
A quantum-inspired classical algorithm for
recommendation systems

Ewin Tang

April 13, 2019

Abstract

We give a classical analogue to Kerenidis and Prakash’s quantum recommenda-
tion system, previously believed to be one of the strongest candidates for provably
exponential speedups in quantum machine learning. Our main result is an algorithm
that, given an m× n matrix in a data structure supporting certain `2-norm sampling
operations, outputs an `2-norm sample from a rank-k approximation of that matrix in
time O(poly(k) log(mn)), only polynomially slower than the quantum algorithm. As a
consequence, Kerenidis and Prakash’s algorithm does not in fact give an exponential
speedup over classical algorithms. Further, under strong input assumptions, the classi-
cal recommendation system resulting from our algorithm produces recommendations
exponentially faster than previous classical systems, which run in time linear in m and
n.

The main insight of this work is the use of simple routines to manipulate `2-
norm sampling distributions, which play the role of quantum superpositions in the
classical setting. This correspondence indicates a potentially fruitful framework for
formally comparing quantum machine learning algorithms to classical machine learning
algorithms.

Contents
1 Introduction 2

1.1 Quantum Machine Learning . 2
1.2 Recommendation Systems . 4
1.3 Algorithm Sketch . 6
1.4 Further Questions . 7

2 Definitions 8
2.1 Low-Rank Approximations . 8
2.2 Sampling . 9

3 Data Structure 9

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 128 (2018)

4 Main Algorithm 11
4.1 Vector Sampling . 11
4.2 Finding a Low-Rank Approximation . 13
4.3 Proof of Theorem 1 . 16

5 Application to Recommendations 19
5.1 Preference Matrix . 19
5.2 Matrix Sampling . 21
5.3 Proof of Theorem 2 . 22

References 25

A Deferred Proofs 25

B Variant for an Alternative Model 31

1 Introduction

1.1 Quantum Machine Learning

This work stems from failed efforts to prove that Kerenidis and Prakash’s quantum recom-
mendation system algorithm [KP17b] achieves an exponential speedup over any classical
algorithm. Such a result would be interesting because Kerenidis and Prakash’s algorithm is a
quantum machine learning (QML) algorithm.

Though QML has been studied since 1995 [BJ99], it has garnered significant attention in
recent years, beginning in 2008 with Harrow, Hassidim, and Lloyd’s quantum algorithm
for solving linear systems [HHL09]. This burgeoning field has produced exciting quantum
algorithms that give hope for finding exponential speedups outside of the now-established
gamut of problems related to period finding and Fourier coefficients. However, in part because
of caveats exposited by Aaronson [Aar15], it is not clear whether any known QML algorithm
gives a new exponential speedup over classical algorithms for practically relevant instances of
a machine learning problem. Kerenidis and Prakash’s work was notable for addressing all
of these caveats, giving a complete quantum algorithm that could be compared directly to
classical algorithms.

When Kerenidis and Prakash’s work was published, their algorithm was exponentially faster
than the best-known classical algorithms. It was not known whether this was a provably
exponential speedup. The goal of this work is to describe a classical algorithm that performs
the same task as the quantum recommendation systems algorithm with only polynomially
slower runtime, thus answering this question. This removes one of the most convincing
examples we have of exponential speedups for machine learning problems (see Section 6.7 of
[Pre18]).

How the quantum algorithm works. Outside of the recommendation systems context,
the quantum algorithm just samples from the low-rank approximation of an input matrix. It

2

proceeds as follows. First, an application of phase estimation implicitly estimates singular
values and locates singular vectors of the input. A quantum projection procedure then uses
this information to project a quantum state with a row of the input to a state with the
corresponding row of a low-rank approximation of the input. Measuring this state samples an
entry from the row with probability proportional to its magnitude. Kerenidis and Prakash
posited that, with a classical algorithm, producing samples following these distributions
requires time linear in the input dimensions.

The intuition behind this claim is not that singular value estimation or computing projections
is particularly difficult computationally. Rather, it’s simply hard to believe that any of these
steps can be done without reading the full input. After all, a significant portion of the theory
of low-rank matrix approximation only asks for time complexity linear in input-sparsity or
sublinear with some number of passes through the data. By comparison to these types of
results, what the quantum algorithm achieves (query complexity polylogarithmic in the input
size) is impressive.

With this claim in mind, Kerenidis and Prakash then apply their quantum algorithm to make
a fast online recommendation system. As information arrives about user-product preferences,
we place it into a dynamic data structure that is necessary to run the quantum algorithm.
We can then service requests for recommendations as they arrive by running the quantum
algorithm and returning the output sample. Under strong assumptions about the input data,
this sample is likely to be a good recommendation.

State preparation: the quantum algorithm’s assumption. To see why the classical
algorithm we present is possible, we need to consider the technique Kerenidis and Prakash
use to construct their relevant quantum states.

Kerenidis and Prakash’s algorithm is one of many QML algorithms [HHL09; LMR13; LMR14;
KP17a] that require quantum state preparation assumptions, which state that given an
input vector v, one can quickly form a corresponding quantum state |v〉. To achieve the
desired runtime in practice, an implementation would replace this assumption with either a
procedure to prepare a state from an arbitrary input vector (where the cost of preparation
could be amortized over multiple runs of the algorithm) or a specification of input vectors
for which quantum state preparation is easy. Usually QML algorithms abstract away these
implementation details, assuming a number of the desired quantum states are already prepared.
The quantum recommendation systems algorithm is unique in that it explicitly comes with a
data structure to prepare its states (see Section 3).

These state preparation assumptions are nontrivial: even given ability to query entries of a
vector in superposition, preparing states corresponding to arbitrary length-n input vectors is
known to take Ω(

√
n) time (a corollary of quantum search lower bounds [Ben+97]). Thus,

the data structure to quickly prepare quantum states is essential for the recommendation
systems algorithm to achieve query complexity polylogarithmic in input size.

How a classical algorithm can perform as well as the quantum algorithm. The
classical algorithm we present cannot be compared to classical low-rank matrix completion
and approximation results requiring linear time. Rather, the key insight is that the data
structure used to satisfy state preparation assumptions can also satisfy `2-norm sampling

3

assumptions (defined in Section 2.2).

So, a classical algorithm whose goal is to “match” the quantum algorithm can exploit these
assumptions. The effectiveness of `2-norm sampling in machine learning [SWZ16; HKS11]
and randomized linear algebra [KV17; DMM08] is well-established. In fact, a work by Frieze,
Kannan, and Vempala [FKV04] shows that, with `2-norm sampling assumptions, a form of
singular value estimation is possible in time independent of m and n. Further, in the context
of this literature, sampling from the projection of a vector onto a subspace is not outside the
realm of feasibility. This work just puts these two pieces together.

The importance of `2-norm sampling. In an imprecise sense, our algorithm replaces
state preparation assumptions with `2-norm sampling assumptions. In this particular case,
while quantum superpositions served to represent data implicitly that would take linear
time to write out, this need can be served just as well with probability distributions and
subsamples of larger pieces of data.

The correspondence between `2-norm sampling assumptions and state preparation assumptions
makes sense. While the former sidesteps the obvious search problems inherent in linear
algebra tasks by pinpointing portions of vectors or matrices with the most weight, the latter
sidesteps these search problems by allowing for quantum states that are implicitly aware of
weight distribution. We suspect that this connection revealed by the state preparation data
structure is somewhat deep, and cannot be fixed by simply finding a state preparation data
structure without sampling power.

This work demonstrates one major case where classical computing with `2-norm sampling
is an apt point of comparison for revealing speedups (or, rather, the lack thereof) in QML.
We believe that this reference point remains useful, even for QML algorithms that don’t
specify state preparation implementation details, and thus are formally incomparable to
any classical model. So, we suggest a general framework for studying the speedups given
by QML algorithms with state preparation assumptions: compare QML algorithms with
state preparation to classical algorithms with sampling. Indeed, a QML algorithm using
state preparation assumptions should aim to surpass the capabilities of classical algorithms
with `2-norm sampling, given that in theory, generic state preparation tends to only appear
in settings with generic sampling, and in practice, we already know how to implement fast
classical sampling on existing hardware.

In summary, we argue for the following guideline: when QML algorithms are compared to
classical ML algorithms in the context of finding speedups, any state preparation assumptions
in the QML model should be matched with `2-norm sampling assumptions in the classical ML
model.

1.2 Recommendation Systems

In addition to our algorithm having interesting implications for QML, it also can be used as
a recommendation system.

To formalize the problem of recommending products to users, we use the following model, first
introduced in 1998 by Kumar et al. [Kum+01] and refined further by Azar et al. [Aza+01]

4

and Drineas et al. [DKR02]. We represent the sentiments of m users towards n products
with an m× n preference matrix T , where Tij is large if user i likes product j. We further
assume that T is close to a matrix of small rank k (constant or logarithmic in m and n),
reflecting the intuition that users tend to fall into a small number of classes based on their
preferences. Given a matrix A containing only a subset of entries of T , representing our
incomplete information about user-product preferences, our goal is to output high-value
entries of T , representing good recommendations.

Modern work on recommendation systems uses matrix completion to solve this (which works
well in practice1), but these techniques must take linear time to produce a recommendation.
Kerenidis and Prakash’s recommendation system (and, consequently, this work) follows in
an older line of research, which experiments with very strong assumptions on input with
the hope of finding a new approach that can drive down runtime to sublinear in m and n.
In Kerenidis and Prakash’s model, finding a good recommendation for a user i reduces to
sampling from the ith row of a low rank approximation of the subsampled data A, instead of
a low-rank completion. Using our classical analogue to Kerenidis and Prakash’s algorithm,
we can get recommendations in O(poly(k) polylog(m,n)) time, exponentially faster than the
best-known in the literature. Sublinear-time sampling for good recommendations has been
proposed before (see introduction of [DKR02]), but previous attempts to implement it failed
to circumvent the bottleneck of needing linear time to write down input-sized vectors.

For context, our model is most similar to the model given in 2002 by Drineas et al. [DKR02].
However, that algorithm’s main goal is minimizing the number of user preferences necessary
to generate good recommendations; we discuss in Appendix B how to adapt our algorithm
to that model to get similar results. Other approaches include combinatorial techniques
[Kum+01; Awe+05] and the use of mixture models [KS08].

