
Variants of Homomorphism Polynomials Complete for Algebraic

Complexity Classes

Prasad Chaugule ∗1, Nutan Limaye †1, and Aditya Varre‡1

1Indian Institute of Technology, Bombay (IITB)

June 12, 2019

Abstract

We present polynomial families complete for the well-studied algebraic complexity classes
VF, VBP, VP, and VNP. The polynomial families are based on the homomorphism polyno-
mials studied in the recent works of Durand et al. (2014) and Mahajan et al. (2016). We
consider three different variants of graph homomorphisms, namely injective homomorphisms,
directed homomorphisms and injective directed homomorphisms and obtain polynomial fam-
ilies complete for VF, VBP, VP, and VNP under each one of these. The polynomial families
have the following properties:

• The polynomial families complete for VF, VBP, and VP are model independent, i.e.
they do not use a particular instance of a formula, ABP or circuit for characterising
VF, VBP, or VP, respectively.

• All the polynomial families are hard under p-projections.

1 Introduction

Valiant [Val79] initiated the systematic study of the complexity of algebraic computation. There
are many interesting computational problems which have an algebraic flavour, for example,
determinant, rank computation, discrete log and matrix multiplication. In fact, any problem
related to these can be reformulated as a problem about computing a certain related polynomial.
There are many other combinatorial problems, which do not prima facie have an algebraic
flavour, but they can also be reduced to the problem of computing a certain polynomial.

Valiant’s work spurred the study of these and many other polynomials and led to a classi-
fication of these polynomials as easy to compute and possibly hard to compute. To talk about
the ease or the hardness of computation, it is vital to first formalise the notion of a model of
computation.

An arithmetic circuit is one such model of computation which has been well-studied. An
arithmetic circuit is a DAG whose in-degree 0 nodes are labelled with variables (X “ tx1, . . . , xnu)
or field constants (from, some field, say F). All the other nodes are labelled with operators `,ˆ.
Each such node computes a polynomial in a natural way. The circuit has an out-degree zero
node, called the output gate. The circuit is said to compute the polynomial computed by its
output gate. The size of the circuit is the number of gates in it.

∗prasad@cse.iitb.ac.in
†nutan@cse.iitb.ac.in
‡adityavarre232@gmail.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 135 (2018)

Any multivariate polynomial ppXq P Frx1, . . . , xns is said to be tractable if its degree is at
most polypnq and there is a polypnq sized circuit computing it. The class of such tractable
polynomial families is called VP.

Many other models of computation have been considered in the literature such as arithmetic
formulas and algebraic branching programs (ABPs). An arithmetic formula is a circuit in which
the underlying DAG is a tree. The class of polynomial families computable by polynomial sized
arithmetic formulas is called VF.

An algebraic branching program is a layered DAG, where the edges between two consecutive
layers are labelled with variables from X or constants from F. For any two nodes in this layered
graph a directed path between them is said to compute the monomial obtained by multiplying
the labels of the edges along that path. The ABP has two designated nodes, say s and t. The
polynomial computed by the ABP is a sum of all the monomials computed by all the paths
from s to t. The size of an ABP is the number of nodes in the underlying DAG. The class of
polynomial families computed by polynomial sized ABPs is called VBP.

Another important class of polynomials studied in the literature (and defined in [Val79]) is
VNP. It is known that VF Ď VBP Ď VP Ď VNP. In [Val79], it was shown that the Permanent
polynomial is complete1 for the class VNP2. It was also shown that the syntactic cousin of the
Permanent polynomial, namely the Determinant polynomial, is in VP. However, the Determi-
nant is not known to be complete for the class VP. In fact, for the longest time there were no
natural polynomials which were known to be complete for VP.

Bürgisser in [Bür13] proposed a candidate VP-complete polynomial which was obtained by
converting a generic polynomial sized circuit into a VP-hard polynomial (similar to how the
Circuit Value Problem is shown to be hard for P). Subsequently Raz in [Raz08] gave a notion
of a universal circuit and presented a VP-complete polynomial arising from the encoding of
this circuit into a polynomial. More recently, Mengel [Men11] as well as Capelli et al. [CDM16]
proposed characterisations of polynomials computable in VP. In these and other related works,
the VP-complete polynomial families were obtained using the structure of the underlying circuit.
(See for instance [DMM`14] and references thesein for other related work.)

