Variants of Homomorphism Polynomials Complete for Algebraic Complexity Classes

Prasad Chaugule ${ }^{* 1}$, Nutan Limaye ${ }^{\dagger 1}$, and Aditya Varre ${ }^{\ddagger 1}$
${ }^{1}$ Indian Institute of Technology, Bombay (IITB)

July 31, 2018

Abstract

We present polynomial families complete for the well-studied algebraic complexity classes VF, VBP, VP, and VNP. The polynomial families are based on the homomorphism polynomials studied in the recent works of Durand et al. (2014) and Mahajan et al. (2016). We consider three different variants of graph homomorphisms, namely injective homomorphisms, directed homomorphisms and injective directed homomorphisms and obtain polynomial families complete for VF, VBP, VP, and VNP under each one of these. The polynomial families have the following properties:

- The polynomial families complete for VF, VBP, and VP are model independent, i.e. they do not use a particular instance of a formula, ABP or circuit for characterising VF, VBP, or VP, respectively.
- All the polynomial families are hard under p-projections.

1 Introduction

Valiant Val79 initiated the systematic study of the complexity of algebraic computation. There are many interesting computational problems which have an algebraic flavour, for example, determinant, rank computation, discrete log and matrix multiplication. In fact, any problem related to these can be reformulated as a problem about computing a certain related polynomial. There are many other combinatorial problems, which do not prima facie have an algebraic flavour, but they can also be reduced to the problem of computing a certain polynomial. For instance, the problem of finding a perfect matching in a graph, NP-hard optimisation problems such as MaxSAT, MaxClique or MaxCut.

Valiant's work spurred the study of these and many other polynomials and led to a classification of these polynomials as easy to compute and possibly hard to compute. To talk about the ease or the hardness of computation, it is vital to first formalise the notion of a model of computation.

An arithmetic circuit is one such model of computation which has been well-studied. An arithmetic circuit is a DAG whose in-degree 0 nodes are labelled with variables ($X=\left\{x_{1}, \ldots, x_{n}\right\}$) or field constants (from, some field, say \mathbb{F}). All the other nodes are labelled with operators,$+ \times$. Each such node computes a polynomial in a natural way. The circuit has an out-degree zero

[^0]node, called the output gate. The circuit is said to compute the polynomial computed by its output gate. The size of the circuit is the number of gates in it.

Any multivariate polynomial $p(X) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is said to be tractable if its degree is at $\operatorname{most} \operatorname{poly}(n)$ and there is a $\operatorname{poly}(n)$ sized circuit computing it. The class of such tractable polynomial families is called VP.

Many other models of computation have been considered in the literature such as arithmetic formulas, algebraic branching programs (ABPs). An arithmetic formula is a circuit in which the underlying DAG is a tree. The class of polynomial families computable by polynomial sized arithmetic formulas is called VF.

An algebraic branching program is a layered DAG, where the edges between two consecutive layers are labelled with variables from X or constants from \mathbb{F}. For any two nodes in this layered graph a directed path between them is said to compute the monomial obtained by multiplying the labels of the edges along that path. The ABP has two designated nodes, say s and t. The polynomial computed by the ABP is a sum of all the monomials computed by all the paths from s to t. The size of an ABP is the number of nodes in the underlying DAG. The class of polynomial families computed by polynomial sized ABPs is called VBP.

Another important class of polynomials studied in the literature (and defined in [Val79]) is VNP . It is known that $\mathrm{VF} \subseteq \mathrm{VBP} \subseteq \mathrm{VP} \subseteq \mathrm{VNP}$. In Val79], it was shown that the Permanent polynomial is complet \mathbb{V}^{1} for the class VNP^{2}. It was also shown that the syntactic cousin of the Permanent polynomial, namely the Determinant polynomial, is in VP. However, the Determinant is not known to be complete for the class VP. In fact, for the longest time there were no natural polynomials which were known to be complete for VP.

Bürgisser in Bür13 proposed a candidate VP-complete polynomial which was obtained by converting a generic polynomial sized circuit into a VP-hard polynomial (similar to how the Circuit Value Problem is shown to be hard for P). Subsequently Raz in Raz08 gave a notion of a universal circuit and presented a VP-complete polynomial arising from the encoding of this circuit into a polynomial. More recently, Mengel (Men11] as well as Capelli et al. CDM16 proposed characterisations of polynomials computable in VP. In these and other related works, the VP-complete polynomial families were obtained using the structure of the underlying circuit. (See for instance $\left[\mathrm{DMM}^{+} 14\right]$ and references thesein for other related work.)

Truly circuit-description-independent VP-complete polynomial families were introduced in the works of Durand et al. $\left[\mathrm{DMM}^{+}\right.$14] and Mahajan et al. [MS18]. In this paper, we build on to the results proved in $\mathrm{DMM}^{+} 14, \mathrm{MS18}$ and extend them in various ways.

At the core of our paper are homomorphism polynomials, variants of which were introduced in $\mathrm{DMM}^{+} 14$ and $\mathrm{MS18]}$. Informally, a homomorphism polynomial is obtained by encoding a combinatorial problem of counting the number of homomorphisms from one graph to another as a polynomial. Say we have two graphs, G and H, then the problem of counting the number of a certain set of homomorphisms, say \mathcal{H}, from the graph G to H can be algebrised in many different ways. One such way is to represent the counting problem as the following polynomial.

$$
f_{G, H, \mathcal{H}}=\sum_{\phi \in \mathcal{H}} \prod_{(u, v) \in E(G)} Y_{(\phi(u), \phi(v))},
$$

where $Y=\left\{Y_{(a, b)} \mid(a, b) \in E(H)\right\}$ and \mathcal{H} is a set of homomorphisms from G to H^{3},
In our work we also consider homomorphism polynomials. However, instead of looking at all possible homomorphisms, we consider three restricted set of homomorphisms, namely injective

[^1]homomorphisms (denoted as $\mathcal{I H}$), directed homomorphisms (denoted as $\mathcal{D H}$) and injective directed homomorphisms (denoted as $\mathcal{I D H}$). Naturally, when we consider $\mathcal{D H}$ or $\mathcal{I D H}$, we assume that G and H are directed graphs. We then design pairs of classes of graphs which help us obtain polynomials such that they are complete for the following complexity classes: VF, VBP, VP, and VNP. Like in $\left[\mathrm{DMM}^{+} 14\right.$ MS18 our polynomials are also model independent, i.e. the graph classes we use can be defined without knowing anything about the exact structure of the formula, ABP, or the circuit. We also manage to show the hardness in all the cases under more desirable p-projections.

We are able to characterise all the well-studied arithmetic complexity classes using variants of homomorphism polynomials. This provides a unified way of giving characterisation for these classes. The table below (Table 1) shows the known results regarding the homomorphism polynomials prior to our work and also summarises the results in this paper.

There could be many other ways to define homomorphism polynomials. There are two other definitions of homomorphism polynomials studied in the literature. One such variant from $\mathrm{DMM}^{+} 14$ defines homomorphism polynomials with additional X variables as follows: $\hat{f}_{G, H, \mathcal{H}}(Y)=\sum_{\phi \in \mathcal{H}}\left(\prod_{u \in V(G)} X_{\phi(u)}^{\alpha(u)}\right)\left(\prod_{(u, v) \in E(G)} Y_{(\phi(u), \phi(v))}\right)$, where $\alpha: V(G) \rightarrow\{0,1\}$. Yet another variant from [DMM ${ }^{+} 14$ MS18 defines homomorphism polynomials using additional Z variables as $\hat{\hat{f}}_{G, H, \mathcal{H}}(Y)=\sum_{\phi \in \mathcal{H}}\left(\prod_{u \in V(G)} Z_{u, \phi(u)}\right)\left(\prod_{(u, v) \in E(G)} Y_{(\phi(u), \phi(v))}\right)$. Since the overall goal in these works is to design polynomials complete for complexity classes, it is reasonable to compare our results with those in $\mathrm{DMM}^{+} 14$, MS18 without worrying about the different variations of homomorphism polynomials across the entries of Table 1 .

	VP		VBP and VF	VNP
	c-reductions	p-projections	p-projections	p-projections
InjDirHom	-	DMM ${ }^{+} 14, \checkmark$	\checkmark	\checkmark
InjHom	-	\checkmark	\checkmark	\checkmark
DirHom	$\mathrm{DMM}^{+} 14$	\checkmark	$\mathrm{DMM}^{+} 14, \checkmark$	\checkmark
Hom	$\mathrm{DMM}^{+} 14$	MS18	MS18]	MS18 Sau

Table 1: Comparison between our work and previous work. A cell containing the symbol \checkmark represents the polynomial family designed in this paper.

Organisation. The rest of the paper is organised as follows. We present some notations and preliminaries in the following section. In Section 3 we present the details regarding VPcomplete polynomial families. In Section 4 and Section 5 we present the details regarding VNP-complete and VBP-complete (VF-complete) polynomial families, respectively.

2 Preliminaries

In this section we introduce some notations and provide some preliminaries, which we will use in the rest of the paper. For any integer $n \in \mathbb{N}$, we use $[n]$ to denote the set $\{1,2, \ldots, n\}$. For any set S, we use $|S|$ to denote the cardinality of the set.

2.1 Graph theoretic notions

A cycle graph on n nodes, denoted as \mathcal{C}_{n}, is a graph that has n nodes say v_{0}, \ldots, v_{n-1}, and n edges, namely $\left\{\left(v_{(i \bmod n)}, v_{(i+1 \bmod n)} \mid i \in[n]\right\}\right.$. We assume that the cycle graph is undirected unless stated otherwise. A spiked cycle graph on $n+1(n \geqslant 3)$ nodes, denoted as \mathcal{S}_{n}, is a cycle graph \mathcal{C}_{n} with an additional edge (v, u), where u is an additional node which is not among v_{0}, \ldots, v_{n-1}, and $v \in\left\{v_{0}, \ldots, v_{n-1}\right\}$. We call the nodes v_{0}, \ldots, v_{n-1} the cycle nodes and we call the additional node a spiked node.

(a) Spiked cycle \mathcal{S}_{5}, spiked node u.

(b) \mathcal{S}_{5} is attached to node v in G

Figure 1: \mathcal{S}_{5} attached to v in G. The distance between spiked node u and v is 2 .

For a graph G, a cycle graph \mathcal{C}_{n} is said to be attached to a node v of G, if one of the nodes of \mathcal{C}_{n} is identified with the node v. A spiked cycle graph \mathcal{S}_{n} is said to be attached to a node v of G, if a node at distance 2 from the spiked node of \mathcal{S}_{n} is identified with v.

2.2 Arithmetic Circuit Complexity Classes

Let \mathbb{F} be any characteristic 0 field. Let X be a set of variables. From now on we will only work with characteristic 0 fields.

An arithmetic circuit is a directed acyclic graph (DAG) in which the in-degree 0 nodes are called input gates, there is a unique out-degree 0 node called the output gate, all other nodes are labelled with either + or \times. An input gate is typically labelled with a variable from X or a constant from \mathbb{F}. We define the polynomial computed by a circuit inductively. An input gate labelled $x_{i}($ or $c \in \mathbb{F})$ is said to compute the polynomial $x_{i}(c$, resp.). Let g be a gate with inputs g_{1}, g_{2}. Let $p_{1}(X), p_{2}(X)$ be the polynomials computed by g_{1}, g_{2} respectively. If g is labelled with $\times\left(\right.$ or +) then the polynomial computed by g is simply $p_{1}(X) \times p_{2}(X)$ (resp. $\left.p_{1}(X)+p_{2}(X)\right)$. The polynomial computed by the circuit is the polynomial computed by the output gate. If the out-degree of every node in the circuit is 1 then it is called a formula.

The size of the circuit/formula is the number of nodes in the underlying graph. The depth of the circuit/formula is the length of the longest path from an input gate to the output gate.

Let $\left\{f_{n}\left(x_{1}, x_{2}, \ldots, x_{m(n)}\right)\right\}_{n \in \mathbb{N}}$ be a family of polynomials. The family is said to be p-bounded if for each n, the degree of f_{n} and $m(n)$ are polynomially bounded. A p-bounded family is said to be in VP (in VF) if for each n, there is a circuit (resp. formula) C_{n} such that C_{n} computes $f_{n}\left(x_{1}, \ldots, x_{m(n)}\right)$ and the size of C_{n}, denoted as $s(n)$, is polynomially bounded.

