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Abstract

We investigate distribution testing with access to non-adaptive conditional samples. In the conditional
sampling model, the algorithm is given the following access to a distribution: it submits a query set S to
an oracle, which returns a sample from the distribution conditioned on being from S. In the non-adaptive
setting, all query sets must be specified in advance of viewing the outcomes.

Our main result is the first polylogarithmic-query algorithm for equivalence testing, deciding whether
two unknown distributions are equal to or far from each other. This is an exponential improvement over
the previous best upper bound, and demonstrates that the complexity of the problem in this model is
intermediate to the the complexity of the problem in the standard sampling model and the adaptive
conditional sampling model. We also significantly improve the sample complexity for the easier problems
of uniformity and identity testing. For the former, our algorithm requires only Õ(logn) queries, matching
the information-theoretic lower bound up to a O(log logn)-factor.

Our algorithm works by reducing the problem from `1-testing to `∞-testing, which enjoys a much
cheaper sample complexity. Necessitated by the limited power of the non-adaptive model, our algorithm
is very simple to state. However, there are significant challenges in the analysis, due to the complex
structure of how two arbitrary distributions may differ.
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1 Introduction

Statistical hypothesis testing is one of the most classical problems in statistics, with a rich history over
the past century. Over the last two decades, the problem has recently attracted the focus of theoretical
computer scientists, primarily with a focus on rigorous, finite sample guarantees for distributions with large
domain sizes. The seminal works of Goldreich and Ron [GR00] and Batu, Fortnow, Rubinfeld, Smith, and
White [BFR+00] initiated this study of distribution testing, viewing distributions as a natural domain for
property testing (see [Gol17] for coverage of this much broader field).

Since these works, distribution testing has enjoyed a wealth of study, resulting in a thorough understand-
ing of the complexity of testing many distributional properties (see e.g. [BFF+01, BKR04, Pan08, ADJ+11,
BFRV11, Val11, Rub12, ILR12, DDS+13, CDVV14, VV17, Wag15, AD15, ADK15, BV15, DKN15, DK16,
Can16, BCG17, BC17a, DDK18, DKW18, DGPP18], and [Can15b] for a recent survey). For many problems,
these works have culminated in sample-optimal algorithms.

In this paper, we will be concerned with the following three problems, defined on discrete distributions
over [n]:

• Uniformity Testing: Given sample access to a distribution p, test whether p = Un (the uniform
distribution on [n]) or is far from it;

• Identity Testing: Given sample access to a distribution p and the description of a distribution q,
test whether p = q or is far from it;

• Equivalence Testing: Given sample access to distributions p and q, test whether they are equal to
or far from each other.

Observe that each of these problems generalizes the previous, and thus are in increasing difficulty. All three
of these problems have a sample complexity which is either Θ(n1/2) or Θ(n2/3). In other words, while
these problems enjoy a sample complexity which is strongly sublinear in the domain size, in the absence of
additional assumptions, information-theoretic lower bounds often necessitate a sample complexity which is
polynomial in the size of the domain. When the domain is exceptionally large, this cost may be prohibitive
for many of the inference tasks we wish to perform.

To circumvent these strong lower bounds, one may imagine oracle models where one has additional power
when interacting with the distribution. Some examples include when the algorithm may query the PDF or
CDF of the distribution [BDKR05, GMV06, RS09, CR14], or is given probability-revealing sample [OS18].
However, perhaps the most popular alternative model, and the one we consider in this paper, is the conditional
sampling model. This model was recently introduced concurrently by Chakraborty, Fischer, Goldhirsh, and
Matsliah [CFGM13, CFGM16] and Canonne, Ron, and Servedio [CRS14, CRS15]. The algorithm is able to
query a distribution in the following way: it submits a query set S to an oracle, which returns a sample
from the distribution conditioned on being from S. Additionally, we will distinguish between conditional
sampling models where the algorithm’s queries may be adaptive (COND) or non-adaptive (NACOND) 1. In
comparison, we will use SAMP to refer to the standard sampling model.

Conditional sampling often dramatically reduces the complexity of distribution testing problems. For
example, given SAMP access to a distribution, the sample complexity of identity testing is Θ(

√
n/ε2) [Pan08,

VV17]. However, given COND access, the query complexity drops to Θ̃(1/ε2) [FJO+15], completely removing
the dependence on the support size. Motivated by the power of this model, there has been significant
investigation into its implications on distribution testing [Can15a, FJO+15, ACK15b, FLV17, SSJ17, BC17b],
as well as group testing [ACK15a], sublinear algorithms [GTZ17], and crowdsourcing [GTZ18].

At this point, we have a developed understanding of the power of the COND oracle with respect to the
aforementioned distribution testing problems. Perhaps surprisingly, the relative complexities of certain prob-
lems have qualitatively different relationships between SAMP and COND. To be precise, the sample complex-
ities of identity testing and equivalence testing in SAMP are Θ(n1/2)[Pan08, VV17] and Θ(n2/3)[CDVV14]
respectively: there is a polynomial relationship between the two. However, their query complexities in COND
are Θ(1)[CRS15, FJO+15] and logΘ(1) log n[FJO+15, ACK15b] respectively: there is a “chasm” between the
two complexities, as we go from no dependence on the domain size to a doubly logarithmic one.

1A formal definition of these concepts is given in Definition 1
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However, the picture is much less clear when it comes to the non-adaptive NACOND model. We know
that the complexity of identity testing is poly log n[CFGM13, ACK15b], though the upper and lower bounds
are quite far from each other. On the other hand, the complexity of equivalence testing is far less clear: the
best lower bound is Ω(log n)[ACK15b], and the best upper bound is O(n2/3)[CDVV14]. Given the interesting
qualitative behavior observed for the COND model, this begs the following question:

Question 1. What is the relationship of the query complexities of identity and equivalence testing in the
NACOND model?

In particular, are they polynomially related, as in the SAMP model? Or is there a larger gap between
the two, as in the COND model? Stated another way, do we require both conditional samples and adaptivity
simultaneously in order to reap the benefits for testing equivalence?

1.1 Results and Discussion

Our main result is a qualitative resolution to this problem: we give a poly log n-query algorithm for equiva-
lence testing.

Theorem 1 (Non-Adaptive Equivalence Testing). There exists an algorithm which, given NACOND ac-

cess to unknown distributions p, q on [n], makes Õ
(

log12 n
ε2

)
queries to the oracle on each distribution and

distinguishes between the cases p = q and dTV(p, q) ≥ ε with probability at least 2/3.

