high probability. In the warmup above Ej}, is the event “all wires in layer h — 1 are correct”; in our
proof E}, is the event “¢ random linear combinations of wires in layer h are correct”. Given a wire w;
in layer h, we can bound the event “A(e;) is incorrect and Fj holds” as follows. If A(e;) is incorrect,
then all linear combinations of wires in layer i can be split into pairs z and z + ¢;, and exactly one of
A(z) and A(z + e;) is incorrect. Hence, the probability that a random linear combination of wires in
layer h is correct, given that A(e;) is incorrect, is at most 1/2, and so Pr[E}, | A(e;) is incorrect] < 27,
since the t random linear combinations are independent. Using Bayes’s rule (and an additional
assumption that Pr[Ej] > 1/2), we deduce that Pr[A(e;) is incorrect | E}] is small. We then proceed
inductively on the layers as before.

The argument above requires that € = O(m). One may wonder whether a similar result
could be proved with, say, ¢ = O(1). We additionally prove that our analysis is almost tight, in that
an error of € = O(lo}évN) is necessary, regardless of how large the locality k is.

See Section 7 for details.

Local assignment generators in prior works. Local assignment generators appear in prior
works on nsPCPs [KRR14; PR17], but our notion is qualitatively different, as we now explain.
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Prior works consider local assignment generators for an augmented circuit Cyyue rather than
for C itself. (See Section 1.5 for a discussion of concurrent work that avoids augmented circuits.)
Informally, Cayue not only contains C' as a sub-circuit but also low-degree extensions of C’s layers as
well as subcircuits computing all low-degree tests on these. The wires contained in these additional
subcircuits are what enables defining an event Ej, on which to condition for each layer.

The analogue of the augmented circuit Cyyg in our setting, however, has exponential size, and
thus we cannot use it. Namely, we would have to encode each layer of C' via the Hadamard code
(all linear combinations of wires in the layer) and then compute all possible linear tests on these.

Instead, our assumption that the local assignment generator is a linear non-signaling function
implies that we do not have to construct an augmented circuit. Namely, the linear combinations
that we use to define the event Fj, are implicitly available due this linearity, and so there is no need
to augment C' (nor, in particular, to introduce any gates that evaluate linearity tests).

The assumption that the local assignment generator is linear is justified by the fact that a
different part of our construction (the linearity test in our generic compiler) ensures the non-signaling
function is (close to) linear. Overall, this separation not only avoids the aforementioned issues of
using augmented circuits, but also simplifies the analysis of the local assignment generator.

2.4 Constructing the linear local assignment generator

Given a k-non-signaling function £: {0,1}¥* — {0,1} that is accepted by the ALMSS verifier with
probability at least 1 — ¢, we can obtain a linear k-local assignment generator A: {0,1}" — {0,1}
with error O(e) by “restricting £ to its diagonal”. Namely, in order to query A at v € {0,1}", we
query L at D, € {0, l}N 2, where D, is the diagonal matrix that has v as its diagonal.

We show that, since £ is accepted with probability at least 1 — e, £ must satisfy any individual
constraint Pj(w) = ¢; with probability at least 1 — O(¢), and this directly implies that the linear
local assignment generator A has error O(e). (See Section 8.2 for details.)

The discussion so far already gives us a weak bound on the soundness error of the ALMSS
verifier, namely 1 — O(m). Indeed, for k = O(log N) and ¢ = O(m), we can apply the
lemma above (in Section 2.3) to conclude that C(x) = 1.

However, our goal is to show that the ALMSS verifier (as is) has constant soundness error, and
doing so requires more technical work, which we discuss next.

Remark 2.1. We stress that proving a soundness error of even 1 — O(NIC}W) is a non-trivial
statement. This is in contrast to the classical setting, where if an assignment satisfies an 1 — ¢
fraction of the M = N + 1 constraints for ¢ < 1/M, then, trivially, all constraints are satisfied.

2.5 The ALMSS verifier has constant soundness error

Our goal is to prove that the ALMSS verifier has constant soundness error. In a first step
(Section 2.5.1), we use the soundness error proved above (Section 2.4) to show that the ¢-repeated
ALMSS verifier has soundness error v when t = Q(log N + log %) In a second step (Section 2.5.2),
we prove that the basic ALMSS verifier (no repetitions) has constant soundness error. The second
step is generic and of independent interest: we prove that if a t-repeated verifier has soundness
error exp(—t), then the corresponding basic verifier has soundness error O(1).
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2.5.1 The t-repeated ALMSS verifier has soundness error exp(—t)

While in the classical setting reducing soundness error via simple repetition is straightforward (¢-wise
repetition reduces soundness error from ¢ to §'), in the non-signaling setting simple repetition does
not work.® Indeed, consider the non-signaling function (in fact, distribution) that, with probability
1 — g, answers the verifier’s queries in an accepting way, and otherwise answers randomly. This
non-signaling function is accepted by the t-repeated verifier with probability ~ 1 — €, which is about
the same as the probability that it is accepted by a single verifier.

However, this example provides intuition for how one circumvents this issue. Informally, we
would like to extract the “1 — e good part” that satisfies the verifier, and drop the “c bad part”. We
follow a technique used in [KRR14] and, instead of arguing about the probability that £ passes the
t-repeated verifier, we argue that the non-signaling function £ conditioned on passing the t-repeated
verifier passes the basic verifier with high probability. Indeed, in the aforementioned example,
conditioning on at least one test passing removes the “c bad part” injected by the distribution, and
intuitively extracts the part of £ that is passing the verifier. An interesting feature of our analysis
of the verifier is that our conclusion is about the basic verifier, not the relaxed t-repeated verifier,
which plays a major role in the analysis in [KRR14].” This is a qualitative difference in our analysis
arising from our use of property testing (not present in [KRR14]), which also simplifies the analysis.

In more detail, let £ denote the linear non-signaling function that equals £ when conditioned
on passing the t-repeated verifier. Namely, if F is the (random) event that £ passes the t-repeated
verifier, then for any S C {0,1}" (of some maximal size) and b € {0,1}5, we define

Pr[L(S) = b A E]
Pr[E] : (1)

Pr [z'(S) :5} — Pr [5(5) —b|E| =

1/ Pr|E]
exp(t) *
The proof uses a generic lemma (Lemma 5.1) stating that, if we run ¢ + d independent tests,

then the probability that at most r out of the first d tests pass and all of the last ¢ tests pass is at

We then prove that £’ passes the basic verifier with probability at least 1 —

most (Hid)”l. A naive application of this lemma (with » = 0 and d = 1) shows that £’ passes the
basic verifier with probability at least 1 — 1@13:1[1)9]‘ This is not enough, because (using Pr[E] > )

we would require t = Q(Nlog N - %) to prove soundness, which is again far too many repetitions.

However, we leverage the linearity of £ to deduce the stronger guarantee, as we now explain.
We want to bound the probability that £ does not pass the basic verifier, which means we need
to bound the probability that £ fails exactly the first test of ¢ + 1 independent tests. We do this
by arguing this individually for each of the two types of tests made by the ALMSS verifier: the
tensor test “L(Dy)L(D,) = L(u®v)” and the satisfiability test “L(Zj]\/il s;Pj) = Z]]Vil sjci”. We
will explain our techniques in the case of the satisfiability test; the same techniques work for the
tensor test, but the algebra is messier.

In the case of the satisfiability test, we split the “special” test (i.e., the first one) into d pairs
of tests, such that each individual test is random, but each pair is correlated so that if both
tests in some pair pass, then the original test passes. Specifically, we draw d random vectors

s ... 5@ € {0,1}M, and then we split the test “E(Zj]\il 5 Pj) = Z]Ail s;jc;” into the d pairs of

5Even if simple repetition were to reduce soundness error from & to §*, then to get 6* = v when § =1 — O(m)
we would need to repeat t = Q(N log N + log %) times, which requires too large of a locality k for the analysis.

"The relaxed t-repeated verifier runs ¢ tests and accepts if a large fraction of them pass.
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tests

M . M . M . M .
“L Z(sj + Sg-l))JDj = Z(Sj + 357))0/’ and “L Z sgl)Pj = Z S;Z)Cj” .
j=1 j=1 j=1 j=1

This allows us to apply the lemma with d = O(t), and r = O(t), which shows that £’ passes the
1/ Pr[E]
exp(t) ’
The above analysis shows soundness error of 7 for the t-repeated verifier, for ¢ = O(log N +log %)

basic verifier with probability at least 1 — an exponential decrease in t.

Indeed, by the above argument, the conditioned function £’ passes the basic verifier with probability
1—Lexp(—t)=1- O(m), by choice of ¢t. The analysis in the previous section (Section 2.4)
then implies that C'(x) = 1, proving soundness of the ¢-repeated verifier.

Setting v = exp(—t), the discussion so far merely shows that the t-wise repetition of the ALMSS
verifier, which makes 4t queries, has soundness error exp(—t) when ¢t = Q(log N); moreover, we get
no conclusions for ¢ = o(log N). But we still did not conclude anything about the soundness of a
single invocation of the 4-query ALMSS verifier. We next discuss how to handle this case.

2.5.2 Back to the 4-query ALMSS verifier

We establish that the ALMSS verifier has constant soundness error by proving a generic lemma. The
lemma states that, for any PCP verifier V, if the t-repeated verifier V! has soundness error exp(—t),
then V has soundness error O(1). Since we have already argued that the ¢t-repeated ALMSS verifier
has soundness error exp(—t) for ¢t = Q(log V), we can conclude that the basic ALMSS verifier has
soundness error O(1), against O(log N)-non-signaling linear functions.

In the classical case, the proof of this generic fact is trivial: a (classical) function passes a PCP
verifier V with probability J if and only if it passes the t-repeated verifier V! with probability §°.
However, in the non-signaling case, it is not clear what one can say because a non-signaling function
can provide correlated answers across repetitions. Nevertheless, we are able to lower bound the
probability that V! accepts by a quantity that is almost §* (which is, in particular, almost tight).

To our knowledge, we are the first to relate the soundness of V to the soundness of V. Generic
statements in prior works (starting with [KRR13]) have related the soundness of V¢ to the soundness
of the t-repeated relaxed verifier (which accepts if a vast majority of the ¢ tests pass), but did not
provide conclusions about the basic verifier V.

2.6 Testing linearity with low error

Below we discuss linearity testing with low error (Theorem 3) in more detail.

Warmup: distributions. We have discussed (in Section 2.1) how to test linearity with low error
in the classical setting. In order to illustrate some of the difficulties that arise in the non-signaling
setting, we first discuss a special case of it: testing linearity against a distribution over functions.
First, suppose that D is a distribution over functions f: {0,1}" — {0, 1} that passes the linearity
test with probability 1 — . The self-correction D that on input z € {0,1}" samples a random
z € {0,1}" and outputs D(x) = D(z 4+ x) — D(z) is 2e-close to a distribution over linear functions

A~

D*, namely, for every x € {0,1}" it holds that |Pr[D(x)= 1] — Pr[D*(x) = 1]‘ < 2e. Indeed,

consider the distribution D* that samples f < D and outputs any linear function f* closest to
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f2 Then, for every function f and = € {0,1}", the probability over a random z € {0,1}" that
f*(2) = f(2) and f*(z + ) = f(z + ) is at least 1 — 2e¢, where ¢ := 1 — Pryy[f(x) + f(y) =
f(x +y)]. Denoting by d; denotes the probability that D samples the function f, we conclude that
(Pr[p*(x) — 1] - Pr[D(z) = 1]‘ <32 -dy = 2.

Next, suppose that we seek a self-correction of D that is d-close to a distribution over linear
functions, for § < 2¢. One idea is to follow the same strategy as in the case of a single function:
repeat the linearity test and then do self-correction. This idea, however, does not work now.

Consider the distribution D = (1 —¢) -0+ ¢ - 1, i.e., the distribution that with probability 1 — e
answers according to the all-zeros function (a linear function), and with probability £ according to
the all-ones function (a function maximally far from linear functions). While D passes the linearity
test with probability 1 —e, D also passes the t-repeated linearity test with probability 1 —e. In other
words, if D passes the t-repeated linearity test with probability 1 — &, we can still only conclude
that D is 2e-close to linear, independent of t.

While repeating the test does not increase the rejection probability, it can still be used to improve
the quality of self-correction, by considering a different notion of self-correction that penalizes
functions in the support of D that are far from linear. Concretely, consider the distribution D, that
equals D when conditioned on the event that the t-repeated linearity test passes, and then define D,
to be the self-correction of D;. That is, D, samples f from D, and answers any query x € {0,1}" by
sampling z € {0,1}" and returning f(z 4+ z) — f(z). We claim that Dy is very close to linear.

Indeed, suppose that D passes the t-repeated test with probability v > 0, and let ¢ > 1
be a parameter. A function f sampled from D; is 1’“C—close to linear with probability at least

y=te %.9 Setting ¢ := t/logt, the probability that D; outputs a function f that is
logt

5
log tflog logt

-far from linear is at most Therefore, by applying the argument from the beginning

logt

of thls subsection, we conclude that Dt is O (%%)-close to a distribution over linear functions.

We can further reduce the distance to be exponentially small in ¢ by performing self-correction ¢
times: D;(x) now samples z1, ...,z € {0,1}", and outputs the majority of {D(z + ) — D(z) }iepy
conditioned on the event that the t-repeated linearity test passes. By setting ¢ := 2/10 in the
discussion above, we conclude that if we sample f from Dy, then f is 0.1-close to a linear function
f* with probability 1 — 72”10 In particular, for every x € {0,1}" it holds that Pr, [f*(z) = f(z) A
[*(zi+z) = f(zi+z)] > 0.8, and so the probability that the majority value of {D(z;+x) —D(2;) }icy
is not equal to f*(z) is 2-9®. In sum, the t-repeated self-correction conditioned on the event that
the t-repeated linearity test passes yields us a distribution that is %2*O(t)—close to linear.

