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Fundamentals of Fully Homomorphic Encryption — A Survey

Zvika Brakerski*

Abstract

A homomorphic encryption scheme is one that allows computing on encrypted data without
decrypting it first. In fully homomorphic encryption it is possible to apply any efficiently com-
putable function to encrypted data. We provide a survey on the origins, definitions, properties,
constructions and uses of fully homomorphic encryption.

1 Homomorphic Encryption: Good, Bad or Ugly?

In the seminal RSA cryptosystem [RSAT7S8|, the public key consists of a product of two primes
N = p-q as well as an integer e, and the message space is the set of elements in Z%;. Encrypting a
message m involved simply raising it to the power e and taking the result modulo N, i.e. ¢ = m¢
(mod N). For the purpose of the current discussion we ignore the decryption process. It is not
hard to see that the product of two ciphertexts ¢; and c¢o encrypting messages my and ms allows
to compute the value ¢1 - o (mod N) = (mymg)¢ (mod N), i.e. to compute an encryption of
mq - mg without knowledge of the secret private key. Rabin’s cryptosystem [Rab79] exhibited
similar behavior, where a product of ciphertexts corresponded to an encryption of their respective
plaintexts. This behavior can be expressed in formal terms by saying that the ciphertext space and
the plaintext space are homomorphic (multiplicative) groups. The decryption process defines the
homomorphism by mapping a ciphertext to its image plaintext.

Rivest, Adleman and Dertouzos [RADT78] realized the potential advantage of this property. In a
time where complex computations required “buying computing cycles” from a mainframe computer
maintained by an external company, one would be exposed to the danger of their private information
being revealed to the vendor of computing power. However, if the computation only involves group
operations on the input data, then homomorphism will allow the vendor to perform the computation
on the ciphertext, rather than the plaintext, so that sensitive data is not revealed on one hand,
and the heavy computational load is outsourced to the vendor on the other. Remarkably, 40 years
down the line, outsourcing computation gained popularity once again with the introduction of
cloud computing. Indeed, privacy in the era of the cloud is one of the most fascinating topics in
modern cryptographic research. Naturally, one would like to extend homomorphism beyond group
operations, and indeed [RAD78] put forth the question whether there exist encryption schemes
that are homomorphic also with respect to ring (or field) operations, which would allow to perform
arbitrary computation on the input data.
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Alas, plain RSA and Rabin’s scheme provide a very weak level of security (and indeed today
they are referred to as “trapdoor functions” and not as encryption schemes, see e.g. [Gol01, Section
2.4.4.2]). The revolutionary work of Goldwasser and Micali [GM82] on randomized encryption
defined a new notion, semantic security, as a standard for encryption security. Since previous
schemes, such as the aforementioned plain RSA and Rabin schemes, were not semantically secure,
it was up to Goldwasser and Micali to present a different candidate. Indeed, they presented
one based on the hardness of the quadratic residuosity problem (QR). The Goldwasser-Micali
encryption scheme was again based on N = pq as public key, but now each element in Z}; was
only used to encrypt a single bit. Squares (a.k.a quadratic residues) encrypt 0, and quadratic
non-residues (non-squares with Jacobi symbol 1) encrypt 1. Note that in such a scheme, as in
any semantically secure encryption scheme, each message is associated with a super-polynomial
number of possible ciphertexts, all decrypting to the same value. Despite this significant conceptual
difference, the Goldwasser-Micali encryption scheme still exhibits group homomorphism, since a
product of ciphertexts will decrypt to the XOR of the plaintexts. The ElGamal scheme [Gam84]
that followed soon after exhibited similar behavior, even though it was based on the hardness of
a different type of problem (related to the discrete logarithm problem). A decade down the line,
as lattice-based encryption emerged [AD97, GGHI97, HPS98], they also exhibited homomorphic
properties, despite being based on a very different mathematical structure.

It turned out that homomorphic encryption (at least for groups) is abundant and one could have
speculated that it is even unavoidable. As [RADT78] showed, this can have positive implications,
since it could lead to private outsourcing of computation. On the other hand, one could speculate
that this property only indicates that public key encryption schemes have too much structure.
Perhaps this is a symptom of insecurity?

Consider the following scenario, Alice and Bob are bidding for some goods in an auction. Each
one submits their bid in a sealed envelope, implemented using an encryption scheme. Bob is willing
to pay y and he knows that Alice’s bid x is much lower than y, but he does not know what it is.
Bob can see Alice’s sealed envelope, in the form of a ciphertext Enc(z). If the encryption scheme
is homomorphic, then Bob can generate an encryption Enc(xz + 1) thus creating the smallest bid
to win the auction, even without learning anything about Alice’s input. This demonstrates that
in some situation we would like a guarantee that it is impossible to perform any alteration of the
ciphertext, in particular homomorphism. This property is called non-malleability [DDN91]. One
conclusion from this example is that one should not think of homomorphism as intrinsically useful
or intrinsically harmful, but rather consider the specific situation.