For the special case of uniformity testing, we have a sharper analysis, allowing us to obtain a Õ(log n)
query algorithm, which nearly matches the Ω(log n) lower bound of [ACK15b]:

Theorem 2 (Non-Adaptive Uniformity Testing). There exists an algorithm which, given NACOND access

to an unknown distribution p on [n], makes Õ
(

logn
ε2

)
queries to the oracle on p and distinguishes between

the cases p = Un and dTV(p,Un) ≥ ε with probability at least 2/3, where Un is the uniform distribution on
[n].

As a corollary of Theorem 2, we can obtain an improved upper bound for identity testing with an adap-
tation of the reduction from identity testing to uniformity testing of [CFGM16] (inspired by the bucketing
techniques of [BFR+00, BFF+01]).

Theorem 3 (Non-Adaptive Identity Testing). There exists an algorithm which, given NACOND access to

an unknown distribution p on [n] and a description of a distribution q over [n], makes Õ
(

log2 n
ε2

)
queries to

the oracle on p and distinguishes between the cases p = q and dTV(p, q) ≥ ε with probability at least 2/3.

Our results and a comparison with the complexity of testing in various oracle models are presented in Table 1.

Model Uniformity Identity Equivalence

SAMP Θ
(√

n
ε2

)
[Pan08, VV17] Θ

(√
n
ε2

)
[Pan08, VV17] Θ

(
max

(
n2/3

ε4/3
, n

1/2

ε2

))
[CDVV14]

NACOND
Õ
(

logn
ε2

)
[this work] Õ

(
log2 n
ε2

)
[this work] Õ

(
log12 n
ε2

)
[this work]

Ω (log n) [ACK15b] Ω (log n) [ACK15b] Ω (log n) [ACK15b]

COND
Õ
(

1
ε2

)
[CRS15] Õ

(
1
ε2

)
[FJO+15] Õ

(
log logn
ε5

)
[FJO+15]

Ω
(

1
ε2

)
[CRS15] Ω

(
1
ε2

)
[CRS15] Ω

(√
log log n

)
[ACK15b]

Table 1: Summary of results, and a comparison of uniformity, identity, and equivalence testing in different
sampling oracle models. Problems get harder as one moves up and to the right in this table.

We present a unified algorithm, Anaconda, for both equivalence and uniformity testing, the only dif-
ference is in the choice of parameters. Anaconda is quite simple to describe, requiring only four sentences
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in Section 1.22 We consider this algorithmic simplicity to be an advantage of Anaconda, though we regret
that its analysis is less simple – we elaborate on the technical challenges in Section 1.2.

Our bound for equivalence testing in the NACOND model is the first tailored to this setting. Specif-
ically, the best upper bound was O(n2/3) (for the harder problem of equivalence testing in the SAMP
model [CDVV14]), and the best lower bound was Ω(log n) (for the easier problem of uniformity testing in
the NACOND model [ACK15b]). These results left open the question of the true complexity of equivalence
testing: is it polynomial in log n, or polynomial in n? Our algorithm gives an exponential improvement in
the query complexity by showing that the former is true: equivalence testing enjoys significant savings in
the query complexity when we switch from the SAMP to the NACOND oracle model.

More generally, as mentioned before, our results expose a qualitatively interesting relationship between
identity and equivalence testing in the NACOND model. In the standard sampling model (SAMP), the
complexity of these problems is known to be polynomially related (Θ(n1/2) versus Θ(n2/3)). However, in the
conditional sampling model with adaptivity (COND), there is a “chasm” between these two complexities:
one has a constant query complexity, while the other has a complexity which is doubly logarithmic in n (Θ(1)
versus poly log log n). Our results demonstrate that when we remove adaptivity from the conditional sampling
model (NACOND), the relationship is qualitatively quite different. In this setting, the “chasm” closes, and
the complexity of both problems is once again polynomially related: both are poly log n. Interestingly, this
complexity is intermediate to the complexity of the same problems in the SAMP and COND models, by
an exponential factor on either side. These relationships are all summarized in Table 1. We note that our
results further address an open problem of Fischer [Fis14], which inquires about the complexity of equivalence
testing with conditional samples.

In terms of specific sample complexities, we observe that our upper bound for uniformity testing is

nearly tight: our Õ
(

logn
ε2

)
upper bound is complemented by the Ω(log n) lower bound of [ACK15b]. It

improves upon the algorithm of [CFGM13], which has query complexity O
(

log12.5 n
ε17

)
. Our algorithm for

identity testing, with complexity Õ
(

log2 n
ε2

)
, also significantly improves over theirs, which has a similar

complexity as their algorithm for uniformity testing. We again mention that our bound for equivalence
testing is exponentially better than the previous best algorithm for this problem (which is the O(n2/3)-query
algorithm in the SAMP model of [CDVV14]).

1.2 Techniques and Proof Ideas

At the core of our approach is reducing the problem from `1-testing to `∞-testing, the latter of which is
much cheaper in terms of sample complexity. In particular, throughout this exposition, keep in mind that
one can estimate a distribution up to ε in `∞-distance at a cost of O(1/ε2) samples (cf. Lemma 1). In
order to give intuition on how such an approach could possibly work, we focus on two very simple instances
of uniformity testing. In the first instance, p is a distribution with a single “spike”: for some i∗ ∈ [n],
p(i∗) = 1

n + ε, and for i 6= i∗, p(i) = 1−ε
n . This can be detected by simply choosing S = [n] and querying

it with NACOND O(1/ε2) times: the empirical distribution p̂(i∗) will have a similar spike, betraying that
the distribution is non-uniform. In the second instance, p is the “Paninski construction” (used as the lower
bound in [Pan08]): a random half of the domain elements have probability 1+ε

n , while the other half have
probability 1−ε

n . This can be detected by choosing S to be two random symbols, and again querying this
subset O(1/ε2) times. With constant probability, the two symbols will be from different sets. While the
`∞ distance from uniformity on each symbol is only ε

n , in this conditional distribution, it is increased to ε,
allowing easy detection.