The non-signaling case. The case of non-signaling strategies is similar to the case of distributions
in that the analysis of the self-correction involves conditioning over a certain event. Yet, the
conclusions and steps of the proof are quite different. Informally, this is because non-signaling
functions are quasi-distributions (probabilities can be negative), which prevents us from doing a
straightforward analysis such as the one above. We now discuss how we address this.

Suppose that we have a k-non-signaling function F: {0,1}" — {0,1} that passes the linearity
test with probability 1 — e. The result of [CMS18| proves that the self-correction F defined as
F(z) := F(z + ) — F(2) (where z is chosen randomly from {0,1}") is 2°(®e-close to linear. This
is too large in our setting as we have k = O(log N), and we would like the distance to be O(e).

8Recall that if f is 0.25-close to linear functions then f* is unique. We do not rely on uniqueness.
9The t-repeated linearity test accepts a function f that is 1“ €_far from linear with probability at most (1— “‘Tc)t <

Q=
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Instead, we prove a slightly different guarantee from [CMS18]. Namely, we show that there is a
linear non-signaling function £, such that on every set S, F is O(|S| v/€)-close to £. Unlike in the
result of [CMS18], our distance now decays with |S|, and is in particular independent of k. This is
sufficient for our purposes, since we set |S| = 4, the number of queries made by the ALMSS verifier.

In our proof, we consider a different self-correction F; that, unlike F , is only used in the analysis
and is not used by the compiler. First, we show that F; passes the linearity test with probability
1 — exp(—t), and so the result of [CMS18] implies that F; is very close to a linear non-signaling
function. Then, we relate F; and F to show that F is O(+/¢)-close to a linear non-signaling function.

Informally, the self-correction F; equals F with the standard self-correction procedure repeated
t times, conditioned on F passing (1 — /)t of ¢ repetitions of the linearity test. In more detail,
given a subset S C {0,1}", F,(S) is the following distribution. For each x € S, sample uniform

and independent zg(cl), e zg(gt) € {0,1}" conditioned on satisfying the same linear dependencies as

in S; for instance, if S = {z,y,x + y}, then z;g) + zy) = ziily holds for all i. Then F; assigns to

each x € S the value maj;cy {f(zg) + x) — F(2)} conditioned on the event that F passes at least
(1 — \/€)t of t repetitions of the basic linearity test. We note that if F is linear, then F; = F = F.

The first part of the analysis uses Lemma 5.2, which informally states that by conditioning on
F passing most of the t-repeated linearity tests, we force the conditioned F to behave “close” to
linear. Specifically, letting b = F (z; + ) — F(z), we get that with probability 1 — exp(—t) there
is a bit b, that equals bg(f) for at least % of the 4’s (so the majority is a vast majority), which implies
that F¢(z) = b, and analogously for y and = + y. Then, via a similar argument, we show that with

probability 1 — exp(—t) for at least %t of the i’s it holds that bg) + bg(f) = bSJ)ry' By union bound,
these events hold simultaneously, and so we conclude that F; satisfies F;(z) + Fi(y) = Fi(z +y)
with probability 1 — exp(—t). We then invoke the result of [CMS18] and conclude that F is very
close to some linear non-signaling function L.

In the second step, we relate F to F; by claiming that if Pr[F(z) + F(y) = F(z +y)] > 1 —e,
then F and F; are close in some precise sense (see Section 9.3 for details). We first observe
that if we run the t-repeated linearity test, i.e., choose x(l),y(l),...,x(t),y(t) and check that
F(z®) + F(y®) = F(z® 4+ 4@) for every 4, then a simple Markov argument (Lemma 5.5) shows
that with high probability, most of the linearity tests are satisfied. For instance, with probability
1— /e at least (1—+/2)t of the i’s satisfy the linear constraint. This means that the event conditioned
on in the definition of F; is a large event. We also know from the first part of the analysis that, with
high probability, the conditioning causes most of the evaluations of F (z;gi) +x)—F (zg(f)) to output
the same value. Intuitively, this implies that F is close to F, via the following reasoning. Since F;
conditions on a large event, it is close to the corresponding self-correction that does not condition
at all. Since the majority taken over the evaluations of F (z;gi) +z)—F (z;gf)) when computing F; is
a vast majority, with high probability F (which is a sample from one of the elements the majority
is over) will agree with the vast majority. This allows us to conclude that for any set S, F will be
O(|S|+/2)-close to F;.

See Section 9 for details.
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3 Definitions

We introduce the main definitions used throughout the paper.

3.1 Boolean circuits and the class DSIZE(.S)

All boolean circuits in this paper are layered and have maximum fan-in 2. In more detail, a boolean
circuit is a layered directed acyclic graph, in which the vertices are called “gates” and the edges
are called “wires”. Furthermore, each gate is labeled as either AND, OR or NOT, and it holds
that (1) every wire goes from a gate in layer h to a gate in layer h + 1, (2) each gate has at most
2 incoming wires, (3) each gate with 2 incoming wires is either an AND gate or an OR gate, and
(4) each gate with 1 incoming wire is a NOT gate.

The class DSIZE(SS) is the main complexity class that we study in the paper.

Definition 3.1. Given a computable function S: N — N, a language L is in DSIZE(S) if there
exists a uniform family of boolean circuits Cp,: {0,1}" — {0, 1} such that Cy, has at most S(n) gates
(and is constructible in time O(S(n))) and, for all x € {0,1}", x € L if and only if C\,(x) = 1.

The reader may find it helpful to compare DSIZE(S) with NSIZE(S), where the second condition
is replaced by “x € L if and only if there exists w such that C),(z,w) = 1.

3.2 Non-signaling functions

We define non-signaling functions and introduce useful notation for them. The text below is taken
almost verbatim from [CMS18].

Definition 3.2. A k-non-signaling function F: D — {0,1} is a collection F = {Fs}scp,s<k
where (i) each Fg is a distribution over functions f: S — {0,1}, and (ii) for every two subsets S
and T each of size at most k, the restrictions of Fg and Fr to SNT are equal as distributions. (If
S =0 then Fs always outputs the empty string.)

Note that any function f: D — {0,1} induces a |D|-non-signaling function by setting Fg to
be the distribution that outputs f|g with probability 1. More generally, any distribution D over
functions f: D — {0,1} induces a corresponding | D|-non-signaling function by defining Fg to be
the distribution that samples f + D and outputs f|s.

Given a set S C D of size |S| < k and a string b € {0,1}°, we define

Pr [f(S) - b} = Pr [f(S) - b]
The non-signaling property in this notation is the following: for every two subsets S, T C D of
sizes |S|,|T| < k and every string b € {0,1}5"7, Pr[ F(S)|snr = b] = Pr| F(T)|snr = b], where the
probability is over the randomness of F.

Sometimes it is more convenient to consider a vector of inputs (rather than a set of inputs),
and so we define notation for this case. Given a vector (z1,...,zs) with entries in D and a vector
(b1,...,bs) with entries in {0,1} (with s € {1,...,k}), we define Pr[F((z1,...,x5)) = (b1,...,bs)]
and Pr[F(z1) = b1,...,F(xs) = bs] to be the probability

Pr [f(xl):bly--wf(xs):bs] :

17



Note that {z1,...,zs} is an unordered set and its size may be less than s, because the entries of
the vector (x1,...,2zs) may not be distinct. We abuse notation and still use symbols such as S and
b to denote vectors as above. We stress that we use an ordering on S merely to match each element
of S to the corresponding element in 5; the event remains unchanged if one permutes the entries of
S and b according to the same permutation.

3.3 Quasi-distributions

A quasi-distribution extends the notion of a probability distribution by allowing negative probabilities.
Quasi-distributions are equivalent to non-signaling functions [CMS18|, and are a useful to view, and
analyze, non-signaling functions. The text below is taken almost verbatim from [CMS18].

Definition 3.3 (quasi-distributions). Let D be a finite domain, and denote by Up the set of all
boolean functions of the form f: D — {0,1}. A quasi-distribution Q over a subset G C Up is a
set of real numbers {qy}sev,, such that 3 ;e qp =1 and qp =0 for every f ¢ G.

Definition 3.4 (quasi-probability). Given a quasi-distribution Q = {qf} tev,, a subset S C D, and
a string b € {0,1}°, we define the quasi-probability of the event “Q(S) = b” to be the following
(possibly negative) real number

PrlQ(S) =b]:= Y g .
feUp s.t. f(S)=b

As in the case of non-signaling functions, it is sometimes more convenient to consider a vector of
inputs rather than a set. Given a vector (x1,...,zs) with entries in D and a vector (by,...,bs) with
entries in {0, 1}, we define Pr[Q((z1,...,2s)) = (b1,...,bs)] and Pr[Q(z1) = b1, ..., Q(zs) = bs] to
be the (possibly negative) real number ZerD s.t. Vi f(z)=b; 4f- We abuse notation and still use

symbols such as .S and b to denote vectors as above.

Definition 3.5 (locality). Let D be a finite domain of size N and let k € {1,...,N}. A quasi-
distribution Q over Up is k-local if for every subset S C D of size |S| < k and string b € {0,1}°,
Pr[Q(S) =b] € [0,1] .

For completeness, we also say that all quasi-distributions are 0-local.

If Q is k-local, then for every subset S C D of size |S| < k, we may view Q(S) as a probability
distribution over {0,1}°. If Q is k-local then it is s-local for every s € {0,1,...,k}.

For Q to be k-local, it suffices for all relevant Pr[Q(S) = b] to be non-negative (as opposed to
be in [0,1]). This is because >, ¢y = 1, so that ZEG{O 1} Pr[Q(S) = b] =1 and, if all terms in this
sum are non-negative, then we can deduce that Pr[Q(S) = b] < 1 for every b.

Definition 3.6 (statistical distance). Given a finite domain D and an integer k € {1,...,|D|}, the
Ap-distance between two quasi-distributions Q and Q' is

Ap(Q,Q) = max A(Qs, Q) ,

SCD, |S|<k

where A(Qs, Q) = maxpc(o1)s Pr[Q(S) € E] — Pr[Q/(S) € E})
We say that Q and Q' are e-close in the Ag-distance if Ax(Q, Q') < ¢; else, they are e-far.
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Remark 3.7 (distance for non-signaling functions). The definition of Aj-distance naturally extends
to defining distances between k’-non-signaling functions, as well as between quasi-distributions and
k’-non-signaling functions, provided that k < k'

The notion above generalizes the standard notion of statistical (total variation) distance: if Q
and Q' are distributions then their A|pj-distance equals their statistical distance. Also note that
if @ and Q' are k-local quasi-distributions then their Aj-distance equals the maximum statistical
distance, across all subsets S C D with [S| < k, between the two distributions Qg and Q% — in
particular this means that any experiment that queries exactly one set of size at most k cannot
distinguish between the two quasi-distributions with probability greater than Ag(Q, Q).

We conclude by stating a theorem from [CMS18|, which motivates the use of quasi-distributions.
Informally, the theorem states that quasi-distributions and non-signaling functions are equivalent.

Theorem 4 (|[CMS18]). For any finite domain D, the following hold:

1. For every k-local quasi-distribution Q over functions f: D — {0,1} there exists a k-non-signaling
function F: D — {0,1} such that Ag(Q,F) = 0.

2. For every k-non-signaling function F: D — {0,1} there exists a k-local quasi-distribution Q over
functions f: D — {0,1} such that Ap(Q,F) = 0. The set of such quasi-distributions forms an

affine subspace of R2"

3.4 Input-oblivious queries

An oracle algorithm A: {0,1}* — {0, 1} has input-oblivious queries if, given an input = € {0,1}", the
queries to its oracle are determined non-adaptively based solely on n and on its internal randomness,
and only the final decision depends on z. In more detail, one can view A as specified by a pair of
algorithms (Q, D) where: (a) Q is a probabilistic algorithm known as the query sampler that, given
n, outputs a set of queries for the oracle; (b) D is a deterministic algorithm known as the decision
predicate that, given x (and @’s randomness), outputs a decision bit. All verifiers that we consider
in this paper have input-oblivious queries.

3.5 Non-signaling PCPs

A non-signaling PCP (nsPCP) [KRR14] is a PCP in which soundness is further required to hold
against any (sufficiently local) non-signaling function.

In this setting, for a query alphabet D and answer alphabet X, a nsPCP verifier is an algorithm
V that, given oracle access to a non-signaling function F: D — 3, queries F at a single subset
S C D (on which F is defined), receives answers a € X°, and outputs a decision bit.

Definition 3.8. Given ¢ € [0,1] and k € N, a nsPCP wverifier V for a language L has soundness
error € against k-non-signaling functions if the following holds for every x € {0,1}*:

1. If x € L then there exists a function m: D — ¥ such that Pr[V™(z) = 1] = 1.

2. If v ¢ L then, for every k-non-signaling function F: D — ¥, Pr[V/ (z) = 1] < e.

Remark 3.9. In Item 2, if we consider only all functions 7: D — ¥, rather than all k-non-signaling
functions F: D — X, then we recover the usual PCP definition.
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If the query alphabet D has size at most ¢, the PCP verifier uses at most r random bits to
sample a subset S of size at most ¢ in time 77, and the PCP verifier decides to accept/reject in
time 75 based on F’s answers to S, then we write

[ soundness error: i
randomness:
proof length:

L € nsPCP query complexity:

locality:
query sampler time: |
decision predicate time:  T5

SIET SN O

Note that we must require ¢ < k, since querying F on a set of size greater than k is undefined.