In the Boolean setting, consider the following two problems:
(1) tG “ pV,Eq | G has a hamiltonian cycleu and
(2) txM,x, 1ty |M accepts x in at most t steps on at least one non-deterministic branchu.
Both the problems are known to be NP-complete, but unlike the first problem, the second
problem essentially codes the definition of NP into a decision problem. In that sense, the
second problem is dependent on the model used to define NP, but the first one is independent
of it. It is useful to have many problems like the first one that are NP-complete, as each such
problem conveys a property of the class of NP-complete languages which is not conveyed by its
definition.

In the Boolean world the study of NP-complete problems was initiated by the influential
works of Cook and Levin [Coo71,Lev73]. Over the years we have discovered thousands of NP-
complete problems. Similarly, many natural problems have also been shown to be P-complete.
See for instance [GHR92] which serves as a compendium of P-complete problems. Most of these
problems are model independent.

In contrast, in the arithmetic world there is a paucity of circuit-description-independent
VP-complete problems. Truly circuit-description-independent VP-complete polynomial families
were introduced in the works of Durand et al. [DMM`14] and Mahajan et al. [MS18]. In this
paper, we extend their works by giving more such families of polynomials complete for VP.

1The hardness is shown with respect to p-projection reductions. We will define them formally in Section 2.2.
2Valiant [Val79] raised the question of whether the Permanent is computable in VP. This question is equivalent

to asking whether VP“ VNP, which is the algebraic analogue of the P vs. NP question.

2

Along the way we obtain such polynomial families complete for VF, VBP, and VNP as well.
At the core of our paper are homomorphism polynomials, variants of which were intro-

duced in [DMM`14] and [MS18]. (Infact, in [dRA12], [Eng16], some variants of homomorphism
polynomials were defined and they were studied in slightly different contexts.) Informally, a
homomorphism polynomial is obtained by encoding a combinatorial problem of counting the
number of homomorphisms from one graph to another as a polynomial. Say we have two graphs,
G and H, then the problem of counting the number of a certain set of homomorphisms, say H,
from the graph G to H can be algebrised in many different ways. One such way is to represent
the counting problem as the following polynomial.

fG,H,H “
ÿ

φPH

ź

pu,vqPEpGq

Ypφpuq,φpvqq,

where Y “ tYpa,bq | pa, bq P EpHqu and H is a set of homomorphisms from G to H3.
Our work essentially builds on the ideas defined and discussed in the works of [DMM`14,
MS18]. Although [MS18] and [Sau16] provide homomorphism polynomial families complete for
all the important algebraic complexity classes, [DMM`14] raises an interesting question, which
remains unanswered even in [MS18] and [Sau16]. The question is: do there exist homomorphism
polynomial families complete for algebraic classes such as VP or VNP when H is restricted to
only injective homomorphims (or only directed homomorphisms)? We explore this direction
and answer this question positively. This helps us to obtain a complete picture of the work
initiated in [DMM`14,MS18].

We consider three restricted set of homomorphisms, namely injective homomorphisms (de-
noted as IH), directed homomorphisms (denoted as DH) and injective directed homomorphisms
(denoted as IDH). Naturally, when we consider DH or IDH, we assume that G and H are
directed graphs. We then design pairs of classes of graphs which help us obtain polynomials
such that they are complete for the following complexity classes: VF, VBP, VP, and VNP. Like
in [DMM`14,MS18] our polynomials are also model independent, i.e. the graph classes we use
can be defined without knowing anything about the exact structure of the formula, ABP, or the
circuit. We show the hardness in all the cases under more desirable p-projections.

Our constructions do not rely on tree-width/path-width bounded graphs (as the construc-
tions of [MS18]) and also our upper bound proofs do not use techniques such as the result
of Baur and Strassen (like the way it is used in [DMM`14]). We believe this makes some
of our constructions and proofs slightly simpler as compared to the known constructions and
proofs. Moreover, this makes our constructions and proofs conceptually different from those
in [DMM`14,MS18].

We are able to characterise all the well-studied arithmetic complexity classes using variants
of homomorphism polynomials. This provides a unified way of giving characterisation for these
classes. The table below (Table 1) shows the known results regarding the homomorphism
polynomials prior to our work and also summarises the results in this paper.