We note two major assumptions present in our model that differ from the matrix completion
setting. (The full list of assumptions is given in Section 5.) The first assumption is that
our subsample A is contained in a data structure. This makes sense in the setting of
an online recommendation system, where we can amortize the cost of our preprocessing.
Recommendation systems in practice tend to be online, so building a system that keeps data
in this data structure to satisfy this assumption seems reasonable. The second assumption
is that we know a constant fraction of the full preference matrix T . This is impractical
and worse than matrix completion, for which we can prove correctness given as little as an
Θ̃(k

m+n
) fraction of input data [Rec11]. This seems to be an issue common among works

reducing recommendation problems to low-rank matrix approximation [DKR02; Aza+01].
Nevertheless, we hope that this algorithm, by presenting a novel sampling-based technique
with a much faster asymptotic runtime, inspires improved practical techniques and provides
an avenue for further research.

1Work on the Netflix Prize is a useful reference for practical recommendation systems: see Bennett et
al. [BL07] for a broad overview of techniques, Koren et al. [KBV09] for a high-level exposition of the SVD
technique, and Bell et al. [BK07] for more technical details.

5

1.3 Algorithm Sketch

We first state the main result, a classical algorithm that can sample a high-value entry from
a given row of a low-rank approximation of a given matrix. The formal statement can be
found in Section 4.3.

Theorem (1, informal). Suppose we are given as input a matrix A supporting query and
`2-norm sampling operations, a row i ∈ [m], a singular value threshold σ, an error parameter
η > 0, and a sufficiently small ε > 0. There is a classical algorithm whose output distribution
is ε-close in total variation distance to the distribution given by `2-norm sampling from the
ith row of a low-rank approximation D of A in query and time complexity

O

(
poly

(‖A‖F
σ

,
1

ε
,

1

η

‖Ai‖
‖Di‖

,
))

,

where the quality of D depends on η.

This makes the runtime independent of m and n. Here, (‖A‖F/σ)2 is a bound on the rank of
the low-rank approximation, so we think of σ as something like ‖A‖F/

√
k. To implement

the needed sampling operations, we will use the data structure described in Section 3, which
adds at most an additional O(log(mn)) factor in overhead. This gives a time complexity of

Õ

(
‖A‖24

σ24ε12η6
log(mn)

‖Ai‖2

‖Di‖2

)
.

This is a large slowdown versus the quantum algorithm in some exponents. However, we
suspect that these exponents can be improved significantly through standard techniques.

The only difference between Theorem 1 and its quantum equivalent in [KP17b] is that the
quantum algorithm has only logarithmic dependence2 on ε. Thus, we can say that our
algorithm performs just as well, up to polynomial slowdown and ε approximation factors
(the quantum algorithm still has polynomial dependence on η). These ε’s don’t affect the
classical recommendation system guarantees:

Theorem (2, informal). Applying Theorem 1 to the recommendation systems model with
the quantum state preparation data structure achieves identical bounds on recommendation
quality as the quantum algorithm in [KP17b] up to constant factors, for sufficiently small ε.

To prove Theorem 1 (Section 4), we present and analyze Algorithm 3. It combines a variety
of techniques, all relying on sampling access to relevant input vectors. The main restriction
to keep in mind is that we need to perform linear algebra operations without incurring the
cost of reading a full row or column.

The algorithm begins by using the given support for `2-norm sampling to run a sampling
routine (called ModFKV, see Section 4.2) based on Frieze, Kannan, and Vempala’s 1998
algorithm [FKV04] to find a low-rank approximation of A. It doesn’t have enough time
to output the matrix in full; instead, it outputs a succinct description of the matrix. This

2The analysis of the phase estimation in the original paper has some ambiguities, but subsequent work
[Gil+18] demonstrates that essentially the same result can be achieved with a different algorithm.

6

description is S, a normalized constant-sized subset of rows of A, along with some constant-
sized matrices Û and Σ̂, which implicitly describe V̂ := ST ÛΣ̂−1, a matrix whose columns
are approximate right singular vectors of A. The corresponding low-rank approximation
is D := AV̂ V̂ T , the projection of the rows of the input matrix onto the low-dimensional
subspace spanned by V̂ . Though computing V̂ directly takes too much time, we can sample
from and query to its columns. Since rows of S are normalized rows of A, we have sampling
access to S with our input data structure. We can translate such samples to samples from V̂
using the simple sampling routines discussed in Section 4.1.

Though we could use this access to V̂ for the rest of our algorithm, we take a more direct
approach. To sample from the ith row of D, Ai(ST ÛΣ̂−1)(ST ÛΣ̂−1)T , given D’s description,
we first estimate AiST . This amounts to estimating a constant number of inner products and
can be done with sampling access to Ai by Proposition 4.2. Then, we multiply this estimate
by ÛΣ̂−1(Σ̂−1)T ÛT , which is a constant-sized matrix. Finally, we sample from the product of
the resulting vector with S and output the result. This step uses rejection sampling: given
the ability to sample and query to a constant-sized set of vectors (in this case, rows of S), we
can sample from a linear combination of them (Proposition 4.3).

This completes the broad overview of the algorithm. The correctness and runtime analysis is
elementary; most of the work is in showing that ModFKV’s various outputs truly behave
like approximate large singular vectors and values (Proposition 4.6 and Theorem 4.7).

To prove Theorem 2 and show that the quality bounds on the recommendations are the
same (see Section 5.3), we just follow Kerenidis and Prakash’s analysis and apply the model
assumptions and theorems (Section 5) in a straightforward manner. The `2-norm sampling
operations needed to run Algorithm 3 are instantiated with the data structure Kerenidis and
Prakash use (Section 3).

1.4 Further Questions

Since this algorithm is associated both with recommendation systems and quantum machine
learning, two lines of questioning naturally follow.

First, we can continue to ask whether any quantum machine learning algorithms have provably
exponential speedups over classical algorithms. We believe that a potentially enlightening
approach is to investigate how state preparation assumptions can be satisfied and whether
they are in some way comparable to classical sampling assumptions. After all, we find it
unlikely that a quantum exponential speedup can be reinstated just with a better state
preparation data structure. However, we are unaware of any research in this area in particular,
which could formalize a possible connection between QML algorithms with state preparation
assumptions and classical ML algorithms with sampling assumptions.

Second, while the recommendation system algorithm we give is asymptotically exponentially
faster than previous algorithms, there are several aspects of this algorithm that make direct
application infeasible in practice. First, the model assumptions are somewhat constrictive. It
is unclear whether the algorithm still performs well when such assumptions are not satisfied.
Second, the exponents and constant factors are large (mostly as a result of using Frieze,

7

Kannan, and Vempala’s algorithm [FKV04]). We believe that the “true” exponents are much
smaller, but our technique is fairly roundabout and likely compounds exponents unnecessarily.
These issues could be addressed with more straightforward analysis combined with more
sophisticated techniques (see, for example, [DV06]).

2 Definitions
Throughout, we obey the following conventions. We assume that basic operations on input
data (e.g. adding, multiplying, reading, and writing) take O(1) time. [n] := {1, . . . , n}. f . g
denotes the ordering f = O(g) (and correspondingly for & and h). For a matrix A, Ai and
A(i) will refer to its ith row and column, respectively. ‖A‖F and ‖A‖2 will refer to Frobenius
and spectral norm, respectively. Norm of a vector v, denoted ‖v‖, will always refer to `2-norm.
The absolute value of x ∈ R will be denoted |x|. Occasionally, matrix and vector inequalities
of the form ‖x− y‖ ≤ ε will be phrased in the form x = y + E, where ‖E‖ ≤ ε. Thus, the
letter E will always refer to some form of perturbation or error.

For a matrix A ∈ Rm×n, let A = UΣV T =
∑minm,n

i=1 σiuiv
T
i be the SVD of A. Here, U ∈ Rm×m

and V ∈ Rn×n are unitary matrices with columns {ui}i∈[m] and {vi}i∈[n], the left and right
singular vectors, respectively. Σ ∈ Rm×n is diagonal with σi := Σii and the σi nonincreasing
and nonnegative.

We will use the function ` to indicate splitting the singular vectors along a singular value:

`(λ) := max{i | σi ≥ λ}.

For example, σ1 through σ`(λ) gives all of the singular values that are at least λ. This notation
suppresses `’s dependence on σi, but it will always be clear from context.

Π will always refer to an orthogonal projector. That is, if β = {b1, . . . , bd} is an orthonormal
basis for im Π, then Π =

∑d
i=1 bib

T
i = BBT for B the matrix whose columns are the elements

of β. We will often conflate B, the matrix of basis vectors, and the basis β itself.

2.1 Low-Rank Approximations

We will use various techniques to describe low-rank approximations of A. All of these
techniques will involve projecting the rows onto some span of right singular vectors.

Ak := AΠk im Πk := span{vi | i ∈ [k]}
Aσ := AΠσ im Πσ := span{vi | i ∈ [`(σ)]}

Ak and Aσ correspond to the standard notions of low-rank approximations of A. Thus,
Ak =

∑k
i=1 σiuiv

T
i and is a rank-k matrix minimizing the Frobenius norm distance from A.

Similarly, Aσ is just At for t = `(σ). Notice that rankA ‖A‖F√
λ

≤ λ.

We will need to relax this notion for our purposes, and introduce error η ∈ [0, 1]. Define
Aσ,η := APσ,η where Pσ,η is some Hermitian matrix satisfying Πσ(1+η) � Pσ,η � Πσ(1−η) and
� is the Loewner order.

8

In words, Aσ,η is the class of matrices “between” Aσ(1+η) and Aσ(1−η): Pσ,η is the identity on
A’s singular vectors with value are larger than σ(1 + η), the zero map on A’s singular vectors
with value at most σ(1− η), and some PSD matrix with norm at most one on singular vectors
with values between σ(1−η) and σ(1 +η). Such a form of error could arise from having η-like
error in estimating the singular values used to compute a low-rank matrix approximation. η
should be thought of as constant (1/5 will be the eventual value), and σ should be thought
of as very large (say, a constant multiple of ‖A‖F), so Aσ,η always has low rank.

