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Abstract. We develop general lower bound arguments for approximating tropical (min,+) and
(max,+) circuits, and use them to prove the first non-trivial, even super-polynomial, lower bounds
on the size of such circuits approximating some explicit optimization problems. In particular, these
bounds show that the approximation powers of pure dynamic programming algorithms and greedy
algorithms are incomparable.
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1. Introduction. A discrete 0-1 optimization problem is specified by a finite
set of ground elements and a family F of subsets of these elements, called feasible

solutions. The problem itself then is, given an assignment of nonnegative real weights
to the ground elements, to compute the minimum or the maximum weight of a feasible
solution, the later being the sum of weights of its elements. Such problems are called
0-1 optimization problems, because feasible solutions are sets, not multi-sets.

For example, the assignment problem is, given nonnegative real weights on the
edges of the complete bipartite n×n graph Kn,n, to compute the minimum weight of
a perfect matching. Feasible solutions in this case are all perfect matchings in Kn,n,
viewed as sets of their edges.

Every discrete 0-1 optimization problem problem can be solved by a tropical

(min,+) or (max,+) circuit. Such a circuit is a directed acyclic graph, each whose
indegree-zero node holds either one of the variables x1, . . . , xn, or a constant c ∈ R+.
Every other node (called a gate) has indegree two, and computes either the sum or
minimum/maximum of the values computed at its two predecessors. The size of a
circuit is the total number of its gates.

Besides being interesting in their own right, the importance of tropical circuits
stems form their intimate connection to dynamic programming (DP) algorithms.
Many of these algorithms are pure in that their recursion equations only use min
and addition or max and addition operations, and the structure of the recursion equa-
tions do not depend on input weights.

Notable examples of pure DP algorithms are the well-known Bellman–Ford–Moore
DP algorithm for the shortest s-t path problem [5, 12, 26], the Floyd–Warshall
DP algorithm for the all-pairs shortest paths problem [11, 33] (see Figure 1.1), the
Held–Karp DP algorithm for the traveling salesman problem [14], the Dreyfus–Levin–
Wagner DP algorithm for the weighted Steiner tree problem [8, 23]. Since every pure
DP algorithm is just a special (recursively constructed) tropical circuit, lower bounds
on the size of tropical circuits show limits of pure dynamic programming.

An equally notable example of a non-pure DP algorithm is the classical Bellman–
Dantzig DP algorithm for the knapsack problem [4, 7]. Albeit the algorithm only uses
max and addition operations (in the case of maximization), the choice of subproblems
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Fig. 1.1: A fragment of a tropical (min,+) circuit of size
O(n3) implementing the Floyd–Warshall DP algorithm
for the all-pairs shortest paths problem. At the gate
fk(i, j), the minimum length of a path from i to j, which
only uses nodes 1, . . . , k as inner nodes, is computed.

in its recursion equation depends on the input weightings: one of the two subproblems
uses the knapsack capacity decreased by the actual value of the last item. The depen-
dence on input weightings was crucial in designing fast approximating DP algorithms
for the knapsack problem [15].

A general question we approach in this paper is: how many gates a tropical
circuit must have in order to approximate a given 0-1 optimization problem within
a given factor? In particular, we want to compare the approximation power of pure
DP algorithms with that of greedy algorithms; we consider greedy algorithms using
standard best-in and worst-out heuristics (see subsection 3.6 for details).

Recall that an algorithm approximates a given optimization problem f : Rn
+ → R+

within a factor r > 1 if for every input x ∈ R
n
+, the output value of the algorithm lies:

◦ between f(x) and r · f(x), in the case when f is a minimization problem;
◦ between f(x)/r and f(x), in the case when f is a maximization problem.

In this case we will also say that the algorithm r-approximates f . The factor r may
depend on the length n of the inputs x, but not on the inputs themselves. In both
cases, the smaller the factor r is, the better is the approximation. Factor r = 1 means
that the problem is solved exactly.

Remark 1.1. Note that, in both cases (minimization and maximization), it is
required that the value computed by an algorithm cannot be “better” than the optimal
value f(x). Note also that we do not require the approximated values to be achieved
on feasible solutions: we are only interested in values computed by the algorithms.

In their seminal paper [16], Jerrum and Snir considered tropical circuits solv-
ing optimization problems exactly (within factor r = 1). In particular, they proved
that the assignment problem (minimum weight perfect matching in Kn,n) requires
(min,+) circuits of size at least 2n. On the other hand, a linear programming algo-
rithm, known as the Hungarian algorithm, solves the assignment problem using only
O(n3) operations (see, for example, [28]).

They also proved that every (min,+) circuit solving (exactly) the lightest directed
spanning tree problem in Kn (known also as the arborescence problem) requires 2Ω(n)

gates. On the other hand, the family of feasible solutions of the arborescence problem
is an intersection of two matroids and, hence, can be approximated by a greedy
algorithm within a factor of 2. In [21], we extended this result by showing that also
the lightest undirected spanning tree problem requires (min,+) circuits of size 2Ω(

√
n).

The family of feasible solutions for this latter problem forms a (graphic) matroid, so
that the greedy algorithm can solve this problem exactly.

But what if tropical circuits are only required to approximate a given optimization
problem: can they also then be weaker than greedy and/or linear programming? We
will answer this question affirmatively. We do this by proving the first non-trivial,
even super-polynomial, lower bounds for approximating tropical circuits and, hence,
also for approximating pure DP algorithms.
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2. Results. If a family F of feasible solutions is uniform (all sets of F have
the same cardinality), then there is no difference between the tropical circuit com-
plexities of minimization and maximization problems on F: the minimum size of a
(min,+) circuit solving the minimization problem on F coincides with the minimum
size of a (max,+) circuit solving the maximization problem on F (see, for example,
[20, Lemma 2]).

Somewhat surprisingly, the approximation behaviors of tropical (min,+) and
(max,+) circuits turn out to be entirely different. While the maximization problem on
any family F ⊆ 2[n] can be approximated by a trivial (max,+) circuit max{x1, . . . , xn}
within a large (but finite) factor r 6 n, there are many minimization problems that
cannot be approximated by polynomial-size (min,+) circuits within any finite fac-
tor r = r(n); such is, for example, the assignment problem. We will therefore treat
minimization and maximization problems separately.

Below is a summary of our main results (in the order of their later presentation).

(a) A boolean bound for (min,+) circuits. This bound (Theorem 5.1 in
section 5) states that, if the decision version g(x) =

∨

S∈F

∧

i∈S xi of the minimization

problem f(x) = minS∈F

∑

i∈S xi requires monotone boolean circuits of size t, then no
(min,+) circuit of size smaller than t can approximate the problem within any finite
factor.

Thus, lower bounds for pure DP algorithms approximating minimization prob-
lems follow from the lower bounds on the size of monotone boolean circuits. In
particular, Razborov’s lower bound [31] on the size of monotone boolean circuits for
the logical permanent implies that no (min,+) circuit with no(logn) gates can ap-
proximate the assignment problem on Kn,n within any finite factor. This extends
the aforementioned result of Jerrum and Snir [16] to approximating (min,+) circuits:
linear programming can “outclass” even approximating pure DP algorithms.

In Appendix C, we also show a converse of the boolean bound: if the decision
version of a minimization problem can be computed by a monotone boolean circuit of
size t and of “semantic degree” r (under its particular definition), then the problem
can be approximated within the factor r by a (min,+) circuit of size t. So, the
approximation power of (min,+) circuits is captured (not only lower-bounded) by the
computational power of monotone boolean circuits.

(b) Greedy can be better in minimization. Using the boolean bound, we
show (Theorem 7.7 in subsection 7.2) that there are doubly-exponentially many (in the
number of ground-elements) 0-1 minimization problems that can be solved exactly by
the greedy algorithm but cannot be approximated within any finite factor by (min,+)
circuits of polynomial size.

(c) A rectangle bound for approximating (max,+) circuits. In subsec-
tion 8.1, we observe that proving nontrivial lower bounds on approximating (max,+) cir-
cuits is a far more difficult task: even Shannon type counting arguments seem to fail
for such circuits. In particular, with high probability, one simple (max,+) circuit of

size O(n2) approximates the maximization problem on a random family F ⊆
( [n]
n/2

)

within a factor r = 1+ o(1) (Remark 8.2). Being warned by this phenomenon, we de-
velop (in section 6) a general lower bound—the rectangle bound—for approximating
(max,+) circuits, taking into account specific structural properties of feasible solutions
of the problems to be approximated (Theorems 6.1 and 8.4).

A rectangle is a family of sets specified by a pair A,B of families satisfying A∩B =
∅ for all A ∈ A and B ∈ B. The rectangle R = A ∨B itself consists of all sets A ∪B
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with A ∈ A and B ∈ B. A rectangle R lies below a family F of sets if every set of R is
contained in at least one set of F. A set F appears r-balanced in the rectangle A ∨B

if there are A ∈ A and B ∈ B such that both |F ∩ A| and |F ∩B| are at least about
|F |/r.

Under this proviso, Theorem 8.4 in subsection 8.2 (a set-theoretic version of The-
orem 6.1) states that if h is the maximum possible number of feasible solutions F ∈ F

that can appear r-balanced in a rectangle R lying below F, then any (max,+) circuit
approximating the maximization problem on F within the factor r must have at least
|F|/h gates.

(d) A “factor-hierarchy theorem” for (max,+) circuits. Theorem 8.6 in
subsection 8.3 states that, for any prime power m and any integer r dividing m,
there is an explicit family F of feasible solution on n = m2 ground elements such
that the maximization problem on F can be approximated within the factor r by a
(max,+) circuit of size O(n), but for any constant ǫ > 0, at least nΩ(m/r) gates are
necessary to approximate the problem within the factor (1−ǫ)r. That is, already slight
improvements of the approximation factor can make tractable problems intractable.
This is proved using the rectangle bound. The corresponding families of feasible
solutions here are so-called “polynomial designs.”

(e) Greedy can be better also in maximization. Theorem 8.7 in subsec-
tion 8.4 states that, for every integer k > 6, there is an explicit maximization problem
on n = mk ground elements which can be approximated by the greedy algorithm
within factor k, but requires (max,+) circuits of size exponential in nΩ(1) to approx-
imate the problem even within the exponentially larger factor 2k/9. The theorem is
also proved using the rectangle bound. The corresponding families of feasible solu-
tions here are families of perfect matchings in k-uniform k-partite hypergraphs on mk
vertices.

That greedy algorithms can have much worse approximation behavior than pure
DP algorithms is long known. Namely, there are a lot of optimization problems which
are easily solvable by pure DP algorithms even exactly, but the greedy algorithm
cannot achieve any finite approximation factor: maximum weight independent set in
a path, or in a tree, the maximum weight simple s-t path in a transitive tournament
problem, etc.

So, results (b) and (e) imply that the approximation powers of greedy and pure
DP algorithms are, in fact, incomparable: on some optimization problems, pure DP
algorithm can also have much worse approximation behavior than greedy.

Remark 2.1 (Regarding input weights) . Our upper bounds hold when all non-
negative real weights are allowed, whereas lower bounds hold even when the input
weights are restricted to {0, 1} in the case of maximization, and to N = {0, 1, 2, . . .} in
the case of minimization. Note that the fewer input weights are allowed, the stronger
lower bounds on the circuit size are.

Organization. The paper is organized as follows. In section 3, we recall the
concept of Minkowski circuits and sets of vectors “produced” by circuits over any
semiring, as well as the two heuristics of greedy algorithms. Section 4 contains two
structural lemmas showing how families of approximating feasible solutions are related
to the given family of feasible solutions of the optimization problem to be approxi-
mated. In the next two sections (sections 5 and 6) we use these lemmas to develop our
main technical tools: the “boolean bound” for (min,+) circuits, and the “rectangle
bound” for (max,+) circuits. The last two sections (sections 7 and 8) are devoted to
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applications of these tools for specific optimization problems.
For reader’s convenience (not to interrupt the main text), some technical results

are moved to appendices. In Appendix A, we give a new, simple and self-contained
proof of a result from [20] which we use to prove the rectangle bound. In Appendix B,
we use convexity arguments to give a tight structural characterization of the families of
approximative solutions. In Appendix C, we use this characterization to show that our
boolean bound for (min,+) circuits (proved in section 5) actually captures (not only
lower-bounds) the power of approximating (min,+) circuits. Finally, in Appendix D,
we prove Proposition 8.3 which states that an explicit Sidon-type maximization prob-
lem, requiring (max,+) circuits of truly exponential size to solve it exactly, can be
approximated by linear-size (max,+) circuits within the factor of 2.

3. Preliminaries. In this preparatory section, we introduce our “language:” re-
call the notion of circuits (over semirings), show how these circuits “produce” (purely
syntactically) sets of vectors in N

n, show that these sets are precisely the sets of
exponent vectors of polynomials computed by circuits (Lemma 3.1), show that the
produced sets of vectors are almost independent on the constant inputs of circuits
(Lemma 3.2), recall Minkowski circuits as a bridge between circuits over arbitrary

semirings and circuits over the arithmetic semiring, sketch the idea of our two-step
approach to analyze approximating tropical circuits, and briefly recall greedy algo-
rithms.

3.1. Circuits over semirings. A (commutative) semiring is a set R closed un-
der two associative and commutative binary operations “addition” (⊕) and “multipli-
cation” (⊗), where multiplication distributes over addition: x⊗(y⊕z) = (x⊗y)⊕(x⊗z).
That is, in a semiring, we can “add” and “multiply” elements, but neither “subtrac-
tion” nor “division” are necessarily possible.

A circuit over a semiring R is a directed acyclic graph; parallel edges joining
the same pair of nodes are allowed. Each indegree-zero node holds either one of the
variables x1, . . . , xn, or a semiring element. Every other node, a gate, has indegree
two and performs one of the semiring operations. One of the gates is designated
as the output node. The size of a circuit is the total number of gates in it. Since
multiplication distributes over addition, each such circuit computes some polynomial

(3.1) fA(x1, . . . , xn) =
∑

a∈A

caX
a with Xa :=

∏

i : ai 6=0

xai

i

over R in a natural way, where A ⊂ N
n is some set of exponent vectors, N =

{0, 1, 2, . . .} is the set of nonnegative integers, coefficients ca are some semiring el-
ements, and xn

i stands for xi ⊗ xi ⊗ · · · ⊗ xi n-times. If the semiring contains the
additive unity 0 (satisfying 0⊕ x = x and 0⊗ x = 0), then we can assume that ca 6= 0

holds for all coefficients in the polynomial (3.1). A circuit is constant-free if it has no
semiring elements as inputs.

Remark 3.1. Note that in the polynomial (3.1) computed by a constant-free cir-
cuit, every coefficient ca is not a semiring element but rather a positive integer indicat-
ing the number of times the corresponding monomial Xa appears in the polynomial;
so, if the underlying semiring is idempotent (x ⊕ x = x holds), then we have no such
coefficient at all.

