
A quantum-inspired classical algorithm for
recommendation systems

Ewin Tang

July 10, 2018

Abstract

A recommendation system suggests products to users based on data about user
preferences. It is typically modeled by a problem of completing an m × n matrix
of small rank k. We give the first classical algorithm to produce a recommendation
in O(poly(k) polylog(m,n)) time, which is an exponential improvement on previous
algorithms that run in time linear in m and n. Our strategy is inspired by a quantum
algorithm by Kerenidis and Prakash: like the quantum algorithm, instead of recon-
structing a user’s full list of preferences, we only seek a randomized sample from the
user’s preferences. Our main result is an algorithm that samples high-weight entries
from a low-rank approximation of the input matrix in time independent of m and n,
given natural sampling assumptions on that input matrix. As a consequence, we show
that Kerenidis and Prakash’s quantum machine learning (QML) algorithm, one of the
strongest candidates for provably exponential speedups in QML, does not in fact give
an exponential speedup over classical algorithms.

Contents

1 Introduction 2
1.1 Recommendation Systems . 2
1.2 Quantum Machine Learning . 3
1.3 Algorithm Sketch . 4

2 Discussion and Further Questions 6
2.1 Discussion . 6
2.2 Further Questions . 8

3 Definitions 8
3.1 Low-Rank Approximations . 9
3.2 Sampling . 10

4 Data Structure 10

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 128 (2018)

5 Model Assumptions 12
5.1 Preference Matrix . 12
5.2 Matrix Sampling . 14

6 Tools and Subroutines 15
6.1 Vector Sampling . 15
6.2 Approximate Orthonormality . 19
6.3 Finding a Low-Rank Approximation . 20

7 Main Algorithm 24
7.1 Proof of Theorem 1 . 24
7.2 Proof of Theorem 2 . 26

References 28

A Deferred Proofs 29

B Variant for an Alternative Model 34

1 Introduction

1.1 Recommendation Systems

Given incomplete data on user preferences for products, can one quickly and correctly predict
which other products a user will prefer?

To put this problem on theoretically sound footing, we use the following model, first introduced
in 2001 by Kumar et al. [16] and refined further by Azar et al. [4] and Drineas et al. [9] We
represent the sentiments of m users towards n products with an m×n matrix T , where Tij is
large if user i likes product j. We call T a preference matrix. If we can find high-value entries
of T , we can provide good recommendations by outputting the corresponding products to
the corresponding users. However, we are typically given only a small subsample of entries
of T (which we learn when a user purchases or otherwise interacts with a product). Then,
finding recommendations for user i is equivalent to finding large entries of the ith row of T
given such a subsample.

Obviously, without any restrictions on what T looks like, this problem is ill-posed. We make
this problem tractable through the standard assumption that T is close to a matrix of small
rank k (constant or logarithmic in m and n). This reflects the intuition that users tend to fall
into a small number of classes based on their preferences. With this assumption, it becomes
possible to infer information from subsampled data. We can determine the classes a user lies
in, and use information about those classes to give a likely-to-be-good recommendation.

Our main result is a classical recommendation system algorithm whose runtime is exponentially
faster than the best-known in the literature. Given our subsampled data A in a low-overhead

2

dynamic data structure and some user i, we can give a random sample from a distribution
defined by the ith row of a low-rank approximation of A in O(poly(k) polylog(m,n)) time;
given standard assumptions on A and T , this sample is likely to be a good recommendation.

With the low-rank assumption that k is small, our algorithm gives an exponential improvement
over the current literature. Algorithms for recommendation systems typically attempt to
reconstruct full rows of T [16, 9, 3], which must take Ω(n) time. We sidestep this bottleneck
by only giving a sample of good recommendations, instead of a complete list. Knowing a
constant number of recommendations for a user is almost always sufficient in practice, so
this algorithm does not lose any utility. Further, we are able to do this without unnatural
assumptions: our assumptions are exactly the same as those of Kerenidis and Prakash for
their quantum recommendation system algorithm [13].

Comparison with related recommendation systems. The literature on theoretical
recommendation systems is fairly scant, because such algorithms quickly run up against the
limits of their model, despite them being somewhat far from the results seen in practice.
We hope that this algorithm, by presenting a novel sampling-based technique with a much
faster asymptotic runtime, helps to improve the connection between theory and practice and
provides an avenue for further research.

Our model is most similar to the model given in 2002 by Drineas et al. [9]. However, that
algorithm’s main goal is minimizing the number of user preferences necessary to generate
good recommendations; we discuss in Appendix B how to adapt our algorithm to that model
to get similar results. Other approaches include combinatorial techniques [16, 3] and the use
of mixture models [14].

Although our model assumptions are not directly comparable to the assumptions for these
recommendation systems, roughly speaking, they are at least of similar quality. Our as-
sumptions on the preference matrix are weak, but this comes with the tradeoff of stronger
assumptions on our knowledge of the preference matrix. Further, we consider our matrix
sampling assumptions to be weak in this applied context, where choice of data structure
is reasonable to consider. Such assumptions also bear resemblance to assumptions used in
previous recommendation systems (Section 4 of [9]).

Finally, we acknowledge the substantial body of work on practical recommendation systems,
which applies a combination of theoretical methods and implementations of intuitive heuristics.
Using the terminology from that setting, our algorithm is SVD-based and uses a latent factor
model. Work on the Netflix Prize is a useful reference for practical recommendation systems:
see Bennett et al. [7] for a broad overview of techniques, Koren et al. [15] for a high-level
exposition of the SVD technique, and Bell et al. [5] for more technical details.

1.2 Quantum Machine Learning

Our algorithm stems from failed efforts to prove that Kerenidis and Prakash’s quantum
recommendation system algorithm [13] achieves an exponential speedup over any classical

3

algorithm. Such a result would be interesting because Kerenidis and Prakash’s algorithm is a
quantum machine learning (QML) algorithm.

QML spawned from Harrow, Hassidim, and Lloyd’s 2008 quantum algorithm for solving linear
systems [11]. This burgeoning field has produced exciting quantum algorithms that give hope
for finding exponential speedups outside of the now-established gamut of problems related
to period finding and Fourier coefficients. However, in part because of caveats exposited by
Aaronson [1], it is not clear whether any known QML algorithm gives a new exponential
speedup over classical algorithms, for practically relevant instances of a machine learning
problem. Kerenidis and Prakash’s work was notable for addressing all of these caveats, giving
a complete quantum algorithm that can be compared directly to classical algorithms [19].

When Kerenidis and Prakash’s work was published, their algorithm was exponentially faster
than the best-known classical algorithms. It was not known whether this was a provably
exponential speedup. We give a classical algorithm whose runtime is only polynomially greater
than that of Kerenidis and Prakash’s (up to small loss in approximation), thus answering this
question. Although this removes one of the most convincing examples we have of exponential
speedups for machine learning problems, our algorithm can also be seen as a success for QML,
because the framing and analysis required to apply QML techniques also served to inform
and inspire the new algorithm we present here.

1.3 Algorithm Sketch

Outside of the recommendation systems context, the quantum algorithm just computes
low-rank matrix approximations: its output is a quantum state representing a row of a
low-rank approximation of the input matrix A. Measuring this state samples an entry
from that row proportional to its magnitude. Kerenidis and Prakash then bring in the
recommendation systems model in the analysis to show that this sampled entry is usually a
good recommendation. We will follow the same strategy for our algorithm.

We first state the main result, our classical algorithm, informally. The formal statement can
be found in Section 7.1.

Theorem (1, informal). Suppose we are given as input a matrix A supporting query and
`2-norm sampling operations, a row/user i ∈ [m], a singular value threshold σ, and sufficiently
small ε > 0. There is a classical algorithm whose output distribution is O(ε)-close in total
variation distance to the distribution given by `2-norm sampling from the ith row of a low-rank
approximation D of A in query and time complexity

O

(
poly

(‖A‖F
σ

,
1

ε
,
‖Ai‖
‖Di‖

, log
1

δ

))
where δ is the probability of failure.

This runtime is independent of m and n. To implement the needed sampling operations, we
can use the data structure described in Section 4, which adds an additional O(log2(mn))

4

factor of overhead. This gives a time complexity of

Õ

(
max

{‖A‖33

σ33ε18
,
‖A‖24

σ24ε24

}
log2(mn)

‖Ai‖2

‖Di‖2

)
.

This is a large slowdown versus the quantum algorithm in the ‖A‖/σ and 1/ε exponent.
However, we suspect that these exponents can be improved significantly through standard
techniques.

The only difference between Theorem 1 and its quantum equivalent in [13] is that the quantum
algorithm has no ε approximation factors (so ε = 0 and 1/ε does not appear in the runtime).
Thus, we can say that our algorithm performs just as well, up to polynomial slowdown and ε
approximation factors. Further, these ε’s don’t affect the classical algorithm in practice:

Theorem (2). Applying Theorem 1 to the recommendation systems model (described in
Section 5) with the quantum state preparation data structure (Section 4) achieves the same
bounds of quality of recommendations as the quantum algorithm in [13], up to constant factors
and for sufficiently small ε.

To prove Theorem 1 (see Section 7.1), we give a classical algorithm (Algorithm 4) that can
sample a high-value entry from a given row of a low-rank approximation of a given matrix.
We do this by combining a variety of techniques, all relying on sampling access to relevant
input vectors. The main restriction to keep in mind is that we need to perform linear algebra
operations without incurring the cost of reading a full row or column.

We begin with our input matrix A in the same data structure that Kerenidis and Prakash use
(see Section 4); this lightweight data structure supports powerful `2-norm sampling operations.
Using these operations, we apply a subsampling strategy (called ModFKV, see Section 6.3)
based on Frieze, Kannan, and Vempala’s 2004 algorithm [10] to find a low-rank approximation
of A. The algorithm doesn’t have enough time to output the matrix in full; instead, it outputs
a succinct description of the matrix. Essentially, this description is a set of orthonormal
approximate singular vectors V̂ , where the corresponding low-rank approximation D is AV̂ V̂ T ,
the projection of the rows of the input matrix onto the low-dimensional subspace spanned by
V̂ . By Proposition 6.14, we (surprisingly) can both sample from and query to these singular
vectors quickly. While showing fast querying is straightforward, fast sampling is nonobvious.
Sampling from a vector in V̂ reduces to the problem of sampling from a linear combination of
vectors, given the ability to sample and query to each individual vector. Rejection sampling
is a natural solution to this problem (Proposition 6.4).