2.2 Sampling

For a nonzero vector x ∈ Rn, we denote by Dx the distribution over [n] whose probability
density function is

Dx(i) =
x2
i

‖x‖2

We will call a sample from Dx a sample from x.

We make two basic observations. First, Dx is the distribution resulting from measuring the
quantum state |x〉 := 1

‖x‖
∑
xi |i〉 in the computational basis. Second, sampling access to Dx

makes easy some tasks that are hard given just query access to x. For example, while finding
a hidden large entry of x ∈ Rn takes Ω(n) queries with just query access, it takes a constant
number of samples with query and sample access.

In all situations, sampling access will be present alongside query access, and accordingly, we
will conflate samples i ∼ Dx with the corresponding entries xi. Note that knowledge of ‖x‖
is also relevant and useful in this sampling context, since it allows for computing probabilities
from Dx and yet is hard to compute even with query and sampling access to x.

For probability distributions P,Q (as density functions) over a (discrete) universe X, the
total variation distance between them is defined as

‖P −Q‖TV :=
1

2

∑
x∈X

∣∣∣P (x)−Q(x)
∣∣∣.

For a set S, we denote pulling an s ∈ S uniformly at random by s ∼u S. We will continue to
conflate a distribution with its density function.

3 Data Structure
Since we are interested in achieving sublinear bounds for our algorithm, we need to concern
ourselves with how the input is given.

In the recommendation systems context, entries correspond to user-product interactions, so
we might expect that the input matrix A ∈ Rm×n is given as an unordered stream of entries
(i, j, Aij). However, if the entries are given in such an unprocessed format, then clearly linear
time is required even to parse the input into a usable form. Even when the input is relatively
structured (for example, if we are given the known entries of T sorted by row and column),

9

there is no hope to sample the low-rank approximation of a generic matrix in sublinear time
because of the time needed to locate a nonzero entry.

To avoid these issues, we will instead consider our input matrix stored in a low-overhead data
structure. We define it first for a vector, then for a matrix.

Lemma 3.1. There exists a data structure storing a vector v ∈ Rn with w nonzero entries
in O(w log(n)) space, supporting the following operations:

• Reading and updating an entry of v in O(log n) time;

• Finding ‖v‖2 in O(1) time;

• Sampling from Dv in O(log n) time.

‖v‖2

v2
1 + v2

2 v2
3 + v2

4

v2
1 v2

2 v2
3 v2

4

sgn(v1) sgn(v2) sgn(v3) sgn(v4)

Figure 1: Binary search tree (BST) data structure for v ∈ R4. The leaf nodes store vi via its
weight v2

i and sign sgn(vi), and the weight of an interior node is just the sum of the weights
of its children. To update an entry, update all of the nodes above the corresponding leaf.
To sample from Dv, start from the top of the tree and randomly recurse on a child with
probability proportional to its weight. To take advantage of sparsity, prune the tree to only
nonzero nodes.

Proposition 3.2. Consider a matrix A ∈ Rm×n. Let Ã ∈ Rm be a vector whose ith entry is
‖Ai‖. There exists a data structure storing a matrix A ∈ Rm×n with w nonzero entries in
O(w logmn) space, supporting the following operations:

• Reading and updating an entry of A in O(logmn) time;

• Finding Ãi in O(logm) time;

• Finding ‖A‖2
F in O(1) time;

• Sampling from DÃ and DAi in O(logmn) time.

This can be done by having a copy of the data structure specified by Lemma 3.1 for each
row of A and Ã (which we can think of as the roots of the BSTs for A’s rows). This has
all of the desired properties, and in fact, is the data structure Kerenidis and Prakash use

10

to prepare arbitrary quantum states (Theorem A.1 in [KP17b]). Thus, our algorithm can
operate on the same input, although any data structure supporting the operations detailed
in Proposition 3.2 will also suffice.

This data structure and its operations are not as ad hoc as they might appear. The operations
listed above appear in other work as an effective way to endow a matrix with `2-norm sampling
assumptions (see [DKR02] and [FKV04]).

4 Main Algorithm
Our goal is to prove Theorem 1:

Theorem (1). There is a classical algorithm that, given a matrix A with query and sampling
assumptions as described in Proposition 3.2, along with a row i ∈ [m], threshold σ, η ∈ (0, 1],
and sufficiently small ε > 0, has an output distribution ε-close in total variation distance
to DDi where D ∈ Rm×n satisfies ‖D − Aσ,η‖F ≤ ε‖A‖F for some Aσ,η, in query and time
complexity

O

(
poly

(‖A‖F
σ

,
1

ε
,

1

η
,
‖Ai‖
‖Di‖

))
.

We present the algorithm (Algorithm 3) and analysis nonlinearly. First, we give two algorithms
that use `2-norm sampling access to their input vectors to perform basic linear algebra. Second,
we present ModFKV, a sampling algorithm to find the description of a low-rank matrix
approximation. Third, we use the tools we develop to get from this description to the desired
sample.

4.1 Vector Sampling

Recall how we defined sampling from a vector.

Definition. For a vector x ∈ Rn, we denote by Dx the distribution over [n] with density
function Dx(i) = x2

i /‖x‖2. We call a sample from Dx a sample from x.

We will need that closeness of vectors in `2-norm implies closeness of their respective distri-
butions in TV distance:

Lemma 4.1. For x, y ∈ Rn satisfying ‖x− y‖ ≤ ε, the corresponding distributions Dx, Dy

satisfy ‖Dx −Dy‖TV ≤ 2ε/‖x‖.

Proof. Let x̂ and ŷ be the normalized vectors x/‖x‖ and y/‖y‖.

‖Dx −Dy‖TV =
1

2

n∑
i=1

∣∣x̂2
i − ŷ2

i

∣∣ =
1

2

〈
|x̂− ŷ|, |x̂+ ŷ|

〉
≤ 1

2
‖x̂− ŷ‖‖x̂+ ŷ‖

≤ ‖x̂− ŷ‖ =
1

‖x‖

∥∥∥x− y − (‖x‖ − ‖y‖)ŷ
∥∥∥ ≤ 1

‖x‖

(
‖x− y‖+

∣∣‖x‖ − ‖y‖∣∣) ≤ 2ε

‖x‖
The first inequality follows from Cauchy-Schwarz, and the rest follow from triangle inequality.

11

Now, we give two subroutines that can be performed, assuming some vector sampling access.
First, we show that we can estimate the inner product of two vectors well.

Proposition 4.2. Given query access to x, y ∈ Rn, sample access to Dx, and knowledge of
‖x‖, 〈x, y〉 can be estimated to additive error ‖x‖‖y‖ε with at least 1 − δ probability using
O(1

ε2
log 1

δ
) queries and samples (and the same time complexity).

Proof. Perform samples in the following way: for each i, let the random variable Z be yi/xi
with probability x2

i /‖x‖2 (so we sample i from Dx). We then have:

E[Z] =
∑ yi

xi

x2
i

‖x‖2
=

∑
xiyi
‖x‖2

=
〈x, y〉
‖x‖2

,

Var[Z] ≤
∑(

yi
xi

)2
x2
i

‖x‖2
=

∑
y2
i

‖x‖2
=
‖y‖2

‖x‖2
.

Since we know ‖x‖, we can normalize by it to get a random variable whose mean is 〈x, y〉
and whose standard deviation is σ = ‖x‖‖y‖.

The rest follows from standard techniques: we take the median of 6 log 1
δ
copies of the mean

of 9
2ε2

copies of Z to get within εσ = ε‖x‖‖y‖ of 〈x, y〉 with probability at least 1 − δ in
O(1

ε2
log 1

δ
) accesses. All of the techniques used here take linear time.

Second, we show that, given sample access to some vectors, we can sample from a linear
combination of them.

Proposition 4.3. Suppose we are given query and sample access to the columns of V ∈ Rn×k,
along with their norms. Then given w ∈ Rk (as input), we can output a sample from V w in
O(k2C(V,w)) expected query complexity and expected time complexity, where

C(V,w) :=

∑k
i=1 ‖wiV (i)‖2

‖V w‖2
.

C measures the amount of cancellation for V w. For example, when the columns of V are
orthogonal, C = 1 for all nonzero w, since there is no cancellation. Conversely, when the
columns of V are linearly dependent, there is a choice of nonzero w such that ‖V w‖ = 0,
maximizing cancellation. In this context, C is undefined, which matches with sampling from
the zero vector also being undefined. By perturbing w we can find vectors requiring arbitrarily
large values of C.

Proof. We use rejection sampling: see Algorithm 1. Given sampling access to a distribution
P , rejection sampling allows for sampling from a “close” distribution Q, provided we can
compute some information about their corresponding distributions.

If ri ≤ 1 for all i, then the above procedure is well-defined and outputs a sample from Q in
M iterations in expectation.3

3The number of iterations is a geometric random variable, so this can be converted into a bound

12

Algorithm 1: Rejection Sampling
Pull a sample s from P ;
Compute rs = Q(s)

MP (s)
for some constant M ;

Output s with probability rs and restart otherwise;

In our case, P is the distribution formed by first sampling a row j with probability proportional
to ‖wjV (j)‖2 and then sampling from DV (j) ; Q is the target DV w. We choose

ri =
(V w)2

i

k
∑k

j=1(Vijwj)2
,

which we can compute in k queries4. This expression is written in a way the algorithm can
directly compute, but it can be put in the form of the rejection sampling procedures stated
above:

M =
Q(i)k

∑k
j=1(Vijwj)

2

P (i)(V w)2
i

=
k(
∑k

j=1 ‖wjV (j)‖2)

‖V w‖2
= kC(V,w).

M is independent of i, so it is a constant as desired. To prove correctness, all we need to
show is that our choice of ri is always at most 1. This follows from Cauchy-Schwarz:

ri =
(V w)2

i

k
∑k

j=1(Vijwj)2
=

(
∑k

j=1 Vijwj)
2

k
∑k

j=1(Vijwj)2
≤ 1.

