
Optimal Lower Bounds for Distributed and Streaming Spanning
Forest Computation

Jelani Nelson∗ Huacheng Yu†

July 12, 2018

Abstract

We show optimal lower bounds for spanning forest computation in two different models:

• One wants a data structure for fully dynamic spanning forest in which updates can insert or delete
edges amongst a base set of n vertices. The sole allowed query asks for a spanning forest, which the
data structure should successfully answer with some given (potentially small) constant probability
ε > 0. We prove that any such data structure must use Ω(n log3 n) bits of memory.

• There is a referee and n vertices in a network sharing public randomness, and each vertex knows
only its neighborhood; the referee receives no input. The vertices each send a message to the
referee who then computes a spanning forest of the graph with constant probability ε > 0. We
prove the average message length must be Ω(log3 n) bits.

Both our lower bounds are optimal, with matching upper bounds provided by the AGM sketch
[AGM12] (which even succeeds with probability 1 − 1/poly(n)). Furthermore, for the first setting
we show optimal lower bounds even for low failure probability δ, as long as δ > 2−n1−ε

.

1 Introduction

Consider the incremental spanning forest data structural problem: edges are inserted into an initially empty
undirected graph G on n vertices, and the data structure must output a spanning forest of G when queried.
The optimal space complexity to solve this problem is fairly easy to understand. For the upper bound, one
can in memory maintain the list of edges in some spanning forest F of G, using O(|F | log n) = O(n log n)
bits of memory. To process the insertion of some edge e, if its two endpoints are in different trees of F then
we insert e into F ; else we ignore e. The proof that this data structure uses asymptotically optimal space is
straightforward. Consider that the following map from trees on n labeled vertices must be an injection: fix a
correct data structure D for this problem, then for a tree T feed all its edges one by one to D then map T to
D’s memory configuration. This map must be an injection since D.query() will be different for different
T (the query result must be T itself!). If D uses S bits of memory then it has at most 2S distinct possible
memory configurations. Since the set of all trees has size nn−2 by Cayley’s formula, we must thus have
S ≥ (n− 2) log n. A similar argument shows the same asymptotic lower bound even for Monte Carlo data

∗Harvard University. minilek@seas.harvard.edu. Supported by NSF grant IIS-1447471 and CAREER award CCF-
1350670, ONR Young Investigator award N00014-15-1-2388 and DORECG award N00014-17-1-2127, an Alfred P. Sloan Research
Fellowship, and a Google Faculty Research Award.
†Harvard University. yuhch123@gmail.com. Supported by ONR grant N00014-15-1-2388.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 129 (2018)

structures which must only succeed with constant probability: by an averaging argument, there must exist
a particular random seed that causes D to succeed on a constant fraction of all spanning trees. Fixing that
seed then yields an injection from a set of size Ω(nn) to {0, . . . , 2S − 1}, yielding a similar lower bound.

What though is the optimal space complexity to solve the fully dynamic case, when the data structure
must support not only edge insertions, but also deletions? The algorithm in the previous paragraph fails
to generalize to this case, since if an edge e in the spanning forest F being maintained is deleted, without
remembering the entire graph it is not clear how to identify an edge to replace e in F . Surprisingly though, it
was shown in [AGM12] (see also [KKM13]) that there exists a randomized Monte Carlo data structure, the
“AGM sketch”, solving the fully dynamic case using O(n log3 n) bits of memory with failure probability
1/poly(n). The sketch can also be slightly re-parameterized to achieve failure probability 1 − δ for any
δ ∈ (0, 1) while using O(n log(n/δ) log2 n) bits of memory (see Appendix A). Our first main result is a
matching lower bound for nearly the full range of δ ∈ (0, 1) of interest. Previously, no other lower bound
was known beyond the simple Ω(n log n) one already mentioned for the incremental case.

Our Contribution I. We show that for any 2−n
1−ε

< δ < 1 − ε for any fixed positive constant ε >
0, any Monte Carlo data structure for fully dynamic spanning forest with failure probability δ must use
Ω(n log(n/δ) log2 n) bits of memory. Note that this lower bound cannot possibly hold for δ < 2−n, since
there is a trivial solution using

(
n
2

)
bits of memory achieving δ = 0 (namely to remember exactly which

edges exist in G), and thus our lower bound holds for nearly the full range of δ of interest.

One bonus feature of the AGM sketch is that it can operate in a certain distributed sketching model as
well. In this model, n vertices in an undirected graph G share public randomness together with an (n+ 1)st
party we will refer to as the “referee”. Any given vertex u knows only the vertices in its own neighborhood,
and based only on that information and the public random string must decide on a message Mu to send
the referee. The referee then, from these n messages and the public random string, must output a spanning
forest of G with success probability 1 − δ. The AGM sketch implies a protocol for this model in which
the maximum length of any Mu is O(log3 n) bits, while the failure probability is 1/poly(n). As above,
this scheme can be very slightly modified to achieve failure probability δ with maximum message length
O(log(n/δ) log2 n) for any δ ∈ (0, 1) (see Appendix A).

Our Contribution II. We show that in the distributed sketching model mentioned above, even success
probability ε for arbitrarily small constant ε requires even the average message length to be Ω(log3 n) bits.

We leave it as an open problem to extend our distributed sketching lower bound to the low failure
probability regime. We conjecture a lower bound of Ω(log(n/δ) log2 n) bits for any δ > 2−n

1−ε
.

Despite our introduction of the two considered problems in the above order, we show our results in the
opposite order since we feel that our distributed sketching lower bound is easier to digest. In Section 3
we show our distributed sketching lower bound, and in Section 4 we show our data structure lower bound.
Before delving into the proof details, we first provide an overview of our approach in Section 2.

2 Proof Overview

The starting point for both our lower bound proofs is the randomized one-way communication complexity
of universal relation (UR) in the public coin model, for which the first optimal lower bound was given
in [KNP+17]. In this problem Alice and Bob receive sets S, T ⊆ [U], respectively, with the promise

2

Vl Vm Vr

V1

V2

V3

V4

V5

Figure 1: Hard instances for computing spanning forest.

that S 6= T . Bob then, after receiving a single message from Alice, must output some i in the symmet-
ric difference S4T . We will specifically be focused on the special case UR⊂ in which we are promised
that T (S. In [KNP+17] it is shown that for any δ ∈ (0, 1) bounded away from 1, the one-way ran-
domized communication complexity of this problem in the public coin model satisfies Rpub,→δ (UR⊂) =
Θ(min{U, log(1/δ) log2(U/ log(1/δ))}). Note that by Yao’s minimax principle, this implies the existence
of a “hard distribution” Dur over (S, T) pairs such that the distributional complexity under Dur satisfies
DDur,→
δ = Θ(min{U, log(1/δ) log2(U/ log(1/δ))}).

2.1 Distributed sketching lower bound

Our lower bound in the distributed sketching model comes from a series of two reductions. Assume there
is a protocol P on n-vertex graphs with expected average message length L = o(log3 n) (for the sake
of contradiction) and failure probability 1/3, say (our argument extends even to failure probability 1 −
ε for constant ε). We show this implies that for any distribution Dsk over n4/5-vertex graphs there is a
protocol with failure probability at most O(1/poly(n)) and expected message length at most O(L). We
then use this to show that for any distribution Dur for UR⊂ over a universe of size U = n1/5, there exists
a protocol with failure probability O(

√
L/poly(n)) = 1/poly(n) and expected average message length

O(L), a contradiction, since it violates the lower bound of [KNP+17].
We sketch the reduction from UR⊂ to the graph sketching problem via Figure 1. Suppose Alice and

Bob are trying to solve an instance of UR⊂, where they hold S, T ⊂ [n1/5]. We set|Vm| = 1
2n

3/5, |Vl| =

|Vm| · |Vr|, and |Vr| as well as the size of each block in Vl equals n1/5. Thus overall there are at most
|V | = n4/5 vertices. Both Alice and Bob will agree that the vertices in Vm are named v1, v2, . . . , v|Vm|.
The main idea is that T will correspond to the neighbors of vi in the ith block of Vl (we call this ith block
“Vi”), and any neighbors in Vr correspond to elements of S \ T . Since Vi may only connect to vi, in any
spanning forest of G the only way that Vi ∪ {vi} connects to the rest of the graph is from an edge between
vi and Vr, i.e., finding a spanning forest allows one to recover one element in S \ T . To find a spanning
forest, Alice and Bob would like to simulate the distributed sketching protocol on G. However, S \ T is not
known to either of the players, which the messages from Vr depend on, hence Alice and Bob might not be
able to simulate the protocol perfectly. We resolve this issue by exploiting the fact that L · |Vr| = o(|Vm|),
and thus all the messages from Vr combined only reveal o(1) bits of information about the neighborhood of
a random vi ∈ Vm and are thus unimportant for Alice and Bob to simulate perfectly.