So, we have the desired low-rank approximation D given in the implicit form AV̂ V̂ T . To
sample from a row of D given its description (that is, sample from AiV̂ V̂

T), we first estimate
AiV̂ . This amounts to estimating dot products and can be done with sampling access to
Ai by Proposition 6.2. Then, we use this estimate to give an approximate sample from
AiV̂ V̂

T , which is a linear combination of vectors from V̂ . Since we can sample from these
vectors, we can produce this sample from AiV̂ V̂

T with the same rejection sampling technique
(Lemma 6.8). This sample is the desired output.

This description omits one major subtlety: V̂ is not orthonormal, but approximately or-
thonormal. Though we take care to deal with this caveat, it has no major effect on the

5

algorithm; Section 6.2 details the techniques we use to show this. This completes the broad
overview of the algorithm. The only sizable step in the analysis is showing that ModFKV
gives the kind of bounds that we want for our recommendation system (Theorem 6.12).

To prove Theorem 2 and show that the quality bounds on the recommendations are the
same (see Section 7.2), we just follow Kerenidis and Prakash’s steps to apply the model
assumptions and theorems (Section 5) in a straightforward manner.

2 Discussion and Further Questions

2.1 Discussion

This section is devoted to the high-level implications of our work in the area of quantum
machine learning. It is not essential to understanding the classical algorithm.

How the quantum recommendation systems algorithm works. The main technique
used in Kerenidis and Prakash’s quantum recommendation system algorithm [13] is quantum
phase estimation. This procedure is used to implicitly estimate singular values and locate
singular vectors of the given preference matrix. A quantum projection procedure then uses this
implicit information to project a quantum state corresponding to a user’s known preferences
to a state with a user’s potential recommendations. Measuring this resulting state then yields
a possible recommendation.

One might expect this algorithm to perform exponentially faster than any classical algorithm.
In Section 1.2 we discussed reasons to believe such a claim for this algorithm compared
to other QML algorithms. We can find such reasons just from considering the algorithm
in isolation, though, too. The intuition behind believing such claims is not that the steps
(singular value estimation, computing projections) are particularly difficult computationally.
Rather, it’s simply hard to believe that any of these steps can be done without reading
the full input. After all, a significant portion of the theory of low-rank matrix completion
and approximation only asks for time complexity linear in input-sparsity or sublinear with
some number of passes through the data. By comparison to these types of results, what
the quantum algorithm achieves (query complexity polylogarithmic in the input size) is
impressive.

State preparation: the quantum algorithm’s assumption. To see why the classical
algorithm we present is possible, we need to consider the technique Kerenidis and Prakash
use to construct their relevant quantum states.

Kerenidis and Prakash’s algorithm is one of many QML algorithms [11, 17, 18, 12] that
require quantum state preparation assumptions, which state that given an input vector v,
one can quickly form a corresponding quantum state |v〉. To achieve the desired runtime in
practice, an implementation would replace this assumption with either a procedure to prepare
a state from an arbitrary input vector (where the cost of preparation could be amortized
over multiple runs of the algorithm) or a specification of input vectors for which quantum

6

state preparation is easy. Usually QML algorithms abstract away these implementation
details, assuming a number of the desired quantum states are already prepared. The quantum
recommendation systems algorithm is unique in that it explicitly comes with a data structure
to prepare its states (introduced in Section 4).

These state preparation assumptions are nontrivial: even given ability to query entries of a
vector in superposition, preparing states corresponding to arbitrary n-length input vectors
is known to take Ω(

√
n) time (a corollary of quantum search lower bounds by Bennett,

Bernstein, Brassard, and Vazirani [6]). Thus, the data structure to quickly prepare quantum
states is essential for the recommendation systems algorithm to achieve query complexity
polylogarithmic in input size.

How a classical algorithm can perform as well as the quantum algorithm. The
classical algorithm we present cannot be compared to classical low-rank matrix completion
and approximation results requiring linear time. Rather, the key insight is that the data
structure used to satisfy state preparation assumptions can also satisfy `2-norm sampling
assumptions (see Section 4).

So, a classical algorithm whose goal is to “match” the quantum algorithm can exploit these
assumptions, which are known in the classical ML community to be quite strong (as seen in
Frieze, Kannan, and Vempala’s paper [10]). From there, performing an implicit projection
of a vector onto a subspace to get a sample recommendation is not outside the realm of
feasibility. Our algorithm just puts the two pieces together.

The importance of `2-norm sampling. In an imprecise sense, our algorithm has replaced
state preparation assumptions with `2-norm sampling assumptions. In this particular case,
while quantum superpositions served to represent data implicitly that would take linear
time to write out, this need can be served just as well with probability distributions and
subsamples of larger pieces of data.

The correspondence between `2-norm sampling assumptions and state preparation assumptions
makes sense. While the former sidesteps the obvious search problems inherent in linear
algebra tasks by pinpointing portions of vectors or matrices with the most weight, the latter
sidesteps such search problems by allowing for quantum states that are implicitly aware of
such weight distributions.

In a wealth of ways, the `2-norm sampling assumptions are more reasonable: they can be
satisfied classically and they are already well-studied. Further, as evidenced by this classical
algorithm, such a model is likely more appropriate to reveal speedups (or the lack thereof)
given by QML algorithms. We suspect that this connection revealed by the state preparation
data structure is somewhat deep, and cannot be fixed by simply finding a state preparation
data structure without sampling power.

Thus, we argue for the following guideline: when QML algorithms are compared to classical
ML algorithms in the context of finding speedups, any state preparation assumptions in the
QML model should be matched with `2-norm sampling assumptions in the classical ML model.

7

2.2 Further Questions

Since this algorithm is associated both with recommendation systems and quantum machine
learning, there are two lines of questioning that naturally follow.

First, we can continue to ask whether any quantum machine learning algorithms have provably
exponential speedups over classical algorithms. We believe that a potentially enlightening
approach is to investigate how state preparation assumptions can be satisfied, and whether
they are in some way comparable to classical sampling assumptions. After all, we find it
unlikely that a quantum exponential speedup can be reinstated just with a better state
preparation data structure. However, we are unaware of any research in this area in particular,
which could formalize a possible connection between QML algorithms with state preparation
assumptions and classical ML algorithms with sampling assumptions.

Second, while the recommendation system algorithm we give is asymptotically exponentially
faster than previous algorithms, there are several aspects of this algorithm that make direct
application infeasible in practice. First, the model assumptions are somewhat constrictive. It
is unclear whether the algorithm still performs well when such assumptions are not satisfied.
Second, the exponents and constant factors are large (mostly as a result of using Frieze,
Kannan, and Vempala’s algorithm [10]). We believe that the “true” exponents are much
smaller, but our technique is fairly roundabout and likely compounds exponents unnecessarily.
These issues could be addressed with more straightforward analysis combined with more
sophisticated techniques.

3 Definitions

Throughout, we use the following notation. [n] := {1, . . . , n}. f . g denotes the ordering
f = O(g) (and correspondingly for & and h). For a matrix A, Ai and A(i) will refer to the
ith row and column, respectively. ‖A‖F and ‖A‖2 will refer to Frobenius and spectral norm,
respectively. Norm of a vector v, denoted ‖v‖, will always refer to `2-norm. The absolute
value of x ∈ R will be denoted |x|. Occasionally, matrix and vector inequalities of the form
‖x− y‖ ≤ ε will be phrased in the form x = y + E, where ‖E‖ ≤ ε. Thus, the letter E will
always refer to some form of perturbation or error.

For a matrix A ∈ Rm×n, let A = UΣV T =
∑minm,n

i=1 σiuiv
T
i be the SVD of A. Here, U ∈ Rm×m

and V ∈ Rn×n are unitary matrices with columns {ui}i∈[m] and {vi}i∈[n], the left and right
singular vectors, respectively. Σ ∈ Rm×n is diagonal with σi := Σii and the σi nonincreasing
and nonnegative.

We will use the function ` to indicate splitting the singular vectors along a singular value:

`(λ) := max{i | σi ≥ λ}.

For example, σ1 through σ`(λ) gives all of the singular values that are at least λ. This notation
suppresses `’s dependence on σi, but it will always be clear from context.

8

Π will always refer to an orthogonal projector. That is, if β = {b1, . . . , bd} is an orthonormal
basis for im Π, then Π =

∑d
i=1 bib

T
i = BBT for B the matrix whose columns are the elements

of β. We will often conflate B, the matrix of basis vectors, and the basis β itself.

3.1 Low-Rank Approximations

We will use various techniques to describe low-rank approximations of A. All of these
techniques will involve projecting the rows onto some span of right singular vectors.

Ak := AΠk im Πk := span{vi | i ∈ [k]}
A≥σ := AΠ≥σ im Π≥σ := span{vi | i ∈ [`(σ)]}

Ak and A≥σ correspond to the standard notions of low-rank approximations of A. Thus,

Ak =
∑k

i=1 σiuiv
T
i and is a rank k matrix minimizing the Frobenius norm distance from A.

Similarly, A≥σ is just At for t = `(σ). Notice that rankA≥ ‖A‖F√
λ

≤ λ.

We will need to relax this notion for our purposes, and introduce error κ ∈ [0, 1]:

A≥σ,κ := AΠ≥σ,κ = A(Π≥σ + ΠE) for some ΠE satisfying

im ΠE is a subspace of span{vi | `(σ) < i ≤ `(σ(1− κ))}.

In words, A≥σ,κ is some projection of A onto its singular vectors whose values are at least σ,
perhaps along with some vectors in the subspace spanned by the singular vectors associated to
singular values between σ(1−κ) and σ.1 Such a form of error could arise from having some κ-
like error in estimating the singular values used to compute a low-rank matrix approximation.
Thus, we think of ΠE as an error term, and A≥σ,κ as a class of matrices with sufficiently
small error.

κ should be thought of as constant (1/3 will be the eventual value), and σ should be thought
of as very large (say, a constant multiple of ‖A‖F), so A≥σ,κ always has low rank.

It will also be useful to consider a version with two-sided error; we can do this with a simple
transform of parameters:

Aσ,κ := A≥σ(1+κ), 2κ
1+κ

= A(Π≥σ(1+κ) + ΠE) for some ΠE satisfying

im ΠE ≤ span{vi | `(σ(1 + κ)) < i ≤ `(σ(1− κ))}.

Since 0 < κ ≤ 1, this only perturbs parameters by constant factors.

1This error is essentially equivalent to the more familiar property Π≥σ � Π≥σ,κ � Π≥σ(1−κ), where � is
the Loewner order, since that error is contained in the convex hull of the error we define. However, this is
the type of error that Kerenidis and Prakash achieve, so we will stick with this more unorthodox choice for
consistency.