In this context, we mention that the aforementioned notion of semantic security is equivalent
(in the public key setting) to security under chosen plaintezt attacks (CPA) where an attacker gets
access to the encryption function but no access at all to the decryption function. In many situations
one would consider stricter notions where (limited) access to the decryption function is allowed,
e.g. to model settings where an adversary can send “made up” ciphertexts to the decryptor and
observe the decryptor’s behavior upon receiving the message. This is formalized via the notion of
security under chosen ciphertext attacks (CCA), and comes in two main flavors. CCA1 is a notion
that models a setting where an adversary has access to the decryption function (as oracle) before
the it gets hold of the challenge ciphertext it wants to attack. CCA2 allows the adversary to access
the decryption oracle even after seeing the target ciphertext (with a non degeneracy condition that
the adversary cannot use this access to decrypt the challenge itself). It is not hard to see that
homomorphism (or malleability) contradict CCA2 security. However, homomorphic encryption



schemes can be CCA1 secure [CS98].

As explained above, group homomorphic encryption schemes emerged naturally from attempts
for constructing public key encryption scheme. However, ring homomorphism seems much harder
to construct. Indeed, over 35 years passed until the vision of [RAD78] was materialized by Gentry
[Gen09b] in one of the most inspiring works in cryptography in recent years.

2 Definition and Basic Properties

Motivated by the application of outsourcing computation, we might not want to restrict ourselves
to algebraic terminology. Instead, we can define F-homomorphism with respect to the class of
operations F that can be applied to encrypted data. Notation-wise, a public key encryption scheme
consists of a (randomized) key generation process, that produces a secret key sk and a public key
pk, a (randomized) encryption function Enc and a (deterministic w.l.0.g) decryption function Dec.
Throughout this manuscript we will consider a plaintext space of binary strings {0,1}*, and an
encryption procedure that encrypts the message bits one at a time. Syntactically, encrypting a
message x using a public key pk is denoted Encp (). Decrypting a ciphertext c is denoted Decgy(c).
We can now define F-homomorphism.

Definition 2.1 Let F be a set of functions in {0,1}* — {0,1}. A public key scheme is F-
homomorphic if there exists an evaluation algorithm Eval s.t. Decg (Eval(f, Encpk(2))) = f(x) for
all f € F and x € {0,1}* of appropriate length.

A fully homomorphic encryption (FHE) is a homomorphic encryption scheme where F is the
set of all functions (or at least the set of all efficiently computable functions).

That is, encrypting a value x, followed by applying homomorphic evaluation with f, and de-
crypting the output, should result in the value f(z). This is the minimal requirement for the
purpose of private outsourcing. There are a few points that are worth noting about this definition.

e The syntax of the homomorphic evaluation procedure. It is simplest to define the
homomorphic evaluation procedure as only taking the respective ciphertexts as input. While
this is true without loss of generality (as we explain momentarily), in many cases the evalu-
ation procedure also uses the public key of the encryption scheme. Syntactically this can be
avoided by redefining the ciphertexts as containing the public key, and thus allowing evalu-
ation using only the ciphertexts, w.l.o.g. Still, often for reasons of efficiency and syntactic
elegance the Eval procedure takes the public key as an additional parameter.

Furthermore, in many candidates, it is easy to identify a part of the public key that is used
for homomorphic evaluation, and a separate part that is used for encryption. It is sometimes
convenient to refer to the former as the “evaluation key” of the scheme, thus characterizing
a homomorphic encryption scheme as having a secret key sk and two public keys pk, evk, one
used for encryption and one for homomorphic evaluation. This is particularly convenient in
cases where it is possible to amplify the homomorphic capabilities of the scheme by modifying
evk while keeping sk, pk unchanged (e.g. via bootstrapping, see Section 3).

e Representation of functions. The evaluation procedure takes a function f € F as input.
This means that it is not enough to think about F as a class of functions, but rather we
must consider the representation of these functions. In particular, since Eval needs to be



polynomial time computable, the representation of f effects the permitted running time of
Eval(f,-). It is most common to consider the boolean circuit model to represent f.

Homomorphic evaluation needs not preserve form. We only required above that
the evaluated ciphertext (i.e. the ciphertext output by Eval) is decryptable to the correct
value. There is no requirement that cy = Eval(f, Encpk(z)) looks similar to a fresh ciphertext
Encpk(f(x)). This choice is made in order to capture the minimal meaningful definition for
private outsourcing of computation. However, this minimal definition opens the door to a
degenerate FHE construction as follows. Consider any secure public-key encryption scheme,
and append it with the function Eval(f,c) that simply outputs the tuple (f,c). Furthermore
extend the the decryption algorithm to decrypt pairs (f, ¢) by first decrypting the ¢ component
and then applying the f component on the output. This scheme is homomorphic with respect
to the above definition, but fails to capture a notion of non-trivial outsourcing.