The remainder of the sketch of the reduction is then as follows. Alice and Bob also use public random-

3

ness to pick a random injection β : [n1/5] → [n4/5] \ Vm, and also to pick a random i ∈ [|Vm|]. They
then attempt to embed their UR⊂ instance in the neighborhood of vi. Alice sends Bob the message sk(vi)
to Bob, as if vi had neighborhood β(S). Bob then picks vertex names for Vl, Vr randomly in [n4/5]\Vm
conditioned on β(T) ⊂ Vi and β([n1/5]\T) ⊂ Vr. Then for all j 6= i, Bob samples random Sj , Tj from Dur

and connects vj to |Tj | random vertices in Vj and |Sj\Tj | random vertices in Vr. Bob then computes all the
sketches of every vertex other than vi then simulates the referee to output the u ∈ Vr which maximizes the
probability that (vi, u) is an edge, conditioned on Vl, Vm, Vr, sk(Vl), sk(Vm).

2.2 Data structure space lower bound

Our data structure lower bound comes from a variant of a direct product theorem of [BRWY13]. Their
work had two main theorems: the first states that for any boolean function f(x, y) and distribution µ, if C
is such that the smallest achievable failure probability of any protocol for f with communication cost C on
distribution µ is γ, then any protocol for fn (the n-fold product of f) on distribution µn with communication
at most T = Õ(γ5/2C

√
n) must have success probability at most exp(−Ω(γ2n)). The second theorem is

similar but only works for µ a product distribution, but with the benefit that the communication cost for
fn need only be restricted to T = Õ(γ6Cn); this second theorem though does not apply, since one would
want to apply this theorem with µ being a hard distribution Dur for UR⊂, which clearly cannot be a product
distribution (Bob’s input is promised to be a subset of Alice’s, which means in a product distribution there
must be some D such that T ⊆ D (S always, in which case Alice can send one element of S\D using
O(logU) bits and have zero error). In any case, even if Dur were a product distribution, these theorems are
too weak for our purposes. This is because the way in which one would like to apply such a direct product
theorem is as follows. First, we would like to reduce fn to fully dynamic spanning forest for f = UR⊂
(we give such a reduction in Section 4.1). Such a reduction yields that if a T -bit memory solution for fully
dynamic spanning forest with success probability 1 − δ existed over a certain distribution over graphs, it
would yield a T -bit protocol for fn with success probability 1 − δ over µn. Next, the natural next course
of action would be to apply the contrapositive of such a direct product theorem: if a T -bit protocol for fn

with success probability exp(−cγ2n) = 1− δ exists over µn, then there must exist a C-bit communication
protocol for f with failure probability γ = O(

√
δ/n) over µ. By the main result of [KNP+17] any such

protocol must use Dµ,→√
δ/n

(UR⊂) = Ω(log(n/δ) log2 n) bits of space (in our reduction U = n), so if the C

we obtained is less than this, then we would arrive at a contradiction, implying that our initial assumption that
such a T -bit data structure for spanning forest exists must be false. Unfortunately the relationship between
C and T in [BRWY13] is too weak to execute this strategy. In particular, we would like prove a lower bound
for our fn of the formDµn,→

δ (fn) = Ω(n ·Dµ,→√
δ/n

(f)) := n ·C, whereD denotes distributional complexity.

That is, we would like to obtain hardness results for T = Ω(n·C), but the theorems of [BRWY13] only allow
us to take T much smaller; i.e. the first theorem requires T = Õ(γ5/2C

√
n) (and recall γ = Θ(

√
δ/n)).

The main observation is that if one inspects the proof details in [BRWY13], one discovers the following
intermediate result (not stated explicitly as a lemma, but implicit in their proofs). We state now the restriction
of this intermediate result to one-round, one-way protocols, which is what is relevant in our setting. Suppose
for some boolean function f(x, y) there exists a protocol P with failure probability δ and communication
cost T for fn on some n-fold product distribution µn. Then there exists a distribution θ over triples and
protocol P ′ for f such that if π is the distribution over (X,Y,M), where (X,Y) ∼ µ and M is the message
sent by Alice in P ′ (a function of X and her private randomness), then

• the failure probability of P ′ for inputs generated according to µ is O(
√
δ/n),

4

• ‖θ − π‖1 = O(
√
δ/n), and

• the internal information cost with respect to θ, Iθ(M ;X|Y) + Iθ(M ;Y |X), is O(T/n).

Borrowing many of the ideas in [BRWY13], we prove a slightly stronger version of this intermediate result
which suffices for our purposes. Namely, we show that under the same assumptions, there exists a proto-
col P ′ for computing f on some distribution µ′ such that the Kullback–Leibler divergence from µ to µ′

DKL(µ′||µ) = O(δ/n) (hence ‖µ − µ′‖1 = O(
√
δ/n)), and if one lets M be the message sent by Alice

using P ′ then defines π as the resulting distribution over (X,Y,M), then

• the failure probability of P ′ for inputs generated according to µ′ is O(
√
δ/n), and

• the information cost of P ′ on µ′, which in our case suffices to define as Iπ(M ;X), is O(T/n).

One reason we need this stronger statement, which we prove in Section 4.2, is that the θ distribution arising
from [BRWY13] is not guaranteed to correspond to a valid communication protocol, i.e. for (X,Y,M) ∼ θ,
we are not promised that M is a function of only X and Alice’s private randomness.

In order to make use of the above modified direct product theorem, we then prove a distributional lower
bound for some hard distributionDur which states that for any distributionD′ withDKL(D′||Dur) ≤ O(γ2),
any one-way protocol P with error probability γ onD′ must have information cost equal to at least the UR⊂
lower bound mentioned above. Such a proof follows with minor differences from the proof in [KNP+17];
we provide all the details in Appendix B.

We remark that other works have provided related direct sum or direct product theorems, e.g. [BJKS04,
BBCR13, MWY13]. The work [BJKS04] (see [BBCR13, Theorem 1.5] for a crisp statement) proves a direct
sum theorem for computing f on n independent input drawn from some distribution µ, under a measure of
cost known as internal information cost. The downside of direct sum theorems, as studied in this work and
[BBCR13], is that they only aim show that the cost of computing n copies of a function is at least n times
the cost of computing one copy with the same failure probability. In our case though, we would like to argue
that computing n copies requires more than n times the cost, since we would like to say that computing
n copies of UR⊂ with overall failure probability say, 1/3, requires n times the cost of computing a single
copy with failure probability O(1/

√
n), i.e. the cost multiplies by an n log n factor. Such theorems, which

state that the success probability of low-cost protocols must go down quickly as n increases, are known in
the literature as direct product theorems. A direct product theorem similar to what we want in our current
application was shown in [MWY13], but unfortunately the cost of computing fn with failure probability δ
in that work is related to the cost of computing f by a protocol that fails with probability δ/n (which is what
we want) but that is allowed to output ‘Fail’, i.e. abort, with constant probability! Thus the main theorem in
that work cannot be used to obtain a tight lower bound, since it is known that if the one is allowed to abort
with constant probability, then there is a UR⊂ protocol that is actually a factor log n cheaper [KNP+17].

3 Distributed Sketching Lower Bound

Given an undirected graph G on n vertices indexed by [n]. Any given vertex only knows its own index and
the set of indices of its neighbors, as well as a shared random string. Then each vertex v sends a message (a
sketch sk(v)) to a referee, who based on the sketches and the random string must output a spanning forest
of G with probability 1− δ. The task is to minimize the average size of the n sketches.

In this section, we prove Theorem 1, a sketch size lower bound for computing spanning forest in the
distributed setting.

5

Theorem 1. Any randomized distributed sketching protocol for computing spanning forest with success
probability ε must have expected average sketch size 1

n E(
∑

v |sk(v)|) ≥ Ω(log3 n), for any constant ε > 0.

The first observation is that since each node only sees its neighborhood, every message depends on a
local structure of the graph. If we partition the graph into, say n1/5, components with n4/5 nodes each, and
put an independent instance in each component, then messages from each component are independent, and
hence the referee has to compute a spanning forest for each instance with an overall success probability ε,
i.e., failure probability per instance is at most O(n−1/5). That is, it suffices to study the problem on slightly
smaller graphs with a much lower error probability.

Next, we make a reduction from the communication problem UR⊂. In UR⊂, Alice gets a set S ⊆ [U],
Bob gets a proper subset T ⊂ S. Alice sends one single messageM to Bob. The goal of the communication
problem is to find one element x ∈ S \T . The one-way communication complexity with shared randomness
is well understood [KNP+17].

Theorem 2 ([KNP+17]). The randomized one-way communication complexity of UR⊂ with error proba-
bility δ in the public coin model is Θ(min{U, log 1

δ · log2 U
log 1/δ}).

To make the reduction, consider a vertex v in the graph, v sees neighborhood N(v), and sends sk(v) to
the referee. Suppose that there is a subset T ofN(v) such that for every vertex u ∈ T , v is its only neighbor.
In this case, the only way that v and T connect to the rest of the graph is to go through an edge between
v and N(v) \ T , which the referee has to find and add to the spanning forest. We may view N(v) as a set
S, vertex v must commit the message sk(v) based only on S. Then T is revealed to the referee, who has
to find an element in S \ T . If the referee finds this element using only sk(v) (not the other sketches), then
by Theorem 2, the |sk(v)| must be at least Ω(log3 n). In the proof, we will construct graphs such that for
a (small) subset of vertices, the other sketches “do not help much” in finding their neighbors. This would
prove that the average sketch size of this subset of vertices must be at least Ω(log3 n).