There could be many other ways to define homomorphism polynomials. There are two
other definitions of homomorphism polynomials studied in the literature. One such variant
from [DMM`14] defines homomorphism polynomials with additional X variables as follows:

f̂G,H,HpY q “
ř

φPHp
ś

uPV pGqX
αpuq
φpuq qp

ś

pu,vqPEpGq Ypφpuq,φpvqqq, where α : V pGq Ñ t0, 1u. Yet

another variant from [DMM`14, MS18] defines homomorphism polynomials using additional

Z variables as
ˆ̂
fG,H,HpY q “

ř

φPHp
ś

uPV pGq Zu,φpuqqp
ś

pu,vqPEpGq Ypφpuq,φpvqqq. Since the overall
goal in these works is to design polynomials complete for complexity classes, it is reasonable

3Note that if we set all Y variables to 1, then this polynomial essentially counts the number of homomorphisms
from G to H.

3

to compare our results with those in [DMM`14, MS18] without worrying about the different
variations of homomorphism polynomials across the entries of Table 1.

VP VBP and VF VNP

c-reductions p-projections p-projections p-projections

InjDirHom - [DMM`14], X X X

InjHom - X X X

DirHom [DMM`14] X [DMM`14],X X

Hom [DMM`14] [MS18] [MS18] [DMM`14] [Sau16]

Table 1: Comparison between our work and previous work. A cell containing the symbol
Xrepresents the polynomial family designed in this paper.

Organisation. The rest of the paper is organised as follows. We present some notations
and preliminaries in the following section. In Section 3 we present the details regarding VP-
complete polynomial families. In Section 4 and Section 5 we present the details regarding
VNP-complete and VBP-complete (VF-complete) polynomial families, respectively.

2 Preliminaries

In this section we introduce some notations and provide some preliminaries, which we will use
in the rest of the paper. For any integer n P N, we use rns to denote the set t1, 2, . . . , nu. For
any set S, we use |S| to denote the cardinality of the set.

2.1 Graph theoretic notions

A cycle graph on n nodes, denoted as Cn, is a graph that has n nodes say v0, . . . , vn´1, and n
edges, namely tpvpi mod nq, vpi`1 mod nq | 0 ď i ď n ´ 1u. We assume that the cycle graph is
undirected unless stated otherwise. A spiked cycle graph on n ` 1 pn ě 3q nodes, denoted as
Sn, is a cycle graph Cn with an additional edge pv, uq, where u is an additional node which is
not among v0, . . . , vn´1, and v P tv0, . . . , vn´1u. We call the nodes v0, . . . , vn´1 the cycle nodes
and we call the additional node a spiked node.

u

v4 v3

v0 v2

v1

G
v

u

(a) Spiked cycle S5, spiked node u. (b) S5 is attached to node v in G

Figure 1: S5 attached to v in G. The distance between spiked node u and v is 2.

4

For a graph G, a cycle graph Cn is said to be attached to a node v of G, if one of the nodes
of Cn is identified with the node v. A spiked cycle graph Sn is said to be attached to a node v
of G, if a node at distance 2 from the spiked node of Sn is identified with v.

2.2 Arithmetic Circuit Complexity Classes

Let F be any characteristic 0 field. Let X be a set of variables. From now on we will only work
with characteristic 0 fields.

An arithmetic circuit is a directed acyclic graph (DAG) in which the in-degree 0 nodes are
called input gates, there is a unique out-degree 0 node called the output gate, all other nodes
are labelled with either ` or ˆ. An input gate is typically labelled with a variable from X
or a constant from F. We define the polynomial computed by a circuit inductively. An input
gate labelled xi (or c P F) is said to compute the polynomial xi (c, resp.). Let g be a gate
with inputs g1, g2. Let p1pXq, p2pXq be the polynomials computed by g1, g2 respectively. If g
is labelled with ˆ (or `) then the polynomial computed by g is simply p1pXq ˆ p2pXq (resp.
p1pXq ` p2pXq). The polynomial computed by the circuit is the polynomial computed by the
output gate. If the out-degree of every node in the circuit is 1 then it is called a formula.

The size of the circuit/formula is the number of nodes in the underlying graph. The depth
of the circuit/formula is the length of the longest path from an input gate to the output gate.