9

3.2 Sampling

For a nonzero vector x ∈ Rn, we denote by Dx the distribution over [n] whose probability
density function is

Dx(i) =
x2
i

‖x‖2

We will call a sample from Dx a sample from x.

We make two basic observations. First, Dx is the distribution resulting from measuring the
quantum state |x〉 in the computational basis (see [13] for details). Second, sampling access
to Dx makes easy some tasks that are hard given just query access to x. For example, while
finding a hidden large entry of x ∈ Rn takes Ω(n) queries with just query access, it takes a
constant number of samples with query and sample access.

In all situations, sampling access will be present in addition to query access, and accordingly,
we will conflate samples i ∼ Dx with the corresponding entries xi. Note that knowledge
of ‖x‖ is also relevant and useful in this sampling context, since it allows for computing
probabilities from Dx and yet is hard to compute even with query and sampling access to x.

For probability distributions P,Q (as density functions) over a (discrete) universe X, the
total variation distance between them is defined as

‖P,Q‖TV :=
1

2

∑
x∈X

∣∣∣P (x)−Q(x)
∣∣∣.

For a set S, we denote pulling an s ∈ S uniformly at random by s ∼u S. We will continue to
conflate a distribution with its density function.

4 Data Structure

Since we are interested in achieving sublinear bounds for our algorithm, we need to concern
ourselves with how the input is given.

In the recommendation systems context, entries correspond to user-product interactions, so
we might expect that the input matrix A ∈ Rm×n is given as an unordered stream of entries
(i, j, Aij). However, if the entries are given in such an unprocessed format, then clearly linear
time is required even to parse the input into a usable form. Even when the input is relatively
structured (for example, if we are given the known entries of T sorted by row and column),
there is no hope to sample the low-rank approximation of a generic matrix in sublinear time
because of the time needed to locate any nonzero entries.

To avoid these issues, we will instead consider our input stored in a low-overhead data
structure, the same one used by Kerenidis and Prakash [13].

Lemma 4.1. There exists a data structure storing a vector v ∈ Rn with w nonzero entries
in O(w log2(n)) space, supporting the following operations:

10

• Reading and updating an entry of the vector in O(log2 n) time;

• Finding ‖v‖2 in O(1) time;

• Sampling from Dv in O(log2 n) time.

‖v‖2

v2
1 + v2

2 v2
3 + v2

4

v2
1 v2

2 v2
3 v2

4

sgn(v1) sgn(v2) sgn(v3) sgn(v4)

Figure 1: Binary search tree data structure for v ∈ R4. The leaf nodes store vi (or equivalently,
a weight v2

i and the sign of vi), and the weight of an interior node is just the sum of the
weights of its children. Updates can be done quickly by updating all of the nodes above
a particular leaf. Sampling from Dv can be done by starting from the top of the tree and
randomly recursing on a child, with probability proportional to its weight. When v is sparse,
the tree can be pruned to only nonzero nodes.

We can adapt the BST data structure to matrices:

Proposition 4.2. Consider a matrix A ∈ Rm×n, and let Ai refer to the ith row of A. Let
Ã ∈ Rm be a vector whose ith entry is ‖Ai‖.

There exists a data structure storing a matrix A ∈ R
m×n with w nonzero entries in

O(w log2(mn)) space, supporting the following operations:

• Reading and updating an entry of the matrix in O(log2mn) time;

• Finding Ãi in O(log2m) time;

• Finding ‖A‖2
F in O(1) time;

• Sampling from DÃ and DAi in O(log2mn) time.

This can be done by having a copy of a data structure specified by Lemma 4.1 for each row
of the matrix. Then the root nodes of these data structures are the entries of Ã, and a BST
is constructed on top, using these as inputs. This has all of the desired properties, and in
fact, is the data structure Kerenidis and Prakash use to prepare arbitrary quantum states
(Theorem A.1 in [13]). Thus, our algorithm can operate on the same input, although any
data structure supporting the operations detailed in Proposition 4.2 will also suffice.

This data structure and its operations are not as ad hoc as they might appear. The operations

11

listed above appear in other work as a standard way to endow a matrix with `2-norm sampling
assumptions (see [9] and [10]).

5 Model Assumptions

We now go through the relevant assumptions necessary for our recommendation system model.
Although these don’t directly impact the algorithm for Theorem 1, they motivate the goals of
that algorithm and come into play later for the recommendation system bounds of Theorem 2.
As mentioned above, these are the same assumptions as those in [13]: an exposition of these
assumptions is also given there.

5.1 Preference Matrix

Recall that given m users and n products, the preference matrix T ∈ Rm×n contains the
complete information on whether user i likes product j in Tij.

For ease of exposition, we will assume the input data is binary:

Definition. If user i likes product j, then Tij = 1. If not, Tij = 0.

We can form such a preference matrix from generic data about recommendations, simply
by condensing information down to the binary question of whether a product is a good
recommendation or not.2

T is close to a low-rank matrix. That is, ‖T − Tk‖ ≤ ρ‖T‖F for some k and ρ � 1. k
should be thought of as constant (polylog(m,n) at worst).

This standard assumption comes from the intuition that users decide their preference for
products based on a small number of factors (e.g. price, quality, and popularity). See Drineas
et al. [9] and Kerenidis and Prakash [13] for this assumption in recommendation systems, Azar
et al. [4] for more general contexts, and Koren et al. [15] for its manifestations in practice.

The low-rank assumption gives T structure that is relatively robust; that is, only given a
small number of entries, T can be reconstructed fairly well.

Many users have approximately the same number of preferences. The low-rank
assumption is enough to get some bound on quality of recommendations (see Lemma 3.2 in
[13]). However, this bound considers “matrix-wide” recommendations. We would like to give
a bound on the probability that an output is a good recommendation for a particular user.

It is not enough to assume that ‖T − Tk‖F ≤ ρ‖T‖F . For example, in a worst-case scenario,
a few users make up the vast majority of the recommendations (say, a few users like every
product, and the rest of the users are only happy with four products). In this scenario, the

2This algorithm makes no distinction between binary matrices and matrices with values in the interval
[0, 1], and the corresponding analysis is straightforward upon defining a metric for success when data is
nonbinary.

12

error of the low rank approximation, ρ‖T‖F , can exceed the mass of recommendations in the
non-heavy users, so the error drowns out any possible information about the vast majority of
users that could be gained from the low-rank structure.

In addition to being pathological for user-specific bounds, this scenario is orthogonal to our
primary concerns: we aren’t interested in providing recommendations to users who desire
very few products or who desire nearly all products, since doing so is intractable and trivial,
respectively. To avoid considering such a pathological case, we restrict our attention to the
“typical user”:

Definition. For T ∈ Rm×n, call S ⊂ [m] a subset of rows/users (γ, ζ)-typical (where ζ, γ > 0)
if |S| ≥ (1− ζ)m and, for all i ∈ S,

1

1 + γ

‖T‖2
F

m
≤ ‖Ti‖2 ≤ (1 + γ)

‖T‖2
F

m
.

γ and ζ can be chosen as desired to broaden or restrict our idea of typical. We can enforce
good values of γ and ζ simply by requiring that users have the same number of good
recommendations; for example, this can be done by defining a good recommendation to be
the top 100 products for a user, regardless of utility to the user.

Given this definition, we can give a guarantee on recommendations for typical users that
come from an approximate reconstruction of T .

Theorem 5.1. For T ∈ Rm×n, S a (γ, ζ)-typical set of users, and a matrix T̃ satisfying
‖T − T̃‖F ≤ ε‖T‖F ,

Ei∼uS
[
‖DTi ,DT̃i

‖TV
]
≤ 2ε

√
1 + γ

1− ζ
,

and for a chosen parameter ψ > 0 there exists some S ′ ⊂ S of size at least (1−ψ− ζ)m such
that, for i ∈ S ′,

‖DTi ,DT̃i
‖TV ≤ 2ε

√
1 + γ

ψ
.

The first bound is an average-case bound on typical users and the second is a strengthening
of the resulting Markov bound. Both bound total variation distance from DTi , which we
deem a good goal distribution to sample from for recommendations. We defer the proof of
this theorem to the appendix.

When we don’t aim for a particular distribution and only want to bound the probability of
giving a bad recommendation, we can prove a stronger average-case bound on the failure
probability.

Theorem 5.2 (Theorem 3.3 of [13]). For T ∈ Rm×n a binary preference matrix, S a (γ, ζ)-
typical set of users, and a matrix T̃ satisfying ‖T − T̃‖F ≤ ε‖T‖F , for a chosen parameter
ψ > 0 there exists some S ′ ⊂ S of size at least (1− ψ − ζ)m such that

Pr
i∼uS′
j∼T̃i

[(i, j) is bad] ≤ ε2(1 + ε)2

(1− ε)2
(
1/
√

1 + γ − ε/
√
ψ
)2

(1− ψ − ζ)
.

13

For intuition, if ε is sufficiently small compared to the other parameters, this bound becomes

O

(
ε2(1 + γ)

1− ψ − ζ

)
.

The total variation bound from Theorem 5.1 is not strong enough to get this: the failure
probability we get is 2ε

√
1 + γ/(1− ψ − ζ). A more careful analysis is necessary to gain the

extra ε factor.

We know k. More accurately, a rough upper bound for k will suffice. Such an upper bound
can be determined from data.

In summary, we have reduced the problem of “find a good recommendation for a user” to
“given some entries from a close-to-low-rank matrix T , sample from T̃i for some T̃ satisfying
‖T − T̃‖F ≤ ε‖T‖F for small ε.”

5.2 Matrix Sampling

We have stated our assumptions on the full preference matrix T , but we also need assumptions
on the information we are given about T .

For example, if we are given information heavily concentrated on a few rows or columns, then
we don’t have enough information to give recommendations to most users or recommend
most products, respectively.

We will use a model for subsampling for matrix reconstruction given by Achlioptas and
McSherry [2]. In this model, the entries we are given are chosen uniformly over all entries.
This model has seen use previously in the theoretical recommendation systems literature [9].

Specifically, we have the following:

Definition. For a matrix T ∈ Rm×n, let T̂ be a random matrix i.i.d. on its entries, where

T̂ij =

{
Tij
p

with probability p

0 with probability 1− p
. (?)

Notice that E[T̂] = T .

When the entries of T are bounded, T̂ is T perturbed by a random matrix E whose entries
are independent and bounded random variables. Standard concentration inequalities imply
that such random matrices don’t have large singular values (the largest singular value is,
say, O(

√
n/p)). Thus, for some vector v, if ‖Tv‖/‖v‖ is large (say, O(

√
mn/k)), then

‖(T + E)v‖/‖v‖ will still be large, despite E having large Frobenius norm.

