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Abstract

In this paper we study the problem of deterministic factorization of sparse polynomials. We
show that if f ∈ F[x1, x2, . . . , xn] is a polynomial with s monomials, with individual degrees
of its variables bounded by d, then f can be deterministically factored in time spoly(d) logn.
Prior to our work, the only efficient factoring algorithms known for this class of polynomials
were randomized, and other than for the cases of d = 1 and d = 2, only exponential time
deterministic factoring algorithms were known.

A crucial ingredient in our proof is a quasi-polynomial sparsity bound for factors of sparse
polynomials of bounded individual degree. In particular we show if f is an s-sparse polynomial
in n variables, with individual degrees of its variables bounded by d, then the sparsity of each
factor of f is bounded by sO(d2 logn). This is the first nontrivial bound on factor sparsity for
d > 2. Our sparsity bound uses techniques from convex geometry, such as the theory of Newton
polytopes and an approximate version of the classical Carathéodory’s Theorem.

Our work addresses and partially answers a question of von zur Gathen and Kaltofen (JCSS
1985) who asked whether a quasi-polynomial bound holds for the sparsity of factors of sparse
polynomials.

1 Introduction

Polynomial factorization is one of the most fundamental questions in computational algebra. The
problem of multivariate polynomial factorization asks the following: Given f ∈ F[x1, x2 . . . , xn]
a multivariate polynomial over a field F, compute each of the irreducible factors of f . Other
than being natural and central, the problem has many applications in areas such as list decoding
[Sud97, GS99], derandomization [KI04] and cryptography [CR88].

There has been a large body of research studying efficient algorithms for this problem (see e.g.
[GG99]) and numerous randomized algorithms were designed [GK85, Kal87, Kal89, KT90, GG99,
Kal03, Gat06]. However, the question of whether there exist deterministic algorithms for this
problem remains an important and interesting open question (see [GG99, Kay07]).

Another fundamental question in algebraic complexity is the problem of Polynomial Identity Testing
(PIT). The problem of PIT asks the following: Given a polynomial f ∈ F[x1, x2, . . . , xn] represented
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by a small arithmetic circuit, determine if the polynomial is identically 0. In a recent work, Kopparty
et al [KSS14] showed that the problem of derandomizing multivariate polynomial factorization
is equivalent to the problem of derandomizing polynomial identity testing for general arithmetic
circuits. They showed this result in both the white-box and the black-box settings. We already
know deterministic PIT algorithms for several interesting classes of arithmetic circuits, and this
raises the very natural question of whether we can derandomize polynomial factoring for these
classes. Perhaps the most natural such class of polynomials is the class of sparse polynomials.

The sparsity of f , denoted ‖f‖ , is the number of monomials (with non zero coefficients) appearing
in f . For instance, the sparsity of the polynomial x1 + x3

2 + x3x4 + 20 is four.

Factoring of sparse polynomials has been studied for over three decades. It was initiated by the work
of von zur Gathen and Kaltofen [GK85] that gives the first randomized algorithm for factorization of
sparse multivariate polynomials. The runtime of this algorithm has polynomial dependence on the
sparsity of the factors of the underlying polynomial, and thus, very naturally, this work raised the
question of whether one can find efficient bounds on the sparsity of factors of a sparse polynomial.

In this paper, we consider the following two problems: (1) Prove efficient bounds on the sparsity
of the factors of sparse polynomials. (2) Derandomize polynomial factorization for sparse polyno-
mials1.

Indeed, these are extremely natural questions to study. However already for general fields, we know
that one cannot hope to prove a strong sparsity bound for the factors of a sparse polynomial. (We
discuss two interesting examples of polynomials whose factors have a big blow-up in the number of
monomials in Section 4.1).

In this paper, we focus our attention on the class of sparse polynomials with bounded individual
degree, i.e. for some parameter d, we limit the degree of each variable xi to be at most d.

One very interesting such class of polynomials is the class of sparse multilinear polynomials (d = 1).
This is the simplest case of sparse polynomials with bounded degree. In [SV10], Shpilka and
Volkovich gave a derandomization for the problem of polynomial factorization for this class. Factor
sparsity bounds are fairly easy to show for this class of polynomials, and armed with the sparsity
bound and a technique for derandomizing a certain PIT problem that arises, they were able to
derandomize factoring in this case. This was extended to the case d = 2 in the work of Volkovich
[Vol17], again by first showing a sparsity bound for the factors of polynomials of individual degree
2, and then showing how to derandomize the polynomial factorization problem. For d > 2, the
techniques used by the above works for proving sparsity bounds on the factors of a polynomial
seem to break down.

In a recent beautiful work, Oliveira [dO15] showed that the factors of sparse polynomials of bounded
individual degree can be computed by small depth-7 circuits. This again raises the very natural
question: What is the size of the best depth-2 circuit computing the factors of a sparse polynomial
of bounded individual degree. This is precisely the problem of proving sparsity bounds for the
factors of a sparse polynomial of bounded individual degree, which is a question we study in this
paper.

The other question that we address in this work is the problem of deterministically factoring sparse
polynomials of bounded individual degree. A bound on the sparsity of the factors of such a poly-
nomial just implies that the factors will have an efficient representation as a sum of monomials.

1These questions were raised as important open questions in a recent survey by Forbes and Shpilka [FS15].
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However in order to actually obtain the factors deterministically, there are several additional de-
randomization hurdles to overcome.

1.1 Our Results

In this paper we give the first deterministic quasi-polynomial time algorithm for factoring sparse
polynomials of bounded individual degree. Prior to our work, only efficient randomized factoring
algorithms were known for this class of polynomials, and other than for the cases of d = 1 [SV10]
and d = 2 [Vol17] only exponential time deterministic factoring algorithms were known.

A crucial ingredient of our proof is a quasi-polynomial size sparsity bound for factors of sparse poly-
nomials of bounded individual degree d. In particular, we show that if f is an s-sparse polynomial
in n variables with individual degrees of its variables bounded by d, then f can be deterministic
factored in time spoly(d) logn. This is the first nontrivial bound on factor sparsity for any d > 2.
Our sparsity bound uses techniques from convex geometry, such as the theory of Newton polytopes
and an approximate version of the classical Carathéodory’s Theorem.

We say that a polynomial f ∈ F[x1, x2, . . . , xn] has sparsity s if it has at most s nonzero monomials.
We say that it has individual degree at most d if the maximum degree in each of its variables is
bounded above by d.

We formally state below our factor sparsity bound and then our result on deterministic factoring.

Theorem 1 (Factor Sparsity Bound). Let F be an arbitrary field (finite or otherwise) and let
f ∈ F[x1, x2, . . . , xn] be a polynomial of sparsity s and individual degrees at most d, then the
sparsity of every factor of f is bounded by sO(d2 logn).

Remark 1.1. Note that for d = polylog(n), we obtain a quasi-polynomial sparsity bound on the
factors of f . Indeed when s = poly(n), for any d = o(

√
n/ log2 n), we obtain a nontrivial sparsity

bound on the factors of f .

Given a polynomial f ∈ F[x1, x2, . . . , xn], the complete factorization of f is a representation of f
as a product he11 · · ·hemm , where h1, h2, . . . , hm-s are pairwise coprime, irreducible polynomials, and
e1, e2, . . . , em are positive integers. This representation is unique up to reordering of the hi.

Theorem 2 (Main). There exists a deterministic algorithm that given a polynomial f ∈
F[x1, x2, . . . , xn] of sparsity s and individual degrees at most d, computes the complete factorization
of f , using sO(d7 logn) · poly(cF(d2)) field operations, where:

1. cF(d) = poly(` · p, d), if F = Fp`.

2. cF(d) = poly(d, t), where t is maximum bit-complexity of the coefficients of f , if F = Q.

Remark 1.2. In the statement of Theorem 2, cF(d) denotes the time of the best known algorithm
that factors a univariate polynomial of degree d over F.

Remark 1.3. A more refined version of Theorem 2 is given in Theorem 5.7. The run time for the
deterministic factoring algorithm in Theorem 5.7 gives the precise dependence on the sparsity bound
for factors of sparse polynomials. In particular, if one could improve the sparsity bound, then one
could plug it into the statement of Theorem 5.7 to get an improved run time for the deterministic
factoring algorithm.
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1.2 Related Work

Over the last three decades, the question of derandomizing sparse polynomial factorization has seen
only very partial progress.

The study of sparse polynomial factorization was initiated in [GK85], where the first randomized
algorithm for the factorization of sparse polynomials was given. The runtime of this algorithm was
polynomial in the sparsity of the factors, and in this work, von zur Gathen and Kaltofen explicitly
raised the question of proving improved sparsity bounds for the factors of sparse polynomials.

In [DdO14], Dvir and Oliveira gave an elegant approach for bounding the sparsity of factors of
a general sparse polynomial by studying the Newton polytopes of the polynomial and its factors.
This approach did not eventually lead to an efficient sparsity bound. However it did inspire our
work and our approach of using techniques from convex geometry to bound the factors of sparse
polynomials.

In [SV10], Shpilka and Volkovich gave efficient deterministic factoring algorithms for sparse mul-
tilinear polynomials. This result was extended in [Vol15] to the model of sparse polynomials that
split into multilinear factors. In [Vol17], Volkovich gave an efficient deterministic factorization al-
gorithm for sparse multiquadratic polynomials. The results [SV10, Vol17] correspond to the special
case when the individual degree d equals 1 and 2, respectively. For d ≥ 3, the proof techniques of
both these works broke down, and a new approach was needed.

