
Separating Monotone VP and VNP

Amir Yehudayoff∗

Abstract

This work is about the monotone versions of the algebraic complexity
classes VP and VNP. The main result is that monotone VNP is strictly
stronger than monotone VP.

1 Introduction

The central open question in algebraic complexity theory is the VP versus VNP
problem. It is the algebraic analog of the P versus NP problem. In a nutshell,
it asks whether every “explicit” polynomial can be efficiently computed. Here
we prove that in the monotone setting VP 6= VNP. Namely, there are “explicit
monotone” polynomials that can not be efficiently computed by a monotone
circuit.

Algebraic Complexity

Algebraic complexity theory is the study of the computational complexity of
polynomials using algebraic operations. In it, VP is the algebraic analog of P,
and VNP is the algebraic analog of NP. A boolean sum

∑
is the algebraic analog

of the existential quantifier ∃ from the boolean setting. The boolean P versus NP
question (roughly speaking) is about the question “can an existential quantifier
significantly reduce running time?” The analogous algebraic question is “can a
boolean sum significantly reduce circuit size?”

More formally, VP is the class of polynomials1 p that have polynomial size
algebraic circuits (we assume that the underlying field is R). VNP is the class
of polynomials q that can be written as q(x) =

∑
b∈{0,1}poly(n) p(x, b) where p is in

VP and n is the number of variables in q. For more background, motivation and
formal definitions, see [2, 1, 15].

∗Department of Mathematics, Techion-IIT. amir.yehudayoff@gmail.com. Research sup-
ported by ISF grant 1162/15.

1Actually, of families of polynomials {pn}∞n=1.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 124 (2018)



In his seminal work [16], Valiant proved that the determinant polynomial is
complete2 for VP, and that permanent is complete for VNP. In particular, the VP
versus VNP question reduces to a “cleaner” problem; deciding whether permanent
can be efficiently represented as the projection of determinant.

Several approaches for solving this important problem have been suggested.
Geometric complexity theory [10] suggests to use the symmetries of determinant
and permanent via representation theory to separate VP from VNP. It was also
suggested to use Newton polytopes (see [7] are references within), or to come up
with elusive functions [11].

The Monotone Setting

The naive way to compute a polynomial is to write it as a sum of monomials.
This type of computation is typically easy to understand but highly not efficient.

The monotone model suggests a more sophisticated way to compute a poly-
nomial, without non trivial cancelations (for more background and motivation,
see [12, 13, 14, 6]). In this model, the computation is over the non negative real
numbers using addition and multiplication.

The monotone model is restricted in several ways. Obviously it only allows to
compute monotone polynomials (with non negative coefficients). So, determinant
for example is out of the question, but permanent, matrix multiplication and
iterated convolution are viable objectives [6].

Even for monotone polynomials, it is not always the best way to perform
computation. Quoting Shamir and Snir [14]: “Although monotone computations
have several advantages, such as absolute numerical stability [8, 9], they are
usually not practical for functions which can be computed much more efficiently
using subtraction (or negation in the Boolean case).”

Nevertheless, there are non trivial monotone computations. For example, the
permanent of an n × n matrix can be computed by a monotone circuit of size
exponential in n, even though it has n! monomials.

On the other hand, the monotone model helps to improve our understanding of
computational problems. In it, we can prove (often sharp) lower bounds: Jerrum
and Snir [6] proved for example that permanent requires monotone circuits of
exponential size; Shamir and Snir [13] proved that multiplying d matrices of size
n × n requires monotone formulas of size nΩ(log d); and Valiant [17] proved that
one negation gate can be exponentially powerful. In addition, the monotone
model helps to understand the limitations of reductions between computational
devices. Hyafil [5] described a non trivial simulation of circuits by formulas, and
the celebrated result of Valiant, Skyum, Berkowitz and Rackoff [18] shows how to

2For quasi-polynomial sized circuits.

2



simulate general small circuits by circuits that are both small and shallow. These
simulations respect the monotone setting; namely, they simulate a monotone
device by a monotone device. Now, the lower bound from [13] shows that Hyafil’s
simulation is optimal, as long as it respects monotonicity; and the authors of [4]
showed that the simulation of Valiant et al. can not be made more efficient even
if one is allowed to use algebraic branching programs, as long as it respects
monotonicity.