These two examples illustrate the heart of our approach: our algorithm, Anaconda, attempts to find a
query set in which the discrepancy of a single item is large in comparison to the total probability mass of the

set. One of our key lemmas (Lemma 3) shows that this is possible with probability ≥ Ω
(

1
logn

)
. While the

two instances above are straightforward, a more careful analysis is required to avoid paying excess factors of
log n, particularly for uniformity and identity testing. That said, all the complexity is pushed to the analysis,
and the algorithm itself is very simple to describe:

2Perhaps if we tried harder, we could describe it in two sentences, plus the word “repeat.”
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First, the algorithm chooses a random power of two between 2 and n – roughly, this serves
as a “guess” for (the inverse of) the size of the set which represents the discrepany between
the distributions. Next, the algorithm chooses a random set S ⊆ [n] of this size. Finally, it
performs NACOND queries to S (on both distributions, for equivalence testing), in order to
form an empirical distribution (which is accurate in `∞-distance) and check whether there is a
discrepant symbol or not. This process is repeated several times, and if we fail to ever detect a
discrepant symbol, we can conclude that the distributions are equal.

Since uniformity testing is relatively well-behaved, the key lemma mentioned above (Lemma 3) does most
of the work. This is because in this setting, once we have a handle on the distribution of the discrepancy, it
is easy to reason about how much of the mass from the uniform distribution is contained in a query set. We
require a few additional concentration arguments on the total discrepancy and probability mass contained in
the query set, as well as a separate analysis for the case where |S| needs to be small and this concentration
does not hold.

We then leverage our algorithm for uniformity testing to provide an algorithm for identity testing. This
uses the reduction of [CFGM13]3, which partitions the domain so that the conditional distribution on each
part is close to uniform, and tests for identity on each part. This requires a non-adaptive identity tester for
distributions which are close to uniform (in `∞-distance) – we show our analysis for uniformity testing can
be adapted to handle this case. Our application crucially modifies their reduction in order to minimize the
sample complexity, as Anaconda can test against distributions which are further from uniform than theirs
(O(1/n), rather than O(ε/n)).

Finally, we turn to the most technically difficult problem of equivalence testing. This case turns out to
be more challenging, as we must simultaneously reason about p(i), p(S \ i), q(i), and q(S \ i) – as mentioned
prior, it is much easier to control the latter two quantities for uniformity testing. To establish our result,
we must argue that Anaconda identifies a set S where both differences p(i) − q(i) and p(S \ i) − q(S \ i)
have opposite signs and are simultaneously relatively large compared to the magnitudes of p(i), p(S \ i), q(i),
and q(S \ i) (Proposition 2). We consider the distribution of the discrepancy p − q, with a case analysis
depending on the relationship between the “typical” magnitudes of the positive and negative discrepancies.
If these magnitudes are close, then we can select a “smaller” set S (where “smaller” is defined based on these
magnitudes) which has a reasonable probability of including a positively and negatively discrepant element
of these magnitudes (Lemma 6). On the other hand, if these magnitudes are far, then with an appropriate
choice of the size of the set S, there is a significant chance that our set will contain an element i with
significant positive discrepancy p(i) − q(i), while the total discrepancy in the set p(S \ i) − q(S \ i) is very
negative (Case 2 in Lemma 7). Despite all these technicalities, we emphasize that the algorithm itself is still
quite simple; in particular, it is identical to the algorithm for uniformity testing (modulo some parameter
modifications).

1.3 Organization

The organization of the paper is as follows. In Section 2, we cover various preliminary definitions. In
Section 3, we unveil Anaconda. In Section 4, we analyze our algorithm for the special case of uniformity
testing. This case is conceptually much simpler than equivalence testing, but exposes some of the key
intuitions. In Section 5, we describe the full analysis for equivalence testing. In Section 6, we adapt the
reduction of [CFGM16] to obtain a more efficient algorithm for identity testing. We conclude in Section 7
with some open problems for further investigation.

2 Preliminaries

In this paper, we will focus on discrete distributions over the support [n]. We denote the distributions
of interest using p and q, where p(i) is the probability placed by distribution p on symbol i. For a set
S, let p(S) =

∑
i∈S p(i). Furthermore, let pS be the conditional distribution of p restricted to S, i.e.,

pS(i) = p(i)/p(S).

3We note that the reduction of [Gol16], from identity testing to uniformity testing, is not known to apply in either the
NACOND or COND models.
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We use the following definition of the conditional sampling model. Note that this uses the convention
of [CFGM13] of sampling uniformly from query sets with 0 measure, rather than the convention of [CRS14]
which immediately fails if given such a set, as the latter convention trivializes NACOND, reducing it to
SAMP.

Definition 1. A conditional sampling oracle for a distribution p is defined as follows: the oracle takes as
input a query set S ⊆ [n], and returns a symbol i ∈ S, where the probability that i is returned is equal to
pS(i) = p(i)/p(S). If p(S) = 0, then a symbol i ∈ S is returned uniformly at random.

Given an adaptive conditional sampling oracle (a COND oracle), the algorithm may query adaptively:
before submitting each query set i, the algorithm is allowed to view the results of queries 1 through i − 1.
In contrast, given a non-adaptive conditional sampling oracle (a NACOND oracle), the algorithm must be
non-adaptive: it must submit all query sets in advance of viewing any of their results.

We will frequently use z = (p − q)/ε to denote the “noise vector” between p and q, and p̄ = (p + q)/2.
While the two cases in distribution testing that one considers are usually p = q and dTV(p, q) ≥ ε, for
convenience of notation, we will generally assume the latter case to be dTV(p, q) = ε – it is not hard to see
that our analysis carries through whenever the algorithm is given a parameter ε which is less than the true
total variation distance between p and q. With this in mind, when p = q, we have that z = ~0, and when
dTV(p, q) = ε, we have that ‖z‖1 = 2 and

∑
i∈[n] z(i) = 0. Let z+ denote the “rectified” version of z, where

z+(i) = max(0, z(i)) – here, in the latter case, ‖z+‖1 =
∑
i∈[n] z

+(i) = 1. z−(i) = max(0,−z(i)) is defined
similarly.

We will use log to refer to the logarithm with base 2 throughout this paper.
For our analysis, we will group indices into bins:

Definition 2. The j-th bin for a vector x, denoted by Binj(x), contains all indices whose values are in the

range [2−j , 2−j+1), i.e. Binj(x) , {i : 1
2j ≤ x(i) < 1

2j−1 }.