The problem of multivariate polynomial factorization for polynomials of bounded individual de-
gree was also studied in [dO15]. In this work, among other things, it was shown that if
f ∈ F[x1, x2, . . . , xn] is an s-sparse polynomial of individual degree d, where F is a field of character-
istic 0, then any factor of f can be computed by a depth-7 circuit of size poly(dnd, s). In particular
if d is constant, then this shows that any factor of f can be computed by a depth-7 circuit with
only a polynomial blow-up in size. This is in contrast to our work, where we want to bound the
number of monomials in the factors of f . In other words, we attempt to represent the factors of f
by the more natural class of depth-2 circuits and then understand the size complexity (which we
show is quasi-polynomial). We also would like to point out that our result holds over any field F.

Another work that is relevant in this context is the work of Kopparty et al [KSS14] which shows
an equivalence between the problems of polynomial identity testing (PIT) and polynomial factor-
ization. In particular, it shows that if one can derandomize PIT for the class of general arithmetic
circuits, then one can derandomize polynomial factorization for that same class. Since there are
several natural examples of classes of polynomials for which we know deterministic PIT algorithms,
this naturally raises the question (which was indeed raised in [KSS14]) of whether one can deran-
domize factoring for the corresponding classes of polynomials. Sparse polynomials are, perhaps,
the most natural example of such a class, and our work makes the first significant advance in this
direction.

1.3 Proof overview

Our proof of the deterministic factoring algorithm has two self- contained and independently in-
teresting components. We first prove a sparsity bound on the factors of sparse polynomials with
bounded individual degree (Theorem 1). We then show how such a sparsity bound can be used
effectively to derandomize factoring of this same class of polynomials (Theorem 2).
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We elaborate on both these components below.

1.3.1 Proof Overview for the Sparsity Bound: Theorem 1

Our proof uses tools from convex geometry such as the theory of Newton polytopes and an approx-
imate version of Carathéodory’s theorem.

Suppose that f, g, h ∈ F[x1, x2, . . . , xn] are polynomials such that f = g · h. We want to show that
if f is s-sparse and with bounded individual degree d, then g and h are both at most s′ sparse,
where s′ = sO(d2 logn).

We will show this by instead showing the following slightly more general result. For a polynomial
f , let ‖f‖ denote the sparsity (i.e. the number of nonzero monomials) of f . Suppose that g is any
polynomial of individual degree d such that ‖g‖ = s, and suppose that f = g·h (with no assumptions

on the degrees of f and h), then ‖f‖ ≥ s
1

O(d2 logn) . In particular, there is no polynomial h that one
can multiply g with, so that the product g · h has an overwhelming cancellation of monomials.

Newton Polytopes and Connection to the Sparsity Bound Let f ∈ F[x1, x2, . . . , xn] be a
polynomial such that:

f =
∑

ai1i2...inx
i1
1 x

i2
2 · · ·x

in
n .

One can consider the set

Supp(f) = {(i1, i2, . . . , in) | ai1i2...in 6= 0} ⊆ Rn

of exponent vectors of f . One can then associate a polytope Pf ⊆ Rn, called the Newton polytope
of f , which is the convex hull of points in Supp(f).

A classic fact about Newton polytopes that was observed by Ostrowski [Ost21] in 1921 states that
if f = g · h, then Pf is the Minkowski sum of Pg and Ph, where for two polytopes A and B, their
Minkowski sum A + B is defined to be the set of points {u+ v | u ∈ A and v ∈ B }. Minkowski
sums of polytopes are extremely well-studied and it is not difficult to show that the Minkowski
sum of two polytopes is itself a polytope. Moreover, if we let V (P ) denote the set of vertices
(equivalently corner points) of a polytope P , then

|V (A+B)| ≥ max {|V (A)| , |V (B)|}.

Once we have these basic facts about Newton polytopes and Minkowski sums, it follows that a
lower bound for ‖f‖ (in terms of ‖g‖), follows from a lower bound on |V (Pf )|, and in particular
from a lower bound on |V (Pg)|. Thus, via the theory of Newton polytopes and Minkowski sums,
we see that the monomials of g that correspond to the vertices of Pg are very robust. There is no
way of multiplying g with any other polynomial and obtaining a cancellation of monomials that
will make these special monomials corresponding to the vertices of Pg “disappear”.

Thus for f = g · h, our task of lower bounding ‖f‖ in terms of ‖g‖ has reduced to lower bounding
|V (Pg)|, where Pg is the Newton polytope of a polynomial g such that ‖g‖ = s and g has individual
degree bounded by d. Showing a lower bound on |V (Pg)| will be the main technical core of our
proof of the sparsity bound.

We note that this connection between Newton polytopes and sparsity bounds was first made
in [DdO14] and indeed it inspired the approach taken in this paper.
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Easy Example with Multilinear Polynomials We demonstrate the approach of using Newton
Polytopes for proving sparsity bounds via the following “toy” example of showing a sparsity bound
for multilinear polynomials (i.e, when individual degree is bounded by 1). Suppose that f, g, h ∈
F[x1, x2, . . . , xn] and g is a multilinear polynomial such that f is nonzero and f = g ·h. One can give
the following easy proof by induction on n, of the fact that ‖f‖ ≥ ‖g‖. Let x1 be variable that both
g and h depend on. (If such a variable doesn’t exist then the sparsity bound is trivial.) Moreover
assume WLOG that x1 doesn’t divide h, because if it did, then we could factor it out and work
with the resulting polynomials. Since g is multilinear, we can express g as g = g1x1 + g0, where g1

and g0 are multilinear polynomials not depending on x1, and g1 is nonzero. Let h = hdx
d
1 + . . .+h0,

where hd and h0 are nonzero, and the hi don’t depending on x1. Now,

f = (g1x1 + g0) · (hdxd1 + . . .+ h0) = (g1 · hd)xd+1
1 + . . .+ (h0 · g0).

Thus, ‖f‖ ≥ ‖g1 · hd‖ + ‖h0 · g0‖. By the induction hypothesis, ‖g1 · hd‖ ≥ ‖g1‖ and ‖h0 · g0‖ ≥
‖g0‖. It follows that ‖f‖ ≥ ‖g1‖+ ‖g0‖ = ‖g‖.
Now let us give an alternate proof of the above bound using Newton polytopes. Let Supp(g) ⊆
{0, 1}n be the set of exponent vectors of g. Then notice that no element of Supp(g) can be written
as a nontrivial convex combination of any other points of Supp(g). In particular, every element of
Supp(g) is a vertex of Pg! Thus ‖f‖ ≥ |V (Pf )| ≥ |V (Pg)| = |Supp(g)| = ‖g‖.

Sparsity Bound from Carathéodory’s Theorem Note that in general, for an arbitrary poly-
nomial g, there is no good bound on the number of vertices of Pg in terms of the number of
monomials of g. For instance one can easily construct examples of polynomials g with exponential
in n many monomials, and such that Pg has only n vertices. Here is an example : consider the
polynomial Pg = (x1 + x2 + · · ·+ xn)n. It clearly has exponentially many monomials. However Pg
has only n vertices, which are the scalings of the coordinate vectors by n.

In the case when g has individual degree bounded by d, we will show that a much nicer bound
actually holds. Notice that in this case, Supp(g) ⊆ {0, 1, . . . , d}n. We will show that if E ⊆
{0, 1, . . . , d}n is an arbitrary subset of size s, then the convex hull of E (denoted CS(E)) has at

least s
1

d2·logn vertices. This will immediately imply our sparsity bound.

To show this bound, we will use an approximate version of Carathéodory’s theorem. The classic
version of Carathéodory’s theorem is a fundamental result in convex geometry and it states that if
a point µ ∈ Rn lies in the convex hull of a set V , then µ can be written as the convex combination
of at most n+ 1 points of V .

Now, for a set E ⊆ {0, 1, . . . , d}n, let V (E) denote the vertices of the convex hull of E. It is easy
to see that V (E) ⊆ E. Since every point µ ∈ E is a convex combination of elements of V (E), by
Carathéodory’s theorem, it is a convex combination of at most n+1 elements of V (E). Now E is not
an arbitrary collection of points. It is a subset of {0, 1, . . . , d}n. Suppose we could show the following
strengthened (and wishful) Carathéodory’s theorem in this setting: For E ⊆ {0, 1, . . . , d}n, every
point µ ∈ E is a convex combination of at most k elements of V (E), where k is some bound much
smaller than n + 1. Not only this, the convex combination is a k-uniform convex combination,
i.e. all the coefficients in the convex combination are equal to 1/k. Notice that in such a case, we
can immediately conclude that |E| ≤ |V (E)|k, since each subset of V (E) of size k would “recover”
at most one element of E via a k-uniform convex combination, and each element of E must be
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recovered by some subset of V (E) of size k. If such a result were true for k ≤ d2 log n then it would
imply our sparsity bound!

It unfortunately (and not too surprisingly) turns out that such a wishful theorem is not true.
(Though one needs to work a little to find a counterexample.)

However, very fortunately, something very close does end up being true, and it suffices for our
purpose! A suitable “approximate” version of Carathéodory’s theorem suitably applied implies the
following: For E ⊆ {0, 1, . . . , d}n, every point µ ∈ E can be ε-approximated by a k-uniform convex
combination of elements of V (E), where k = O(d2 log n). Again, (and this time truly) one can
conclude that |E| ≤ |V (E)|k, since each subset of V (E) of size k could “approximately recover” at
most one element of E via a k-uniform convex combination (by the triangle inequality the same
point cannot approximate two different points of E), and each element of E must be approximately
recovered by some subset of V (E) of size k. See Theorem 3.6 for the statement of the approximate
Carathéodory theorem that we use.

1.3.2 Proof Overview for the Factoring Algorithm: Theorem 2

Let f ∈ F[y, x1, x2, . . . , xn] be a multivariate polynomial with individual degrees at most d. While
in general f could have as many as d(n+ 1) factors, our starting point is an observation that if f is
monic2 in y, then every factor of y must also be monic in y. Consequently, f has at most d factors
(total). This makes the monic case much easier to handle, and we first show how to factorize f
when f is monic, and then we show how to extend our algorithm to the general non-monic case.