Let

fnpx1, x2, . . . , xmpnqq
(

nPN be a family of polynomials. The family is said to be p-bounded
if for each n, the degree of fn and mpnq are polynomially bounded. A p-bounded family is said
to be in VP (in VF) if for each n, there is a circuit (resp. formula) Cn such that Cn computes
fnpx1, . . . , xmpnqq and the size of Cn, denoted as spnq, is polynomially bounded.

An algebraic branching program (ABP) is a layered directed graph G “ pV,Eq such that
the first layer contains a designated source node s and the last layer contains a designated sink
node t. The edges are labelled with variables. For any s to t path ρ, we use fρ to denote the
product of the variables labelling the edges in ρ. The polynomial computed by an ABP is

ř

ρ fρ,
where ρ is an s to t path.

A p-bounded family is said to be in VBP if for each n, there is an ABP Pn such that Pn
computes fnpx1, . . . , xmpnqq and the size of Pn, denoted as spnq, is at most nOp1q.

Finally, a family of polynomials tfnunPN over rpnq variables and of degree dpnq is said to be in
VNP if rpnq, dpnq P nOp1q and there is another polynomially bounded function mpnq and a family
of polynomials tgnunPN in VP such that for each n P N, gn has rpnq `mpnq variables denoted
as X “ tx1, . . . xrpnqu, Y “ ty1, . . . , ympnqu, and fnpXq “

ř

y1Pt0,1u,...,ympnqPt0,1u
gnpX,Y q.

Projection reductions We say that a family of polynomials tfnunPN is a p-projection of
another family of polynomials tgnunPN if there is a polynomially bounded function m : N Ñ N
such that for each n P N, fn can be obtained from gmpnq by setting its variables to one of the
variables of fn or to field constants.

2.3 Normal form circuits and formulas

In this section, we present some other important notions regarding normal form circuits. We
say that an arithmetic circuit is multiplicatively disjoint if the graphs corresponding to the
subcircuits rooted at the children of any multiplication gate are vertex disjoint. We use a
notion of a normal form of a circuit as defined in [DMM`14]. We first define the notion of a
universal circuit. This notion was defined in [Raz08] and was used in [DMM`14,MS18].

5

Definition 1 (Universal circuit). A circuit D is said to be a pn, s, dq-universal circuit if for
any polynomial fn of degree d that can be computed by a size s circuit, there is another circuit
Φ computing fn such that the DAG underlying Φ is the same as that of D.

We assume that s, d : N Ñ N are both functions of n. A family tDnunPN of pn, spnq, dpnqq-
universal circuits is defined in the usual way. If s, d are polynomially bounded functions of n
then we drop the parameters pn, s, dq from the description of the universal circuit.

Using the notion of universal circuits, we define the notion of the normal form for circuits.

Definition 2 ([DMM`14]). A family of universal circuits tDnunPN in the normal form is a
family of circuits such that for each n P N, Dn has the following properties:

• It is a layered circuit in which each ˆ gate (` gate) has fan-in 2 (unbounded fan-in resp.).

• Without loss of generality the output gate is a ` gate. Moreover, the circuit has an
alternating structure, i.e. the children of ` (ˆ) gates are ˆ (`, resp.) gates, unless the
children are in-degree 1 gates, in which case they are input gates.

• The input gates have out-degree 1. They all appear on the same layer, i.e. the length of
any input gate to output gate path is the same.

• Dn is multiplicatively disjoint.

• Input gates are labelled by variables and no constants appear at the input gate.

• The depth of Dn is 2crlog ns, for some constant c. The number of variables, vpnq, and
size of the circuit, spnq, are both polynomial in n.

• The degree of the polynomial computed by the circuit is n.

We now recall a notion of a parse tree of a circuit from [MP06,DMM`14].

Definition 3 ([MP06]). The set of parse trees of a circuit C, T pCq, is defined inductively
based on the size of the circuit as follows.

• A circuit of size 1 has itself as its unique parse tree.

• If the circuit size is more than 1, then the output gate is either a ˆ gate or a ` gate.