An algebraic branching program (ABP) is a layered directed graph $G=(V, E)$ such that the first layer contains a designated source node s and the last layer contains a designated sink node t. The edges are labelled with variables. For any s to t path ρ, we use f_{ρ} to denote the product of the variables labelling the edges in ρ. The polynomial computed by an ABP is $\sum_{\rho} f_{\rho}$, where ρ is an s to t path.

A p-bounded family is said to be in VBP if for each n, there is an ABP P_{n} such that P_{n} computes $f_{n}\left(x_{1}, \ldots, x_{m(n)}\right)$ and the size of P_{n}, denoted as $s(n)$, is at most $n^{O(1)}$.

Finally, a family of polynomials $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ over $r(n)$ variables and of degree $d(n)$ is said to be in VNP if $r(n), d(n) \in n^{O(1)}$ and there is another polynomially bounded function $m(n)$ and a family of polynomials $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ in VP such that for each $n \in \mathbb{N}, g_{n}$ has $r(n)+m(n)$ variables denoted as $X=\left\{x_{1}, \ldots x_{r(n)}\right\}, Y=\left\{y_{1}, \ldots, y_{m(n)}\right\}$, and $f_{n}(X)=\sum_{y_{1} \in\{0,1\}, \ldots, y_{m(n)} \in\{0,1\}} g_{n}(X, Y)$.

Projection reductions We say that a family of polynomials $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a p-projection of another family of polynomials $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ if there is a polynomially bounded function $m: \mathbb{N} \rightarrow \mathbb{N}$ such that for each $n \in \mathbb{N}, f_{n}$ can be obtained from $g_{m(n)}$ by setting its variables to one of the variables of f_{n} or to field constants.

2.3 Normal form circuits and formulas

In this section, we present some other important notions regarding normal form circuits. We say that an arithmetic circuit is multiplicatively disjoint if the graphs corresponding to the subcircuits rooted at the children of any multiplication gate are node disjoint. We use a notion of a normal form of a circuit as defined in [$\left.\mathrm{DMM}^{+} 14\right]$. We first define the notion of a universal circuit. This notion was defined in (Raz08 and was used in DMM^{+}14, MS18.

Definition 1 (Universal circuit). A circuit D is said to be a (n, s, d)-universal circuit if for any polynomial f_{n} of degree d that can be computed by a size s circuit, there is another circuit Φ computing f_{n} such that the $D A G$ underlying Φ is the same as that of D.

We assume that $s, d: \mathbb{N} \rightarrow \mathbb{N}$ are both functions of n. A family $\left\{D_{n}\right\}_{n \in \mathbb{N}}$ of $(n, s(n), d(n))$ universal circuits is defined in the usual way. If s, d are polynomially bounded functions of n then we drop the parameters (n, s, d) from the description of the universal circuit.

Using the notion of universal circuits, we define the notion of the normal form for circuits.
Definition 2 ($\left.\mathrm{DMM}^{+} 14\right]$). A family of universal circuits $\left\{D_{n}\right\}_{n \in \mathbb{N}}$ in the normal form is a family of circuits such that for each $n \in \mathbb{N}, D_{n}$ has the following properties:

- It is a layered circuit in which each \times gate (+ gate) has fan-in 2 (unbounded fan-in resp.).
- Without loss of generality the output gate is a + gate. Moreover, the circuit has an alternating structure, i.e. the children of $+(\times)$ gates are $\times(+$, resp.) gates, unless the children are in-degree 1 gates, in which case they are input gates.
- The input gates have out-degree 1. They all appear on the same layer, i.e. the length of any input gate to output gate path is the same.
- D_{n} is multiplicatively disjoint.
- Input gates are labelled by variables and no constants appear at the input gate.
- The depth of D_{n} is $2 c\lceil\log n\rceil$, for some constant c. The number of variables, $v(n)$, and size of the circuit, $s(n)$, are both polynomial in n.
- The degree of the polynomial computed by the circuit is n.

We now recall a notion of a parse tree of a circuit from MP06.
Definition 3 (MP06]). The set of parse trees of a circuit $C, \mathcal{T}(C)$, is defined inductively based on the size of the circuit as follows.

- A circuit of size 1 has itself as its unique parse tree.
- If the circuit size is more than 1, then the output gate is either $a \times$ gate or $a+$ gate.
(i) if the output gate g of the circuit is $a \times$ gate with children g_{1}, g_{2} and say $C_{g_{1}}, C_{g_{2}}$ are the circuits rooted at g_{1} and g_{2} respectively, then the parse trees of C are obtained by taking a node disjoint copy of a parse tree of $C_{g_{1}}$ and a parse tree of $C_{g_{2}}$ along with the edges $\left(g, g_{1}\right)$ and $\left(g, g_{2}\right)$.
(ii) if the output gate g of the circuit is $a+$ gate, then the parse trees of C are obtained by taking a parse tree of any one of the children of g, say h, and the edge (g, h).
It is easy to see that a parse tree computes a monomial. For a parse tree T, let f_{T} be the monomial computed by T. Given a circuit C (or a formula F), the polynomial computed by C (by F, resp.) is equal to $\sum_{T \in \mathcal{T}(C)} f_{T}\left(\sum_{T \in \mathcal{T}(F)} f_{T}\right.$, respectively).

We use the following fact about parse trees proved in MP06].
Proposition 4 (MP06). A circuit C is multiplicatively disjoint if and only if any parse tree of C is a subgraph of C. Moreover, a subgraph T of C is a parse tree if:

- T contains the output gate of C.
- If g is $a \times$ gate in T, with children g_{1}, g_{2} then the edges $\left(g, g_{1}\right)$ and $\left(g, g_{2}\right)$ appear in T.
- If g is $a+$ gate in T, it has a unique child in T, which is one of the children of g in C.
- No edges other than those added by the above steps belong to C.

2.4 Graph homomorphism, its variants and homomorphism polynomials

We start with the definition of different variants of graph homomorphisms. Given two undirected graphs (the directed variant can be defined similarly) G and H, we say that $\phi: V(G) \rightarrow V(H)$ is a homomorphism from G to H if for any edge $(u, v) \in E(G),(\phi(u), \phi(v)) \in E(H)$, i.e. the mapping preserves the edge relation. Note that, two different nodes in G can be mapped to the same node in H.

The homomorphism is said to be an injective homomorphism if additionally for any node $a \in V(H),\left|\phi^{-1}(a)\right| \leqslant 1$, i.e. at most one node of G can be mapped to a node of H. Neither homomorphisms nor injective homomorphisms are required to be surjective, i.e. it is possible that $|V(G)| \leqslant|V(H)|$.

If the graphs G, H are directed, then the notion of homomorphism is modified to additionally preserve the directed edges. Formally, $\phi: V(G) \rightarrow V(H)$ is said to be a directed homomorphism from G to H if for any directed edge $(u, v) \in E(G),(\phi(u), \phi(v))$ is a directed edge in $E(H)$.
Definition 5. Let G, H be two undirected graphs. Let $Y=\left\{Y_{a, b} \mid(a, b) \in E(H)\right\}$ be a set of variables. Let $\mathcal{I H}$ be a set of injective homomorphisms from G to H. Then the injective homomorphism polynomial $f_{G, H, \mathcal{I H}}$ is defined as follows: $f_{G, H, \mathcal{I H}}(Y)=\sum_{\phi \in \mathcal{I H}} \prod_{(u, v) \in E(G)} Y_{(\phi(u), \phi(v))}$.

If G, H are directed graphs and $\mathcal{D H}$ is a set of directed homomorphisms from G to H then $f_{G, H, \mathcal{D H}}(Y)=\sum_{\phi \in \mathcal{D H}} \prod_{(u, v) \in E(G)} Y_{(\phi(u), \phi(v))}$ is said to be the directed homomorphism polynomial. Similarly, if G, H are directed graphs and $\mathcal{I D H}$ is a set of injective directed homomorphisms from G to H then $f_{G, H, \mathcal{I D \mathcal { H }}}(Y)=\sum_{\phi \in \mathcal{I D H}} \prod_{(u, v) \in E(G)} Y_{(\phi(u), \phi(v))}$ is said to be the injective directed homomorphism polynomial.

3 Polynomial families complete for VP

3.1 Injective homomorphisms

We give some definitions of various graph classes.

Definition 6 (Balanced Alternating-Unary-Binary tree). A balanced alternating-unary-binary tree with k layers, denoted as $A T_{k}$, is a layered tree in which the layers are numbered from $1, \ldots, k$, where the layer containg the root node is numbered 1 and the layer containing the leaves is numbered k. The nodes on an even layer have exactly two children and the nodes on an odd layer have exactly one child. Figure 2(a) shows an alternating-unary-binary tree with 5 layers.

Figure 2: Examples of AT_{k} and $\mathrm{BT}_{k, s}$

Definition 7 (Block tree). Let $B T_{k, s}$ denote an alternately-unary-binary block tree, which is a graph obtained from $A T_{k}$ by making the following modifications: each node u of $A T_{k}$ is converted into a block B_{u} consisting of s nodes. The block corresponding to the root node is called the root block. The blocks corresponding to the nodes on the even (odd) layers are called binary (unary, respectively) blocks. If v is a child of u in $A T_{k}$ then B_{v} is said to be a child of B_{u} in $B T_{k, s}$.

After converting each node into a block of nodes, we add the following edges: say B is a unary block and block B^{\prime} is its child, then for each node u in B and each node v in B^{\prime} we add the edge (u, v). Moreover, if B is a binary block and $B^{\prime}, B^{\prime \prime}$ are its children, then we assume some ordering of the s nodes in these blocks. Say the nodes in $B, B^{\prime}, B^{\prime \prime}$ are $\left\{b_{1}, \ldots, b_{s}\right\},\left\{b_{1}^{\prime}, \ldots, b_{s}^{\prime}\right\}$, and $\left\{b_{1}^{\prime \prime}, \ldots, b_{s}^{\prime \prime}\right\}$ respectively, then we add edges $\left(b_{i}, b_{i}^{\prime}\right)$ and $\left(b_{i}, b_{i}^{\prime \prime}\right)$ for each $i \in[s]$.

Figure 2 (b) shows a block tree $\mathrm{BT}_{k, s}$ where $k=5$ and $s=3$.
Let $k_{1}=3<k_{2}<k_{3}$ be three distinct fixed odd numbers such that $k_{3}>k_{2}+2$.
Definition 8 (Modified-Alternating-Unary-Binary tree). We attach a spiked cycle $\mathcal{S}_{k_{1}}$ to the root of $A T_{k}$. We attach a spiked cycle $\mathcal{S}_{j \times k_{2}}\left(\mathcal{S}_{j \times k_{3}}\right.$ respectively) to each left child node (right child node respectively) in every odd layer $j>1$. We call the graph thus obtained to be a modified alternating-unary-binary tree and denote it by $M A T_{k}$.

Definition 9 (Modified Block tree). We start with $B T_{k, s}$ and make the following modifications: we keep only one node in the root block and delete all the other nodes from the root block. We then attach a spiked cycle $\mathcal{S}_{k_{1}}$ to the only node in root block. We attach a spiked cycle $\mathcal{S}_{j \times k_{2}}$ $\left(\mathcal{S}_{j \times k_{3}}\right.$ respectively) to each left child node (right child node respectively) in every odd layer $j>1$. We call the graph thus obtained a modified block tree and denote it by $M B T_{k, s}$.

We identify each node in graphs $\mathrm{MAT}_{k}, \mathrm{MBT}_{k, s}$ as either a core node or a non core node. We formally define this notion.

Definition 10 (Core nodes and Non-core nodes). A non-core node is any node in $M A T_{k}$ (or $M B T_{k, s}$) which was not already present in $A T_{k}$ (or $B T_{k, s}$ respectively). Any node which is not a non-core node is a core node.

We prove the following theorem in this section.
Theorem 11. The family $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$ is complete for class VP under p-projections, where G_{n} is $M A T_{m(n)}$ and H_{n} is $M B T_{m(n), s(n)}$.