Finally, to extend the lower bound to average size of all sketches, we further construct graphs where
the neighborhood of each vertex looks like the neighborhood of a random vertex from this small subset. In
the final hard distribution, we put such a graph with constant probability, and a random instance from the
last paragraph with constant probability. Then prove that if the algorithm succeeds with high probability, its
average sketch size must be large.

Proof of Theorem 1. Suppose there is a protocol A for n-node graphs with error probability at most 1 − ε
and expected average message length 1

n

∑
v E |sk(v)| = L, then we have the following.

Proposition 1. For any input distributionDsk over n4/5-node graphs, there is a deterministic protocol A′Dsk

with error probability O(n−1/5) and expected average message length at most O(L).

The main idea is to construct n1/5 independent and disconnected copies of n4/5-node instances, then
simulate protocol A on this whole n-node graph. Then we show that since each message only depends on
the neighborhood, the n1/5 copies could only be solve independently.

Consider the input distribution on n-node graphs by independently sampling n4/5-node graphs fromDsk

on vertex sets [n4/5], [n4/5] + n4/5, [n4/5] + 2n4/5, . . . , and [n4/5] + n − n4/5. Denote the resulting n1/5

graphs by G1, . . . , Gn1/5 . Denote by G the union of the n1/5 graphs. Protocol A produces a spanning forest
F of G with probability ε.

6

Let us analyze A on G, and let RA be the random bits used by A. First, we may assume without loss of
generality that A is deterministic. This is because by Markov’s inequality, we have

P
RA

(
1

n
· E
G
|sk(v)| > 2L/ε

)
<
ε

2

and

P
RA

(
P
G

[A is wrong] > 1− ε/2
)
< 1− ε

2
.

Thus, we may fix RA and hardwire it to the protocol such that the overall error probability (over a random
G) is still at most ε2 and the expected average message length is at most O(L).

Note that the message sent from a vertex in Gi depends only on graph Gi (in fact only its neighbors),
and all n1/5 graphs are independent a priori. Therefore, after the referee sees all n messages, conditioned
on these messages, the n1/5 input graphs are still independent. For any forest F = F1 ∪ · · · ∪ Fn1/5 , where
Fi is a forest on vertices [n4/5] + (i − 1)n4/5, the probability that F is a spanning forest of G is equal to
the product of the probabilities that Fi is a spanning forest of Gi. Hence, to maximize the probability that
the output is a spanning forest of G, we may further assume that A outputs for each i, a forest Fi on vertices
[n4/5] + (i − 1)n4/5 that maximizes the probability that Fi is a spanning forest of Gi conditioned on the
messages. Thus, all n1/5 outputs Fi also become independent, and overall success probability is equal to the
product of success probabilities of all n1/5 instances. In particular, there exists an i such that the probability
that the output Fi is a spanning forest of Gi is at least (1− ε/2)n

−1/5 ≥ 1−O(n−1/5).
To solve an n4/5-node instance sampled from Dsk, it suffices to embed the graph into Gi of G. Each

vertex sends a message to the referee pretending themselves are nodes in Gi using the above fixed random
bitsRA, and the referee outputs an Fi that is a spanning forest ofGi with the highest probability conditioned
on the messages. Based on the above argument, the error probability is at most O(n−1/5), and the expected
average message length is at most O(L).

Suppose such protocol exists, we must have the following solution for UR⊂.

Proposition 2. For any input distribution Dur, there is a one-way communication protocol for UR⊂ over
universe [n1/5] with error probability O(L1/2 · n−1/5) and communication cost O(L).

We first derive a UR⊂ protocol from a spanning forest protocol with worst-case message length O(L)
and error probability O(n−1/5), then extend the result to expected average length.

Hard instance Dsk. Recall the graph with n4/5 vertices from Figure 1, which will be our spanning forest
hard instance:

• The vertex set V is partitioned into four groups Vl, Vm, Vr and Vo, all vertices in Vo are isolated and
hence can be ignored;

• |Vl| = 1
2n

4/5, |Vm| = 1
2n

3/5 and |Vr| = n1/5;

• Vl is further partitioned into 1
2n

3/5 blocks V1, . . . , V 1
2
n3/5 such that each block Vi contains n1/5 ver-

tices, and is associated with one vertex vi in Vm;

• The only possible edges in the graph are the ones between Vm and Vr, and ones between block Vi and
the associated vertex vi.

7

Let us consider the following distribution Dsk over such graphs:

1. Sample a random Vm of size 1
2n

3/5, and sample disjoint Vr, V1, V2, . . . , V 1
2
n3/5 such that each set has

n1/5 vertices;

2. For each vertex vi ∈ Vm, uniformly sample from Dur a UR⊂ instance (Si, Ti) such that Si ⊃ Ti;

3. Connect each vi to uniformly random |Ti| vertices in Vi, and to uniformly random |Si \Ti| vertices in
Vr.

Reduction from UR⊂. By Proposition 1, there exists a good spanning forest protocol A′Dsk
for the above

distribution Dsk. Next, we are going to use this protocol to design an efficient one-way communication
protocol P for UR⊂ under Dur. The main idea is to construct a graph G as above and embed the UR⊂
instance to one of the neighborhoods of vertices vi ∈ Vm, such that set T corresponds to its neighbors in
Vi and S \ T corresponds to its neighbors in Vr. Since Vi may only connect to vi, in any spanning forest
of G, the only way that Vi ∪ {vi} connects to the rest of the graph is from an edge between vi and Vr, i.e.,
finding a spanning forest allows one to recover one element in S \ T . To find a spanning forest, we will
simulate A′Dsk

on G. However, S \ T is not known to either of the players, which the messages from Vr
depend on, hence Alice and Bob might not be able to simulate the protocol perfectly. We resolve this issue
by exploiting the fact that |Vr| ·L is much smaller than Vm, and thus the messages from Vr do not reveal too
much information about the neighborhood of a random vi ∈ Vm.

More formally, first consider the following procedure to generate a random graphG from two sets S and
T :

1. sample a random Vm of size 1
2n

3/5, a uniformly random injection β : [n1/5] → V \ Vm, and a
uniformly random vertex vi ∈ Vm;

2. sample uniformly random subsets V1, . . . , V 1
2
n3/5 and Vr of size n1/5 from the remaining vertices

V \ Vm conditioned on β(T) ⊂ Vi and β([n1/5] \ T) ⊂ Vr;

3. connect vi to all vertices in β(S);

4. for all other vj ∈ Vm, sample Sj and Tj from Dur, and connect vj to |Tj | random vertices in Vj and
|Sj \ Tj | random vertices in Vr.

Suppose (S, T) is sampled from Dur, denote by µ the joint distribution of all random variables occurred
in the above entire procedure. To avoid lengthy subscripts, we denote the marginal distributions by µ[·], e.g.,
denote by µ[S] the marginal distribution of S, and µ[S | G] the marginal of S conditioned on G, etc. Since
β is a uniformly random mapping, we have µ[G] = Dsk. Moreover, if we find a spanning forest F of G, in
particular, a neighbor u of vi in Vr, β−1(u) will be an element in S \ T .

We now give the protocol P for UR⊂ (see Figure 2), where the players attempt to sample a graph from
µ[G | S, T], and exploit the fact that all sketches together would determine a spanning forest.

Analyze P . The only message communicated is sk(vi), which has O(L) bits. Next let us upper bound the
error probability.

It is not hard to verify that in the protocol, the players sample Vl, Vm, Vr, sk(Vl), sk(Vm), β from the
right distribution µ[Vl, Vm, Vr, sk(Vl), sk(Vm), β | S, T]. To find an edge between vi and Vr, Bob computes
the distribution

µ[E(vi, Vr) | Vl, Vm, Vr, sk(Vl), sk(Vm)],

8

UR⊂ Protocol P (on input pair (S, T) such that T ⊂ S ⊆ [U] for U = n1/5)

initialization
1. sample a random Vm of size 1

2
n3/5, a uniformly random injection β : [n1/5]→ V \ Vm, and a uniformly random vertex

vi ∈ Vm using public random bits

Alice(S)
2. simulate A′Dsk

as if she is vertex vi with neighborhood β(S), and then send the sketch sk(vi) to Bob

Bob(T)
3. sample uniformly random subsets V1, . . . , V 1

2
n3/5 and Vr of size n1/5 from the remaining vertices V \ Vm conditioned

on β(T) ⊂ Vi and β([n1/5] \ T) ⊂ Vr
4. for all other vj ∈ Vm, sample Sj and Tj from Dur, and connect vj to |Tj | random vertices in Vj and |Sj \ Tj | random

vertices in Vr
5. compute sketches sk(Vl) and sk(Vm)
6. find vertex u ∈ Vr , which maximizes µ((vi, u) is an edge | Vl, Vm, Vr, sk(Vl), sk(Vm)), the probability that (vi, u) is

an edge conditioned on the groups Vl, Vm, Vr and sketches sk(Vl), sk(Vm)
7. if u ∈ β([n1/5]), output β−1(u), otherwise output an arbitrary element

Figure 2: UR⊂ protocol using spanning forest protocol A′Dsk
. In Step 5, Bob is able to compute all sk(Vl)

and sk(Vm), because Bob knows the exact neighborhoods for all vertices in Vl and Vm \ {vi}, as well as the
sketch sk(vi) from Alice’s message.

and returns the edge that occurs with the highest probability, where E(vi, Vr) is the edges between vi and
Vr.