The above intuition suggests that when T has large singular values, its low-rank approxi-
mation Tk is not perturbed much by E, and thus, low-rank approximations of T̂ are good
reconstructions of T . A series of theorems by Achlioptas and McSherry [2] and Kerenidis and
Prakash [13] formalizes this intuition. For brevity, we only describe a simplified form of the

14

last theorem in this series, which is the version they (and we) use for analysis. It states that,
under appropriate circumstances, it’s enough to compute T̂≥σ,κ for appropriate σ and κ.

Theorem 5.3 (4.3 of [13]). Let T ∈ Rm×n and let T̂ be the random matrix defined in (?),

with p ≥ 3
√
nk

29/2ε3‖T‖F
and maxij |Tij| = 1. Let σ =

√
ε2p
8k
‖T̂‖F , let κ = 1/3, and assume that

‖T‖F ≥ 9√
2ε3

√
nk. Then with probability at least 1− exp(−19(log n)4),

‖T − T̂≥σ,κ‖F ≤ 3‖T − Tk‖F + 3ε‖T‖F .

With this theorem, we have a formal goal for a recommendation systems algorithm. We are
given some subsample A = T̂ of the preference matrix, along with knowledge of the size
of the subsample p, the rank of the preference matrix k, and an error parameter ε. Given
that the input satisfies the premises for Theorem 5.3, for some user i, we can provide a
recommendation by sampling from (A≥σ,κ)i with σ, κ specified as described. Using the result
of this theorem, A≥σ,κ is close to T , and thus we can use the results of Section 5.1 to conclude
that such a sample is likely to be a good recommendation for typical users.

Now, all we need is an algorithm that can sample from (A≥σ,κ)i.

6 Tools and Subroutines

We present the algorithm and analysis for Theorem 1 nonlinearly, starting with simple
techniques and building up more complex subroutines.

First, we discuss vector sampling and give algorithms that use sampling access to their
input vectors to perform basic tasks. Second, we introduce the notion of approximate
orthonormality, a property of some of the vectors in our main algorithm, and present lemmas
that allow us to treat approximately orthonormal vectors as orthonormal. Third, we present
ModFKV, an algorithm to find low-rank matrix approximations, and use the techniques
built up in the first two sections to prove nice properties about its output.

6.1 Vector Sampling

Recall how we defined sampling from a vector.

Definition. For a vector x ∈ Rn, we denote by Dx the distribution over [n] with density
function Dx(i) = x2

i /‖x‖2. We call a sample from Dx a sample from x.

We will need that closeness of vectors in `2-norm implies closeness of their respective distri-
butions in TV distance:

Lemma 6.1. For x, y ∈ Rn satisfying ‖x− y‖ ≤ ε, the corresponding distributions Dx, Dy

satisfy ‖Dx,Dy‖TV ≤ 2ε/‖x‖.

15

Proof. Let x̂ and ŷ be the normalized vectors x/‖x‖ and y/‖y‖.

‖Dx,Dy‖TV =
1

2

n∑
i=1

∣∣x̂2
i − ŷ2

i

∣∣ =
1

2

〈
|x̂− ŷ|, |x̂+ ŷ|

〉
≤ 1

2
‖x̂− ŷ‖‖x̂+ ŷ‖ ≤ ‖x̂− ŷ‖

=
1

‖x‖

∥∥∥x− y − (‖x‖ − ‖y‖)ŷ
∥∥∥ ≤ 1

‖x‖

(
‖x− y‖+

∣∣‖x‖ − ‖y‖∣∣) ≤ 2ε

‖x‖

The first inequality follows from Cauchy-Schwarz, and the rest follow from triangle inequality.

Now, we will give two subroutines that can be performed, assuming some vector sampling
access. First, we show that we can estimate the dot product of two vectors well (used later
in Algorithm 4).

Proposition 6.2. Given query access to x, y ∈ Rn, sample access to Dx, and knowledge of
‖x‖, 〈x, y〉 can be estimated to additive error ‖x‖‖y‖ε with at least 1 − δ probability using
O(1

ε2
log 1

δ
) queries and samples (and the same time complexity).

Proof. Perform samples in the following way: for each i, let the random variable Z be yi/xi
with probability x2

i /‖x‖2 (select the index by sampling from Dx). We then have:

E[Z] =
∑ yi

xi

x2
i

‖x‖2
=

∑
xiyi
‖x‖2

=
〈x, y〉
‖x‖2

,

Var[Z] =
∑(

yi
xi

)2
x2
i

‖x‖2
=

∑
y2
i

‖x‖2
=
‖y‖2

‖x‖2
.

Since we know ‖x‖, we can normalize by it to get a random variable whose mean is 〈x, y〉
and whose standard deviation is σ = ‖x‖‖y‖.

The rest follows from standard techniques: we take the median of 6 log 1
δ

copies of the mean
of 9

2ε2
copies of Z to get within εσ = ε‖x‖‖y‖ of 〈x, y〉 with probability at least 1 − δ in

O(1
ε2

log 1
δ
) accesses. All of the techniques used here take linear time.

Second, we show that, given sample access to some vectors, we can sample from a linear
combination of them. This uses rejection sampling: given sampling access to a distribution P ,
rejection sampling allows for sampling from a “close” distribution Q, provided we can compute
some information about their corresponding distributions. We describe the procedure below.3

Algorithm 1: Rejection Sampling

Pull a sample s from P ;

Compute rs = Q(s)
MP (s)

for some constant M ;

Output s with probability rs and restart otherwise;

The standard rejection sampling guarantee is as follows:

3We leave the input implicit. In some of our applications, we cannot compute probabilities of the input
random variables, but we can still literally perform the procedure, so rejection sampling works as intended.

16

Lemma 6.3. If ri ≤ 1 for all i, then the above procedure is well-defined and outputs a
sample from Q in M iterations in expectation.4

We now use rejection sampling to prove the following proposition.

Proposition 6.4. Suppose we are given query access, sample access, and knowledge of the
norms of the columns of V ∈ Rn×k. Then given w ∈ Rk (as input), we can output a sample
from V w in O(k2C(V,w)) expected query complexity and expected time complexity, where

C(V,w) :=

∑k
i=1 ‖wiV (i)‖2

‖V w‖2
.

C measures the amount of cancellation for V w. For example, when the columns of V are
orthogonal, C = 1 for all nonzero w, since there is no cancellation. Conversely, when the
columns of V are linearly dependent, there is a choice of w such that ‖V w‖ = 0, maximizing
cancellation. In this context, C is undefined, matching the fact that sampling from the zero
vector is undefined. By perturbing w we can find vectors requiring arbitrarily large values of
C.

Proof. We use rejection sampling: see Algorithm 1 and Lemma 6.3.

In our case, P is the distribution formed by sampling from DV (i) with probability proportional
to ‖wiV (i)‖2, and Q is the target DV w. We have

ri =
(V w)2

i

k
∑k

j=1(wjVij)2
,

which we can compute in k queries. This expression is written in a way the algorithm can
directly compute, but it can be put in the form of the rejection sampling procedures stated
above:

M =
Q(i)

P (i)

k
∑k

j=1(wjVij)
2

(V w)2
i

=
Q(i)

P (i)

kP (i)(
∑k

j=1 ‖wjV (j)‖2)

Q(i)‖V w‖2
=
k(
∑k

j=1 ‖cjV (j)‖2)

‖V w‖2
= kC(V,w).

M is independent of i, so it is a constant as desired. To prove correctness, all we need to
show is that our choice of ri is always at most 1. This follows from Cauchy-Schwarz:

ri =
(V w)2

i

k
∑k

j=1(wjVij)2
=

(
∑k

j=1 wjVij)
2

k
∑k

j=1(wjVij)2
≤ 1.

Each iteration of the procedure takes O(k) queries, leading to a query complexity of
O(k2C(V,w)). Time complexity is linear in the number of queries.

4The number of iterations is a geometric random variable, so this can be converted into a bound
guaranteeing a sample in M log 1/δ iterations with failure probability 1− δ, provided the algorithm knows
M . All expected complexity bounds we deal with can be converted to high probability bounds in the manner
described.

17

While the above proposition will work for one use of rejection sampling in the full algorithm
(Proposition 6.14), we will need a technical lemma to allow us to perform rejection sampling
when conditions are relaxed slightly: we can only compute approximate probabilities p(i) ≈
P (i). This lemma will be used in Lemma 6.8. The procedure is as follows:

Algorithm 2: Relaxed Rejection Sampling

Pull a sample s from P ;

Compute rs = Q(s)
Mp(s)

for some constant M ;

Output s with probability rs and restart otherwise;

In this situation, we can approximately sample from the target distribution.

Lemma 6.5. Suppose ri ≤ 1 and a ≤ P (i)/p(i) ≤ A for all i in the support of X. (Note
that p need not be a probability density function.) Then Algorithm 2 is well-defined and
outputs samples from a distribution Q′ satisfying ‖Q,Q′‖TV ≤ (A− a)/2a in at most M/a
iterations in expectation.

Proof. We accept with probability ∑
i

Q(i)

Mp(i)
P (i) ≥ a

M

and our output distribution is

Q′(i) =
Pr[accept on i]

Pr[accept]
=

Q(i)P (i)
Mp(i)∑
j
Q(j)P (j)
Mp(j)

=

Q(i)P (i)
p(i)∑

j
Q(j)P (j)
p(j)

.

The TV distance is bounded as follows:

‖Q,Q′‖TV =
1

2

∑
i

∣∣∣∣∣Q(i)−
Q(i)P (i)
p(i)∑

j
Q(j)P (j)
p(j)

∣∣∣∣∣
=

1

2

∑
i

Q(i)

∣∣∣∣∣1−
P (i)
p(i)∑

j
P (j)Q(j)
p(j)

∣∣∣∣∣
≤ 1

2

∑
i

Q(i)
A− a
a

=
A− a

2a
,

where the last step results from the inequality

a

A
≤

P (i)
p(i)∑ Q(x)P (x)
p(x)

≤ A

a
.

18

6.2 Approximate Orthonormality

As described in Section 1.3, our main algorithm will have estimated singular vectors that
are not orthonormal, but close to orthonormal. We will define this notion of approximate
orthonormality, and prove that such vectors have exactly the properties one would expect
from the name.

Definition. Call a set of k vectors V ∈ Rn×k α-approximately orthonormal for α > 0 if V
satisfies

I − α

k
~1~1T � V TV � I +

α

k
~1~1T .