Each iteration of the procedure takes O(k) queries, leading to a query complexity of
O(k2C(V,w)). Time complexity is linear in the number of queries.

4.2 Finding a Low-Rank Approximation

Now, we describe the low-rank approximation algorithm that we use at the start of the main
algorithm.

Theorem 4.4. Given a matrix A ∈ Rm×n supporting the sample and query operations
described in Proposition 3.2, along with parameters σ ∈ (0, ‖A‖F], ε ∈ (0,

√
σ/‖A‖F/4], η ∈

[ε2, 1], there is an algorithm that outputs a succinct description (of the form described below)
of some D satisfying ‖D − Aσ,η‖F ≤ ε‖A‖F with probability at least 1− δ and

O

(
poly

(‖A‖2
F

σ2
,
1

ε
,

1

η
, log

1

δ

))
query and time complexity.

guaranteeing a sample in M log 1/δ iterations with failure probability 1− δ, provided the algorithm knows
M . All expected complexity bounds we deal with can be converted to high probability bounds in the manner
described.

4Notice that we can compute ri without directly computing the probabilities Q(i). This helps us because
computing Q(i) involves computing ‖V w‖, which is nontrivial.

13

To prove this theorem, we modify the algorithm given by Frieze, Kannan, and Vemapa
[FKV04] and show that it satisfies the desired properties. The modifications are not crucial
to the correctness of the full algorithm: without them, we simply get a different type of
low-rank approximation bound. They come into play in Section 5 when proving guarantees
about the algorithm as a recommendation system.

Algorithm 2: ModFKV
Input: Matrix A ∈ Rm×n supporting operations in Proposition 3.2, threshold σ,

error parameters ε, η
Output: A description of an output matrix D
Set K = ‖A‖2

F/σ
2 and ε̄ = ηε2;

Set q = Θ
(
K4

ε̄2

)
;

Sample rows i1, . . . , iq from DÃ;
Let F denote the distribution given by choosing an s ∼u [q], and choosing a column
from DAis

;
Sample columns j1, . . . , jq from F;
Let W be the resulting q × q row-and-column-normalized submatrix
Wrc :=

Airjc

q
√

DÃ(ir)F(jc)
;

Compute the left singular vectors of W u(1), . . . , u(k) that correspond to singular
values σ(1), . . . , σ(k) larger than σ;
Output i1, . . . , iq, Û ∈ Rq×k the matrix whose ith column is u(i), and Σ̂ ∈ Rk×k the
diagonal matrix whose ith entry on the diagonal is σ(i). This is the description of
the output matrix D;

The algorithm, ModFKV, is given in Algorithm 2. It subsamples the input matrix, computes
the subsample’s large singular vectors and values, and outputs them with the promise that
they give a good description of the singular vectors of the full matrix. We present the
algorithm as the original work does, aiming for a constant failure probability. This can
be amplified to δ failure probability by increasing q by a factor of O(log 1

δ
) (the proof is

slightly nontrivial, using a martingale inequality; see Theorem 1 of [DKM06]). More of the
underpinnings are explained in Frieze, Kannan, and Vempala’s paper [FKV04].

We get the output matrix D from its description in the following way. Let S be the submatrix
given by restricting the rows to i1, . . . , iq and renormalizing row i by 1/

√
qDÃ(i) (so they all

have the same norm). Then V̂ := ST ÛΣ̂−1 ∈ Rn×k is our approximation to the large right
singular vectors of A; this makes sense if we think of S, Û , and Σ̂ as our subsampled low-rank
approximations of A, U , and Σ (from A’s SVD). Appropriately, D is the “projection” of A
onto the span of V̂ :

D := AV̂ V̂ T = AST ÛΣ̂−2ÛTS.

The query complexity of ModFKV is dominated by querying all of the entries of W , which
is O(q2), and the time complexity is dominated by computing W ’s SVD, which is O(q3). We
can convert this to the input parameters using that q = O(‖A‖

8

σ8ε4η2).

14

ModFKV differs from FKV only in that σ is taken as input instead of k, and is used as the
threshold for the singular vectors. As a result of this change, K replaces k in the subsampling
steps, and σ replaces k in the SVD step. Notice that the number of singular vectors taken
(denoted k) is at most K, so in effect, we are running FKV and just throwing away some of
the smaller singular vectors. Because we ignore small singular values that FKV had to work
to find, we can sample a smaller submatrix, speeding up our algorithm while still achieving
an analogous low-rank approximation bound:

Lemma 4.5. The following bounds hold for the output matrix D (here, k is the width of V̂ ,
and thus a bound on rankD):

‖A−D‖2
F ≤ ‖A− Ak‖2

F + ε‖A‖2
F (♦)

and `((1 + ε̄
√
K)σ) ≤ k ≤ `((1− ε̄

√
K)σ) (♥)

The following property will be needed to prove correctness of ModFKV and Algorithm 3.
The estimated singular vectors in V̂ behave like singular vectors, in that they are close to
orthonormal.

Proposition 4.6. The output vectors V̂ satisfy

‖V̂ − Λ‖F = O(ε̄)

for Λ a set of orthonormal vectors with the same image as V̂ .

As an easy corollary, V̂ V̂ T is O(ε̄)-close in Frobenius norm to the projector ΛΛT , since
V̂ V̂ T = (Λ + E)(Λ + E)T and ‖ΛET‖F = ‖EΛT‖F = ‖E‖F . The proofs of the above lemma
and proposition delve into FKV’s analysis, so we defer them to the appendix.

The guarantee on our output matrix D is (♦), but for our recommendation system, we want
that D is close to some Aσ,η. Now, we present the core theorem showing that the former kind
of error implies the latter.

Theorem 4.7. If Π a k-dimensional orthogonal projector satisfies

‖Ak‖2
F ≤ ‖AΠ‖2

F + εσ2
k,

then
‖AΠ− Aσk,η‖2

F . εσ2
k/η,

where ε ≤ η ≤ 1.5

The proof is somewhat involved, so we defer it to the appendix. To our knowledge, this is a
novel translation of a typical FKV-type bound as in (♦) to a new, useful type of bound, so
we believe this theorem may find use elsewhere. Now, we use this theorem to show that D is
close to some Aσ,η.

Corollary 4.8. ‖D − Aσ,η‖F . ε‖A‖F/
√
η.

5An analogous proof gives the more general bound ‖Π−Πσ,η‖2F . ε/η.

15

Proof. Throughout the course of this proof, we simplify and apply theorems based on the
restrictions on the parameters in Theorem 4.4.

First, notice that the bound (♦) can be translated to the type of bound in the premise of
Theorem 4.7, using Proposition 4.6.

‖A−D‖2
F ≤ ‖A− Ak‖2

F + ε̄‖A‖2
F

‖A− A(Π + E)‖2
F ≤ ‖A− Ak‖2

F + ε̄‖A‖2
F

(‖A− AΠ‖F − ε̄‖A‖F)2 . ‖A− Ak‖2
F + ε̄‖A‖2

F

‖A− AΠ‖2
F . ‖A− Ak‖2

F + ε̄‖A‖2
F

‖A‖2 − ‖AΠ‖2
F . ‖A‖2 − ‖Ak‖2

F + ε̄‖A‖2
F

‖Ak‖2
F . ‖AΠ‖2

F + (ε̄‖A‖2
F/σ

2
k)σ

2
k

The result of the theorem is that∥∥∥AΠ− A
σk,

η−ε̄
√
K

1−ε̄
√
K

∥∥∥2

F
.

(ε̄‖A‖2
F/σ

2
k)σ

2
k

η−ε̄
√
K

1−ε̄
√
K

.
ε̄

η
‖A‖2

F .

The bound on k (♥) implies that any A
σk,

η−ε̄
√
K

1−ε̄
√
K

is also an Aσ,η (the error of the former is

contained in the latter), so we can conclude

‖D − Aσ,η‖F = ‖A(Π + E)− Aσ,η‖F . ‖AΠ− Aσ,η‖F + ε̄‖A‖F .

√
ε̄

η
‖A‖F .

ε̄ was chosen so that the final term is bounded by ε‖A‖F .

This completes the proof of Theorem 4.4. To summarize, after this algorithm we are left
with the description of our low-rank approximation D = AST ÛΣ−2ÛTS, which consists of
the following:

• Û ∈ Rq×k, explicit orthonormal vectors;

• Σ̂ ∈ Rk×k, an explicit diagonal matrix whose diagonal entries are in (σ, ‖A‖F];

• S ∈ Rq×n, which is not output explicitly, but whose rows are rows of A normalized to
equal norm ‖A‖F/

√
q (so we can sample from S’s rows); and

• V̂ ∈ Rn×k, a close-to-orthonormal set of vectors implicitly given as ST ÛΣ̂−1.

This description will suffice to generate samples from rows of D.

4.3 Proof of Theorem 1

Theorem 1. There is a classical algorithm that, given a matrix A with query and sampling
assumptions as described in Proposition 3.2, along with a row i ∈ [m], threshold σ, η ∈ (0, 1],
and sufficiently small ε > 0, has an output distribution ε-close in total variation distance

16

to DDi where D ∈ Rm×n satisfies ‖D − Aσ,η‖F ≤ ε‖A‖F for some Aσ,η, in query and time
complexity

O

(
poly

(‖A‖F
σ

,
1

ε
,

1

η
,
‖Ai‖
‖Di‖

))
.

Proof. We will give an algorithm (Algorithm 3) where the error in the output distribution is
O(ε‖Ai‖/‖Di‖)-close to DDi , and there is no dependence on ‖Ai‖/‖Di‖ in the runtime, and
discuss later how to modify the algorithm to get the result in the theorem.

Algorithm 3: Low-rank approximation sampling
Input: Matrix A ∈ Rm×n supporting the operations in 3.2, user i ∈ [m], threshold σ,

ε > 0, η ∈ (0, 1]
Output: Sample s ∈ [n]
Run ModFKV (2) with parameters (σ, ε, η) to get a description of
D = AV̂ V̂ T = AST ÛΣ̂−2ÛTS;
Estimate AiST entrywise by using Proposition 4.2 with parameter ε√

K
to estimate

〈Ai, STt 〉 for all t ∈ [q]. Let est be the resulting 1× q vector of estimates;
Compute estÛΣ̂−2ÛT with matrix-vector multiplication;
Sample s from (estÛΣ̂−2ÛT)S using Proposition 4.3;
Output s;

Correctness: By Theorem 4.4, for sufficiently small6 ε, the output matrix D satisfies

‖D − Aσ,η‖F ≤ ε‖A‖F .