In this paper, we will consider circuits over three (idempotent) semirings. In the
boolean semiring, we have R = {0, 1}, x ⊕ y := x ∨ y and x ⊗ y := x ∧ y. Circuits
over this semiring are just monotone boolean circuits. In the tropical (min,+) (resp.,
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Fig. 3.1: Two constant-free (min,+) circuits solving the minimization problem f(x, y) =
min{2x, 2y} whose set of feasible solutions is A = {(2, 0), (0, 2)}. The first circuit pro-
duces the set A itself, whereas the second saves one gate by producing a different set
B = {(2, 0), (1, 1), (0, 2)}. Here ⇓ stands for two parallel edges.

(max,+) ) semiring, we have R = R+ (all nonnegative real numbers), x ⊕ y :=
min{x, y} (resp., x ⊕ y := max{x, y}) and x ⊗ y := x + y. Note that, over tropical
semirings, the polynomial (3.1) turns into a minimization or maximization problem

(3.2) f(x) = min
a∈A

〈a, x〉+ ca or f(x) = max
a∈A

〈a, x〉+ ca ,

where here and throughout, 〈a, x〉 := a1x1 + · · ·+ anxn stands for the scalar product
of vectors a = (a1, . . . , an) and x = (x1, . . . , xn).

Remark 3.2. Note that, over the (min,+) semiring R, the polynomial (3.2) satis-
fies f(x+y) > f(x)+f(y) for any vectors x, y ∈ Rn, while over the (max,+) semiring,
we have f(x+y) 6 f(x)+f(y). In particular, functions computed by (min,+) circuits
are concave, while those computed by (max,+) circuits are convex; these observations
explain our use of convexity arguments in Appendix B.

3.2. Vector-sets produced by circuits. A simple (but important in the analy-
sis of circuits) observation is that every circuit of n variables over a semiring (R,⊕,⊗)
also produces (purely syntactically) a finite set of vectors in N

n in a natural way.
Namely, define the set Xv ⊂ N

n of vectors produced at a gate v inductively as follows:
- If v ∈ R is a semiring element, then Xv := {~0}, where ~0 = (0, . . . , 0).
- If v = xi is the ith input variable, then Xv := {~ei}, where ~ei is the unit vector
with 1 at the ith coordinate and zeroes elsewhere.

- If v = u ⊕ w, then Xv := Xu ∪Xw.
- If v = u ⊗ w, then Xv := Xu + Xw, where A + B := {a + b : a ∈ A, b ∈ B}
is the sumset (known also as the Minkowski sum) of two sets of vectors, and
a+ b = (a1 + b1, . . . , an + bn) is the componentwise sum of vectors a and b.

The set produced by the entire circuit is the set produced at its output gate.

Remark 3.3. An equivalent definition of the setB ⊂ N
n produced by a circuit over

a semiring (⊕,⊗) is to view this circuit as a monotone arithmetic (+,×) circuit. Then
B is exactly the set of exponent vectors of monomials in the polynomial computed by
the resulting arithmetic circuit (the values of nonzero coefficients are here irrelevant).

Remark 3.4. Note that, up to the presence or absence of the all-0 vector ~0, the
set B produced by a circuit Φ does not depend on the values of input nodes holding
semiring elements (constants). So, by concentrating on sets of vectors produced by
circuits, we indeed concentrate entirely on the exponent vectors of the monomials in
the computed by circuits polynomials, and totally ignore the actual coefficients of
these monomials.
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Lemma 3.1. If A ⊂ N
n is the set of vectors produced by a circuit Φ over a

semiring R, then Φ computes some polynomial over R whose set of exponent vectors

is A.

Proof. Simple induction on the circuit size. Let A ⊂ N
n be the set of vectors

produced, and f(x) the polynomial computed by a circuit Φ.
If Φ consists of a single input node holding a semiring element c ∈ R, then

f(x) = c is a constant polynomial with a single exponent vector ~0. If Φ consists of a
single input node holding a variable xi, then f(x) = xi is a degree-1 polynomial with
the single exponent vector ~ei.

For the induction step, let ΦA and ΦB be two circuits, producing sets A ⊂ N
n

and B ⊂ N
n. Assume that the circuit ΦA computes some polynomial ΦA(x) =

∑

a∈A caX
a, and ΦB computes some polynomial ΦB(x) =

∑

b∈B cbX
b. Then the set

of exponent vectors of the polynomial

ΦA ⊕ ΦB =
∑

a∈A

caX
a ⊕

∑

b∈B

cbX
b

is A ∪B, and that of

ΦA ⊗ΦB =
(

∑

a∈A

caX
a
)

⊗
(

∑

b∈B

cbX
b
)

=
∑

a∈A

∑

b∈B

cacbX
a+b

is the Minkowski sum A+B.

We will mainly use Lemma 3.1 for circuits over tropical semirings. So, if A ⊂ N
n is

the set produced by a circuit over the semiring (R+,min,+), then Lemma 3.1 implies
that the computed by the circuit function has the form f(x) = mina∈A〈a, x〉+ ca for
some constants ca ∈ R+. If the circuit is constant-free, then the computed function
has the form f(x) = mina∈A〈a, x〉.

3.3. Elimination of constant inputs. Our goal is to show that, unlike the
functions computed by the circuits, the sets of vectors produced by the circuits are
almost independent of constant inputs. So, let Φ be a (not necessarily constant-free)
circuit over some semiring (R,⊕,⊗). We can clearly assume that Φ has no gates whose
both inputs are constants: just replace such gates by constant inputs. We construct
the constant-free version Φ∗ of Φ by repeatedly applying the following transformation:

(∗) If v = u ◦ c is a gate, where ◦ ∈ {⊕,⊗} and c is a constant input node, then
contract the edge (u, v), that is, replace every edge (v, w) leaving v by the
edge (u,w), and remove the gate v.

After no more such transformation is possible, remove all constant input nodes to-
gether with edges leaving them.

These transformations may clearly change the function computed by the original
circuit Φ. But the following lemma ensures that the resulting constant-free circuit
will produce almost the same set: only the all-0 vector ~0 may be missing.

Lemma 3.2. If A ⊆ N
n is the set produced by a circuit, then the constant-free

version of this circuit produces either A or A \ {~0}.
Proof. Let v = u ◦ c be a gate in the circuit, where c is a constant input node.

After the transformation (∗), the set Xv produced at gate v was replaced by the
set Xu produced at gate u. Recall that at every input node c holding a semiring
element, the same set Xc = {~0} is produced, regardless of what this element actually
is. So, if ◦ = ⊗, then Xv = Xu + Xc = Xu + {~0} = Xu, and if ◦ = ⊕, then
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Xv = Xu ∪ Xc = Xu ∪ {~0}. We thus have that either Xu = Xv or Xu = Xv \ {~0}
holds, implying that the set produced by the constant-free version of the circuit must
either be the same set A, or be this set without the all-0 vector ~0.

3.4. Minkowski complexity of vector-sets. It is clear that the same circuit
Φ may compute different functions over different semirings. It is, however, important
to note that the set A ⊂ N

n of vectors produced by Φ is always the same—it only
depends on the circuit itself, not on the underlying semiring. This independence of
produced sets on actual semirings is captured by the model of “Minkowski circuits.”

A Minkowski circuit is a directed acyclic graph with n+ 1 source (indegree zero)
nodes holding single-element sets {~0}, {~e1}, . . . , {~en}. Every other node, a gate, has
indegree two, and performs either the set-theoretic union (∪) or the Minkowski sum
(+) operation on its two inputs. So, at each gate, some set of vectors in N

n is produced
in a natural way. The set produced by the circuit is the set produced at its output
gate. We will denote the minimum size of a Minkowski circuit producing a set A ⊂ N

n

by L(A).
Motivation: For every set A ⊂ N

n, its Minkowski complexity L(A) is exactly the
minimum number of gates in a circuit over any semiring producing the set A.

3.5. Our approach. The reason to consider sets produced by circuits is that
it is often much easier to prove that a given set B ⊂ N

n requires many gates to
produce it than to show that many gates are necessary to compute a polynomial (as
a function) whose set of exponents is B. This happens because, as we mentioned
above, the former task essentially boils down to proving a lower bound on the size of
monotone arithmetic (+,×) circuits computing a polynomial whose set of exponent
vectors coincides with B (see Remark 3.3).

When dealing with approximating circuits, the main difficulty is that we do not
know the precise structure of these (produced by circuits) sets B of “approximative”
solutions. So, we are forced to prove lower bounds on the Minkowski complexity
of all sets B having particular properties, not just of one given set B, as in the
case of arithmetic circuits. Still, we will be able to extract enough information about
“approximating” sets B from the structure of feasible solutions of the original problem
which is to be approximated.

Given a finite set A ⊂ N
n (of feasible solutions), the optimization problem on

A is, for every input weighting x ∈ R
n
+, to compute the maximum or the minimum

weight 〈a, x〉 of a feasible solution a ∈ A.
At a high level, our approach consists of the following two steps. We are given an

optimization problem on some set A ⊂ N
n of feasible solutions. Suppose that some

(unknown to us) tropical circuit Φ approximates this problem within some factor r,
and let B ⊂ N

n be the (also unknown) set of vectors produced by Φ. Note that B
does not need to coincide with A (see Figure 3.1 for a simple example).

1. Knowing the set A and the fact that the circuit Φ must approximate the
optimization problem on A, extract some structural information about the
set B of “approximative solutions,” that is, establish structural properties of
any such possible set B.

2. Use this information about the set B to show that Φ must have many gates
to (syntactically) produce such a set, that is, show that any such set B must
have large Minkowski circuit complexity L(B).

3.6. Greedy algorithms. Since we will compare the approximation power of
tropical circuits (and pure DP algorithms) with that of greedy algorithms, let us
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specify what do we actually mean under a “greedy algorithm.”
Let F ⊆ 2E be some family of feasible solutions forming an antichain (no two

members of F are comparable under set inclusion). Given an ordering e1, . . . , en of
the elements of E, there are two simple procedures to end up with a member of F.
First-in: Start with the empty partial solution, treat the elements one-by-one and,

at each step, add the next element to the current partial solution if and only
if the extended partial solution still lies in at least one feasible solution.

First-out: Start with the entire set E as a partial solution, treat the elements one-
by-one and, at each step, remove the next element from the current partial
solution if and only if the reduced partial solution still contains at least one
feasible solution.

Remark 3.5. In the literature on greedy algorithms, it is usually assumed that F
is closed under taking subsets. We do not require this property; this is why we say
“lies in a feasible solution” instead of “is a feasible solution” in our description of the
algorithm.

In the case of the maximization problem on F, given an input weighting x : E →
R+, the best-in greedy algorithm starts with the heaviest-first ordering x(e1) > . . . >
x(en), and uses the first-in procedure, while the worst-out greedy algorithm starts with
the lightest-first ordering x(e1) 6 . . . 6 x(en), and uses the first-out procedure.

In the case of the minimization problem on F, the best-in greedy algorithm starts
with the lightest-first ordering x(e1) 6 . . . 6 x(en), and uses the first-in procedure,
while the worst-out greedy algorithm starts with the heaviest-first ordering x(e1) >

. . . > x(en), and uses the first-out procedure.
A classical result of Rado [30] and Edmonds [9] is that the best-in greedy algo-

rithm can solve the optimization (maximization or minimization) problem on F for
all weightings x : E → R+ if and only if F is the family of bases of a matroid. If,
however, the family F does not have this (matroid) property, then greedy algorithms
can only approximate the optimal value. In this case, it is already crucial what type
of greedy strategy (best-in or worst-out) is used.

Example 3.6. To see the difference, consider the problem of finding the maximum
weight of an independent set (resp., the minimum weight of a maximal independent

set) in a path with three nodes: • • •0 1 M . The worst-out greedy for maximization
will output 1, whereas M is the optimal value. The best-in greedy for minimization
will pick 0 and output M , whereas 1 is the optimal value. So, in both cases, the
approximation factor is unbounded (can be as large as M).

If, however, we use the best-in heuristic for maximization, and worst-out heuristic
for minimization, then the approximation factor is always bounded.

Proposition 3.3. For every family F, the approximation factor of the best-in

greedy for the maximization and of the worst-out greedy for the minimization problem

on F does not exceed r(F) := max{|S| : S ∈ F}.
Proof. Let m = r(F), and take an arbitrary weighting x : E → R+. Consider the

heaviest-first ordering x(e1) > . . . > x(ei) > . . . > x(en). Let ei be the first element
accepted by the greedy algorithm. Let S ∈ F be an optimal solution for the input x,
and A ∈ F be the solution found by the algorithm. Let also x(S) =

∑

i∈S x(ei) and
x(A) =

∑

i∈A x(ei) be their weights.
If this was the maximizing (best-in) greedy, then ei was the first element belonging

to at least one feasible set. So, S∩{e1, . . . , ei−1} = ∅, implying that x(S) 6 |S|·x(ei) 6
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m · x(ei) 6 m · x(A), as desired.
If this was the minimizing (worst-out) greedy then {ei+1, . . . , en} cannot contain

any feasible solution (for otherwise, ei would be not accepted). So, some element ej
with j 6 i must belong to the optimal solution S. But then x(S) > x(ej) > x(ei),
whereas x(A) 6 |A| · x(ei) 6 m · x(ei), implying that x(A) 6 m · x(S), as desired.

4. Structure of approximating tropical circuits. In this section, we consider
the following question: if a tropical circuit approximates an optimization (minimiza-
tion or maximization) problem on a given set A ⊂ N

n of feasible solutions within a
given factor, what can then be said about the set B ⊂ N

n of vectors produced by that
circuit?

To answer this question, we have to fix some notation. For vectors a, b ∈ R
n and

sets A,B ⊆ R
n of vectors, we say that:

◦ a is contained in b (and b contains a) if a 6 b holds, that is, if ai 6 bi holds
for all i = 1, . . . , n;

◦ B lies above A if every vector of B contains at least one vector of A;
◦ B lies below A if every vector of B is contained in at least one vector of A;
◦ Sa = {i : ai 6= 0} is the support of a.

Note that the fact that B lies above A does not imply that A lies below B, and
vice versa: the former means (∀b ∈ B)(∃a ∈ A) a 6 b, whereas the latter means
(∀a ∈ A)(∃b ∈ B) a 6 b.

Lemma 4.1 (Maximization) . Let A ⊆ {0, 1}n be some set of feasible solutions,

Φ a (max,+) circuit, and B ⊂ N
n the set of vectors produced by Φ. If Φ approximates

the maximization problem on A within a factor r > 1 on all input weightings x ∈
{0, 1}n, then B has the following properties:

(i) B lies below A and, hence, also consists of 0-1 vectors;

(ii) for every vector a ∈ A there is a vector b ∈ B with 〈a, b〉 > 1
r 〈a, a〉.