As the first step towards proving the theorem, we perform a few more updates to the normal form circuits we designed for polynomials in VP. Consider the universal circuit D_{n} in normal form as in Definition 2, Let $m(n)=2 c\lceil\log n\rceil+1$ be the number of layers in D_{n} and let $s(n)$ be its size. From the definition of D_{n}, we know that any parse tree of D_{n} is isomorphic to AT $m(n)$. From such a circuit D_{n}, we construct another circuit D_{n}^{\prime}, which has all the properties that D_{n} has and additionally the underlying graph of D_{n}^{\prime} is a subgraph of the block tree $\mathrm{B} \mathrm{T}_{m(n), s(n)}$, for $m(n), s(n)$ as mentioned above. Formally,

Lemma 12. For every $n \in \mathbb{N}$, given any circuit D_{n} with $m(n)=2 c\lceil\log n\rceil+1$ layers and size $s(n)$ in the normal form as in Definition 2, there is another circuit D_{n}^{\prime} such that it has all the properties that the circuit D_{n} has and additionally it has the following properties:

- The polynomial computed by D_{n}^{\prime} is the same as the polynomial computed by D_{n}.
- Every parse tree of D_{n}^{\prime} is isomorphic to $A T_{m(n)}$.
- The underlying graph of D_{n}^{\prime} is a subgraph of the block tree $B T_{m(n), s(n)}$.
- The size of D_{n}^{\prime} is $\operatorname{poly}(s(n))$.

Proof. To prove the lemma, we will give a construction of D_{n}^{\prime}. Our construction will ensure that D_{n}^{\prime} also has $m(n)$ layers. Let $u_{1}, u_{2}, \ldots, u_{t(j)}$ be the nodes in layer j of $\mathrm{AT}_{m(n)}{ }^{4}$. For each such node, we will have one block node in D_{n}^{\prime}, i.e. we will add blocks $B_{u_{1}}, B_{u_{2}}, \ldots, B_{u_{t(j)}}$. We will say that a block B_{u} is a parent of a block B_{v} if u is a parent of v in $\mathrm{AT}_{m(n)}$. We will now describe the gates appearing in these blocks and then describe the connections between these blocks. That will complete the construction of D_{n}^{\prime}.

Gates of D_{n}^{\prime} : For j even, each block B_{u} in layer j has exactly one copy of every gate in layer j inside D_{n}. We know that for j even, the gates on the j th layer are \times gates in D_{n}. Therefore, in D_{n}^{\prime} too we only get \times gates in the j th layer.

For j odd, we make many more copies of nodes at layer j of D_{n}. Each block has q sub-blocks and each sub-block consists of a copy of each gate appearing in layer j inside D_{n}. All sub-blocks are identical in terms of the gates appearing in them. Note that all the gates appearing on the j th layer are + gates by construction, if j is odd.

[^2]Wires of D_{n}^{\prime} : Let g be a \times gate in layer j inside a block B_{u} in D_{n}^{\prime}. Say u has children u_{1}, u_{2} in AT_{m}. (As g is a \times gate, we know that j is even and hence that u is a binary node in AT_{m}.) Also, let $g=g_{1} \times g_{2}$ in D_{n} and say g is the i_{1} th $\left(i_{2}\right.$ th) predecessor of $g_{1}\left(g_{2}\right.$, respectively) in D_{n}. We then add the following wires in D_{n}^{\prime} : a wire from a copy of g_{1} appearing in the i_{1} th sub-block of $B_{u_{1}}$ to the gate g inside B_{u} and a wire from a copy of g_{2} appearing in the i_{2} th sub-block of $B_{u_{2}}$ to the gate g inside B_{u}.

Let g be + gate in layer j in the block B_{u} in D_{n}^{\prime}. Say v is the child of u in $\mathrm{AT}_{m(n)}$. (As g is $\mathrm{a}+$ gate, we know that j is odd and that u is a unary node in $\mathrm{AT}_{m(n)}$.) Say $g=g_{1}+g_{2} \ldots+g_{k}$ in D_{n}. Then we simply connect copies of $g_{1}, g_{2}, \ldots, g_{k}$ from B_{v} to the gate g in B_{u}.

Finally, we only keep one copy of the root gate in layer 1. If we assume that all the edges are directed from root towards the leaves, then we keep only edges induced by the nodes reachable from root in this directed graph. This finishes the construction of D_{n}^{\prime}.

From the construction of D_{n}^{\prime}, we also get the following properties.
Observation 13. As the number of predecessors for any gate in D_{n} is bounded by $s(n)$, at most $s(n)$ copies of any + gate will be used in D_{n}^{\prime}. Moreover, every copy of $+g$ gate will be used at most once.

We now prove Theorem 11 by first showing the hardness of the polynomial $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$ and then proving that it can be computed in VP.

3.1.1 VP hardness of $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$

We now show that if $f_{n}(X)$ is a polynomial computed in VP, then it is a p-projection of $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$. Let G_{n}, H_{n} be the source and target graphs defined in Theorem 11 .

Let f_{n} be any polynomial in VP and D_{n} be the normal form universal circuit computing f_{n} with $m=2 c\lceil\log n\rceil+1$ layers and size $s(n)$. We convert this circuit into D_{n}^{\prime} as specified at the start of this section. As observed earlier, it still computes the polynomial computed by D_{n}. Let \mathcal{G}_{n}^{\prime} be the underlying graph of the circuit D_{n}^{\prime}. As D_{n}^{\prime} is multiplicatively disjoint every parse tree of the circuit is a subgraph of \mathcal{G}_{n}^{\prime}. Moreover, every parse tree is of the form $\mathrm{AT}_{m(n)}$.

If a spiked cycle is attached to a node v in layer ℓ of a layered graph then we will say that all the nodes of the cycle belong to the same layer ℓ.

Let $\phi: G_{n} \rightarrow H_{n}$ be any injective homomorphism. Let us use ϕ_{i} to denote the action of this homomorphism restricted to layer i on G_{n}. Let $\tilde{\phi}_{i}$ denote $\cup_{1 \leqslant j \leqslant i} \phi_{i}$, i.e. the action of ϕ up to layer i. We will prove the following lemma inductively.

Lemma 14. Let ϕ be an injective homomorphism from G_{n} to H_{n}. For any $i \in[m(n)], \tilde{\phi}_{i}\left(G_{n}\right)$ is simply a cop, ${ }^{5}$ of the graph MAT_{i} inside H_{n} with the following additional properties:

- the root of $M A T_{i}$ is mapped to the root of H_{n}.
- for any $i \in[m(n)]$, the core node u in layer i is mapped to a node in block B_{u} in layer i of H_{n}.

Proof. The lemma can be proved easily using induction on $i \in[m(n)]$. We present all the details for the sake of completeness.

Base Case: For any injective homomorphism to survive, the root of G_{n} must be mapped to the root of H_{n} due to the presence of a spiked cycle graph $\mathcal{S}_{k_{1}}$ attached to the roots of both the graphs. This also satisfies the second property from the lemma, as the root of H_{n} is in B_{r} where r is the root of G_{n}.

[^3]Inductive case: We assume that the inductive hypothesis holds for all layers smaller than $i+1$. Let u be a node in layer $i+1$ of G_{n}. Let u_{i} be the parent of this node, which is in layer i. Say v_{i} is a node to which u_{i} is mapped in H_{n}. We break this case into two parts based on whether $i+1$ is even or odd.
$i+1$ is even and $i+1 \geqslant 2$: Inductively we also have that the spiked cycle at node u_{i} is mapped injectively to the spiked cycle at v_{i}. Assume for the sake of contradiction that u does not get mapped to a node in layer $i+1$. In this case, either u is mapped to a node in the spiked cycle attached to v_{i} or to some node in the layer $i-1$ which is connected v_{i}. As the homomorphism is injective the first case cannot happen. The next case cannot happen as the outdegree of the gates in the odd layers is at most 1 and the neighbor of v_{i} in layer $i-1$ will already have the parent of u_{i} mapped to it. Hence u must get mapped to a node in layer $i+1$ which is adjacent to v_{i} thus to a node in B_{u}.
$i+1$ is odd and $i+1 \geqslant 3$: Let u_{i} and v_{i} be defined above. From the construction, u_{i} has two children (say u, u^{\prime}) and v_{i} has two neighbours, say v, v^{\prime}, in layer $i+1$. Assume wlog that u is the left child of u_{i}. Hence, it has a spiked cycle $\mathcal{S}_{(i+1) \times k_{2}}$ attached to it. Similarly if v is the left neighbour of v_{i} in the layer $i+1$, it also has $\mathcal{S}_{(i+1) \times k_{2}}$ attached to it. As the order of the cycles attached to the nodes in layer $i-1$ is different, u cannot get mapped to a node in layer $i-1$. Hence u has to get mapped to v. This moreover ensures that the cycle attached to u gets mapped to the cycle attached to v in an injective way. This completes the proof.

We will now show that using this lemma we are done. We saw that \mathcal{G}_{n}^{\prime} is the subgraph of $\mathrm{BT}_{m, q}, m=2 c\lceil\log n\rceil+1$ and $q=s(n)$ where it is embedded layer by layer.

We wish to set variables such that the monomial computed by each injective homomorphism is the same as the monomial computed by the corresponding parse tree. This can be achieved simply by setting variables as follows: Let e be an edge between two core nodes of H_{n}. If such an edge is not an edge in \mathcal{G}_{n}^{\prime} then set it to 0 . (This carves out the graph \mathcal{G}_{n}^{\prime} inside H_{n}.) If such an edge is an edge associated with the leaf node, then locate the corresponding node in D_{n}^{\prime}. It will be an input gate in D_{n}^{\prime}. If the label of that input gate is x, then set this edge to x. If e is any other edge that appears in \mathcal{G}_{n}^{\prime}, then set it to 1 . (This allows for the circuit functionality to be realised along the edges of H_{n}.) Finally, suppose e is an edge between two non-core nodes (or between a core and a non-core node), i.e. along one of the attached cycles, then set it to 1. (This helps in suppressing the cycle edges in the final computation.)

This exactly computes the sum of all parse trees in the circuit D_{n}^{\prime}, which shows that any polynomial computed in VP is also computed as a p-projection of $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$.

3.1.2 $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$ is in VP

We build the polynomial sized circuit computing $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$ bottom up. Our construction is elementary and does not use the theorem of Baur and Strassen BS83 unlike the constructions from $\mathrm{DMM}^{+} 14$, MS18].

The source graph G_{n} and target graph H_{n} are as described in the construction (each with $m(n)$ layers $)$. We have already observed in Lemma 14 that all injective homomorphisms from G_{n} to H_{n} respect the layers. Therefore, it sufficies to compute only such layer respecting homomorphisms.

Construction of the circuit computing $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$. The construction of the circuit, say C_{n}, is done from the bottom layer (i.e. from the leaves) to the top layer (i.e. to the root). For any core node $u \in V\left(\mathrm{MAT}_{m(n)}\right)$ at layer ℓ of G_{n} and any core node v in block B_{u} at layer ℓ in H_{n}, we have a gate $\langle u, v\rangle$ in our circuit C_{n} at layer ℓ. Let us denote the sub-graph rooted at u in G_{n} by $G^{(u)}$ and that rooted at v in H_{n} to be $H^{(v)}$. Let $\mathcal{I} \mathcal{H}_{(u, v)}$ be the set of
injective homomorphism from sub-graph $G^{(u)}$ to $H^{(v)}$ where u is mapped to v. Let $f_{(u, v)}$ be the polynomial computed at the gate $\langle u, v\rangle$.

We will describe the inductive construction of the circuit C_{n} starting with the leaves. We know that there is a spiked cycle $\mathcal{S}_{k_{2} \times m(n)}$ or $\mathcal{S}_{k_{3} \times m(n)}$ attached to each node at layer $m(n)$ in $G_{n}{ }^{6}$. For any spiked cycle \mathcal{S}_{k} attached at a node x in H_{n}, let $\sigma_{\mathcal{S}_{k}}^{x}(Y)$ denote the monomial obtained by multiplying all the Y variables along the edges in \mathcal{S}_{k} attached at x in H_{n}. Let u be a left child node (or a right child respectively) in G_{n} at layer $m(n)$ and v be some node in B_{u} at layer $m(n)$ in H_{n}, then we set $\langle u, v\rangle=\sigma_{\mathcal{S}_{k_{2} \times m(n)}}^{v}(Y)$ (or $\langle u, v\rangle=\sigma_{\mathcal{S}_{k_{3} \times m(n)}}^{v}(Y)$, respectively).