Moving to the focus of this work, VP and VNP have natural monotone ver-
sions. MVP is the class of polynomials that can be computed by polynomial size
monotone circuits. MVNP is the class of polynomials q that can be written as
q(x) =

∑
b∈{0,1}poly(n) p(x, b) where p is in MVP and n is the number of variables

in q.
It seems appropriate to discuss the boolean analog of the MVP versus MVNP

question. Consider a boolean function q(x) that can be written as

q(x) = ∃b ∈ {0, 1}poly(n) p(x, b)

where p is a function in P and n is the number of variables. This is the structure
of a general NP language. Now, if we assume that p is a monotone boolean
function then

q(x) = p(x, 1, 1, . . . , 1).

Namely, q is actually in P . In this boolean version of the question, monotone P
and NP are the same.

Lower Bounds and Equivalence

All lower bounds for monotone algebraic complexity we are aware of use the
combinatorial structure of the monomials in the polynomial of interest. Here is
a quote from [6]:

Stated informally, once a monomial has been created, it must find its
way into the final result; this “conservation of monomials” ensures
that no “invalid” monomials are formed and severely limits the rate
at which monomials may be accumulated in the computation.

The lower bound for permanent, for example, holds for every polynomial that has
the same list of monomials as permanent. This naturally leads to the following
definition. (Write α ∈ g if the coefficient of the monomial α in the polynomial g
is non zero.)

Definition. Two polynomials p, q are equivalent if the monomials that appear in
both are the same. That is, α ∈ p iff α ∈ q for every monomial α.

3



With this definition in mind, we make the following observation.

Observation. If a monotone circuit-size lower bound for q holds also for all
polynomials that are equivalent to q then it also holds for every monotone VNP
circuit computing q.

Reason. If q(x) =
∑

b p(x, b) in the monotone setting, then q(x) and p(x, 1, 1, . . . , 1)
are equivalent.

In other words, all known monotone VP lower bounds hold for monotone VNP
as well. Specifically, the proof from [6] implies

Observation. The permanent requires monotone VNP circuits of size 2Ω(n).

Stated differently, although there are many known lower bounds in the mono-
tone setting, none of them separates MVP and MVNP. In particular, the two
facts that (i) permanent is VNP complete and (ii) permanent requires exponen-
tially large monotone circuits are somehow not relevant to the MVP versus MVNP
question.

The discussion above shows that the MVP versus MVNP question can not be
answered by looking at the list of monomials that appear in the polynomial of
interest. We must consider the specific values of its coefficients. The separation
question is more “analytic” than the lower bound question. To prove the sepa-
ration, we must find a polynomial with a “simple” structure of monomials but a
“complicated” structure of coefficients.

2 The Separation

Given an integer n, the separating polynomial is

P = Pn = 2−n
∑

b∈{0,1}n

n∏
i=1

n∑
j=1

bjxij

over the variables
X = Xn = {xi,j : i, j ∈ [n]}.

The following theorem is our main result.

Theorem. The polynomial P is in MVNP but not in MVP.

The fact that P is in MVNP holds by definitions. Our lower bound proof
shows that P requires monotone circuits of size at least 2Ω(n/ logn). The argument
consists of two standard parts. The first part is about identifying a useful canon-
ical form for monotone circuits, and in the second part we exploit the weakness

4



revealed by the canonical form. The second part is often more technical and
challenging.

The two lemmas below summarize the two parts of the proof. The first lemma
(proved in Section 3) is similar to standard structural results for arithmetic cir-
cuits [13, 3, 15]. The second (proved in Section 4) summarizes the “exploiting
the weakness” part.

Proof Overview

Notation. We only consider polynomials over the set of variables Xn. We focus
on monomials of the form α =

∏
i∈I xif(i), where I ⊆ [n] and f : [n] → [n]. For

such a monomial, let I(α) = I, let J(α) = f(I) and let j(α) = |J(α)|. For a
polynomial g, denote by I(g) the union of I(α) over all α ∈ g. Write g ≤ h if
g(α) ≤ h(α) for all monomials α. Denote by g(α) the coefficient of the monomial
α in the polynomial g, and let ‖g‖1 =

∑
α |g(α)|.

The first lemma is based on the specific structure of P .

Definition. We call g ordered if I(α) = I(g) for all α ∈ g.

The polynomial P is ordered:

P = 2−n
∑

b∈{0,1}n

n∏
i=1

n∑
j=1

bjxij

= 2−n
∑
b

∑
f :[n]→[n]

∏
i

bf(i)xif(i)

= 2−n
∑
f

∏
i

xif(i)2
n−|f([n])|

=
∑
f

αf2
−j(αf ),

where αf =
∏

i xi,f(i). So, for every α ∈ P , we have I(P ) = I(α) = [n].