In the monic case, there are at most d factors. How would we identify these factors? The tradi-
tional approach [GK85, Kal89, KT90] suggests projecting the polynomial into a low-dimensional
space, where the factorization problem is easy. Yet, in order to recover the original factors, the
factorization “pattern” of f should stay the same upon the projection. That is, every irreducible
factor should remain irreducible upon the projection. This is typically achieved by the Hilbert Ir-
reducibility Theorem, which shows that a random projection would achieve this goal. Nonetheless,
derandomizing the Irreducibility Theorem appears to be a challenging task. Instead, we take a
somewhat different approach.

Finding a “good” Projection First, we relax the requirement of maintaining the same fac-
torization “pattern” to a requirement that different irreducible factors do not “overlap” upon pro-
jection (i.e. have no non-trivial gcd). This is a standard processing step in many factorization
algorithms and it is usually taken care of by hitting the Discriminant of the polynomial f (i.e.
∆y(f)). Yet this approach for obtaining our deterministic algorithm presents its challenges, and
it is particularly tricky in the case that the characteristic of the ambient field F is finite (i.e.
char(F) > 0). We show how to go around these problems.

Formally, let f ∈ F[y, x1, x2, . . . , xn] be monic in y and let f(y, x) = he11 (y, x) . . . hekk (y, x) be the
factorization of f(y, x). We will project f to a univariate polynomial in y by setting all the variables
in x to elements of F. In order to guarantee that different irreducible factors have no non-trivial

2a polynomial is monic in a variable xi if the leading coefficient of highest degree of xi in f is equal to 1.See
definition 2.2 for more details.
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gcd after projection, it suffices to find an assignment a ∈ Fn such that

∀i 6= j : gcd (hi(y, a), hj(y, a)) = 1.

This condition translates into finding a single assignment a that hits (i.e. is a nonzero assignment
for) the Resultant, Resy(hi, hj), for all i 6= j (see Section 2.5 for more details). As f is an s-sparse

polynomial, by Theorem 1, each hi is an sO(d2 logn)-sparse polynomial. Hence, by the properties
of the Resultant (Lemma 2.8), Resy(hi, hj) is sO(d3 logn)-sparse polynomial. Consequently, hitting
all the pairwise resultants corresponds to hitting their product, which is a (somewhat) sparse
polynomial. We handle this in a “black-box” fashion. That is, we iterate over all the points in a
hitting set for (somewhat) sparse polynomials (for example using the hitting set of [KS01]).

Finding the “right” Partition As the projection we obtain is no longer required to maintain
the same factorization “pattern”, irreducible factors could split into “pieces” (i.e. further factorize
upon projection) in a way that the same set of “pieces” can emerge from different polynomials.
For example, consider the polynomials f(y, x) = (y2 − x)y and g = y(y − x)(y + x). These
two polynomials have different factorization patterns. However observe that f(y, 1) = g(y, 1) =
y(y − 1)(y + 1). While in both cases, the different “pieces” of the irreducible factors of f and g
do not overlap (i.e. no nontrivial gcd), it is not clear how to group the pieces together to recover
the factorization pattern of the original polynomial. I.e. just by examining the pieces, we cannot
determine what the right partition of the set of factors of f(y, 1) and g(y, 1) should be.

We address this problem by recalling and taking advantage of the fact that a monic polynomial of
degree d can split into at most d pieces! Therefore, the are at most dO(d) possible partitions. We
find the “right” partition by iterating over all of them till we find the right one.

Reconstructing the Factors As before, let f ∈ F[y, x1, x2, . . . , xn] be monic in y and let
f(y, x) = he11 (y, x) . . . hekk (y, x). Given a “good” projection a and the “right” partition, we will
show how to obtain oracle (i.e. “black-box”) access the polynomials h1, . . . hk. Once we can do
this, as Theorem 1 provides us an upper bound on the sparsity of hi-s, we can use a reconstruction
algorithm for sparse polynomials to reconstruct h1, . . . hk, given via an oracle access.

We obtain oracle access to h1, . . . hk by mirroring the factorization algorithm of [KT90]. Given an
input point b ∈ Fn at which we want to compute h1(y, b), . . . hk(y, b), the algorithm uses a as an
anchor point and draws a line to b. We then obtain a problem of bi-variate factorization, which we
know how to solve efficiently. The non-overlapping property of the “pieces” makes it possible to
group the pieces together in the same consistent way for every choice of b. Once we can do this,
this allows us to evaluate the individual factors at b.

Testing the Purported Factors As was discussed earlier, given a polynomial f , the algorithm
will proceeding by trying to reconstruct the factors of f for every projection and every partition.
Some of these projections and partitions will return valid factorizations of f and some might return
garbage. We need to prune out the garbage solutions, which we can do as follows: As each factor of f
is “somewhat” sparse (Theorem 1) and there are at most d of them, given a purported factorization,
we can test if it is a good and valid factorization it by explicitly multiplying out the polynomials.

Clearly, this algorithm will pick up any valid factorization of f (not just the irreducible one). We
will select the irreducible factorization using the simple characterization given in Lemma 2.4.
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Factoring General Sparse Polynomials In order to the extend the above algorithm that works
in the monic case to the more general case of non-monic polynomials, we use a standard reduction
that transforms a general polynomial f ∈ F[x1, x2, . . . , xn] into a monic one f̂ .

More formally, write: f =
k∑
j=0

fj · xjn such that fk 6≡ 0 and the fj-s do not depend on xn. Consider

the polynomial f̂(y, x1, . . . , xn−1) = fk−1
k · f(x1, . . . , xn−1,

y
fk

). We show that if f is an s-sparse

polynomial with individual degrees at most d, then f̂ is an (sd)-sparse polynomial, monic in y, with
individual degrees at most d2.

Finally, we show that f̂ contains all the factors of f that depend on xn, while fk contains the
remaining factors. We recover these remaining factors by recursively factoring fk. Observe that fk
depends on at most n− 1 variables.

Organization of Paper In the next section, we recall some algebraic tools and algebraic algo-
rithms that will be useful for us. In Section 3, we discuss properties of polytopes and their relation
to factor sparsity. Section 4 contains the proof of the sparsity bound along with a discussion on its
tightness. We present and analyze the deterministic factoring algorithm in Section 5. We conclude
with some open questions in Section 6.

2 Preliminaries

2.1 Algebraic Tool Kit

Let F denote a field, finite or otherwise, and let F denote its algebraic closure.

2.2 Polynomials

A polynomial f ∈ F[x1, x2, . . . , xn] depends on a variable xi if there are two inputs α, β ∈ Fn

differing only in the ith coordinate for which f(α) 6= f(β). We denote by var(f) the set of variables
that f depends on. We say that f is g are similar and denote by it f ∼ g if f = αg for some
α 6= 0 ∈ F.

For a polynomial f(x1, . . . , xn), a variable xi and a field element α, we denote with f |xi=α the
polynomial resulting from substituting α to xi. Similarly given a subset I ⊆ [n] and an assignment
a ∈ Fn, we define f |xI=aI to be the polynomial resulting from substituting ai to xi for every i ∈ I.

Definition 2.1 (Line). Given a, b ∈ Fn we define a line passing through a and b as `a,b : F→ Fn,

`a,b(t)
∆
= (1− t) · a+ t · b. In particular, `a,b(0) = a and `a,b(1) = b.

Definition 2.2 (Degrees, Leading Coefficients). Let xi ∈ var(f). We can write: f =
∑d

j=0 fj · x
j
i

such that ∀j : xi 6∈ var(fj) and fd 6≡ 0. The leading coefficient of f w.r.t to xi is defined as

lcxi(f)
∆
= fd. The individual degree of xi in f is defined as degxi(f)

∆
= d. We say that f is monic

in a variable xi if lcxi(f) = 1. We say that f is monic if it is monic in some variable.

It easy to see that for every f, g ∈ F[x1, x2, . . . , xn] and i ∈ [n] it holds: lcxi(f · g) = lcxi(f) · lcxi(g).
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2.3 Factors and Divisibility

Let f, g ∈ F[x1, x2, . . . , xn] be polynomials. We say that g divides f , or equivalently g is a factor of
f , and denote it by g | f if there exists a polynomial h ∈ F[x1, x2, . . . , xn] such that f = g · h. We
say that f is irreducible if f is non-constant and cannot be written as a product of two non-constant
polynomials.

Given the notion of divisibility, we define the gcd of a set of polynomials in the natural way: we
define it to be the highest degree polynomial dividing them all (suitably scaled)3. Given the notion
of irreducibility we can state the important property of the uniqueness of factorization.

Lemma 2.3 (Uniqueness of Factorization). Let he11 · . . . · h
ek
k = g

e′1
1 · . . . · g

e′
k′
k′ be two factorizations

of the same non-zero polynomial into irreducible, pairwise coprime factors. Then k = k′ and there
exists a permutation σ : [k]→ [k] such that hi ∼ gσ(i) and ei = e′σ(i) for i ∈ [k].

Suppose that f is monic in xi. It is easy to see f can be written as a product of monic factors.
Therefore, we can specialize Lemma 2.3 to consider the unique monic factorization of f as: f =
he11 · . . . · h

ek
k where hi-s are irreducible, monic, pairwise coprime factors.

The following lemma provides a characterization of all irreducible, pairwise coprime factorizations
of any polynomial.

Lemma 2.4. Consider the function Φ : N∗ → N: given e = (e1, . . . , ek), Φ(e)
∆
= 2 ·

k∑
i=1

ei − k. Let

f ∈ F[x1, x2, . . . , xn] be a polynomial and let f = he11 · . . . · h
ek
k a factorization of f (not necessarily

irreducible or coprime), where hi-s are non-constant and ei ≥ 1. Then all irreducible, pairwise
coprime factorizations of f correspond to those that maximize Φ(e).