So, all we need is to approximately sample from the ith row of D, given its description.

Recall that the rows of STt have norm ‖A‖F/
√
q. Thus, the guarantee from Proposition 4.2

states that each estimate of an entry has error at most ε√
Kq
‖Ai‖‖A‖F , meaning that ‖est−

AiS
T‖ ≤ ε√

K
‖Ai‖‖A‖F . Further, using that V̂ is close to orthonormal (Proposition 4.6) and

‖ÛΣ−1‖ ≤ 1
σ
, we have that the vector we sample from is close to Di:

‖(est− AiST)ÛΣ−1V̂ T‖ ≤ (1 +O(ε4))‖estÛΣ−1 − AiST ÛΣ−1‖

.
1

σ
‖est− AiST‖ ≤

ε

σ
√
K
‖Ai‖‖A‖F = ε‖Ai‖

Finally, by Lemma 4.1, we get the desired bound: that the distance from the output
distribution to DDi is O(ε‖Ai‖/‖Di‖).

Runtime: Applying Proposition 4.2 q times takes O(Kq
ε2

log q
δ
) time; the naive matrix-vector

6This is not a strong restriction: ε . min{√η,
√
σ/‖A‖F } works. This makes sense: for ε any larger, the

error can encompass addition or omission of full singular vectors.

17

multiplication takes O(Kq) time; and applying Proposition 4.3 takes time O(Kq2), since

C(ST , ÛΣ̂−2ÛT estT) =

∑q
j=1 ‖(estÛΣ̂−2ÛT)jSj‖2

‖estÛΣ̂−2ÛTS‖2

≤ ‖estÛΣ̂−2ÛT‖2‖S‖2
F

‖estÛΣ̂−2ÛTS‖2

≤ ‖Σ̂−1ÛT‖2‖S‖2
F

minx:‖x‖=1 ‖xΣ−1ÛTS‖2

≤ ‖A‖2
F

σ2(1− ε4)2
= O(K)

using Cauchy-Schwarz, Proposition 4.6, and the basic facts about D’s description7.

The query complexity is dominated by the use of Proposition 4.3, resulting in

Õ

(
‖A‖2

σ2

(‖A‖8

σ8ε4η2

)2
)

= Õ

(
‖A‖18

σ18ε8η4

)
,

where the Õ hides the log factors incurred by amplifying the failure probability to δ. The
time complexity is dominated by the O(q3) SVD computation in ModFKV in O(q3) time,
resulting in

Õ

(
‖A‖24

σ24ε12η6

)
.

Finally, we briefly discuss variants of this algorithm.

• To get the promised bound in the theorem statement, we can repeatedly estimate AiST
(creating est1, est2, etc.) with exponentially decaying ε, eventually reducing the error of
the first step to O(ε‖AiST‖). This procedure decreases the total variation error to O(ε)
and increases the runtime by Õ(‖Ai‖2/‖Di‖2), as desired. Further, we can ignore δ by
choosing δ = ε and outputting an arbitrary s ∈ [n] upon failure. This only changes the
output distribution by ε in total variation distance and increase runtime by polylog 1

ε
.

• While the input is a row i ∈ [m] (and thus supports query and sampling access), it
need not be. More generally, given query and sample access to orthonormal vectors
V ∈ Rn×k, and query access to x ∈ R, one can approximately sample from a distribution
O(ε‖x‖/‖V V Tx‖)-close to DV V T x, the projection of x onto the span of V , in O(k

2

ε2
log k

δ
)

time.

• While the SVD dominates the time complexity of Algorithm 3, the same description
output by ModFKV can be used for multiple recommendations, amortizing the cost
down to the query complexity (since the rest of the algorithm is linear in the number
of queries).

7We have just proved that, given D’s description, we can sample from any vector of the form V̂ x in
O(Kq2) time.

18

5 Application to Recommendations
We now go through the relevant assumptions necessary to apply Theorem 1 to the recom-
mendation systems context. As mentioned above, these are the same assumptions as those in
[KP17b]: an exposition of these assumptions is also given there. Then, we prove Theorem 2,
which shows that Algorithm 3 gives the same guarantees on recommendations as the quantum
algorithm.

5.1 Preference Matrix

Recall that given m users and n products, the preference matrix T ∈ Rm×n contains the
complete information on user-product preferences. For ease of exposition, we will assume the
input data is binary:

Definition. If user i likes product j, then Tij = 1. If not, Tij = 0.

We can form such a preference matrix from generic data about recommendations, simply
by condensing information down to the binary question of whether a product is a good
recommendation or not.8

We are typically given only a small subsample of entries of T (which we learn when a user
purchases or otherwise interacts with a product). Then, finding recommendations for user i
is equivalent to finding large entries of the ith row of T given such a subsample.

Obviously, without any restrictions on what T looks like, this problem is ill-posed. We make
this problem tractable through the standard assumption that T is close to a matrix of small
rank k.

T is close to a low-rank matrix. That is, ‖T − Tk‖F ≤ ρ‖T‖F for some k and ρ� 1. k
should be thought of as constant (at worst, polylog(m,n)).

This standard assumption comes from the intuition that users decide their preference for
products based on a small number of factors (e.g. price, quality, and popularity) [DKR02;
Aza+01; KBV09].

The low-rank assumption gives T robust structure; that is, only given a small number of
entries, T can be reconstructed fairly well.

Many users have approximately the same number of preferences. The low-rank
assumption is enough to get some bound on quality of recommendations (see Lemma 3.2 in
[KP17b]). However, this bound considers “matrix-wide” recommendations. We would like to
give a bound on the probability that an output is a good recommendation for a particular
user.

It is not enough to assume that ‖T − Tk‖F ≤ ρ‖T‖F . In a worst-case scenario, a few users
make up the vast majority of the recommendations (say, a few users like every product, and

8This algorithm makes no distinction between binary matrices and matrices with values in the interval
[0, 1], and the corresponding analysis is straightforward upon defining a metric for success when data is
nonbinary.

19

the rest of the users are only happy with four products). Then, even if we reconstruct Tk
exactly, the resulting error, ρ‖T‖F , can exceed the mass of recommendations in the non-heavy
users, drowning out any possible information about the vast majority of users that could be
gained from the low-rank structure.

In addition to being pathological for user-specific bounds, this scenario is orthogonal to our
primary concerns: we aren’t interested in providing recommendations to users who desire
very few products or who desire nearly all products, since doing so is intractable and trivial,
respectively. To avoid considering such a pathological case, we restrict our attention to the
“typical user”:

Definition. For T ∈ Rm×n, call S ⊂ [m] a subset of users (γ, ζ)-typical (where γ > 0 and
ζ ∈ [0, 1)) if |S| ≥ (1− ζ)m and, for all i ∈ S,

1

1 + γ

‖T‖2
F

m
≤ ‖Ti‖2 ≤ (1 + γ)

‖T‖2
F

m
.

γ and ζ can be chosen as desired to broaden or restrict our idea of typical. We can enforce
good values of γ and ζ simply by requiring that users have the same number of good
recommendations; this can be done by defining a good recommendation to be the top 100
products for a user, regardless of utility to the user.

Given this definition, we can give a guarantee on recommendations for typical users that
come from an approximate reconstruction of T .

Theorem 5.1. For T ∈ Rm×n, S a (γ, ζ)-typical set of users, and a matrix T̃ satisfying
‖T − T̃‖F ≤ ε‖T‖F ,

E
i∼uS

[
‖DTi −DT̃i

‖TV
]
≤ 2ε

√
1 + γ

1− ζ
.

Further, for a chosen parameter ψ ∈ (0, 1 − ζ) there exists some S ′ ⊂ S of size at least
(1− ψ − ζ)m such that, for i ∈ S ′,

‖DTi −DT̃i
‖TV ≤ 2ε

√
1 + γ

ψ
.

The first bound is an average-case bound on typical users and the second is a strengthening
of the resulting Markov bound. Both bound total variation distance from DTi , which we
deem a good goal distribution to sample from for recommendations9. We defer the proof of
this theorem to the appendix.

When we don’t aim for a particular distribution and only want to bound the probability of
giving a bad recommendation, we can prove a stronger average-case bound on the failure
probability.

9When T is not binary, this means that if product X is λ times more preferable than product Y , then
it will be chosen as a recommendation λ2 times more often. By changing how we map preference data to
actual values in T , this ratio can be increased. That way, we have a better chance of selecting the best
recommendations, which approaches like matrix completion can achieve. However, these transformations
must also preserve that T is close-to-low-rank.

20

Theorem 5.2 (Theorem 3.3 of [KP17b]). For T ∈ Rm×n a binary preference matrix, S
a (γ, ζ)-typical set of users, and a matrix T̃ satisfying ‖T − T̃‖F ≤ ε‖T‖F , for a chosen
parameter ψ ∈ (0, 1− ζ) there exists some S ′ ⊂ S of size at least (1− ψ − ζ)m such that

Pr
i∼uS′
j∼T̃i

[(i, j) is bad] ≤ ε2(1 + ε)2

(1− ε)2
(
1/
√

1 + γ − ε/
√
ψ
)2

(1− ψ − ζ)
.

For intuition, if ε is sufficiently small compared to the other parameters, this bound becomes
O(ε2(1 + γ)/(1− ψ − ζ)). The total variation bound from Theorem 5.1 is not strong enough
to prove this: the failure probability we would get is 2ε

√
1 + γ/(1− ψ − ζ). Accounting for

T being binary gives the extra ε factor.

We know k. More accurately, a rough upper bound for k will suffice. Such an upper bound
can be guessed and tuned from data.

In summary, we have reduced the problem of “find a good recommendation for a user” to
“given some entries from a close-to-low-rank matrix T , sample from T̃i for some T̃ satisfying
‖T − T̃‖F ≤ ε‖T‖F for small ε.”