3.6 Linear non-signaling PCPs

A linear non-signaling PCP (nsLPCP) is a PCP that is sound against (sufficiently local) non-
signaling functions that are linear, that is, they are induced by quasi-distributions over linear
functions. This definition is motivated by the equivalence between non-signaling functions and
quasi-distributions, as well as the linearity testing result, proved in [CMS18].

Definition 3.10. A k-non-signaling function £: {0,1}* — {0,1} is linear if there exists a k-local
quasi-distribution Q over linear functions f: {0,1}¢ — {0,1} such that Ax(L, Q) = 0.

Definition 3.11. Given € € [0,1] and k € N, a nsLPCP wverifier V for a language L has soundness
error £ against linear k-non-signaling functions if the following holds for every x € {0,1}*:

1. If x € L then there exists a linear function w: {0,1}* — {0,1} such that Pr[V™(z) = 1] = 1.

2. If v ¢ L then, for every linear k-non-signaling function £: {0,1}* — {0,1}, Pr[V&(z) = 1] < e.

Remark 3.12. In Ttem 2, if we only consider all linear functions 7: {0,1}* — {0, 1}, rather than
all linear k-non-signaling functions £: {0,1}* — {0, 1}, then we recover the usual LPCP definition.

If the LPCP verifier uses at most r random bits to sample a subset S of size at most ¢ in time
Ty, queries £: {0,1}* — {0,1} on S, and decides to accept/reject in time Ty based on L’s answers
to .S, then we write
i soundness error: i

randomness:

proof length:

L € nsLPCP query complexity:
locality:

query sampler time: 1
decision predicate time: Ty

HPT‘Q N 3 M

Like before, we must require ¢ < k, since querying £ on a set of size greater than k is undefined.
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4 Formal statements of our results

Our main theorem (discussed in Section 1.2) is that the exponential-length constant-query PCP in
[ALMSS98] (with no modifications) is sound against non-signaling functions. We obtain:

Theorem 5 (formal statement of Theorem 1).

soundness error: 1 —1/107 ]
randomness:  O(S?)
proof length: ~ 20(5%)
DSIZE(S) C nsPCP query complexity: 11
locality: ~ O(log® S)
query sampler time:  O(S?)
| decision predicate time:  O(n)

Our proof relies on several results (discussed in Section 1.3), which we formally state below. At
the end of this section we show how to combine these results to prove Theorem 5.
First, we prove that the linear PCP in [ALMSS98] is sound against linear non-signaling functions.

Theorem 6 (formal statement of Theorem 2; proved in Section 8). The linear PCP in [ALMSS98]
1s sound against linear non-signaling functions, giving us the following class inclusion:

_ soundness error:  39/40
randomness:  O(S)
proof length:  O(S?)
DSIZE(S) C nsLPCP query complexity: 4
locality:  O(log S)
query sampler time:  O(S?)
decision predicate time:  O(n)

Next, we provide a linearity test for non-signaling functions with low error. The statement
involves the notion of self-correction for a non-signaling function, which we define first.

Definition 4.1. The self-correction of a k-non-signaling function F: {0,1}" — {0,1} is the
| k/2]-non-signaling function F: {0,1}"* — {0,1} defined as follows. Given a set {x1,..., 25} C
{0,1}"™ with s < |k/2] , ﬁ{xl,...,:fcs} samples uniform and independent z1,...,zs € {0,1}" and
answers each x; with F(z; + x;) — F(zi).

Theorem 7 (formal statement of Theorem 3; proved in Section 9). Let k,k € N and e € (0,1/400]
be such that k = Q(g - (k + log %)) Suppose that F: {0,1}" — {0,1} is a k-non-signaling function
such that Pry, 7[F(z) + F(y) = F(z +y)] > 1 —e. Then there exists a linear k-non-signaling
function £: {0,1}" — {0,1} such that for all query sets Q C {0,1}" with size |Q| < k and for all
events E C {0,1}¥ it holds that

Pr[F(Q) € E] - Pr[L(Q) € E]| < (6]Q| + 3)vE .

The above result enables us to compile any nsLPCP into a corresponding nsPCP, via the usual
transformation that runs a linearity test and then uses self-correction to ask the nsLPCP queries.
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Lemma 4.2 (formal statement of Lemma 1.3; proved in Section 6). The classical LPCP-to-PCP
compiler works in the non-signaling setting, giving us that, for every e € (0,1),

nsLPCP

soundness error:
randomness:

proof length:

query complexity:
locality:

query sampler time:
decision predicate time:

1—¢

C nsPCP

soundness error:
randomness:

proof length:

query complexity:
locality:

query sampler time:

| decision predicate time:

Cind L &2
1 mln{400’(6q+4)2

r+ (g +2)¢

2[

2943

O((k +1log 1))
Ty + O(ql)

Ty + O(q)

.

Proof of Theorem 5. By invoking the transformation from Lemma 4.2 on the ALMSS verifier from
Theorem 6, we directly obtain the inclusion stated in Theorem 5.

The PCP produced by Lemma 4.2 can at best have soundness error 1 —

L
400°

O]

even if the soundness

error of the underlying linear PCP is sub-constant. In Appendix B, we give a similar compiler where
the resulting PCP has almost the same soundness error as that of the given linear PCP.
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5 Repeated tests against non-signaling functions

We state and prove several generic facts about the acceptance probability of repeated tests against
non-signaling functions. Using these statements, we then prove a generic lemma showing that, given
a verifier V, if the t-repeated verifier V! is exp(—t)-sound against non-signaling functions, then V
is O(1)-sound against non-signaling functions. The fact that this implication holds generically is
non-trivial, as the reverse implication, which is typically used in the classical setting to establish
that V! has a much smaller soundness error than V, does not hold in the non-signaling setting.

A g-query test over a domain D is a pair (R, II), where R is a distribution over g-size subsets of
D, and II: {0,1}¢ — {0,1} is a predicate; the test first samples (z1,...,z4) according to R, makes

the queries to F, receives answers (a1, ..., a,) € {0,1}%, and outputs II(ay,...,aq).
Given a k-non-signaling function F: D — {0,1} and a g-query test over D, for any t < |k/q]| we
can perform the test ¢ times in parallel and thereby define ¢ boolean random variables Xi,..., X}

by setting X; = 1 if the i-th test passes. These boolean variables are identically distributed but
need not be independent, and their joint distribution is permutation invariant (for every be {0,1}
and permutation 7: [t] — [t] it holds that Pr[X; = b; Vi € [t]] = Pr[X ;) = b; Vi € [t]]).

The lemmas below hold for boolean variables whose joint distribution is permutation-invariant.

Lemma 5.1 (adapted from [KRR14, Claim 6.2]). Let r,d,t € N be such that 0 < r < d. Let
X1, ..., X¢yq be boolean random variables with a permutation-invariant joint distribution. Define
the following events:

° Hfll_r is the event that X; =1 for at least d — r indices i € {1,...,d};

o T} is the event that X; =1 for alli € {d+1,...,d + t}.

Then
(t+d;r71> d r+1
P [ﬂHd A Tt} < <
le--'vater d=r b= (Ht_d) “\t+d

In particular, if Pr [Ttt] > 0 then

d " 1 d \""
p [ﬁH 3 T] < :
Xl,...,rXt+d d=r | t] = Pr [Ttt] <t + d)

Proof. Letting I := {i € [t +d] : X; = 0}, we view the event ~H¢ AT} as happening in two steps.
First, we sample X7, ..., X4, which determines |I|. Second, we re-index the samples by selecting
a uniformly random permutation 7: [t 4+ d] — [t + d| to determine I. This implies that

t+d

Pr o [=HI AT = Pr|=HE AT 11 =j)- P (1=
0 D [Hr AT =3 B [HE ATEL =] P (1=
The above step uses the fact that the joint distribution of X7, ..., Xy14 is permutation-invariant.

If j < r, then Pr;[~H? AT} | |I| = j] = 0, because in this case H?  always holds. If
j > r—+1, then Pr, [ﬂHg_T ATE| || =4] = (H‘f_j)/(ttd), because the event holds if and only if
w(d+1),...,m(d+t) are all not in I, which happens with probability (H‘f*j)/(ttd) when |I| = ;.

Hence, Pro[~HS AT} | |I]| = 4] < (77 /(719), for j > r + 1. Therefore,

Pr [-H? AT!
Xl»---7Xt+d[ d—r t]
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t+d (t+d—(r+1))

< Nt 7 P Il —
< = (Ht-d) XL.”,E(HdH | =4l

[GAnE ]
- ()

Next we prove a variant of Lemma 5.1, where we consider the event that X; = 1 for most indices
iin {d+1,...,d+t}, as opposed to all indices 7 in that set.

Lemma 5.2. Let d,t € N, and let 0 < e < § < 1. Let Xyq,...,X1q be boolean random variables
with a permutation-invariant joint distribution. Define the following events:
° H(dl—é)d is the event that X; =1 for at least (1 — §)d indices i € {1,...,d};
o T(tl—e)t is the event that X; =1 for at least (1 — )t indicesi € {d+1,...,d +t}.
Then,
P |:_‘Hd A Tt :| < —1(5—8)2 min{¢,d} )
Xl’_._&w (1-6)d (1—e)t| =€ 8

In particular, if Pr [T(tke)t} > 0 then

1 1 9 .
d ¢ —L- t,d
X, P&Hd [_\H(l—z?)d | T(l—s)t} < [ " } L s (07 minttd}
oo Pr|T
(1—e)t
Proof. The proof strategy follows that for Lemma 5.1. Letting [ := {i € [t +d] : X; = 0}, we
view the event ﬁH(dl—(S)d A T(tl_g)t as happening in two steps. First, we sample X7, ..., X;14, which

determines |I|. Second, we re-index the samples by selecting a uniformly random permutation
7 [t +d] — [t + d] to determine I. This implies that

t+d
Pr [ﬂHd AT }: Pr[~H% . AT! =4 Pr [I]=j
k., M0 M e JZ:% r[~HG g0 N Taeye | =] Xl’_'“XHdH | = J]
The above step uses the fact that the joint distribution of X7, ..., Xy14 is permutation-invariant.

By standard martingale concentration bounds (see, e.g., [McD98]), for j < #(t +d) it holds that
Pr [~HA gy | 11| = j] < e 30 a0 < m30-era
and for j > €49(¢ + d) it holds that
Pr [T(tl—e)t | [ = j} < e 3 (rta <) < e 309

Therefore, all probabilities Pr; {—'H(dk 5ya T! Y | |I] = j} are upper bounded by the maximum

(1—e
among the two bounds, which completes the proof of the lemma. ]
We now state and prove two lemmas that lower bound the probability that X; =--- =X, =1

in terms of the probability that X; = 1. Both lemmas play a key role in our results and, to the best
of our knowledge, have not appeared in prior work studying non-signaling functions.

Suppose that Pr[X; = 1] = 6. If the X;’s are independent, then Pr[X; = --- = X; = 1] = 6*. The
same implication is not true when the X;’s are arbitrarily correlated. Yet, if their joint distribution is
permutation-invariant, then we can conclude that §' (approximately) lower bounds this probability.
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Lemma 5.3. Let Xq,..., X, be boolean random wvariables with a permutation-invariant joint dis-
tribution. Lett € N and 0 < 7 < § < 1 be such that r > 2 and Pr[X; = 1] = § for every i € [r].
Then,

3 ¢
Xf..r,Xt [X1 X =1] > 16 T-(6—7)

Proof. Let X =", X;. We have that E[X]| =57 | E[X;] = rd. Since the joint distribution of
the X;’s is permutation-invariant, the probability that Xi,..., X; are all 1 can be viewed as the
probability that X; = 1 for all 4 in a random subset of ¢ X;’s out of the r X;’s. Therefore,

(()’t":)) ]

Below we lower bound the foregoing expression.
Since E[X] = rd we have Pr[X > (§ — 7/2)r] > 7/2. Therefore,

(%) ()
Xy X | | (t) >/ (t)

It remains to lower bound the above binomial coefficient. We do this using the following claim.

Br
Claim 5.4. Let § € [0,1] and r,t € N such that r/t > 2/5. Then ((E)) > 3. (B—2t/r).

Proof. By Stirling’s approximation we have

§< (z) <1 .
8 - _ n . nm i -
(n—1) it (n—i)n—t
Therefore )

r Br . (Br)Pr -
(), 8 o w3 (0= (-
T — r rr - _L BT _ t
() "8 ok wote 8 U—F)7 D)

Using the assumption that 0 < £ < ﬁ < 1 and the fact that 1= < (1 — z)l/* < 1;:/2 for all
x € (0, 1], we get that

(Br) 3 %_;7 ¢ AN 1_; ¢ Nt 3 N
AR~ '(ﬁ‘r)zs' — 5 '(ﬁ‘r>28'<ﬂ‘2r>

where the last inequality uses the assumption that r/t > 2/0. ]

Using Claim 5.4, we get that

Pr [Xi == Xy = 1] >7/2- 0 (G r/2—2t)r) > S r (57

X1,.0,Xt

| w

where the last inequality uses the fact that r > %. O
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Next we prove a variant of Lemma 5.3, where we consider the event that among Xi,...,X;
most of the X;’s are 1, as opposed to all X;’s. We note that in this lemma, we do not require that
X1,...,X; have a permutation-invariant joint distribution.