Proof. By Lemma 3.1, the circuit Φ solves the maximization problem Φ(x) =
maxb∈B〈b, x〉 + cb for some constants cb ∈ R+. The maximization problem on A is
of the form f(x) = maxa∈A〈a, x〉. Since the circuit approximates the maximization
problem on A within factor r for all 0-1 weightings, we know that 1

r · f(x) 6 Φ(x) 6
f(x) must hold for all x ∈ {0, 1}n. Since Φ(x) 6 f(x) must hold also for the all-0
input weighting x = ~0, cb = 0 must hold for all b ∈ B. So, the maximization problem
solved by the circuit is actually of the form Φ(x) = maxb∈B〈b, x〉.

Let us first show that the set B must also consist of only 0-1 vectors. Assume
contrariwise that some vector b ∈ B has a position i ∈ Sb with bi > 2, and consider
the weighting x ∈ {0, 1}n with xi = 1 and xj = 0 for all j 6= i. On this weighting, we
have Φ(x) > 〈b, x〉 = bi > 2, whereas f(x) 6 1, since all vectors in A are 0-1 vectors.
We obtain a contradiction with Φ(x) 6 f(x). So, B ⊆ {0, 1}n holds.

To show item (i), suppose contrariwise that some vector b ∈ B is contained in
none of the vectors of A. Since b is a 0-1 vector, this means that Sb \ Sa 6= ∅ holds for
all vectors a ∈ A. Then, on the weighting x := b, we have 〈a, x〉 = 〈a, b〉 6 〈b, b〉− 1 =
〈b, x〉 − 1 for all a ∈ A, a contradiction with Φ(x) 6 f(x).

To show property (ii), assume contrariwise that there is some vector a ∈ A such
that 〈a, b〉 < m/r holds for all vectors b ∈ B, where m = 〈a, a〉. Then, on the input
x := a, we have Φ(x) < m/r, whereas f(x) > 〈a, a〉 > m, a contradiction with
1
r f(x) 6 Φ(x).

Remark 4.1. The observation we made at the beginning of the proof is worth to
be restated separately: every minimal (max,+) circuit Φ approximating the maxi-
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mization problem f(x) = maxa∈A〈a, x〉 on any set A ⊂ N
n of feasible solutions must

be constant-free. This holds because on the input weighting x = ~0, the circuit must
output Φ(x) 6 f(x) = 0; so, we can safely set all constant inputs (if any) to zero.

Lemma 4.2 (Minimization) . Let A ⊆ {0, 1}n be an antichain, Φ be a (min,+)
circuit, and B ⊂ N

n the set of vectors produced by Φ. If Φ approximates the mini-

mization problem on A within a finite factor r on all input weightings x ∈ N
n, then

B has the following properties:

(i) B lies above A;
(ii) for every vector a ∈ A, at least one vector b ∈ B has the same support as a.

Note that the actual value of the factor r is here irrelevant: it only must be finite.

Proof. By Lemma 3.1, the circuit Φ solves the minimization problem Φ(x) =
minb∈B〈b, x〉 + cb for some constants cb ∈ R+. The minimization problem on A is of
the form f(x) = mina∈A〈a, x〉. We know that f(x) 6 Φ(x) 6 r · f(x) must hold for
all x ∈ N

n.
To show property (i), suppose contrariwise that some vector b ∈ B contains none

of the vectors of A. Since vectors in A are 0-1 vectors, this means that every vector
a ∈ A must have a 1 in some position i 6∈ Sb (where bi = 0). So, take an integer
M > max{cb : b ∈ B} (which exists, because the set B is finite), and consider the
assignment x ∈ {0,M + 1}n of weights such that xi = M + 1 if i 6∈ Sb, and xi = 0 if
i ∈ Sb. On this weighting, we have Φ(x) 6 〈b, x〉 + cb = 0 + cb 6 M . But since every
vector a ∈ A has 1 is some position i where xi = M + 1, we have that 〈a, x〉 > M + 1
for all a ∈ A and, hence, also f(x) > M +1, contradicting the inequality f(x) 6 Φ(x).

To show property (ii), suppose contrariwise that there is a vector a ∈ A such that
Sb 6= Sa holds for all vectors b ∈ B. The case Sb ⊂ Sa (proper inclusion) is impossible:
by item (i), we then would have Sa′ ⊂ Sa for some vector a′ ∈ A, contradicting the
fact that A is an antichain. So, the only possibility is that Sb \ Sa 6= ∅ holds for all
vectors b ∈ B. To show that this is also impossible, take M := rn + 1, and consider
the weighting x ∈ {1,M}n such that xi = 1 for all i ∈ Sa and xi = M for all i 6∈ Sa.
Then f(x) 6 〈a, x〉 = 〈a, a〉 6 n. But since every vector b ∈ B must have a position
i 6∈ Sa such that bi > 1, we have Φ(x) > M = rn+ 1 > r · f(x), a contradiction.

Remark 4.2. In Lemmas 4.1 and 4.2, we have admittedly stated only the simplest
properties of the sets B created by circuits, because their proofs are then simple, and
because these properties already suffice to derive our main lower-bounding tools—the
“boolean bound” (Theorem 5.1) and the “rectangle bound” (Theorem 6.1). Moreover,
these properties hold already when circuits have to approximate the given optimiza-
tion problems on only boolean or only nonnegative integer weights. If, however, we
have all weights from R+ in our disposal, then it is possible to describe the structure
of the sets created by approximating circuits even tightly. We do this in Appendix B
using convexity arguments.

5. Boolean bound for (min,+) circuits. In this section, we show that the
approximation power of minimizing pure DP algorithms is lower bounded by the
monotone boolean circuit complexity of the corresponding decision problems.

As we already mentioned, every finite set A ⊂ N
n of vectors (of feasible solutions)

defines two natural discrete optimization problems with a linear objective function:
given a vector x ∈ R

n
+ of weights, compute the minimum or the maximum weight

〈a, x〉 = a1x1 + · · ·+ anxn of a feasible solution a ∈ A. The decision version of these
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two problems is a monotone boolean function defined by A:

(5.1) fA(x) =
∨

a∈A

∧

i∈Sa

xi ,

where Sa = {i : ai 6= 0} is the support of vector a. Note that, for every input x ∈
{0, 1}n, we have

(5.2) fA(x) = 1 if and only if Sx ⊇ Sa for some a ∈ A.

Let Minr(A) denote the minimum size of a (min,+) circuit approximating the
minimization problem on A within the factor r, and let Bool(A) denote the minimum
number of gates in a monotone boolean (∨,∧) circuit computing the corresponding
to A boolean function fA(x).

Theorem 5.1 (Boolean bound for minimization) . If {~0} 6= A ⊂ {0, 1}n is an

antichain, then for every approximation factor r = r(n) > 1, we have Minr(A) >

Bool(A).

Thus, no (min,+) circuit with fewer than t = Bool(A) gates can approximate the
minimization problem on A within any finite factor. That is, if fewer than t gates are
used, then regardless of how large approximation factor r we will take, there will be
an input weighting x ∈ R

n
+ on which the circuit makes an error: the computed value

will be either strictly smaller or more than r times larger than the optimal value on
x. Note, however, that Theorem 5.1 is not a “sentence of death” for (min,+) circuits:
it does not exclude that, using t or more gates, (min,+) circuits may achieve small
approximation factors.

Proof. Take a (min,+) circuit Φ of size t = Minr(A) approximating the minimiza-
tion problem on A within the factor r, and let B ⊂ N

n be the set of vectors produced
by Φ; hence, L(B) 6 t. By Lemma 3.1, the circuit Φ solves the minimization problem
Φ(x) = minb∈B〈b, x〉 + cb for some constants cb ∈ R+. By Lemma 4.2, we know that
the set B must have the following two structural properties:

(i) for every b ∈ B there is an a ∈ A such that b > a and, hence, Sb ⊇ Sa;
(ii) for every a ∈ A there is a b ∈ B such that Sa = Sb and, hence, also Sa ⊇ Sb.

Since A is an antichain, and since A 6= {~0} (there would be nothing to prove otherwise),
~0 6∈ A follows and property (i) implies that ~0 6∈ B must hold as well. So, Lemma 3.2
implies that the constant-free version Φ∗ of our circuit Φ must produce the same set B
satisfying the properties (i) and (ii).

Let Ψ be the monotone boolean circuit obtained from Φ∗ by replacing all min
gates by OR gates, and all sum gates by AND gates. Since the sets of vectors produced
by circuit do not depend on the underlying semiring, the circuit Ψ produces the same
set B with both properties (i) and (ii). So, it remains to show that Ψ(x) = fA(x)
holds for all x ∈ {0, 1}n.

By Lemma 3.1, the circuit Ψ computes the boolean function Φ(x) =
∨

b∈B

∧

i∈Sb
xi.

Together with (5.2), property (i) implies Ψ(x) 6 fA(x), while property (ii) implies
fA(x) 6 Ψ(x) for all inputs x ∈ {0, 1}n. So, the boolean circuit Ψ computes our
boolean function fA, and has size at most t, as desired.

Remark 5.1. Actually, Theorem 5.1 has also an inverse: under an appropriate
definition of the “semantic degree” of monotone boolean circuits, we even have an
equality Minr(A) = Boolr(A), where Boolr(A) is the minimum size of a monotone
boolean circuit of semantic degree at most r computing the boolean function fA(x)
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defined by (5.1). We show this in Appendix C. Thus, the approximation power of
tropical (min,+) circuits is captured (not only lower bounded) by the computational
power of monotone boolean circuits.

6. A rectangle bound for (max,+) circuits. Under a rectangle with parts
X ⊆ N

n and Y ⊆ N
n we will mean the sumset X + Y = {x + y : x ∈ X, y ∈ Y } of

these two parts. Say that a vector a ∈ N
n appears (r, ǫ)-balanced in a rectangle X+Y

if there are vectors x ∈ X and y ∈ Y such that for p := 1
r · 〈a, a〉, we have

(6.1) 〈a, x+ y〉 > p, 1
2ǫp < 〈a, x〉 6 ǫp and 〈a, y〉 > (1 − ǫ)p .

For a set A ⊂ N
n of feasible solutions, let Maxr(A) denote the minimum size of a

tropical (max,+) circuit approximating the maximization problem f(x) = maxa∈A〈a, x〉
on A within the factor r on all input weightings x ∈ {0, 1}n.

Theorem 6.1 (Rectangle bound) . Let A ⊆ {0, 1}n be a set of vectors, 1 6 r <
m be an approximation factor, and r/m 6 ǫ < 1. If Maxr(A) 6 t, then there exist t
or fewer rectangles X + Y lying below A such that every vector a ∈ A with at least m
ones appears (r, ǫ)-balanced in at least one of these rectangles.

Note that the fact that a rectangle X + Y lies below a set of 0-1 vectors implies
that the rectangle is “cross disjoint” in that 〈x, y〉 = 0 holds for all x ∈ X and y ∈ Y .

We will derive Theorem 6.1 from the following general “decomposition lemma” for
Minkowski circuits. A norm-measure is any assignment of nonnegative real numbers
to vectors in N

n such that every 0-1 vector with at most one 1 gets norm at most 1,
and the norm is sub-additive in that the norm of a sum of two vectors does not exceed
the sum of their norms.

Recall that the Minkowski complexity, L(B), of a finite set B ⊂ N
n of vectors is

the minimum number of set-theoretic union and Minkowski sum operations required
to produce B when starting from simplest sets {~0}, {~e1}, . . . , {~en}.

Lemma 6.2 (Decomposition lemma [20]) . Let B ⊂ N
n be a set of vectors,

p > 2 and 1/p 6 ǫ < 1. If L(B) 6 t, then B is a union of t or fewer rectangles

X + Y ⊆ B with the following property:

(∗) for every norm measure µ : Nn → R+ and for every vector b ∈ B of norm

µ(b) > p, at least one of these rectangles X + Y contains vectors x ∈ X and

y ∈ Y such that x+ y = b and 1
2ǫp 6 µ(x) 6 ǫp.

Important here is that we can choose different norms µ for different vectors b ∈ B.
This flexibility will be crucial in our proof of Theorem 6.1. Lemma 6.2 itself was
originally proved in [20, Theorem D]. In Appendix A, we give a simpler, direct and
self-contained proof, not depending on other concepts related to Minkowski circuits
used in [20].

Proof of Theorem 6.1. Take a (max,+) circuit Φ of size t approximating the max-
imization problem on A within factor r, and let B ⊂ N

n be the set of vectors produced
by Φ; hence, L(B) 6 t. By Lemma 4.1, we know that

(i) the set B must lie below A and, hence, must also consist of 0-1 vectors;
(ii) for every vector a ∈ A with at least m ones there must be a vector b = ba ∈ B

such that

(6.2) 〈a, b〉 > p := 1
r 〈a, a〉 > 1

r m.

We are going to apply Lemma 6.2. Property (ii) suggests to associate with every
vector a ∈ A the norm-measure µa(x) := 〈a, x〉. By Lemma 6.2, the set B is a union
of at most t rectangles X + Y ⊆ B with the property (∗).
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Now take a vector a ∈ A and a vector b = ba ∈ B satisfying (6.2). Then
µa(b) = 〈a, b〉 > p. By the property (∗), there is a rectangle X + Y ⊆ B and vectors
x ∈ X and y ∈ Y such that x + y = b and ǫp/2 < µa(x) = 〈a, x〉 6 ǫp; hence, the
middle inequalities of (6.1) hold. Since 〈a, x + y〉 = 〈a, b〉 > p, we also have the first
inequality of (6.1). Since 〈a, y〉 = 〈a, x+ y〉 − 〈a, x〉 > p− ǫp also holds, the vector a
appears (r, ǫ)-balanced in this rectangle, as desired.

In the next sections, we will use the just created general tools—the boolean bound
(Theorem 5.1) and the rectangle bound (Theorem 6.1)—to prove lower bounds on the
size of approximating tropical circuits for some specific 0-1 optimization problems.
To state and prove these lower bounds, it will be convenient to switch back from
vectors to sets. For this view an n-dimensional 0-1 vector as incidence vector of the
corresponding subset of [n] = {1, . . . , n}.

7. Approximation limitations of (min,+) circuits. We already know (see
Proposition 3.3) that the standard (worst-out) greedy algorithm can approximate the
minimization problem on any family F within the (large but finite) factor r(F) =
max{|S| : S ∈ F}. In contrast, we will now show that small tropical (min,+) circuits
are unable to approximate some minimization problems within any (arbitrarily large
but finite) factor r > 1.

For a family F of feasible solutions, and a real number r > 1, let Minr(F) de-
note the minimum size of a (min,+) circuit approximating the minimization problem
f(x) = minS∈F

∑

i∈S xi on F within the factor r. Recall that, in our lower bounds,
we will only require the circuit to do this on nonnegative integer weights. Let also

Min(F) := inf
r>1

Minr(F) .