5.2 Matrix Sampling

We have stated our assumptions on the full preference matrix T , but we also need assumptions
on the information we are given about T . Even though we will assume we have a constant
fraction of data about T , this does not suffice for good recommendations. For example, if we
are given the product-preference data for only half of our products, we have no hope to give
good recommendations on the other half.

We will use a model for subsampling for matrix reconstruction given by Achlioptas and
McSherry [AM07]. In this model, the entries we are given are chosen uniformly over all entries.
This model has seen use previously in the theoretical recommendation systems literature
[DKR02]. Specifically, we have the following:

Definition. For a matrix T ∈ Rm×n, let T̂ be a random matrix i.i.d. on its entries, where

T̂ij =

{
Tij
p

with probability p
0 with probability 1− p

. (♣)

Notice that E[T̂] = T . When the entries of T are bounded, T̂ is T perturbed by a random
matrix E whose entries are independent and bounded random variables. Standard concen-
tration inequalities imply that such random matrices don’t have large singular values (the
largest singular value is, say, O(

√
n/p)). Thus, for some vector v, if ‖Tv‖/‖v‖ is large (say,

O(
√
mn/k)), then ‖(T +E)v‖/‖v‖ will still be large, despite E having large Frobenius norm.

The above intuition suggests that when T has large singular values, its low-rank approxi-
mation Tk is not perturbed much by E, and thus, low-rank approximations of T̂ are good
reconstructions of T . A series of theorems by Achlioptas and McSherry [AM07] and Kerenidis

21

and Prakash [KP17b] formalizes this intuition. For brevity, we only describe a simplified form
of the last theorem in this series, which is the version they (and we) use for analysis. It states
that, under appropriate circumstances, it’s enough to compute T̂σ,η for appropriate σ and η.

Theorem 5.3 (4.3 of [KP17b]). Let T ∈ Rm×n and let T̂ be the random matrix defined in

(♣), with p ≥ 3
√
nk

29/2ε3‖T‖F
and maxij |Tij| = 1. Let σ = 5

6

√
ε2p
8k
‖T̂‖F , let η = 1/5, and assume

that ‖T‖F ≥ 9√
2ε3

√
nk. Then with probability at least 1− exp(−19(log n)4),

‖T − T̂σ,η‖F ≤ 3‖T − Tk‖F + 3ε‖T‖F .

With this theorem, we have a formal goal for a recommendation systems algorithm. We are
given some subsample A = T̂ of the preference matrix, along with knowledge of the size
of the subsample p, the rank of the preference matrix k, and an error parameter ε. Given
that the input satisfies the premises for Theorem 5.3, for some user i, we can provide a
recommendation by sampling from (Aσ,η)i with σ, η specified as described. Using the result
of this theorem, Aσ,η is close to T , and thus we can use the results of Section 5.1 to conclude
that such a sample is likely to be a good recommendation for typical users.

Now, all we need is an algorithm that can sample from (Aσ,η)i. Theorem 1 shows that
Algorithm 3 is exactly what we need!

5.3 Proof of Theorem 2

Theorem 2. Suppose we are given T̂ in the data structure in Proposition 3.2, where T̂ is
a subsample of T where p is constant and T satisfies ‖T − Tk‖F ≤ ρ‖T‖F for a known k.
Further suppose that the conditions of Theorem 5.3 hold, the bound in the conclusion holds
(which is true with probability ≥ 1− exp(−19(log n)4)), and we have S a (γ, ζ)-typical set of
users with 1− ζ and γ constant. Then, for sufficiently small ε, sufficiently small ρ (at most
a function of ζ and γ), and a constant fraction of users S̄ ⊂ S, for all i ∈ S̄ we can output
samples from a distribution Oi with probability 1− (mn)−Θ(1) satisfying

‖Oi −DTi‖TV . ε+ ρ

in O(poly(k, 1/ε) polylog(mn)) time.

Kerenidis and Prakash’s version of this analysis treats γ and ζ with slightly more care, but
does eventually assert that these are constants. Notice that we must assume p is constant.

Proof. We just run Algorithm 3 with parameters as described in Proposition 5.3: σ =
5
6

√
ε2p
8k
‖A‖F , ε, η = 1/5. Provided ε .

√
p/k, the result from Theorem 1 holds. We can

perform the algorithm because A is in the data structure given by Proposition 3.2 (inflating
the runtime by a factor of log(mn)).

Correctness: Using Theorem 5.3 and Theorem 1,

‖T −D‖F ≤ ‖T − Aσ,η‖F + ‖Aσ,η −D‖F
≤ 3‖T − Tk‖F + 3ε‖T‖F + ε‖A‖F .

22

Applying a Chernoff bound to ‖A‖2
F (a sum of independent random variables), we get

that with high probability 1 − e−‖T‖
2
F p/3, ‖A‖F ≤

√
2/p‖T‖F . Since p is constant, and

‖T − Tk‖F ≤ ρ‖T‖F , we get that ‖T −D‖F = O(ρ+ ε)‖T‖F .

Then, we can apply Theorem 5.1 to get that, for S a (γ, ζ)-typical set of users of T , and Oi

the output distribution for user i, we can find some S ′ ⊂ S of size at least (1− ζ − ψ)m such
that, for all i ∈ S ′,

‖Oi −DTi‖TV ≤ ‖Oi −DDi‖TV + ‖DDi −DTi‖TV . ε+ (ε+ ρ)

√
1 + γ

ψ
. ε+ ρ,

which is the same bound that Kerenidis and Prakash achieve.

We can also get the same bound that they get when applying Theorem 5.2: although our
total variation error is ε, we can still achieve the same desired O(ε2) failure probability as in
the theorem. To see this, notice that in this model, Algorithm 3 samples from a vector α
such that ‖α− Ti‖ ≤ ε. Instead of using Lemma 4.1, because Ti is binary, we can observe
that the probability that an `2-norm sample from α is a bad recommendation is not ε, but
O(ε2). From there, everything else follows similarly.

In summary, the classical algorithm has two forms of error that the quantum algorithm does
not. However, the error in estimating the low-rank approximation folds into the error between
T and Aσ,η, and the error in total variation distance folds into the error from sampling from
an inexact reconstruction of T . Thus, we can achieve the same bounds.

Runtime: Our algorithm runs in time and query complexity

O(poly(k, 1/ε, ‖Ai‖/‖Di‖) polylog(mn, 1/δ)),

which is the same runtime as Kerenidis and Prakash’s algorithm up to polynomial slowdown.

To achieve the stated runtime, it suffices to show that ‖Ai‖/‖Di‖ is constant for a constant
fraction of users in S. We sketch the proof here; the details are in Kerenidis and Prakash’s
proof [KP17b]. We know that ‖T −D‖F ≤ O(ρ+ ε)‖T‖F . Through counting arguments we
can show that, for a (1− ψ′)-fraction of typical users S ′′ ⊂ S,

E
i∼uS′′

[
‖Ai‖2

‖(Aσ,η)i‖2

]
.

(1 + ρ+ ε)2

(1− ψ − ζ)
(

1√
1+γ
− ρ+ε√

ψ

)2 .

For ρ sufficiently small, this is a constant, and so by Markov’s inequality a constant fraction
S ′′′ of S ′′ has ‖Ai‖/‖Di‖ constant. We choose S̄ to be the intersection of S ′′′ with S ′.

Acknowledgments
Thanks to Scott Aaronson for introducing me to this problem, advising me during the research
process, and rooting for me every step of the way. His mentorship and help were integral
to this work as well as to my growth as a CS researcher, and for this I am deeply grateful.
Thanks also to Daniel Liang for providing frequent, useful discussions and for reading through

23

a draft of this document. Quite a few of the insights in this document were generated during
discussions with him.

Thanks to Patrick Rall for the continuing help throughout the research process and the
particularly incisive editing feedback. Thanks to everybody who attended my informal
presentations and gave me helpful insight at Simons, including András Gilyén, Iordanis
Kerenidis, Anupam Prakash, Mario Szegedy, and Ronald de Wolf. Thanks to Fred Zhang for
pointing out a paper with relevant ideas for future work. Thanks to Sujit Rao and anybody
else that I had enlightening conversations with over the course of the project. Thanks to
Prabhat Nagarajan for the continuing support.

References
[Aar15] Scott Aaronson. “Read the fine print”. In: Nature Physics 11.4 (2015), p. 291.
[AM07] Dimitris Achlioptas and Frank McSherry. “Fast computation of low-rank matrix

approximations”. In: Journal of the ACM (JACM) 54.2 (2007), p. 9.
[Awe+05] Baruch Awerbuch et al. “Improved Recommendation Systems”. In: Symposium

on Discrete Algorithms. 2005.
[Aza+01] Yossi Azar et al. “Spectral analysis of data”. In: Symposium on Theory of

Computing. ACM. 2001.
[BK07] Robert M Bell and Yehuda Koren. “Lessons from the Netflix prize challenge”. In:

ACM SIGKDD Explorations Newsletter 9.2 (2007), pp. 75–79.
[Ben+97] Charles H Bennett et al. “Strengths and weaknesses of quantum computing”. In:

SIAM Journal on Computing 26.5 (1997), pp. 1510–1523.
[BL07] James Bennett and Stan Lanning. “The Netflix prize”. In: KDD Cup and Work-

shop. 2007.
[BJ99] Nader H. Bshouty and Jeffrey C. Jackson. “Learning DNF over the Uniform

Distribution Using a Quantum Example Oracle”. In: SIAM J. Comput. 28.3
(1999), pp. 1136–1153.

[DV06] Amit Deshpande and Santosh Vempala. “Adaptive sampling and fast low-rank
matrix approximation”. In: Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques. Springer, 2006, pp. 292–303.

[DKM06] P. Drineas, R. Kannan, and M. Mahoney. “Fast Monte Carlo Algorithms for Ma-
trices I: Approximating Matrix Multiplication”. In: SIAM Journal on Computing
36.1 (2006), pp. 132–157.

[DMM08] P. Drineas, M. Mahoney, and S. Muthukrishnan. “Relative-Error CUR Matrix
Decompositions”. In: SIAM Journal on Matrix Analysis and Applications 30.2
(2008), pp. 844–881.