On the other hand, given the sketches of all vertices, referee’s algorithm outputs a spanning forest with
probability 1 − O(n−1/5). In particular, it finds one edge between vi and Vr (since in Dsk, the only way to
connect Vi∪{vi} to the rest of the graph is through such an edge). That is, in expectation, some edge (vi, u)
has probability mass at least 1−O(n−1/5) in the distribution

µ[E(vi, Vr) | Vl, Vm, Vr, sk(V)].

In the following, we are going to show that the expected statistical distance between µ[E(vi, Vr) | Vl, Vm, Vr, sk(V)]
and Bob’s distribution µ[E(vi, Vr) | Vl, Vm, Vr, sk(Vl), sk(Vr)] is small, which implies that the same edge
(vi, u) would also appear in µ[E(vi, Vr) | Vl, Vm, Vr, sk(Vl), sk(Vr)] with high probability. By the definition
of µ, any edge (vi, u) for u ∈ Vr corresponds to one element in S \ T . Hence, Bob’s error probability (over
a random input pair) is small.

For simplicity of notation, we will omit Vl, Vm, Vr in the conditions in the following. Fix i, we have

E
µ

(|µ[E(vi, Vr) | sk(V)]− µ[E(vi, Vr) | sk(Vl), sk(Vr)]|)

by Pinsker’s inequality,

≤ E
µ

√√√√1

2
DKL

(
µ[E(vi, Vr) | sk(Vl), sk(Vm), sk(Vr)]

µ[E(vi, Vr) | sk(Vl), sk(Vm)]

)

9

where DKL(q||p) = DKL

(q
p

)
is the Kullback–Leibler divergence from p to q, by Jensen’s inequality,

≤

√√√√1

2
E
µ

(
DKL

(
µ[E(vi, Vr) | sk(Vl), sk(Vm), sk(Vr)]

µ[E(vi, Vr) | sk(Vl), sk(Vm)]

))

=

√
1

2
I(E(vi, Vr); sk(Vr) | sk(Vl), sk(Vm)).

By construction, conditioned on sk(Vl) and sk(Vm), the neighborhoods of vertices in Vm are still inde-
pendent. Thus, by super-additivity of mutual information on independent variables,

1

|Vm|

|Vm|∑
i=1

I(E(vi, Vr); sk(Vr) | sk(Vm), sk(Vl))

≤ 1

|Vm|
I(E(Vm, Vr); sk(Vr) | sk(Vm), sk(Vl))

≤ |sk(Vr)|
|Vm|

= O(L · n−2/5).

Finally, by another application of Jensen’s inequality,

E
i,µ

(|µ[E(vi, Vr) | sk(V)]− µ[E(vi, Vr) | sk(vi), sk(Vi)]|)

≤ 1

|Vm|

|Vm|∑
i=1

√
1

2
I(E(vi, Vr); sk(Vr) | sk(Vm), sk(Vl))

≤ O(L1/2 · n−1/5).

Thus, the error probability of P is at most

P(u /∈ β(S \ T)) = P((vi, u) is not an edge)

= E(µ((vi, u) is not an edge | Vl, Vm, Vr, sk(Vl), sk(Vm)))

≤ E(µ((vi, u) is not an edge | Vl, Vm, Vr, sk(V))) +O(L1/2 · n−1/5)
≤ O(n−1/5) +O(L1/2 · n−1/5)
= O(L1/2 · n−1/5).

Extend to expected average message length. To solve UR⊂ using protocols with only bounded expected
average message length, we setup a new distribution over graphs where with 1/3 probability, we sample a
graph from the above hard distribution Dsk; with 1/3 probability, the neighborhoods of most vertices look
as if they were in Vm; with 1/3 probability, the neighborhoods of most vertices look as if they were in Vr.

More formally, first observe that each vertex in Vm and each vertex in Vr have the same degree distribu-
tion, denote the former by Dm and the latter by Dr. Moreover, conditioned on v ∈ Vm and its degree, its
neighborhood is uniformly random, and so is neighborhood of v ∈ Vr. Finally, observe that the degree is at
most 1

2n
3/5. Consider the following distribution D′sk:

10

1. with probability 1/3, sample G from Dsk;

2. with probability 1/3, randomly partition the vertices into two groups U1, U2 of 1
2n

4/5 vertices each,
for each vertex in U1, sample its degree d from Dm and uniformly d neighbors from U2;

3. with probability 1/3, randomly partition the vertices into two groups U1, U2 of 1
2n

4/5 vertices each,
for each vertex in U1, sample its degree d from Dr and uniformly d neighbors from U2.

By Proposition 1, there is a protocolA′ with expected average message lengthO(L) and error probability
O(n−1/5) onD′sk. Let us analyze its performance onDsk. From case 2 ofD′sk, we conclude that the expected
average message length of Vm must be at most O(L), as every vertex in U1 has the same distribution of
the neighborhood as a vertex in Vm. Similarly, from case 3, the expected average message length of Vr
must be at most O(L). Finally, from case 1, the error probability must be at most O(n−1/5). Thus, by the
previous argument, we obtain a UR⊂ protocol with expected communication costO(L) and error probability
O(L1/2 · n−1/5).

By Theorem 2, we have1

L ≥ Ω

(
log

n1/5

L1/2
log2

n1/5

log n1/5

L1/2

)
≥ Ω

(
log

n1/5

L1/2
log2 n

)
.

Thus, L ≥ Ω(log3 n). This proves the theorem.

4 Fully Dynamic Spanning Forest Data Structure

In this section, we prove the following space lower bound for fully dynamic spanning forest data structures.

Theorem 3. Any Monte Carlo data structure for fully dynamic spanning forest with failure probability δ
must use Ω(n log n

δ log2 n) bits of memory, as long as δ ∈ [2−n
1−ε
, 1− ε] for any given constant ε > 0.

We first observe that a good spanning forest data structure yields an efficient one-way communication
protocol for n-fold UR⊂. In n-fold UR⊂, Alice gets n sets S1, . . . , Sn ⊆ [U], Bob gets n subsets T1, . . . , Tn
such that Ti ⊂ Si for all i ∈ [n]. The goal is to find elements xi ∈ Si \ Ti for all i ∈ [n]. Then we prove a
new direct product lemma for one-way communication based on the ideas from [BRWY13]. We show that
a protocol for n-fold UR⊂ with cost C and error δ gives us a new protocol for the original UR⊂ problem
with “cost” C/n and error

√
δ/n, under a weaker notion of cost. Then we generalize Theorem 2, and show

that same lower bound holds, which implies C/n ≥ Ω(log n
δ · log2 n).

In the following, we first show the reduction to n-fold UR⊂ in Section 4.1. Then we prove the direct
product lemma in Section 4.2. The proof of communication lower bound is deferred to Appendix B.

4.1 Reduction to n-fold UR⊂

Lemma 1. If there is a fully dynamic data structure A for spanning forest on a 2n-node graph using C bits
of memory, and outputs a correct spanning forest with probability at least 1− δ, then there is a protocol for
n-fold UR⊂ over [n] using C bits of communication with success probability 1− δ.

1Theorem 2 only states a lower bound for worst-case communication cost of UR⊂. One may verify that their proof works for
expected communication cost as well. See also Appendix B for a UR⊂ lower bound in an even more general regime.

11

Proof. Consider a bipartite graph G with n nodes on each side. For simplicity, we assume one side of the
graph is indexed by the universe [n], and the other side uses the same indices as the n pairs of sets (Si, Ti).
Now we are going to simulate A on a sequence of updates to G, and solve the communication problem.

Starting from the empty graph, Alice first simulates A. For each pair (x, i) such that x ∈ Si, Alice
inserts an edge between x and i. After all insertions, she sends the memory of A to Bob, which takes C bits
of communication. Then for each pair (x, i) such that x ∈ Ti, Bob deletes the edge between x and i. After
all deletions, Bob makes a query and obtains a spanning forest F of G.

For every non-isolated vertex, the spanning forest reveals one of its neighbors. In particular, any neigh-
bor x of a vertex i (on the second side) must be in the set Si \ Ti. Therefore, it suffices to output for each i,
an arbitrary neighbor of i in F . The overall success probability is at least 1− δ.

Theorem 3 is an immediate corollary of Lemma 1 and the following lemma, which we prove in the
remainder of the section.

Lemma 2. Any one-way communication protocol for n-fold UR⊂ over universe [n] with error probability δ
must useC ≥ Ω(n log n

δ log2 n) bits of communication, as long as δ ∈ [2−n
1−ε
, 1−ε] for any given constant

ε > 0.

4.2 Direct product lemma

Consider one-way communication protocols with a fixed input distribution computing f(X,Y). A pair of
inputs (X,Y) is sampled from distribution D. Two players Alice and Bob receive X and Y respectively.
Alice sends one message M to Bob. Then Bob outputs a value O.