Note that Min(F) > t means that Minr(F) > t holds for any finite approximation
factor r = r(n) > 1. By Theorem 5.1, we know that Min(F) is at least the monotone
boolean circuit complexity Bool(fF) of the decision version fF(x) =

∨

S∈F

∧

i∈S xi

of the minimization problem on F. We thus can use known lower bounds on the
size of monotone boolean circuits to show limitations on the approximation power of
minimizing pure DP algorithms. In fact, we even have the equality Min(F) = Bool(fF)
(see Theorem C.2 in Appendix C).

7.1. Explicit lower bounds. In the lightest triangle problem, we are given an
assignment of nonnegative weights to the edges of Kn, and the goal is to compute
the minimum weight of a triangle. Since every feasible solution for this problem (a
triangle) has only three edges, the worst-out greedy algorithm achieves approximation
factor r = 3 on this problem (by Proposition 3.3). It is also clear that a trivial pure
DP algorithm can solve this problem even exactly by using O(n3) operations. This is
already almost the best pure DP algorithms can do.

Corollary 7.1. If F is the family of all triangles in Kn, then Min(F) is at least

Ω(n3/ log4 n).

Proof. It is known (see, e.g., [1, Lemma 3.14] or [18, Theorem 9.19]) that the
decision version of this problem requires monotone boolean circuits with Ω(n3/ log4 n)
gates.

Recall that the assignment problem (lightest perfect matching in Kn,n) can be
solved by a linear programming algorithm using only O(n3) operations. The corre-
sponding family of feasible solutions is here the family of all perfect matchings, each
viewed as its set of edges.
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Corollary 7.2. If F is the family of all perfect matchings in Kn,n, then Min(F)
is at least nΩ(logn).

Proof. The decision version of the assignment problem is the boolean permanent
function which, as proved by Razborov [31], requires monotone boolean circuits of
size nΩ(logn).

Let m be a prime power, and consider the complete bipartite m × m graph
Km,m = U ×V with U = GF(m) and V = GF(m). Every polynomial p(x) over
GF(m) determines a subgraph of Km,m consisting of m edges (u, p(u)) for u ∈ U .
The polynomial (m, d)-design consists of all md subgraphs of Km,m determined by
polynomials of degree at most d − 1 over GF(m). Note that Minr(F) 6 md+1 is a
trivial upper bound, even for r = 1.

Corollary 7.3. If F is a polynomial (m, d)-design with d 6 (m/4 lnm)1/2, then
Min(F) is at least mΩ(d).

Proof. The monotone boolean function defined by the family F was introduced
by Andreev [2] who proved a lower bound of mΩ(d) for this function when d is at most
about m1/4. Alon and Boppana [1] used Razborov’s method of approximations to
show that this lower bound actually holds for all d at most (m/4 lnm)1/2. Theorem 5.1
yields the desired lower bound for (min,+) circuits.

A family F of subgraphs of Kn is (k, l)-clique-like (1 6 l < k 6 n) if it contains
all subgraphs G with clique number ω(G) > k, and does not contain any subgraph G
with chromatic number χ(G) 6 l. The corresponding to any such family F monotone
boolean function accepts all graphs G with ω(G) > k, and rejects all graphs G with
χ(G) 6 l. On the remaining graphs, the function can take arbitrary values. For
l = k − 1, this is the well-known k-CLIQUE function.

It is known (see [17, Theorem 3.4] or [18, Theorem 9.26]) that any (k, l)-clique
like function requires monotone boolean circuits of size exponential in min{l, n/k}1/4.
Theorem 5.1 yields the following consequence for approximating (min,+) circuits.

Corollary 7.4. If a family F is (k, l)-clique-like, then Min(F) is exponential in

min{l, n/k}1/4.
By Proposition 3.3, the greedy algorithm can approximate the minimization prob-

lem on any family F ⊆ 2[n] within the (large but finite) factor n. So, the corollaries
above could wake an impression as if they already show that the greedy algorithm
can have a better approximation behavior than (min,+) circuits. This, however, is
not the case. The point is that, in order to achieve this (finite) factor, the minimizing
greedy algorithm must use the worst-out oracle, and this oracle may be forced to solve
(at each step) hard (even NP-hard) decision problems: does the remaining set S of
ground elements still contain at least one feasible solution F ∈ F? For example, in
the case of lightest k-clique problem for k = n/2, the oracle must be able to solve
solve an NP-complete problem: does the current graph S still contain a k-clique?

On the other hand, the decision problems to be solved by the best-in oracle are
usually much simpler (are “local”): does the new partial solution can still be extended
to a feasible solution? However, it is easy to see that, like the (min,+) circuits of
too small size, the best-in greedy algorithm cannot approximate any of the problems
considered above within any finite factor (see also Example 3.6).

Still, in the next section, we will combine the boolean bound (Theorem 5.1) with
counting arguments to show that also the best-in greedy algorithm can be better
than pure DP algorithms: there exists a huge number of minimization problems
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which can be solved even exactly by the best-in greedy algorithm, but which cannot
be approximated within any finite factor by (min,+) circuits of polynomial size.

7.2. (min,+) versus greedy. Recall that a matroid is a nonempty family F ⊆
2E of subsets of a finite set E satisfying the base exchange axiom:

• for every A 6= B ∈ F and every a ∈ A \ B there is a b ∈ B \ A such that
(A \ {a}) ∪ {b} is a member of F.

Remark 7.1. Our shortcut “matroid” F actually stands for “family of bases of a
matroid:” the matroid itself is usually treated as the downward closure F∗ of F. Note,
however, that optimization problems also in this case are defined as minimization or
maximization problem on the family F (of bases), not on the family F∗. In particular,
the minimization problem on F∗ is to compute the minimum weight of a member
of F.

By the Rado theorem [30], if F is a matroid, then the minimization problem
on F can be solved exactly by the greedy algorithm (even by the best-in greedy
algorithm). In contrast, we will now show that most matroids require (min,+) circuits
of exponential size to be even only approximated within any finite factor.

Let
(

[n]
k

)

denote the family of all k-element subsets of [n] = {1, . . . , n}. The
Hamming distance between two sets A and B is dist(A,B) = |A \ B| + |B \ A|.
A family H is separated if dist(A,B) > 2 holds for all A 6= B ∈ H.

The following general construction of matroids was implicit in several papers,
including those of Piff and Welsh [29], and Knuth [22], and was made explicit by
Bansal, Pendavingh and Van der Pol [3, Lemma 8].

Lemma 7.5. If H ⊆
(

[n]
k

)

is separated, then for every subfamily H′ ⊆ H, the

family F =
(

[n]
k

)

\H′ is a matroid.

Proof. Suppose contrariwise that F is not a matroid. Then there exist two sets
A 6= B ∈ F violating the base exchange property: there is an a ∈ A \ B such that
(A \ {a}) ∪ {b} 6∈ F for all b ∈ B. Observe that B \ A must have at least two
elements: held B \A = {b} then, since both A and B have the same cardinality, the
set (A \ {a}) ∪ {b} would coincide with B and, hence, would belong to F. So, take
b 6= c ∈ B \A and consider the sets S = (A\{a})∪{b} and T = (A\{a})∪{c}. Since
the exchange axiom fails for A and B, neither of S and T can belong to F; hence,
both sets S and T belong to H′. But dist(S, T ) = |{b, c}| = 2, a contradiction with
H′ being separated.

Thus, for every separated family H ⊆
(

[n]
k

)

, Lemma 7.5 gives us 2|H| matroids.

Lemma 7.6 (Knuth [22]) . For every 1 6 k 6 n, there is a separated family

H ⊆
(

[n]
k

)

of size |H| >
(

n
k

)

/2n.

Proof. Let l = ⌊log2 n⌋+ 1, and let ~v1, . . . , ~vn be vectors in {0, 1}l corresponding
to the binary representations of numbers from 1 to n. Associate with every vector
b ∈ {0, 1}l the family Hb of all k-element subsets S of [n] such that

∑

i∈S ~vi = b
mod 2. Since vectors ~v1, . . . , ~vn are distinct, the sum modulo 2 of any two of them
cannot be the all-0 vector. So, dist(S, T ) > 2 must hold for all S 6= T ∈ Hb. Thus,
every family Hb is separated. Since there are only 2l 6 2n such families, and they
exhaust the entire family

(

[n]
k

)

, there must be a vector b for which |Hb| >
(

n
k

)

/2n
holds.

Theorem 7.7. There exist double-exponentially many in n matroids F ⊆ 2[n]

such that Min(F) > Bool(fF) = 2Ω(n).
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Proof. When applied with k = ⌊n/2⌋, Lemmas 7.5 and 7.6 imply that there are

at least M := 2(
n
k)/2n > 22

n/4n3/2

matroids over [n]: at least so many possibilities are
to choose a subfamily H′ ⊆ H. On the other hand, the number of monotone boolean
circuits of size s does not exceed L(s) := 2s(n + 2 + s)2s, where n is the number of
input variables: for each gate we have two choices for the type of the gate and at
most (n + 2 + s)2 choices for two inputs that feed the gate. This implies that there
are at most L(s) families F of monotone boolean circuit complexity at most s. By
taking s := 2n/n3, we obtain logL(s) = O(s log(n + s)) = O(2n/n2). So, at least
M−L(s) > L(s) matroids have monotone boolean complexity at least s. Theorem 5.1
yields the same lower bound for approximating (min,+) circuits.

8. Approximation limitations of (max,+) circuits. As we have seen in the
previous section, the approximation power of tropical circuits solving minimization

problems is determined by the size of monotone boolean circuits solving the decision
versions of these problems: if the latter circuits require t gates, then no tropical
(min,+) circuit of size smaller than t can approximate the problem within any finite
factor.

The situation with maximization problems is entirely different: here the approx-
imation factor is always bounded. For example, a trivial (max,+) circuit Φ(x) =
max{x1, . . . , xn} approximates the maximization problem on any family F ⊆ 2[n]

within the (large but finite) factor r(F) := max{|S| : S ∈ F} (assuming that each
ground element i ∈ [n] belongs to at least one set of F). Recall that we only allow
nonnegative weights. This trivial observation can be extended as follows.

The top k-of-n selection problem fn,k : Rn → R is, given a vector x = (x1, . . . , xn),
to compute the sum of the k largest entries of x. Note that the family of feasible
solutions of this problem is the family

(

[n]
k

)

of all k-element subsets of [n]. For example,
f6,3(1, 3, 5, 2, 7, 5) = 7 + 5 + 5 = 17. In particular, fn,1(x) = max{x1, . . . , xn} and
fn,n(x) = x1 + · · ·+ xn.

Under the top k-of-n DP algorithm we will mean the following simple DP algo-
rithm which solves the top k-of-n selection problem fn,k by starting from f0,0 = 0
and using the recursion

(8.1) fm,l = max{fm−1,l, fm−1,l−1 + xm}
for m = 1, . . . , n, l = 1, . . . ,min{k,m}, with fm,0 = fm−1.m = 0. The recursion is
related to the Pascal identity

(

m
l

)

=
(

m−1
l

)

+
(

m−1
l−1

)

for binomial coefficients. The
number of operations performed by this algorithm and, hence, also the number of
gates of the resulting (max,+) circuit is at most 2kn.

Say that a family F ⊆ 2[n] is k-dense (k > 1) if every k-element subset of [n] is
contained in at least one set of F.

Proposition 8.1. The top k-of-n DP algorithm uses at most 2kn operations to

approximate the maximization problem on every k-dense family F ⊆ 2[n] of feasible
solutions within the factor r = r(F)/k.

Proof. The maximization problem on F is f(x) = maxS∈F

∑

i∈S xi. Since the
weights are nonnegative, the k-denseness of F ensures that fn,k(x) 6 f(x). On the
other hand, f(x) is at least the sum of weights of the heaviest k elements in an optimal
solution on input x. Since no solution has more than r(F) elements, the optimal value
cannot exceed (r(F)/k) · f(x), as desired.

Example 8.1. Let 2 6 k 6 n be even, and let F be the family of all
(

n
k

)

k-cliques

in Kn, each clique viewed as the set of its
(

k
2

)

edges. A trivial approximation factor
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for the maximization problem on F is r(F) =
(

k
2

)

. However, since every set of l := k/2
edges lies in at least one k-clique, Proposition 8.1 implies that O(kn2) operations
are enough to approximate the maximization problem on F by a pure DP algorithm
within the quadratically smaller factor r =

(

k
2

)

/l 6 k.

8.1. Hard to solve exactly, easy to approximate. The following proposition
shows that one (fixed) small (max,+) circuit can approximate a huge number of
maximization problems within a small factor r = 1 + o(1), while an exponential
number of gates is necessary to solve any of these problems exactly (with r = 1).
In other words, while most problems are hard to solve exactly, they are trivially
approximable by just one (fixed) (max,+) circuit. This emphasizes the difficulties
to come up with strong lower bounds on the size of approximating (max,+) circuits,
even for slightly larger than 1 approximation factors r.

For a family F of feasible solutions and a real number r > 1, let Maxr(F) denote
the minimum size of a (max,+) circuit approximating the maximization problem on
F within the factor r.

Proposition 8.2. There are double-exponentially many in n matroids F ⊆ 2[n]

such that Max1(F) = 2Ω(n) but the maximization problem on each of these matroids

can be approximated within a factor r = 1+o(1) by one and the same (max,+) circuit
of size n2.

Proof. Let n be a sufficiently large even integer, and k = n/2. Lemmas 7.5 and

7.6 give us at least M := 2(
n
k)/2n > 22

n/4n3/2

matroids F ⊂
(

[n]
k

)

with the property

that the Hamming distance between any two distinct sets A 6= B ∈
(

[n]
k

)

\F is > 2. We

claim that each such family must be (k−1)–dense. To see this, take any set T ∈
(

[n]
k−1

)

,
any two distinct elements x, y 6∈ T , and consider the k-element sets S1 = T ∪ {x} and
S2 = T ∪{y}. Since the Hamming distance between S1 and S2 is 2, they cannot both
lie outside the family F. So, at least one of them must belong to F, as desired.

We thus have at least M matroids F ⊂
(

[n]
k

)

which are (k− 1)-dense. By Propo-
sition 8.1, one (max,+) circuit of size at most 2kn = n2 for the top (k− 1)-of-n
problem approximates the maximization problem on each of these M matroids within
the factor r = k/(k − 1) = 1 + 2/(n− 2).

On the other hand, by Remark 4.1, minimal (max,+) circuits solving the maxi-
mization problem on any family F must be constant-free. So, by counting constant-
free (max,+) circuits (instead of boolean circuits), the the same argument as in the
proof of Theorem 7.7 implies that Max1(F) = 2Ω(n) holds for doubly-exponentially
many of these matroids F.