[DKR02] Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. “Competitive
recommendation systems”. In: Symposium on Theory of Computing. ACM. 2002.

[FKV04] Alan Frieze, Ravi Kannan, and Santosh Vempala. “Fast Monte-Carlo algorithms
for finding low-rank approximations”. In: Journal of the ACM (JACM) 51.6
(2004), pp. 1025–1041.

24

[Gil+18] András Gilyén et al. “Quantum singular value transformation and beyond:
exponential improvements for quantum matrix arithmetics”. In: arXiv (2018).
arXiv: 1806.01838 [quant-ph].

[HHL09] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algorithm for
linear systems of equations”. In: Physical review letters 103.15 (2009), p. 150502.

[HKS11] Elad Hazan, Tomer Koren, and Nati Srebro. “Beating SGD: Learning SVMs in
Sublinear Time”. In: Neural Information Processing Systems. 2011.

[KV17] Ravindran Kannan and Santosh Vempala. “Randomized algorithms in numerical
linear algebra”. In: Acta Numerica 26 (2017), pp. 95–135.

[KP17a] Iordanis Kerenidis and Anupam Prakash. “Quantum gradient descent for linear
systems and least squares”. In: arXiv (2017). arXiv: 1704.04992 [quant-ph].

[KP17b] Iordanis Kerenidis and Anupam Prakash. “Quantum recommendation systems”.
In: Innovations in Theoretical Computer Science. 2017.

[KS08] Jon Kleinberg and Mark Sandler. “Using mixture models for collaborative
filtering”. In: Journal of Computer and System Sciences 74.1 (2008), pp. 49–69.

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix factorization techniques
for recommender systems”. In: Computer 42.8 (2009).

[Kum+01] Ravi Kumar et al. “Recommendation systems: a probabilistic analysis”. In:
Journal of Computer and System Sciences 63.1 (2001), pp. 42–61.

[LMR13] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum algorithms
for supervised and unsupervised machine learning”. In: arXiv (2013). arXiv:
1307.0411 [quant-ph].

[LMR14] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum principal
component analysis”. In: Nature Physics 10.9 (2014), p. 631.

[Pre18] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum
2 (2018), p. 79.

[Rec11] Benjamin Recht. “A simpler approach to matrix completion”. In: Journal of
Machine Learning Research 12 (2011), pp. 3413–3430.

[SWZ16] Zhao Song, David P. Woodruff, and Huan Zhang. “Sublinear Time Orthogonal
Tensor Decomposition”. In: Neural Information Processing Systems. 2016.

A Deferred Proofs
Proof of Lemma 4.5. We can describe ModFKV as FKV run on K with the filter threshold
γ raised from Θ(ε/K) to 1/K. The original work aims to output a low-rank approximation
similar in quality to AK , so it needs to know about singular values as low as ε/K. In our
case, we don’t need as strong of a bound, and can get away with ignoring these singular
vectors. To prove our bounds, we just discuss where our proof differs from the original work’s
proof (Theorem 1 of [FKV04]). First, they show that

∆(W T ;u(t), t ∈ [K]) ≥ ‖AK‖2
F −

ε

2
‖A‖2

F .

25

https://arxiv.org/abs/1806.01838
https://arxiv.org/abs/1704.04992
https://arxiv.org/abs/1307.0411

The proof of this holds when replacing K with any K ′ ≤ K. We choose to replace K with
the number of singular vectors taken by ModFKV, k. Then we have that

∆(W T ;u(t), t ∈ T) = ∆(W T ;u(t), t ∈ [k]) ≥ ‖Ak‖2
F −

ε

2
‖A‖2

F .

We can complete the proof now, using that [k] = T because our filter accepts the top k
singular vectors (though not the top K). Namely, we avoid the loss of γ‖W‖2

F that they
incur in this way. This gives the bound (♦).

Further, because we raise γ, we can correspondingly lower our number of samples. Their
analysis requires q (which they denote p) to be Ω(max{k4

ε2
, k

2

εγ2 ,
1

ε2γ2}) (for Lemma 3, Claim 1,
and Claim 2, respectively). So, for us we can pick q = Θ(k4/ε2).

As for bounding k, ModFKV can compute the first k singular values to within a cumulative
additive error of ε̄‖A‖F . This is stated below Theorem 2 in [FKV04]. Thus, ModFKV could
only conceivably take a singular vector v such that ‖Av‖ ≥ σ − ε̄‖A‖F = σ(1− ε̄‖A‖F/σ),
and analogously for the upper bound.

Proof of Proposition 4.6. We follow the proof of Claim 2 of [FKV04]. For i 6= j, we have as
follows: ∣∣v̂Ti v̂j∣∣ =

|uTi SSTuj|
‖W Tui‖‖W Tuj‖

≤ |u
T
i SS

Tuj|
σ2

≤ ‖S‖
2
F

σ2
√
q

=
ε̄

K∣∣1− v̂Ti v̂i∣∣ =
|uTi WW Tui| − |uTi SSTuj|
‖W Tui‖‖W Tuj‖

≤ ‖S‖
2
F

σ2
√
q

=
ε̄

K

Here, we use that ‖WW T−SST‖ ≤ ‖S‖2
F/
√
q (Lemma 2 [FKV04]) and {Wui} are orthogonal.

This means that V̂ T V̂ is O(ε̄/K)-close entry-wise to the identity. Looking at V̂ ’s singular
value decomposition into AΣBT (treating Σ as square), the entrywise bound implies that
‖Σ2−I‖F . ε̄, which in turn implies that ‖Σ−I‖F . ε̄. Λ := ABT is close to V̂ , orthonormal,
and in the same subspace as desired.

Proof of Theorem 4.7. We will prove a slightly stronger statement: it suffices to choose Aσ,η
such that Pσ,η is an orthogonal projector (which we will call Πσ,η). In fact, we could have
used this restricted version as our definition of Aσ,η if we wanted to. We use the notation
ΠE := Πσ,η − Πσ(1+η) to refer to the part of Πσ,η that can vary; it can be any orthogonal
projector on the span of the singular vectors with values in [σ(1− η), σ(1 + η)).

For simplicity we denote σk by σ and minm,n by N .

‖AΠ− Aσ,η‖2
F = ‖UΣV T (Π− Πσ,η)‖2

F

= ‖ΣV T (Π− Πσ,η)‖2
F

=
N∑
i=1

σ2
i ‖vTi Π− vTi Πσ,η‖2

26

That is, AΠ and Aσ,η are close when their corresponding projectors behave in the same way.
Let ai = vTi Π, and bi = vTi Πσ,η. Note that

bi =

vTi σi ≥ (1 + η)σ

vTi ΠE (1 + η)σ > σi ≥ (1− η)σ

0 (1− η)σ > σi

.

Using the first and third case, and the fact that orthogonal projectors Π satisfy ‖v − Πv‖2 =
‖v‖2 − ‖Πv‖2, the formula becomes

‖AΠ− Aσ,η‖2
F =

`(σ(1+η))∑
1

σ2
i (1− ‖ai‖2) +

`(σ(1−η))∑
`(σ(1+η))+1

σ2
i ‖ai − bi‖2 +

N∑
`(σ(1−η))+1

σ2
i (‖ai‖2).

♠ ♠ ♠

Now, we consider the assumption equation. We reformulate the assumption into the following
system of equations:

k∑
i=1

σ2
i ≤

N∑
i=1

σ2
i ‖ai‖2 + εσ2 σ2

i are nonincreasing

‖ai‖2 ∈ [0, 1]
∑
‖ai‖2 = k

The first line comes from the equation. The second line follows from Π being an orthogonal
projector on a k-dimensional subspace.

It turns out that this system of equations is enough to show that the ‖ai‖2 behave the way
we want them to. We defer the details to Lemma A.2; the results are as follows.

`(σk(1+η))∑
1

σ2
i (1− ‖ai‖2) ≤ ε

(
1 +

1

η

)
σ2
k

N∑
`(σk(1−η))+1

σ2
i ‖ai‖2 ≤ ε

(1

η
− 1
)
σ2
k

`(σk1+η))∑
1

(1− ‖ai‖2) ≤ ε

η

N∑
`(σk(1−η))+1

‖ai‖2 ≤ ε

η

Now, applying the top inequalities:

‖AΠ− Aσ,η‖2
F ≤

2εσ2

η
+

`(σ(1−η))∑
`(σ(1+η))+1

σ2
i ‖ai − bi‖2.

We just need to bound the last term in the above inequality now. Notice the following:

`(σ(1−η))∑
`(σ(1+η))+1

σ2
i ‖ai − bi‖2 ≤ σ2(1 + η)2‖UT (Π− ΠE)‖2

F ,

27

where U is the set of vectors v`(σ(1+η))+1 through v`(σ(1−η)).
♠ ♠ ♠

Notice that ΠE is the error component of the projection, and this error can be any projection
onto a subspace spanned by U . Thus, to bound the above we just need to pick an orthogonal
projector ΠE making the norm as small as possible. If UUTΠ were an orthogonal projection,
this would be easy:

‖UT (Π− UUTΠ)‖2
F = 0.

However, this is likely not the case. UUTΠ is close to an orthogonal projector, though,
through the following reasoning:

For ease of notation let P1 be the orthogonal projector onto the first `(σ(1 + η)) singular
vectors, P2 = UUT , and P3 be the orthogonal projector onto the the rest of the singular
vectors. We are concerned with P2Π.

Notice that P1 + P2 + P3 = I. Further, ‖(I − Π)P1‖2
F ≤ ε/η and ‖ΠP3‖2

F ≤ ε/η from
Lemma A.2. Then

P2Π = (I − P1 − P3)Π = Π− P1 + P1(I − Π)− P3Π

‖P2Π− (Π− P1)‖F = ‖P1(I − Π)− P3Π‖F ≤ 2
√
ε/η

So now it is sufficient to show that Π− P1 is close to a projector matrix. This follows from
Lemma A.1, since it satisfies the premise:

(Π− P1)2 − (Π− P1) = Π− ΠP1 − P1Π + P1 − Π + P1

= (I − Π)P1 + P1(I − Π)

‖(Π− P1)2 − (Π− P1)‖F ≤ 2
√
ε/η

Thus, UUTΠ is (2
√
ε/η + (2

√
ε/η + 16ε/η))-close to an orthogonal projector in Frobenius

norm.
♠ ♠ ♠

We can choose ΠE to be M , and plug this into the original equation. We use the assumptions
that ε/η < 1 and η < 1 to bound.