Lemma 5.5. Let X1,...,X; be boolean random variables with an arbitrary joint distribution, and
let p,6 € [0,1] be such that Pr[X; = 1] > 1 — dp holds for all i € [n]. Then

Pr [X; =1 for at least (1 — p)t indicesi € [t]] > 1 -9 .
X1, Xt

Proof. Let X =t —>.t_, X;. Observe that E[X] < pdt, and so Pr[X > pt] < E[X]/pt = 6. This
implies that Pr[X < pt] > 1 — 0, and the lemma follows. O

Returning to the given PCP verifier V, we wish to relate the soundness error of V and of the
t-repeated verifier VL. In the classical setting, one typically shows that V has soundness error O(1),
and then it follows trivially that V! has soundness error exp(—t). However, this approach fails in
the non-signaling setting because soundness error O(1) for V does not (in general) imply soundness
error exp(—t) for V¢, Surprisingly, using Lemma 5.3 we can show that the other direction holds,
namely that soundness error exp(—t) for V! implies soundness error O(1) for V.

Lemma 5.6. Let V be a g-query PCP verifier. Suppose that there existt € N and u € [0,1) such that

Vt is ut-sound against k-non-signaling functions. If t > 6_1:;‘%2(7?;;?), then V is 3TT“—sound against
2(55a
max(k, i(fg)-non-signalmg functions. For example, if V! is (%)t-sound against k-non-signaling

functions for some t > 100, then V is 39/40-sound against max(k, 160tq)-non-signaling functions.

One can prove variations on the above lemma, based on the settings of § and 7 in Lemma 5.3. We
also note that the same lemma holds when V is a linear PCP verifier and all non-signaling functions
considered are linear.

Proof. Let k' := max(k @), and let F be a k’-non-signaling function. Since k' > k, Pr[V! accepts F] <

7 1-u
u’. Hence, it suffices to show that if Pr[V accepts F] > 2% then Pr[V! accepts F] > u'.
Indeed, let § := 3“%“, and 7 := le“, and suppose that F is a k’-non-signaling function such

that Pr[V accepts F| > ?’fT“ = 4. Since k' > %tg, we can apply Lemma 5.3 with the above choices

of § and 7 to get that Pr[V! accepts F| > % . 177“ : (HT“)t, which is strictly greater than u’ since
6—log, (3—3 .
t> %ﬁ)u)’ as required. O
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6 From linear PCPs to standard PCPs

In this section we use Theorem 7 (testing linearity with low error) to prove Lemma 4.2, which shows
that any non-signaling linear PCP can be compiled into a corresponding non-signaling PCP. This is
the non-signaling analogue of the classical compiler from linear PCPs to PCPs [ALMSS98|.

6.1 The PCP verifier

Let Vipcp = (QLpcp, DLpcp) be a linear PCP verifier that has oracle access to a linear k-non-signaling
function £: {0,1}* — {0,1}. We need to construct a PCP verifier Vpcp = (Qpcp, Dpcp) that has
oracle access to a kpcp-non-signaling function F: {0,1}* — {0, 1}.

The construction of Vpcp from Vi pcp is exactly the same as in the classical case. That is, Vpcp
runs the [BLR93] linearity test, and then runs V| pcp, simulating its oracle by querying the proof
in a self-correcting manner. More specifically, for every query a € {0,1}¢ that V| pcp makes to
its oracle, Vpcp samples a random z, € {0, 1}, queries F(24), F (24 + a), and answers V| pcp with
F(zq + a) — m(24). Overall we can express Vpcp = (Qpcp, Dpcp) in the following way:

The query sampler Qpcp works as follows:

1. Sample uniformly random z,y € {0, 1}*.

2. Run Q_pcp to obtain a set of queries S| pcp C {0, 1}6 for the linear PCP.

3. For each a € S pcp sample z, € {0, 1}£ independently and uniformly at random.

4. Output the query set Spcp = {x,y, 2+ y} U{z4,24 + a:a € S pcp}

Given the answers F(Spcp) from the proof, define F(Sypcp) by letting F(a) = F(zq+a)—
F(a) for all a € S pcp. The decision predicate Dpcp accepts if and only if F(z) + F(y) =

A

F(:E + y) and DLPCP(-F(SLPCP)) =1.

6.2 Parameters

The parameters of the new verifier Vpcp follow from those of V| pcp and Theorem 7.

Randommness: Vpcp uses 2¢ random bits for the linearity test, plus additional r + ¢f random bits
to simulate V| pcp. The total number of random bits is r + (¢ + 2)¢.

Length: The length is 2¢, because the honest proof in the completeness case is a (classical) function
7:{0,1} — {0,1}, which takes 2¢ bits to write down.

Queries: Vpcp makes 2 queries for every query made by V| pcp, plus an additional 3 queries for
the linearity test. The total number of queries is 2¢ + 3.

Locality: We need kpcp = O(kLPCP - (kLpcp + log %)) so that we can apply Theorem 7.

13
Input obliviousness: The linearity test clearly does not depend on the input (or even L), and
the self-correction only depends on its input set S| pcp. Hence, if V| pcp has input-oblivious queries,
then so does Vpcp.
Query sampler time: The query sampler of Vpcp samples uniformly random z,y € {0, 1}*. Then,
it runs the query sampler of V| pcp to generate ¢ queries, and finally generates the self-corrected
queries. This takes a total of 71 + O(gf) time.

Decision predicate time: The decision predicate of Vpcp first runs the linearity test predicate.
Then, it computes the self-corrected answers to the queries of Vi pcp, and finally runs the decision
predicate of V| pcp. This takes a total of To + O(q) time.
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6.3 Completeness
Completeness is straightforward. Suppose that there exists a linear function F: {0,1}¢ — {0,1}
such that V{PCP always accepts. We claim that F is also accepted by Vpcp with probability 1.

Indeed, if F is linear then F = F, and hence Pr[Dchp(]}(Qchp)) = 1] = Pr[Drpcp(F(Qrpcp)) = 1].
Therefore,

PriVicp = 1] = Pr(F(z) + F(y) = Flz +y) A DLPCP(J%(QLPCP))]
= Pr[Dipcp(F(Qupcp)) = 1]
=1.

6.4 Soundness

Suppose that there exists a kpcp-non-signaling function F: {0,1}* — {0,1} that is accepted by
Vpcp with probability greater than 1 — « for some v < min{ﬁ, ﬁ}. In particular, this implies

that Pr[F(z) + F(y) = Flz+y)) > 1 -7y > 1~ ﬁ. Since kpcp = O(kLzCP . (kLF:CP 4 log%)), by
Theorem 7 there exists a linear ki pcp-non-signaling function £ such that Ay(L, F) < (6¢ 4 3),/7.
Then,

PriVipcp = 1] > Pr{V{pcp = 1] = (6g+3)y7 > 1—7— (6g+3)y7 > 1 —¢ ,

2

since v < (f)lfT)Q. This is a contradiction, and so the soundness of V| pcp implies soundness of Vpcp.
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7 Linear local assignment generators

In this section we define the notion of a linear local assignment generator, and prove that, in order
to establish soundness of an LPCP, it suffices to construct a linear local assignment generator with
sufficiently small error. This is one of the steps in the proof of Theorem 6 in Section 8, and we state
it separately because it works for any nsLPCP (not just the ALMSS verifier analyzed in Section 8).
Informally, a linear local assignment generator for a circuit C' on input z is a linear non-signaling
function that satisfies each local constraint in the computation of C' on x with high probability. This
definition augments earlier ones in [KRR14; PR17]| with the linearity condition (see Section 2.3).

Definition 7.1. Let C: {0,1}" — {0,1} be a boolean circuit with N wires, and let x € {0,1}" be
an input for it. A linear k-local assignment generator for (C,x) with error ¢ is a linear
k-non-signaling function A: {0,1}V — {0,1} that satisfies the following.

1. The input wires wq, ..., w, are consistent with x: for every i € [n], Pr[A(e;) = x;] > 1 —e.

2. The output wire wy is 1: PrlA(ey) =1] > 1 —¢.

3. AND/OR gates compute correctly: for every binary gate g with inputs w;,,w;, and output wj,

Prlg(A(ei, ), Alei,)) = Alej)] 21 —¢ .
4. NOT gates compute correctly: for every unary gate g with input w; and output w;,
Prig(A(e;)) = Alej)] =21 —¢ .

We prove that the existence of a linear k-local assignment generator for (C,x), with sufficiently
large locality k and sufficiently small error e, implies that C(z) = 1. This tells us that, in order
to prove soundness for a nsLPCP, it suffices to show that the existence of a linear non-signaling
function accepted by the nsLPCP verifier with good probability implies the existence of a linear
local assignment generator with low error.

Lemma 7.2. Let C: {0,1}" — {0,1} be a boolean circuit with N wires, and let x € {0,1}" be an
input for it. If there exists a linear k-local assignment generator A for (C,x) with error e, where
k > 2logy(1/e) and elogy(1/e) < 55, then C(z) = 1.

The bound on the error is almost tight, regardless of the locality k.

Lemma 7.3. For sufficiently large N and any n, there exist a boolean circuit C: {0,1}"™ — {0,1}
with N wires and an input € {0,1}" such that C(x) = 0 and yet exists a linear 2" -local assignment
generator A: {0,1}N — {0,1} for (C,z) with error ¢ > 2.

We first prove Lemma 7.2 in Section 7.1, and then prove Lemma 7.3 in Section 7.2.

7.1 Proof of Lemma 7.2

Fix a boolean circuit C' (see Section 3.1) with W wires, and an input = € {0,1}" for C; denote
by H the number of layers in C. For h € [H|, let W} be the set of wires in layer h, and let
Dy, = span{e; : w; € Wj,}. In other words, D, is the subset of {0,1}" containing all vectors v such
that v; = 0 for all indices i € [N] where the wire w; is not in layer h. There is a unique correct
transcript of the wires of the circuit for the computation of C' on w; we let Tr(c 4 : {0, 13V —{0,1}
denote the linear extension of this transcript.
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For aset S C {0,1}" let F(S) be the event that .A(S) returns values that are consistent with the
correct transcript. That is, F(S) occurs if and only if for each v € S it holds that A(a) = (Tr(c 4, @)-
When the set S = {a,...,q;} is specified explicitly by its elements, we allow ourselves to write
E(aq,...,0q) to refer to E({aq,...,a¢}).

Let t = [logy(1/e)]| be a parameter. By our choice of parameters, k > 2t > ¢t + 2. For each layer
h € [H] of the circuit, let zp, 1,...,2n+ € Dy be chosen uniformly at random. That is, each zj; is a
uniformly random linear combination of the wires in layer h of C. For a layer h € [H] of the circuit
C, let E}, denote the event that E(zp 1, ..., 2,) holds, i.e., all values output by A(zx1,...,2n) are
consistent with the correct transcript of C' on input . Note that the randomness of Ej, is over both
Zh1s---,2nt and over A; Ep, will be the event that we will condition on in layer h (see Section 2.3).

In the proof we use the following definition.

Definition 7.4. A set S C {0,1}" (of linear combinations of wires) is p-good for layer h if
Pr[E(S) | Ex] > p. When S = {a} is a singleton, we say that o is p-good for layer h.

Note that in the foregoing definition we do not insist that the elements of S belong to Dy, and
it is well-defined to ask whether a linear combination of wires outside Dy, is good for layer h.

We first argue that if £ occurs with probability at least 0.5, then any linear combination of
wires in layer h is p-good for p close to 1.

Claim 7.5. If Pr[E},] > 0.5, then every oy, € Dy, is (1 — 27)-good for layer h.

Proof. Fix ap € Dy, and let B1,...,B: € Dy be chosen independently and uniformly at random. For
i=1,...,t, pick zp; € {8, ap + B;} uniformly; note that the zj;’s are uniform in Dj,.

We claim that Pr[E(zp1,...,2nt) | 7E(ap)] < 27 We first observe that if E(ay) does not
hold then A(ay,) is not consistent with the transcript Trc ), i-e., A(an) # (Tr(cz), an). Therefore,
if K >t + 1, then by the linearity of A for each i € [t] it holds that either A(8;) # (Tr(cq), Bi)
or A(ap + Bi) # (Trca), an + Bi). In other words, if E(ay) does not hold, then either E(f;)
does not hold or E(aj, + 3;) does not hold for all i € [t] independently of each other.!Y Hence,
Pr(E(zn1,---,2nt) | 7E(ap)] <27

Therefore, since k >t + 1, we have

Pr[—\E(ah) VAN Eh]
Pr[E})
<2Pr[=E(an) NE(2h1,--.,2ne)] (since Pr[Ep] > 0.5)
<2Pr[E(zn1,. .-, 2nt) | " E(ap)]
< 2*t+1 .

Pr[ﬂE(ah) ‘ Eh] =

By definition, this means that oy, is (1 —27¢*1)-good for layer h, as claimed. O

We now use the above claim, and the condition that A satisfies the constraints representing the
computation of C' on x with high probability, to show that if Ej occurs with probability at least
0.5, then any linear combination of wires in the next layer is good with high probability.

Claim 7.6. If Pr[E},] > 0.5, then every apy 1 € Dy is (1 — (27572 + 2¢) - Nyy1)-good for layer h.

10This is the only place in the proof where we use the fact that the zn,;’s are random.
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Proof. Fix apy1 € Dpyq. If ap 11 = e; is a standard basis vector with 1 in a coordinate corresponding
to some wire w; in Wp1, then there is some gate g in C taking two inputs w;,, w;, in layer h and
outputting w; in layer A + 1. By Claim 7.5 (and union bound), we have

PrlE({e;,, ein}) | Ep] > 1—272
By the assumption that A is a local assignment generator for (C,x) with error ¢ it holds that
Prlg(A(ei,), Aleiy)) = Alei)] 21— ¢,
which implies that
Pr=E(ei) A E({eiy, ei})] < Pr[=E(ei) [ E({eiy, ein})] <€
Hence,

Pr[=E(e;) | En] = Pr[=E(e;) A~E({eiy, i }) | En] + Pr[=E(ei) A E({eiy i, }) | B
Pr[=E({ei,; i, }) | Bl + Pr[=E(e;) A E({eiy, ew, }) | B
t Pr[-E(e;) N E({ei, €, })]
2 Pr[Ej]
2712 1 2¢  (since Pr[Ej] > 0.5) .