In the n-fold problem fn, n input pairs (X1, Y1), . . . , (Xn, Yn) are sampled from D independently. The
goal is to compute all f(X1, Y1), . . . , f(Xn, Yn).

In this subsection, we prove the following lemma using the ideas from [BRWY13].

Lemma 3. Let (X(n), Y (n)) ∼ Dn be an input pair for an n-fold problem fn, where X(n) = (X1, . . . , Xn)
and Y (n) = (Y1, . . . , Yn). If there is a one-way protocol τ that takes input (X(n), Y (n)), has communication
cost C and computes fn with probability p, then there is an input distribution D′ for the one-fold problem
f and a one-way protocol π such that

1. DKL(D′||D) ≤ O
(

1
n log 1

p

)
and

2. when input pair (X,Y) is drawn from D′, π has information cost I(M ;X) ≤ O(C/n) and computes

f with probability 1−O
(√

1
n log 1

p

)
.

Proof. Let i ∈ [n],g,h ⊂ [n] such that i /∈ g∪h, and r be a possible assignment to (Xg, Yh).2 To prove the
lemma, we first define for every quadruple (i,g,h, r), a protocol πi,g,h,r for the one-fold problem and an
input distribution D′i,g,h,r. Then we make a probabilistic argument showing that there is a carefully chosen
distribution over (i,g,h, r) such that in expectation πi,g,h,r andD′i,g,h,r have the desired properties. Finally,
we finish the proof by applying Markov’s inequality and union bound, and conclude that there is a quadruple
that satisfies all requirements simultaneously.

For the n-fold problem, under input distributionDn and protocol τ , the inputs (X(n), Y (n)), messageM
and output O form a joint distribution. Similar to the notations in Section 3. Denote this distribution by µ,
and the marginal distribution of any subset of the random variables by µ[·], e.g., the marginal distribution of

2Xg is X(n) restricted to coordinates g and Yh is Y (n) restricted to coordinates h.

12

X andM is denoted by µ[X,M], marginal distribution of Y conditioned on event V is denoted by µ[Y | V].
Finally, denote by W the event that output O is correct.

Now let us define πi,g,h,r and D′i,g,h,r (see Figure 3).

Protocol πi,g,h,r for f :

Alice(x)
1. privately sample a message m from distribution µ[M | Xi = x, (Xg, Yh) = r,W]
2. send m to Bob

Bob(y)
3. privately sample an output o from µ[O | Yi = y, (Xg, Yh) = r,M = m,W] (with n coordinates)
4. output the i-th coordinate of o

Input distribution D′i,g,h,r: (x, y) ∼ µ[Xi, Yi | (Xg, Yh) = r,W]

Figure 3: πi,g,h,r on input pair (x, y).

Denote the joint distribution of X,Y,M,O under D′i,g,h,r and πi,g,h,r by νi,g,h,r. Similarly, denote the
marginal distribution of a subset of variables by νi,g,h,r[·]. Before we define the distribution of (i,g,h, r),
let us first analyze the information cost and success probability for each quadruple.

Information cost of πi,g,h,r. In νi,g,h,r, (X,M) is distributed according to µ [Xi,M | (Xg, Yh) = r,W],
the information cost of πi,g,h,r under input distribution D′i,g,h,r is

Iνi,g,h,r (X;M) = Iµ (Xi;M | (Xg, Yh) = r,W) . (1)

Error probability of πi,g,h,r. We first observe that µ [O | Xi = x, Yi = y, (Xg, Yh) = r,W] always has
f(x, y) in its i-th coordinate, since W is the event that τ is correct. Thus, the statistical distance between
µ [Xi, Yi,M,O | (Xg, Yh) = r,W] and νi,g,h,r[X,Y,M,O] will be an upper bound of the error probability.

Due to the way we choose D′i,g,h,r, the marginals of (X,Y) are identically distributed in the two distri-
butions,

|µ[Xi, Yi | (Xg, Yh) = r,W]− νi,g,h,r[X,Y]| = 0.

The expected statistical distance between marginals of M conditioned X,Y in the two distributions is at
most

E
(x,y)∼νi,g,h,r[X,Y]

(|µ[M | Xi = x, Yi = y, (Xg, Yh) = r,W]− νi,g,h,r[M | X = x, Y = y]|)

= E
(x,y)∼νi,g,h,r[X,Y]

(|µ[M | Xi = x, Yi = y, (Xg, Yh) = r,W]− µ[M | Xi = x, (Xg, Yh) = r,W]|)

by Pinsker’s inequality,

≤ E
(x,y)∼µ[Xi,Yi|(Xg,Yh)=r,W]

√√√√1

2
DKL

(
µ[M | Xi = x, Yi = y, (Xg, Yh) = r,W]

µ[M | Xi = x, (Xg, Yh) = r,W]

)

13

then by Jensen’s inequality,

≤

√√√√ E
(x,y)∼µ[Xi,Yi|(Xg,Yh)=r,W]

(
1

2
DKL

(
µ[M | Xi = x, Yi = y, (Xg, Yh) = r,W]

µ[M | Xi = x, (Xg, Yh) = r,W]

))

by the definition of mutual information,

=

√
1

2
Iµ(Yi;M | Xi, (Xg, Yh) = r,W).

Thus, the statistical distance between the marginals of (X,Y,M) is at most

|µ[Xi, Yi,M | (Xg, Yh) = r,W]− νi,g,h,r[X,Y,M]| ≤ O
(√

Iµ(Yi;M | Xi, (Xg, Yh) = r,W)

)
.

Similarly, we can upper bound the statistical distance between O in the two distributions conditioned on
(X,Y,M). For any x, y and m, we have

|µ[O | Xi = x, Yi = y,M = m, (Xg, Yh) = r,W]− νi,g,h,r[O | X = x, Y = y,M = m]|
= |µ[O | Xi = x, Yi = y,M = m, (Xg, Yh) = r,W]− µ[O | Yi = y,M = m, (Xg, Yh) = r,W]|

≤ O

√√√√DKL

(
µ[O | Xi = x, Yi = y,M = m, (Xg, Yh) = r,W]

µ[O | Yi = y,M = m, (Xg, Yh) = r,W]

) .

Finally, we have

|µ[Xi, Yi,M,O | (Xg, Yh) = r,W]− νi,g,h,r[X,Y,M,O]|
≤ |µ[Xi, Yi,M | (Xg, Yh) = r,W]− νi,g,h,r[X,Y,M]|
+ E[|µ[O | Xi = x, Yi = y,M = m, (Xg, Yh) = r,W]− νi,g,h,r[O | X = x, Y = y,M = m]|]

≤ O
(√

Iµ(Yi;M | Xi, (Xg, Yh) = r,W)

)

+ E
(x,y,m)∼µ(Xi,Yi,M |(Xg,Yh)=r,W)

∣∣∣∣∣∣O

√√√√DKL

(
µ[O | Xi = x, Yi = y,M = m, (Xg, Yh) = r,W]

µ[O | Yi = y,M = m, (Xg, Yh) = r,W]

)∣∣∣∣∣∣
= O

(√
Iµ(Yi;M | Xi, (Xg, Yh) = r,W) +

√
Iµ(Xi;O | Yi,M, (Xg, Yh) = r,W)

)
.

Thus, the error probability is at most

O

(√
Iµ(Yi;M | Xi, (Xg, Yh) = r,W) +

√
Iµ(Xi;O | Yi,M, (Xg, Yh) = r,W)

)
. (2)

Now we are ready to define the distribution of (i,g,h, r), and prove that all requirements are satisfied
in expectation.

14

Distribution of (i,g,h, r). There are three equivalent ways to generate the quadruple (see Figure 4 for
one of them), which will be useful in different parts of the proof.

Pick a uniformly random permutation κ over [n], pick four uniformly independent random numbers
sg, sh, tg, th from the four quarters respectively, i.e., sg ∈ [1, n/4], sh ∈ [n/4+1, n/2], tg ∈ [n/2+1, 3n/4]
and th ∈ [3n/4 + 1, n]. Then

• set i = κ(sg), g = κ([sg + 1, tg]) and h = κ([sh + 1, th]); or

• set i = κ(sh), g = κ([sg, tg]) \ {i} and h = κ([sh + 1, th]); or

• set i = κ(tg), g = κ([sg, tg − 1]) and h = κ([sh, th]) \ {i}.

κ :
i

g
h

Figure 4: (i,g,h) and κ from the first distribution.

The triple (i,g,h) is identically distributed in the three distributions. Since κ is a random permutation,
i is a random element, g and h are two random sets of size tg − sg and th − sh respectively, which has
intersection size tg − sh. It is easy to verify that i /∈ g ∪ h as required. Finally, we sample r from
µ[Xg, Yh |W].