`(σ(1−η))∑
`(σ(1+η))+1

σ2
i ‖ai − bi‖2 ≤ σ2(1 + η)2‖UT (Π−M)‖2

F

≤ σ2(1 + η)2‖UT (Π− (UUTΠ + E))‖2
F

≤ σ2(1 + η)2‖UTE‖2
F

. σ2(1 + η)2ε/η

‖AΠ− Aσ,η‖2
F .

2εσ2

η
+ σ2(1 + η)2 ε

η
. εσ2/η

This concludes the proof. (The constant factor is 1602.)

28

Lemma A.1. If a Hermitian A satisfies ‖A2 − A‖F ≤ ε, then ‖A− P‖F ≤ ε+ 4ε2 for some
orthogonal projector P .

Proof. Use the fact that Hermitian matrices are normal, so A = UΓUT for unitary U and
diagonal matrix Γ, and

A2 − A = U(Γ2 − Γ)UT =⇒ ‖Γ2 − Γ‖F ≤ ε.

From here, consider the entries γi of Γ, satisfying γ2
i − γi = ci and

∑
c2
i = ε2. Thus,

γi = (1±
√

1 + 4ci)/2 which is at most ci + 4c2
i off from 0.5± 0.5 (aka {0, 1}), using that

1− x/2− x2/2 ≤
√

1− x ≤ 1− x/2.

Finally, this means that Γ is off from having only 0’s and 1’s on the diagonal by
√∑

(ci + 4c2
i)

2 ≤
ε+ 4ε2 in Frobenius norm.

If Γ had only 0’s and 1’s on the diagonal, the resulting UΓUT would be an orthogonal
projector.

Lemma A.2. The system of equations:

k∑
i=1

σ2
i ≤

N∑
i=1

σ2
i ‖ai‖2 + εσ2

k σ2
i are nonincreasing

‖ai‖2 ∈ [0, 1]
∑
‖ai‖2 = k

imply the following, for 0 < η ≤ 1:

`(σk(1+η))∑
1

σ2
i (1− ‖ai‖2) ≤ ε

(
1 +

1

η

)
σ2
k

N∑
`(σk(1−η))+1

σ2
i ‖ai‖2 ≤ ε

(1

η
− 1
)
σ2
k

`(σk1+η))∑
1

(1− ‖ai‖2) ≤ ε

η

N∑
`(σk(1−η))+1

‖ai‖2 ≤ ε

η

Proof. We are just proving straightforward bounds on a linear system. We will continue to
denote σk by σ. Thus, k = `(σ).

The slack in the inequality is always maximized when the weight of the ‖ai‖2 is concentrated
on the large-value (small-index) entries. For example, the choice of ‖ai‖2 maximizing slack in
the given system of equations is the vector {‖ai‖}i∈[N] = 1≤k. Here, 1≤x denotes the vector
where

(1≤x)i :=

{
1 i ≤ x

0 otherwise
.

For brevity, we only give the details for the first bound; the others follow similarly. Consider
adding the constraint C =

∑`(σ(1+η))
1 σ2

i (1− ‖ai‖2) to the system of equations. We want to
determine for which values of C the modified system is still feasible; we can do this by trying
the values that maximize slack.

29

This occurs when weight is on the smallest possible indices: when ‖a`(σ(1+η))‖2 = 1 −
C/σ2

`(σ(1+η)), ‖a`(σ)+1‖2 = C/σ2
`(σ(1+η)), and all other ‖ai‖2 are 1≥k. Notice that ‖a`(σ(1+η))‖2

could be negative and ‖a`(σ)+1‖ could be larger than one, breaking constraints. However, if
there is no feasible solution even when relaxing those two constraints, there is certainly no
solution to the non-relaxed system. Thus, we check feasibility (by construction the second
equation is satisfied):

k∑
i=1

σ2
i ≤

k∑
i=1

σ2
i − C + C

σ2
`(σ)+1

σ`(σ(1+η))

+ εσ2

C
(

1−
σ2
`(σ)+1

σ`(σ(1+η))

)
≤ εσ2

C
(

1− 1

(1 + η)2

)
≤ εσ2

This gives the bound on C. Repeating for all four cases, we get the following bounds:

`(σ(1+η))∑
1

σ2
i (1− ‖ai‖2) ≤ ε(1 + η)2σ2

2η + η2

N∑
`(σ(1−η))+1

σ2
i ‖ai‖2 ≤ ε(1− η)2σ2

2η − η2

`(σ(1+η))∑
1

(1− ‖ai‖2) ≤ ε

2η + η2

N∑
`(σ(1−η))+1

‖ai‖2 ≤ ε

2η − η2

We get the bounds in the statement by simplifying the above (using that η ≤ 1).

Proof of Theorem 5.1. The following shows the first, average-case bound (note the use of
Lemma 4.1 and Cauchy-Schwarz).

Ei∼uS
[
‖DTi −DT̃i

‖TV
]

=
1

|S|
∑
i∈S

‖DTi −DT̃i
‖TV

≤ 1

(1− ζ)m

∑
i∈S

2‖Ti − T̃i‖
‖Ti‖

≤ 2(1 + γ)

(1− ζ)
√
m‖T‖F

∑
i∈S

‖Ti − T̃i‖

≤ 2
1 + γ

1− ζ

(∑
i∈[m] ‖Ti − T̃i‖√
m‖T‖F

)
≤ 2

1 + γ

1− ζ

(√m‖T − T̃‖F√
m‖T‖F

)
≤ 2ε(1 + γ)

(1− ζ)

Using that ‖T − T̃‖F ≤ ε‖T‖F in combination with a pigeonhole-like argument, we know

30

that at least a (1− ψ)-fraction of users i ∈ [m] satisfy

‖Ti − T̃i‖2 ≤ ε2‖A‖2
F

ψm
.

Thus, there is a S ′ ⊂ S of size at least (1− ψ − ζ)m satisfying the above. For such an i ∈ S ′,
we can argue from Lemma 4.1 and the definition of a (γ, ζ)-typical user that

‖DTi −DT̃i
‖TV ≤

2‖Ti − T̃i‖
‖Ti‖

≤ 2ε‖T‖F (1 + γ)
√
m√

ψm‖T‖F
=

2ε(1 + γ)√
ψ

.

B Variant for an Alternative Model
In this section, we describe a variant of our recommendation systems algorithm for the
competitive recommendations model, seen in Drineas, Kerenidis, and Raghavan’s 2002 paper
giving two algorithms for competitive recommendations [DKR02]. The idea is to output good
recommendations with as little knowledge about the preference matrix T as possible. Our
algorithm is similar to Drineas et al’s second algorithm, which has weak assumptions on the
form of T , but strong assumptions on how we can gain knowledge about it.

We use a similar model, as follows:

• We begin with no knowledge of our preference matrix T apart from the promise that
‖T − Tk‖F ≤ ρ‖T‖F ;

• We can request the value of an entry Tij for some cost;

• For some constant 0 < c ≤ 1, we can sample from and compute probabilities from a
distribution P over [m] satisfying

P (i) ≥ c
‖Ti‖2

‖T‖2
F

.

Further, we can sample from and compute probabilities from distributions Qi over [n],
for i ∈ [m], satisfying

Qi(j) ≥ c
T 2
ij

‖Ti‖2
.

We discuss the first assumption in Section 5.1. The second assumption is very strong, but we
will only need to use it sparingly, for some small set of users and products. In practice, this
assumption could be satisfied through paid user surveys.

The last assumption states that the way that we learn about users naturally, via normal
user-site interaction, follows the described distributions. For example, consider when T is
binary (as in Section 5.1). The assumption about P states that we can sample for users
proportional to the number of products they like (with possible error via c). Even though

31

we don’t know the exact number of products a user likes, it is certainly correlated with the
amount of purchases/interactions the user has with the site. With this data we can form
P . The assumption about Qi’s states that, for a user, we can sample uniformly from the
products that user likes. We can certainly assume the ability to sample from the products
that a user likes, since such positive interactions are common, intended, and implicit in the
user’s use of the website. It is not clear whether uniformity is a reasonable assumption, but
this can be made more reasonable by making T non-binary and more descriptive of the utility
of products to users.

Under these assumptions, our goal is, given a user i, to recommend products to that user
that were not previously known to be good and are likely to be good recommendations.

To do this, we run Algorithm 3 with T, k, ε as input, the main change being that we use
Frieze, Kannan, and Vempala’s algorithm as written in their paper instead of ModFKV. As
samples and requests are necessary, we can provide them using the assumptions above.

For the FKV portion of the algorithm, this leads to O(p2) requests to q users about q products,
where q = O(max{ k4

c3ε6
, k2

c3ε8
}). This gives the description of a D such that

‖T −D‖F ≤
√
‖T − Tk‖2

F + ε2‖T‖2
F ≤ (ρ+ ε)‖T‖F .

Thus, immediately we can use theorems from Section 5.1 to show that samples from D will
give good recommendations.

From here, the next part of Algorithm 3 can output the desired approximate sample from
Di. A similar analysis will show that this approximate sample is likely to be a good
recommendation, all while requesting and sampling a number of entries independent of m
and n. Such requests and samples will only be needed for the q users chosen by FKV for its
subsample, along with the input user. Further, for more recommendations, this process can
be iterated with unused information about the q users chosen by FKV. Alternatively, if we
can ask the q users for all of their recommendations, we only need O(k

2

ε2
log k

δ
) samples from

the input user to provide that user with an unlimited number of recommendations (we can
store and update the estimate of AiST to use when sampling).

This gives good recommendations, only requiring knowledge of O(poly(k, 1/ε, log 1/δ)) entries
of T , and with time complexity polynomial in the number of known entries.

32
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