Here, � denotes entry-wise inequality and ~1 denotes the vector of ones. This definition is
equivalent to saying that any dot product is at most α/k off from the expected result.

We will assume that α ≤ 1.

Lemma 6.6. If V ∈ Rn×k is α-approximately orthonormal, then there exist k orthonormal
vectors U spanning the column space of V satisfying ‖U − V ‖F ≤ α/

√
2 +O(α2).

Proof. Use the QR decomposition V = QR, where Q is unitary and R is upper triangular
with positive entries on its diagonal. Then

I − α

k
~1~1T � V TV = RTQTQR = RTR � I +

α

k
~1~1T .

Since R ∈ Rn×k is upper triangular, we can think about R as k × k. Thus, RTR is an
approximate Cholesky factorization of I, with error α

k
~1~1T ; by Theorem 1 in Chang, Paige,

and Stewart’s perturbation analyses [8], ‖R− I‖F ≤ α√
2

+O(α2).

We will choose U = QI, where I is the k× k identity extended to n× k. Clearly this satisfies
the orthonormality and subspace conditions, and ‖U − V ‖F = ‖Q(I −R)‖F = ‖I −R‖F ≤
α/
√

2 +O(α2).

The above lemma makes the notion of approximate orthonormality very versatile: we can
treat these vectors as orthonormal with only α change in Frobenius norm. We give a basic
corollary to illustrate.

Corollary 6.7. For V α-approximately orthonormal, ‖V V T − ΠV ‖F . α, where ΠV is the
orthogonal projector on the image of V .

Essentially, we can treat V V T as an orthonormal projector. This follows from Lemma 6.6 by
a simple calculation:

V V T = (U + E)(U + E)T = UUT + UET + EUT + EET =⇒ ‖V V T − UUT‖F . α.

We use the above lemma and corollary throughout the algorithm analyses to follow.

Next, we observe that sampling from a linear combination of approximately orthonormal
vectors can be done quickly without knowledge of the norms of these vectors. This will be
used in the last step of Algorithm 4.

19

Lemma 6.8. Given sample and query access to V ∈ R
n×k, a set of α-approximately

orthonormal vectors, and an input vector w ∈ Rk, we can output a sample from a distribution
(α +O(α2))-close to DV w in O(k2(1 +O(α))) expected query complexity and expected time
complexity.

Proof. We use our relaxed rejection sampling procedure: see Algorithm 2 and Lemma 6.5.

Here, P is the distribution formed by sampling from DV (i) with probability proportional to
w2
i , and Q = DV w. Further, we choose

p(s) =

∑
i(wiV

(i)
s)2

‖w‖2
.

By approximate orthonormality of V , we can choose a = 1/(1 + α) and A = 1/(1− α):

P (s)

p(s)
=

∑
i

(
wi

V
(i)
s

‖V (i)‖

)2

/‖w‖2∑
i(wiV

(i)
s)2/‖w‖2

=

∑
(wiV

(i)
s)2/‖V (i)‖2∑
i(wiV

(i)
s)2

.

In k queries to V , we can compute

ri =
(V w)2

i

k
∑

j(wjV
(j)
i)2

=
Q(s)

k‖w‖2
‖V w‖2p(s)

,

which means that

M =
k‖w‖2

‖V w‖2
≤ k

1−O(α)
= k(1 +O(α)).

Finally,

rs =
(V w)2

s

k
∑

i(wiV
(i)
s)2

≤ 1.

With this, we have verified the premises for Lemma 6.5. The corresponding result is the
desired result here. The operations here take time linear in the number of queries.

6.3 Finding a Low-Rank Approximation

Now, we describe the low-rank approximation algorithm that we use at the start of the main
algorithm.

Theorem 6.9. Given a matrix A ∈ R
m×n supporting the query operations described in

Proposition 4.2, along with parameters σ ∈ (0, ‖A‖F], ε ∈ (0,
√
σ/‖A‖F/4], κ ∈ [ε2, 1], there

is an algorithm that outputs a succinct description (of the form described below) of some D
satisfying ‖D − Aσ,κ‖F ≤ ε‖A‖F with probability at least 1− δ and

O

(
poly

(‖A‖2
F

σ2
,
1

ε
,

1

κ
, log

1

δ

))
query and time complexity.

20

To prove this theorem, we will modify the algorithm given in [10] and show that it satisfies
the desired properties. We present the algorithm as Frieze, Kannan, and Vempala do, not
accounting for the δ failure probability, instead aiming for a constant failure probability to
be amplified by standard techniques.

Algorithm 3: ModFKV

Input: Matrix A ∈ Rm×n supporting operations in Proposition 4.2, threshold σ,
error parameters ε, κ

Output: A description of an output matrix D
Set K = ‖A‖2

F/σ
2;

Set ε̄ = κε2/
√
K;

Set p = 107 max{K4

ε̄3
, K

2

ε̄4
};

Sample rows i1, . . . , ip from DÃ;
Let F denote the distribution given by choosing an s ∼u [p], and choosing a column
from DÃis

;

Sample columns j1, . . . , jp from F;
Let the resulting p× p submatrix, with row r normalized by 1√

pDÃ(r)
and column c

normalized by 1√
pF(c)

, be denoted W ;

Compute the left singular vectors of W u(1), . . . , u(k) that correspond to singular
values σ(1), . . . , σ(k) larger than σ;

Output i1, . . . , ip, u
(1), . . . , u(k), and σ(1), . . . , σ(k) as the description of the output

matrix D;

We can get the output matrix D from its description by projecting A onto a subspace defined
by vectors V̂ ∈ Rn×k. That is,

D = AV̂ V̂ T = A
k∑
t=1

(V̂ (t))(V̂ (t))T .

The columns of V̂ are described implicitly as a linear combination of rows of A. Let S be the
submatrix given by restricting the rows to i1, . . . , ip and renormalizing row r by 1/

√
pDÃ(r)

(so they all have the same norm). Then V̂ (i) := STu(i)/σ(i).

To summarize, ModFKV subsamples a matrix, computes the large singular vectors of this
matrix, and outputs those singular vectors, with the promise that the singular vectors of the
subsample give a good description of the singular vectors of the full matrix. More of the
underpinnings are explained in Frieze, Kannan, and Vempala’s paper [10].

ModFKV differs from FKV only in that σ is taken as input instead of k, and is used as the
threshold for the singular vectors. As a result of this change, K replaces k in the subsampling
steps, and σ replaces k in the SVD step. Notice that the number of singular vectors taken
(denoted k) is at most K, so in effect, we are running FKV and just throwing away some of
the smaller singular vectors. The filter step in the original algorithm does nothing in our
case, so it is not shown here.

21

To analyze the complexity of the algorithm, notice that query complexity is dominated
by querying all of the entries of W , which is O(p2), and time complexity is dominated by
computing W ’s SVD, which is O(p3). We can convert this to the input parameters using that

p = O

(
max

{ ‖A‖11

σ11ε6κ3
,
‖A‖8

σ8ε8κ4

})
.

We will first note two useful observations: the first is the bound that shows that the
output matrix a good low-rank approximation; the second will be useful when discussing the
description in Proposition 6.14.

Lemma 6.10. The following are properties of the modified algorithm:

(i) The following bound holds for the output matrix D (here, k is the width of V̂ , and
thus a bound on rankD):

‖A−D‖2
F ≤ ‖A− Ak‖2

F + ε‖A‖2
F `((1 + ε̄

√
K)σ) ≤ k ≤ `((1− ε̄

√
K)σ) (�)

(ii) In the description, u(i)’s have unit norm and ‖A‖2
F/2 ≤ ‖S‖2

F ≤ 3‖A‖2
F/2.

The following property will be important both in ModFKV’s analysis and when the output
description is used later in Algorithm 4. The estimated singular vectors in V̂ behave like
singular vectors, in that they are approximately orthonormal.

Proposition 6.11. The output vectors V̂ are ε̄2K-approximately orthonormal.

The proofs of the above lemma and proposition delve into FKV’s analysis, so we defer them
to the appendix.

The guarantee on our output matrix D is (�), but for our recommendation system, we want
that D is close to some A≥σ,κ. Now, we present the core theorem showing that the former
kind of error implies the latter.

Theorem 6.12. If Π a k-dimensional orthogonal projector satisfies

‖Ak‖2
F ≤ ‖AΠ‖2

F + εσ2
k,

then
‖AΠ− Aσk,κ‖2

F . εσ2
k/κ,

where ε ≤ κ ≤ 1.5

The proof is somewhat involved, so we defer it to the appendix. To our knowledge, this is a
novel translation of a typical FKV-type bound as in (�) to a new, useful type of bound, so
we believe this theorem may find use elsewhere.

Now, we use this theorem to show that D is close to some Aσ,κ.

Corollary 6.13. ‖D − Aσ,κ‖F . ε‖A‖F/
√
κ.

5An analogous proof gives the more general bound ‖Π−Πσ,κ‖2F . ε/κ.

22

Proof. Throughout the course of this proof, we simplify and apply theorems based on the
restrictions on the parameters in Theorem 6.9.

First, notice that the bound in (�) can be translated to the type of bound in the premise of
Theorem 6.12, using Proposition 6.11 and Corollary 6.7.

‖A−D‖2
F ≤ ‖A− Ak‖2

F + ε̄‖A‖2
F

‖A− A(Π + E)‖2
F ≤ ‖A− Ak‖2

F + ε̄‖A‖2
F

(‖A− AΠ‖F − ε̄2K‖A‖F)2 . ‖A− Ak‖2
F + ε̄‖A‖2

F

‖A− AΠ‖2
F . ‖A− Ak‖2

F + max{ε̄, ε̄2K}‖A‖2
F

‖A‖ − ‖AΠ‖2
F . ‖A‖ − ‖Ak‖2

F + max{ε̄, ε̄2K}‖A‖2
F

‖Ak‖2
F . ‖AΠ‖2

F + (max{ε̄, ε̄2K}‖A‖2
F/σ

2
k)σ

2
k

The result of the theorem is that

‖AΠ− A
σk,

κ−ε̄
√
K

1−ε̄
√
K

‖2
F .

(max{ε̄, ε̄2K}‖A‖2
F/σ

2
k)σ

2
k

κ−ε̄
√
K

1−ε̄
√
K

. max
{ ε̄
κ
,
ε̄2K

κ

}
‖A‖2

F .