The expected information cost is low. To bound the information cost, we use the first view of the distri-
bution of (i,g,h). By Equation (1), the expected information cost is at most

E
i,g,h,r

(Iνi,g,h,r (X;M))

= E
i,g,h,r

(Iµ (Xi;M | (Xg, Yh) = r,W))

= E
i,g,h

(Iµ (Xi;M | Xg, Yh,W))

= E
κ,sg ,tg ,sh,th

(Iµ
(
Xκ(sg);M | Xκ([sg+1,tg]), Yκ([sh+1,th]),W

)
)

since sg is uniform between 1 and n/4, and by chain rule

=
4

n
· E
κ,tg ,sh,th

(Iµ
(
Xκ([1,n/4]);M | Xκ([n/4+1,tg]), Yκ([sh+1,th]),W

)
)

≤ 4

n
· |M |

= O(C/n).

The expected error probability is low. By Equation (2) and Jensen’s inequality, it suffices to upper bound
Ei,g,h,r[Iµ(Yi;M | Xi, (Xg, Yh) = r,W)] and Ei,g,h,r[Iµ(Xi;O | Yi,M, (Xg, Yh) = r,W)].

15

The first term can be upper bounded via the second view of the distribution of (i,g,h).

E
i,g,h,r

(Iµ(Yi;M | Xi, (Xg, Yh) = r,W))

= E
i,g,h

(Iµ(Yi;M | Xi, Xg, Yh,W))

= E
κ,sg ,tg ,sh,th

(Iµ(Yκ(sh);M | Xκ([sg ,tg]), Yκ([sh+1,th]),W))

=
4

n
· E
κ,sg ,tg ,th

(Iµ(Yκ([n/4+1,n/2]);M | Xκ([sg ,tg]), Yκ([n/2+1,th]),W)).

Note that since sg ≤ n/4 and tg > n/2, the mutual information would be 0 if we do not condition on
W :

Iµ(Yκ([n/4+1,n/2]);M | Xκ([sg ,tg]), Yκ([n/2+1,th]))

= H(Yκ([n/4+1,n/2]) | Xκ([sg ,tg]), Yκ([n/2+1,th]))

− H(Yκ([n/4+1,n/2]) |M,Xκ([sg ,tg]), Yκ([n/2+1,th]))

≤ H(Yκ([n/4+1,n/2]) | Xκ([n/4+1,n/2]))−H(Yκ([n/4+1,n/2]) |M,X, Yκ([n/2+1,th]))

= H(Yκ([n/4+1,n/2]) | Xκ([n/4+1,n/2]))−H(Yκ([n/4+1,n/2]) | X,Yκ([n/2+1,th]))

= 0.

Therefore, by Lemma 4 below, Iµ(Yκ([n/4+1,n/2]);M | Xκ([sg ,tg]), Yκ([n/2+1,th]),W) ≤ log 1
P[W] , and hence

E
i,g,h,r

(Iµ(Yi;M | Xi, (Xg, Yh) = r,W)) ≤ 4

n
· log

1

P[W]
= O

(
1

n
log

1

p

)
.

Similarly, for the second term, we view (i,g,h) as a triple sampled from the third distribution.

E
i,g,h,r

(Iµ(Xi;O | Yi,M, (Xg, Yh) = r,W))

= E
i,g,h

(Iµ(Xi;O | Yi, Xg, Yh,M,W))

= E
κ,sg ,tg ,sh,th

(Iµ(Xκ(tg);O | Xκ([sg ,tg−1]), Yκ([sh,th]),M,W))

=
4

n
· E
κ,sg ,sh,th

(Iµ(Xκ([n/2+1,3n/4]), O | Xκ([sg ,n/2]), Yκ([sh,th]),M,W)).

Since sh ≤ n/2 and th > 3n/4, Xκ([n/2+1,3n/4]) andO are independent if we do not condition onW . Thus,
by Lemma 4,

E
i,g,h,r

(Iµ(Xi;O | Yi,M, (Xg, Yh) = r,W)) ≤ 4

n
· log

1

P[W]
= O

(
1

n
log

1

p

)
.

By Equation (2) and Jensen’s inequality, the error probability is at most

O

(
E

i,g,h,r

(√
Iµ(Yi;M | Xi, (Xg, Yh) = r,W) +

√
Iµ(Xi;O | Yi,M, (Xg, Yh) = r,W)

))
≤ O

(√
E

i,g,h,r
(Iµ(Yi;M | Xi, (Xg, Yh) = r,W)) +

√
E

i,g,h,r
(Iµ(Xi;O | Yi,M, (Xg, Yh) = r,W))

)

≤ O
(√

1

n
log

1

p

)
.

16

The expected DKL(D′i,g,h,r||D) is small. We have

E
i,g,h,r

DKL(D′i,g,h,r||D) = E
i,g,h,r

DKL

(
µ[Xi, Yi | (Xg, Yh) = r,W]

µ[Xi, Yi]

)

by chain rule for KL divergence,

= E
i,g,h

r∼µ[(Xg,Yh)|W]

DKL

(
µ[Xi | (Xg, Yh) = r,W]

µ[Xi]

)

+ E
i,g,h

(r,x)∼µ[(Xg,Yh,Xi)|W]

DKL

(
µ[Yi | Xi = x, (Xg, Yh) = r,W]

µ[Yi | Xi = x]

)

since i /∈ g ∪ h and instances are independent,

= E
i,g,h

r∼µ[(Xg,Yh)|W]

DKL

(
µ[Xi | (Xg, Yh) = r,W]

µ[Xi | (Xg, Yh) = r]

)

+ E
i,g,h

(r,x)∼µ[(Xg,Yh,Xi)|W]

DKL

(
µ[Yi | Xi = x, (Xg, Yh) = r,W]

µ[Yi | Xi = x, (Xg, Yh) = r]

)

For the first term, we view (i,g,h) as a triple sampled via the first distribution. Thus, we have

E
i,g,h

r∼µ[(Xg,Yh)|W]

DKL

(
µ[Xi | (Xg, Yh) = r,W]

µ[Xi | (Xg, Yh) = r]

)

= E
κ,sg,tg,sh,th

r∼µ[(Xκ([sg+1,tg]),Yh)|W]

DKL

µ[Xκ(sg) |
(
Xκ([sg+1,tg]), Yh

)
= r,W]

µ[Xκ(sg) |
(
Xκ([sg+1,tg]), Yh

)
= r]

by chain rule and the fact that sg is uniform between 1 and n/4,

=
4

n
· E

κ,tg,sh,th
r∼µ[(Xκ([n/4+1,tg]),Yh)|W]

DKL

µ[Xκ([1,n/4]) |
(
Xκ([n/4+1,tg]), Yh

)
= r,W]

µ[Xκ([1,n/4]) |
(
Xκ([n/4+1,tg]), Yh

)
= r]

≤ 4

n
· log

1

P[W]
.

Similarly, to bound the second term, we view (i,g,h) as a triple sampled from the second distribution

17

above.

E
i,g,h

(r,x)∼µ[(Xg,Yh,Xi)|W]

DKL

(
µ[Yi | Xi = x, (Xg, Yh) = r,W]

µ[Yi | Xi = x, (Xg, Yh) = r]

)

= E
κ,sg,tg,sh,th

r′∼µ[(Xκ([sg,tg]),Yκ([sh+1,th]))|W]

DKL

µ[Yκ(sh) | (Xκ([sg ,tg]), Yκ([sh+1,th])) = r′,W]

µ[Yκ(sh) | (Xκ([sg ,tg]), Yκ([sh+1,th])) = r′]

=

4

n
· E

κ,sg,tg,th
r′∼µ[(Xκ([sg,tg]),Yκ([n/2+1,th]))|W]

DKL

µ[Yκ([n/4+1,n/2]) |
(
Xκ([sg ,tg]), Yκ([n/2+1,th])

)
= r′,W]

µ[Yκ([n/4+1,n/2]) |
(
Xκ([sg ,tg]), Yκ([n/2+1,th])

)
= r′]

≤ 4

n
· log

1

P[W]
.

Thus, the expected KL divergence Ei,g,h,rDKL(D′i,g,h,r||D) is at most O(1
n log 1

p).

Finally, since mutual information, error probability and KL divergence are all non-negative, by Markov’s
inequality and union bound, there exists a quadruple (i,g,h, r) such that

1. DKL(D′i,g,h,r||D) ≤ O(1
n log 1

p);

2. the information cost of πi,g,h,r on input pair drawn from D′i,g,h,r is at most O(C/n);

3. the error probability of πi,g,h,r over a random instance drawn from D′i,g,h,r is at most O(
√

1
n log 1

p).

This proves the lemma.

The following appears as [BRWY13, Lemma 19].

Lemma 4. A,B are independent conditioned on R, then for any event W , I(A;B | R,W) ≤ log 1
P[W] .

4.3 n-fold UR⊂ lower bound

Lemma 5. There is a input distributionDur for UR⊂, such that for any distributionD′ withDKL(D′||Dur) ≤
η, any one-way communication protocol P for UR⊂ with error probability δ over D′ must have information
cost (i.e., I(S;M)) at least Ω(log 1

δ log2(U/ log 1
δ)), as long as η ≤ O(δ2).

The proof of Lemma 5 is similar to that of Theorem 2 [KNP+17], and is deferred to Appendix B. Now
we are ready to prove Lemma 2, the communication lower bound for n-fold UR⊂.