Proof. First, observe that by Uniqueness of Factorization, all the all irreducible, pairwise coprime
factorizations of f result in the same value of Φ(e). Next, we show that in the factorization that
maximize Φ(e), all the hi-s must be irreducible and coprime. Assume the contrary. We have two
possible cases:

• There exists i such that hi is reducible. That is, hi can be written as hi = ui · vi, where ui, vi
are non-constant polynomials. Now, consider a different factorization of f where we replace
heii by ueii and veii . The value of Φ under the new factorization will increase by 2ei − 1 ≥ 1.

• There exists i and j such that hi are hj are not coprime. We can assume w.l.o.g that both hi
and hj are irreducible. Therefore, hi = α·hj for some α ∈ F. Consider a different factorization

of f where we replace heii and h
ej
j by a single factor: (α

ei
ei+ej · hj)ei+ej . The value of Φ under

the new factorization will increase by 1.

3Such a polynomial is unique up to scaling, and one can fix a canonical polynomial in this class for instance by
requiring that the leading monomial has coefficient 1. With this definition, two polynomials are pairwise coprime if
their gcd is of degree 0, and in particular the gcd equals 1.
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2.4 Sparse Polynomials

In this section we discuss sparse polynomials, their properties and some related efficient algorithms
which leverage these properties.

An s-sparse polynomial is polynomial with at most s (non-zero) monomials. We denote by ‖f‖ the
sparsity of f . In this section we list several results related to sparse polynomials. We begin with
an efficient reconstruction algorithm for sparse polynomials.

Lemma 2.5 ([KS01]). Let n, s, d ∈ N. There exists a deterministic algorithm that given n, s, d and
an oracle access to an s-sparse polynomial f ∈ F[x1, x2, . . . , xn] of degree d, uses poly(n, s, d, log |F|)
field operations and outputs f (in its monomial representation).

In particular the above lemma shows the existence of an efficient hitting set for sparse polynomials.
We now give a lemma that shows the existence of an efficient hitting set for a product of sparse
polynomials. Indeed it was shown in [SV09] that if there is an efficient hitting set for any class of
polynomials, then one can construct an efficient hitting set for a product of few polynomials from
that class. Thus we immediately get the following lemma.

Lemma 2.6 ([KS01, SV09, SV11]). There exists a deterministic algorithm that given n, s, d, k ∈ N
outputs a set SP(n,s,d,k) of size poly(n, s, d, k) such that any set of (at most) k non-zero s-sparse
polynomials f1, . . . , fk ∈ F[x1, x2, . . . , xn] with individual degrees at most d have a common non-zero
in SP(n,s,d,k). In other words, there exists a ∈ SP(n,s,d,k) such that ∀i : fi(a) 6= 0.

Note that in the above lemma, we could have replaced individual degree by total degree, and the
result would have still held, since the total degree is at most a factor of n more than the individual
degree. However, in our applications, we will usually use an individual degree bound, and hence
we stated the lemma in terms of individual degree.

As another simple corollary of [KS01], we obtain an efficient algorithm for sparse polynomial divi-
sion, given an upper bound on the sparsity of the quotient polynomial. In other words, if f, g are
sparse polynomials such that f = g · h, then given black-box access to f and g, one can recover h
(as long as it is also sparse). This is because given black-box access to f and g, one can simulate
black-box access to h. One can then use [KS01] to interpolate and recover h. If h ends up being
not sparse, then this algorithm would just reject. Moreover, given a candidate sparse polynomial
h, it is easy to verify whether it is indeed the quotient polynomial of f and g, but just multiplying
out h · g and comparing with f .

Lemma 2.7 (Corollary of [KS01]). Let n, s, d, t ∈ N. Let f, g ∈ F[x1, x2, . . . , xn] be s-sparse poly-
nomials of degree at most d. Then there exists an algorithm that given f, g and t uses poly(n, d, s, t)
field operations and computes the quotient polynomial of f and g, if it is a t-sparse polynomial.
That is, if f = gh for some h ∈ F[x1, x2, . . . , xn], ‖h‖ ≤ t, then the algorithm outputs h. Otherwise,
the algorithm rejects.
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2.5 GCD and Resultants

Let f = ady
d + ad−1y

d−1 + · · ·+ a0 and g = bey
e + be−1y

e−1 + · · ·+ b0 be polynomials of y-degree
exactly d and e, respectively. Consider the (d+ e)× (d+ e) Sylvester Matrix whose first e columns
contain e shifts of the vector of coefficients (ad, . . . , a0, 0, . . . , 0), and next d columns contain d shifts
of the vector of coefficients (be, . . . , b0, 0, . . . , 0). That is,

Resy(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ad 0 · · · 0 be 0 · · · 0
ad−1 ad · · · 0 be−1 be · · · 0

ad−2 ad−1
. . . 0 be−2 be−1

. . . 0
...

...
. . . ad

...
...

. . . be
...

... · · · ad−1
...

... · · · be−1

a0 a1 · · ·
... b0 b1 · · ·

...

0 a0
. . .

... 0 b0
. . .

...
...

...
. . . a1

...
...

. . . b1
0 0 · · · a0 0 0 · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(d+e)×(d+e)

This representation of resultant ensures that if f and g are sparse polynomials in F[x1, x2, . . . , xn]
with small individual degree (in y), then sparsity of Resy(f, g) is bounded. We will use the following
properties of resultant (For more info, see [GCL92, Chap. 7])

Lemma 2.8 (Resultant Properties). Let f, g ∈ F[y, x1, x2, . . . , xn] be monic in y, s-sparse polyno-
mial with individual degrees at most d. Then:

1. Resy(f, g)(x) is an (2ds)2d-sparse polynomial over F[x1, x2, . . . , xn] with individual degrees at
most 2d2.

2. For every a ∈ Fn: Resy (f |x=a, g|x=a) = Resy(f, g)(a).

3. gcd(f, g) 6= 1 iff Resy(f, g) ≡ 0.

Definition 2.9. For a field F we denote by cF(d) the time of the best known algorithm that factors
a univariate polynomial of degree d over F.

Lemma 2.10 (Univariate factoring). Let f(x) ∈ F[x] be a univariate polynomial of degree d then
by the well known algorithms of Lenstra-Lenstra-Lovasz [LLL82] and Berlekamp [Ber70, Sho91,
GG99, GKL04], f can be factorized in time cF(d). where:

1. cF(d) = poly(` · p, d), if F = Fp`.

2. cF(d) = poly(d, t), where t is maximum bit-complexity of the coefficients of f , if F = Q.

The next result which is implicit in many factorization algorithms, exhibits an efficient factorization
algorithm for certain regime of parameters. In particular, for polynomials with constantly-many
variables and a polynomial degree.

12



Lemma 2.11 (Implicit in [Kal89], see also [Sud98]). There exists a deterministic algorithm that
given a r-variate, degree d polynomial f over F outputs its irreducible factors. The runtime of the
algorithm is (cF(d))O(r).

We will use this lemma for r = 2 (i.e. bivariate factoring) in our deterministic factorization
algorithm.

3 Polytopes and Polynomials

In this section we will discuss various properties of polytopes, in particular the Newton polytope.
These will be crucial ingredients in our proof of the sparsity bound for factors of sparse polynomials.
The main results that we will discuss and develop are:

1. If f, g, h are polynomials such that f = g · h then the sparsity of f is lower bounded by
max {|V (Pg)| , |V (Ph)|}, where Pg and Ph are the Newton polytopes of g and h respectively,
and where for a polytope P , V (P ) denotes the set of vertices of P .

2. The convex hull of any subset of {0, 1, . . . , d}n must have “many” vertices (i.e. corner points).
We will prove this as a corollary of an approximate version of Carathéodory’s theorem.

Our approach to bounding the sparsity of factors of a polynomial using the theory of polytopes,
and in particular Item 1 (as stated above) was inspired by a connection of the theory of polytopes
to sparsity bounds that was observed by Dvir and Oliveira [DdO14].

For a finite set of points v1, v2, . . . , vk ∈ Rn, their convex span, which we denote by CS(v1, . . . , vk)
is the set defined by

CS(v1, v2, . . . , vk) =

{
k∑
i=1

λivi

∣∣∣∣∣ λi ≥ 0 and
k∑
i=1

λi = 1

}
.

A set P ⊆ Rn is a called a polytope if there is a finite set of points v1, v2, . . . , vk ∈ Rn such that
P = CS(v1, v2, . . . , vk). For a polytope P , and a point a ∈ P , we say that a is a vertex of P if
it cannot be written as a = λu + (1 − λ)v for any u, v ∈ P \ {a} and λ ∈ [0, 1]. Alternatively, a
vertex of P is face of dimension 0. We let V (P ) denote the set of vertices of P .

It is an easy to verify, and a basic fact about polytopes, that if P is a polytope, then P = CS(V (P )).
Moreover, is P = CS(v1, v2, . . . , vk) then V (P ) ⊆ {v1, v2, . . . , vk}.
(For more details see [Zie12] Propositions 2.2 and 2.3)
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3.1 The Newton Polytope and Minkowski Sum

Definition 3.1. Given two polytopes P1 and P2 in Rn, we define their Minkowski Sum P1 +P2 to
be the set of points given by

P1 + P2 = {v1 + v2 | v1 ∈ P1 and v2 ∈ P2 }.

The following is a classic fact about the Minkowski sum of two polytopes. It basically says that
the Minkowski sum of two polytopes is itself a polytope, and the number of vertices of each of the
original polytopes is a lower bound on the number of vertices of the Minkowski sum. See [DdO14]
(Theorem 3.12, Corollary 3.13), and [Sch00] for the formal details of a proof. After we state the
result, we will provide an informal proof sketch which also gives some intuition for why the result
holds.