We will use the following distances on probability distributions:

Definition 3. The total variation distance between distributions p and q is defined as

dTV(p, q) =
1

2

∑
i∈[n]

|p(i)− q(i)| .

Definition 4. The Kolmogorov distance between distributions p and q is defined as

dK(p, q) = max
j∈[n]

∣∣∣∣∣
j∑
i=1

p(i)−
j∑
i=1

q(i)

∣∣∣∣∣ .
Note that, up to a factor of 2, Kolmogorov distance is equivalent to the `∞ distance between the vectors

p and q. The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality gives a generic algorithm for learning any
distribution with respect to the Kolmogorov distance [DKW56].

Lemma 1 ([DKW56],[Mas90]). Let p̂m be the empirical distribution generated by m i.i.d. samples from a
distribution p. We have that

Pr[dK(p, p̂m) ≥ ε] ≤ 2e−2mε2 .

In particular, if m = Ω(log(1/δ)/ε2), then Pr[dK(p, p̂m) ≥ ε] ≤ δ.

3 Algorithm

Our algorithm, Anaconda, is presented in Algorithm 1. While it is phrased in terms of equivalence testing,
it still works when a distribution q is explicitly given (i.e., identity testing), as one can simply simulate
NACOND queries to q. It takes three parameters, T , m, and ε′, which we will instantiate differently (as
required by our analysis) for uniformity and equivalence testing.
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The algorithm’s behavior can roughly be summarized as follows. The algorithm first chooses a random
size for a query set. It then chooses a random subset of the domain of this size. Next, it draws several
conditional samples from this set, from both p and q. Finally, if it detects that a single element from the
query set has a significantly discrepant probability mass under p and q, it outputs that the two distributions
are far. It repeats this process several times, eventually outputting that the distributions are equal if it never
discovers a discrepant element.

Algorithm 1 Anaconda: An algorithm for testing equivalence given NACOND oracle access to p, q

1: function Anaconda(ε, NACONDp oracle, NACONDq oracle, parameters T,m, ε′)
2: for t = 1 to T do
3: Choose an integer j ∈ {1, . . . , 2 log n} uniformly at random, and define r , 2j .
4: Choose a random set S ⊆ [n], independently selecting each i to be in S with probability 1/r.
5: Perform m queries to NACONDp and NACONDq on the set S.
6: Using these queries, form the empirical distribution p̂S and q̂S .
7: if ∃i ∈ S such that |p̂S(i)− q̂S(i)| ≥ ε′ then
8: return dTV(p, q) ≥ ε
9: end if

10: end for
11: return p = q
12: end function

4 Analysis for Uniformity Testing

In this section, we will prove Theorem 2 by instantiating Anaconda with parameters T = Θ(log n), m =
Θ(log log n/ε2), and ε′ = Θ(ε).

Our strategy will be as follows. We will argue that, with probability Ω(1/ log n), Anaconda will select
a set S with a single element that has significantly different mass under the uniform distribution and the
distribution pS . In this way, we will reduce the problem from `1-testing to `∞-testing, the latter of which is
solvable with very few samples, by Lemma 1.

More precisely, we compare the probability assigned to a particular symbol i when performing a con-
ditional sample on S, in the two cases where p = Un, and when dTV(p,Un) = ε. In the former case, the

probability is Un(i)
Un(S) , while in the latter, it is Un(i)+εz(i)

Un(S)+εz(S) . Therefore, the difference in probability assigned is∣∣∣∣ Un(i) + εz(i)

Un(S) + εz(S)
− Un(i)

Un(S)

∣∣∣∣ . (1)

In the following two subsections, we will show that the following lemma:

Lemma 2. If dTV(p,Un) = ε, then for each t, Anaconda will select a set S which causes (1) to be ≥ Ω(ε)
with probability ≥ Ω(1/ log n).

Assuming this to be true for the moment, we will show how to complete the proof. Repeating this
process T = Θ(log n) times will guarantee that at least one iteration will choose an S containing a sufficiently
discrepant element with probability ≥ 9/10. We focus on the iteration where such an S is selected.

Now if we draw Θ(log log n/ε2) samples from pS , Lemma 1 implies the empirical distribution p̂S will

approximate pS in Kolmogorov distance up to an additive ε′, with probability at least 1 − O
(

1
logn

)
, and

thus Line 7 will correctly identify that dTV(p,Un) = ε. Therefore, with probability at least 4/5, the algorithm
will correctly detect in this case that dTV(p,Un) = ε.

We now examine what happens when p = Un. For each iteration t, the uniform distribution on S and
pS will be equal. We again invoke Lemma 1 with Θ(log log n/ε2) samples, and use a union bound over all
T = Θ(log n) iterations. This implies that, with probability at least 9/10, Line 7 will never identify an
element which has ≥ ε′ discrepancy, and thus the algorithm will output that p = Un in Line 11.
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It remains to prove Lemma 2. We break the analysis into two cases, which we address in the following two
subsections. In Section 4.1, we handle the case where, for all x ∈ {z−, z+},

∑log 5n
j=logn/32+1

∑
i∈Binj(x) x(i) ≥

1/5. This corresponds to the case where there are many symbols with small discrepancy from the uniform
distribution, in both the positive and negative direction. In Section 4.2, we handle the complement of this

case, where there exists an x ∈ {z−, z+} for which
∑logn/32
j=1

∑
i∈Binj(x) x(i) ≥ 3/5. Roughly, this happens

when there are not too many symbols which capture the discrepancy between the distributions.

4.1 Case I: Many Small Discrepancies

In this section, we prove Lemma 2 in the case where for all x ∈ {z−, z+},
∑log 5n
j=logn/32+1

∑
i∈Binj(x) x(i) ≥ 1/5.

In short, the analysis can be summarized as follows: if the algorithm chooses a set S of size 2, it is likely
to contain two elements with non-trivial discrepancy, and in both the positive and negative direction – this
will suffice to make (1) be ≥ Ω(ε).

We have the following proposition relating the size of a bin to the mass it contains, which is immediate
from Definition 2.

Proposition 1. 2j−1
∑
i∈Binj

x(i) ≤ |Binj(x)| ≤ 2j
∑
i∈Binj

x(i).