Proof of Lemma 2. Consider any one-way protocol with communication cost C and error probability δ for
n-fold UR⊂ on instances sampled from Dnur. Then by Lemma 3, there exists a protocol τ and an input
distribution D′ for UR⊂ such that

• DKL(D′||Dur) ≤ O
(

1
n log 1

1−δ

)
≤ O(δ/n) and

• when input pair (S, T) is drawn from D′, π has information cost I(S;M) ≤ O(C/n) and computes

f with probability 1−O
(√

1
n log 1

1−δ

)
≥ 1−O(

√
δ/n).

Finally, by Lemma 5, we have C/n ≥ Ω(log n
δ log2(n/ log n

δ)). When δ ≥ 2−n
1−ε

, we have C ≥
Ω(n log n

δ log2 n). This proves the lemma.

18

References

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 459–467, 2012.

[BBCR13] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive commu-
nication. SIAM J. Comput., 42(3):1327–1363, 2013.

[BJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics ap-
proach to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732,
2004.

[BRWY13] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct products in com-
munication complexity. In 54th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 746–755, 2013. Full version appeared as Electronic Colloquium on Computa-
tional Complexity (ECCC) 19: 143, 2012.

[KKM13] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polyloga-
rithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1131–1142, 2013.

[KNP+17] Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P. Woodruff, and
Mobin Yahyazadeh. Optimal lower bounds for universal relation, and for samplers and finding
duplicates in streams. In 58th IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 475–486, 2017.

[MWY13] Marco Molinaro, David P. Woodruff, and Grigory Yaroslavtsev. Beating the direct sum the-
orem in communication complexity with implications for sketching. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1738–
1756, 2013.

Appendix

A The AGM sketch for small failure probability

The analysis of the AGM sketch in [AGM12] shows that dynamic spanning forest can be solved with failure
probability δ = 1/ poly(n) using O(n log3 n) bits of memory. We remark here that the same algorithm
but with a different setting of parameters can achieve arbitrarily small failure probability δ ∈ (0, 1) using
O(n log(n/δ) log2 n) bits of memory, showing that our lower bound from Theorem 3 is optimal for any
δ > 1/2n

1−Ω(1)
. This modification can also be used to achieve anO(log(n/δ) log2 n) bit message length per

vertex in the distributed model of Section 3. We note that the usual technique to achieve success probability
amplification via parallel independent repetition and returning the “median” or some such result is not
applicable, since a graph may have exponentially many spanning forests and each parallel repetition may
output a different one. Thus it would not be clear which spanning forests output across the repetitions are
valid, i.e. use edges that actually exist in the graph, as all those returned may be distinct, even if correct.

First we recall the support-finding problem variant described in [KNP+17].

19

Definition 1. In the turnstile streaming problem support-findingk(δ1, δ2), there is a vector z ∈ Rn receiving
turnstile streaming updates, and the answer to query() must behave as follows:

• With probability at most δ1, the output can be ‘Fail’.

• With probability at most δ2, the output can be arbitrary.

• Otherwise, the output should be any subset of size min{k, ‖z‖0} from support(z).

We henceforth define t = max{k, log(1/δ1)}.

Theorem 4 ([KNP+17]). For any k ≥ 1 and 0 < δ1, δ2 < 1, there is a solution to support-findingk(δ1, δ2)
using O((t log n + log(n/δ2)) log(n/t)) bits of memory. Furthermore the memory contents of this data
structure D can be represented by a linear sketch, i.e. Πz for some matrix Π.

AGM sketch:
initialization

1. δ′ := min{1/(6e), log(n/δ)/ logn}
2. R := dlog3/2 ne+ max{dlog3/2 ne, log(2/δ)/ log(1/(6eδ′))}
3. for u = 1, . . . , n:

for r = 1 . . . R:
initialize data structure Du,r from Theorem 4 for support-finding1(δ′, δ

nR
) for vector zu ∈ R(n2) initialized

to 0, so that Du,r stores Πrzu in memory.

update(u, v,∆) // ∆ = +1 signifies adding edge (u, v) to G, and ∆ = −1 signifies deleting the edge; wlog assume u < v
1. for r = 1 . . . R:

Du,r.update((u, v),+∆) // i.e. process the change (zu)(u,v) ← (zu)(u,v) + ∆
Dv,r.update((u, v),−∆)

query()
1. F ← ∅ // final spanning forest we output
2. S ← {{1}, . . . , {n}} // current connected components in F
3. for r = 1, . . . , R:
4. A← ∅ // edges to be added to F in this iteration
5. for s ∈ S:

(u, v)← Ds,r.query() // Ds,r denotes the data structure obtained from summing
∑
w∈s Πw,rzw

A← A ∪ {(u, v)}
6. F ← F ∪A
7. for (u, v) ∈ A:

// merge connected components linked by the edge (u, v)
identify the sets su, sv containing u (resp. v) in S; remove them each from S and insert their union into S.

8. return F

Figure 5: Dynamic spanning forest algorithm via the AGM sketch. We assume δ < 1/nC for some large
constant C, since otherwise the desired O(n log3 n) bits of memory is already achieved in [AGM12].

We now give an overview and analysis of the AGM sketch (see Figure 5). We reiterate that the algorithm
and analysis presented here are essentially the same as that in the original work [AGM12], though we present
all details here to point out what changes need to be made to achieve arbitrarily small failure probability δ.
Specifically, the only differences in the algorithm in Figure 5 and that in the original work [AGM12] which
achieved failure probability 1/ poly(n) is the setting of δ′ in initialization (in [AGM12] δ′ was set to 1/10),
which also implies a difference in the value of R. We henceforth assume δ < 1/ poly(n) since otherwise
the [AGM12] analysis already applies.

The sketch’s query algorithm to output the spanning forest is iterative, with R rounds. The algorithm
explicitly maintains a partition of [n] into connected pieces, initially the partition with n singletons, then in

20

each iteration queries each partition for an edge e leaving that partition (if one exists) to then merge with
some other partition which is non-maximally connected. We then add all such edges e found in any given
iteration to a forest F , which we return at the end of the R rounds. The intent is for these partitions to all
be maximal connected components and for F to be a spanning forest by the end of the Rth round. We find
edges to merge non-maximal components as follows. Each vertex u stores R sketches, using independent
randomness, of the vector zu ∈ R(n2) which is the (signed) edge-incidence vector for vertex u. That is, if
(u, v) is in the graph then (zu)(u,v) will be ±1, with the sign determined by whether u < v. We let Du,r

for r = 1, . . . , R denote these r sketches, each of which solves support-finding1(δ′, δ′′) using the space
promised by Theorem 4, where δ′′ = δ/(2nR) as seen in Figure 5. Each Du,r’s memory contents is Πrzu
for some matrix Πr. Then for A ⊂ [n], we can define DA,r as the data structure whose memory is ΠrzA
with zA :=

∑
u∈A zu. The vector zA has the property that its support is exactly the set of edges leaving A in

G, so that a correctly answered query to DA,r provides an edge leaving A (if one exists). The space used is

O(nR(log(1/δ′) log n+ log(nR/δ)) log n). (3)

We now turn to setting δ′, R. Note that if the support-finding1 data structures never erred, we could take
R ≤ dlog2 ne to find a spanning forest since the number of non-maximal components starts off as at most
n and at least halves after each round. Now let us take probabilistic errors into account. First, we condition
on no Du,r ever outputting a non-existent edge, which happens with probability 1 − δ/2 by our setting of
δ′′ and a union bound. Next, call a round “good” if at most k/3 non-maximal components fail to find an
outgoing edge in that round, i.e. output ‘Fail’. Note that in any good round, the number of non-maximal
connected components decreases from k to at most ((1 − 1/3)k)/2 + k/3 = 2k/3. Thus F is a spanning
forest after at most dlog3/2 ne good rounds. In any round with k non-maximal components we expect at
most δ′k of them to fail to find an outgoing edge via the support-finding1 data structures, so the probability
the round is bad is at most 3δ′ by Markov’s inequality. A simple calculation (see Lemma 6) then shows
that if R ≥ dlog3/2 ne + max{dlog3/2 ne,Ω(log(1/δ)/ log(1/δ′))}, we will have at least dlog3/2 ne good
rounds with probability 1− δ/2, as desired. Substituting for R in (3), our space (in bits) is

O(n(log n+ log(1/δ)/ log(1/δ′))(log(1/δ′) log n+ log(n/δ)) log n)

≤ O(n(

α︷ ︸︸ ︷
log n+ log(n/δ)/ log(1/δ′))(

β︷ ︸︸ ︷
log(1/δ′) log n+ log(n/δ)) log n).

Observe β = α · log(1/δ′). We can thus asymptotically minimize both α, β simultaneously by setting
log(1/δ′) = Θ(log(n/δ))/ log n, which brings our final space bound to O(n log(n/δ) log2 n) bits (though
for technical reasons, see Lemma 6, we set δ′ to be the minimum of this quantity and some constant).

Lemma 6. For R, δ′ as in Figure 5, the probability of having less than dlog3/2 ne good rounds is at most
δ/2.