Proposition 3.2. Let P1 and P2 be polytopes in Rn. Then their Minkowski sum P1 + P2 is a
polytope and

|V (P1 + P2)| ≥ max {|V (P1)| , |V (P2)|}.

Proof sketch. Let u1, u2, . . . , uk1 be the vertices of P1 and v1, v2, . . . vk2 be the vertices of P2. Now,
any element of P1 + P2 is of the form µ1 + µ2, where µ1 is a convex combination of u1, u2, . . . , uk1
and µ2 is a convex combination of v1, v2, . . . vk2 . It follows easily from this that µ1 + µ2 is a convex
combination of V (P1) + V (P2) = {u+ v | u ∈ V (P1), v ∈ V (P2)}. Thus P1 + P2 ⊆ CS(V (P1) +
V (P2)) and it is also easily to see that CS(V (P1)+V (P2)) ⊆ P1 +P2. Thus P1 +P2 = CS(V (P1)+
V (P2)), and hence it is a polytope.

We will now show that for every u ∈ V (P1), there exists v ∈ V (P2) such that u+ v ∈ V (P1 + P2).

Fix u ∈ P1. Since u ∈ V (P1), there exists a hyperplane H that passes through u and such that
all the rest of P1 lies on one side of H. In particular there is a degree one polynomial h such that
h(u) = 0 and for every u′ ∈ P1 such that u′ 6= u, h(u′) > 0. (The hyperplane H is the zero set
of h.) Moreover such an h and H can be chosen that are “generic” in the sense that none of the
one-dimensional or higher faces of P1 or P2 can be translated to lie within H. (Such an H can be
obtained by doing a small random perturbation to the original H about the point u.)

Now for any real number a, consider the polynomial ha = h + a. Let Ha be the zero set of ha. If
a is a large enough real valued number, then for any v′ ∈ P2, ha(v

′) > 0. Now slowly decrease the
value of a till for the first time, for some value b, Hb touches P2 at a single point, which will be
some vertex v. Since H was a generic hyperplane, this we can ensure that Hb only touches P2 at
a single point. Thus we will have the property that hb(v) = 0 and for all v′ ∈ P2 such that v′ 6= v,
hb(v

′) > 0.

We will now show that for this choice of v, u + v ∈ V (P1 + P2). Let c be the constant term of h.
Then h = h′+ c, where h′ is a homogeneous degree one polynomial. Then hb = h′+ c+ b. Consider
the degree one polynomial h∗ = h′ + 2c + b, and observe that h∗(u + v) = h′(u + v) + 2c + b =
(h′(u) + c) + (h′(v) + c + b) = 0. Moreover for any u′ ∈ P1, v′ ∈ P2 such that (u, v) 6= (u′, v′), it
must hold that h∗(u′ + v′) > 0. Thus it must be that u+ v ∈ V (P1 + P2).

Observe also that the vertex u+ v of P1 + P2 cannot be expressed as u′ + v′ for any other u′ ∈ P1

and v′ ∈ P2 such that (u′, v′) 6= (u, v). This is because h∗(u + v) = 0 but for (u′, v′) 6= (u, v),
h∗(u′ + v′) > 0. Thus corresponding to the vertex u ∈ P1, we have identified a vertex u + v of

14



P1 +P2 which cannot be expressed in any other way as a sum of a vertex of P1 and a vertex of P2.
Since we can do this for each vertex of P1, it follows that |V (P1)| ≤ |V (P1 + P2)|. By symmetry,
|V (P2)| ≤ |V (P1 + P2)|, and the result follows.

For a polynomial f ∈ F[x1, x2, . . . , xn], suppose that

f =
∑

ai1i2...inx
i1
1 x

i2
2 · · ·x

in
n .

For each coefficient ai1i2...in 6= 0, we say that the exponent vector (i1, i2, . . . , in) is in the support of
f , when viewed as a vector in Rn. We define Supp(f) to be the set of all support vectors of f , i.e.

Supp(f) = {(i1, i2, . . . , in) | ai1i2...in 6= 0}.

The convex hull of the set Supp(f) is defined to be the Newton polytope of f , which we denote by
Pf .

The following classic fact was observed by Ostrowski [Ost21] in 1921. It states that if a polynomial
f factors as g ·h, then the Newton polytope of f is the Minkowski sum of the Newton polytopes of
g and h. (See also [DdO14] (Proposition 3.16) for a proof.)

Proposition 3.3. Let f, g, h ∈ F[x1, x2, . . . , xn] be polynomials such that f = g · h. Then

Pf = Pg + Ph.

Remark 3.4. This result will eventually play a crucial role in the proof of our sparsity bound.
Note that we want to show that if a certain polynomial f is sparse, then g and h are also sparse.
We will show that if g (or h) is “dense”, f must also be “dense”. If we can show that Pf has many
vertices (i.e. corner points), then this will give us a lower bound on the number of monomials in
f . Since Pf = Pg + Ph, a lower bound on |V (Pg)| (or |V (Ph)|) is a lower bound on |V (Pf )|. Thus
we then only need to lower bound |V (Pg)|, which we will show how to do using the results of the
next section.

As an immediate corollary of the above two propositions, we easily recover the following basic
bound relating the sparsity of polynomials to the Newton polytopes of its factors. (This bound was
observed by Dvir and Oliveira in [DdO14]).

Corollary 3.5. Let f, g, h ∈ F[x1, x2, . . . , xn] be polynomials such that f = g · h. Then

‖f‖ ≥ |V (Pf )| ≥ max {|V (Pg)| , |V (Ph)|}.

Proof. By Proposition 3.3, Pf = Pg + Ph, and hence by Proposition 3.2,

|V (Pf )| ≥ max {|V (Pg)| , |V (Ph)|}.

Since Pf = CS(Supp(f)), thus V (Pf ) ⊆ Supp(f). Hence |V (Pf )| ≤ ‖f‖ and the result follows.

It is worth noting that if d = 1, that is when g ( or h) is multilinear, then every point in Pg is a
corner point. Hence, |V (Pg)| = ‖g‖ and by Prop. 3.2 ‖f‖ ≥ ‖g‖.
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3.2 An approximate Carathéodory’s Theorem

Carathéodory’s theorem is a fundamental result in convex geometry, and it states that if a point
µ ∈ Rn lies in the convex hull of a set U , then µ can be written as the convex combination of at
most n+ 1 points of U .

In order to prove our sparsity bound, we will be using an “approximate” version of Carathéodory’s
theorem. The version that we use appears in [Bar15]4. It essentially states that if a point µ ∈ Rn
lies in the convex hull of a set U , then µ can be uniformly ε-approximated in the `∞ norm by a
vector that is the convex combination of only logn

ε2
points of U .

We first introduce some notation that we will use. For a set of vectors U = {u1, u2, . . . , um} ⊆ Rn,
let CS(U) denote the convex hull of U . (Note that for a finite set, the convex span of a set of
vectors is the same as the convex hull of the vectors. Since in the rest of the paper we will only
be dealing with finite sets, we will use the terms convex span and convex hull interchangeably). A
vector µ ∈ CS(U) is defined to be k-uniform with respect to U if there exists a multiset S of [m]
of size at most k such that µ = 1

k

∑
i∈S ui.

We present proof of the approximate Carathéodory theorem for completeness after stating the
theorem. There are other approximate versions of the Carathéodory Theorem that appear in the
literature, often in terms of `p norms where 2 ≤ p <∞. The version below is for the `∞ norm, and
its proof is fairly straightforward.

Theorem 3.6 ([Bar15], Theorem 3). Given a set of vectors U = {u1, u2, . . . , um} ⊆ Rn with

maxu∈U ‖u‖∞ ≤ 1, and ε > 0. For every µ ∈ CS(U) there exists an O
(

logn
ε2

)
uniform vector

µ′ ∈ CS(U) such that ‖µ− µ′‖∞ ≤ ε.

Proof. Since µ ∈ CS(U), thus µ =
∑m

i=1 aiui, where for each i ∈ [m], ai ≥ 0 and
∑m

i=1 ai = 1.
Now consider the following probability distribution on U , where the probability of sampling ui is

ai. Pick t =
(

logn
ε2

)
samples independently from this distribution and let the resulting vectors be

v1, v2, . . . , vt. Let

µ′ =

∑t
i=1 vi
t

.

Claim 3.7. For any coordinate j ∈ [n], Pr[
∣∣∣µj − µ′j∣∣∣ > ε] < 1/n.

Proof. It follows immediately from the Chernoff-Hoeffding bounds applied to t independent samples
Y1, Y2, . . . , Yt of the random variable Y , where for each i ∈ [m], Y = (ui)j with probability ai. Then

clearly E[Y ] = µj , and µ′j =
∑t

i=1 Yi
t . Then by the Chernoff-Hoeffding inequality,

Pr[|µj − µ′j | > ε] < e−2ε2t < 1/n.

Once we have the claim, then a simple union bound over the coordinates implies that with positive
probability, ‖µ− µ′‖∞ ≤ ε, and hence a suitable logn

ε2
uniform vector µ′ ∈ CS(U) exists.

4There is actually a small typo in the version of the theorem in [Bar15], and the statement below fixes it.
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4 Sparsity Bound

In this section we prove the sparsity bound.

Theorem 4.1 (The Bound of Factor Sparsity). There exists an non-decreasing function ξ(n, s, d) ≤
sO(d2 logn) such that if f ∈ F[x1, x2, . . . , xn] is a polynomial of sparsity s and individual degrees at
most d, and if f = g · h, for g, h ∈ F[x1, x2, . . . , xn], then the sparsity of g is upper bounded by
ξ(n, s, d).

Before presenting the proof of the sparsity bound, we first show how to apply the approximate
Carathéordory’s Theorem 3.6 to show that the convex hull of any subset of {0, 1, . . . , d}n must
have many vertices (i.e. corner points).