IN

IN

IN

Therefore, for a1 = e; it holds that A(ap1) conditioned on Ej, is consistent with Tr(c ;) with
probability at least 1 — (27772 + 2¢), i.e., such a1 is (1 — (2772 + 2¢))-good for layer h.

If ap4q is not a standard basis vector, then it is a linear combination of at most Np,; basis
vectors, and since A is a linear non-signaling function we get by union bound that A(ap41) is
consistent with Tr(c ;) with probability at least 1 — (2712 4+ 2¢) - Nj4 1, as required. O

We now use the foregoing claims to prove Lemma 7.2.
We use induction on the depth of C' to show that Ej holds with high probability for every

layer h. Specifically, we show that, for every layer h, Pr[E] > 1 — (2742 4 2¢) - (Z?Zl Ni> -t. In
particular, this will imply that Pr[Ey]| > 0.5, which will allow us to conclude that C(x) = 1.
Note that by the choice of the parameters, the obtained bound on Pr[E}] will be greater than

0.5 for every layer h € [H|, which will allow us to apply Claim 7.6 in the induction step. Indeed, for
k > 2logy(1/¢), elogy(1/e) < 5ax, and t = |logy(1/€)]| > logy(1/€) — 1, we have

h
1— (2772 4 2) - (ZN) t>1— (272 £ 2) - N-t>1—10e- Nlogy(1/) > 0.5 .
=1

We now provide the details of the induction and corresponding conclusion.

Base case. For the base case, we show that E; holds with probability 1 — (27172 4 2¢) - Ny - ¢.
Fix i € [n] so that w; is the i-th input wire in C. Then, by the assumption that A is a linear local
assignment generator for (C,x) with error € we have Pr[A(e;) = x;] > 1 — €. By the linearity of A
and union bound, if « € Dy then

PriA(a) = (Tr gy, a)) 21 —en=1-eN; > 1~ (27172 4 2) - Ny -t
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which proves the base case of the induction.

Induction step. For the induction step we assume that Pr[Ej] > 1 — (2712 + 28)(2?:1 N;)t,
and prove the corresponding statement for Ej 1. By the earlier discussion we have Pr[E}] > 0.5,
and thus by applying Claim 7.6 we get that for all z;41 € Dy it holds that Pr[E(zp41) | En] >
1 — (272 4+ 2¢) - Nji1. Therefore, for any zp411,...,2n+1t € Dpy1, by union bound we have

Pr[Epy1 | En) = PrE({zhs11,- - 2ne10)) | Bn) > 1— (2772 4+ 26) - Njpyy -t
This implies that

PI'[Eh+1] Z PI‘[Eh+1 ’Eh] PI‘[Eh]
= (1— (272 4+ 2¢) - Ny - t) - Pr[Ey]

h
> (1— (272 +2¢) - Npyq - 1) (1 — (27 +20) ) N t)
=1
h+1
1— (27" +2) > N+t
=1

v

which proves the induction step.

Proving that C(xz) = 1. It remains to show that Pr[Ey] > 0.5 implies that C(z) = 1. Let
wy be the output wire of C, and let ex be the corresponding basis vector. By Claim 7.5 we have
Pr[A(en) = C(x) | Eg] > 1 — 271, This implies that

Pr[A(en) = C(z)] > Pr[A(en) = C(x) A Eg]
= Pr[A(eny) = C(x) | Eg] - Pr[EH]
(1—27t1)/2
1/4 .

On the other hand, by the assumption that A is a linear local assignment generator for (C,z) with
error €, we have Pr[A(en) # 1] < e. Therefore,

AVARAY]

Pr[C(x) # 1] = Pr[C(x) # A(en) N A(en) = 1] + Pr[C(z) = A(en) A A(en) # 1]
< Pr{C(z) £ Alex)] + PriA(en) # 1]
<3/4+¢
<1.

Since C(x) is a deterministic value, we conclude that C(z) = 1, thus proving Lemma 7.2.

7.2 Proof of Lemma 7.3

Let C: {0,1}" — {0,1} be a boolean circuit with only OR gates and let the input z be 0"; note
that C(x) = 0. Fix € > 0. We first define a distribution D over functions f: [N] — {0,1}.

To sample a function f from D, we assign values to f one layer at a time. For each wire w; in
layer O (the input layer), f(i) = z; with probability 1 — e. Then, for each wj; in layer h + 1, letting
w;, and w;, be the wires in layer h that are inputs to the gate g that computes w;, f(i) is sampled
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as follows. If either f(i1) or f(i2) is 1, then f(i) = 1 with probability 1. Otherwise, f(i) is 0 with
probability 1 — €, and 1 with probability . In other words, if at least one of the input wires is 1,
then the gate is computed correctly, otherwise it is computed correctly with probability 1 — €.

Given the distribution D, we define A: {0,1}" — {0,1} to be the linear extension of D to
the domain {0,1}". Namely, while D is a distribution over functions f: [N] — {0,1}, A is the
corresponding distribution over linear functions hy: {0,1}" — {0,1} such that h; is the linear
function defined by hy(e;) = f(i) for all i € [N].

Note that A is a 2" -non-signaling function (since it is a distribution), and is linear since it is a
distribution over linear functions. Moreover, A satisfies all gate constraints locally with probability
at least 1 — ¢, since D either computes the gate correctly with probability 1 — €, or it computes the
gate correctly (but with incorrect inputs) with probability 1. Also, A assigns correct values to the
input wires with probability 1 — €, since D does. Hence, to show that A is a linear local assignment
generator with error ¢, it remains to show that Pr[A(ey) =1] > 1 —e.

We have that Pr[A(ex) = 1] = 1 — (1 — ¢)", since A assigns 1 to the output gate if at least one

wire has the wrong value, and the probability that all wires are correct is (1 — &)™,

_~\N
For ¢ > % and N sufficiently large, 1 — (1 — E)N > 1—¢. This is because (1%) < e—eN-Ine <
e IMN=InIn N+In N — o=InlnN" 1 for N sufficiently large.
In sum, A is a 2V-local assignment generator for C' on input z with error e, but C (z) =0.
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8 The linear PCP verifier of ALMSS

In this section we prove Theorem 6.
Throughout, we fix a language L € DSIZE(S) and an instance xz € {0,1}". We denote by
C := C), the boolean circuit with N := S(n) wires such that = € L if and only if C(x) = 1.

8.1 The ALMSS verifier

We analyze the LPCP verifier of [ALMSS98| (the “ALMSS verifier”), which we now recall.

The computation of C' on z is viewed as a system of M := N + 1 equations {P;(W) = ¢;} e
over N boolean variables w = (wy,...,wy) € {0,1}", where Py,..., Py: {0,1}"Y — {0,1} are
quadratic polynomials (each involving at most three variables in w) and ¢y, ..., ¢y are boolean
constants. Each variable represents the value of one of the wires of C' on input z; wy, ..., w, are
the n input wires and wpy is the output wire. There are three types of constraints:

Input consistency: For every j € {1,...,n}, Pj(w) := w; and ¢; := z;.
Gate consistency: Forevery je{n+1,...,N},

e If the wire represented by the variable w; is an output of an AND gate g where the inputs
to g are given by wj,, wj,, then Pj(w) := w; — wj, - wj, and ¢; := 0.

o If the wire represented by the variable w; is an output of an OR gate g where the inputs to
g are given by wj, , wj,, then Pj(w) := w; — wj, — wj, + wj, - wj, and ¢;j := 0.

e If the wire represented by the variable w; is an output of a NOT gate g where the input to
g is given by wj,, then Pj(w) := w; —wj, and ¢ := 1.

Accepting output: Py(w) :=wy and cps := 1.

We overload notation and use P; to also denote the upper triangular matrix in {0, 1}V * such that
Pj(w) = (Pj,w ® w); that is, if Pj(w) = N | aw; + Y i<icir<n Giiwiwy, then Pj has a; in the
diagonal entry (i,7) and a; ;s in the entry (i,7'), for 1 <i <4 < N. Also, for a € {0,1}"V, D, is the
diagonal matrix in {0, 1}N2 whose diagonal is a. The LPCP verifier of [ALMSS98] is as follows.

The ALMSS verifier, given input = € {0, 1}" and oracle access to a linear non-signaling function

£:{0,1}* = {0,1}, works as follows:

1. Use the circuit C' and input x to construct the matrices Py, ..., Py € {0,1}¥” and constants
c1,... ¢y € {0,1}, which represent the computation of C' on z.

2. Sample u,v € {0,1}" and s € {0,1}™ uniformly and independently at random.

Query the oracle £ on the 4-element set S = {D,, Dy, u ® v, Z]]Vi1 s; Pj}.

4. Check that £(D,)L(D,) = L(u ® v) and C(Zj]\il 5;Pj) = ij\il 55Cj.

@

We also analyze the t-wise repetition of the ALMSS verifier (the “t-repeated ALMSS verifier”).
Parameters. The parameters of the ALMSS verifier are the usual ones, which we review.

The ALMSS verifier uses 2N + M = O(S) random bits and makes 4 queries to the proof. The
proof is expected to be a linear function 7: {0, 1}V ' {0, 1}, which can be represented via a vector
of N? = O(S?) bits. The queries are input oblivious because they depend only on the language L
and input size n, which in turn determine the circuit C.
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The time complexity of the query sampler is dominated by the cost of constructing the matrices
Py, ...,Py €0, l}N2 and constants cy, ..., cy € {0,1}, which takes time O(S?).

The time complexity of the decision predicate is O(n), because it takes O(n) time to compute
Z?Zl sjc;, and the rest of the computation takes constant time. Note that the query sampler
precomputes Zj]\in—‘,—l s;jcj, since it does not depend on z (only ci,...,c, depend on x).
Completeness. Completeness of the ALMSS verifier is as in the classical setting. Namely, suppose
that C(x) = 1, and let w = (w1, ..., wy) € {0, 1} be such that w; is the value of the i-th wire when
C computes on z. Then, the linear function defined as m(Z) 1= (W @ W, Z) = 3_, .ic nj Wiir * Zii

for all Z € {0, 1}V * is accepted with probability 1. Indeed,

1,1 €]
1. for every u,v € {0,1}" it holds that

w(Dy)m(Dy) = Z wW;; Z wyvy | = Z wiwyuvy = m(u @) ;

1€[N] i'€[N] i, €[N]

2. for every s € {0,1}M it holds that

M M M

W(ZS;‘PJ') =D sim(P) =) 8¢5
j=1 j=1 j=1
because w(P;) = (w ® w, Pj) = Pj(w) = ¢; for all j € [M].

Soundness. Soundness against non-signaling functions is quite unlike the classical case, and is
discussed in the next few sub-sections. We shall prove that if the ALMSS verifier accepts a given
linear k£ non-signaling function £: {0, 1}V R {0,1} with sufficiently large constant probability,
then C(x) =1, and thus = € L.
8.2 Step 1: Constructing the linear local assignment generator

We have proved in Section 7 that, to conclude that C'(x) = 1, it suffices to construct a linear local
assignment generator with sufficiently small error and sufficiently large locality. Here we show
how to construct a linear local assignment generator from any linear &’-non-signaling function £’
(possibly different from £) that satisfies every test of the ALMSS verifier with large probability.

Lemma 8.1. Let k' > 4. Suppose that L': {0, 1}N2 — {0,1} is a linear k' -non-signaling function
for which the following holds.

1. Every tensor test is satisfied with probability 1 — 1

Y,y e {01}V, Pr [L/(Dy)L'(Dy) =L (z@y)] >1—e; .

2. Every satisfiability test is satisfied with probability 1 — &9

M
% 0,1M Pr | P | = cil >1—¢e9 .
SE{, } ’a/r ;S] J jz;s]c] - €9
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Then there exists a linear k'-local assignment generator A for (C,z) with error e’ < ej + &5.