The second part of (�), bounding k, implies that any A
σk,

κ−ε̄
√
K

1−ε̄
√
K

is also an Aσ,κ (the error of

the former is contained in the latter), so we can conclude that

‖D − Aσ,κ‖F = ‖A(Π + E)− Aσ,κ‖F
≤ ‖AΠ− Aσ,κ‖F + ‖A‖F‖E‖F
. ‖AΠ− Aσ,κ‖F + ε̄2K‖A‖F

. max
{√ ε̄

κ
,

√
ε̄2K

κ
, ε̄2K

}
‖A‖F .

ε̄ was chosen so that the final term is bounded by ε‖A‖F .

This completes the proof of Theorem 6.9.

We now have an algorithm that can quickly compute low-rank matrix approximations and
output them as succinct descriptions. However, it’s not obvious how to gain information
about D just from its description. The following proposition shows that we can perform some
basic sampling and querying operations to V̂ , and that will be enough.

Proposition 6.14. Given queries to the operations described in Proposition 4.2, along with
the description of V̂ , we can sample from any V̂ (i) in O(Kp2) expected queries and query for
any particular entry in O(p) queries.

Proof. As a reminder, V̂ (i) = STu(i)/σ(i), where S ∈ Rp×n is a normalized set of rows from A
specified by their corresponding indices, u(i) ∈ Rp is a given unit vector, and σ(i) is a given
scalar. There are k such vectors, making V̂ an n× k matrix.

We can query to any particular entry easily: V̂
(i)
j = 1

σ(i)

∑p
x=1Aixju

(i)
x , so this is just an

expression with 2p values, all of which can be easily found from A and the description.

23

For sampling, we can use Proposition 6.4. In this case,

C(ST , u(i)/σ(i)) =

∑p
j=1 ‖u

(i)
j Sj/σ

(i)‖2

‖STu(i)/σ(i)‖2
≤
‖u(i)/σ(i)‖2

(∑p
j=1 ‖Sj‖2

)
(1− ε4)2

≤ 3‖A‖2
F

2σ2(1− ε4)2
. K.

using Cauchy-Schwarz, Proposition 6.11, and Lemma 6.10 part (ii).

As it turns out, these subroutines are all we need from the description of D. Since D = AV̂ V̂ T ,
and we have query and sample access to the columns of V̂ , we can black-box the rest of
the description. Outside this section, we treat D as AV̂ V̂ T , where V̂ are approximately
orthonormal vectors with query and sampling access.

7 Main Algorithm

Here, we give the proofs for Theorem 1 and Theorem 2. Theorem 1 contains the low-rank
approximation sampling algorithm and its corresponding analysis. Theorem 2 contains the
analysis that shows that such an algorithm produces good recommendations in our model.

7.1 Proof of Theorem 1

Theorem 1. There is a classical algorithm that, given a matrix A with query and sampling
assumptions as described in Proposition 4.2, along with a row i ∈ [m], threshold σ, κ ∈ [0, 1],
and sufficiently small ε > 0, has an output distribution O(ε)-close in total variation distance
to DDi where D ∈ Rm×n satisfies ‖D −A≥σ,κ‖F ≤ ε‖A‖F for some A≥σ,κ, in query and time
complexity

O

(
poly

(‖A‖F
σ

,
1

ε
,

1

κ
,
‖Ai‖
‖Di‖

, log
1

δ

))
where δ is the probability of failure.

Proof. We will give an algorithm (Algorithm 4) where the error in the output distribution is
O(ε‖Ai‖/‖Di‖)-close to DDi , and there is no dependence on ‖Ai‖/‖Di‖ in the runtime.

Correctness: By Theorem 6.9, for sufficiently small6 ε, the output matrix D satisfies

‖D − A≥σ,κ‖F ≤ ε‖A‖F ,

using that Aσ(1−κ
2

), 2κ
2−κ

and A≥σ,κ are the exact same form of error. So, all we need is to

approximately sample from the ith row of D, given its description.

Since AiV̂ is such a small vector (1× k), we can give an estimate for it in `2-norm easily. The
guarantee from Proposition 6.2 states that each estimate of an entry is at most ε‖V̂ (i)‖‖Ai‖/

√
k

off from the correct value, meaning that ‖est− AiV̂ ‖ ≤ ε‖Ai‖(1 +O(α)).

6This is not a strong restriction: ε . min{
√
κ,
√
σ/‖A‖F } works. This makes sense: for ε any larger, the

error can encompass addition or omission of full singular vectors.

24

Algorithm 4: Low-rank approximation sampling

Input: Matrix A ∈ Rm×n supporting the operations in 4.2, user i ∈ [m], threshold σ,
ε > 0, κ > 0

Output: Sample s ∈ [n]
Run ModFKV (3) with (σ, ε, κ) parameters as (σ(1− κ/2), ε, 2κ/(2− κ)) to get a
description of D = AV̂ V̂ T ;

For the following, simulate V̂ ∈ Rn×k from the description as described in
Proposition 6.14;

Use Proposition 6.2 with parameters ε√
k

to estimate 〈Ai, V̂ (t)〉 for all t ∈ [k];

Let est be the 1× k vector of estimates: est = {〈Ai, V̂ (t)〉}t∈[k];

Use Lemma 6.8 to get a sample s from estV̂ T ;
Output s;

We (approximately) sample from estV̂ T , so now we have to determine how far the output
distribution is from the desired distribution. Using approximate orthonormality of V̂ ,
‖estV̂ T − AiV̂ V̂ T‖ ≤ ε‖Ai‖(1 +O(α)). Let O be the output distribution. Then, combining
the error from sampling in Lemma 6.8 with the `2 error from est (using Lemma 6.1),

‖O,DAiV̂ V̂ T
‖TV ≤ ‖O,DestV̂ T ‖TV + ‖DestV̂ T ,DAiV̂ V̂ T

‖TV . α +
ε‖Ai‖
‖AiV̂ V̂ T‖

,

which is the desired correctness bound.

Runtime: The query complexity is dominated by the use of Proposition 6.2, since it
repeatedly uses the subroutine in Proposition 6.14, resulting in

Õ

(
‖A‖2

σ2

(
max

{ ‖A‖11

σ11ε6κ3
,
‖A‖8

σ8ε8κ4

})2(‖A‖6
F

σ6ε2

))
= Õ

(
max

{ ‖A‖30

σ30ε14κ6
,
‖A‖24

σ24ε18κ8

})
,

where the Õ hides the log factors incurred by amplifying the failure probability to δ.7 The
time complexity is dominated by computing the SVD of the p× p matrix in ModFKV in
O(p3) time, resulting in

Õ

(
max

{ ‖A‖33

σ33ε18κ9
,
‖A‖24

σ24ε24κ12

})
.

Finally, we give some brief comments about variants of this algorithm.

• By repeatedly estimating AiV̂ (creating est1, est2, etc.) with progressively smaller ε, one
can eventually get within O(ε‖AiV̂ ‖/‖Ai‖) of the correct vector. Doing this will decrease
the total variation error to O(ε), and increase the runtime by Õ(‖Ai‖2/‖V V TAi‖2),
giving the promised bound in the theorem statement.

• While the input is a user i ∈ [m] (and thus supports query and sampling access), it need
not be. Most generally, given query and sample access to orthonormal (or approximately

7The full computation has factors of 1 +O(poly(ε)) that we ignore in this abbreviated version.

25

orthonormal) vectors V ∈ Rn×k, and query access to x ∈ R, one can approximately
sample from a distribution O(ε‖x‖/‖V V Tx‖)-close to DV V T x, the projection of x onto
the span of V , in O(k2 log k/ε2 log 1/δ) time.

• While the SVD dominates the time complexity of Algorithm 4, the same description
output by ModFKV can be used for multiple recommendations, amortizing the cost
down to the query complexity (since the rest of the algorithm is linear in the number
of queries).

7.2 Proof of Theorem 2

Theorem 2. Applying Theorem 1 to the recommendation systems model (described in Sec-
tion 5) with the quantum state preparation data structure (Section 4) achieves the same
bounds of quality of recommendations as the quantum algorithm in [13], up to constant factors
and for sufficiently small ε.

Proof. To do this, we just run Algorithm 4 with parameters as described in Proposition 5.3:

σ =
√

ε2p
8k
‖A‖F , ε, and κ = 1/3. Provided ε .

√
p/k, we get the desired output. We can

perform the algorithm because A is in the data structure given by Proposition 4.2 (inflating
the runtime by a factor of log2(mn)).

Just like Kerenidis and Prakash, we need to assume that the following two conditions hold:

• The subsample probability p is constant; if p is subconstant, then the runtime becomes
larger. This is typical for recommendation systems [9, 4, 13].

• ‖Ai‖/‖Di‖ is constant. This holds for a constant fraction of (γ, ζ)-typical users (as
defined in Section 5.1), provided ζ is constant. We defer the details to Kerenidis and
Prakash’s proof in [13], and only present a broad sketch of the proof in this context.
The main idea is that, when ‖T −D‖F ≤ O(ε)‖T‖F , for a (1− ψ)-fraction of typical
users,

Ei∼uS′

[
‖Ai‖2

‖(A≥σ,κ)i‖2

]
.

(1 + ε)2

(1− ψ − ζ)
(

1√
1+γ

+ ε√
ψ

)2 .

For appropriate parameters this is a constant, and so the statement follows from
Markov’s inequality.

We will see below that ‖T −D‖F ≤ O(ε+ ρ)‖T‖F .

Correctness: Using Theorem 5.3, for D satisfying Theorem 1,

‖T −D‖F ≤ ‖T − A≥σ,κ‖F + ‖A≥σ,κ −D‖F ≤ 3‖T − Tk‖F + 3ε‖T‖F +O(ε)‖A‖F .

Applying a Chernoff bound to ‖A‖2
F (a sum of independent random variables), we get

that with high probability 1 − e−‖T‖
2
F p/3, ‖A‖F ≤

√
2/p‖T‖F . Since p is constant, and

‖T − Tk‖F ≤ ρ‖T‖F , we get that ‖T −D‖F = O(ρ+ ε)‖T‖F .

26

Then, we can apply Theorem 5.1 to get that, for S a (γ, ζ)-typical set of users of T , and Oi

the output distribution for user i,

Ei∼uS[‖Oi,DTi‖TV] ≤ Ei∼uS[‖Oi,DDi‖TV + ‖DDi ,DTi‖TV]

. ε+
(ε+ ρ)(

√
1 + γ)

1− ζ
.

(ε+ ρ)(
√

1 + γ)

1− ζ
,

which is the same bound that Kerenidis and Prakash achieve.