Remark 8.2. It can be easily shown that random maximization problems are also
easy to approximate. Let m = n/2, k = m− 2, and consider a random family F of m-
element subsets of [n] with each m-element subset being included in F independently
with probability 1/2. Since one k-element set is contained in l =

(

n−k
2

)

= Ω(n2) m-
element sets, the probability that a fixed k-element set will be contained in none of
the sets of F is (1/2)l = 2−Ω(n2). So, by the union bound, the family F is not k-dense

with probability at most
(

n
k

)

·2−Ω(n2) = 2−Ω(n2). That is, the family F is k-dense with

probability at least 1 − 2−Ω(n2). By Proposition 8.1, with this probability, the top
k-of-n DP algorithm will approximate the maximization problem on a random family
F ⊆

(

[n]
m

)

within the factor r = m/k = 1+o(1). This, in particular, implies that, unlike
for circuits solving maximization problems exactly (r = 1), simple counting arguments
cannot show even the existence of maximization problems requiring a cubic number
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of gates to approximate them within, say, the factor r = 1.001.

Proposition 8.2 shows a mere existence of maximization problems which are diffi-
cult to solve exactly but are easy to approximate within a slightly larger than 1 factor.
There are, however, also explicit problems exhibiting a similar gap.

A family F of sets is a Sidon family if for any sets A,B,C,D in F, A∪B = C ∪D
and A ∩ B = C ∩D implies {A,B} = {C,D}. In terms of the incidence 0-1 vectors
of sets, this means the following: if we know the sum of incidence vectors of two
members of F, then we know which vectors were added.

Example 8.3. Let F be the family of all |F| =
(

n
k

)

k-cliques in Kn, viewed as sets

of their
(

k
2

)

edges. It is easy to verify that no union of two k-cliques can contain some
third k-clique. Indeed, the latter clique must then have a node u not in the first clique
and a node v not in the second clique. If u = v then the node u is not covered, and
if u 6= v then the edge {u, v} is not covered by the first two cliques, a contradiction.

Gashkov and Sergeev [13, Theorem 1] have shown that large Sidon families yield
almost maximal lower bounds on the monotone arithmetic circuit complexity: if
F ⊆ 2[n] is a Sidon family, then any multilinear polynomial with no negative coeffi-
cients, whose family of monomials (viewed as subsets of [n]) coincides with F, requires
monotone arithmetic (+,×) circuits of size at least |F| (it is clear that size n|F| always
suffices). For uniform Sidon families (all sets have the same cardinality), this yields
the same lower bound Max1(F) > |F| on the size of (max,+) circuits solving the max-
imization problem on F exactly; see, e.g., [16, Corollary 2.10] or [19, Theorem 9]. In
view of this, the following proposition is somewhat surprising: maximization problems
on some exponentially large (even explicit) Sidon families can be easily approximated
already within factor r = 2.

Proposition 8.3. Let m be an odd integer, and n = 4m. Then there is an

explicit Sidon family F ⊆ 2[n] such that Max1(F) > 2n/4 but Max2(F) 6 n.

Proof. See Appendix D.

8.2. Set version of the rectangle bound. Proposition 8.2 and Remark 8.2
show that already for small approximation factors r > 1, it may be difficult to come
up with a large lower bound on Maxr(F), even by using counting arguments: a single
small (max,+) circuit can approximate a doubly-exponential number of maximization
problems within factor 1 + o(1). Still, our rectangle bound (Theorem 6.1) will allow
us to prove such lower bounds.

Since we are now dealing with sets instead of vectors, it is worth to restate The-
orem 6.1 in terms of sets. Under a rectangle we will now mean a cross-union

A ∨B = {A ∪B : A ∈ A and B ∈ B}
of two families which are cross-disjoint in that A ∩ B = ∅ holds for all A ∈ A and
B ∈ B. We say that a set F appears (r, ǫ)-balanced in a rectangle R = A ∨B if there
are A ∈ A and B ∈ B such that for p := |F |/r, we have

(8.2) |F ∩ (A ∪B)| > p and 1
2ǫp 6 |F ∩ A| 6 ǫp .

Since, A ∩B = ∅, we also have |F ∩B| > p− |F ∩A| > (1− ǫ)p. Finally, we say that
a family R lies below a family F if every set of R is contained in at least one set of F.
In these terms, Theorem 6.1 turns into the following fact.

Theorem 8.4 (Set version of the rectangle bound) . Let F be a family of sets,

1 6 r < m be an approximation factor, and r/m 6 ǫ < 1. If Maxr(F) 6 t, then
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there exist t or fewer rectangles lying below F such that every set F ∈ F with |F | > m
elements appears (r, ǫ)-balanced in at least one of them.

Thus, in order to show that Maxr(F) is large, it is enough to choose some sub-
family H ⊆ F, some parameters ǫ and m > r satisfying r/m 6 ǫ < 1, and to show
that, for every rectangle R lying below F, the family

HR = {F ∈ H : F appears (r, ǫ)-balanced in R}

cannot have more than h sets; then the lower bound Maxr(F) > |H|/h follows. Besides
the cross-disjointness and balancedness, the property of “lying below F” is here crucial.
If, say, F is the family of all perfect matchings in Kn,n, and if a rectangle R lies below
F, then we know that every set of R must be a matching.

We now apply Theorem 8.4 to explicit maximization problems.

8.3. Maximization on designs. For a nonnegative real number l and a family
F of sets, let #l(F) denote the maximal possible number of sets in F containing a
fixed set with l (or more) elements:

#l(F) = max
|X|>l

|{F ∈ F : F ⊇ X}| .

In other words, #l(F) is the maximal possible number of sets in F whose intersection
has l (or more) elements. Hence, |F| = #0(F) > #1(F) > . . . > #m(F) = 1, where
m is the maximum number of elements in a set of F. For example, if F is the set of
edges of a graph, then #1(F) is the maximum degree of a vertex in this graph.

Say that a family F is an (m, d)-design (1 6 d 6 m) if every of its sets has at
least m elements, and no two of them share d or more elements in common, that is,
#d(F) 6 1 holds. We will see soon (Theorem 8.6) that the maximization problem
on some (m, d)-designs can be approximated by a small (max,+) circuit within the
factor r = m

d . The following theorem shows that this is actually the best (max,+)
circuits can achieve.

Theorem 8.5 (Arbitrary designs) . Let F be an (m, d)-design. Then for every

ǫ > 1/(d+ 1), for which r := (1− ǫ)md > 1, we have

Maxr(F) >
|F|

#l(F)
for l = ǫd/2 .

Proof. We are going to apply the rectangle bound (Theorem 8.4). Let us first
show that the parameter ǫ satisfies the conditions r/m 6 ǫ < 1 of this theorem. The
condition r/m 6 ǫ is equivalent to 1 6 ǫ(d+1), which is fulfilled because ǫ > 1/(d+1).
The condition ǫ < 1 is fulfilled because r > 1.

Take now an arbitrary rectangle R = A∨B lying below F. Set p := m/r, and let
FR ⊆ F be the family of all sets F ∈ F such that

|F ∩ A| > 1
2ǫp > l and |F ∩B| > (1− ǫ)p = d

holds for some A ∈ A and B ∈ B. By Theorem 8.4, it is enough to show that
|FR| 6 #l(F). We can assume that all sets B ∈ B have |B| > d elements: we can
remove all smaller sets without changing FR.

For each set B ∈ B, every set of the family A ∨ {B} = {A ∪B : A ∈ A} must be
contained in at least one set of F (since R lies below F). But all these sets of F must
then contain the same set B with |B| > d elements. Since no two sets of F can share
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d or more elements in common (F is an (m, d)-design), this implies that all sets of
A ∨ {B} must be contained in one and the same set FB of F. In particular, if X is
the union of all sets in A, then FB ⊇ X ∪B.

Now take an arbitrary set F ∈ FR. Then |F ∩B| > d holds for some B ∈ B. We
already know that the set B is contained in a set FB of F. So, |F ∩ FB| > d. Since F

is an (n, d)-design, this implies that F = FB. Hence,

FR ⊆ {FB : B ∈ B} .

Every set FB in this latter family must contain the same set X (union of all sets in A).
Since every set in A has at least l elements, their union X also has |X | > l elements.
So,

|FR| 6 |{FB : B ∈ B}| 6 |{F ∈ F : F ⊇ X}| 6 #l(F) ,

as desired.

We now apply Theorem 8.5 to polynomial (m, d)-designs F (defined before Corol-
lary 7.3). That is, m is a prime power, and ground elements are n = m2 edges of the
complete bipartite m×m graph Km,m = U × V with U = GF(m) and V = GF(m).
Members of F are |F| = md subgraphs {(a, p(a)) : a ∈ U} of Km,m determined by
polynomials p(x) of degree at most d− 1 over GF(m).

A standard result in polynomial interpolation is that for any l 6 d distinct points
(a1, b1), . . . , (al, bl) in GF(m)×GF(m), the number of polynomials p(x) of degree at
most d − 1 satisfying p(a1) = b1, . . . , p(al) = bl is either 0 (if ai = aj holds for some
i 6= j) or is exactly md−l: so many solutions of the corresponding system of linear
equations, with coefficients of p viewed as variables, there are. Thus, in the polynomial
(m, d)-design F, we have

(8.3) #l(F) = md−l for all l = 0, 1, . . . , d .

As we already mentioned in the previous section, Andreev [2] showed that the
monotone boolean functions corresponding to polynomial designs require monotone
boolean circuits of size mΩ(d). Nisan and Wigderson [27] used polynomial designs
to construct quick pseudorandom generators. We also know (Corollary 7.3) that
the minimization problem on such designs cannot be approximated within any finite
factor r by using fewer than nΩ(d) gates. We will now show that polynomial designs
are also hard to approximate by (max,+) circuits.

Theorem 8.6 (Polynomial designs) . Let F be the polynomial (m, d)-design with

d 6 m− 1. Then Maxr(F) 6 3m2 holds for r := m
d , but for any 1

d+1 6 ǫ 6 1− d
m ,

Max(1−ǫ)r(F) > mǫd/2 .

In particular, the maximization problem of an (m, d)-design with d = m/2 can be
approximated within factor r = 2 using only 3m2 gates, but mΩ(m) gates are necessary
to do this within any factor 2− c for an arbitrarily small constant c > 0. So, already
a slight decrease of the approximation factor leads to an exponential increase in the
circuit size.

Proof. The lower bound follows directly from the property (8.3) and Theorem 8.5:
for l = ǫd/2, we have #l(F) = md−l and, hence, Max(1−ǫ)r(F) > |F|/#l(F) >

md/md−l = ml.
To show the upper bound Maxr(F) 6 3m2 for r = m/d, we can first use m(m−1)

Max operations to compute m numbers y1, . . . , ym, where yi is the maximum weight
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of an edge incident to the vertex i ∈ U . Then it is enough to use additional 2dm
operations to compute the sum W of the largest d of these numbers, by solving the
top d-of-m selection problem (see (8.1)). Then W is a sum of weights of d heaviest

edges with no common vertex in U . This later property of the edges (no common
vertex on the left), together with the property (8.3) of polynomial designs (for l = d),
implies that these d edges are contained in a (unique) set of F. Hence, the found value
W cannot exceed the optimal value (the weights are nonnegative). On the other hand,
the weight of d heaviest edges of an optimal solution S ∈ F cannot exceed W . Since
|S| = m, the weight of this solution cannot exceed (m/d)W , as desired.

Remark 8.4. Note that Theorem 8.6 does not show that greedy can achieve better
approximation factors than pure DP algorithms. The (best-in) greedy algorithm
also achieves approximation factor r = m

d on polynomial (m, d)-designs because it
also computes the sum of the d largest numbers among y1, . . . , ym, where yi is the
maximum weight of an edge incident to the vertex i ∈ U . But just as pure DP
algorithms the greedy algorithm cannot achieve any better factor r = (1 − ǫ)md for
ǫ > 0.

The proof is straight-forward, but let us do this for completeness. Take arbitrary
two sets S 6= T ∈ F, and a subset A ⊂ S of |A| = d elements. Since F is an (m, d)-
design, we have that |S ∩ T | 6 d − 1, implying that A is not contained in T . Give
now weight 1/(1 − ǫ) > 1 to all elements of A, weight 1 to all elements of T \ A,
and zero weight to the rest. Then the (best-in) greedy algorithm tries elements of
weight 1/(1− ǫ) first, gets all |A| = d of them, but then is stuck because no element
of weight 1 fits; hence, the greedy algorithm achieves total weight g = d/(1− ǫ). But
the optimum is at least |T | = m. Hence, r > |T |/g > (1− ǫ)md , as claimed.

8.4. Maximum weight matchings in hypergraphs. As we mentioned in Re-
mark 8.4, Theorem 8.6 does not imply that greedy can achieve better approximation
factors than pure DP algorithms. To show that greedy still can be better, we consider
another maximization problem: maximum weight matchings in hypergraphs.

Consider a k-uniform k-partite hypergraph on mk vertices. That is, we have a set
V = V1 ∪ · · · ∪ Vk of |V | = mk vertices decomposed into k disjoint blocks V1, . . . , Vk,
each of size m. Edges (called also hyperedges) are k-tuples e ∈ V1 × · · · × Vk. The
ground set E consists of all n := |E| = mk edges. Two edges e and e′ are disjoint
(e ∩ e′ = ∅) if they differ in all k positions. A matching is a set of disjoint edges, and
is perfect if it has the maximum possible number m of edges.

The family Fn,k of feasible solutions of our problem consists of all |Fn,k| = (m!)k−1

perfect matchings. So, the maximization problem on Fn,k is, given an assignment of
nonnegative weights xe to the edges e ∈ E, to compute the maximum total weight

f(x) = max {xe1 + · · ·+ xem : ei ∈ E and ei ∩ ej = ∅ for all i 6= j }

of a perfect matching. Since no perfect matching has more thanm edges, Maxr(Fn,k) 6
mk = n is a trivial upper bound for the approximation factor r = m, by using a circuit
which simply picks the heaviest edge.

The greedy algorithm can approximate the maximization problem on F = Fn,k

within the factor k by just always picking the heaviest of the remaining edges, un-
touched by the partial matching picked so far. On the other hand, we have the
following lower bound.

Theorem 8.7 (Matchings) . Let 4 6 k 6 logm− 3 log logm be an integer, and
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n = mk be sufficiently large. If r 6 2k/9, then

Maxr(Fn,k) = 2Ω(n1/k/2k) .

Thus, the greedy algorithm can achieve the approximation factor k, but no poly-
nomial size (max,+) circuit can achieve an even exponentially worse factor. Actually,
the gap occurs already for small (constant) values of k. Say, for k = 6, the greedy al-
gorithm can approximate the maximization problem on Fn,k within factor r = 6, but
any pure DP algorithm approximating this problem even within factor r = 26/9 > 7

must use 2n
Ω(1)

operations.