To avoid this degeneracy, we present two properties that are natural requirements in the
context of outsourcing. Neither one of these is captured by the aforementioned degenerate
example.

— Compactness. If our intent in homomorphic encryption is to delegate the computa-
tional complexity of the computing f to a remote server, then it is natural to require
that the decryption complexity does not depend on the complexity of the function being
evaluated. Formally, adopting the convention that the decryption procedure runs in
fixed polynomial time in its input length, it is sufficient to require that the bit-length of
the evaluated ciphertext c¢s does not depend on the complexity of f (beyond the obvious
dependence on the output length).

— Function Privacy. In certain situations, it may be important that ¢y does not reveal
any information about f itself (e.g. when the evaluator uses a proprietary algorithm).
Function privacy should hold even with respect to an adversary that has the secret key,
i.e. the requirement is that even the decryptor cannot learn anything about f from cy,
except for the value f(z). One could consider even stronger notions of function privacy,
for example one that considers public-keys and ciphertexts that are maliciously generated
in attempt to extract more information about f than permitted [OPP14].

Compactness and function privacy are both sought after properties in certain situations, and
in others it could make sense to require only one but not necessarily both. More often than
not, the term FHE refers to compact FHE, and it is explicitly mentioned where a non-compact
scheme is sufficient (e.g. if only function privacy is needed).

It can be shown that a compact FHE scheme implies a (different) FHE scheme which is both
compact and function private via a non-trivial transformation (this is implicit in [GHV10]).

No additional security requirements. Our definition of homomorphism above did not
make any requirements about security, except that the underlying scheme (without homo-
morphic evaluation) is secure. Standard notions of security (e.g. semantic security) are only
concerned with information leaked by freshly encrypted ciphertexts, and not about ones that
are a result of some manipulation such as homomorphic evaluation. Therefore, one might
be worried that post-evaluation ciphertexts might be more vulnerable. However, since the



evaluation procedure only uses public information, semantic security guarantees that homo-
morphic evaluation cannot assist in breaching security of the original ciphertexts. This, in
turn, also implies that post-evaluation ciphertexts are protected, at least to the extent that it
should not be possible to reveal information about the output of the evaluation process that
can assist in learning something about the inputs.

We note that while we are guaranteed that c; cannot reveal any information about z, it
is allowed to reveal information about f(x), to the extent that the information revealed is
independent of z. For example, if f is the all zero function, then c; might expose that
f(x) =0 (unless we impose stronger guarantees such as function privacy).

e Single-hop vs. multi-hop homomorphism. In the aforementioned definition it is only
required that the post-evaluation ciphertext decrypts properly. As we explained above, this
does not necessitate that the output ciphertext is structurally similar to a freshly encrypted
ciphertext. In particular, it might be the case that it is not possible to re-apply the homo-
morphic evaluation function to post-evaluated ciphertexts. Schemes that adhere to the basic
definition are sometimes referred to as single-hop homomorphic as opposed to multi-hop ho-
momorphism which allows multiple successive applications of homomorphic evaluation. These
notions have been studied in [GHV10]. Gentry’s bootstrapping theorem [Gen09b, Gen09a]
allows to convert any compact single-hop fully homomorphic encryption into a multi-hop
scheme (see more details in Section 3).

e Leveled fully homomorphic encryption. As explained above, a fully homomorphic en-
cryption scheme is one that can evaluate any input circuit. Unfortunately, in some cases, this
goal is not directly achievable, or requires security and functionality overhead. In those cases
it is sometimes useful to define the notion of leveled FHE, which refers to a family of FHE
schemes that allow, for any depth bound d, to generate an instance of the FHE scheme that
supports the evaluation of depth-d circuits. The parameters of the scheme are allowed to
grow polynomially with d, and some definitions are even stricter and require that evk is the
only parameter that depends on d and that this dependence is linear. Leveled FHE schemes
are by themselves sufficient for some applications, and in most cases can be upgraded to (non-
leveled) FHE using Gentry’s bootstrapping theorem [Gen09b, Gen09a], albeit with efficiency
loss and an additional security assumption.®

3 Bootstrapping and Circular Security

We will now describe one of the most fundamental and useful tools in the construction of fully
homomorphic encryption, the bootstrapping theorem, introduced in Gentry’s seminal work [Gen09b,
Gen09a]. The bootstrapping theorem is, to date, a necessary component in all FHE candidates.
Using the bootstrapping theorem in its strongest form requires introducing an additional hardness
assumption concerning the circular security of encryption schemes (we will explain this in detail
below). It is currently unknown how to relate this additional assumption to standard cryptographic

In early works on FHE, the term “somewhat homomorphic encryption” (SHE) was used to indicate a scheme
with homomorphic capabilities against a restricted class of functions (depth bounded). The two terms are sometimes
used interchangeably, however in the original SHE scheme [Gen09b, Gen09a] the parameters of the scheme grew
exponentially with d.



assumptions, thus the use of bootstrapping subjects all known FHE candidates to the additional
circularity requirement.