(i) if the output gate g of the circuit is a ˆ gate with children g1, g2 and say Cg1 , Cg2
are the circuits rooted at g1 and g2 respectively, then the parse trees of C are obtained by
taking a node disjoint copy of a parse tree of Cg1 and a parse tree of Cg2 along with the
edges pg, g1q and pg, g2q.

(ii) if the output gate g of the circuit is a ` gate, then the parse trees of C are obtained
by taking a parse tree of any one of the children of g, say h, and the edge pg, hq.

It is easy to see that a parse tree computes a monomial. For a parse tree T , let fT be the
monomial computed by T . Given a circuit C (or a formula F), the polynomial computed by C
(by F , resp.) is equal to

ř

TPT pCq fT (
ř

TPT pF q fT , respectively).
We use the following fact about parse trees proved in [MP06].

Proposition 4 ([MP06]). A circuit C is multiplicatively disjoint if and only if any parse tree
of C is a subgraph of C. Moreover, a subgraph T of C is a parse tree if:

• T contains the output gate of C.

• If g is a ˆ gate in T , with children g1, g2 then the edges pg, g1q and pg, g2q appear in T .

• If g is a ` gate in T , it has a unique child in T , which is one of the children of g in C.

• No edges other than those added by the above steps belong to C.

6

2.4 Graph homomorphism, its variants and homomorphism polynomials

We start with the definition of different variants of graph homomorphisms. Given two undirected
graphs (the directed variant can be defined similarly) G and H, we say that φ : V pGq Ñ V pHq
is a homomorphism from G to H if for any edge pu, vq P EpGq, pφpuq, φpvqq P EpHq, i.e. the
mapping preserves the edge relation. Note that, two different nodes in G can be mapped to the
same node in H.

The homomorphism is said to be an injective homomorphism if additionally for any node
a P V pHq, |φ´1paq| ď 1, i.e. at most one node of G can be mapped to a node of H. Neither
homomorphisms nor injective homomorphisms are required to be surjective, i.e. it is possible
that |V pGq| ď |V pHq|.

If the graphs G,H are directed, then the notion of homomorphism is modified to additionally
preserve the directed edges. Formally, φ : V pGq Ñ V pHq is said to be a directed homomorphism
from G to H if for any directed edge pu, vq P EpGq, pφpuq, φpvqq is a directed edge in EpHq.

Definition 5. Let G,H be two undirected graphs. Let Y “ tYa,b | pa, bq P EpHqu be a set of vari-
ables. Let IH be a set of injective homomorphisms from G to H. Then the injective homomor-
phism polynomial fG,H,IH is defined as follows: fG,H,IHpY q “

ř

φPIH
ś

pu,vqPEpGq Ypφpuq,φpvqq.
If G,H are directed graphs and DH is a set of directed homomorphisms from G to H then

fG,H,DHpY q “
ř

φPDH
ś

pu,vqPEpGq Ypφpuq,φpvqq is said to be the directed homomorphism polyno-
mial. Similarly, if G,H are directed graphs and IDH is a set of injective directed homo-
morphisms from G to H then fG,H,IDHpY q “

ř

φPIDH
ś

pu,vqPEpGq Ypφpuq,φpvqq is said to be the
injective directed homomorphism polynomial.

3 Polynomial families complete for VP

3.1 Injective homomorphisms

We give some definitions of various graph classes.

Definition 6 (Balanced Alternating-Unary-Binary tree). A balanced alternating-unary-binary
tree with k layers, denoted as ATk, is a layered tree in which the layers are numbered from
1, . . . , k, where the layer containg the root node is numbered 1 and the layer containing the
leaves is numbered k. The nodes on an even layer have exactly two children and the nodes on
an odd layer have exactly one child. Figure 2 (a) shows an alternating-unary-binary tree with
5 layers.

Definition 7 (Block tree). Let BTk,s denote an alternately-unary-binary block tree, which is a
graph obtained from ATk by making the following modifications: each node u of ATk is converted
into a block Bu consisting of s nodes. The block corresponding to the root node is called the root
block. The blocks corresponding to the nodes on the even (odd) layers are called binary (unary,
respectively) blocks. If v is a child of u in ATk then Bv is said to be a child of Bu in BTk,s.