Proof. We are going to apply the rectangle bound (Theorem 8.4) with ǫ := 2/3.
So, take an arbitrary rectangle R = A∨B lying below F = Fn,k. Hence, all sets A∪B
with A ∈ A and B ∈ B must be matchings. Take d := ⌈m/3r⌉, and consider the
family

FR = {F ∈ F : |F ∩ A| > d and |F ∩B| > d for some A ∈ A and B ∈ B } .
Our goal is to upper bound the maximum possible number |FR| of sets in such a
family.

Since the rectangle R = A∨B is cross-disjoint, we know that the matchings A ∈ A

and B ∈ B must be edge-disjoint, that is, A ∩ B = ∅ must hold. However, since the
sets A∪B must also be matchings (R lies below F), we actually know that matchings
A and B are also vertex-disjoint : if S ⊆ V is the set of vertices belonging to at least
one edge of a matching in A, and T ⊆ V is the set of vertices belonging to at least
one edge of a matching in B, then we have that S ∩ T = ∅ (this is a crucial property).

So, call a matching A ⊂ V1×· · ·×Vk S-matching if A ⊂ Sk holds, that is, if edges
of A only match vertices of S; T -matchings are defined similarly. By the definition
of FR, every perfect matching F ∈ FR has at least d edges lying in S, and at least
d edges lying in T . In particular, every perfect matching F ∈ FR must contain at
least one matching A ∪ B, where A is an S-matching with |A| = d edges and B is a
T -matching with |B| = d edges. It therefore suffices to upper-bound the the number
of perfect matchings F with this property.

We can pick any such pair (A,B) as follows. Let Si = S ∩ Vi and Ti = T ∩ Vi

for i = 1, . . . , k. We can assume that each of these 2k sets has at least d vertices,
for otherwise none of the S-matchings or of the T -matchings could have > d edges,
implying that FR = ∅.

1. Pick in each Si a subset Ui ⊆ Si of |Ui| = d vertices, and in each Ti a subset
Wi ⊆ Ti of |Wi| = d vertices. There are at most

k
∏

i=1

(

mi

d

)(

m−mi

d

)

6

(

m

2d

)k

possibilities to do this, where mi = |Si|. Here we used the (clear from combi-
natorial interpretation) inequality

(

x
a

)(

y
b

)

6
(

x+y
a+b

)

.
2. Pick a perfect matching A in U1 × · · · × Uk and a perfect matching B in

W1 × · · · ×Wk. There are only
[

(d!)k−1
]2

= (d!)2(k−1) possibilities to do this.
After a pair (A,B) of matchings is picked, there are at most [(m − 2d)!]k−1 pos-

sibilities to extend A ∪B to a perfect matching. Thus,

|FR| 6
(

m

2d

)k

(d!)2(k−1)[(m− 2d)!]k−1 .
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Now let t = Maxr(F) be the minimum number of gates in a (max,+) circuit. Since
there are |F| = (m!)k−1 perfect matchings, the rectangle bound (Theorem 8.4) implies
that

t >
|F|
|FR|

>
∆k−1

(

m
2d

) ,

where

∆ :=
m!
(

m
2d

) · 1

(d!)2(m− 2d)!
=

(2d)!

(d!)2
=

(

2d

d

)

.

Since
(

2d
d

)

> 22d/
√
4d > 22d/d and

(

m
2d

)

6 (em/2d)2d, we have

t >

(

2d

d

)k−1

·
(

m

2d

)−1

>
(2k−1)2d

dk−1
· (2d)2d

(em)2d
=

(

2kd

em

)2d

· d1−k .

Since, by our assumption, the approximation factor is r = 2k/9, and since we have
set d := ⌈m/3r⌉, we have 3m/2k 6 d 6 3m/2k + 1. So,

t >

(

3

e

)6m/2k

· d−k
> 20.8m/2k−k log 4m .

Since k 6 logm − 3 log logm, we have m/2k > log3 m ≫ k log 4m, and the desired

lower bound t = 2Ω(m/2k) = 2Ω(n1/k/2k) follows.

9. Conclusion and open problems. We proved the first non-trivial lower
bounds for approximating tropical circuits. Since pure DP algorithms are just special
(recursively constructed) tropical circuits, these bounds hold also for approximating
pure DP algorithms. The results imply that the approximation powers of greedy and
pure DP algorithms are incomparable. Some interesting questions still remain open.

Minimization. We have shown in Theorem 7.7 that there exist a lot of monotone
boolean functions f such that minterms of f are bases of a matroid, and f requires
monotone boolean circuits of exponential size.

Problem 1. Prove a super-polynomial lower bound on the monotone boolean cir-

cuit complexity of an explicit boolean function whose minterms are bases of a matroid.

A related (more general) problem is to develop lower bound arguments for mono-
tone boolean circuits of bounded semantic degree (see Appendix C), that are easier to
apply than Razborov’s general method of approximations, and its symmetric versions;
see [18, Chapter 9].

Let Tn be the family of all spanning trees in a complete n-vertex graph Kn. Since
this family is (the family of bases of) the graphic matroid, both minimization and
maximization problems can be solved by greedy algorithms. On the other hand, it
is known that 2Ω(

√
n) gates are necessary to solve the minimization problem on Tn

by a (min,+) circuit exactly, that is, Min1(Tn) = 2Ω(
√
n) [21]. But what if we only

want to approximate the minimum weight spanning tree problem, is Minr(Tn) super-
polynomial also for r > 1? It can be shown (see Example C.3 in Appendix C) that
Minr(Tn) = O(n4) holds for some finite factor r 6 n− 1.

Problem 2. Is Min2(Tn) polynomial in n?
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Maximization. The next problem asks whether Theorem 8.7 holds for match-
ings in bipartite graphs. In the heaviest matching problem Mn, we are given an
assignment of nonnegative real weights to the edges of a complete bipartite n× n
graph Kn,n, and the goal is to compute the minimum weight of a matching in Kn,n.
The greedy algorithm can approximate this problem within the factor 2.

Problem 3. Is Max2(Mn) polynomial in n?

For k = 2, the calculations made in the proof of Theorem 8.7 result in a trivial bound.
So, new arguments are necessary in the bipartite case.

Our next question concerns the maximization problem on the graphic matroid
Tn. We know that, for factor r = 1, we have Max1(Tn) = 2Ω(

√
n) [21].

Problem 4. Is Max2(Tn) also exponential in n?

We have shown in Theorem 7.7 that the minimization problem on many matroids
cannot be efficiently approximated by pure DP algorithms within any finite factor r.
But what happens with maximization problems?

Problem 5. Do there exist matroids, on which the maximization problem cannot

be efficiently approximated by pure DP algorithms within some factor r > 1 + ǫ for a

constant ǫ > 0?

Note that here we only ask for the mere existence. By Proposition 8.2, the answer is
“yes” for r = 1. But this proposition and Remark 8.2 indicate that direct counting
arguments may fail to answer this question for slightly larger approximation factors r.

Tradeoffs between minimization and maximization. Given a family F ⊆
2[n] of feasible solutions, what is the difference in the hardness of approximation of
the minimization and of the minimization problems on the same family F?

A family F ⊆ 2[n] is uniform if all its sets have the same cardinality. For non-
uniform families F, both gaps Max1(F)/Min1(F) and Min1(F)/Max1(F) can be expo-
nential. For example, Max1(F)/Min1(F) = 2Ω(n) holds for the family F of all simple
paths in Kn from vertex 1 to vertex n (see, e.g., [19, Section 7]). But it is known
that no gap is possible for uniform families F: then Min1(F) = Max1(F) holds (see,
for example, [19, Theorem 9]).

The following proposition shows that the situation is entirely different if we con-
sider approximating circuits: even for uniform families F, the gap Minr(F)/Maxs(F)
can be exponential for the approximation factors s = 1 + o(1) and r > 1 arbitrarily
large.

Proposition 9.1. There are doubly exponentially many in n uniform families

F ⊆ 2[n] such that Maxr(F) 6 n2 already for r = 1 + o(1) but Minr(F) > Bool(F) =
2Ω(n) holds for all r > 1.

Proof. Matroids F given by Lemmas 7.5 and 7.6 are uniform families, and Propo-
sition 8.2 shows that Max1+o(1)(F) 6 n2 holds for every such matroid F. On the other
hand, Theorem 7.7 shows that for doubly exponentially many in n of such matroids,
and for any finite factor r > 1, we have Minr(F) > Bool(F) = 2Ω(n).

Large Minr(F)/Maxs(F) gaps for r > s > 1 are also achievable on explicit uniform
families F. For example, if F is the polynomial (m, d)-design with d = m1/3, then
Minr(F) = mΩ(d) holds for any finite factor r > 1 (Corollary 7.3), but Maxs(F) =
O(m2) already for factor s = m/d (Theorem 8.6). If F is the family of all k-cliques

in Kn for k =
√
n, then Minr(F) = 2Ω(n1/8) holds for all r > 1 (Corollary 7.4), but

Maxs(F) = O(n2) for s = k (Example 8.1 and Proposition 8.1).
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Problem 6. Are there uniform families F for which the gap Maxr(F)/Mins(F)
is exponential for r > s > 1?

Note that the separating family F is here required to be uniform (or at least form an
antichain): without this requirement, the gap can be artificially made large. To see
this, take an arbitrary uniform family F ⊆ 2[n] with large Maxr(F) (as in Theorems 8.6
and 8.7), and extend it to a nonuniform family F′ by adding all single element sets.
Then Min1(F

′) 6 n (just compute the minimum weight of a single element), but
Maxr(F

′) still remains large.

Appendix A. Proof of Decomposition Lemma. The goal of this section
is to give a short and direct proof of Lemma 6.2. Recall that a norm-measure is any
assignment of nonnegative real numbers to vectors in N

n such that every 0-1 vector
with at most one 1 gets norm at most 1, and the norm is sub-additive in that the
norm of a sum of two vectors does not exceed the sum of their norms.

Let B ⊂ N
n be a set of vectors, p > 2 and 1/p 6 ǫ < 1. Suppose that B can be

produced by a Minkowski circuit Φ of size t. Our goal is to show that then B can be
written as a union of t rectangles X + Y ⊆ B with the following property:

(∗) for every norm-measure µ : Nn → R+, and for every vector b ∈ B of norm
µ(b) > p, at least one of these rectangles X + Y contains vectors x ∈ X and
y ∈ Y such that x+ y = b and 1

2ǫp 6 µ(x) 6 ǫp.
For a gate v of Φ, let Xv ⊂ N

n be the set of vectors produced at this gate. That
is, Xv is some of the sets {~0}, {~e1}, . . . , {~en} if v is an input node, Xv = Xu ∪Xw if
v = u ∪w is a union gate, and Xv = Xu +Xw if v = u+ w is a Minkowski sum gate.

At each Minkowski sum gate following a gate v (if there is any), the set Xv of
vectors produced at v is “enlarged” by adding at least one vector to all vectors in Xv.
So, when we arrive at the output gate w, the entire translatesXv+y = {x+y : x ∈ Xv}
of Xv by some vectors y ∈ N

n must lie in the set Xw = B produced at w. This
observation motivates to associate with every gate v its residue

Yv := {y ∈ N
n : Xv + y ⊆ B}

which collects all vectors y ∈ N
n, the translates of Xv by which lie in the set B

produced by the entire circuit. For example, if v is the output gate, then Xv = B
and Yv = {~0}. If v is an input node, then either Xv = {~0} and Yv = B (if v holds a
constant), or Xv = {~ei} and Yv = {b− ~ei : b ∈ B, bi = 1} (if v holds the variable xi).

Note that neither Xv nor Yv needs lie in B, but Xv + Yv ⊆ B already holds for
every gate v. So, since we have only t gates v in the circuit, it is enough to show that
the collection of rectangles Xv + Yv over all gates v has the desired property.

To show this, fix some norm-measure µ : Nn → R+, and some vector b ∈ B of
norm µ(b) > p. By a b-decomposition at a gate v we will mean a pair (x, y) of vectors
(if there is one) with x ∈ Xv and y ∈ Yv such that x+ y = b. Our goal is to show that
the b-decomposition x+ y = b at some gate v must satisfy 1

2ǫp 6 µ(x) 6 ǫp.
Define the weight of a pair (x, y) of vectors as the norm µ(x) of the first vector

of the pair. Note that at the output gate, we have the (unique) b-decomposition
(x, y) = (b,~0) of weight µ(x) = µ(b) > p.

Claim A.1. If (x, y) is a b-decomposition at a gate v, and if u and w are the

gates entering v, then there is a b-decomposition at gate u or at gate w whose weight

is at least half of the weight of the pair (x, y).

Proof. If v is a Max gate, then Xv = Xu ∪Xw and, hence, Yv = Yu ∩ Yw. So, the
same pair (x, y) is a b-decomposition at gate u (if x ∈ Xu) or at gate w (if x ∈ Xw),
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and the claim is trivial in this case.
Assume now that v is a Sum gate. Then x = xu + xw for some vectors xu ∈ Xu

and xw ∈ Xw. Since vector y belongs to the residue Yv of gate v, we know that
Xu + Xw + Yv ⊆ B holds. In particular, both inclusions Xu + (xw + y) ⊆ B and
Xw + (xu + y) ⊆ B must hold. So, vector xw + y belongs to the residue Yu of gate
u, and vector xu + y belongs to the residue Yw of gate w. This implies that the
pair (xu, xw + y) is a b-decomposition at gate u, and the pair (xw , xu + y) is a b-
decomposition at gate w. Since x = xu + xw, and since the norm is subadditive, one
of the norms µ(xu) and µ(xw) must be at least 1

2 · µ(x). It therefore suffices to take
the input with the larger norm.

We now start at the output gate with the b-decomposition (x, y) = (b,~0), and traverse
an input-output path P backwards using the following rule: if v is a currently reached
gate, then go to that of the two inputs whose b-decomposition has larger weight (in the
case of equality, go to any of the inputs). Claim A.1 ensures that we will eventually
reach some input node. If this node holds {~0}, then the only b-decomposition (x, y) =
(~0, b) has weight µ(x) = µ(~0) 6 1, and if this gate holds {~ei}, then the only b-
decomposition (x, y) = (~ei, b− ~ei) also has weight µ(x) = µ(~ei) 6 1, which is at most
ǫp, because ǫ > 1/p.

On the other hand, the (also unique) b-decomposition (x, y) = (b,~0) at the output
gate has weight µ(x) = µ(b) > p, which is strictly larger than ǫp, because ǫ < 1. So,
there must be an edge (u, v) in the path P at which the jump from 6 ǫp to > ǫp
happens. That is, there must be a b-decomposition x + y = b at gate u and a b-
decomposition x′ + y′ = b at gate v such that µ(x) 6 ǫp but µ(x′) > ǫp. Together
with Claim A.1, the latter inequality gives the inequality µ(x) > 1

2 · µ(x′) > ǫp/2.
We have thus found a gate Xu + Yu and vectors x ∈ Xu and y ∈ Yu such that

x+ y = b and ǫp/2 < µ(x) 6 ǫp, as desired.