Key-Switching. We start by introducing the key-switching technique which is useful for boot-
strapping but can also be used in other settings. Perhaps the simplest motivation for key-switching
is to show that given a (possibly non-homomorphic) scheme with very efficient encryption, and a
different homomorphic scheme (possibly with very inefficient, but still polynomial time, encryp-
tion), it is possible to create a scheme that inherits the encryption complexity of the former and
homomorphic abilities of the latter.

We denote the keys of the non-homomorphic scheme by (nhsk, nhpk), and its encryption and
decryption functions by NHEnc, NHDec. Let (hsk, hpk) denote the secret key and public key of the
homomorphic scheme (with encryption and decryption functions Enc, Dec). Consider a ciphertext
¢ that encrypts a plaintext = under the non-homomorphic scheme, i.e. such that NHDechsk(c) = .
Our goal is to apply homomorphic evaluation of some function f, namely to generate a ciphertext
that encrypts the value f(x) = f(NHDechhsk(c)). Note that f and ¢ are publicly known and the only
unknown in the expression f(NHDecuhsk(c)) is nhsk. We can thus define an efficiently computable
function f.(a) = f(NHDecy(c)) (we omit the subscript ¢ and write f when it is clear from the
context). Thinking of the value f(z) as a function of a = nhsk instead of as a function of z itself,
we can think about homomorphic evaluation of the function f,. This means that we no longer care
that c is encrypted under a non-homomorphic scheme, all we care about now is that «, the input
to f,, is encrypted under the homomorphic key hpk. That is, if we had a ciphertext ¢* = Enchpk (@),
i.e. a homomorphic encryption of a value «, then we can compute ¢ 7= Eval( fc, c*) (note that the
syntax here is correct since we are applying Eval on a ciphertext encrypted under the homomorphic
key hpk). What can we say about ¢ f? As the output of a homomorphic evaluation of a function

fc on a properly encrypted ciphertext c*, we can say that ¢ 7 should decrypt under hsk to the value

fe(@) = f(NHDec,(c)). Since c is encrypted (under the non-homomorphic scheme), this value
will be meaningless for almost all values of «, but it will be meaningful for a = nhsk, for which
fe(nhsk) = f(z).

The conclusion is that if we can provide the auxiliary information ¢* = Encppk(nhsk), i.e. an
encryption of the non-homomorphic secret key under the homomorphic public key, then it would be
possible, given f and ¢, to compute an encryption of the value f(z), thus performing homomorphic
evaluation over a ciphertext encrypted using the non-homomorphic scheme. Specifically, to generate
a value cjs.t.

Dechsk(cf) = Dechsk(EvaI(fm C*)) = fc(DeChsk(C*)) = fc(nhSk) = f(NHDeCnhsk(c)) = f(:U) .

The value ¢* should be posted publicly alongside the public keys hpk and nhpk of the homomorphic
and non-homomorphic scheme.

It is important to notice that the output ciphertext c 7 indeed constitutes an encryption of f(z),
but under the homomorphic key hsk. In fact, what we showed was a key switching technique that
allows to take a ciphertext encrypted under a certain encryption scheme, and convert it into a
ciphertext encrypted under a different scheme (using the homomorphic properties of the latter).
This explains why the secret key nhsk is required for the generation of ¢* = Encppk(nhsk), since
otherwise the ability to decrypt c 7 using hsk would contradict the semantic security of the non-
homomorphic scheme.



We will see next how to extend key-switching into bootstrapping, but let us mention that the
switching technique by itself is quite useful. For example, the encryption complexity of an FHE
schemes might be quite high, or the ciphertexts are long (which is indeed the case in many of
the current candidates). With key switching, it is possible to use a quick and cheap encryption
procedure (in fact, even symmetric key encryption will do), and defer all FHE related operations
to the evaluation phase.

From Key-Switching to Bootstrapping. Let us assume that the homomorphic encryption
scheme from above was only single-hop homomorphic. This still allows us to define ¢* and compute
c;. However, this would still leave us stuck at single-hop homomorphism, since ¢; cannot undergo
additional homomorphic evaluation. However, equipped with our knowledge of key switching, we
do not give up so easily. We showed that using the appropriate auxiliary input, we can perform
homomorphic evaluation even on ciphertexts that on the face of it cannot be evaluated. We know
that Decpsk(c f) = f(z), and let us assume we want to apply a function g on top of this value. Then
again we can define (o) = g(Deca(cs)) and define an appropriate ¢** such that c; = Eval(g, c™)
decrypts to the right value g(f(z)).