Proof. As mentioned above, the probability a round is bad is at most 3δ′ by Markov’s inequality. Thus the
probability of not having the desired number of good rounds is at most(

R

R− dlog3/2 ne

)
(3δ′)R−dlog3/2 ne ≤ (3eδ′(1 +

dlog3/2 ne
R− dlog3/2 ne

))R−dlog3/2 ne

≤ (6eδ′)log(2/δ)/ log(1/(6eδ
′))

= δ/2.

21

The above yields the following theorem.

Theorem 5. The AGM sketch achieves success probability 1− δ using O(n log(n/δ) log2 n) bits of space.

We note that the above sketch can easily be implemented in the distributed sketching model of Section 3
by having each vertex u simply send the memory contents of Du,r for r = 1, . . . , R to the referee as a
message, who can then run the query algorithm. Thus we also have the following corollary.

Corollary 1. In the distributed sketching model with shared public randomness, for any δ ∈ (0, 1) panning
forest can be solved with the maximum message length being at most O(log(n/δ) log2 n) bits.

B Proof of Lemma 5

Hard input distributionDur. Letm =
√
U log 1

δ be the size of set S, α = 20
log 1/δ . Let ri =

⌊
m · (1− (1− α)i)

⌋
for i = 0, . . . , R − 1 be all possible sizes of set T , where R =

⌊
1

20α log(αm)
⌋
. In our hard distribution

Dur, Alice’s input set S is a uniformly random subset of [n] of size m. Then we sample a uniformly random
integer i ∈ [0, R− 1], and sample a random subset T ⊆ S of size ri.

To prove the lemma, we are going to use a randomized encoding scheme to encode a random set S of
size m. The encoding and decoding procedures will have access to shared random bits, and the encoding
procedure has access to additional private random bits. Then we show that the decoding procedure always
reconstructs S, but on the other hand, the encoding does not reveal enough information about S.

Fix a D′ such that DKL(D′||Dur) ≤ η. First, without loss of generality, we may assume that for S0 in
the support of D′[S], we have D′[T | S = S0] = Dur[T | S = S0], i.e., T is identically distributed in D′
and Dur conditioned on S. This is because by chain rule

DKL(D′||Dur) = DKL(D′[S]||Dur[S]) + E
S0∼D′[S]

DKL

(
D′[T | S = S0]

Dur[T | S = S0]

)
.

Setting D′[T | S = S0] to Dur[T | S = S0] could only decrease the KL divergence. Also, the information
cost I(S;M) does not depend on the T . Finally, by Pinsker’s inequality, it may only increase the error
probability by O(

√
η) ≤ O(δ).

Encoding Enc(S). Given a set S drawn from D′[S], we use the following encoding procedure.

1. Generate the random bits used by protocol P (privately), and simulate the Alice part of the protocol
with input S. Write down the message M .

2. Sample a uniformly random permutation π over [n] using public randomness. Set T = A = ∅.

3. For i = 0, . . . , R− 1, do the following:

(a) Simulate Bob on input T and message M , let xi be Bob’s output;
(b) If xi ∈ S \ T , A := A ∪ {xi} and T := T ∪ {xi}, write down 1;
(c) Otherwise write down 0;
(d) Fill T up to ri+1 elements (let rR = m) according to π, i.e., find all elements x in S \ T , and

add the ri+1 − |T | with smallest π(x) to T .

4. Write down the set S \A.

Note that with our setting of parameters, r0 = 0 and ri+1 − ri ≥ 1.

22

Decoding. The following decoding procedure reconstructs S.

1. Read message M , and set A = S \A.

2. Set T = ∅.

3. For i = 0, . . . , R− 1, do the following:

(a) Simulate Bob on input T and message M , let xi be Bob’s output;

(b) If the next bit is 1, T := T ∪ {xi};
(c) Fill T up to ri+1 elements (let rR = m) according to π and A, i.e., find all elements x in A \ T ,

and add the ri+1 − |T | with smallest π(x) to T .

4. Output T .

Analysis. It is straightforward to verify that for any set S, the decoding procedure always successfully
reconstructs S. In the following, we are going to estimate the amount of information Enc(S) reveals about
S (conditioned on the public random bits π): I(Enc(S);S | π). For each step of the encoding procedure:

1. This step writes down the message M , since both M and S are independent of the public random bits
π, I(M ;S | π) = I(M ;S);

2. No bit is written in this step;

3. Exactly R bits are written;

4. The entropy of this part is at most H(|A|) + EA[log
(

U
m−|A|

)
], where |A| ≤ R.

We have

log

(
U

m

)
− log

(
U

m− |A|

)
= log

(m− |A|)!(U −m+ |A|)!
m!(U −m)!

= log
(U −m+ 1)(U −m+ 2) · · · (U −m+ |A|)

m(m− 1) · · · (m− |A|+ 1)

≥ log
(U −m)|A|

m|A|

= |A| log
U −m
m

.

Since S can be reconstructed from Enc(S) and π, we have H(S | Enc(S), π) = 0. Therefore, we must
have

H(S) = I(Enc(S);S | π)

= I(M ;S | π) + I(Enc(S) \M ;S |M,π)

≤ I(M ;S) +H(Enc(S) \M)

≤ I(M ;S) +R+O(logR) +

(
log

(
U

m

)
− E[|A|] · log

U −m
m

)
.

23

Since S is drawn from D′[S], DKL(D′[S]||Dur[S]) ≤ η and Dur[S] is uniform, H(S) ≥ log
(
U
m

)
− η.

Thus, I(M ;S) ≥ E[|A|] · log U−m
m −O(R). It suffices to lower bound the expected size of A. By linearity

of expectation, E[|A|] =
∑R−1

i=0 P[xi ∈ A], where xi is the element Bob outputs in the i-th round of the
encoding.

xi ∈ A if and only if protocol P outputs a correct answer on the set T of round i, which has size ri.
If T was a uniformly random subset of S of size ri, this probability would be P[P is correct | |T | = ri].
However, T might not be uniform, since it depends on the outputs of the previous rounds.

The process of generating T for round i can be viewed as follows: if x0 is a correct output, add a
uniformly random subset of S of size r1 − r0 which contains x0 to T (i.e., a uniformly random subset
conditioned on it containing x0), otherwise, add a uniformly random subset of S of size r1 − r0 to T ; if
x1 is a correct output, add a random subset of size r2 − r1 containing x1 to T , otherwise, add a random
subset of size r2 − r1; and so on. If all rounds were adding uniformly random subsets to T , T would have
been uniform. But in a subset of the rounds, we are adding random subsets containing certain elements.
We claim that T is actually not far from uniform. The proof of the following claim is similar to that of
[KNP+17, Lemma 5].

Claim 1. In round i, for any T0, P[T = T0] ≤ 1

(mri)
· δ−0.9.

That is, the probability of each singleton event may only increase by a factor of δ−0.9. Assuming the
claim, we have

P[xi /∈ A] ≤ P[P is incorrect | |T | = ri] · δ−0.9.

Therefore, the expected size of A is at least

E[|A|] = R−
R−1∑
i=0

P[xi /∈ A]

≥ R−
R−1∑
i=0

P[P is incorrect | |T | = ri] · δ−0.9

= R−R · δ · δ−0.9

= R(1− δ0.1).

As long as δ is bounded away from 1, E[|A|] ≥ Ω(R) and the information cost I(M ;S) is at least Ω(R ·
log U−m

m) = Ω(log 1
δ log2(U/ log 1

δ)).
Now the only missing piece of the proof is Claim 1, which we prove in the following.

Proof of Claim 1. Let us upper bound the probability that T = T0 for any T0 in round i:

P[T = T0] ≤
i−1∏
j=0

(ri−rj−1
rj+1−rj−1

)(m−rj−1
rj+1−rj−1

)
=

i−1∏
j=0

(ri − rj − 1)!(m− rj+1)!

(ri − rj+1)!(m− rj − 1)!

=
(ri − r0)!(m− ri)!
(ri − ri)!(m− r0)!

i−1∏
j=0

(ri − rj − 1)!(m− rj)!
(ri − rj)!(m− rj − 1)!

24

=
1(
m
ri

) i−1∏
j=0

m− rj
ri − rj

≤ 1(
m
ri

) i−1∏
j=0

m−m(1− (1− α)j) + 1

m(1− (1− α)j)−m(1− (1− α)i)− 1

≤ 1 + o(1)(
m
ri

) i−1∏
j=0

(1− α)j

(1− α)j − (1− α)i

=
1 + o(1)(

m
ri

) i∏
j=1

1

1− (1− α)j
.

Note that (1− α)j ≤ 1− 1
3αj as long as 1 ≤ j ≤ 1/α. We have∏

1≤j≤1/α

1

1− (1− α)j
≤

∏
1≤j≤1/α

3

αj
≤ (3/α)1/α · (eα)1/α = (3e)1/α.

On the other hand, when j > 1/α, 1
1−(1−α)j ≤ e

2(1−α)j . Hence,

∏
j>1/α

1

1− (1− α)j
≤ e2

∑
j>1/α(1−α)j ≤ e2/(eα).

Therefore, we have P[T = T0] ≤ 1+o(1)

(mri)
· (3e · e2/e)1/α ≤ 1

(mri)
· δ−0.9.

25

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