Theorem 4.2. Let E ⊆ {0, 1, . . . , d}n. Let t = |V (CS(E))|. Then there exists an absolute constant
C such that Then tCd

2 logn ≥ |E|.

Proof. Let Ed ⊆ [0, 1]n be the set obtained by taking E and scaling every member of it down
coordinate-wise by a factor of d. Let ε = 1/3d. Let U = V (CS(E)) ⊆ E be the set of vertices of
the convex span of E. Similarly, let Ud = V (CS(Ed)) ⊆ Ed. Then clearly |U | = |Ud|.

By Theorem 3.6, for every ud ∈ Ed, since ud ∈ CS(Ud), thus there exists an O
(

logn
ε2

)
= O(d2 log n)

uniform vector u′d ∈ CS(Ud) such that ‖ud − u′d‖∞ ≤ 1/3d.

Observe that for two distinct vectors ud, vd ∈ Ed, ‖ud − vd‖∞ ≥ 1/d. Hence if u′d ∈ CS(Ud) is
an O(d2 log n) uniform vector such that ‖ud − u′d‖∞ ≤ 1/3d and if v′d ∈ CS(Ud) is an O(d2 log n)
uniform vector such that ‖vd − v′d‖∞ ≤ 1/3d, Then by the triangle inequality, we must have that
u′d 6= v′d.

The total number of O(d2 log n) uniform vectors that can be generated by the set Ud is |Ud|O(d2 logn).
Moreover we have just shown that one can generate |Ed| distinct O(d2 log n) uniform vectors from
Ud.

Thus there is an absolute constant C such that Thus,

|Ud|Cd
2 logn ≥ |Ed|

and we thus conclude that tCd
2 logn ≥ |E|.

Remark 4.3. In fact, the dependence on log n in the theorem above is necessary. In particular,
there is a set E ⊆ {−1, 0, 1}n such that the number of corner points in the convex hull of E is n,
but |E| = nΩ(logn). However, it is not clear if such polytopes yield a polynomial with ξ(n, s, d) =
sΘ(d2 logn). An example of such a set (and the resulting polytope) was shared with us in [Sap18],
and we describe it below.
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Claim 4.4 ([Sap18]). There is a set E ⊆ {−1, 0, 1}n s.t. |V (CS(E))| = n and |E| = nΩ(logn).

Proof. Let m be a positive integer. Let n = 2m and let H be the n × n Hadamard matrix. More
precisely, H is the matrix over the Reals with entries being 1 or −1 such that if we index the
rows and columns of H by the elements of Fm2 , and then the (a, b) entry of H is (−1)〈a,b〉, for all
a, b ∈ Fm2 .

Let V ⊆ {−1,+1}n be the set of column vectors of H. We will show that the convex span of V
contains at least nΩ(logn) distinct elements of {−1, 0, 1}n, and this will suffice to prove the claim.

Recall that each element of V is indexed by an element of Fm2 .

We will show that for each S ⊆ Fm2 that is a linear subspace, if we take the uniform convex
span of the elements of V that correspond to the elements of S, then we get an element of {0, 1}n,
Moreover, distinct subspaces give rise to distinct elements of {0, 1}n. Since the number of subspaces
is nΩ(logn), the result then follows.

Now, let S ⊆ Fm2 be a linear subspace, and let uS be the characteristic vector of this subspace. We
need to show that,

1

|S|
H · uS ⊆ {0, 1}n.

Let T = {b ∈ Fm2 : 〈a, b〉 = 0, ∀ a ∈ S}. With slight abuse of notation let (H · uS)b corresponds to
the entry in the b-th coordinate. Notice that, if b ∈ T , then (H · uS)b =

∑
a∈S(−1)〈a,b〉 = |S|.

On the other hand, if b 6∈ T , then 〈ao, b〉 = 1 for some ao ∈ S. Thus, for each a ∈ S, we have that
(−1)〈a+ao,b〉 and (−1)〈a,b〉 to have different signs. Hence, (H · uS)b = 0 in this case.

Thus,
1

|S|
H · uS ⊆ {0, 1}n,

and the coordinates that equal 1 are precisely those that correspond to the orthogonal subspace of
S. Thus distinct subspaces S give rise to distinct vectors in {0, 1}n.

Remark 4.5. In order to obtain a polytope with non-negative coordinates, one can simply shift all
the coordinates by 1.

We now prove Theorem 4.1.

Proof of Theorem 4.1. Let ‖g‖ denote the sparsity of g. Thus g has ‖g‖ monomials. Let
Supp(f),Supp(g) ⊆ {0, 1, . . . , d}n denote the sets of exponent vectors of f and g, respectively.

Let tg = |V (CS(Supp(g)))|. Thus tg denotes the number of vertices of the polytope which is the
convex span of Supp(g). Similarly let tf = |V (CS(Supp(f)))|. By Theorem 4.2,

tg ≥ ‖g‖
1

Cd2 logn .

Now, by Corollary 3.5, tg ≤ tf . Moreover, since V (CS(Supp(f))) ⊆ Ef , thus tf ≤ |Ef |, which
equals the sparsity of f , ‖f‖. Hence

‖f‖ ≥ ‖g‖
1

Cd2 logn

and the theorem follows.
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4.1 Tightness of Sparsity Bound

In this section we see some examples of polynomials that have factors with a significantly larger
number of monomials then the original polynomials. In the case where we do not bound the
individual degree of the polynomials, the factors can have a superpolynomial number of monomials.

Interestingly, the examples we will see are also tight cases of Prop. 3.2.

The following example was noted by von zur Gathen and Kaltofen [GK85].

Example 4.6 ([GK85]). Let

f(x) =

n∏
i=1

(xdi − 1),

g(x) =

n∏
i=1

(1 + xi + . . .+ xd−1
i )

Notice that, g is a factor of f , but ‖f‖ = 2n and ‖g‖ = dn. Thus letting s denote the sparsity of
f , notice that ‖g‖ = slog d, where d is the individual degree of f .

Indeed, for fields of characteristic 0, this is the best “blow-up” of the sparsity that we are aware of.

Our next example works for fields of positive characteristic, say Fp, and uses the Frobenius action
of powering by p. In this example we see a much bigger “blow-up” than in the previous example.

Example 4.7. Let f ∈ Fp[x1, . . . xn], p-prime and let 0 < d < p.

f(x) =xp1 + xp2 + . . .+ xpn,

g(x) =
(
x1 + x2 + . . . xn

)d
Notice again that g is a factor of f , but ‖f‖ = n and ‖g‖ =

(
n+d−1

d

)
≈ nd. Thus if s denotes

sparsity of f , then ‖g‖ = sd.

The above example is particularly interesting because it shows that for general sparse polynomials,
with no bound on the individual degree (for instance if the individual degree can be as large as n),
the factors of a polynomial can have exponentially more monomials than the original polynomial!
Thus there is no hope of proving an efficient sparsity bound for general sparse polynomials.

Note however, that this example only applies to fields of certain characteristics. For instance for
fields of characteristic 0, the previous example might be the one with the worst possible blowup,
and hence for such fields, an efficient sparsity bound for general sparse polynomials might still hold.
However any proof of such a sparsity bound must be able to take advantage of the properties of
the underlying field. The techniques for the sparsity bound proved in this paper are oblivious to
the underlying field, and thus, given Example 4.7, the best possible sparsity bound for factors of a
polynomial that one can hope to show with such techniques is of the form O(sd).
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5 Factoring Algorithm

In this section, we give our deterministic factorization algorithm for sparse polynomials with small
individual degree, thus proving Theorem 2. The runtime of the algorithm strongly depends on the
bound in Theorem 4.1. To emphasize this dependence, we state our results in terms of ξ(n, s, d).
Theorem 1 follows by instating the upper bound.

As outlined in Section 1.3.2, we first focus on monic polynomials. Then we show how to extend
the algorithm to general polynomials.

5.1 Black-box Factoring of Sparse Monic Polynomials (given some advice)

In this section we give an algorithm that takes as input a sparse monic polynomial f(y, x) of
bounded individual degree, as well as some additional information about its factorization pattern,
and then outputs (in some sense) blackbox access to its factors.

The algorithm mirrors that black-box factorization algorithm of [KT90].

The algorithm assumes that it is given an assignment a ∈ Fn for which no two distinct coprime
factors of f(y, x) have non-trivial gcd, when we set x = a, and it is given the correct partition
of the factors of f(y, a) (i.e. the partition gives the grouping of the factors of f(y, a) that will
correspond to the factors of f). The algorithm outputs evaluations of the irreducible factors of f
at any input (y0, b) ∈ Fn+1. More precisely, for any b ∈ Fn, and any irreducible factor hi(y, x) of
f , the algorithm will output the univariate polynomial hi(y, b) which can then be evaluated at y0.