What should the new auxiliary information ¢** be? It needs to be an encryption of the homo-
morphic secret key hsk, otherwise the evaluation procedure produces a meaningless value. So what
we want is ¢** = Encppk(hsk), namely an encryption of the homomorphic secret key under its own
public key.? Given this value, we can compute cg = Eval(g, ™) as desired, and obtain cz such that

Decnsk(cg) = g(hsk) = g(Decnsi(c7)) = g(f (Decansk(c))) = g(f(2)) -

We see that indeed cz decrypts to the desired value, so given ¢** we can increase the evaluation
capacity of our scheme.

The critical observation is that ¢** is in fact much more useful than our previous ¢*. While the
latter allows to switch a ciphertext from the non-homomorphic scheme to the homomorphic scheme,
and was completely useless afterwards, the former allows us to take homomorphic ciphertexts and
produce homomorphic ciphertexts. This in particular means that the same ¢** can be used more
than once. Assume that we want to homomorphically evaluate an additional function A on top
of ¢z, we observe that this can be done with the same c**, i.e. without requiring a new auxiliary
information. Specifically, just define h(a) = h(Decy(cz)), and set ¢ = Eval(h, ¢**). One can verify
that c; indeed decrypts to h(g(f(z))). Note that in order for this to apply, we only require that
our encryption scheme is single-hop homomorphic. This is since the Eval function is only executed
on the input ciphertext ¢** which is a freshly encrypted ciphertext and not the result of a previous
homomorphic operation. In a sense, we “tricked” the single-hop scheme to perform multi-hop
operations by embedding the “real” input inside the function description. At this point we can
forget about the initial non-homomorphic scheme (although, as we explained, this application is also
sometimes useful) and just consider the task of amplifying single-hop to multi-hop homomorphism.
We see that this is possible given the auxiliary information ¢**, which should be placed as a part of
the public key of the new multi-hop scheme (or more accurately as a part of the evaluation key).

To extract even more out of this technique, we notice that in a multi-hop homomorphic scheme,
it is sufficient to only be able to evaluate the NAND gate (or any other universal family of boolean
gates). This is since each boolean circuit can be written a sequence of such gates, and homomorphic

2A knowledgeable reader may have noticed a circularity issue, we will discuss this aspect shortly.



evaluation of the circuit can proceed by evaluating the gates one at a time (in topological order)
on the output of their predecessors. Plugging this observation into our construction of a multi-hop
scheme, we see that in order to allow the amplification from single-hop to multi-hop, all that is
required is that the single hop scheme supports the homomorphic evaluation of functions of the
form f(a) = fe,.cp(@) = NAND (Decy(c1), Decy(ca)), where ¢; and ¢p are bit strings interpreted as
ciphertexts for the single-hop scheme. Thus, if we can devise a homomorphic encryption scheme
(even single-hop) that supports this family of functions (NAND-augmented decryption functions),
then this scheme can be amplified into full-fledged (even multi-hop) FHE for all functions, at the
cost of adding ¢** to the evaluation key (evk) of the scheme (recall that evk is the part of the public
key that is used for homomorphic evaluation).

Gentry’s Bootstrapping Theorem states exactly this fact: that once we are able to achieve a cer-
tain level of homomorphism, then FHE readily follows. However, our discussion so far neglected an
important aspect of the above transformation: Whether the addition of ¢** to the public evaluation
key evk of our resulting scheme (and thus revealing it to a potential attacker) preserves the security
of the original scheme. At first glance, this seems to be a non-issue, by definition ¢** is a properly
encrypted ciphertext, so the security of the single-hop scheme should guarantee that revealing it to
an attacker should do no harm. However, it turns out that standard notions of encryption security
are only concerned with hiding messages that can be generated by an adversary (that has the public
key). Encrypting a scheme’s secret key using its own public key does not fall under this definition.
Indeed, almost all proofs showing that encryption schemes are secure under certain assumptions
(e.g., factoring) do not extend to showing security for encrypting the secret key, with the exception
of schemes designed especially to have this property such as [BHHOO08, ACPS09, BG10]. There-
fore, the bootstrapping theorem requires that the homomorphic scheme to be amplified is circular
secure, namely that it is secure even against adversaries that see an encryption of the scheme’s
secret key under its public key. To be precise, circular security, or more generally the notion of
security against key dependent messages (KDM-security) [BRS02] is a stronger notion where the
adversary can adaptively ask for encryptions of messages with some dependence of the secret key.
Thus the notion required from bootstrapping is named “weak” circular security.