This gives us the following lower bound on the number of symbols which are in bins log n/32 + 1 through
log 5n:

log 5n∑
j=logn/32+1

|Binj(x)| ≥
log 5n∑

j=logn/32+1

2j−1
∑

i∈Binj(x)

x(i) ≥ n

32

log 5n∑
j=logn/32+1

∑
i∈Binj(x)

x(i) ≥ n

160
(2)

In other words, for either x ∈ {z−, z+}, there are Ω(n) symbols with x(i) ≥ 1/5n.
We complete the proof of Lemma 2 as follows. With probability 1

2 logn , Anaconda will select r = log n
in Line 3. Conditioning on this, with constant probability, the set S selected in Line 4 will be of size
exactly 2. Further conditioning on this, due to (2), with constant probability S will consist of two symbols
i1 ∈ Binj′(z

+) and i2 ∈ Binj′′(z
−) for log n/32 + 1 ≤ j′, j′′ ≤ log 5n.

Without loss of generality, suppose that z(i1) ≥ 0 and z(i2) ≤ 0. Then (1) is the following:∣∣∣∣ Un(i) + εz(i)

Un(S) + εz(S)
− Un(i)

Un(S)

∣∣∣∣ =
εn(z(ii)− z(i2))

2(2 + εn(z(i1) + z(i2)))
≥

εn · 2
5n

2(2 + εn · 32
n )
≥ ε

68
. (3)

This expression is ≥ Ω(ε), and this event happens with probability ≥ Ω(1/ log n), thus proving Lemma 2 in
this case.

4.2 Case II: Not So Many Small Discrepancies

In this section, we prove Lemma 2 in the case where there exists an x ∈ {z−, z+} for which
∑logn/32
j=1

∑
i∈Binj(x) x(i) ≥

3/5. Without loss of generality, assume that this holds for z+. Furthermore, we focus our analysis on the
case where Anaconda picks an r ≤ log n/32. For the remainder of this proof, condition on this event, which
happens with probability at least 1/4.

We will need the following key lemma:

Lemma 3. Suppose dTV(p,Un) = ε. For each iteration t, with probability ≥ 3
20 logn/32 , the algorithm will

choose an r and a set S such that there exists i ∈ S with z+(i) ≥ 1/r.

Proof. For some fixed j, the probability of choosing j is 1
logn/32 , and, conditioning on this j, the probability

of picking any element from Binj(z
+) to be in S is 1−

(
1− 1

2j

)|Binj(z
+)|

. By the law of total probability, we

8



sum this over all bins to get the probability that the event of interest happens:

1

log n/32

∑
j∈[logn/32]

1−
(

1− 1

2j

)|Binj(z
+)|

≥ 1

log n/32

∑
j∈[logn/32]

1− exp

(
−|Binj(z

+)|
2j

)
(4)

≥ 1

log n/32

∑
j∈[logn/32]

1− exp

−1

2

∑
i∈Binj(z+)

z+(i)

 (5)

≥ 1

log n/32

∑
j∈[logn/32]

1

4

∑
i∈Binj(z+)

z+(i) (6)

≥ 3

20 log n/32
. (7)

(4) follows from the inequality 1 − x ≤ exp(−x), (5) is due to Proposition 1, (6) is by the inequality
1− exp(−x) ≥ x/2 (which holds for all x ∈ [0, 1]), and (7) is by assumption

We will require the following lemmata to complete the proof:

Lemma 4. For any i and j,

Pr

[
1

2 · 2j
≤ Un (S \ i) ≤ 3

2 · 2j

]
≥ 1− 2/e2.

Proof. Observe that the size of S \ i is a sum of n− 1 i.i.d. Bernoulli random variables with parameter 1/2j ,
and thus has expectation µ = n−1

2j . Then, by Chernoff bound, we have

Pr

[
9

16

(n− 1)

2j
≤ |S \ i| ≤ 23

16

(n− 1)

2j

]
≥ 1− 2 exp

(
−49µ

768

)
≥ 1− 2/e2.

The last inequality follows since j ≤ log n/32 for n larger than some absolute constant. Similarly, the lemma
follows for n larger than some absolute constant by rescaling the size of the set by a factor of n.

Lemma 5. If dTV(p,Un) = ε, then for any i and j,

Pr

[
z (S \ i) ≥ 4

2j

]
≤ 1/4.

Proof. Note that z+(S\i) is a non-negative random variable. Its expectation E[z+(S\i)] ≤ E[z+(S)] ≤ 1/2j .
The lemma follows by Markov’s inequality, and by observing that the addition of any negative elements of
z will only decrease z(S \ i).

Note that, by Lemmas 3, 4, 5, if dTV(p,Un) = ε, with probability at least 1
4 ·

1
logn/32 ·

(
1− 1

4 − 2/e2
)
≥

Ω(1/ log n), the following events happen simultaneously:

• r ≤ n/32;

• z(i) ≥ 1/r;

• Un(i) = 1/n;

• z(S \ i) ≤ 4/r;

• 1
2r ≤ Un(S \ i) ≤ 3

2r ;

9



We now show that a set S with all these properties will result in (1) being ≥ Ω(ε):∣∣∣∣ Un(i) + εz(i)

Un(S) + εz(S)
− Un(i)

Un(S)

∣∣∣∣ = ε

∣∣∣∣z(i)Un(S \ i)− z(S \ i)Un(i)

Un(S)(Un(S) + εz(S))

∣∣∣∣
≥ ε · 1

Un(S)(Un(S) + εz(S))

(
z(i)

2r
− 4

rn

)
≥ ε · r

2

1
2
r + ε

(
4
r + z(i)

) (z(i)
2r
− 4

rn

)
≥ ε · 1

2
r + ε

(
4
r + z(i)

) (z(i)
4
− 2

n

)
The analysis concludes by considering two cases. If εz(i) ≥ 2

r + ε · 4
r , then we have the lower bound

ε · 1
2εz(i)

(
z(i)

4 −
2
n

)
= Ω(1) ≥ Ω(ε), as desired. Otherwise, we have the lower bound ε · r12

(
z(i)

4 −
2
n

)
≥

ε · r12

(
1
4r −

2
n

)
≥ ε

96 , which completes the proof.

5 Analysis for Equivalence Testing

In this section, we will prove Theorem 1 by instantiating Anaconda with parameters T = Θ(log6 n),
m = Θ̃(log6 n/ε2), and ε′ = ε

Θ̃(log3 n)
.

We will require the following proposition, says if dTV(p, q) = ε and Anaconda selects an appropriate
set S, then it will detect the discrepancy.