Suppose we have a left child node (or a right child node respectively), say u, at layer i in G_{n} which has only one child, say u^{\prime} at layer $i+1$ in G_{n}. We know that there is a spiked cycle $\mathcal{S}_{k_{2} \times i}$ (or $\mathcal{S}_{k_{3} \times i}$ respectively) attached to u if it is the left child node (right child node respectively). Let v be any node in B_{u} at layer i in H_{n}. Say v has q children, v_{1}, \ldots, v_{q} in H_{n}. Inductively, we have gates $\left\langle u^{\prime}, v_{w}\right\rangle$ for all $1 \leqslant w \leqslant q$. We set

$$
\begin{array}{r}
\langle u, v\rangle=\sum_{w=1}^{q}\left\langle u^{\prime}, v_{w}\right\rangle \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{S}_{k_{2} \times i}}^{v}(Y) \text { or } \\
\langle u, v\rangle=\sum_{w=1}^{q}\left\langle u^{\prime}, v_{w}\right\rangle \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{S}_{k_{3} \times i}}^{v}(Y) \tag{2}
\end{array}
$$

depending on whether u is a left child or a right child of its parent in G_{n} respectively.
Suppose u in layer i in G_{n} has a left child u_{1} and a right child u_{2} in layer $i+1$. Let v be any node in the block B_{u} in H_{n}. Let v_{1} and v_{2} be the left child and right child of v in H_{n} respectively. It is easy to see that v_{1} resides in block the $B_{u_{1}}$ in H_{n} and v_{2} resides in the block $B_{u_{2}}$ in H_{n}. Inductively, we have gates $\left\langle u_{1}, v_{1}\right\rangle$ and $\left\langle u_{2}, v_{2}\right\rangle$. We set

$$
\begin{equation*}
\langle u, v\rangle=\left\langle u_{1}, v_{1}\right\rangle \times Y_{\left(v, v_{1}\right)} \times\left\langle u_{2}, v_{2}\right\rangle \times Y_{\left(v, v_{2}\right)} \tag{3}
\end{equation*}
$$

This completes the description of C_{n}.

Correctness of C_{n}. Now to see the correctness of C_{n}, we prove the following lemma.
Lemma 15. For any layer $i \in[m(n)]$, any node $u \in V\left(G_{n}\right)$ at layer i and any node v in block B_{u} also at layer i,

$$
f_{(u, v)}(Y)=\sum_{\phi \in \mathcal{I H}_{(u, v)}} \prod_{\left(u^{\prime}, u^{\prime \prime}\right) \in E\left(G^{(u)}\right)} Y_{\left(\phi\left(u^{\prime}\right), \phi\left(u^{\prime \prime}\right)\right)},
$$

where $\left(\phi\left(u^{\prime}\right), \phi\left(u^{\prime \prime}\right)\right) \in E\left(H^{(v)}\right)$.
See that when we invoke the above lemma for the roots of G_{n} and H_{n}, it proves that C_{n} computes the polynomial $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$. We prove the lemma using induction on the layer number. We start with the leaves (layer $m(n)$) and proceed to the root (layer 1).

Proof. Let u, v be the nodes as described in the statement of the lemma. We will use $\mathcal{M}_{u, v, \phi}(Y)$ as a short hand for the monomial $\prod_{\left(u^{\prime}, u^{\prime \prime}\right) \in E\left(G^{(u)}\right)} Y_{\left(\phi\left(u^{\prime}\right), \phi\left(u^{\prime \prime}\right)\right)}$, where ϕ maps u to v.

For any core node $u \in V\left(\mathrm{MAT}_{m(n)}\right)$ at layer ℓ of G_{n} and any core node v in block B_{u} at layer ℓ in H_{n}, if u is the left child (right child respectively) of its parent in G_{n} then $f_{(u, v)}=\sigma_{\mathcal{S}_{k_{2} \times m(n)}}^{v}(Y)$ (or $f_{(u, v)}=\sigma_{\mathcal{S}_{k_{3} \times m(n)}}^{v}(Y)$ respectively). This is exactly what the construction does. Therefore,

[^4]the base case holds. Now, assume that the lemma is true for layer $i+1$ then we prove that it is true for layer i. The proof proceeds in two cases.

Case 1 (u has one child): Suppose we have a left child node (or a right child node respectively) u at layer i in G_{n} which has only one child, say u^{\prime} at layer $i+1$ in G_{n}. We know that there is a spiked cycle $\mathcal{S}_{k_{2} \times i}$ (or $\mathcal{S}_{k_{3} \times i}$ respectively) attached to u if it is the left child node (or right child node respectively). Let v be any node in B_{u} at layer i in H_{n}. Suppose v has q children, say, v_{1}, \ldots, v_{q} in H_{n}. Inductively we have that $\left\langle u^{\prime}, v_{w}\right\rangle$ computes the polynomial $f_{\left(u^{\prime}, v_{w}\right)}$ for all $1 \leqslant w \leqslant q$. We construct $f_{(u, v)}$ as follows:

$$
\begin{aligned}
f_{(u, v)} & =\sum_{w=1}^{q} f_{\left(u^{\prime}, v_{w}\right)} \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{S}_{k_{2} \times i}}^{v}(Y) \\
& =\sum_{w=1}^{q}\left(\left(\sum_{\phi_{1} \in \mathcal{I} \mathcal{H}_{\left(u^{\prime}, v_{w}\right)}} \mathcal{M}_{u^{\prime}, v_{w}, \phi_{1}}(Y)\right) \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{S}_{k_{2} \times i}}^{v}(Y)\right) \\
& =\sum_{w=1}^{q}\left(\sum_{\phi \in \mathcal{I} \mathcal{H}_{(u, v), \phi}\left(u^{\prime}\right)=v_{w}} \mathcal{M}_{u, v, \phi}(Y)\right)=\sum_{\phi \in \mathcal{I} \mathcal{H}_{(u, v)}} \mathcal{M}_{u, v, \phi}(Y)
\end{aligned}
$$

or

$$
\begin{aligned}
f_{(u, v)} & =\sum_{w=1}^{q} f_{\left(u^{\prime}, v_{w}\right)} \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{S}_{k_{3} \times i}}^{v}(Y) \\
& =\sum_{w=1}^{q}\left(\left(\sum_{\phi_{1} \in \mathcal{I} \mathcal{H}_{\left(u^{\prime}, v_{w}\right)}} \mathcal{M}_{u^{\prime}, v_{w}, \phi_{1}}(Y)\right) \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{S}_{k_{3} \times i}}^{v}(Y)\right) \\
& =\sum_{w=1}^{q}\left(\sum_{\phi \in \mathcal{I} \mathcal{H}_{(u, v)}, \phi\left(u^{\prime}\right)=v_{w}} \mathcal{M}_{u, v, \phi}(Y)\right)=\sum_{\phi \in \mathcal{I} \mathcal{H}_{(u, v)}} \mathcal{M}_{u, v, \phi}(Y)
\end{aligned}
$$

depending on whether u is the left child or the right child of its parent in G_{n} respectively. Here, the first equality comes from (1) in the case when u is the left child and from (2) when u is the right child. In both the cases, the second equality uses the inductive hypothesis. The third equality comes from simple rewriting of terms. Finally, the last equality follows from the fact that any homomorphism from node u of $\mathrm{MAT}_{m(n)}$ to a node v from the block B_{u} of $\mathrm{MBT}_{m(n), s(n)}$ must pick exactly one node from the block $B_{u^{\prime}}$, where u^{\prime} is a unique child of u in $\mathrm{MAT}_{m(n)}$. This ensures that only the injective homomorphisms from u to v propogate in the summation. This proves the inductive step in this case.
Case 2 (u has two children): Suppose u in layer i in G_{n} has a left child u_{1} and a right child u_{2} in layer $i+1$ in G_{n}. Let v be any node in block B_{u} in H_{n}. Let v_{1} and v_{2} be the left child and right child of v in H_{n} respectively. It is easy to see that v_{1} resides in block $B_{u_{1}}$ in H_{n} and v_{2} resides in block $B_{u_{2}}$ in H_{n}. Inductively, we have gates $\left\langle u_{1}, v_{1}\right\rangle$ and $\left\langle u_{2}, v_{2}\right\rangle$ which computes the polynomial $f_{\left(u_{1}, v_{1}\right)}$ and $f_{\left(u_{2}, v_{2}\right)}$ respectively.

$$
\begin{aligned}
f_{(u, v)} & =f_{\left(u_{1}, v_{1}\right)} \times Y_{\left(v, v_{1}\right)} \times f_{\left(u_{2}, v_{2}\right)} \times Y_{\left(v, v_{2}\right)} \\
& =\left(\left(\sum_{\phi_{1} \in \mathcal{I} \mathcal{H}_{\left(u_{1}, v_{1}\right)}} \mathcal{M}_{u_{1}, v_{1}, \phi_{1}}(Y)\right) \times\left(\sum_{\phi_{2} \in \mathcal{I H}_{\left(u_{2}, v_{2}\right)}} \mathcal{M}_{u_{2}, v_{2}, \phi_{2}}(Y)\right) \times Y_{\left(v, v_{1}\right)} Y_{\left(v, v_{2}\right)}\right) \\
& =\sum_{\phi \in \mathcal{I} \mathcal{H}_{(u, v)}, \phi\left(u_{1}\right)=v_{1}, \phi\left(u_{2}\right)=v_{2}} \mathcal{M}_{u, v, \phi}(Y)=\sum_{\phi \in \mathcal{I H}_{(u, v)}} \mathcal{M}_{u, v, \phi}(Y)
\end{aligned}
$$

Here, the first equality comes from (3), the second equality comes from the inductive hypothesis. The third equality is obtained by simple rewriting. Finally, the last equality is guaranteed by the fact that the subgraphs rooted at v_{1} and v_{2} do not share any node in common (as per the construction of H_{n}). Therefore, only the injective homomorphisms survive in the summation. This proves the inductive step in this case as well. This finishes the proof.

3.2 Directed and Injective Directed homomorphisms

We will give some definitions of various graph classes.
Definition 16 (Directed Balanced Alternating-Unary-Binary tree). Let AT ${ }_{k}^{d}$ denote the directed version of $A T_{k}$. The directions on the edges go from the root towards the leaves.

Definition 17 (Directed Block tree). We use $B T_{k, s}^{d}$ to denote the directed version of $B T_{k, s}$. The edges are directed from the root block towards the leaf blocks.

Let $k_{1}^{\prime}=5<k_{2}^{\prime}<k_{3}^{\prime}<k_{4}^{\prime}$ be four distinct fixed natural numbers which are all mutually co-primes.

Definition 18 (Modified directed Alternating-Unary-Binary tree). We attach a directed cycle $\mathcal{C}_{k_{1}^{\prime}}$ to the root of $A T_{k}^{d}$. We attach a directed cycle $\mathcal{C}_{k_{2}^{\prime}}$ to each node in every even layer in $A T_{k}^{d}$. We attach a directed cycle $\mathcal{C}_{k_{3}^{\prime}}\left(\mathcal{C}_{k_{4}^{\prime}}\right.$ respectively) to each left child node (right child node respectively) in every odd layer (except the root node at layer 1) in $A T_{k}^{d}$. We call the graph thus obtained to be a modified directed alternating-unary-binary tree, MAT ${ }_{k}^{d}$.
Definition 19 (Modified directed Block tree). We consider $B T_{k, s}^{d}$ and make the following modifications: we keep only one node in the root block node and delete all the other nodes from the root block node. We attach a directed cycle $\mathcal{C}_{k_{1}^{\prime}}$ to the only node in the root block of $B T_{k, s}^{d}$. We attach a directed cycle $\mathcal{C}_{k_{2}^{\prime}}$ to each node in every even layer in $B T_{k, s}^{d}$. We attach a directed cycle $\mathcal{C}_{k_{3}^{\prime}}\left(\mathcal{C}_{k_{4}^{\prime}}\right.$ respectively) to each left child node (right child node respectively) in every odd layer (except the root node at layer 1) in $B T_{k, s}^{d}$. We call the graph thus obtained to be a modified directed block tree and denote it by $M B T_{k, s}^{d}$.

We identify each node in graphs $\mathrm{MAT}_{k}^{\mathrm{d}}, \mathrm{MBT}_{k, s}^{\mathrm{d}}$ as either a core node or a non core node. We formally define this notion.

Definition 20 (Core nodes and Non-core nodes). A non-core node is any node in MAT ${ }_{k}^{d}$ (or $M B T_{k, s}^{d}$) which was not already present in $A T_{k}^{d}$ (or $B T_{k, s}^{d}$ respectively). Any node which is not a non-core node is a core node.

We prove the following theorem in this section.
Theorem 21. The families $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$ and $f_{G_{n}, H_{n}, \mathcal{I D H}}(Y)$ are complete for class VP under p-projections where G_{n} is $\mathrm{MAT}_{m(n)}^{d}$ and H_{n} is $M B T_{m(n), s(n)}^{d}$.