Theorem 3.1 (Gentry’s Bootstrapping Theorem) If there ezists an encryption scheme that
is single-hop homomorphic with respect to NAND-augmented decryption circuits, and is weakly
circular secure, then there exists a multi-hop FHE scheme.

A scheme that is single-hop homomorphic with respect to NAND-augmented decryption circuits
is called bootstrappable.

In particular, the bootstrapping theorem states that if we have a scheme that supports depth
bounded homomorphism, and its depth bound is strictly larger than its decryption complexity, then
this scheme can be amplified to an FHE (assuming that it is also weakly circular secure). Schemes
with such homomorphic capacity can be constructed from standard cryptographic assumptions,
such as the learning with errors (LWE) assumption (see Section 4). However, it is not known
how to prove weak circular security under a standard assumption for any bootstrappable scheme.
Furthermore, bootstrapping underlies all known (non-leveled) FHE constructions, so the current
state of affairs is that while leveled FHE can be constructed from standard assumptions, non-leveled
FHE requires an explicit weak circular security assumption. This is the only remaining theoretical
barrier towards constructing FHE from standard assumptions.



The Necessity and Plausibility of the Circular Security Requirement. As explained
above, it is not known how to prove circular security based on standard assumptions. However,
in the proposed constructions, it is not known how to improve the best known attacks using an
encryption of the secret key. Thus, as a heuristic, it appears plausible to assume the circular
security holds for known FHE candidates. Having said that, recent works [GKW17] show that
weak circular security does not necessarily hold for every encryption scheme that is secure under
standard assumptions. This is done by introducing contrived schemes where the secret key is design
so that its encryption provides additional power to the adversary.

Gentry [Gen09a] proposed a heuristic argument showing that any homomorphic encryption
scheme supporting high enough evaluation depth should be circular secure. Assume there exists a
hash function H s.t. providing the adversary with (¢ = Enchpk(p), 0 = H(p) @ hsk) for a random
p does not make the scheme insecure. This assumption indeed holds in the random oracle model
as shown in [BRS02]. If we had such a function H in the standard model, then it would have
been possible to compute Eval(H,,¢é) where Hy(a) = 0 @ H(a). Note that the output of this
homomorphic evaluation procedure is an encryption of hsk as needed. While we do know that no
explicit hash function can perfectly implement the random oracle heuristic in all applications, in
some applications it is possible. Gentry’s argument suggests that refuting the circular security of
FHE might require showing that for this application it is impossible to replace random oracle with
any hash function.

One seemingly simple way to get around the circular security problem can be devised by consid-
ering our original example of converting a non-homomorphic scheme into a homomorphic one. In
that example, there was no circularity problem since hpk is used to encrypt nhsk, i.e. we encrypted
a secret key of one scheme under the public key of another scheme. This allows the security proof
to go through, since we can argue that even if an adversary knows nhsk, it should still not be able
to breach the security of hpk, and thus it cannot distinguish whether ¢* contains an encryption
of nhsk or an encryption of an unrelated message. We could therefore hope that the following
trick could work for bootstrapping homomorphic encryption schemes: Rather than having a sin-
gle ¢** = Encppk(hsk), we will generate two homomorphic key pairs (hski, hpky), (hska, hpky), and
generate two auxiliary ciphertexts ¢ = Encppy, (hskz) and ¢3* = Encppk, (hsky). Then, during ho-
momorphic evaluation we will alternate between using ¢j* and c¢5* for each hop of the computation.
This indeed provides the intended functionality, however in terms of security we can see that the
prior proof outline no longer works. Even if we only reveal hske to the adversary, it is straightfor-
ward to extract hsk; by decrypting c3*, so we cannot rely on the hardness of hpk;. Indeed, such a
2-cycle is a type of circular security and the same problems arise.

Before giving up completely on the key cycle concept, we notice that the problem only arises
because the chain of keys we generate is a closed loop, so that any of the secret keys can be
used to recover all other secret keys. We can consider generating d key pairs (hsk;, hpk;), and
auxiliary information ¢j* = Encpp,, (hsk;) for i =1,...,d — 1 (note that we do not close the loop
since we do not provide Encppy, (hskg), and in fact we do not provide any information at all on
hsky beyond its respective public key). This chain allows us to perform d — 1 homomorphic hops,
and the resulting scheme can be proven secure based only on the security of the original scheme.
Instantiating our hops with NAND-augmented decryption circuits, we can get a leveled FHE for
any polynomial depth bound d, where the only parameter of the scheme that depends on d is the
scheme’s evaluation key evk (which now contains evk; for all 7, as well as all auxiliaries ¢;*), and this
evaluation key only grows linearly with d. There is no need for circular security to prove security



for this leveled scheme.