Proposition 2. Suppose that dTV(p, q) = ε and that within the first T iterations a set S is identified such
that for some i ∈ S and some c > 0,

min{z(i), z(i)− z(S)} ≥ p(S) + q(S)

Õ(logc n)
.

Then, for ε′ = ε
Õ(logc n)

and m = Ω̃
(

log2c n
ε2

)
, the algorithm outputs that dTV(p, q) ≥ ε with probability at

least 1− 1
poly logn .

Proof. We first argue that |pS(i)− qS(i)| ≥ εmin{z(i),z(i)−z(S)}
p(S)+q(S) .

We set p̄ = p+q
2 . We have that p = p̄+ z ε2 , q = p̄− z ε2 and∣∣∣∣ p(i)p(S)

− q(i)

q(S)

∣∣∣∣ =

∣∣∣∣ p̄(i) + z(i) ε2
p̄(S) + z(S) ε2

−
p̄(i)− z(i) ε2
p̄(S)− z(S) ε2

∣∣∣∣ =
ε

2

∣∣∣∣z(i)p̄(S)− p̄(i)z(S)

p̄2(S)− (z(S) ε2 )2

∣∣∣∣ ≥ ε

2

∣∣∣∣z(i)p̄(S)− p̄(i)z(S)

p̄2(S)

∣∣∣∣ .
As z(i)p̄(S)− p̄(i)z(S) ≥ p̄(S) min{z(i), z(i)− z(S)}, it follows that

|pS(i)− qS(i)| ≥ ε

2

min{z(i), z(i)− z(S)}
(p(S) + q(S))/2

To complete the proof, we note that the condition implies that |pS(i) − qS(i)| ≥ ε
Õ(logc n)

and thus by

Lemma 1, m = Ω̃
(

log2c n
ε2

)
suffices to detect (with failure probability 1/ poly log n) that ‖pS − qS‖∞ > ε′ =

ε
Õ(logc n)

.

To complete the proof, we will show that after T = poly log n iterations, Algorithm 1 will choose a set S
that satisfies the conditions of Proposition 2.

We define ẑ to be the vector with ẑ(i) = z(i) if |z(i)| > p(i)+q(i)
400 logn and ẑ(i) = 0 otherwise. Roughly, this

“zeroes out” the noise for any i where the noise vector z is too large in comparison to the signal vector p+ q.
Let b+ be the measure on {1, . . . , 2 log n} with mass ẑ+(Binj(z

+)) and equivalently define b−. Notice that

|b+|, |b−| ∈ [1− 1
200 logn , 1]. This is because

∑
i:ẑ+(i)=0 z

+(i) ≤
∑
i
p(i)+q(i)
400 logn ≤

1
200 logn .
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The next lemma shows that, if there are two bins (with respect to the positive and negative z vectors)
which are both “heavy” and are close in index, then we will obtain an appropriate set S (for Proposition 2).

Lemma 6. If b+(j) > 1
Õ(logα n)

and b−(j′) > 1
Õ(logβ n)

, for some j and j′ with 2|j−j
′| = Õ(logγ n), then a

single iteration of Algorithm 1 finds set S and i ∈ S with min{z(i), z(i)−z(S)} ≥ p(S)+q(S)

Õ(logγ+1 n)
with probability

1
Õ(logα+β+γ+1 n)

.

Proof. With probability 1
Õ(logn)

, an iteration of Algorithm 1 will choose r = 2−max{j,j′}−3. Given this value

of r, a unique i with ẑ+(i) ∈ [2−j , 2−j+1) and a unique i′ with ẑ−(i′) ∈ [2−j
′
, 2−j

′+1) are selected with
probability 1

Õ(logα+β+γ n)
. It holds that z−(i′), z+(i) ∈ [8, Õ(logγ n)] · r and their corresponding p(i) + q(i) ≤

O(log n) · z(i) ≤ Õ(log1+γ n)r and p(i′) + q(i′) ≤ Õ(log1+γ n)r.
By Markov’s inequality, with probability at least 3/4, z(S \ {i, i′}) ≤ z+(S \ {i, i′}) ≤ 4r. Similarly, with

probability at least 3/4, p(S \ {i, i′}) + q(S \ {i, i′}) ≤ 8r. By a union bound with probability 1/2 both hold
simultaneously.

When all of these events occur, which happens with probability at least 1
Õ(logα+β+γ+1 n)

we get that:

min{z(i), z(i)− z(S)} ≥ 4r since z(i)− z(S) ≥ z−(i′)− z(S \ {i, i′}) ≥ 4r

The lemma follows by noting that p(S) + q(S) ≤ Õ(logγ+1 n)r.

Finally, we have our main lemma required for the analysis. It leverages Lemma 6 to show that we can
obtain an appropriate set S with reasonable probability.

Lemma 7. If dTV(p, q) = ε, then a single iteration of Algorithm 1 finds set S and i ∈ S with min{z(i), z(i)−
z(S)} ≥ p(S)+q(S)

Õ(log3 n)
with probability 1

Õ(log6 n)
.

Proof. Before we begin, we require the following two simple concentration lemmas:

Lemma 8. Let 0 < a < b, Xi ∼ Bernoulli(2−a) and let 1 >
∑
i:xi<2−b xi ≥ c. Then,

∑
i:pxi<2−b Xixi >

2−a(c− t2−(b−a)/2), with probability 1− e−t.

Proof. We apply the Chernoff bound on the variables Zi = Xi2
bxi. We get that with probability 1 − e−t,

2b
∑
i:xi<2−b Xixi > 2b−ac− t2(b−a)/2. Thus, 2a

∑
i:xi<2−b Xixi > c− t2−(b−a)/2

Lemma 9. Let a ≥ 1, Xi ∼ Bernoulli(2−a) and let 1 >
∑
i:xi>2−a xi. Then,

∑
i:xi>2−a Xixi = 0, with

probability 1
4 .

Proof. There are at most 2a elements xi and every element is selected independently with probability 2−a.
The probability that no element is chosen is (1− 2−a)2a ≥ 1

4 .

We continue with the main proof. Consider two cases:

1. dK(b+, b−) ≤ 1
8 logn .

In this case, as
∑
b+(j) > 2/3, there will be a bin j with b+(j) ≥ 2/3

2 logn . As the dK(b+, b−) ≤ 1
8 logn ,

the corresponding b−(j) ≥ 1
3 logn −

2
8 logn ≥

1
12 logn . Then, Lemma 6 implies that a good set will be

identified with high probability.