Proof. Being a linear k’-non-signaling function, £’ can be represented uniquely as a quasi-distribution
over linear functions f: {0,1}* — {0,1}. For each B € {0,1}"", let {5 € R be the weight that £’
assigns to the linear function (B,-). Define A: {0,1}" — {0,1} to be the quasi-distribution over
linear functions f: {0,1}" — {0,1} that assigns to each linear function {(«,-) the weight p,, where

Pa = Z (g,
Be{0,1}V?
s.t. diag(B)=a
where diag(B) € {0,1}¥ is the vector on the diagonal of the matrix B. We now prove that A is a
k’-local assignment generator for (C,x) with error e <ep+eq.
Locality. The quasi-distribution A is &’-local because, for every subset S C {0, 1} of size at most
k' and every string b € {0, 135,

Pr [A(S) = 5} = Z Da
ac{0,1}¥ s.t.
VzeS <C¥,Z>:gz

= > 2. s

ae{o,l}N s.t. BE{O,l}N2
VzeS (o,x)=bsy \s.t. diag(B)=a

- Z (5

Be{0,1}V°
s.t. VzeS (diag(B),z)=bs

= Z (5
Be{0,1}V?

s.t. VoeS (B,Dy)=b;

=Pr [Va: €S L(D,) = Ex] >0 . (as L' is K'-local)

Satisfying the constraints. The quasi-distribution A satisfies all M constraints if and only if for

for every constraint P; it holds that P;(A(S;)) = ¢;j, where the set S; contains the indices for the

variables influencing P;, and P; is interpreted as the polynomial that accepts only these variables

(i.e., ignoring the variables in the coordinates [N]\ S;). Recall that each P; depends on at most 3

variables. Therefore, we may query A on such sets S;, provided that A is k’-local for k' > 3.
Below we show that for each j € [M] it holds that

PrPj(A(S))) = ¢j] 21— (e1 +e2) - (2)

Suppose first that P;j(-) = ¢; is a constraint that does not involve a quadratic term, so that it is
either an input consistency constraint or a NOT gate constraint. We will prove the statement only
for the case of an input consistency constraint; the case of a NOT gate is analogous, and we omit
its proof. An input consistency constraint has the form w; = ¢; for some i € [N] and ¢; € {0,1}.
Therefore,

Pr[P;(A(S;)) = ¢;] = Pr[A(ei) = ¢;] = Pr[L/(De;) = ¢;] = Pr[L'(P}) = ¢j] = 1 — &3 .
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Otherwise, P;j(-) = ¢; involves a quadratic term. More specifically, P; either corresponds to an
AND gate, and hence is of the form w; — wj;, - w;, = ¢;, or it corresponds to an OR gate, and is of
the form w; — w;, — w;, + w;, - w;, = ¢j. Below we prove that Pr[P;(A(S;)) = ¢j] > 1 — (1 +€2)
for the case of an AND gate; the case of the OR gate is analogous, and we omit its proof.

If P; corresponds to an AND gate, then

Pr[P;(A(S;)) = ¢j] = PrlA(e;) — Ales,) - Alei,) = ¢j] = Pr[L/(De,) — L'(De,,) - L'(De,,) = ¢j]
Since £’ individually satisfies each tensor test constraints with probability 1 — &7 and &' > 4,
PI“[,C/(DGZ.) - ‘C/(Deil )E/(Dez‘z) = Cj] > PI“[,C/(DGZ.) - Ll(eil ® ei2) = cj] -1 .
We conclude that
Pr[P;(A(S))) = ¢j] = Pr[L(De,) — L'(es, ® €3,) = ¢j] —e1
=Pr[L'(De, — e, ® €;,) = ¢j] — €1
=Pr[L'(P}) = ¢j] — &1

>1—e1—¢9 . ]

8.3 Step 2: Reducing the soundness error

We now argue that if £ passes the t-repeated ALMSS verifier with probability at least v and k = Q(t),
then there exists a (possibly different) linear (k — 4t)-non-signaling function £’ that satisfies every
constraint of the (non-repeated) ALMSS verifier with high probability (1 —2-9v®)). Namely, if £
satisfies the t-repeated ALMSS verifier on average, then £’ satisfies the ALMSS verifier with high
probability in the worst case. Informally, £ equals £ conditioned on the t-repeated verifier passing.

Definition 8.2. Given a linear k-non-signaling function L: {0, 1}N2 — {0,1} and a parameter
t, we let accept, denote the event that the t-repeated ALMSS wverifier accepts L, namely, that for
uniformly random v, oM, ... u® v® € {0, 13N and sV, ..., s € {0,1}M it holds that

M M
Vielt], L(Dyw)L(Dyw)= LD @0v™) and L Z sgz)Pj = Z sg»l)c]

J=1

For k' :=k — 4t, we define £': {0,1}N° — {0,1} be the linear k' -non-signaling function defined as

Pr[£(S) = b A accept,]

Py [z'(S) - 5} .= Pr [E(S) _ acceptt} - Drfaccept)

L

Lemma 8.3. For every k,t € N such that k > 51t and linear k-non-signaling function L: {0, l}N2 —
{0,1}, if Prolaccept,] >~y then

Y,y e {01}V, P[ ( 'Dy) =L(z@y)] >1—¢

D;)C
M M
Vs e {0,1}M, Pr Z Zsjcj >1—¢e9 ,

(4"

where 1,9 <

= |
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Proof. The proof relies on the following two claims.

Claim 8.4. For every d € N such that k > max{12d + 3t, 4t + 3},

4/ d \\'t
Yoy 00, BLDICD) A L] < (1)
Claim 8.5. For every d € N such that k > max{t + 2d, 4t + 1},

M M 2 d O\ /2
Vse{0,1}M, Pr|L siPj | # 55Cj §<>
{0,1} o ]Z:; 3t ; i€ ~\t+4d

We prove the claims further below, and for now show how they imply the lemma. By the
assumption that k£ > 51¢, we can set d := 4t in order to get

4 (a1 5 a4\t
Pr(/ (D)L (D ! <= (= < ==
e DAL D) £ Lo <2 (1) <2 (5)
M [2¢] 2t—1 t
2 (4t 2 (4 5 (4
Pr (L 5 Pj 55Cj §<> §<> §<> . O
L ]z; 75 #; V) v 5¢ v 5 y 5

We now prove the two claims.

Proof of Claim 8.4. Denote by tensor; the event “L(D ) )L(Dyw) = L(u® @ v®) for all i € [t].
If we assume that z and y are chosen randomly, then a naive application of Lemma 5.1 implies that

Pr[L(Dy)L(Dy) # L(x ® y) N accept,]

Pr(L(D,)£/(Dy) # £ (v @ y) =

Pr[accept,]
< Pr[L(D;)L(Dy) # L(x ® y) A tensor,]
- Pr[accept,]
< 1
“t+1)

We will instead invoke the lemma more carefully and use the assumption that the locality of L is
sufficiently large to prove a stronger bound for fized x and y. Specifically, we use the assumption
that k > max{12d + 3t, 4t + 3}, together with the linearity of £ to prove that for all z,y € {0,1}%,
it holds that

d O\ LT
Pr[L(D)L(Dy) # L(x ® y) A tensor,] < 4 <t+d> . (3)

Indeed, this implies that

IZF[E’(D:(;)E’(Dy) £z ®y)] = Pr[ﬁ(Da;)E(Dlgi[zéc(i(pJ;f y) N accept,]

< Pr[L(D;)L(Dy) # L(x ® y) A tensor]
- Pr[accept,]

4 d ol
<7 T g )
Ty <t—|—d>
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which is what we wanted to prove.
It remains to argue that Eq. (3) holds. Let wg(cl), e wé ), wél), ... ,wéd) € {0,1}" be 2d vectors
chosen uniformly at random. By linearity of £, for all i € [d] we have

L(Dz)L£(Dy) = LD )LD, i)+ L(D,0)LD, o) (4)
+LD, ) LD,w) + LD, )LD, o),
Loy = Lo @w))+ L)) @ (y +w)) (5)

+ L((z +wl) © wl)) + L((x + w;ﬁ”) © (y+w)) .

For a positive integer r < d/4, Lemma 5.1 implies that

Pr

IN

for at least r indices i € [d]
L(D,0)L(D ) # Lwd ©wi?) A tensor,

for at least r indices i € [d] (

Pr

IN

7 At
E(Dw?(ci))[’(Dy+w(yi)) ?é E([E ® (y + w?(J ))) ensor;

P for at least r indices i € [d] . g 4\
i i t - 7
YLD, ) EDy) # L@+ ul?) @ wy)) =t

for at least r indices i € [d]

L(D,, )LD, )7 L(x+ w) @ (y +w))
* Y

Pr A tensor;

IN

Denote by neq the union of the foregoing events. By union bound, Pr[neq] < 4(;f;)", and hence

Pr[L(D;)L(Dy) # L(x ®y) Atensor,] < Pr[L(D,)L(D,) # L(x®y) Atensor; | ~neq] +4 <t _i d>T .

We show next that Pr[£(Dg)L(D,) # L(x ® y) A tensor; | -neq] = 0. Indeed, if —neq holds and
4r < d, then there exists i € [d] such that

° Pr[ﬁ(Dw;i))ﬁ(Dwéi)) = L(wy @) ® wgs)),
o PrL(D. )LD | o)=Lz y+uw)),

)
Wy y+wy . .
o LD, 0)L(Dy) = L((z +w) @ wy), and

erwé)
o LD, )LD, o) =L@ +u) @y +uwy).

Therefore, by Egs. (4) and (5), if —neq holds and 47 < d then L(z ® y) = L(Dy)L(D,). This implies
that Pr[£(D,)L(D,) # L(z ® y) A tensor; | =neq] = 0, and so for r = | 471 ] we get that

PHE(DLL(D,) # Ll o) Atensor] <4 (1) = (Hd)

which proves Eq. (3), and thus completes the proof of Claim 8.4. 0

Proof of Claim 8.5. Let s(V, ... s®) ¢ {0,1}™ be chosen uniformly at random, and denote by sat;

the event that
Vielt] £ Zs?ﬂ- = ngl)cj .

J=1



We use the assumption that k > max{t + 2d, 4t + 1} to prove that for all s € {0, 1}* it holds that

M M d O\ /2]
Pr|L Zsij # Z sjcj Asaty| <2 <t—|—d> . (6)
j=1 j=1

Indeed, this implies that

Pr [E (Zj\il sij> # Z;‘il sjc; A\ acceptt}
Pr[accept,]

Pr [ﬁ (Z]Nil Sjpj> #* Z]j\il s;jci N satt}
Pr[accept,]

9 d d/2
< - T 7 )
Ty <t + d)
which is what we wanted to prove.

It remains to argue that Eq. (6) holds. Let y Wy e {0,1}M be chosen uniformly at
random. By linearity of £ and Lemma 5.1, we have

M M
Pr ﬁl ZSJ'P]' #ZSJ'CJ' =
j=1 7=1

<

M M
Pr|LC Z siP; | # Z sjc; N\ saty
j=1 J=1

for every index i € [d]

= Pr i i A sat
s sMefo0,1}M [ L (Zj]‘il(sj + y( ))Pj> + £ (23{1 y§ )P]) # Zﬁ‘il 55Cj t]
y(1)7"'7y(d>6{071}1\/1

L

for at least |d/2] indices i € [d]
= [ (MG + 0B # S5+ o)y " t]
for at least |d/2] indices i € [d]
c(Zhu'P) # e " t]

g\ L2
<2 ,
<2(752)

which proves Eq. (6), and thus completes the proof of Claim 8.5. O

+ Pr

8.4 Step 3: Soundness of the ALMSS verifier

Fix N > 16, let t := 25log, N, and suppose that £ is a linear k-non-signaling function £ that is

accepted by the t-repeated ALMSS verifier with probability at least v = (%)t, where k = 51t =
O(log N). We need to conclude that C(x) = 1.

By Lemma 8.3, there exists a linear k’-non-signaling function £’ with ¥’ = k — 4t = 47t such that

Y,y € {0, 1Y, Pr[L/(D,)L'(Dy) = L'z oy)] >1-a
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M M
VSG{O,l}M, 12/1” L ZSij :ZS]'C]' >1—eo ,
i=1 j=1

with &1 + &5 < 20 ()" =10 (8)".

By applying Lemma 8.1 to £’ we obtain a linear &’-local assignment generator A: {0,1}"V — {0,1}
for (C,x) with error €1 +e2 =10 - (%)t.

By the choice of the parameters we have N > 16 and ¢t = 25log, N so that 10 - (%)t < 40% and
t > 21ogy(40N?).

Therefore, A is a linear k’-local assignment generator for (C, x) with error ¢’ = 40%, and locality

k' >t =25logy N > 2logy(40N?) > 2log, 3. Moreover, &' logy(1/¢') < % < sow-

Hence, by applying Lemma 7.2 to A, we get that C(z) = 1.

Finally, applying Lemma 5.6, we conclude that if a linear O(log N)-non-signaling function £ is
accepted by the basic ALMSS verifier with probability greater than %, then C(x) = 1.
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9 Testing linearity with low error

In this section we prove Theorem 7. Toward proving the theorem we define a repeated self-correction
of F, which we denote by ?t,rh and prove that if F passes the [BLR93| linearity test with probability
1 — ¢, then (i) F;q is close to a linear k-non-signaling function £, and (ii) for all for all query sets
S C {0,1}" of size at most k it holds that the statistical distance between F(S) and F; 4(S) is
upper bounded by O(|S]+/g). We proceed with the details below.

9.1 Defining ?t,d

The definition of the repeated self-correction 7,5,(1 relies on components that we now introduce. First,
we define a repeated and relazed version of the linearity test, parameterized by ¢ € N and p € [0, 1].

¢ Query sampler: Q; samples 2¢ uniformly random vectors 2™,y ... 2® y® € {0,1}" and
outputs the 3t queries (x(i), y@ 2@ 4 y(i))i el This is the basic lineamty test repeated t times.

e Decision predicate: D; , receives 3t answers (a ), Qi) 5 %(i>+y<i))ie[t] to the queries, and accepts
if and only if a ) + a,6) = a4, for at least (1 — p)t indices i € [t]. That is, the test accepts
if at least a (1 — p)-fraction of the repetitions pass.

Next, we define encoding and decoding procedures used to query JF; they are parametrized by d € N.

e Encoding procedure: given a set S = (z1,...,25) C {0,1}", Encg outputs a set of vector pairs
{(zj(i) , ]( D4 ) }ielq for each z; € S according to the following distribution: for each i € [d], Ency
samples n vectors yi ), e ,yg) from {0,1}" independently, and sets z( ) to be Mz, where M is
the n X n matrix with yl( " as the I-th column. Explicitly, 2;” = 37| 1(371) ( ), where we note
that (x;); is a bit, while yl( " is a vector.

e Decoding procedure: given F(Ency(S)) (the answers of F to the encoding of S), Decy outputs
the vector b = (by,...,bs) € {0,1}° of answers defined as

R QU BN )
b]?elﬁﬂ{}"(zj + ;) — F(2 )}

Given the foregoing components, the conditioned self-correction F; 4 of F is defined as

-,

Pr[F;4(S) = b] := Pr[Decy(F(Ency(S))) = b | Dy o (F(Q)) = 1]

for every S C {0,1}" of some maximal size and be {0,1}°. That is, on an input , the self-correction
Ft.q outputs the majority over d corrections, conditioned on the event that (1 — p)-fraction of the ¢
repetitions of the basic linearity test pass.