Lemma 1 (Structure). Let n > 2 and q ∈ R[X] be an ordered polynomial that
can be computed by a monotone circuit of size s. Then, we can write q as

q =
s∑
t=1

atbt

where for each t ∈ [s], the polynomials at, bt are ordered so that 0 ≤ atbt ≤ q with
n/3 ≤ |I(at)| ≤ 2n/3 and I(bt) = [n] \ I(at).

5



The second lemma focuses on a single pair at, bt, and analyzes the norm of a
carefully chosen part of atbt.

Lemma 2 (Weakness). There is a universal constant c > 0 so that the following
holds. Let n ≥ 30 and

δ =
b n
20+logn

c
n

> 0.

Let a, b ∈ R[X] be so that 0 ≤ ab ≤ p with n/3 ≤ |I(a)| ≤ 2n/3 and I(b) =
[n] \ I(a). Let π be the projection to the set of all monomials so that their j is
exactly δn. Then,

‖π(ab)‖1 ≤ 2−cn/ logn‖π(P )‖1.

The theorem easily follows from the two lemmas: Assume that P can be
computed by a monotone circuit of size s. By the structure lemma, write P =∑s

t=1 atbt. By the weakness lemma,

‖π(P )‖1 ≤
s∑
t=1

‖π(atbt)‖1 ≤ s2−cn/ logn‖π(P )‖1.

Intuition for Weakness Lemma

Monomials in a correspond to maps from I(a) to [n], and in b to maps from I(b)
to [n]. Since 0 ≤ ab ≤ P , for all monomials α ∈ a and β ∈ b,

0 ≤ a(α)b(β) ≤ P (αβ) = 2−j(αβ). (1)

Now, think of a two player game in which player a gets α as input, and player
b gets β as input. Their goal is to output numbers a(α) and b(β) so that (1)
holds, without communication. Their mutual gain is a(α)b(β) if they succeed, so
that they wish to maximize the numbers they choose.

The point is that a does not know β and b does not know α. So, it is reasonable
to conjecture that almost always a(α)b(β) is actually much small than 2−j(αβ); it
should be something like 2−j(α)−j(β).

We are not able to prove such a strong statement, and there are some more
choices to make and technical problems to overcome. The choice to focus on
monomials so that their j is small (equals δn) has two reasons. One is that if
J(α) and J(β) are typical sets of size at most δn for small δ, then j(αβ) is close
to j(α) + j(β). Namely, the smaller δ is, the more likely the intuition above can
be made formal. Another is that for δ < 1

1+logn
we get simple yet useful estimates

on ‖π(p)‖1.
As a final remark, we note that although the lemma is about π(ab) and π(P ),

the proof uses monomials outside the image of π. This seems to be a necessity,

6



and not just an artifact of the proof; the polynomial q = η ·
∏

i

∑
j xi,j can be

written as a single product q = ab with n/3 ≤ |I(a)| ≤ 2n/3 and I(b) = [n]\I(a),
and it satisfies π(q) = π(P ) for the appropriate η > 0.

3 Proof of Structure Lemma

Consider a monotone circuit of size s for q. Assume that there are no gates
that are not connected to the output gate, and no gate that computes the zero
polynomial. For each gate v in it, let I(v) = I(av) where av is the polynomial
computed at v. Monotonicity implies that each av is ordered, since if some av is
not ordered then the output gate is not ordered as well. In particular, if v = v1+v2
then

I(v) = I(v1) = I(v2),

and if v = v1 × v2 then

I(v) = I(v1) ∪ I(v2) and I(v1) ∩ I(v2) = ∅.

Going from output to inputs, let v be a first gate so that I(v) ≤ 2n/3. Thus,
n/3 ≤ |I(v)| ≤ 2n/3. There is a polynomial bv ≥ 0 so that

q = avbv + rv,

where rv has a monotone circuit of size at most s − 1. Since avbv ≤ q and q is
ordered, the polynomial bv is ordered and I(bv) = [n] \ I(av). So, if rv = 0 we are
done, and if rv 6= 0 we can apply induction.

4 Proof of Weakness Lemma

Start with

‖π(p)‖1 =
∑

S⊂[n]:|S|=δn

∑
f :f([n])=S

2−|f([n])| = 2−δn
(
n

δn

)
Fn,δn,

where Fn,k is the number of onto maps from [n] to [k].