We first prove VP hardness of $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$ and then show that it is computable in VP.

3.2.1 Hardness of $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$

We now show that if $f_{n}(X)$ is a polynomial computed in VP, then it is a p-projection of $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$. Let G_{n}, H_{n} be the source and target graphs defined in Theorem 21 above. The VP-hardness of $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$ can be proved using ideas similar to those used in proving the VP-hardness of $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$. The only difference is that here we attach directed cycles to the
core-nodes of $\mathrm{AT}_{m(n)}^{\mathrm{d}}$ and $\mathrm{BT}_{m(n)}^{\mathrm{d}}$ instead of spiked cycles. The purpose of attaching the cycles is the same, i.e. to prohibit mappings which should not arise when $\mathcal{H}=\mathcal{D} \mathcal{H}$.

Let $\phi: G_{n} \rightarrow H_{n}$ be any directed homomorphism. Let us use ϕ_{i} to denote the action of this homomorphism restricted to layer i on G_{n}. Let $\tilde{\phi}_{i}$ denote $\cup_{1 \leqslant j \leqslant i} \phi_{i}$, i.e. the action of ϕ up to layer i. We will prove the following lemma inductively.

Lemma 22. Let ϕ be a directed homomorphism from G_{n} to H_{n}. For any $i \in[m(n)], \tilde{\phi}_{i}\left(G_{n}\right)$ is simply a copy of the graph $M A T_{i}^{d}$ inside H_{n} with the additional properties that the root of $M A T_{i}^{d}$ is mapped to the root of H_{n} and for any $i \in[m(n)]$, the core node u in layer i will be mapped to a node in block B_{u} in layer i of H_{n}.

Proof. The proof of the lemma is similar to the proof of Lemma 14. The only difference here is that we can use the fact that we have directions on the edges.

Base case: Similar to the base case of the proof of Lemma 14 , here too it is easy to see that for any directed homomorphism to survive, the root of G_{n} must get mapped to the root of H_{n}. This is because we have a directed cycle of length k_{1}^{\prime} attached to the root of G_{n} as well as H_{n} and all the other core nodes have cycles of lengths which are coprime with respect to k_{1}^{\prime}.

Inductive case: We assume that the inductive hypothesis holds for all layers smaller than $i+1$. We break this case into two parts based on whether $i+1$ is even or odd. The proofs for these cases are similar to the proofs of the corresponding cases in Lemma 14 .

Let u be a node in layer $i+1$ of G_{n}. Let u_{i} be the parent of this node, which is in layer i. Say v_{i} is a node to which u_{i} is mapped in H_{n}. Inductively we also have that the directed cycle attached at node u_{i} in G_{n} is mapped to the directed cycle attached at v_{i} in H_{n}.
$i+1$ is even and $i+1 \geqslant 2$: Suppose u is mapped to a node adjacent to v_{i} along the directed cycle $\mathcal{C}_{k_{j}^{\prime}}(j=1$ or $j=3$ or $j=4)$ attached at v_{i} in H_{n}. In this case, it is easy to see that the nodes in the cycle attached to u, namely $\mathcal{C}_{k_{2}^{\prime}}$, cannot be mapped along the cycle attached to v_{i}, given that k_{2}^{\prime} is coprime with respect to the length of the cycle attached to v_{i}. Hence the only possibility is that u gets mapped to one of the children of v_{i} in H_{n}, say v. This is a good case. It is also easy to note that the directed cycle $\mathcal{C}_{k_{2}^{\prime}}$ attached at u in G_{n} must be mapped to the directed cycle $\mathcal{C}_{k_{2}^{\prime}}$ attached at v in H_{n}. Hence in this case we are done.
$i+1$ is odd and $i+1 \geqslant 3$: Note that u_{i}, v_{i} are as described above. Both u_{i} and v_{i} have two children each. Assume wlog that u is the left child of u_{i}. Either u gets mapped to the left child of v_{i} in H_{n} or to the right child of v_{i} in H_{n} or to the immediate next node to the v_{i} along the directed cycle $\mathcal{C}_{k_{2}^{\prime}}$ in H_{n}. As the order of the directed cycles attached to u, v_{i} and the right child of v_{i} are not compatible, it is easy to see that the last two cases listed above cannot happen. Therefore, the only node that u can get mapped to is the left child of v_{i} in H_{n}, say v.

Once again it is easy to see that the directed cycle $\mathcal{C}_{k_{3}^{\prime}}$ attached at u in G_{n} must get mapped to the directed cycle $\mathcal{C}_{k_{3}^{\prime}}$ attached at v in H_{n}.

We will now show that using this lemma we are done. We consider the normal form circuit D_{n}^{\prime} as designed in Section 3.1. Let \mathcal{G}_{n}^{\prime} be the underlying graph of D_{n}^{\prime}. We direct the edges from the root to the leaves in this graph. Let the directed graph thus obtained be $\mathcal{G}_{n}^{\prime \prime}$. We know that $\mathcal{G}_{n}^{\prime \prime}$ is a subgraph of $\mathrm{BT}_{m(n), s(n)}^{\mathrm{d}}$ where it is embedded layer by layer.

We wish to set the variables such that the monomial computed by each directed homomorphism is the same as the monomial computed by the corresponding parse tree. This can be achieved simply by setting variables as follows: Let e be an edge between two core nodes of H_{n}. If such an edge is not an edge in $\mathcal{G}_{n}^{\prime \prime}$ then set it to 0 . (This carves out the graph D_{n}^{\prime} inside H_{n}.) If such an edge is an edge associated with the leaf node, then locate the corresponding node in D_{n}^{\prime}. It will be an input gate in D_{n}^{\prime}. If the label of that input gate is x, then set this edge to x. If e is any other edge that appears in $\mathcal{G}_{n}^{\prime \prime}$, then set it to 1 . (This allows for the circuit
functionality to be realised along the edges of H_{n}.) Finally, suppose e is an edge between two non-core nodes (or between a core and a non-core node), i.e. along one of the attached cycles, then set it to 1 . (This helps in suppressing the cycle edges in the final computation.)

This exactly computes the sum of all parse trees in the circuit D_{n}^{\prime}, which shows that the any polynomial computed in VP is also computed as a p-projection of $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$.

3.2.2 $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$ is in VP

The polynomial sized circuit we construct $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$ is very similar to the circuit constructed in Section 3.1.2. Here too the construction of C_{n} is done from the bottom layer (i.e. from the leaves) to the top layer (i.e. to the root). Due to Lemma 22 it sufficies to compute only layer-respecting directed homomorphisms.

For any core node $u \in V\left(\mathrm{MAT}_{m(n)}^{\mathrm{d}}\right)$ at layer ℓ of G_{n} and any core node v in block B_{u} at layer ℓ in H_{n}, we have a gate $\langle u, v\rangle$ in our circuit C_{n} at layer ℓ. Let us denote the sub-graph rooted at u in G_{n} by $G^{(u)}$ and that rooted at v in H_{n} to be $H^{(v)}$. Let $\mathcal{D H}(u, v)$ be the set of directed homomorphism from sub-graph $G^{(u)}$ to $H^{(v)}$ where u is mapped to v. Let $f_{(u, v)}$ be the polynomial computed at the gate $\langle u, v\rangle$.

We will describe the inductive construction of the circuit C_{n}. We know that there is a directed cycle $\mathcal{C}_{k_{3}^{\prime}}$ or $\mathcal{C}_{k_{4}^{\prime}}$ attached to each node at layer $m(n)$ in $G_{n}{ }^{7}$. For any directed cycle \mathcal{C}_{k} attached at node x in H_{n}, let $\sigma_{\mathcal{C}_{k}}^{x}(Y)$ denote the monomial obtained by multiplying all the $Y_{(a, b)}$ variables along the edges in \mathcal{C}_{k} attached at x in H_{n}. Let u be a left child node (or a right child respectively) in G_{n} at layer $m(n)$ and v be some node in B_{u} at layer $m(n)$ in H_{n} then we set $\langle u, v\rangle=\sigma_{\mathcal{C}_{k_{3}^{\prime}}}^{v}(Y)$ (or $\langle u, v\rangle=\sigma_{\mathcal{C}_{k_{4}^{\prime}}}^{v}(Y)$, respectively).

Suppose we have a left child node (or a right child node respectively), say u, at layer i in G_{n} which has only one child, say u^{\prime} at layer $i+1$ in G_{n}. We know that there is a directed cycle $\mathcal{C}_{k_{3}^{\prime}}$ (or $\mathcal{C}_{k_{4}^{\prime}}$ respectively) attached to u if it is the left child node (right child node respectively). Let v be any node in block B_{u} at layer i in H_{n}. Say v has q children, v_{1}, \ldots, v_{q} in H_{n}. Inductively, we have gates $\left\langle u^{\prime}, v_{w}\right\rangle$ for all $1 \leqslant w \leqslant q$. We set

$$
\begin{equation*}
\langle u, v\rangle=\sum_{w=1}^{q}\left\langle u^{\prime}, v_{w}\right\rangle \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{C}_{k_{3}^{\prime}}^{v}}^{v}(Y) \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\langle u, v\rangle=\sum_{w=1}^{q}\left\langle u^{\prime}, v_{w}\right\rangle \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{C}_{k_{4}^{\prime}}}^{v}(Y) \tag{5}
\end{equation*}
$$

depending on whether u is a left child or a right child of its parent in G_{n} respectively.
Suppose u in layer i in G_{n} has a left child u_{1} and a right child u_{2} in layer $i+1$ in G_{n}. Note that node u in G_{n} will have a directed cycle $\mathcal{C}_{k_{2}^{\prime}}$ attached to it. Let v be any node in block B_{u} in H_{n}. Let v_{1} and v_{2} be the left child and right child of v in H_{n} respectively. It is easy to see that v_{1} resides in block $B_{u_{1}}$ in H_{n} and v_{2} resides in block $B_{u_{2}}$ in H_{n}. Inductively, we have gates $\left\langle u_{1}, v_{1}\right\rangle$ and $\left\langle u_{2}, v_{2}\right\rangle$. We set

$$
\begin{equation*}
\langle u, v\rangle=\left\langle u_{1}, v_{1}\right\rangle \times Y_{\left(v, v_{1}\right)} \times\left\langle u_{2}, v_{2}\right\rangle \times Y_{\left(v, v_{2}\right)} \times \sigma_{\mathcal{C}_{k_{2}^{\prime}}}^{v}(Y) \tag{6}
\end{equation*}
$$

This completes the description of C_{n}.
Now to see the correctness of C_{n}, we prove the following lemma.

[^5]Lemma 23. For any layer $i \in[m(n)]$, any node $u \in V\left(G_{n}\right)$ at layer i and any node v in block B_{u} also at layer i,

$$
f_{(u, v)}(Y)=\sum_{\phi \in \mathcal{D H}_{(u, v)}} \prod_{\left(u^{\prime}, u^{\prime \prime}\right) \in E\left(G^{(u)}\right)} Y_{\left(\phi\left(u^{\prime}\right), \phi\left(u^{\prime \prime}\right)\right)},
$$

where $\left(\phi\left(u^{\prime}\right), \phi\left(u^{\prime \prime}\right)\right) \in E\left(H^{(v)}\right)$.
See that when we invoke the above lemma for the roots of G_{n} and H_{n}, it proves that C_{n} computes the polynomial $f_{G_{n}, H_{n}, \mathcal{D} \mathcal{H}}(Y)$. The proof of the lemma is almost the same as the proof of Lemma 15. We give the proof for the sake of completeness.

Proof. Let u, v be the nodes as described in the statement of the lemma. We will use $\mathcal{M}_{u, v, \phi}(Y)$ as a short hand for the monomial $\prod_{\left(u^{\prime}, u^{\prime \prime}\right) \in E\left(G^{(u)}\right)} Y_{\left(\phi\left(u^{\prime}\right), \phi\left(u^{\prime \prime}\right)\right)}$, where ϕ is such that it maps u to v.

For any core node $u \in V\left(\operatorname{MAT}_{m(n)}^{\mathrm{d}}\right)$ at layer ℓ of G_{n} and any core node v in block B_{u} at layer ℓ in H_{n}, if u is the left child (right child respectively) of its parent in G_{n} then $f_{(u, v)}=\sigma_{\mathcal{C}_{k_{3}^{\prime}}^{v}}^{v}(Y)$ (or $f_{(u, v)}=\sigma_{\mathcal{C}_{k_{4}^{\prime}}}^{v}(Y)$ respectively). This is exactly what the construction does. Therefore, the base case holds. Now, assume that the lemma is true for layer $i+1$ then we prove that it is true for layer i. The proof proceeds in two cases.