2. dK(b+, b−) > 1
8 logn .

In this case, there will be a bin jr with |
∑
j≥jr b

−(j)−
∑
j≥jr b

+(j)| ≥ 1
8 logn . Without loss of generality,∑

j≥jr b
+(j) <

∑
j≥jr b

−(j).

Let jl be the largest index such that 1
8 logn <

∑jr
j=jl

b+(j). Then there must exist a j∗ ∈ [jl, jr] such

that b+(j∗) > 1
16 log2 n

as |[jl, jr]| ≤ 2 log n.
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If there is a j ∈ [j∗, j∗+2 log log n], with b−(j) > 1
100 logn log logn , Lemma 6 implies that with probability

1
O(log6 n)

, min{z(i), z(i)− z(S)} ≥ p(S)+q(S)

Õ(log3 n)
.

Otherwise, we have that
∑
j≥j∗+2 log logn b

−(j) > 1
20 logn +

∑
j≥j∗ b

+(j). We will show that in this case,

when the algorithm selects r = 2−j
∗
, a good set is identified with non-trivial probability.

With probability Ω(b+(j∗)) = 1
O(log2 n)

, a unique i with ẑ+(i) ∈ [2−j
∗
, 2−j

∗+1) is selected. It holds

that z+(i) ∈ [1, 2] · r and the corresponding p(i) + q(i) ≤ O(log n) · z(i) ≤ Õ(log n)r.

To complete the proof, we now provide bounds for z(S \ {i}) and p(S \ {i}) + q(S \ {i}).
We decompose z(S \ {i}) into contributions from different sets of elements:

(a) ẑ+((S \ {i}) ∩ (
⋃
j≥j∗ Binj(z

+))}) ≤ r
∑
j≥j∗ b

+(j) + r
200 logn with probability at least 1

100 logn .
This holds by Markov’s inequality.

(b) ẑ+((S \ {i}) ∩ (
⋃
j<j∗ Binj(z

+))}) = 0 with probability 1/4. This holds by Lemma 9.

(c) z+(S \ {i})− ẑ+(S \ {i}) ≤ 3 r
200 logn with probability 2/3. This holds by Markov’s inequality.

(d) z−(S \ {i}) ≥ r
∑
j≥j∗+2 log logn b

−(j)− r
200 logn with probability 15/16. This holds by a concen-

tration bound presented in Lemma 8.

Applying a union bound on cases (b)-(d), we get that they hold simultaneously with probability 1/8.
Noting that

Thus, overall −z(S \ {i}) ≥ r
∑
j≥j∗+2 log logn b

−(j)− r
∑
j≥j∗ b

+(j)− 5r
200 logn ≥

r
20 logn .

In addition, z(i) ≥ r and thus min{z(i), z(i) − z(S)} ≥ r
20 logn . With constant probability, we also

have that p(S) + q(S) ≤ O(log n) · r.

Thus, with probability 1
O(log4 n)

, min{z(i), z(i)− z(S)} ≥ p(S)+q(S)

Õ(log2 n)
.

Finally, with Lemma 7 in hand, we combine it with Proposition 2 to complete the proof of Theorem 1.
Proof of Theorem 1: Set T = Θ(log6(n)). Then Lemma 7 implies that, with constant probability, after T
iterations, a set S will be identified such that for some i ∈ S,

min{z(i), z(i)− z(S)} ≥ p(S) + q(S)

Õ(log3 n)
.

Proposition 2 then implies that for ε′ = ε
Õ(log3 n)

and m = Ω̃
(

log6 n
ε2

)
, the algorithm correctly outputs

that dTV(p, q) ≥ ε with probability at least 1− 1
poly logn .

In contrast, when dTV(p, q) = 0, the algorithm incorrectly correctly outputs that dTV(p, q) ≥ ε with
probability at most 1

poly logn .

6 Analysis for Identity Testing

In this section, we discuss how our results for uniformity testing imply Theorem 3 for identity testing.
We adapt the reduction of [CFGM16], from non-adaptive identity testing to non-adaptive near-uniform
identity testing. In particular, we use their Algorithm 4.2.2, with a few crucial differences – to describe these
differences, we assume familiarity with the terminology of their paper.

In Line 1, they partition the domain using Bucket(q, [n], ε30 ). We perform a less fine-grained partitioning,
using Bucket(q, [n], 1

100 ). Their bucketing defines M0 as all i such that q(i) < 1
n . We define it as all i such

that q(i) < ε
100n .4 The first modification will require a stronger near-uniform identity tester than the one in

their paper, which can handle identity testing to any distribution q such that ‖q−Un‖∞ ≤ 1
100n . The second

4We note that the original definition of M0 used in [CFGM13, CFGM16] appears to be an erratum, and a similar modification
is required for the reduction to go through in their setting as well.

12



change implies that we do not have to do a near-uniform identity test on M0 – either ‖z(M0)‖1 > ε/50
and the discrepancy will be discovered in Line 3, or ‖z(M0)‖1 ≤ ε/50, and this bucket can be ignored, as
‖z([n] \M0)‖1 ≥ 49ε/50. As a result of these changes, there are only Θ(log(n/ε)) buckets in the partition,

and we perform the tests in Line 2 with error bound δ log(1+1/100)
2 log(100n/ε) .

With these changes, mimicking the analysis of Theorem 4.2.1 of [CFGM16] gives the following theorem:

Theorem 4. Suppose there exists a k(n, ε, δ)-query algorithm, which, given NACOND access to an unknown
distribution p over [n] and a description of a distribution q over [n] such that ‖q−Un‖∞ ≤ 1

100n , distinguishes
between the cases p = q versus dTV(p, q) ≥ ε with probability 1− δ.

Then there exists an algorithm which, given NACOND access to an unknown distribution p on [n] and a

description of a distribution q, makes Õ

(
log(n/ε) · k

(
n, ε/2, log(1+1/100)

6 log(100n/ε)

)
+

√
log(n/ε)

ε2

)
queries to the oracle

on p and distinguishes between the cases p = q and dTV(p, q) ≥ ε with probability at least 2/3.