Claim 3. 1
2
(δn)n ≤ Fn,δn ≤ (δn)n.

Proof. The right inequality is clear. The left inequality:

(δn)n − Fn,δn ≤ δn(δn− 1)n (union bound)

≤ δne−
n
δn · (δn)n (1− ξ ≤ e−ξ)

≤ 1
2
(δn)n. (1

δ
≥ 1 + log n)

7



The upper bound on ‖π(ab)‖1 is partitioned to two cases as follows. Let

γ = 1
20
.

Let π′ be the projection to the set of monomials with j in [1 − γ, 1]δn. We can
assume without loss of generality that

‖π′(a)‖∞ = ‖π′(b)‖∞. (2)

Indeed, setting

y =
√
‖π′(a)‖∞
‖π′(b)‖∞ > 0

(if π′(b) = 0 or π′(a) = 0 then we are done; see case one below), we get

‖π
′(a)
y
‖∞ = ‖y · π′(b)‖∞ =

√
‖π′(a)‖∞‖π′(b)‖∞.

Case one (easier): ‖π′(a)‖∞ < 2−(1−γ)δn

For all α ∈ a so that j(α) ∈ [1− γ, 1]δn,

0 ≤ a(α) < 2−(1−γ)δn.

A similar property holds for b, by (2).
We wish to upper bound

‖π(ab)‖1 =
∑

S:|S|=δn

∑
α,β:J(αβ)=S

a(α)b(β).

Fix S for now. The sum over α so that j(α) < (1− γ)δn and all β is at most(
δn

< (1− γ)δn

)
((1− γ)δn)|I(a)|(δn)|I(b)|2−δn (by (1))

≤ 2

(
δn

< (1− γ)δn

)
(1− γ)n/3 · 2−δnFn,δn (Claim 3 & |I(a)| ≥ n/3)

≤ 2−Ω(n)2−δnFn,δn.

Similarly, we can upper bound the sum over β so that j(β) is small. So, we are
left with the sum over α, β so that their j is at least (1 − γ)δn. This sum is at
most

(δn)n2−2(1−γ)δn ≤ 2−Ω(δn)2−δnFn,δn.

Finally, we sum over S:

‖π(ab)‖1 ≤ 3 · 2−Ω(δn)

(
n

δn

)
2−δnFn,δn ≤ 2−Ω(n/ logn)‖π(P )‖1.

So the proof in case one is complete.

8



Case two (harder): ‖π′(a)‖∞ ≥ 2−(1−γ)δn

There is a monomial α0 ∈ a so that

j(α0) ∈ [1− γ, 1]δn

and
a(α0) ≥ 2−(1−γ)δn.

There is a similar β0 ∈ b.
Partition the sum over S to two parts according to

S =
{
S ⊂ [n] : |S| = δn, |S \ (J(α0) ∪ J(β0))| < (1− 2δ − γ)δn

}
.

The family S is small:

Claim 4. |S|
( nδn)
≤ 2−Ω(δn).

Proof. Let T be a random set in [n] so that each i is in T with probability δ
independently of other i’s. The size of Q = [n] \ (J(α0) ∪ J(β0)) is at least
(1− 2δ)n. The expectation of

Y = |T∩Q|
|Q|

is EY = δ. By the Chernoff-Hoeffding inequality,

Pr [Y < EY − γδ] ≤ e−D((1−γ)δ||δ)|Q| ≤ e−
(δ−(1−γ)δ)2

2δ
n(1−2δ) ≤ e−Ω(δn).

We now need to move from T to S. The uniform distribution on
(
[n]
δn

)
is that of T

conditioned on |T | = δn. Since the mode of |T | is δn, we have Pr[|T | = δn] ≥ 1
n
.

If
|T \ (J(α0) ∪ J(β0))| < (1− 2δ − γ)δn

then

Y <
(1− 2δ − γ)δn

|Q|
≤ 1− 2δ − γ

1− 2δ
δ ≤ EY − γδ.

So, finally

|S|
( nδn)
≤ Pr

[
Y < EY − γδ

∣∣∣ |T | = δn
]
≤ nPr [Y < EY − γδ] = 2−Ω(δn).