Case 1 (u has one child): Suppose we have a left child node (or a right child node respectively) u at layer i in G_{n} which has only one child, say u^{\prime} at layer $i+1$ in G_{n}. We know that there is a directed cycle $\mathcal{C}_{k_{3}^{\prime}}$ (or $\mathcal{C}_{k_{4}^{\prime}}$ respectively) attached to u if it is the left child node (or right child node respectively). Let v be any node in block B_{u} in layer i in H_{n}. Suppose v has q children, say, v_{1}, \ldots, v_{q} in H_{n}. Inductively we have that $\left\langle u^{\prime}, v_{w}\right\rangle$ computes the polynomial $f_{\left(u^{\prime}, v_{w}\right)}$ for all $1 \leqslant w \leqslant q$. We construct $f_{(u, v)}$ as follows:

$$
\begin{aligned}
f_{(u, v)} & =\sum_{w=1}^{q} f_{\left(u^{\prime}, v_{w}\right)} \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{C}_{k_{3}^{\prime}}}^{v}(Y) \\
& =\sum_{w=1}^{q}\left(\left(\sum_{\phi_{1} \in \mathcal{D H}_{\left(u^{\prime}, v_{w}\right)}} \mathcal{M}_{u^{\prime}, v_{w}, \phi_{1}}(Y)\right) \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{C}_{k_{3}^{\prime}}}^{v}(Y)\right) \\
& =\sum_{w=1}^{q}\left(\sum_{\phi \in \mathcal{D} \mathcal{H}_{(u, v)}, \phi\left(u^{\prime}\right)=v_{w}} \mathcal{M}_{u, v, \phi}(Y)\right)=\sum_{\phi \in \mathcal{D H}_{(u, v)}} \mathcal{M}_{u, v, \phi}(Y)
\end{aligned}
$$

or

$$
\begin{aligned}
f_{(u, v)} & =\sum_{w=1}^{q} f_{\left(u^{\prime}, v_{w}\right)} \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{C}_{k_{4}^{\prime}}^{v}}^{v}(Y) \\
& =\sum_{w=1}^{q}\left(\left(\sum_{\phi_{1} \in \mathcal{D} \mathcal{H}_{\left(u^{\prime}, v_{w}\right)}} \mathcal{M}_{u^{\prime}, v_{w}, \phi_{1}}(Y)\right) \times Y_{\left(v, v_{w}\right)} \times \sigma_{\mathcal{C}_{k_{4}^{\prime}}}^{v}(Y)\right) \\
& =\sum_{w=1}^{q}\left(\sum_{\phi \in \mathcal{D H}_{(u, v), \phi\left(u^{\prime}\right)=v_{w}}} \mathcal{M}_{u, v, \phi}(Y)\right)=\sum_{\phi \in \mathcal{D H}_{(u, v)}} \mathcal{M}_{u, v, \phi}(Y)
\end{aligned}
$$

depending on whether u is the left child or the right child of its parent in G_{n} respectively. Here, the first equality comes from (4) in the case when u is the left child and from (5) when u is
the right child. In both the cases, the second equality uses the inductive hypothesis. The third equality comes from simple rewriting of terms. Finally, the last equality follows from the fact that any homomorphism from node u of $\mathrm{MAT}_{m(n)}^{\mathrm{d}}$ to a node v from the block B_{u} of $\mathrm{MBT}_{m(n), s(n)}^{\mathrm{d}}$ must pick exactly one node from the block $B_{u^{\prime}}$, where u^{\prime} is a unique child of u in $\operatorname{MAT}_{m(n)}^{\mathrm{d}}$. This ensures that only the directed homomorphisms from u to v propogate in the summation. This proves the inductive step in this case.
Case 2 (u has two children): Suppose u in layer i in G_{n} has a left child u_{1} and a right child u_{2} in layer $i+1$ in G_{n}. Let v be any node in block B_{u} in H_{n}. Let v_{1} and v_{2} be the left child and right child of v in H_{n} respectively. It is easy to see that v_{1} resides in block $B_{u_{1}}$ in H_{n} and v_{2} resides in block $B_{u_{2}}$ in H_{n}. Inductively, we have gates $\left\langle u_{1}, v_{1}\right\rangle$ and $\left\langle u_{2}, v_{2}\right\rangle$ which computes the polynomial $f_{\left(u_{1}, v_{1}\right)}$ and $f_{\left(u_{2}, v_{2}\right)}$ respectively.

$$
\begin{aligned}
f_{(u, v)} & =f_{\left(u_{1}, v_{1}\right)} \times Y_{\left(v, v_{1}\right)} \times f_{\left(u_{2}, v_{2}\right)} \times Y_{\left(v, v_{2}\right)} \times \sigma_{\mathcal{C}_{k_{2}^{\prime}}}^{v}(Y) \\
& =\left(\left(\sum_{\phi_{1} \in \mathcal{D} \mathcal{H}_{\left(u_{1}, v_{1}\right)}} \mathcal{M}_{u_{1}, v_{1}, \phi_{1}}(Y)\right) \times\left(\sum_{\phi_{2} \in \mathcal{D} \mathcal{H}_{\left(u_{2}, v_{2}\right)}} \mathcal{M}_{u_{2}, v_{2}, \phi_{2}}(Y)\right) \times Y_{\left(v, v_{1}\right)} Y_{\left(v, v_{2}\right)} \times \sigma_{\mathcal{C}_{k_{2}^{\prime}}}^{v}(Y)\right) \\
& =\sum_{\phi \in \mathcal{D H} \mathcal{H}_{(u, v), \phi\left(u_{1}\right)=v_{1}, \phi\left(u_{2}\right)=v_{2}}} \mathcal{M}_{u, v, \phi}(Y)=\sum_{\phi \in \mathcal{D} \mathcal{H}_{(u, v)}} \mathcal{M}_{u, v, \phi}(Y)
\end{aligned}
$$

Here, the first equality comes from (6), the second equality comes from the inductive hypothesis. The third equality is obtained by simple rewriting. Finally, the last equality is guaranteed by the fact that the subgraphs rooted at v_{1} and v_{2} do not share any node in common (as per the construction of H). Therefore, only the directed homomorphisms survive in the summation. This proves the inductive step in this case as well. This finishes the proof.

Remark 24. From our construction of the polynomial, it is interesting to note that for any $\phi \in \mathcal{D H}$,

- a core node u in G_{n} must get mapped to some node v in the block B_{u} in H_{n}. That is, any two core-nodes in G_{n} must get mapped to two distinct core-nodes in H_{n}.
- Let a core-node u in G_{n} gets mapped to a core-node v in H_{n}. Let \mathcal{C}_{u} and \mathcal{C}_{v} denotes the directed cycles attached at nodes u (in G_{n}) and v (in H_{n}) respectively. It is clear that \mathcal{C}_{u} must get exactly mapped to \mathcal{C}_{v} in an injective way, where $\phi(u)=v$.

This implies that every ϕ in $\mathcal{D H}$ is also injective. Therefore, in fact $\mathcal{D H}=\mathcal{I D} \mathcal{H}$, where $\mathcal{I D} \mathcal{H}$ is a set of all injective directed homomorphisms.

The remark shows that $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$ we constructed is in fact also $f_{G_{n}, H_{n}, \mathcal{I D H}}(Y)$.

4 Polynomial families complete for VNP

In this section, we present VNP-complete polynomial families. At the core of our VNP-complete polynomials lies the Permanent polynomial, which is defined as follows:

$$
\operatorname{Perm}_{n}(X)=\sum_{\sigma \in \mathcal{S}_{n}} \prod_{i \in[n]} x_{i, \sigma(i)}
$$

where $X=\left\{x_{i, j} \mid i, j \in[n]\right\}$ and \mathcal{S}_{n} is a set of all permutations on n elements.

4.1 Injective homomorphisms

In this section, we present a polynomial family which is complete for VNP, when \mathcal{H} is the class of injective homomorphism.

4.1.1 Construction

Let $\overline{G_{n}}$ be a bipartite graph with node partitions $V_{1}\left(\bar{G}_{n}\right)$ and $V_{2}\left(\bar{G}_{n}\right)$. Let $V_{1}\left(\bar{G}_{n}\right)=\left\{u_{i} \mid 1 \leqslant\right.$ $i \leqslant n\}$ and $V_{2}\left(\bar{G}_{n}\right)=\left\{v_{i} \mid 1 \leqslant i \leqslant n\right\}$. Let $E\left(\bar{G}_{n}\right)=\left\{\left(u_{i}, v_{i}\right) \mid 1 \leqslant i \leqslant n\right\}$. We will do some modifications to \bar{G}_{n}. Let $k_{1}=3<k_{2} \ldots<k_{n}<k_{n+1}$ be $n+1$ consecutive odd numbers. We attach a spiked cycle $\mathcal{S}_{k_{i}}$ to node u_{i} for all $1 \leqslant i \leqslant n$. We attach a spiked cycle $\mathcal{S}_{k_{n+1}}$ to node v_{i} for all $1 \leqslant i \leqslant n$. We call this modified version of \bar{G}_{n} as G_{n}.

Let \bar{H}_{n} be a bipartite graph with node partitions $V_{1}\left(\bar{H}_{n}\right)$ and $V_{2}\left(\bar{H}_{n}\right)$. Let $V_{1}\left(\bar{H}_{n}\right)=\left\{u_{i}^{\prime} \mid 1 \leqslant\right.$ $i \leqslant n\}$ and $V_{2}\left(\bar{H}_{n}\right)=\left\{v_{i}^{\prime} \mid 1 \leqslant i \leqslant n\right\}$. Let $E\left(\bar{H}_{n}\right)=\left\{\left(u_{i}^{\prime}, v_{j}^{\prime}\right) \mid 1 \leqslant i, j \leqslant n\right\}$. We attach a spiked cycle $\mathcal{S}_{k_{i}}$ to node u_{i}^{\prime} for all $1 \leqslant i \leqslant n$. We attach a spiked cycle $\mathcal{S}_{k_{n+1}}$ to node v_{i}^{\prime} for all $1 \leqslant i \leqslant n$. We call this modified version of \bar{H}_{n} as H_{n}.

For this choice of G_{n}, H_{n} and $\mathcal{I H}$, we define the homomorphism polynomial, $f_{G_{n}, H_{n}, \mathcal{H}}(Y)$ where $n \in \mathbb{N}$. Figure 3 and figure 4 shows the graphs G_{n} and H_{n} for $n=3$ respectively.

Theorem 25. The family $f_{G_{n}, H_{n}, \mathcal{L H}}(Y)$ is complete for class VNP under p-projections where G_{n} and H_{n} are as described above.

Figure 3: G_{n} where $n=3$ for $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$

Figure 4: H_{n} where $n=3$ for $f_{G_{n}, H_{n}, \mathcal{T H}}(Y)$

4.1.2 Hardness of $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$

We show how Perm_{n} is a p-projection of $f_{G_{n}, H_{n}, \mathcal{H}}(Y)$. In any injective homomorphism, the odd cycle $\mathcal{C}_{k_{1}}$ attached to node u_{1} in graph G_{n} has to get mapped to the odd cycle $\mathcal{C}_{k_{1}}$ attached to node u_{1}^{\prime} in H_{n}. This is because H_{n} has only one cycle of size $k_{1}{ }^{\text {® }}$. For any injective homomorphism to survive, u_{1} in $\mathcal{C}_{k_{1}}$ of G_{n} has to get mapped to u_{1}^{\prime} in $\mathcal{C}_{k_{1}}$ of H_{n}. By fixing the map of u_{1} to u_{1}^{\prime} from G_{n} to H_{n}, the spiked cycle allows to $\operatorname{map} \mathcal{C}_{k_{1}}$ in G_{n} to $\mathcal{C}_{k_{1}}$ in H_{n} in only one way. Therefore, the spiked cycle $\mathcal{S}_{k_{1}}$ at u_{1} in G_{n} gets exactly mapped to $\mathcal{S}_{k_{1}}$ at u_{1}^{\prime} in H_{n}. Similarly, we can argue that any u_{i} in G_{n} gets mapped to u_{i}^{\prime} in H_{n} for all $1 \leqslant i \leqslant n$ and any spiked cycle $S_{k_{i}}$ at u_{i} in G_{n} gets exactly mapped to spiked cycle $S_{k_{i}}$ at u_{i}^{\prime} in H_{n}. It is easy to see that any v_{i} in G_{n} has to get mapped to some v_{j}^{\prime} in H_{n}. Injectivity assures that no two v_{i} and v_{j} in G_{n} gets mapped to same v_{k}^{\prime} in H_{n}. In other words, v_{1}, \ldots, v_{n} in G_{n} gets mapped to $v_{t_{1}}^{\prime}, \ldots, v_{t_{n}}^{\prime}$ in H_{n}, respectively, where the sequence t_{1}, \ldots, t_{n} is any permutation of elements from [n]. Once we fix the mappings of v_{1}, \ldots, v_{n} in G_{n}, the homomorphism proceeds in only way for the spiked cycles attached at v_{1}, \ldots, v_{n} in G_{n}.