Theorem 3.2 (Gentry’s Bootstrapping Theorem for Leveled FHE) If there exists an en-
cryption scheme which is single-hop homomorphic with respect to NAND-augmented decryption
circuits, then there exists a leveled FHE scheme.

4 Constructing FHE

We will now explain how to construct homomorphic encryption schemes from the learning with
errors (LWE) assumption. The scheme we construct will be bootstrappable so it is possible to
apply Gentry’s bootstrapping theorem to achieve full FHE.

4.1 Learning with Errors — A Primer

The learning with errors (LWE) problem was introduced by Regev [Reg05] and has had a profound
effect on cryptographic literature, often allowing to realize cryptographic primitives that are not
known under any other assumption. LWE considers a set of many random linear equations over
a set of n variables that will be assigned random values, modulo a global modulus g > n (where
the meaningful range of parameters ranges from ¢ being polynomial to subexponential in n). The
vector of variables is denoted by t € Zj (we set it as a row vector), and the (random) coefficients
of the linear equations are represented by a uniform matrix B € Zy*™, where m = poly(n) is the
number of equations.> A set of linear equations is solvable even modulo ¢, so given (B,tB) it is
possible to efficiently find a solution t to the set of equations. The LWE problem considers slightly
perturbed equations, by adding a small noise to each one. Specifically, let x be a distribution
supported only over integers smaller than some bound B.* Consider sampling a noise vector e
from x™ (a noise term for each equation), and setting b = tB + e (mod ¢). The (decisional)
LWE assumption with parameters (n, q, x) states that for a uniformly sampled t, the pair (B, b)
is indistinguishable from uniform, even when m is allowed to be an arbitrarily large polynomial.
Note that information theoretically this distribution is very far from uniform. The distribution y is
often taken to be a discrete Gaussian, but this is immaterial for the purpose of this survey. For our
discussion we can consider setting ¢ = n'® and a distribution y with a bound B = n. To further
simplify our notation, we will not explicitly write the noise vector e and instead write b ~ tB.
We now present a tool that proved extremely useful in LWE-based cryptography. Let x €
{0,...,q—1}, then x can be represented as a sequence of [log ¢] bits as z = > 2.1, which can also
be written as an inner product (1,2,22,...)-(zg, 21, ...) = g-x. More generally, considering a vector

v € Zy, one can consider the vector v/ containing a concatenation of the binary representations of

all elements of v. The vector g can thus be generalized to a matrix G € ngn[log st v=Gv (the

matrix G is a block diagonal matrix with each block equaling to g). We note that this matrix found
additional uses in contexts beyond what is covered in this survey (see, e.g., [MP12]). It is customary
to denote the binary representation of v by G~!(v), so that it will hold that GG~1(v) = v. We
note that G~! is not a matrix, but rather a function. This notation can be even further extended
to apply to matrices so that G~1(V) for a matrix V € Zy™™ is a matrix in {0, 1}rllogalxm whose
every column is the binary decomposition of the respective column of V, so again GG~1(V) = V.

3We note that the standard notation for the LWE problem is using s, A instead of t, B. However, this notation
will be more convenient for us as we will use s, A to denote different quantities in Section 4.2 below.
1t is sufficient that the distribution is bounded with overwhelming probability.
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4.2 A Homomorphic Encryption Scheme Based on LWE

LWE-based homomorphic encryption was constructed in [BV11]. We present a later construction
due to [GSW13] (using notation from the even later [AP14]). The public key is a matrix A = [B],
where B is uniform and b ~ tB for a random t. The secret key is a vector s = (—t, 1). Note that
it holds that sA ~ 0, but that A is indistinguishable from uniform assuming LWE. This public
key is identical to that of Regev’s original LWE-based public key encryption scheme. However,
the ciphertext itself is quite different. The encryption of a message is done in a bit-by-bit manner,
where the encryption of each message bit is a large matriz.> The encryption of a bit € {0,1}
is the matrix C = AR + 2G, where R is a random binary matrix (whose dimensions are chosen
based on those of A and G to ensure syntactic compatibility).

Since A is indistinguishable from a uniform matrix, the leftover hash lemma guarantees (for
properly chosen parameters) that C is indistinguishable from a completely random matrix, and in
particular hides the value of the message x. On the other hand, it holds that

sA = sA R+ 1sG = zsG ,
~0

and one can verify that = can indeed be recovered out of this value (knowledge of s is naturally
required). It is important to note that it was important to sample R from a distribution over small
values in order to argue that if sA ~ 0 then sAR = 0. Multiplying by R will most likely somewhat
increase the amplitude of the output vector, and in the formal analysis we must keep guard that
the amplitude of the resulting vector indeed remains small (i.e. < gq).