9



So, the part of the sum over S is at most∑
S∈S

∑
α,β:J(αβ)=S

2−δn ≤ |S|2−δn(δn)|I(a)|+|I(b)| ≤ 2−Ω(δn)‖π(p)‖1. (3)

It remains to bound the part of the sum over S. Fix S 6∈ S, and consider∑
α,β:J(αβ)=S

a(α)b(β).

As in case one, the sum over α so that j(α) < (1−γ)δn is at most 2−Ω(n)2−δnFn,δn.
We can similarly bound the sum over β so that j(β) is small. So, we are left with
the sum over α, β so that both of their j value is at least (1− γ)δn. In fact, we
are left with the sum over α, β so that their J is contained in S and is at least of
size (1− γ)δn.

By (1), for all β ∈ b,

2−(1−γ)δnb(β) ≤ a(α0)b(β) ≤ 2−j(α0β)

or
b(β) ≤ 2−j(α0β)+(1−γ)δn.

For each β we need to sum over, bound

j(α0β) ≥ j(α0) + |J(β) \ J(α0)|
≥ (1− γ)δn+ |S \ J(α0)| − |S \ J(β)|
≥ (1− γ)δn+ (1− 2δ − γ)δn− γδn. (S 6∈ S & J(β) is large)

Thus,

b(β) ≤ 2−(1−γ)δn−(1−2δ−γ)δn+γδn+(1−γ)δn

≤ 2−δn(1−2(γ+δ))

≤ 2−
2
3
δn. (γ + δ ≤ 1

10
)

A similar bound holds for the each α we need to sum over. So, the sum over such
α, β is at most

2−2·
2
3
δn(δn)n ≤ 2−Ω(n/ logn)2−δnFn,δn.

Finally, we sum over all S 6∈ S:∑
S 6∈S

∑
α,β:J(αβ)=S

a(α)b(β) ≤ 2−Ω(n/ logn)‖π(P )‖1.

Together with (3) the proof of the weakness lemma is complete.

10



Acknowledgement

I thank Pavel Hrubeš and Avi Wigderson for their contribution to this work.

References

[1] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity the-
ory, volume 315. Springer Science and Business Media, 1997.

[2] J. von zur Gathen. Algebraic complexity theory. Annual Review of Computer
Science 3, pages 317–347, 1988.

[3] P. Hrubeš and A. Yehudayoff. Monotone separations for constant degree
polynomials. Information Processing Letters 110 (1), pages 1–3, 2009.

[4] P. Hrubeš and A. Yehudayoff. On isoperimetric profiles and computational
complexity. LIPIcs-Leibniz International Proceedings in Informatics, 55,
2016.

[5] L. Hyafil. On the parallel evaluation of multivariate polynomials. SICOMP
8(2):120–123, 1979.

[6] M. Jerrum and M. Snir. Some exact complexity results for straight-line
computations over semirings. J. ACM 29 (3), pages 874–897, 1982.

[7] P. Koiran, N. Portier, S. Tavenas, and S. Thomassé. A τ -Conjecture for
Newton Polygons. Foundations of Computational Mathematics 15 (1), pages
185–197, 2015.

[8] W. Miller. Computational complexity and numerical stability. SlCOMP 4,
pages 97–107, 1975.

[9] W. Miller. Computer search for numerical stability. J. ACM 22, pages
512–521, 1975.

[10] K. D. Mulmuley, and M. Sohoni. Geometric complexity theory I: An ap-
proach to the P vs. NP and related problems. SIAM Journal on Computing
31 (2), pages 496–526, 2001.

[11] R. Raz. Elusive functions and lower bounds for arithmetic circuits. In STOC,
pages 711–720, 2008.

[12] C.P. Schnorr. A lower bound on the number of additions in monotone com-
putations. Theoretical Computer Science 2 (3), pages 305–315, 1976.

11



[13] E. Shamir and M. Snir. Lower bounds on the number of multiplications
and the number of additions in monotone computations. Technical Report
RC-6757, IBM, 1977.

[14] E. Shamir and M. Snir. On the depth complexity of formulas. Journal
Theory of Computing Systems 13 (1), pages 301–322, 1979.

[15] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Found. Trends Theor. Comput. Sci. 5, pages 207–388,
2010.

[16] L. G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science 8 (2), pages 189–201, 1979.

[17] L. G. Valiant. Negation can be exponentially powerful. Theoretical Computer
Science 12, pages 303–314, 1980.

[18] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel compu-
tation of polynomials using few processors. SIAM J. on Computing, 12 (4),
pages 641–644, 1983.

12

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