The polynomial family $f_{G_{n}, H_{n}, \mathcal{H}}(Y)$ is not exactly the same as Perm $_{n}$ but has a multilinear monomial, say α of degree $\left(2 n+n k_{n+1}+\sum_{i=1}^{n} k_{i}\right)$ multiplied to every monomial of Permm_{n}. The variables in α are the variables associated with the spiked cycles attached to \bar{H}_{n} in H_{n}. We set all these variables to 1 to get the Perm_{n} polynomial from $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$.

4.1.3 $f_{G_{n}, H_{n}, \mathcal{I H}}(Y)$ is in VNP

We know that Perm_{n} is in VNP. Therefore, we have $\operatorname{Perm}_{n}(\tilde{Y})=\sum_{Z \in\{0,1\}^{n \times n}} f_{n}(\tilde{Y}, Z)$, where f_{n} is in VP. We know that $f_{G_{n}, H_{n}, \mathcal{H}}(Y)=\sum_{Z \in\{0,1\}^{n \times n}} f_{n}^{\prime}(Y, Z)$, where $f_{n}^{\prime}(Y, Z)=\alpha . f_{n}(\tilde{Y}, Z)$ and α is the multilinear monomial of degree $\left(2 n+n k_{n+1}+\sum_{i=1}^{n} k_{i}\right)$. Clearly, f_{n}^{\prime} is in VP , provided f_{n} is in VP; therefore, $f_{G_{n}, H_{n}, \mathcal{H}}(Y)$ is in VNP.

4.2 Directed and Injective Directed homomorphisms

In this section, we present a polynomial family which is complete for VNP, when \mathcal{H} is the class of directed homomorphisms and injective directed homomorphisms. We now specify the construction and give the proof of its completeness.

[^6]
4.2.1 Construction

Let G_{n} be a layered directed graph with four layers $\ell_{1}, \ell_{2}, \ell_{3}$ and ℓ_{4} each containing n nodes except layers ℓ_{1} and ℓ_{4}, which have exactly one node each identified as the node x and the node y, respectively. We label the nodes in layer ℓ_{2} as u_{1}, \ldots, u_{n} and the nodes in layer ℓ_{3} as v_{1}, \ldots, v_{n}. We add the following directed edges in G_{n}.

- $\left(x, u_{i}\right)$ for all $1 \leqslant i \leqslant n,\left(y, v_{i}\right)$ for all $1 \leqslant i \leqslant n,\left(u_{i}, v_{i}\right)$ for all $1 \leqslant i \leqslant n$,
- (x, y) and $\left(u_{i}, y\right)$ for all $1 \leqslant i \leqslant n,\left(u_{i}, u_{j}\right)$ for all $i \neq j,\left(v_{i}, v_{j}\right)$ for all $i<j$.

The nodes in ℓ_{2} form a complete directed graph and the nodes in ℓ_{3} form a tournament.
Let H_{n} be a layered directed graph with four layers $\ell_{1}, \ell_{2}, \ell_{3}$ and ℓ_{4} each containing n nodes except for layers ℓ_{1} and ℓ_{4}. Both layers ℓ_{1} and ℓ_{4} has exactly one node each identified as the node x^{\prime} and the node y^{\prime} respectively. We label the nodes in layer ℓ_{2} as $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$ and the nodes in layer ℓ_{3} as $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$. We add the following directed edges in H_{n}.

- $\left(x^{\prime}, u_{i}^{\prime}\right)$ for all $1 \leqslant i \leqslant m,\left(y^{\prime}, v_{i}^{\prime}\right)$ for all $1 \leqslant i \leqslant n,\left(u_{i}^{\prime}, v_{j}^{\prime}\right)$ for all $1 \leqslant i, j \leqslant n$,
- $\left(x^{\prime}, y^{\prime}\right)$ and $\left(u_{i}^{\prime}, y^{\prime}\right)$ for all $1 \leqslant i \leqslant n,\left(u_{i}^{\prime}, u_{j}^{\prime}\right)$ for all $i \neq j,\left(v_{i}^{\prime}, v_{j}^{\prime}\right)$ for all $i<j$.

The nodes in ℓ_{2} form a complete directed graph and the nodes in ℓ_{3} form a tournament.
For this choice of G_{n}, H_{n} and $\mathcal{D H}$, we define the homomorphism polynomial, $f_{G_{n}, H_{n}, \mathcal{D} \mathcal{H}}(Y)$ where $m \in \mathbb{N}$. Figure 5 shows the graphs G_{n} and H_{n} for $n=5$.

Theorem 26. The families $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$ and $f_{G_{n}, H_{n}, \mathcal{I D H}}(Y)$ are complete for class VNP under p-projections where G_{n} and H_{n} are as described above.

(a) G_{n} where $n=5$

(b) H_{n} where $n=5$

Figure 5: Examples of G_{n} and H_{n} designed for $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$.

4.2.2 $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$ is VNP hard

We show that Perm $_{n}$ is a p-projection of $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$.
Case I $(n=1)$: For $n=1$, it is easy to check that in the only surviving homomorphism, x, y, u_{1} and v_{1} in G_{n} get mapped to $x^{\prime}, y^{\prime}, u_{1}^{\prime}$ and v_{1}^{\prime} in H_{n}, respectively.

Case II $(n \geqslant 2)$: Since the node x in G_{n} has a neighbourhood of $(n+1)$ nodes which forms a clique and n nodes out of it forms a complete directed graph, for any directed homomorphism to survive, x in G_{n} has to get mapped to x^{\prime} in H_{n}. The neighbourhood of $x, \mathcal{N}(x)$, that is, nodes u_{1}, \ldots, u_{n} and y in G_{n}, has to get mapped to the neighbourhood of $x^{\prime}, \mathcal{N}\left(x^{\prime}\right)$, that is, nodes $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$ and y in H_{n}. This $\mathcal{N}(x)$ to $\mathcal{N}\left(x^{\prime}\right)$ mapping has to be a bijection (This is because, the $\mathcal{N}(x)$ forms a clique in G_{n} and no node in $\mathcal{N}\left(x^{\prime}\right)$ has a self-loop on it.).

For any bijection to survive from $\mathcal{N}(x)$ to $\mathcal{N}\left(x^{\prime}\right)$ in any directed homomorphism from G_{n} to H_{n}, y in G_{n} must get mapped to y^{\prime} in H_{n}. This is because, if we assume that y in G_{n} gets mapped to some u_{i}^{\prime} in H_{n}, then the remaining elements in $\mathcal{N}(x)$ must have a bijection to the remaining elements in $\mathcal{N}\left(x^{\prime}\right)$ but such a bijection is not possible. This is because $\mathcal{N}(x)-\{y\}$ forms a complete directed graph in G_{n} whereas $\mathcal{N}(x)-\left\{u_{i}^{\prime}\right\}$ does not form such a graph. In other words, for any homomorphism to survive from G_{n} to $H_{n}, u_{1}, \ldots, u_{n}, y$ in G_{n} gets mapped to $u_{t_{1}}^{\prime}, \ldots, u_{t_{n}}^{\prime}, y^{\prime}$ in H_{n} respectively where the sequence t_{1}, \ldots, t_{n} is any permutation of elements from $[n]$.

Once the node y in G_{n} gets mapped to y^{\prime} in H_{n}, it is easy to see that the neighbourhood ${ }^{9}$ of $y, \mathcal{N}(y)$, that is, nodes v_{1}, \ldots, v_{n} in G_{n}, has to get mapped to the neighbourhood of $y^{\prime}, \mathcal{N}\left(y^{\prime}\right)$, that is, nodes $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ in H_{n}. This $\mathcal{N}(y)$ to $\mathcal{N}\left(y^{\prime}\right)$ mapping has to be a bijection (This is again because, the $\mathcal{N}(y)$ forms a clique in G_{n} and no node in $\mathcal{N}\left(y^{\prime}\right)$ has a self-loop on it).

We now argue that for any bijection to survive from $\mathcal{N}(y)$ to $\mathcal{N}\left(y^{\prime}\right)$ in any directed homomorphism from G_{n} to H_{n}, v_{i} must get mapped to v_{i}^{\prime} for all $1 \leqslant i \leqslant n$. Suppose not. In this case there exist some $v_{i}, v_{j}(i<j)$ in G_{n} such that v_{i} and v_{j} in G_{n} get mapped to $v_{i^{\prime}}^{\prime}$ and $v_{j^{\prime}}^{\prime}$ ($i^{\prime}>j^{\prime}$) in H_{n}. However, any such mapping is not a homomorphism as there is no edge $\left(v_{i^{\prime}}^{\prime}, v_{j^{\prime}}^{\prime}\right)$ in H_{n}.

The polynomial family $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$ is not exactly the same as the Perm $_{n}$ but it has a multilinear monomial, say α of degree $3 n+3\binom{n}{2}+1$ multiplied to every monomial of Permn. The variables in α are the variables associated with all the edges which are not from ℓ_{2} to ℓ_{3} in H_{n}. We set all these variables to 1 to obtain the Perm_{n} polynomial as a p-projection of $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$.

4.2.3 $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$ is in VNP

We know that Perm_{n} is in VNP. Therefore, we have $\operatorname{Perm}_{n}(\tilde{Y})=\sum_{Z \in\{0,1\}^{n \times n}} f_{n}(\tilde{Y}, Z)$, where f_{n} is in VP. We know $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)=\sum_{Z \in\{0,1\}^{n \times n}} f_{n}^{\prime}(Y, Z)$, where $f_{n}^{\prime}(Y, Z)=\alpha . f_{n}(\widetilde{Y}, Z)$ and α is the multilinear monomial of degree $3 n+3\binom{n}{2}+1$. Clearly, f_{n}^{\prime} is in VP, therefore, $f_{G_{n}, H_{n}, \mathcal{D H}}(Y)$ is in VNP.

Remark 27. It is easy to note that for any ϕ in $\mathcal{D H}$,

- the nodes x and y in G_{n} must get mapped to nodes x^{\prime} and y^{\prime} in H_{n}, respectively.
- nodes u_{1}, \ldots, u_{n} must get mapped to $u_{t_{1}}^{\prime}, \ldots, u_{t_{n}}^{\prime}$ respectively where t_{1}, \ldots, t_{n} is any permutation of elements from $[n]$.
- For any i, v_{i} in G_{n} must get mapped to v_{i}^{\prime} in H_{n}.

[^7]This implies that any two nodes in G_{n} must get mapped to two distinct nodes in H_{n}. Therefore, $\mathcal{D H}=\mathcal{I D} \mathcal{H}$.

5 Polynomial families complete for VBP and VF

In this section we present VBP and VF complete polynomial families. Before we start describing the construction we recall a well-known VBP-complete polynomial, namely $\mathrm{IMM}_{k, n}(X)$.

$$
\mathrm{IMM}_{k, n}(X)=\sum_{i_{1}, i_{2}, \ldots, i_{n-1} \in[k]} x_{1, i_{1}}^{(1)} \cdot x_{i_{1}, i_{2}}^{(2)} \cdot \ldots \cdot x_{i_{n-2}, i_{n-1}}^{(n-1)} \cdot x_{i_{n-1}, 1}^{(n)}
$$

where $X=\bigcup_{\ell \in[n+1]} X^{(\ell)}, X^{(1)}=\left\{x_{1, j}^{(1)} \mid j \in[k]\right\}, X^{(n)}=\left\{x_{i, 1}^{(n)} \mid i \in[k]\right\}$, and for $2 \leqslant \ell \leqslant n-1$, $X^{(\ell)}=\left\{x_{i, j}^{(\ell)} \mid i, j \in[k]\right\}$.