Before proceeding, we prove that ﬁ,d is indeed a non-signaling function. While this may seem
obvious, we note that there are choices of Ency and Decy for which .de will not be non-signaling.

Lemma 9.1. If F is k-non-signaling and k > 2dk + 3t, then ftd is a k-non-signaling.
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Proof. We will prove that for all T 2 S and b € {0,1}5 it holds that Pr[Fia(T)|s = b =
Pr[F:q(S) = bl. Given T 2 S and b € {0,1}°, we have

—

Pr{F,a(T)ls = B = Pr [ Decy(F(Enca(T))ls = b | Dy, (F(Q1) = 1]

The specification of Encg, Decg and the non-signaling property of F imply that Pr[Decy(F(Ency(T)))|s =
Decy(F(Ency(S)))] = 1.11 Indeed, by definition of Ency we have that Ency(S) is equal to Ency(T)
when we ignore the encodings of the elements in 7'\ S. Since F is non-signaling, it follows that
F(Ency(S)) is equal to F(Encg(T')) when in the latter distribution we ignore the answers pro-
vided by F to the encodings of elements in 7'\ S. Finally, since Decy decodes each element of

S (or T') separately, it follows that Decy(F(Ency(S))) and Decy(F(Ency(T)))|s are equal. Thus,
Pr[Decy(F(Ency(T)))|s = Decg(F(Ency(S)))] = 1. From this, it follows that

Pr [Decd(f(Encd(T)mS = b A Dy, (F(Q)) = 1]
= Pr [Decy(F(Ency(T)))\s = A Decy(F(Enca(T)))|s = Deca(F(Ency(S))) A Dy, (F(Q)) = 1]

— Pr [Decd(f(Encd(S))) = b A Dy, (F(Q)) = 1}

Therefore,

e — -

Pr[F..a(T)|s = b)
— Pr [Decd(f(Encd@)))\S = b | Dy p(F(Q) = 1}
= Pr | Decy(F(Ency(S))) = b | D (F(Q)) = 1]

J— -,

= Pr[}—t,d(s) = ] )

and so .Tnd is non-signaling. Note that all the probabilities are well-defined provided that k& > 2d | S|+
3t (as Encg(S) € Ency(T)) which holds for |S| < k. This completes the proof of Lemma 9.1. O

9.2 .Tt,d is close to linear

In this section we show that if Pr[D; ,(F(Q:)) = 1] is bounded away from zero, then F 4 is close to
linear assuming that ¢ and d are sufficiently large. Specifically, we prove the following lemma.

Lemma 9.2. For anye >0 and v > 0, if t,d = Q(k +log 1 + log %) and Pr[Dy ,(F(Q)) =1] > v
and p < 1/20, then there exists a linear k-non-signaling function L such that Ap(L, Fiq) < €.
Proof. The proof invokes the following theorem on linearity testing, due to [CMS18|.

Theorem 8 (|[CMS18]). Let F be a l_c—non—sz;gnalmg function such that for all z,y € {0,1}",
Pr[F(z) + F(y) = F(z +y)] = 1—¢ and Pr[F(0") = 0] = 1. Then there exists a linear k-non-
signaling function L such that Ap(F, L) < 22k&.

The key step of the proof of Lemma 9.2 will be to prove the following lemma.

1Note that Ency is a randomized procedure. We assume both calls to Ency use the same randomness.
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Lemma 9.3. Let F; 4 be the correction of F, and suppose that Pr[Dy ,(F(Q)) = 1] > ~. If p < 1/16,
then for all x,y € {0,1}" it holds that

Pr[Fra(a) + Fra(y) = Frale +y)] > 1—¢ (7)
N (1/16—p)2 - min{t,d} _ (1/8—p)2-min{t,d} )
for é = % e~ 3 + M + % -e “5 , where ' is some absolute constant.

Indeed, by Theorem 8 this implies that there exists a linear k-non-signaling function £: {0,1}" —
{0, 1} such that

Ay (Fra, £) < 2% ¢ .
Therefore, for p < 1/20 and ¢,d = Q(k + log(1/¢) + log(1/7)) we get that

_ ) /4. 9-0)
Ay (Fra, £) <220 <3 e7O01 4 Ctj + 3 : e_o(t)> <e,

which proves Lemma 9.2. ]

We now prove Lemma 9.3. Recall that ?t,d is defined as Decy o F o Ency conditioned on

D¢ »(F(Q¢)) = 1. For the query set S = {x,y,z + y}, the encoding Ency(S) can be split into three
sets: {(zg),zg(j) +x):i€[d}, {(z?(f),zg) +y):i€[d}, and {(ziﬁ)ry,z:(;)ry +x+y):i€[d}, where
zg(cl), e z;(vd); zz(,l), . ,zéd) € {0,1}" are independent and uniform in {0,1}", and Z;?_y =0+ zéi)
for all ¢ € [d].
It will be convenient to define bY) = F (zﬁf) +z)—F (zg)) for all i € [d]. Similarly, define
bg) = ]:(zéi) +y)— .7-"(2752')) and bg}ry = ]-"(z;a)ry +r+y)— F(za(ﬁy) for all ¢ € [d]. Using this notation,
b

the decoding Decy returns the answer maj;c|g { = } for x. Analogously, the decoding Decy returns
maj;c(q) {bz(j)} for y, and Decy(z + y) = maj;cq {bizly} for = +y.
The proof of Lemma 9.3 consists of the following 3 steps.
1. We first show that, if we condition on Dy ,(F(Q¢)) = 1, then with high probability there is some
by € {0,1} such that bgf) = b, for most indices i € [d]. By symmetry, this holds for y and = + y.

2. We then show that, if we condition on Dy ,(F(Q;)) = 1, then with high probability b —i—bg(f) = bﬁy
for most indices ¢ € [d].

3. Finally, by union bound all these events happen simultaneously with high probability, implying
that Fy 4(x) + Fra(y) = Fra(z +y) with high probability.

9.2.1 Step 1: Majority is a vast majority

Lemma 9.4. Let p € [0,1] and t,d,r € N be parameters such that d is even, r < d/2, and p < r/4d.
Let F be a k-non-signaling function with k > 6d+3t. Fiz xz € {0,1}", and let (V... 2@ ¢ {0,1}"
be independent uniformly random vectors. Denote by Agr,(x) the event that 3b € {0,1} such that
F(2) +z) — F(zU)) = b for at least q indices j € [d]. Then
2 (/ad-p2min{tay c-d-27"/4
PrlAgty () | Dip(F(Qu) = 1] 2 1= Zeem e - =

where ¢ 1s some absolute constant.
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Proof. Instead of arguing about Agr () directly, we first define a related event PairAgr, () for
some ¢ that depends on ¢, and show that Pr[PairAgr, () | Dy,,(F(Q)) = 1] is high. We then relate
PairAgr,(z) to Agr, (7).

Denote by PairAgr, () the event that F(x@ D 42) = F(x@V) = F(®) 4-2) - F(2)) for at
least ¢ indices j € [d/2]. Note that if F(z(* =D 4z)— F(22~V) £ F(x?) 4-2)— F(2(2)), then cither
F(z@=Y 4 2)+ F(x?)) £ F(xZ1 423 4 2) or F(2®) +2)+ F(zP=D) £ F(xZ-1) 4220 4 1),
Therefore,

Pr {ﬁPairAgrg_i(x) | Dt p(F(Qp)) = 1]

for > r/8 indices Jj€ld/?]
< =
=P P 40) + Fal) # FalD) 4 2) 4q) [ProlF Q) =1
for > r/8 indices j € [d/2] B
+ Pr ]:(17(2]) +£L’) +]:( (2j-1) ) ?é ]:( (25-1) +$(2j) +ZL‘) t,P(]:(Qt)) =1
Since (%=1 4+ 2 and (%) are uniformly random and independent, by Lemma 5.2 each of the two

_ (7“/4cl7p)2 -min{¢,d}

terms is upper bounded by % -e 8 . Therefore,

2 _ ('r/4d7p)2-min{t,d}
8

Pr ﬁPairAgr%_g(a:) |Dip(F(Qp)) =1 < —-e

2

In the next claim we relate PairAgr,, (z) to Agr ().
Claim 9.5. Let d,r € N be parameters such that d is even and r < d/2. There exists an absolute
constant ¢ > 0 (independent of d or r) such that Pr[PairAgra_.(z) | ~Agry_,(z)] < c-d-27"/%,

2 4

Proof. For each i € [d] let b; = F(z® + z) — F(z®) € {0,1}, let b* = maj{b;} and let ¢ =
|{i € [d] : b =b*}|. Then Agr,_,(x) holds if and only if ¢ > d — r. We stress that Agr,_,.(x)
is independent of the order of the indices i € [d]. Next, we use the following lemma to relate

PairAgr, () to Agr,(z).

Lemma 9.6. Let d be an even integer, and let by, ..., by € {0,1} be such that not all b;’s are equal.
Let ¢ = |{i € [d] : b; = 0}], and let o = min{%,1 — f} for some o € (0,0.5]. Ifo: [d] — [d] is a
uniformly random permutation of [d], then

Pr[there are at least ad/4 indices i € [d/2] such that by(2i—1) # by2i] 2 1 —c-d- 9—d/4

for some absolute constant ¢ > 0.

We postpone the proof of lemma to Appendix A, and show now how it implies the claim.
Indeed, by conditioning on —~Agr,_,.(z), or equivalently on d/2 < ¢ < d — r, and choosing a random
permutation of the indices i € [d], by Lemma 9.6 we have

Pr[3 at least r/4 indices i € [d/2] such that by (2i—1) # bs(2s) | ~Agrg_,(2)] > 1 —c-d- 9 T/4
for some absolute constant ¢ > 0, independent of d or r. Therefore, Pr[PairAgra_,(x)|—Agr,_,(x)]
2 4

<
C.d.277'/4' D
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We use Claim 9.5 to complete the proof of Lemma 9.4. We have that

2 _(r/4d—p)% min{t,d}

1-— 5 e” 8 < Pr[PairAgr%_g(aﬂ) | Dt p(F(Qp)) = 1]
(z) N Agrg_(2) [ De,o(F(Qr)) = 1]

() A =Agrg_(x) | Drp(F(Qr)) = 1]
Pr[Paergrd i(x) | mAgry_ ()]
Pr[Dt,p(]:(Qt)) = 1]

< Pr[PairAgrq
2

+ Pr[PairAgrq
2

N

w3

< Pr[Agry_.(z) | Dep(F(Q) = 1] +

Therefore,
2 /ad-pPmin{tay  c-d-27"/4
PrlAgry_, () [ Dep(F(Qi) =1 21— —-e § -
v g
for some absolute constant ¢ € R. This concludes the proof of Lemma 9.4. 0

9.2.2 Step 2: Individual indices behave linearly

We argue that, with high probability, bgf) + bg(f) — ¥

v+y for most indices i € [d].

Lemma 9.7. Let t,d,r € N and p € [0,1] be parameters such that 1 <r < d/2 and p < r/d. Let F
be a k-non-signaling function with k > 6d+3t. Fizx,y € {0,1}", and let z(l) .. zéd), zlf,l), cey zéd) €
{0,1}™ be independent and uniformly distributed in {0,1}". For all i € [d] define ) = f(zg(f) +

) = F(), o) = F(z) +y) = FGP), and o8], = FCO, + 2 +y) = FEL,). Then

3 more than d — 2r indices i € [d] 2 (r/d—p)*-min{t,d}
P i i D¢ o (F =1|>1——-e 3 |
r [ b 4 b = b to(F(Q)) ] e s

where the probability is over the random zg(f) ’s and zy) ’s and the randomness of F.

Proof. By Lemma 5.2, for uniformly random zéi), zz(f), and zg(f) =04 Z?E,i) it holds that

+y
for at least d — r + 1 indices ¢ € [d] 1 (r/d—p)? min{t,d}
r i i i Dip(F(Q))=1| >1—=e" 5 .
[ FA) + F)) = F(2,) ’ ~

Similarly, it holds that

for at least d — r + 1 indices i € [d]
Pr (i) () 4 oy — F (o0
Flza’ + o)+ Flzy +y) = Flzphy +o+y)

1 _(¢/d—p)? min{t.d}
8

1.o(F(Qr) = 1] >1— 56

Lemma 9.7 follows by union bound over these two events. O

9.2.3 Step 3: Putting it together

Finally, we combine Lemma 9.4 and Lemma 9.7 in order to prove Lemma 9.3.
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Proof of Lemma 9.5. Let zg(cl), e z;d); zél), . (d € {0,1}" uniformly random vectors in {0,1}",

and let ziﬂ)ry =204 zg(,i) for all i € [d], sampled by Encg. Define b = F(za o 4 + ) — F(zp 9 )) for all
i € [d]. Similarly, define bl(f) = .F(zg(f) +y) — Flzy (i )) and bgiy = .F(zg(cly +(z+y)) — f(zily) for all
i € [d]. Applying Lemma 9.4 with r = %, we get that for some absolute constant ¢ > 0,

3d

Pr lﬂbx € {0,1} s.t. |{i € [d] : b = b, }| >

Dt (F(Qr)) = 1] >1l-¢

_ (1/16=p) min{t.d} 4 ed2=d/10

fore=2-e 8 s Note that if the foregoing event holds, then Decy returns

2
v _
b, for x, and so F4(z) = b,. Similarly, for y and = + y we have

Pr

b, € {0,1} s.t. ’{z’ € [d) : b’ —by}’

Dt,p( Q1)) = 1] >1l-¢

and

d

Pr | Jb,ey € {0,1} sit. ‘{i eld: b, = bxﬂ,}\

Dip(F(Qr)) = 1] >1—¢.