Appendix B. Tight structure of approximating tropical circuits. Recall
that the maximization (resp., minimization) problem on a given set A ⊂ N

n of feasible
solutions is, for every input weighting x ∈ R

n
+, to compute the maximum (resp.,

minimum) weight 〈a, x〉 = a1x1 + · · · + anxn of a feasible solution a ∈ A. Note that
now (unlike in section 4) we have all input weightings x ∈ R

n
+ in our disposal.

Our goal is to answer the following question: if we know that a given tropical
circuit approximates a given optimization (minimization or maximization) problem
within a given factor, what can then be said about the set B of vectors produced

by that circuit? Using elementary arguments, we partially answered this question in
section 4: we gave properties, which the set B must necessarily have. Now we will
use convexity arguments to give a complete characterization of the properties of B
which also are sufficient for the circuit to approximate a given problem.

B.1. A consequence of Farkas’ lemma. We will use the following fact relating
convexity with optimization. For a real vector a = (a1, . . . , an) and a scalar λ ∈ R,
λ · a stands for the vector (λa1, . . . , λan). If A ⊆ R

n is a set of vectors, then λ · A
stands for the set of vectors {λ · a : a ∈ A}.

Recall that a vector c ∈ R
n is a convex combination (or a weighted average) of

vectors1 ~b1, . . . ,~bm in R
n if there are real scalars λ1, . . . , λm > 0 such that

λ1 + · · ·+ λm = 1 and c = λ1 ·~b1 + · · ·+ λm ·~bm .

1We will only use arrows ~ai for indexed vectors to indicate that these are vectors, not their
entries.
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By Carathéodory’s theorem [6], we can always assume that m 6 n + 1. It is easy
to see the following averaging property: for every vector x ∈ R

n and every convex
combination c of vectors in B,

(B.1) min
b∈B

〈b, x〉 6 〈c, x〉 6 max
b∈B

〈b, x〉 .

Let Conv(B) denote the set of all convex combinations of vectors in B, that is, the
convex hull of B. As before, for two vectors c, v ∈ R

n, we write c 6 v if ci 6 vi holds
for all i = 1, . . . , n.

The following consequence of Farkas’ lemma was observed already by Jerrum and
Snir [16, Corollary A3].

Lemma B.1. Let B be a finite set of vectors and v a vector in R
n. Then

∀x ∈ R
n
+ : max

b∈B
〈b, x〉 > 〈v, x〉 if and only if ∃c ∈ Conv(B) : c > v .(B.2)

∀x ∈ R
n
+ : min

b∈B
〈b, x〉 6 〈v, x〉 if and only if ∃c ∈ Conv(B) : c 6 v .(B.3)

Proof. Note that claim (B.3) is equivalent to (B.2): just take the set −B and
the vector −v. Also, the “if” direction in (B.2) follows directly from the averaging
property (B.1). To prove the “only if” direction in (B.2), we use the following form
of Farkas’ lemma [10]; see, for example, Schrijver [32, Corollary 7.1d]:

• If, for all x ∈ R
n, the linear inequalities 〈~a1, x〉 6 0, . . . , 〈~am, x〉 6 0 imply

the linear inequality 〈w, x〉 6 0, then w is a nonnegative linear combination
of ~a1, . . . ,~am.

Now let B = {~b1, . . . ,~bm}. Our assumption is that maxi〈~bi, y〉 > 〈v, y〉 holds for
all y ∈ R

n
+. This is equivalent to: for every y ∈ R

n
+ and z ∈ R, the linear inequalities

〈~b1, y〉 6 z, . . . , 〈~bm, y〉 6 z imply the linear inequality 〈v, y〉 6 z.

Set w := (v,−1), ~ai := (~bi,−1) for i = 1, . . . ,m and ~am+i := (−~ei, 0) for i =
1, . . . , n, where ~ei ∈ {0, 1}n is the ith unit vector. By taking x := (y, z) for y ∈ R

n and
z ∈ R, our assumption turns into: linear inequalities 〈~a1, x〉 6 0, . . . , 〈~am+n, x〉 6 0
imply the linear inequality 〈w, x〉 6 0; the last inequalities 〈~am+i, x〉 6 0 ensure that
y ∈ R

n
+. So, Farkas’ lemma implies that there exist nonnegative scalars λ1, . . . , λm+n

such that

(v,−1) =

m
∑

i=1

λi(~bi,−1) +

n
∑

i=1

λm+i(−~ei, 0) .

This yields λ1 + · · ·+ λm = 1 and v > c :=
∑m

i=1 λi
~bi, as desired.

The following direct consequence of Lemma B.1 compares the values of optimiza-
tion problems. Interesting in our context here are the “only if” directions.

Lemma B.2. Let U, V ⊂ R
n be finite sets of vectors. Then

(i) ∀x ∈ R
n
+ : maxu∈U 〈u, x〉 > maxv∈V 〈v, x〉 if and only if V lies below Conv(U);

(ii) ∀x ∈ R
n
+ : minu∈U 〈u, x〉 6 minv∈V 〈v, x〉 if and only if V lies above Conv(U).

B.2. Consequences for approximating tropical circuits. The following
lemma states that a (max,+) circuit approximates the maximization problem on
a set A ⊂ N

n of feasible solutions within a factor r if and only if the set B ⊂ N
n

produced by the circuit is “sandwiched” between 1
r ·A and A.

Lemma B.3 (Maximization) . Let A ⊂ N
n be some finite set of vectors, Φ be

a (max,+) circuit, and B ⊂ N
n the set of vectors produced by Φ. Then the following

two assertions are equivalent.
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(1) Φ approximates the maximization problem on A within a factor r.
(2) B lies below Conv(A) and 1

r ·A lies below Conv(B).

Proof. The maximization problem on A is of the form f(x) = maxa∈A〈a, x〉.
By Lemma 3.1, the circuit Φ solves the maximization problem of the form Φ(x) =
maxb∈B〈b, x〉 + cb for some constants cb ∈ R+. So, the circuit approximates the
maximization problem on A within factor r if and only if f(x)/r 6 Φ(x) 6 f(x) holds
for all weightings x ∈ R

n
+. Since Φ(x) 6 f(x) must hold for the all-0 input weighting

x = ~0, cb = 0 must hold for all b ∈ B. So, the problem solved by the circuit is actually
of the form Φ(x) = maxb∈B〈b, x〉.

When applied with U = A and V = B, Lemma B.2 implies that the inequality
f(x) > Φ(x) holds if and only if B lies below Conv(A). When applied with U = B
and V = 1

r · A, this lemma implies that the inequality Φ(x) > f(x)/r holds if and
only if 1

r · A lies below Conv(B).

We have a similar characterization of sets produced by constant-free approximat-
ing (min,+) circuits, that is, for circuits, where constants are not allowed as inputs.

Recall that a vector a ∈ R
n lies above the convex hull Conv(B) of a set B ⊆ R

n

of vectors if a > c holds for some convex combination c = λ1 ·~b1 + · · · + λm ·~bm of
vectors in B. If Sa = {i : ai 6= 0} is the support of vector a, then we only know that
S~bi ⊆ Sa must then hold for all i. If we have a stronger property that S~bi = Sa holds

for all vectors ~bi in such a combination (for which λi 6= 0, of course), then we say that
vector a lies tightly above Conv(B).

Lemma B.4 (Minimization) . Let Φ be a constant-free (min,+) circuit, and

B ⊂ N
n the set of vectors produced by Φ. If A ⊂ N

n, then the first two of the

following three assertions are equivalent. If A ⊆ {0, 1}n and A is an antichain, then

all three assertions are equivalent.

(1) Φ approximates the minimization problem on A within a factor r.
(2) B lies above Conv(A) and r ·A lies above Conv(B).
(3) B lies above A, and r · A lies tightly above Conv(B).

Proof. By Lemma 3.1, the circuit Φ solves the minimization problem Φ(x) =
minb∈B〈b, x〉 (there are no free coefficients since the circuit is constant-free). The
minimization problem on A is also of the form f(x) = mina∈A〈a, x〉. The circuit
approximates the minimization problem on A within factor r if and only if f(x) 6

Φ(x) 6 r · f(x) holds for all weightings x ∈ R
n
+. By Lemma B.1, this happens if and

only if the set B lies above Conv(A) (to ensure f(x) 6 Φ(x)) and the set r · A lies
above Conv(B) (to ensure Φ(x) 6 r · f(x)). This proves the equivalence of assertions
(1) and (2).

Now suppose that A ⊆ {0, 1}n, and A is an antichain. The implication (3) ⇒ (2)
is obvious. For the converse implication, suppose that assertion (2) holds. To show
that then B must lie above A (not only above Conv(A)), take an arbitrary vector
b ∈ B. Since, by item (2), the set B lies above Conv(A), there must be a vector
a ∈ A and a scalar 0 < λ 6 1 such that b > λ · a. Vector a is a 0-1 vector, and b is a
nonnegative integer vector. So, b > a must hold.

To show that r · A lies tightly above Conv(B), take an arbitrary vector a ∈ A.
Since, by item (2), the set r · A lies above Conv(B), the inequality c 6 r · a must

hold for some convex combination c = λ1 ·~b1 + · · ·+ λm ·~bm of vectors in B. We can
assume w.l.o.g. that all scalars λi are positive. It remains to show that then S~bi = Sa
must hold for all i = 1, . . . ,m.

Since the setB lies above the set A, there must be (not necessarily distinct) vectors
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~a1, . . . ,~am in A such that ~bi > ~ai for all i = 1, . . . ,m and, hence, c =
∑m

i=1 λi ·~bi >
∑m

i=1 λi · ~ai. The inequality c 6 r · a implies that S~ai
⊆ S~bi ⊆ Sa must hold for all i.

Since A is an antichain and consists of only 0-1 vectors, this implies ~ai = a for all i.
We thus have c > a and S~bi = Sa for all i = 1, . . . ,m, as desired.

B.3. Eliminating constant inputs. In general, optimization problems solved
by tropical circuits Φ need not bemonic: they can be of the form Φ(x) = minb∈B〈b, x〉+
cb or Φ(x) = maxb∈B〈b, x〉 + cb, where the free coefficients cb ∈ R+ may be nonzero
constants. Now, an optimization problem on a given set A ⊂ N

n of feasible solutions
is always monic: it is of the form f(x) = mina∈A〈a, x〉 or f(x) = maxa∈A〈a, x〉.

Intuitively, constant inputs should not help to solve or approximate monic opti-
mization problems: these inputs can only contribute to the free coefficients. In the
case of maximization problems, this intuition is easy to confirm: on the all-0 input
weighting x = ~0, we then have max{cb : b ∈ B} = Φ(~0) 6 f(~0) = 0. So, cb = 0 must
hold for all b ∈ B, and we can safely replace all constant inputs by zeros.

In the case ofminimization problems, such a simple argument does not work. Still,
it is possible to eliminate constant inputs also from (min,+) circuits by combining
Lemmas 3.2 and B.2.

Lemma B.5. Let A ⊂ N
n and ~0 6∈ A. If the minimization problem on A can

be r-approximated by a (min,+) circuit of size s, then this problem can also be r-
approximated by a constant-free (min,+) circuit of size at most s.

Proof. Let Φ be a (min,+) circuit r-approximating the minimization problem
f(x) = mina∈A〈a, x〉 on A, and B ⊂ N

n be the set of vectors produced by Φ. By
Lemma 3.1, the circuit Φ solves the minimization problem Φ(x) = minb∈B〈b, x〉 + cb
for some free coefficients cb ∈ R+. Let us first show that also then (when some free
coefficients cb may be nonzero) the set B must have the two properties given in item
(ii) of Lemma B.4.

Claim B.6. The set B lies above Conv(A) and the set r ·A lies above Conv(B).

Proof. Since the original circuit Φ r-approximates f , we know that for all inputs
x ∈ R

n
+, the inequalities f(x) 6 Φ(x) 6 r · f(x) must hold.

To show thatB must lie above Conv(A), apply Lemma B.2(ii) with U := {(a, 0): a ∈
A} and V := {(b, cb) : b ∈ B}. The first inequality f(x) 6 Φ(x) then implies that V
must lie above Conv(U). So, the projection B of V onto the first n positions must
also lie above the projection Conv(A) of Conv(U) onto these positions.

To show that r · A must lie above Conv(B), apply Lemma B.2(ii) with U :=
{(b, cb) : b ∈ B} and V := {(r · a, 0): a ∈ A}. The second inequality Φ(x) 6 r · f(x)
then implies that V must lie above Conv(U). So, the projection r · A of V onto the
first n positions must also lie above the projection Conv(B) of U onto these positions.
(Actually, we have a bit more: since the (n+1)-th position of all vectors in V is zero,
every vector of r ·A must contain a convex combination of vectors b ∈ B with cb = 0.
But we will not use this additional property.)

Now let Φ∗ be the constant-free version of Φ (see subsection 3.3 for its construc-
tion). By Lemma 3.2, the circuit Φ∗ produces either the set B or the set B \ {~0}.
Since ~0 6∈ A, the function f is unbounded: for every constant c ∈ R+, there must
be an input weighting x ∈ R

n
+ such that f(x) > c holds. This implies that ~0 6∈ B:

otherwise, we would have that f(x) 6 Φ(x) 6 〈~0, x〉+ c~0 = c~0 must hold for all inputs
x ∈ R

n
+.

So, the circuit Φ∗ produces the same set B as the original circuit Φ. Since the
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circuit Φ∗ is constant-free, we can apply Lemma B.4. Together with Claim B.6, this
lemma implies that the circuit Φ∗ also r-approximates our minimization problem f
of A, as desired.

Appendix C. A converse of the boolean bound. In section 5, we have
shown (Theorem 5.1) that the monotone boolean circuit complexity of the decision
versions of minimization problems is a lower bound on the size of (min,+) circuits ap-
proximating these problems. The goal of this appendix is to show that approximating
(min,+) circuits and monotone boolean circuits are even more tightly related.

Recall that the decision version of the minimization problem f(x) = mina∈A 〈a, x〉
is the monotone boolean function

fA(x) =
∨

a∈A

∧

i∈Sa

xi ,

where Sa = {i : ai 6= 0} is the support of vector a. Note that, for every input x ∈
{0, 1}n, we have

(C.1) fA(x) = 1 if and only if Sx ⊇ Sa for some a ∈ A.

Lemma C.1. Let A ⊂ {0, 1}n be an antichain, and Φ be a monotone boolean

circuit. Then Φ computes fA if and only if the set B ⊂ N
n produced by Φ has the

following two properties:

(i) for every vector b ∈ B there is a vector a ∈ A such that Sb ⊇ Sa;
(ii) for every vector a ∈ A there is a vector b ∈ B such that Sa = Sb.