It is known that as long as $k=\Theta(\operatorname{poly}(n)), \operatorname{IMM}_{k, n}(X)$ is complete for VBP and it is complete for VF for $k=3$ (in fact for any constant $k>2$).

5.1 Injective homomorphisms

Here we give a polynomial family which is complete for VBP, when \mathcal{H} is the class of injective homomorphisms. We start with the construction of the polynomials and then present the proof of its completeness.

5.1.1 Construction

Let \bar{G}_{n} be a simple path on $n+1$ nodes, say, u_{1}, \ldots, u_{n+1}. We attach spiked cycles $\mathcal{S}_{k_{1}}$ and $\mathcal{S}_{k_{2}}$ to both the ends of the path, that is, at nodes u_{1} and u_{n+1} respectively. Both k_{1} and k_{2} are distinct odd numbers. We call this modified version of \bar{G}_{n} as G_{n}.

Let $\bar{H}_{k, n}$ be a layered graph with $n+1$ layers labelled as $\ell_{1}, \ldots, \ell_{n+1}$ such that each layer has k nodes except for layers ℓ_{1} and ℓ_{n+1}. The layers ℓ_{1} and ℓ_{n+1} have one node each identified as the source node s and the sink node t, respectively. There are no edges within the nodes of any layer. Every node in layer i is adjacent to every other node in layer $i+1$ for all $1 \leqslant i \leqslant n$. We attach spiked cycles $\mathcal{S}_{k_{1}}$ and $\mathcal{S}_{k_{2}}$ to s and t in $\bar{H}_{k, n}$, respectively. We call this modified version of $\bar{H}_{k, n}$ as $H_{k, n}$.

For this choice of $G_{n}, H_{k, n}$ and $\mathcal{I H}$, we define the homomorphism polynomial, $f_{G_{n}, H_{k, n}, \mathcal{I H}}(Y)$ where $n \in \mathbb{N}$. Figure 6 and figure 7 shows the graphs G_{n} and $H_{n, n}$ for $n=4$ respectively.

Theorem 28. The family $f_{G_{n}, H_{n, n}, \mathcal{I H}}(Y)$ is complete for class VBP under p-projections where G_{n} and $H_{n, n}$ are as described above.

Figure 6: G_{n} where $n=4, k_{1}=5$ and $k_{2}=7$.

Figure 7: H_{n} where $n=4, k_{1}=5$ and $k_{2}=7$.

5.1.2 Hardness of $f_{G_{n}, H_{n, n}, \mathcal{I H}}(Y)$

We show that $\mathrm{IMM}_{n, n}$ can be computed as a p-projection of $f_{G_{n}, H_{n, n}, \mathcal{I H}}(Y)$.
In any injective homomorphism, the odd cycle $\mathcal{C}_{k_{1}}$ attached to u_{1} in graph G_{n} has to get mapped to the odd cycle $\mathcal{C}_{k_{1}}$ attached to node s in $H_{n, n}$. This is because H_{n} has only one cycle of size $k_{1}{ }^{10}$. For any injective homomorphism to survive, the node u_{1} in G_{n} must get mapped to the node s in $H_{n, n}$. Due to the spiked cycle, this mapping of $\mathcal{C}_{k_{1}}$ in G_{n} to $\mathcal{C}_{k_{1}}$ in $H_{n, n}$ can be done in only one way. Therefore, in any injective homomorphism mapping, the $\mathcal{S}_{k_{1}}$ at u_{1} gets exactly mapped to $\mathcal{S}_{k_{1}}$ at s. Now, the nodes along the path in G_{n} must get mapped to the nodes across the layers in H_{n}. There is no possibility of folding back; this is because the node u_{n+1} in G_{n} has to get mapped to the node t in $H_{n, n}$ otherwise, we won't be able to map $\mathcal{C}_{k_{2}}$ at u_{n+1} in G_{n} to $\mathcal{C}_{k_{2}}$ at t in $H_{n, n}$.

The polynomial family we have designed is not exactly same as the $\mathrm{IMM}_{n, n}$ but will have a multilinear monomial, say α of degree $k_{1}+k_{2}+2$ multiplied to every monomial of $\mathrm{IMM}_{n, n}$. The variables in α are the variables associated with edges of the spiked cycles $\mathcal{S}_{k_{1}}$ and $\mathcal{S}_{k_{2}}$ in $H_{n, n}$. We set all these variables to 1 to obtain the $\mathrm{IMM}_{n, n}$ polynomial from $f_{G_{n}, H_{n, n}, \mathcal{I H}}(Y)$.

5.1.3 $f_{G_{n}, H_{n, n}, \mathcal{T H}}(Y)$ is in VBP

We know, $f_{G_{n}, H_{n, n}, \mathcal{H H}}(Y)=\alpha \cdot \operatorname{IMM}_{n, n}$. Let A_{n} denote the algebraic branching program for $\mathrm{IMM}_{n, n}$ with s and t as the source and sink nodes respectively. We relabel our source node s as \bar{s}. We add an extra node and label it as the new source node s. We add a directed path p of length ${ }^{11}\left(k_{1}+k_{2}+2\right)$ from s to \bar{s}. We place the variables associated with $\mathcal{S}_{k_{1}}$ and $\mathcal{S}_{k_{2}}$ in $H_{n, n}$ on the edges along the path p. We call this modified A_{n} as A_{n}^{\prime}. It is easy to note that A_{n}^{\prime} computes $f_{G_{n}, H_{n, n}, \mathcal{I H}}(Y)$.

5.2 Directed and Injective Directed Homomorphisms

In this section, we present two polynomial families complete for VBP for both directed homomorphisms ($\mathcal{D H}$) and injective directed homomorphisms ($\mathcal{I D H}$). We now specify the construction

[^8]and give the proof of its completeness.
Let G_{n} be a simple directed path on $n+1$ nodes, say, u_{1}, \ldots, u_{n+1} with edges $\left(u_{i}, u_{i+1}\right)$ for $1 \leqslant i \leqslant n$. Let $H_{k, n}$ be a layered graph with $n+1$ layers labelled as $\ell_{1}, \ldots, \ell_{n+1}$ such that each layer has k nodes except for layers ℓ_{1} and ℓ_{n+1}. The layers ℓ_{1} and ℓ_{n+1} have exactly one node each identified as the source node s and the sink node t, respectively. There are no edges within the nodes of any layer. There is a directed edge from every node in layer ℓ_{i} to every other node in layer ℓ_{i+1} for all $1 \leqslant i \leqslant n$.

Figure 8 and figure 9 shows the graphs G_{n} and $H_{n, n}$ for $n=4$ respectively.
Theorem 29. The families $f_{G_{n}, H_{n, n}, \mathcal{D H}}(Y)$ and $f_{G_{n}, H_{n, n}, \mathcal{I D \mathcal { H }}}(Y)$ are complete for class VBP under p-projections where G_{n} and $H_{n, n}$ are as described above.

Figure 8: G_{n} where $n=4$

Figure 9: H_{n} where $n=4$

5.2.1 Hardness of $f_{G_{n}, H_{n, n}, \mathcal{D H}}(Y)$

In this section, we will prove that the polynomial $f_{G_{n}, H_{n, n}, \mathcal{D} \mathcal{H}}(Y)$ is hard for class VBP. In fact we show that $f_{G_{n}, H_{n, n}, \mathcal{D} \mathcal{H}}(Y)=\mathrm{IMM}_{n, n}$. We show the bijection between the directed homomorphisms from G_{n} to $H_{n, n}$ to the monomials of $\mathrm{IMM}_{n, n}$.

It is easy to note that for any directed homomorphism to survive from G_{n} to $H_{n, n}$, the node u_{1} in G_{n} must get mapped to node s in $H_{n, n}$. It is easy to note that any directed homomorphism from G_{n} to $H_{n, n}$ survives if and only if the graph G_{n} gets exactly mapped to one of the directed paths from s to t in $H_{n, n}$.

5.2.2 $f_{G_{n}, H_{n, n}, \mathcal{D H}}(Y)$ is in VBP

This is clear from the fact that $f_{G_{n}, H_{n, n}, \mathcal{D} \mathcal{H}}(Y)=\mathrm{IMM}_{n, n}$.

Remark 30. Note that for any ϕ in $\mathcal{D H}$, the only node u in layer i in G_{n} must get mapped to some node v in layer i in $H_{n, n}$. Therefore, any ϕ in $\mathcal{D H}$ is also injective. Therefore, $\mathcal{D H}=\mathcal{I D H}$.

Remark 31. As $I M M_{3, n}$ is complete for VF BC92], we can design homomorphism polynomials complete for VF using ideas similar to those used in designing the polynomial families complete for VBP. In particular, we will use graph G_{n} as is in the construction and use $H_{3, n}$ to obtain polynomials $f_{G_{n}, H_{3, n}, \mathcal{I H}}(Y), f_{G_{n}, H_{3, n}, \mathcal{D H}}(Y), f_{G_{n}, H_{3, n}, \mathcal{I D}}(Y)$. This therefore also gives us homomorphism polynomial families complete for VF.

Acknowledgements. We would like to thank Meena Mahajan for discussions and her inputs on the previous drafts of this paper.

References

[BC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number of registers. SIAM J. Comput., 21(1):54-58, 1992.
[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical computer science, 22(3):317-330, 1983.
[Bür13] Peter Bürgisser. Completeness and reduction in algebraic complexity theory, volume 7. Springer Science \& Business Media, 2013.
[CDM16] Florent Capelli, Arnaud Durand, and Stefan Mengel. The arithmetic complexity of tensor contraction. Theory of Computing Systems, 58(4):506-527, 2016.
$\left[\mathrm{DMM}^{+} 14\right]$ Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre, and Nitin Saurabh. Homomorphism polynomials complete for vp. In LIPIcsLeibniz International Proceedings in Informatics, volume 29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.
[Men11] Stefan Mengel. Characterizing arithmetic circuit classes by constraint satisfaction problems. In International Colloquium on Automata, Languages, and Programming, pages 700-711. Springer, 2011.
[MP06] Guillaume Malod and Natacha Portier. Characterizing valiants algebraic complexity classes. In International Symposium on Mathematical Foundations of Computer Science, pages 704-716. Springer, 2006.
[MS18] Meena Mahajan and Nitin Saurabh. Some complete and intermediate polynomials in algebraic complexity theory. Theory of Computing Systems, 62(3):622-652, 2018.
[Raz08] Ran Raz. Elusive functions and lower bounds for arithmetic circuits. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 711-720. ACM, 2008.
[Sau] Nitin Saurabh. Analysis of algebraic complexity classes and boolean functions. PhD Thesis.
[Val79] L. G. Valiant. Completeness classes in algebra. In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC '79, pages 249-261, New York, NY, USA, 1979. ACM.

[^0]: *prasad@cse.iitb.ac.in
 ${ }^{\dagger}$ nutan@cse.iitb.ac.in
 ${ }^{\ddagger}$ adityavarre232@gmail.com

[^1]: ${ }^{1}$ The hardness is shown with respect to p-projection reductions. We will define them formally in Section 2.2
 ${ }^{2}$ Valiant Val79 raised the question of whether the Permanent is computable in VP. This question is equivalent to asking whether $\mathrm{VP}=\mathrm{VNP}$, which is the algebraic analogue of the P vs. NP question.
 ${ }^{3}$ Note that if we set all Y variables to 1, then this polynomial essentially counts the number of homomorphisms from G to H.

[^2]: ${ }^{4}$ Note that $t(j)=2^{\left[\frac{j}{2}\right\rceil-1}$

[^3]: ${ }^{5}$ It is a layer preserving isomorphic copy which maps the root node of MAT_{i} to the root of H_{n}.

[^4]: ${ }^{6}$ Recall that $m(n)=2 c\lceil\log n\rceil+1$, which is odd. Also this is without loss of generality.

[^5]: ${ }^{7}$ Recall that $m(n)=2 c\lceil\log n\rceil+1$, which is odd. Also this is without loss of generality.

[^6]: ${ }^{8}$ Graph \bar{H}_{n} cannot have any odd cycles as it is a bipartite graph

[^7]: ${ }^{9}$ The neighbourhood of a node u in directed graph G, denoted by $\mathcal{N}(u)$, is the set $\{x \in V(G) \mid(u, x) \in E(G)\}$

[^8]: ${ }^{10}$ Graph $\bar{H}_{n, n}$ cannot have any odd cycles as it is a bipartite graph
 ${ }^{11}$ The length of a directed path is the number of edges along the path.