In the rest of this section, we will sketch how the analysis of Theorem 2 can be extended to apply to any
distribution q such that ‖q − Un‖∞ ≤ 1

100n , while maintaining the same sample complexity:

Theorem 5 (Non-Adaptive Near-Uniform Identity Testing). There exists an algorithm which, given NA-
COND access to an unknown distribution p over [n] and a description of a distribution q over [n] such that

‖q − Un‖∞ ≤ 1
100n , makes Õ

(
logn
ε2

)
queries to the oracle on p and distinguishes between the cases p = q

versus dTV(p, q) ≥ ε with probability at least 2/3.

With this in hand, instantiating Theorem 4 with k(n, ε, δ) = Õ
(

logn
ε2 · log(1/δ)

)
5 gives Theorem 3.

Most of the analysis in Section 4 involves reasoning about the noise vector z, none of which changes for
this setting. The exceptions are at the end of Sections 4.1 and 4.2, where we argue that (1) is large. We deal
with the former case first – here, (1) can be written as

ε ·
∣∣∣∣z(i1)q(i2)− z(i2)q(i1)

q(S)(q(S) + εz(S))

∣∣∣∣ ≥ ε 2 · 1
5n ·

99
100n

202
100n

(
202

100n + ε · 32
n

) ≥ Ω(ε),

as desired. In the latter case, the proof follows with two minimal changes in the events that happen
simultaneously (mentioned towards the end of the section). Instead of Un(i) = 1/n, we have that q(i) ≤
101/100n. Also, instead of 1

2r ≤ Un(S \ i) ≤ 3
2r , we have that 1

2r ≤ q(S \ i) ≤ 3
2r . This can be proved by

essentially the same argument as Lemma 4, but rescaling at the end by a factor of 100n/99 or 100n/101.
With these changes, the argument is identical, and thus we have Theorem 5, implying Theorem 3.

7 Open Problems

In this paper, we managed to attain improved upper bounds for several testing problems in the NACOND
model. However, there is still much room for improvement, since our upper bounds only match the lower
bounds for the case of uniformity testing, where the complexity is known to be Θ̃(log n).

A first question is to sharply characterize the complexity of general identity testing. While in the SAMP
model, uniformity testing is known to be complete for identity testing [Gol16], a moment’s thought indicates
that the same reduction does not immediately hold for either the COND or NACOND model. This is
(roughly) because Goldreich’s reduction involves mapping the problem onto a larger domain, which would
require more “granular” conditional samples than afforded by standard conditional sampling models in order
for the reduction to go through. Therefore, it is plausible that testing identity to a general distribution q is
harder than uniformity testing – this would be a qualitative difference in complexity which we are not aware
of in any other sampling model.

Naturally, another question is to characterize the query complexity of equivalence testing. There are
several possibilities here – it may be the same as that of uniformity or identity testing, or distinct from both.
We would consider either of the former two to be surprising, as this would be qualitatively different behavior
than either of the two neighboring oracle models (SAMP and COND).

5Note that a standard boosting applied to Theorem 5 gives a 1− δ probability of success at a multiplicative cost of log(1/δ).
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[FV12] Jan Fiedor and Tomáš Vojnar. Anaconda: a framework for analysing multi-threaded c/c++
programs on the binary level. In International Conference on Runtime Verification, RV ’12,
pages 35–41, Berlin, Heidelberg, 2012. Springer.

[GMV06] Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Streaming and sublinear
approximation of entropy and information distances. In Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’06, pages 733–742, Philadelphia, PA, USA,
2006. SIAM.

[Gol16] Oded Goldreich. The uniform distribution is complete with respect to testing identity to a fixed
distribution. Electronic Colloquium on Computational Complexity (ECCC), 23(15), 2016.

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[GR00] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Electronic
Colloquium on Computational Complexity (ECCC), 7(20), 2000.

[GTZ17] Themistoklis Gouleakis, Christos Tzamos, and Manolis Zampetakis. Faster sublinear algorithms
using conditional sampling. In Proceedings of the 28th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’17, pages 1743–1757, Philadelphia, PA, USA, 2017. SIAM.

[GTZ18] Themis Gouleakis, Christos Tzamos, and Manolis Zampetakis. Certified computation from
unreliable datasets. In Proceedings of the 31st Annual Conference on Learning Theory, COLT
’18, pages 3271–3294, 2018.

[Hey87] Eckhard W. Heymann. A field observation of predation on a moustached tamarin (saguinus
mystax) by an anaconda. International Journal of Primatology, 8(2):193–195, 1987.

16

https://anaconda.com
https://sublinear.info/index.php?title=Open_Problems:66
https://sublinear.info/index.php?title=Open_Problems:66


[ILR12] Piotr Indyk, Reut Levi, and Ronitt Rubinfeld. Approximating and testing k-histogram dis-
tributions in sub-linear time. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’12, pages 15–22, New York, NY, USA,
2012. ACM.

[Mas90] P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The Annals of
Probability, 18(3):1269–1283, 07 1990.

[Mer01] Laurie Mercier. Anaconda: labor, community, and culture in Montana’s smelter city, volume
286. University of Illinois Press, 2001.

[MJSM+14] Onika Maraj, Jamal Jones, Jonathan Solone-Myvett, Ernest Clark, Marcos Palacios, and An-
thony Ray. Anaconda. Music single, August 2014.

[OS18] Krzysztof Onak and Xiaorui Sun. Probability-revealing samples. In Proceedings of the 21st
International Conference on Artificial Intelligence and Statistics, AISTATS ’18, pages 84:2018–
2026. JMLR, Inc., 2018.

[Pan08] Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete
data. IEEE Transactions on Information Theory, 54(10):4750–4755, 2008.

[RS09] Ronitt Rubinfeld and Rocco A. Servedio. Testing monotone high-dimensional distributions.
Random Structures and Algorithms, 34(1):24–44, 2009.

[Rub12] Ronitt Rubinfeld. Taming big probability distributions. XRDS, 19(1):24–28, 2012.

[SSJ17] Imdad S. B. Sardharwalla, Sergii Strelchuk, and Richard Jozsa. Quantum conditional query
complexity. Quantum Information & Computation, 17(7& 8):541–566, 2017.

[Val11] Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Computing,
40(6):1927–1968, 2011.

[VV17] Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal identity
testing. SIAM Journal on Computing, 46(1):429–455, 2017.

[Wag15] Bo Waggoner. lp testing and learning of discrete distributions. In Proceedings of the 6th
Conference on Innovations in Theoretical Computer Science, ITCS ’15, pages 347–356, New
York, NY, USA, 2015. ACM.

17
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