To show that the scheme is homomorphic, we will show that starting with two ciphertexts Cq, Co
s.t. sC; =~ 1;8G, where x1,22 € {0,1}, we can construct a ciphertext C’ s.t. sC' = (1 — z129)sG,
i.e. C'is an encryption of 1 — x129 = NAND (z1,22). After doing that, we will explain how this
translates to full homomorphism. We will be guided by the following intuitive observation: since
sC; ~ x;8G, then we can think of C; as “equivalent” to ;G (where the equivalence is expressed
by the two being approximately equal under multiplication by s).

To test the validity of this intuition, let us start by trying to implement the negation function-
ality © — (1 —x). We can verify that indeed setting C' = G — Cq, leads to sC’ =~ (1 —x1)sG. Now,
let us try to implement conjunction x1,z3 — x122. We notice that (21G) - G™1(22G) = 2112G,
and indeed letting C’' = C;G~!(Cy), we get:

sC1G1(Cy) = 2:sGGHCy) ~ 1225G |

where as before it is important that G~1(Cy) is low norm in order to propagate the validity of the
~ symbol. Putting our two observations together, we have that C' = G — C;G~}(Cy) is indeed
an encryption of NAND (x1,x2) = 1 — z122. We note that this expression is asymmetric (since
C1G1(Cy) # C2,G~1(Cy)) and this asymmetry gives rise to useful properties in terms of efficiency
and security [BV14].

Being able to evaluate the NAND function can be extended to evaluating arbitrary boolean cir-
cuit using the universality of NAND, as explained above. However, as we noted, the approximation
sC ~ xsG becomes worse with every gate being evaluated. This puts a bound on the mazimal

5In other words, the information rate of this scheme is very low and approaches 0 asymptotically. However, since
the ciphertext is still polynomial in the key and message sizes, this is an acceptable solution in a purely theoretical
world. Discussion of more efficient solutions will follow.
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depth supported by the scheme. The depth bound roughly corresponds to log(q/B), where B
is the bound on the LWE noise distribution. Since the depth of the scheme’s decryption circuit
grows polynomially with logn + loglogg (since it essentially computes an inner product of vectors
in ZZ), one can choose parameters to allow the evaluation of the decryption circuit, and thus make
the scheme bootstrappable (subject to a circular security assumption, if a leveled scheme is not
sufficient).

4.3 Efficiency and Implementations

The GSW scheme presented above imposes a high communication and computation overhead com-
pared to performing the evaluation on unencrypted data, which is naturally an undesirable property.
Nevertheless, various optimization methods were introduced that reduce the computational over-
head to a level that is useful for some applications [DM15, CGGI16]. A significant reduction of the
communication overhead for GSW-style schemes remains an open problem.

The information rate overhead problem can be solved in an amortized manner using schemes
that follow the prior [BV11] paradigm. Such schemes allow to batch multiple messages into a single
ciphertext in a way that allows to perform homomorphic operations in parallel on all encrypted
messages. The ciphertext size grows only mildly with the total amount of information. This
idea goes back to the prior work of Smart and Vercauteren [SV10], and was applied to the [BV11]
paradigm starting in [BGV12]. The most liberal parameter settings allow to reduce the information
rate to a constant, but it is currently unclear, even in this setting, whether it is possible to achieve
information rate approaching 1 while preserving full homomorphism.

Using either paradigm, the best efficiency is achieved when using variants of the scheme over
polynomial rings. That is, with symbolic polynomials replacing integer vectors, and polynomial
multiplication (modulo some ambient polynomial) replacing inner product. This allows for both
improved computational complexity and improved information rate. Specifically, current implemen-
tations are based either on variants of the NTRU encryption scheme [HPS98] or on the Ring-LWE
assumption [LPR10, LPR13].

5 Beyond Vanilla FHE

To conclude this survey, we mention a few uses and extensions of FHE that go beyond the basic
functionality.

Multi-Key FHE. The standard notion of FHE only considers a single user who owns data and
wishes this data is processed remotely. A natural extension is the case of multiple users, each with
their own individually generated secret key and public key, and with their own data, and they wish
to outsource a computation on the aggregation of data from all users. To maintain security, it
must be the case that decryption of the evaluated ciphertext requires using all user secret keys.
This notion is called Multi-Key FHE and was first introduced by Lopez-Alt, Tromer and Vaikun-
tanathan [LTV12]. Their original scheme was based on a variant of the NTRU assumption [HPS98].
A scheme with improved properties and relying on the LWE assumption was later introduced by
Clear and McGoldrick [CM15].
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Evaluating Quantum Circuits. Considering that a major use of FHE is private delegation
of computation suggests considering models where the computational power of the evaluator is
qualitatively superior to that of the client. One such case is where the evaluator is in possession of
a quantum computer. In such case, a classical client may wish to delegate a quantum computation
to the evaluator. It was recently shown that this can be achieved under similar assumptions to
those required from classical FHE [Mahl17].
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