Proof. By Lemma 3.1, the boolean function computed by the circuit Φ is of
the form Φ(x) =

∨

b∈B

∧

i∈Sb
xi. So, the “if” direction follows directly from the

property (C.1).
To show that “only if” direction, assume that Φ(x) = fA(x) holds for all x ∈

{0, 1}n. If the property (i) is violated, then there is a vector b ∈ B such that Sa\Sb 6= ∅
for all vectors a ∈ A. But then on the vector x ∈ {0, 1}n with xi = 1 for i ∈ Sb and
xi = 0 for i 6∈ Sb, we have Φ(x) = 1 but fA(x) = 0, a contradiction. The same
argument also shows that for every a ∈ A there must be a vector b ∈ B with Sa ⊇ Sb.
By property (i), there must also be a vector a′ ∈ A such that Sb ⊇ Sa′ . Since A is an
antichain, this yields a = a′. So, Sb = Sa, showing property (ii).

A minterm of a monotone boolean function f : {0, 1}n → {0, 1} is a vector
x ∈ {0, 1}n such that f(x) = 1 but f(x′) = 0 for every vector x′ < x obtained
by switching some 1-entry of x to 0. Note that, if A ⊂ {0, 1}n is an antichain,
then A is exactly the set of all minterms of the boolean function fA defined by A.
If Φ is a monotone boolean circuit computing fA, then Lemma C.1(ii) gives the
following property: for every minterm a ∈ A the circuit must produce a vector b with
the same nonzero positions as a. This, however, does not restrict the magnitude of
nonzero positions of vector b. The notion of the “semantic degree” of Φ (which itself
is motivated by Lemma B.4(3)) takes this magnitude into account.

Namely, let Φ be a monotone boolean circuit computing fA, and B ⊂ N
n the

set produced by Φ. The semantic degree, deg(Φ), of Φ is the minimum number r for
which the set r · A lies tightly above Conv(B). So, deg(Φ) is the minimal number r
for which the following holds:

• for every minterm a ∈ A there is a convex combination c = λ1
~b1+ · · ·+λm

~bm
of vectors ~bi ∈ B such that a 6 c 6 r · a and S~b1 = . . . = S~bm = Sa.
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That is, for every minterm a ∈ A, a convex combination of some produced vectors
with the same support as a must be “sandwiched” between a and r · a.

In particular, deg(Φ) 6 d holds if for every minterm a ∈ A the circuit produces
a vector b such that Sb = Sa and bi 6 d holds for all positions i. Note, however, that
the semantic degree of a circuit can be small even if some vectors in the produced set
B have very large entries. In particular, deg(Φ) = 1 holds if and only if all minterms
are also produced, that is, if A ⊆ B holds.

Example C.1 (Shortest paths) . Let A be the set of characteristic 0-1 vectors
of all simple paths in Kn between two fixed vertices s and t. The boolean function
fA is then the s-t connectivity function STCONN on n-vertex graphs. The Bellman–
Ford pure DP algorithm for the shortest s-t path problem gives us a monotone (∨,∧)
circuit Φ of size O(n3) computing the boolean function fA. The circuit has gates fl,j
at which the existence of a path from vertex s to vertex j with at most l edges is
detected. Then f1,j = xs,j for all j 6= s, and the recursion of Bellman–Ford is given
by letting fl+1,j to be the OR of fl,j and all fl,i ∧ xi,j for i 6∈ {s, j}. The output gate
is fn−1,t. The vectors of the set B ⊂ N

n of vectors produced by the Bellman–Ford
circuit Φ correspond not to (simple) paths but rather to walks of length at most n− 1
from s to t. Since a walk can traverse the same edge many times, some vectors in B
may have entries much larger than 1. Still, deg(Φ) = 1 holds: every (simple) s-t path
is also a walk of length at most n− 1, implying that A ⊆ B.

Remark C.2 (Magnitude of entries) . If Φ has semantic degree r, then we know

that for every vector a ∈ A there must be a convex combination c =
∑l

i=1 λi ·~bi 6 r ·a
with all S~bi = Sa. By Carathéodory’s theorem [6], if c is a point in the convex hull of
some set P ⊆ R

m, then c can be written as a convex combination of m + 1 or fewer
points in P . So, we can assume that l 6 m + 1 where m = |Sa| is the number of
nonzero entries of vector a. Since λ1 + · · · + λl = 1, there must be an i such that
λi > 1/l > 1/(m+ 1). From λi ·~bi 6 r · a, we have that all entries of vector ~bi must
be at most r(m+1)ai. So, deg(Φ) = r implies that for every vector a ∈ A there must
be a vector b ∈ B such that a 6 b 6 r(|Sa|+ 1) · a.

The following theorem shows that the approximation power of tropical (min,+)
circuits is actually captured (not only lower bounded) by the computational power of
monotone boolean circuits. For a set A ⊂ N

n, let Boolr(A) denote the minimum size
of a monotone boolean circuit of semantic degree at most r computing the boolean
function fA. Hence, Boolr(A) > Bool(A) holds for every r > 1.

Theorem C.2. If A ⊂ {0, 1}n is an antichain, then Minr(A) = Boolr(A) holds

for every r > 1.

Proof. To show Minr(A) 6 Boolr(A), take a monotone boolean circuit Φ of se-
mantic degree r computing the boolean function fA defined by A. We can assume
that the circuit is constant-free: we can repeatedly replace v∧0 by 0, v∧1 by v, v∨0
by v and v∨1 by 1. Let B ⊂ N

n be the set of vectors produced by the circuit Φ. Since
fB(x) 6 fA(x) must hold for all inputs x ∈ {0, 1}n, for every b ∈ B there must be a
vector a ∈ A with Sb ⊇ Sa. Since vectors in A are 0-1 vectors, this implies that the set
B must lie above A. Since the circuit Φ has semantic degree r, we additionally have
that the set r ·A lies above Conv(B) (even tightly). By Lemma B.4, the (min,+) ver-
sion of Φ (an also constant-free circuit) must approximate the minimization problem
on A within factor r.

To show Boolr(A) 6 Minr(A), take a (min,+) circuit Φ approximating the min-
imization problem on A within the factor r, and let B ⊂ N

n be the set of vectors
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produced by Φ. By Lemma B.5, we can assume that the circuit is constant-free. By
Lemma B.4, we have that: (1) the set B must lie above A, and (2) the set r ·A must lie
tightly above Conv(B). The former property (1) yields property (ii) of Lemma C.1,
while the latter property (2) implies property (i) of this lemma. So, the semantic
degree of the boolean version of Φ is at most r and, since properties (i) and (ii) of
Lemma C.1 are fulfilled, this version computes the boolean function fA.

We use the adjective “semantic” because deg(Φ) depends on the function com-
puted by Φ, that is, on the set of minterms A. The standard, “syntactic” definition
of the degree is the following: each input variable has degree 1, take the maximum of
degrees at each OR gate, and the sum of degrees at each AND gate.

The following simple proposition shows that the semantic degree never exceeds
the syntactic degree.

Proposition C.3. For any two monotone boolean circuits Φ1 and Φ2, we have

deg(Φ1 ∨ Φ2) 6 max {deg(Φ1), deg(Φ2)} and deg(Φ1 ∧Φ2) 6 deg(Φ1) + deg(Φ2).

Proof. For i ∈ {1, 2}, let Ai ⊆ {0, 1}n be the set of minterms of Φi, and let
Bi ⊂ N

n be the set of vectors produced by Φi. Let ri be the semantic degree of Φi.
Let us first consider the case of an OR gate. Then the circuit Φ = Φ1 ∨ Φ2

produces the set B = B1 ∪ B2. Take an arbitrary minterm a of Φ. Then a ∈ Ai for
some i ∈ {1, 2}. Let ri be the semantic degree of Φi. Then c 6 ri · a must hold for
some vector c in Conv(Bi) ⊆ Conv(B). So, deg(Φ1 ∨ Φ2) 6 max{r1, r2}, as desired.

Let us now consider the case of an AND gate. Then the circuit Φ = Φ1 ∧ Φ2

produces the set B = B1+B2. Let ri be the semantic degree of Φi. Take an arbitrary
minterm a of Φ. Then a = ~a1 ∨ ~a2 is a componentwise Or of some vectors ~ai ∈ Ai.
Let ri be the semantic degree of Φi. Then ~ci 6 ri ·~ai must hold for some vector ~ci in
Conv(Bi). An important property of Minkowski sums is that Conv(B1)+Conv(B2) =
Conv(B1 +B2) always holds. Hence, the vector c = ~c1 + ~c2 belongs to Conv(B) and
satisfies c = ~c1 + ~c2 6 r1 · ~a1 + r2 · ~a2 6 (r1 + r2)[~a1 ∨ ~a2] = (r1 + r2) · a. This shows
deg(Φ1 ∧ Φ2) 6 r1 + r2, as desired.

The following example illustrates that, together with Proposition C.3, the inequal-
ity Minr(A) 6 Boolr(A) of Theorem C.2 can be used to show that some minimization
problems can be approximated by small (min,+) circuits (even constant-free ones)
with large, but finite factors. Recall that, as we have shown in section 7, some min-
imization problems cannot be approximated by (min,+) circuits of polynomial size
within any finite factor at all.

Example C.3 (Spanning trees) . In the minimum weight spanning tree prob-
lem Tn, we are given an assignment of nonnegative real weights to the edges of
Kn, and the goal is to compute the minimum weight of a spanning tree in Kn; the
weight of a subgraph is the sum of weights of its edges. We have shown in [21] that
Min1(Tn) = 2Ω(

√
n). On the other hand, the decision version of this problem is the

graph connectivity problem. Using the (pure) DP algorithm of Bellman and Ford, for
every pair (s, t) of vertices, the s-t connectivity problem can be solved by a monotone
boolean circuit Φs,t of size O(n3) and semantic degree 1 (see Example C.1). So, the
connectivity problem can be solved by a circuit Φ1,2 ∧Φ1,3 ∧ · · · ∧Φ1,n of size O(n4).
By Proposition C.3, the circuit has semantic degree r 6 n− 1. Theorem C.2 implies
that Minr(Tn) = O(n4) holds for some finite factor r 6 n− 1.

Appendix D. Sidon sets: proof of Proposition 8.3. Let m be an odd
integer, and n = 4m. Our goal is to show that there is an explicit Sidon set A ⊆ {0, 1}n



34

of vectors such that Max1(A) > 2n/4 but Max2(A) 6 n. A set A ⊂ N
n of vectors is a

Sidon set if knowing the sum of two vectors in A, we know which vectors were added:
for every a, b, c, d in A, if a+ b = c+ d then {c, d} = {a, b}.

We first recall some known results. Consider the cubic parabola

C = {(x, x3) : x ∈ {0, 1}m}

over GF(2m); we view vectors in x ∈ {0, 1}m as coefficient-vectors of polynomials of
degree at most m−1 over GF(2) when rising them to a power. Note, however, that in
the definition of Sidon sets, the sum of vectors is taken over the semigroup (N2m,+),
not over GF(22m); in particular, a+ a = 0 holds only for a = 0.

As before, L(A) denotes the Minkowski circuit complexity of a set A ⊂ N
n. We

will use the following three facts.
(1) The cubic parabola C ⊆ {0, 1}2m is a Sidon set; Lindström [25, Theorem 2].
(2) L(A) > |A| holds for every Sidon set A ⊂ N

n; Gashkov and Sergeev [13,
Theorem 1].

(3) If A ⊂ {0, 1}n is uniform (all vectors of A have the same number of 1s), then
Max1(A) > L(A); Jerrum and Snir [16, Theorem 2.9].

The cubic parabola C is not uniform, and we cannot apply (3) to it. But we can extend
this set to a uniform Sidon set. For a 0-1 vector a, let a denote the componentwise
negation of a. For example, if a = (0, 0, 1) then a = (1, 1, 0). Consider the following
set of vectors:

A = {(c, c) : c ∈ C} =
{

(a, a3, a, a3) : a ∈ {0, 1}m
}

⊆ {0, 1}n .

This set is already uniform: every vector of A has exactly 2m ones. The set A is
also a Sidon set because, by (1), the set C was such. So, (2) and (3) imply that
Max1(A) > |A| = 2m = 2n/4.

It remains therefore to prove the upper bound Max2(A) 6 n. We have n = 4m
variables x1, . . . , x4m. Our approximating circuit will solve the maximization problem
on the set B = B′ ∪B′′, where

B′ = {(a, 0, a, 0): a ∈ {0, 1}m} and B′′ = {(0, a, 0, a) : a ∈ {0, 1}m} .

The maximization problem on B is to compute f(x) = max{g(x), h(x)}, where

g(x) = max
a∈{0,1}4m

m
∑

i=1

aixi +
3m
∑

i=2m+1

(1− ai)xi ;

h(x) = max
a∈{0,1}4m

2m
∑

i=m+1

aixi +

4m
∑

i=3m+1

(1 − ai)xi .

Since g(x) = max{x1, x2m+1}+max{x2, x2m+2}+ · · ·+max{xm, x3m} , and similarly
for h(x), the maximization problem f can be solved using only 4m = n gates.

It remains to show that f indeed approximates the maximization problem on A
within factor r = 2. For this to hold, we have (by Lemma B.3) to show that the set
B lies below A, and that the set 1

2 · A lies below Conv(B). It is clear that the first
subset B′ of B lies below A. We have to show that this holds also for the second
subset B′′. For this, it is enough to show that B′′ coincides with the set of all vectors
(0, a3, 0, a3) for a ∈ {0, 1}m.

It is known that a polynomial xk permutes GF(q) if and only if q − 1 and k are
relatively prime; see, for example, Lidl and Niederreiter [24, Theorem 7.8]. In our case,



35

we have q = 2m and k = 3. Since m is odd, we have m = 2t+ 1 for some t ∈ N. Easy
induction on t shows that p(t) := 22t+1+1 is divisible by 3: the basis t = 0 is obvious,
because p(0) = 3, and the induction step p(t+1) = 22(t+1)+1+1 = 4(22t+1+1)− 3 =
4·p(t)−3 follows from the induction hypothesis. So, q−1 = p(t)−2 cannot be divisible
by 3, that is, q − 1 and 3 are relatively prime and, hence, the mapping a 7→ a3 is a
bijection. This gives us a crucial fact:

{

(0, a3, 0, a3) : a ∈ {0, 1}m
}

= {(0, a, 0, a) : a ∈ {0, 1}m} = B′′ .

Hence, the entire set B = B′ ∪ B′′ lies below A, that is, every vector of B is covered
by at least one vector of A. By Lemma B.3, it remains to show that the set 1

2 ·A lies
below the convex hull Conv(B). So, take an arbitrary vector u = 1

2 · (a, a3, a, a3) in
1
2 · A. This vector is a convex combination 1

2 · v + 1
2 · w of vectors v = (a, 0, a, 0) and

w = (0, a3, 0, a3) of B, as desired.
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