Furthermore, if the foregoing events hold, then F; 4(y) = by and Fya(z +y) = byty -
By applying Lemma 9.7 with » = d/8 we have

. i 2 (1/8—p)% -min{t,d}
\{ze[d]:bgm —b(+y}\ b, (F (Qt)>:1] 21— e I

Note that if all four events hold, then there exists an index i* € [d] such that (i) i) 4+ b(Z ) = bg +)y

and (ii) by = 08", b, = by, and by, = b,) | which implies that Fyq(z) + Fra(y) = Fralz +y).
Therefore, by the union bound we have

6 _(/16-p2min{t.ay  3c-d-2"H10 2 (/8- p)? minft.a}

Pr[Fia(@)+Fraly) = Fralz+y)] > 1-—-e s — ¢ 5
Fi,d Y v v
This completes the proof of Lemma 9.3. O

9.3 7t7d is close to F
We argue that 7t,d is close to F in the following sense.

Claim 9.8. Suppose that Pr[D; ,(F(Q)) = 1] > 1 —p for p < 1/20. Let S C {0,1}" be a query
set. For all events E C {0,1}5 it holds that ‘Pr[]:'(S) € E] — Pr[Fq(S) € E]‘ < (51S|+2)p+e for

c— \SI +0 ( 1sL (e —O(p? min{t,d}) +d'275pd/4)>‘

Proof. We show that for any event E C {0,1}° it holds that Pr[F;4(S) € E] > Pr[F(S) €
E] — (5p+ 3)|S| — e. This suffices because the same bound also holds for the complement event.
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Consider the sampling procedure of F; 4 on the input S. For each w € S and i € [d] define
by = F (zg) +w) —F (zg)), where 2{)’s are chosen according to the definition of Ency, and let
by = maj{bq(j) i€ [d]}.

By Lemma 9.4 for all w € S we have

2 fadpPmingesy  c-d-271
Pr[Agry_.(w) | Dep(F(Qe) =1] =1 - -, ¢ ; .

Hence, by letting r = 5pd and taking the union bound we get

Pr[Agr(l_5p)d(w) Yw e S | Dt,p(F(Qt)) = ].] >1- g (8)

i .d-|S|-2—5pd/4 . .. .
2|_S| . e~ O(p* min{t,d}) 4 %. In particular, this implies that

for E, = 1)
PrAgr_5,q(w) Vw € S] > Pr[Agr(;_5,)q(w) Yw € SADy ,(F(Qr)) = 1] > (1—-"Y(1=p) > 1—'—p .
Therefore,

Pr[F;q(S) € E] = Pr[(by : w € S) € E | Dy p(F(Q)) = 1]
> Pr[(by :w € S) € E N Agr_spa(w) Yw € S| Dy p(F(Qr)) = 1]
> Pr[(by :w € S) € E N Agr_spa(w) Yw € S| —p .

Observe F(S) can be sampled by choosing distinct 4, € [t] for each w € S, and outputting

(bgw) :w € S). Note that if S was a linearly independent set, then we do not need to require

2
iw’s to be distinct. However, since i,,’s are all distinct with probability 1 — ﬂ, this is essentially

t
immaterial. Therefore,

Pr[Fta(S) € E] > Pr[(by : w € S) € E N Agr(j_s,)q(w) Yw € S] —p

. S|?
> Pr[F(S) € EAAgr_sp)a(w) Yw € S| —5p S| — |t‘ —p
7 |S‘2 /
> Pr[F(S) EE]—5p|S|—T—£ —2p .
and the claim follows for ¢ = ¢’ + Ll O

T.
9.4 Proof of Theorem 7

Let kand k € N, £ < 1/400, and let p = /e < 1/20. Let t =d = O(p%(l%—i—log %)), and suppose that

k > 2dk + 3t, i.e., that k = O(% - (k +log 1)). Let F be a k-non-signaling function, and suppose
that Pr,, 7[F(z) + F(y) = Flzr +y)] > 1 —=.

By Lemma 5.5 we deduce that Pr[D; ,(F(Q:)) =1] > 1 —p.

Since k > 2dk + 3t, it follows by Lemma 9.1 that Fraisa k-non-signaling function.

Since p<1/20and t =d = O(p%(l_ﬁ—l—log %)) > O(k +log % +log 171[)) and Pr[Dy ,(F(Qy)) = 1] >

1 — p, by Lemma 9.2 there exists a linear k-non-signaling function £ such that Az(L, Fyq) < p/2.
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Since t =d = O(p%(l;: + log %)), by Claim 9.8 for all sets S C {0, 1}" of size at most k it holds
that

\Prmd(S) € E] - Pr[F(S) E]‘ < (6]8]+2.5)p .

Hence for all sets S C {0,1}" of size at most & and events E C {0,1}° it holds that
‘Pr[]:'(S) € E] - Pr[L(S) e E]( < (6]S|+3)p .

as required.
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A  Proof of Lemma 9.6

In the proof we will use Stirling’s formula to approximate the binomial coefficients involved.

Proposition A.1 (Stirling’s approximation formula). There exists an absolute constant co = g >0
such that the following holds.
1. For all integers n > 1 > 1 it holds that cog < \/ — () — <1.
i~(n7i)'ii,(n,i)n—i
2. For all integers m,i,7 > 1 such that n > i+ j it holds that cy < (i’j’”’i’j)nn <1.

\/i'j'(nyli*j).ii»j]'<(n7i7j)”_i_j
We now prove Lemma 9.6. Let d be an even integer, and let by, ..., b € {0, 1} be such that not all
bi’s are equal, and let o = min{ 4,1 — 4} for ¢ = [{i € [d] : b; = 0}|. For an integer 0 < r < (1 —a)d
denote by Ng,4(7) the number of permutations o: [d] — [d] such that there are exactly r indices
i € [d/2] such that by(;_1) # bg(2i)- Clearly, if r # ¢ mod 2, then Ny 4(r) = 0. If r = ¢ mod 2, then

d/2
/d—q—T> 2" gl(d—q)!,
2

Nd,‘l(r) = < q—r
T, 45,
where (i) the binomial term reflects the choice of which of the pairs of indices (2j — 1,2j) will have
only zeros, only ones, or both, (ii) the term 2" accounts for the transpositions within the pairs with
both a zero and a one, and (iii) ¢!(d — q)! counts separately the permutations of the zeros and the
permutations of the ones in the positions specified by the previous two items.
For an integer 0 < r < ad denote by neq, ,(r) the event that there are ezactly r indices i € [d/2]
such that by(2i—1) # bo(2i), and let 8 = 7 € [0, 3). Then

Prineqy(r)] = 2" - Nay(r) —or. 3 2 (9)

d! (Zl)

Next, we show that for all 0 < r < O‘Td it holds that Pr[neq,,(r)] < 224+ for some absolute
constant ¢ > 0. The claim follows immediately as

Prlthere are less than ad/4 indices i € [d/2] such that by (2;_1) 7# by (2s)]

g

= Z Prineq,  (r)] < ed - 272 |

0<r<od

as required.

The case of r = 0: For r = 0 and even ¢ the expression in Eq. (9) reduces to

L
(o2) _ VT T V3 gol2(d - )2

dy = d/2
G Y Wi wagr !

By substituting ¢ = (1 — «)d into the foregoing expression we get

Prfneq ()] < 22 [a - (1 — a)'~]¥7 < ¢ om02
0

Prneqq,(r)] =

)
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The case of r > 0: By Stirling’s formula, the nominator in the expression in Eq. (9) is upper
bounded by

( d/g >< \/ /2 _ (d/2)%/2
q—r d—g-r | = a—B 4 1-a-8 a=by la—fg
) T g () ()

for the constant ¢ =

d
2 1
R \/ﬂw —Hl-a-pE [(W (a=9)" (1-a —5)1“3‘4 |

The denominator is lower bounded by

d
1fozd ad (1 = a)d)d-a)d. (qd)od
\/ 1—ad { 1—a)l- O"a“}
Therefore, we get the following bound on Pr[neq, ,(7)].
1 20(1 — ) a® - (1—a)l~@ ‘
P < —- . 10
fretadr =5, \/W ~B)(1-a=pBd [(W* o7 -ape]

Note that since r is an integer, we have 5 € [1/d, a/4], and the expression under the square root is

upper bounded by
20(1 — @) 8 1—a _8
=_. <=
(Bd)3 - (1—%2) 3 4-3a 3

Next, we upper bound the base of the exponent in last term. We first rewrite it is follows.

(1—a)l=@. "

B . - .
@ (=0T 1—amp) (Wa_ma%_a_% (=) (==)

For the first term note that \/(a — B)(1 — a — 8) < y/a(l — @) < 1/2, and hence

o — —a— g ol -« g h
(\/( 5)2(; B)) < ( (215 )) < <415> < (1/a)a/4 ’

where the last inequality follows from the fact that the function f(3) = (1/48)? is monotonically
increasing in the interval [0, 1/4e], and hence, for & < 0.5 and 5 € (0, «/4) the maximum is obtained
for fmax = /4, where f(fmax) = a—a/4,

For the second term, we have

< o >a<aa/4 )
Vva—-p8/)

o1



Indeed, the bound is equivalent to the inequality a*/4 < /or— 3, which holds for all a < 0.5 and
B < a/4d.
For the third term, for all & < 0.5 and 8 € [0, /4] we have

-« l-a
(e )" Aze ) e
Vi—a-p - 1—5a/4 N
Multiplying the three terms, we get that the last term in Eq. (10) is upper bounded by
Therefore, for the constant ¢ = % the expression in Eq. (10) satisfies

2—ad/4'

Prlneq, ,(r)] < 2~ ad/4

for all r < ad/4, and the claim follows.
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B Compiling linear PCPs with sub-constant soundness error

In Section 8.4 we showed that the t-repeated ALMSS linear PCP verifier has soundness error (%)t
against linear O(t)-non-signaling functions when ¢ = Q(log S). This, however, does not imply that
the t-repeated ALMSS PCP verifier also has exp(—t) soundness error, because the compiler in
Lemma 4.2 can at best achieve soundness error 1 — ﬁ. We show a different way to compile linear
PCPs into PCPs in a way that approximately preserves soundness error. This compilation, applied

to the t-repeated ALMSS linear PCP, produces a PCP that still has exp(—t) soundness error.

Lemma B.1. For everye >0 and d = O(k + logé + log 'lers)’ it holds that

soundness error: -y soundness error: v+ ¢
randomness:  r randomness:  r+ (q+ 2)d¢
proof length: /¢ proof length:  2°
nsLPCP query complexity: ¢ C nsPCP query complexity:  (2q + 3)d
locality:  k locality:  (2k + 3)d
query sampler time: T} query sampler time:  T; + O({dq?)
decision predicate time: Ty decision predicate time: Ty + O(dq)

Applying the above lemma to the t-repeated ALMSS linear PCP, with t = Q(log S), we get

[ soundness error: 27 9®) i
randomness:  O(t252)
proof length: ~ 20(5%)
DSIZE(S) C nsPCP query complexity: — O(t?) ;
locality: ~ O(t?)
query sampler time:  O(t35?)
| decision predicate time:  O(tn) + O(t?) |

Proof of Lemma B.1. The compiler uses 7,17,1 (see Section 9.1) rather than F. Given Vipcp =
(Qupcp, DLpcp), we define Vpcp = (Qpcp, Dpcp) as follows. The query sampler Qpcp runs QLpcp to
obtain a set of queries Sy pcp C {0, 1}Z for the linear PCP, and outputs Ency(Sipcp) U Qq. Given
the answers F(Ency(SLpcp) U Qq) from the proof, the decision predicate Dpcp accepts if and only if
Dd70(f(Qd)) =1 and Dchp(Decd(f(Encd(Schp)))) = 1.

We only show soundness of Vpcp; the rest of the proof is straightforward.

Suppose that there exists a (2k 4 3)d-non-signaling function F: {0,1}* — {0, 1} that is accepted
by Vpcp with probability greater than + + €, namely, that Pr[V,J;CP = 1] > v+ . Observe that

Pr[Vicp = 1] = Pr[Dipcp(Decy(F(Enca(Qupep)))) = 1 A Dao(F(Qq)) = 1]
= Pr[Dipcp(Deca(F(Ency(Qupcp)))) = 1| Dao(F(Qqa)) = 1] Pr[Dapo(F(Qq)) = 1]

= Pr[Dipcp(Faa(Qupcp)) = 1] Pr[Dao(F(Qq)) = 1] = PI‘[VL?SZ’ch = 1] Pr[Dg,o(F(Qa)) = 1] .

In particular, this implies that Pr[Dao(F(Qq)) = 1] > v +e¢. Since d = O(k + log 1 + log ﬁ),
we can apply Lemma 9.2 to get a linear k-non-signaling function £ such that Ag(L,Faq) < e.

Therefore,
L _ Fad _ _
PriVipep = 1] 2 Pr[Vipep =1 —e> (v +e) —e =7,
which is a contradiction, and so the soundness of V| pcp implies soundness of Vpcp. ]
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