Given an input point b ∈ Fn, the algorithm uses a as an anchor point and draws a line to b. Next, the
algorithm computes a bi-variate factorization of the polynomial f(y, `a,b(t)) (see Definition 2.1).
Finally, the algorithm outputs the black-boxes for each factor of f by matching the factors of
f(y, `a,b(t)) to the factors of f(y, a). We will describe our black-box factoring algorithm below:

Input: s-sparse monic (in y) polynomial f ∈ F[y, x1, x2, . . . , xn] with individual degrees at most d.
Assignments: a, b ∈ Fn
Univariate Polynomials: g1(y), g2(y), . . . , gr(y)
Partition: A1

⋃̇
A2
⋃̇
· · ·
⋃̇
Am = [r]

Exponent Vector: e = (e1, e2, . . . , em) ∈ [d]m

Output: Univariate Polynomials: ϕ1(y), ϕ2(y), . . . , ϕm(y)

1 f̃(y, t)← f(y, `a,b(t));

2 Compute the bi-variate factorization of f̃(y, t) = fv11 (y, t) · fv22 (y, t) · · · fvr′r′ (y, t); /* wlog the

polynomials are monic in y */

3 for i← 1 to m do

4 h̃i(y, t)← 1;
5 for k ← 1 to r′ do

6 if there exists j ∈ Ai s.t gj(y) | fk(y, 0) then h̃i(y, t)← h̃i(y, t) · fvk/eik (y, t);
7 end

8 end

9 return h̃1(y, 1), h̃2(y, 1), . . . , h̃m(y, 1);

Algorithm 1: Black-Box Evaluation of Factors
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Lemma 5.1 (Black-box Factorization). Let f(y, x) ∈ F[y, x1, x2, . . . , xn] be a polynomial monic in

y with individual degrees at most d. Suppose f(y, x) can be written as f(y, x) =
m∏
i=1

heii (y, x) such

that gcd(hi, hi′) = 1 for i 6= i′. Then given:

1. a point a ∈ Fn such that ∀i 6= i′ : Resy(hi, hi′)(a) 6= 0

2. monic irreducible polynomials g1(y), g2(y), . . . , gr(y)

3. a partition A1
⋃̇
A2
⋃̇
· · ·
⋃̇
Am = [r] such that for all i ∈ [m] : hi(y, a) =

∏
j∈Ai

gj(y)

4. exponent vector e = (e1, e2, . . . , em) ∈ [d]m

and a point b ∈ Fn, Algorithm 1 computes h1(y, b), h2(y, b), . . . , hm(y, b), using poly(n, cF(d)) field
operations.

Proof. We claim that for each i ∈ [m] : h̃i(y, t) = hi(y, `a, b(t)) and hence

h̃i(y, 1) = hi(y, `a, b(1)) = hi(y, b).

Since, f(y, x) =
m∏
i=1

heii (y, x), substituting x = `a, b(t) implies that f̃(y, t) =
m∏
i=1

heii (y, `a, b(t)). Fix

k ∈ [r′]. By Uniqueness of Factorization (Lemma 2.3),

∃i : fk(y, t) | hi(y, `a, b(t)).

Thus setting t = 0, we get that
fk(y, 0) | hi(y, a).

Now since hi(y, a) is a product of irreducible polynomials gj(y), for j ∈ Ai, thus

∃j ∈ Ai : gj(y) | fk(y, 0).

The last step follows from Pre-condition 3 and Uniqueness of Factorization (Lemma 2.3). Now
suppose ∃i′ and j′ ∈ Ai′ : gj′(y) | fk(y, 0). It follows that gj′(y) | hi(y, a).

Thus, gcd (hi(y, a), hi′(y, a)) 6= 1. By Lemma 2.8: Resy(hi, hi′)(a) = Resy (hi|x=a, hi′ |x=a) = 0. By
Pre-condition 1, this is only possible if i = i′.

Now, fix i. Let fk(y, t) and uk be an irreducible factor of hi(y, `a, b(t)) and its degree in the latter,
respectively. Now observe that fk(y, t) doesn’t divide any other hi′(y, `a, b(t)) : suppose it did, then
setting t = 0 and repeating the previous argument we would get a contradiction. Consequently,
vk = uk · ei and hence:

fukk (y, t) = f
vk/ei
k (y, t)

and
f
vk/ei
k (y, t) | h̃i(y, t).

We conclude that hi(y, `a, b(t)) | h̃i(y, t). The claim follows by observing that :

m∏
i=1

h̃eii (y, t) = fv11 (y, t) · fv22 (y, t) · · · fvr′r′ (y, t) = f̃(y, t) =

m∏
i=1

heii (y, `a, b(t)).

For the runtime, observe that m, r, r′ ≤ d and clearly d = O(cF(d)).
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5.2 Factoring Sparse Monic Polynomials (without advice)

With the black-box factoring algorithm of the previous subsection, we get blackbox access to
the irreducible factors of the input monic sparse polynomial, and we can use a reconstruction
algorithm to reconstruct the actual factors. The caveat is that black-box factorization algorithm
of the previous section assumes that it is given some additional information: an assignment a ∈ Fn
for which no two distinct factors of f(y, x) have non-trivial gcd, when we set x = a, and the correct
partition of the factors of f(y, a).

In this section we show that the advice is actually a member of a small set that can be computed, and
hence one can just “guess” the advice! Since f(y, a) has at most d factors, the number of possible
partition is dO(d). Hence we can “guess” the correct partition by trying out all the possibilities.
In terms of finding a as above, the following lemma shows that there exists a small set of points
S ⊆ Fn that contain a point a with the required properties for every monic sparse polynomial of
degree d.

Lemma 5.2. Let f ∈ F[y, x1, x2, . . . , xn] be monic in y, s-sparse polynomial with individual degrees
at most d and let f(y, x) = he11 (y, x) . . . hekk (y, x) be the unique monic factorization of f(y, x). Then
there exists a set S of size |S| = (n · ξ(n, d, s))O(d) such that for any f as above there exists an
assignment a ∈ Fn satisfying ∀i 6= i′ : Resy(hi, hi′)(a) 6= 0.

We defer the proof of the lemma to the end of the section.

Given a polynomial f , the algorithm will proceeding by trying to reconstruct the factors of f for
every projection in S and every partition. Given a purported factorization, we can test it by ex-
plicitly multiplying out the polynomials. Clearly, the algorithm will pick up any valid factorization
of f (not just the irreducible one). We will select the irreducible factorization using the simple
characterization given in Lemma 2.4.

Input: s-sparse polynomial f ∈ F[y, x1, x2, . . . , xn], monic in y, with individual degrees at most d.
Output: monic irreducible factors h1, h2, . . . , hm, and e1, e2, . . . , em such that f = he11 · · ·hemm

1. For each a ∈ S (from Lemma 5.2), subset I ⊆ [d], m′ ∈ [d], a non-empty partition of I:
A1
⋃̇
A2
⋃̇
· · ·
⋃̇
Am′ = I, and exponent vector e′ = (e′1, e

′
2, . . . , e

′
m′) ∈ [d]m

′
:

(a) Compute the monic univariate factorization f(y, a) =
r∏
j=1

gj(y) (Using Lemma 2.10)

(b) Call Algorithm 1 with f, a, {Ai}i∈[m′], e and {gj(y)}j∈I .
(c) Invoke the reconstruction algorithm from Lemma 2.5 with n′ = n, s′ = ξ(n, d, s), d′ = d

using the above as an oracle to reconstruct the polynomials h′1(y, x), . . . h′m(y, x).

(d) Test that f ≡ h′e
′
1

1 · h′
e′2
2 · · ·h′

e′
m′
m′ factorization. (Via explicit multiplication)

2. Return a factorization that maximizes the expression Φ(e)
∆
= 2 ·

m′∑
i=1

e′i −m′. /* Pick the

most ‘‘refined’’ factorization */

Algorithm 2: Sparse Monic Polynomial Factorization
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Lemma 5.3. Let f(y, x) ∈ F[y, x1, x2, . . . , xn] be a polynomial, monic in y, with individual degrees
at most d. Given f , Algorithm 2 computes the unique monic factorization of f . That is, the
algorithm outputs coprime, monic irreducible polynomials h1, h2, . . . , hm, and e1, e2, . . . , em such
that f = he11 · · ·hemm , using at most (n · ξ(n, d, s))O(d) · poly(cF(d)) field operations.

Proof. Let f = he11 · · ·hemm be the unique monic factorization of f . By definition, ∀i 6= i′ :
gcd(hi, hi′) = 1, ∀i : ei ≤ d and m ≤ d. We first claim that as the algorithm iterates over
all settings of a, I,m′, e′ and the partition, one of these “guesses” satisfies the pre-conditions of
Lemma 5.1.

By Lemma 5.2, there exists a ∈ S (where S is the set from Lemma 5.2) such that ∀i 6= i′ :
Resy(hi, hi′)(a) 6= 0. Consider the monic univariate factorization:

r∏
j=1

gj(y) = f(y, a) =
m∏
i=1

heii (y, a).

Clearly, r ≤ d, and the claim follows from the uniqueness of factorization (Lemma 2.10). There-
fore, by Lemma 5.1, given this guess, Algorithm 1 will produce oracle access for the polynomials
h1, · · · , hm. By Theorem 4.1, ∀i : ‖hi‖ ≤ ξ(n, s, d). Therefore, the reconstruction algorithm from
Lemma 2.5 will, indeed, output the polynomials h′1, . . . , h

′
m such that ∀i : h′i ≡ hi, which will pass

the subsequent tests.

Let f ≡ h′
e′1
1 · h′

e′2
2 · · ·h′

e′
m′
m′ be the factorization returned by the algorithm. By Lemma 2.4, the

polynomials h′ are irreducible and pairwise coprime. The final claim follows by uniqueness of
factorization.

Runtime Analysis: By Lemma 5.2, there are poly(n · ξ(n, d, s))O(d) · dO(d) iterations. We outline
the runtime of each step in a iteration:

1. By Lemma 2.10 - cF(d).

2. By Lemma 5.1 - poly(n, cF(d)) per query.

3. By Lemma 2.5 - poly(n, ξ(n, d, s), d) time and queries.

4. By Theorem 4.1 - ξ(n, d, s)O(d).

Putting all together: nO(d) · ξ(n, d, s)O(d) · poly(cF(d)).

We now give the proof of Lemma 5.2.

Proof of Lemma 5.2. By Theorem 4.1, for each i ∈ [k] : ‖hi‖ ≤ ξ(n, d, s). For i, i′ ∈ [k], consider
the polynomials:

f(i,i′)(x)
∆
= Resy(hi, hi′)(x).