We can also get the same bound when applying Theorem 5.2: although our total variation
error is ε, we can still achieve the same desired O(ε2) failure probability as in the theorem.
One needs to notice that the total variation error from error in estimating est translates to
an ε2 probability of sampling a bad recommendation, since it comes from `2-norm sampling
of a vector.8 From there, everything else follows similarly.

In summary, the classical algorithm has two forms of error that the quantum algorithm does
not. However, the error in estimating the low-rank approximation folds into the error between
T and A≥σ,κ, and the error in total variation distance folds into the error from sampling from
an inexact reconstruction of T . Thus, we can achieve the same bounds.

Runtime: Our algorithm runs in the desired time and query complexity of

O(poly(k, 1/ε, p, ‖Ai‖/‖Di‖) polylog(mn, 1/δ)),

which is the same runtime as Kerenidis and Prakash’s algorithm up to polynomial slow-
down. Under the assumptions that p and ‖Ai‖/‖Di‖ are constant, this can be simplified to
O(poly(k, 1/ε) polylog(mn, 1/δ)).

Acknowledgments

Thanks to Scott Aaronson for introducing me to this problem, advising me during the research
process, and rooting for me every step of the way. His mentorship and help were integral to
this work, as well as my growth and abilities as a CS researcher, and for this I am deeply
grateful. Thanks also to Daniel Liang for providing frequent, useful discussions and for
reading through a draft of this document. Quite a few of the insights in this document were
generated during discussions with him.

Thanks to Patrick Rall for the continuing help throughout the research process and the
particularly incisive editing feedback. Thanks to everybody who attended my informal
presentations and gave me helpful insight at Simons, including Andras Gilyen, Iordanis
Kerenidis, Anupam Prakash, Mario Szegedy, and Ronald de Wolf. Thanks to Sujit Rao
and anybody else that I had enlightening conversations with over the course of the project.
Thanks to Prabhat Nagarajan for the continuing support.

8As rough intuition: if ‖u− v‖ ≤ ε then the probability that a sample from u corresponds to a zero-entry
in v is O(ε2/‖v‖2), just because probabilities are entries squared.

27

References

[1] Scott Aaronson. “Read the fine print”. In: Nature Physics 11.4 (2015), p. 291.
[2] Dimitris Achlioptas and Frank McSherry. “Fast computation of low-rank matrix ap-

proximations”. In: Journal of the ACM (JACM) 54.2 (2007), p. 9.
[3] Baruch Awerbuch et al. “Improved Recommendation Systems”. In: Proceedings of

the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’05.
Vancouver, British Columbia, 2005, pp. 1174–1183. isbn: 0-89871-585-7.

[4] Yossi Azar et al. “Spectral analysis of data”. In: Proceedings of the thirty-third annual
ACM Symposium on Theory of Computing. ACM. 2001, pp. 619–626.

[5] Robert M Bell and Yehuda Koren. “Lessons from the Netflix prize challenge”. In: ACM
SIGKDD Explorations Newsletter 9.2 (2007), pp. 75–79.

[6] Charles H Bennett et al. “Strengths and weaknesses of quantum computing”. In: SIAM
journal on Computing 26.5 (1997), pp. 1510–1523.

[7] James Bennett and Stan Lanning. “The Netflix prize”. In: Proceedings of KDD cup
and workshop. Vol. 2007. New York, NY, USA. 2007, p. 35.

[8] Xiao-Wen Chang, Christopher C Paige, and GW Stewart. “New perturbation analyses
for the Cholesky factorization”. In: IMA Journal of Numerical Analysis 16.4 (1996),
pp. 457–484.

[9] Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. “Competitive recommen-
dation systems”. In: Proceedings of the thiry-fourth annual ACM symposium on Theory
of computing. ACM. 2002, pp. 82–90.

[10] Alan Frieze, Ravi Kannan, and Santosh Vempala. “Fast Monte-Carlo algorithms for find-
ing low-rank approximations”. In: Journal of the ACM (JACM) 51.6 (2004), pp. 1025–
1041.

[11] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algorithm for linear
systems of equations”. In: Physical review letters 103.15 (2009), p. 150502.

[12] Iordanis Kerenidis and Anupam Prakash. “Quantum gradient descent for linear systems
and least squares”. In: arXiv preprint arXiv:1704.04992 (2017).

[13] Iordanis Kerenidis and Anupam Prakash. “Quantum Recommendation Systems”. In:
8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Vol. 67.
Dagstuhl, Germany, 2017, 49:1–49:21. isbn: 978-3-95977-029-3.

[14] Jon Kleinberg and Mark Sandler. “Using mixture models for collaborative filtering”.
In: Journal of Computer and System Sciences 74.1 (2008), pp. 49–69.

[15] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix factorization techniques for
recommender systems”. In: Computer 42.8 (2009).

[16] Ravi Kumar et al. “Recommendation Systems: A Probabilistic Analysis”. In: Journal
of Computer and System Sciences 63.1 (2001), pp. 42–61. issn: 0022-0000.

[17] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum algorithms for
supervised and unsupervised machine learning”. In: arXiv preprint arXiv:1307.0411
(2013).

[18] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum principal component
analysis”. In: Nature Physics 10.9 (2014), p. 631.

[19] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: arXiv preprint
arXiv:1801.00862 (2018).

28

A Deferred Proofs

Proof of Theorem 5.1. The following shows the first, average-case bound (note the use of
Lemma 6.1 and Cauchy-Schwarz).

Ei∼uS
[
‖DTi ,DT̃i

‖TV
]

=
1

|S|
∑
i∈S

‖DTi ,DT̃i
‖TV

≤ 1

(1− ζ)m

∑
i∈S

2‖Ti − T̃i‖
‖Ti‖

≤ 2(1 + γ)

(1− ζ)
√
m‖T‖F

∑
i∈S

‖Ti − T̃i‖

≤ 2
1 + γ

1− ζ

(∑
i∈[m] ‖Ti − T̃i‖√
m‖T‖F

)
≤ 2

1 + γ

1− ζ

(√m‖T − T̃‖F√
m‖T‖F

)
≤ 2ε(1 + γ)

(1− ζ)

Using that ‖T − T̃‖F ≤ ε‖T‖F in combination with a pigeonhole-like argument, we know
that at least a (1− ψ)-fraction of users i ∈ [m] satisfy

‖Ti − T̃i‖2 ≤ ε2‖A‖2
F

ψm
.

Thus, there is a S ′ ⊂ S of size at least (1− ψ − ζ)m satisfying the above. For such an i ∈ S ′,
we can argue from Lemma 6.1 and the definition of a (γ, ζ)-typical user that

‖DTi ,DT̃i
‖TV ≤

2‖Ti − T̃i‖
‖Ti‖

≤ 2ε‖T‖F (1 + γ)
√
m√

ψm‖T‖F
=

2ε(1 + γ)√
ψ

.

Proof of Lemma 6.10.

(i) ModFKV only differs from FKV run on K in that ModFKV chooses fewer singular
vectors from the subsampled SVD. Thus, because a larger K leads to a larger sample,
the correctness bound for FKV run on k holds for the output of ModFKV.

As for bounding k, ModFKV can compute the first k singular values to within a
cumulative additive error of ε̄‖A‖F . This is stated below Theorem 2 in [10].

Thus, ModFKV could only conceivably take a singular vector v such that ‖Av‖ ≥
σ − ε̄‖A‖F = σ(1− ε̄‖A‖F/σ), and analogously for the upper bound.

29

(ii) That u(i) have unit norm follows from these vectors being singular vectors of some SVD.

The second half follows directly from Lemma 1 of [10].

Proof of Proposition 6.11. For i 6= j, we have as follows (using notation from [10]):∣∣v̂Ti v̂j∣∣ =
|uiSSTuTj |

‖W Tui‖‖W Tuj‖
≤
|uiSSTuTj |
γ‖W‖2

F

≤ θ‖S‖2
F

γ‖W‖2
F

.
θ

γ
.

For i = j, we also get a similar bound of |‖v̂i‖2 − 1| . θ
γ
.

In the original algorithm’s filter step, γ is chosen to be ε̄/8k. However, in ModFKV, the
bound for γ still holds for values as large as 1/K without altering the behavior of the
algorithm. Thus, the bound θ/γ is actually much better than its normal value of O(ε̄), it is
O(ε̄2). From the definition of approximate orthonormality, this means that the vectors are
O(ε̄2K)-approximately orthonormal, as desired.

Proof of Theorem 6.12. For simplicity we denote σk by σ and minm,n by N .

‖AΠ− Aσ,κ‖2
F = ‖UΣV T (Π− Πσ,κ)‖2

F

= ‖ΣV T (Π− Πσ,κ)‖2
F

=
N∑
i=1

σ2
i ‖vTi Π− vTi Πσ,κ‖2

That is, AΠ and Aσ,κ′ are close when their corresponding projectors behave in the same way.
Let ai = vTi Π, and bi = vTi Πσ,κ′ . Note that

bi =


vTi σi ≥ (1 + κ)σ

vTi ΠE (1 + κ)σ > σi ≥ (1− κ)σ

0 (1− κ)σ > σi

,

where ΠE is as defined in Section 3.1. Using the first and third case, and the fact that
orthogonal projectors Π satisfy ‖v − Πv‖2 = ‖v‖2 − ‖Πv‖2, the formula becomes

‖AΠ − Aσ,κ‖2
F =

`(σ(1+κ))∑
1

σ2
i (1 − ‖ai‖2) +

`(σ(1−κ))∑
`(σ(1+κ))+1

σ2
i ‖ai − bi‖2 +

N∑
`(σ(1−κ))+1

σ2
i (‖ai‖2).

∗ ∗ ∗

Now, we consider the assumption equation. We reformulate the assumption into the following
system of equations:

k∑
i=1

σ2
i ≤

N∑
i=1

σ2
i ‖ai‖2 + εσ2 σ2

i are nonincreasing

‖ai‖2 ∈ [0, 1]
∑
‖ai‖2 = k

30

The first line comes from the equation. The second line follows from Π being an orthogonal
projector on a k-dimensional subspace.

It turns out that this system of equations is enough to show that the ‖ai‖2 behave the way
we want them to. We defer the details to Lemma A.2; the results are as follows.

`(σ(1+κ))∑
1

σ2
i (1− ‖ai‖2) ≤ ε

(
1 +

1

κ

)
σ2

N∑
`(σ(1−κ))+1

σ2
i ‖ai‖2 ≤ ε

(1

κ
− 1
)
σ2

`(σ(1+κ))∑
1

(1− ‖ai‖2) ≤ ε

κ

N∑
`(σ(1−κ))+1

‖ai‖2 ≤ ε

κ

Now, applying the top two inequalities:

‖AΠ− Aσ,κ‖2
F ≤

2εσ2

κ
+

`(σ(1−κ))∑
`(σ(1+κ))+1

σ2
i ‖ai − bi‖2.

We just need to bound the last term in the above inequality now. Notice the following:

`(σ(1−κ))∑
`(σ(1+κ))+1

σ2
i ‖ai − bi‖2 ≤ σ2(1 + κ)2‖UT (Π− ΠE)‖2

F ,

where U is the set of vectors v`(σ(1+κ))+1 through v`(σ(1−κ)).
∗ ∗ ∗

Notice that ΠE is the error component of the projection, and this error can be any projection
onto a subspace spanned by U . Thus, to bound the above we just need to pick an orthogonal
projector ΠE making the norm as small as possible. If UUTΠ were an orthogonal projection,
this would be easy:

‖UT (Π− UUTΠ)‖2
F = 0.

However, this is likely not the case. UUTΠ is close to an orthogonal projector, though,
through the following reasoning:

For ease of notation let P1 be the orthogonal projector onto the first `(σ(1 + κ)) singular
vectors, P2 = UUT , and P3 be the orthogonal projector onto the the rest of the singular
vectors. We are concerned with P2Π.

Notice that P1 + P2 + P3 = I. Further, from Lemma A.2, ‖(I − Π)P1‖2
F ≤ ε/κ and

‖ΠP3‖2
F ≤ ε/κ. Then

P2Π = (I − P1 − P3)Π = Π− P1 + P1(I − Π)− P3Π

‖P2Π− (Π− P1)‖F = ‖P1(I − Π)− P3Π‖F ≤ 2
√
ε/κ

So now it is sufficient to show that Π− P1 is close to a projector matrix. This follows from
Lemma A.1, since it satisfies the premise:

(Π− P1)2 − (Π− P1) = Π− ΠP1 − P1Π + P1 − Π + P1

= (I − Π)P1 + P1(I − Π)

‖(Π− P1)2 − (Π− P1)‖F ≤ 2
√
ε/κ

31

Thus, UUTΠ is (2
√
ε/κ+ (2

√
ε/κ+ 16ε/κ))-close to an orthogonal projector in Frobenius

norm.
∗ ∗ ∗

We can choose ΠE to be M , and plug this into the original equation. We use the assumptions
that ε/κ < 1 and κ < 1 to bound.

`(σ(1−κ))∑
`(σ(1+κ))+1

σ2
i ‖ai − bi‖2 ≤ σ2(1 + κ)2‖UT (Π−M)‖2

F

≤ σ2(1 + κ)2‖UT (Π− (UUTΠ + E))‖2
F

≤ σ2(1 + κ)2‖UTE‖2
F

. σ2(1 + κ)2ε/κ

‖AΠ− Aσ,κ‖2
F .

2εσ2

κ
+ σ2(1 + κ)2 ε

κ
. εσ2/κ

This concludes the proof. (The constant factor is 1602.)

Lemma A.1. If a Hermitian A satisfies ‖A2 − A‖F ≤ ε, then ‖A− P‖F ≤ ε+ 4ε2 for some
orthogonal projector P .

Proof. Use the fact that Hermitian matrices are normal, so A = UΓUT for unitary U and
diagonal matrix Γ, and

A2 − A = U(Γ2 − Γ)UT =⇒ ‖Γ2 − Γ‖F ≤ ε.

From here, consider the entries γi of Γ, satisfying γ2
i − γi = ci and

∑
c2
i = ε2. Thus,

γi = (1 ±
√

1 + 4ci)/2 which is at most ci + 4c2
i off from 0.5 ± 0.5 (aka {0, 1}), using that

1− x/2− x2/2 ≤
√

1− x ≤ 1− x/2. Finally, this means that Γ is off from having only 0’s
and 1’s on the diagonal by

√∑
(ci + 4c2

i)
2 ≤ ε+ 4ε2 in Frobenius norm.

If Γ had only 0’s and 1’s on the diagonal, the resulting UΓUT would be an orthogonal
projector.

Lemma A.2. The system of equations:

k∑
i=1

σ2
i ≤

N∑
i=1

σ2
i ‖ai‖2 + εσ2

k σ2
i are nonincreasing

‖ai‖2 ∈ [0, 1]
∑
‖ai‖2 = k

imply the following, for 0 < κ ≤ 1:

`(σk(1+κ))∑
1

σ2
i (1− ‖ai‖2) ≤ ε

(
1 +

1

κ

)
σ2
k

N∑
`(σk(1−κ))+1

σ2
i ‖ai‖2 ≤ ε

(1

κ
− 1
)
σ2
k

`(σk(1+κ))∑
1

(1− ‖ai‖2) ≤ ε

κ

N∑
`(σk(1−κ))+1

‖ai‖2 ≤ ε

κ

32

Proof. We are just proving straightforward bounds on a linear system. We will continue to
denote σk by σ. Thus, k = `(σ).

The slack in the inequality is always maximized when the weight of the ‖ai‖2 is concentrated
on the large-value (small-index) entries. For example, the choice of ‖ai‖2 maximizing slack in
the given system of equations is the vector {‖ai‖}i∈[N] = 1≤k. Here, 1≤x denotes the vector
where

(1≤x)i :=

{
1 i ≤ x

0 otherwise
.

For brevity, we only give the details for the first bound; the others follow similarly. Consider
adding the constraint C =

∑`(σ(1+κ))
1 σ2

i (1− ‖ai‖2) to the system of equations. We want to
determine for which values of C the modified system is still feasible; we can do this by trying
the values that maximize slack.

This occurs when weight is on the smallest possible indices: when ‖a`(σ(1+κ))‖2 = 1 −
C/σ2

`(σ(1+κ)), ‖a`(σ)+1‖2 = C/σ2
`(σ(1+κ)), and all other ‖ai‖2 are 1≥k. Notice that ‖a`(σ(1+κ))‖2

could be negative and ‖a`(σ)+1‖ could be larger than one, breaking constraints. However, if
there is no feasible solution even when relaxing those two constraints, there is certainly no
solution to the non-relaxed system. Thus, we check feasibility (by construction the second
equation is satisfied):

k∑
i=1

σ2
i ≤

k∑
i=1

σ2
i − C + C

σ2
`(σ)+1

σ`(σ(1+κ))

+ εσ2

C
(

1−
σ2
`(σ)+1

σ`(σ(1+κ))

)
≤ εσ2

C
(

1− 1

(1 + κ)2

)
≤ εσ2

This gives the bound on C. Repeating for all four cases, we get the following bounds:

`(σ(1+κ))∑
1

σ2
i (1− ‖ai‖2) ≤ ε(1 + κ)2σ2

2κ+ κ2

N∑
`(σ(1−κ))+1

σ2
i ‖ai‖2 ≤ ε(1− κ)2σ2

2κ− κ2

`(σ(1+κ))∑
1

(1− ‖ai‖2) ≤ ε

2κ+ κ2

N∑
`(σ(1−κ))+1

‖ai‖2 ≤ ε

2κ− κ2

We get the bounds in the statement by simplifying the above (using that κ ≤ 1).

33

B Variant for an Alternative Model

In this section, we describe a variant of our recommendation systems algorithm for the
competitive recommendations model, seen in Drineas, Kerenidis, and Raghavan’s 2002 paper
giving two algorithms for competitive recommendations [9]. The idea is to output good
recommendations with as little knowledge about the preference matrix T as possible (hence
the name). Our algorithm is similar to Drineas et al’s second algorithm, which has weak
assumptions on the form of T , but strong assumptions on how we can gain knowledge about
it.

We use a similar model, as follows:

• We begin with no knowledge of our preference matrix T apart from the promise that
‖T − Tk‖F ≤ ρ‖T‖F ;

• We can request the value of any particular entry Tij for some cost;

• For some constant 0 < c ≤ 1, we can sample from and compute probabilities from a
distribution p over [m] satisfying

p(i) ≥ c
‖Ti‖2

‖T‖2
F

.

Further, we can sample from and compute probabilities from distributions qi over [n],
for i ∈ [m], satisfying

qi(j) ≥ c
T 2
ij

‖Ti‖2
.

We discuss the first assumption in Section 5.1. The second assumption is very strong, but we
will only need to use it sparingly, for some small set of users and products. In practice, this
assumption could be satisfied through paid user surveys.

The last assumption states that the way that we learn about users naturally, via normal
user-site interaction, follows the described distributions. For example, consider when T is
binary (as in Section 5.1). The assumption about p states that we can sample for users
proportional to the number of products they like (with possible error via c). Even though
we don’t know the exact number of products a user likes, it is certainly correlated with the
amount of purchases/interactions the user has with the site. With this data we can form p.
The assumption about qi’s states that, for a user, we can sample uniformly from the products
that user likes. We can certainly assume the ability to sample from the products that a user
likes, since such positive interactions are common, intended, and implicit in the user’s use
of the website. It is not clear whether uniformity is a reasonable assumption, but this can
be made more reasonable by making T non-binary and more descriptive of the utility of
products to users.

Under these assumptions, our goal is, given a user i, to recommend products to that user
that were not previously known to be good and are likely to be good recommendations.

34

To do this, we run Algorithm 4 with T, k, ε as input, the main change being that we use
Frieze, Kannan, and Vempala’s standard algorithm instead of ModFKV. As samples and
requests are necessary, we can provide them using the assumptions above.

For the FKV portion of the algorithm, this leads to O(p2) requests to p users about p products,
where p = O(max{ k4

c3ε6
, k2

c3ε8
}). This gives the description of a D such that

‖T −D‖F ≤
√
‖T − Tk‖2

F + ε2‖T‖2
F ≤ (ρ+ ε)‖T‖F .

Thus, immediately we can use theorems from Section 5.1 to show that samples from D will
give good recommendations.

From here, the next part of Algorithm 4 can output the desired approximate sample from Di. A
similar analysis will show that this approximate sample is likely to be a good recommendation,
all while requesting and sampling a number of entries independent of m and n. Such requests
and samples will only be needed for the p users chosen by FKV for its subsample, along with
the input user. Further, for more recommendations, this process can be iterated with unused
information about the p users chosen by FKV. Alternatively, if we can ask the p users for all
of their recommendations, we only need O(k2 log k/ε2 log 1/δ) samples from the input user to
provide that user with an unlimited number of recommendations (we can store and update
the value of V̂ est to use when sampling).

This gives good recommendations, only requiring knowledge of O(poly(k, 1/ε, log 1/δ)) entries
of T , and with time complexity polynomial in the number of known entries.

35
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