Fix i, i′ ∈ [k] such that i 6= i′. By definition, f(i,i′) 6≡ 0. Moreover, by Lemma 2.8, f(i,i′) is

(2d · ξ(n, d, s))2d-sparse polynomial with individual degrees at most 2d2. As k ≤ d, by Lemma 2.6,
SP(n, (2d·ξ(n,d,s))2d, 2d2, d2) contains a common non-zero for all f(i,i′)-s. The claim about the size

follows from Lemma 2.6.
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5.3 Factoring General Sparse Polynomials

In this section we show how to extend the factorization algorithm for monic sparse polynomials to
general sparse polynomials. We begin by showing how to convert a (general) sparse polynomial
with “small” individual degrees into a “somewhat” sparse monic polynomial of a “slightly larger”
individual degrees.

Definition 5.4. Let f(x1, . . . , xn, xn+1) ∈ F[x1, x2, . . . , xn+1] and let k ≤ d denote the degree of

xn+1 in f . Let fk
∆
= lcxn+1(f). We define: f̂(y, x1, . . . , xn)

∆
= fk−1

k · f(x1, . . . , xn,
y
fk

).

Lemma 5.5. Suppose f is an s-sparse polynomial with individual degrees at most d. Then function
f̂ is an (sd)-sparse polynomial in F[y, x1, x2, . . . , xn], monic in y with individual degrees at most d2.

Proof. Write: f =
∑k

j=0 fj · x
j
n+1 such that ∀j, xn+1 6∈ var(fj). Then

f̂ =

k∑
j=0

fj · fk−1
k · yj/f jk = yk +

k−1∑
j=0

fj · fk−1−j
k · yj .

Observe that for every xi : degxi(fj · f
k−1−j
k ) ≤ d+ d(k − 1) ≤ d2. For the sparsity of f̂ :

‖f̂‖ = 1 +

k−1∑
j=0

‖fj · fk−1−j
k ‖ ≤

k∑
j=0

‖fj‖ · ‖fk‖k−1 ≤
k∑
j=0

‖fj‖ · sk−1 = ‖f‖ · sk−1 ≤ sk ≤ sd.

In addition to the question regarding the sparsity of the polynomial f̂ , there are two follow-up
questions we need to address:

1. How are the factors of f̂ related the original factors of f?

2. As the degree of y in f̂ is at most d, we can recover at most d factors, while f could potentially
have dn factors! How can we recover the remaining factors?

The following lemma provides the answers to both questions.

Lemma 5.6. Let f(x, xn+1) =
m′∏
i=1

heii (x, xn+1) ·
m∏

l=m′+1

hell (x) and fk(x) =
r∏
j=1

w
βj
j (x) be pair-wise

coprime, irreducible factorizations of f and fk, respectively such that xn+1 ∈ var(hi) iff i ∈ [m′].

Furthermore, let f̂(y, x) =
m̂∏
j=1

ĥ
êj
j (y, x) be the unique monic factorization of f̂ . Then

1. m̂ = m′ and there exist polynomials u1(x), . . . , um′(x) ∈ F[x1, x2, . . . , xn] and a permutation
σ : [m′]→ [m′] such that: ĥi (fk · xn+1, x) = hσ(i) (x, xn+1) · ui(x) and êi = eσ(i) for i ∈ [m′].

2. m −m′ ≤ r. Moreover, there exists an injective map τ : {m′ + 1, . . . ,m} → [r] such that hl
and wτ(l) are nonzero scalar multiples of each other (i.e. hl ∼ wτ(l)), for l ∈ {m′ + 1, . . . ,m}.
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We defer the proof of the lemma to the end of the section.

In light of the above, the algorithm proceeds by first converting a given polynomial f into a monic
polynomial f̂ to recover the factors that depend on xn+1. Next, the algorithm recursively factors
fk (that does not depend on xn+1) to recover the factors that do not depend on xn+1 (if any).

Input: s-sparse polynomial f ∈ F[x1, x2, . . . , xn+1] with individual degrees at most d.
Output: irreducible factors h1, h2, . . . , hm, and e1, e2, . . . , em such that f = he11 · · ·hemm

1. if n ≤ 1 then Return the bi-variate factorization of f ;

2. k = degxn+1
(f); fk ← lcxn+1(f);

3. Compute f̂(y, x) (Using Definition 5.4)

4. Compute the unique monic factorization f̂(y, x) =
m̂∏
i=1

ĥeii (y, x) (Using Algorithm 2)

5. foreach i ∈ [m̂] do hi(x1, . . . , xn, xn+1)← ĥi(fk · xn+1, x);

6. Recursively compute a factorization of fk(x1, . . . , xn) =
r∏
j=1

w
βj
j (x1, . . . , xn)

7. for j ← 1 to r do
αj ← −βj · (k − 1);

for i← 1 to m̂ do

Find the maximal dij such that w
dij
j | hi; /* By iteratively applying Lemma 2.7 with

t = ξ(n, d2, sd) */

1 αj ← αj + dij · ei; hi ← hi/w
dij
j ;

end

end

8. return h1, . . . , hm̂, w1, . . . , wr and e1, . . . , em̂, α1, . . . , αr; /* Return only those where

αj > 0 */

Algorithm 3: Main Algorithm: overview

Theorem 5.7. Let f(x) ∈ F[x1, x2, . . . , xn] be a polynomial with individual degrees at most d. Given
f , Algorithm 3 outputs pairwise coprime, irreducible polynomials h1, h2, . . . , hm, and e1, e2, . . . , em

such that f = he11 · · ·hemm , using
(
n · ξ(n, d2, sd)

)O(d2) · poly(cF(d2)) field operations.

Proof. The correctness of the algorithm follows from Lemmas 5.5 and 5.6. In particular, by Theorem
4.1: ‖ĥi‖, ‖hi‖ ≤ ξ(n, d2, sd).

Runtime Analysis: Let T (n, s, d) denote the number of field operations of the algorithm given an
s-sparse, n-variate polynomial of individual degrees at most d. We get that T (1, s, d), T (2, s, d) =
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poly(cF(d)). For n ≥ 3, we outline the runtime of each step.

1. T (1, s, d), T (2, s, d) = poly(cF(d)).

2. poly(n, s, d).

3. By Lemma 5.5 - poly(n, sd).

4. By Lemmas 5.5 and 5.3 - (n · ξ(n, d2, sd))O(d2) · poly(cF(d2)).

5. By Lemma 5.5 and Theorem 4.1 - poly
(
ξ(n, d2, sd)

)
.

6. Since ‖fk‖ ≤ ‖f‖ ≤ s - T (n− 1, s, d).

7. By Lemma 2.7 - poly
(
nd, ξ(n, d2, sd)

)
.

Consequently: T (n, s, d) = T (n − 1, s, d) +
(
n · ξ(n, d2, sd)

)O(d2) · poly(cF(d2)) implying that

T (n, s, d) =
(
n · ξ(n, d2, sd)

)O(d2) · poly(cF(d2)).

We now give the proof of Lemma 5.6.

Proof of Lemma 5.6. Part 1. Observe that:

m′∏
i=1

heii (x, xn+1)·
m∏

l=m′+1

hell (x)·fk−1
k (x) = f(x, xn+1)·fk−1

k (x) = f̂ (fk · xn+1, x) =

m̂∏
j=1

ĥ
êj
j (fk · xn+1, x)

Let us view the above as univariate polynomials in xn+1 over (F(x1, . . . , xn)) [xn+1]. Given

this view, the term
m∏

l=m′+1

hell (x) · fk−1
k (x) is a field element in the field of rational functions:

F(x1, . . . , xn). Therefore, by Uniqueness of Factorization (Lemma 2.3) m̂ = m′ and there ex-
ist polynomials u1(x), . . . , um′(x) ∈ F(x1, . . . , xn) and a permutation σ : [m′] → [m′] such that:
ĥi (fk · xn+1, x) = hσ(i) (x, xn+1) · ui(x) and êi = eσ(i) for i ∈ [m′]. Finally, as ĥi (fk · xn+1, x)-s are
polynomials (and not rational functions) and hσ(i) (x, xn+1) · ui(x)-s are irreducible polynomials, it
follows that u1(x), . . . , um′(x) ∈ F[x1, x2, . . . , xn].

Part 2. Observe that:

r∏
j=1

w
βj
j (x) = fk(x) = lcxn+1(f) = lcxn+1

(
m′∏
i=1

heii (x, xn+1)

)
·

m∏
l=m′+1

hell (x).

and the claim follows by Uniqueness of Factorization (Lemma 2.3).
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6 Open Questions

We conclude by listing some open problems.

Perhaps the most immediate and natural question left open by this work is to understand whether
one can obtain an improved sparsity bound on the factors of s-sparse polynomials of bounded
individual degree. As we discussed in Section 4.1, the best lower bound for we know for the
sparsity of factors of s-sparse polynomials of individual degree d is slog d over fields of characteristic
0 and about sd over general fields. Thus there is a considerable gap between these lower bounds
and the upper bound that we prove, and it is a very interesting question to close to gap.

Another more ambitious goal is to obtain a non trivial sparsity bound with no restriction on
individual degree. As we noted in Section 4.1, such a result would not be possible for all fields, and
any such proof would have to use the properties of the underlying field to obtain a better bound.

One could also study the algorithmic implications of a general sparsity bound. It seems challenging
to derandomize polynomial factoring, even if we assume that factors of a given sparse polynomial
are sparse (without assuming any individual degree bound). We leave this as an interesting open
problem.

Given the result of [KSS14] which shows an equivalence between the problems of polynomial identity
testing and polynomial factorization, this also naturally raises the question (and indeed it was raised
in [KSS14]) of whether one can derandomize factoring for the classes of polynomials for which we
know how to derandomize PIT. Sparse polynomials are a natural example of such a class, but there
are several other natural classes that one could consider.
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