After converting each node into a block of nodes, we add the following edges: say B is a
unary block and block B1 is its child, then for each node u in B and each node v in B1 we add the
edge pu, vq. Moreover, if B is a binary block and B1, B2 are its children, then we assume some
ordering of the s nodes in these blocks. Say the nodes in B,B1, B2 are tb1, . . . , bsu, tb

1
1, . . . , b

1
su,

and tb21, . . . , b
2
su respectively, then we add edges pbi, b

1
iq and pbi, b

2
i q for each i P rss.

Figure 2 (b) shows a block tree BTk,s where k “ 5 and s “ 3.

Let k1 “ 3 ă k2 ă k3 be three distinct fixed odd numbers such that k3 ą k2 ` 2.

7

r

(a) AT5, with r as the root. (b) BT5,3.

Figure 2: Examples of ATk and BTk,s

Definition 8 (Modified-Alternating-Unary-Binary tree). We attach a spiked cycle Sk1 to the
root of ATk. We attach a spiked cycle Sjˆk2 (Sjˆk3 respectively) to each left child node (right
child node respectively) in every odd layer j ą 1. We call the graph thus obtained to be a modified
alternating-unary-binary tree and denote it by MATk.

Definition 9 (Modified Block tree). We start with BTk,s and make the following modifications:
we keep only one node in the root block and delete all the other nodes from the root block. We
then attach a spiked cycle Sk1 to the only node in root block. We attach a spiked cycle Sjˆk2
(Sjˆk3 respectively) to each left child node (right child node respectively) in every odd layer
j ą 1. We call the graph thus obtained a modified block tree and denote it by MBTk,s.

We identify each node in graphs MATk, MBTk,s as either a core node or a non core node.
We formally define this notion.

Definition 10 (Core nodes and Non-core nodes). A non-core node is any node in MATk (or
MBTk,s) which was not already present in ATk (or BTk,s respectively). Any node which is not
a non-core node is a core node.

Consider the universal circuit family tDnu in normal form as in Definition 2. Let mpnq “
2crlog ns ` 1 be the number of layers in Dn and let spnq be its size. We prove the following
theorem in this section.

Theorem 11. The family fGn,Hn,IHpY q is complete for class VP under p-projections, where
Gn is MATmpnq and Hn is MBTmpnq,spnq.

As the first step towards proving the theorem, we perform a few more updates to the normal
form circuits we designed for polynomials in VP. Consider the universal circuit Dn in normal
form as in Definition 2. We know that mpnq “ 2crlog ns`1 is the number of layers in Dn and spnq
is its size. From the definition of Dn, we know that any parse tree of Dn is isomorphic to ATmpnq.
From such a circuit Dn, we construct another circuit D1n, which has all the properties that Dn

has and additionally the underlying graph of D1n is a subgraph of the block tree BTmpnq,spnq, for
mpnq, spnq as mentioned above. Formally,

8

Lemma 12. For every n P N, given any circuit Dn with mpnq “ 2crlog ns ` 1 layers and size
spnq in the normal form as in Definition 2, there is another circuit D1n such that it has all the
properties that the circuit Dn has and additionally it has the following properties:

• The polynomial computed by D1n is the same as the polynomial computed by Dn.

• Every parse tree of D1n is isomorphic to ATmpnq.

• The underlying graph of D1n is a subgraph of the block tree BTmpnq,spnq.

• The size of D1n is polypspnqq.

Proof. To prove the lemma, we will give a construction of D1n. Our construction will ensure
that D1n also has mpnq layers. Let u1, u2, . . . , utpjq be the nodes in layer j of ATmpnq

4. For each
such node, we will have one block node in D1n, i.e. we will add blocks Bu1 , Bu2 , . . . , Butpjq . We
will say that a block Bu is a parent of a block Bv if u is a parent of v in ATmpnq. We will now
describe the gates appearing in these blocks and then describe the connections between these
blocks. That will complete the construction of D1n.

Gates of D1n: For j even, each block Bu in layer j has exactly one copy of every gate in layer
j inside Dn. We know that for j even, the gates on the jth layer are ˆ gates in Dn. Therefore,
in D1n too we only get ˆ gates in the jth layer.

For j odd, each block Bu in layer j has spnq sub-blocks and each sub-block consists of a
copy of each gate appearing in layer j inside Dn. All sub-blocks are identical in terms of the
gates appearing in them. Note that all the gates appearing on the jth layer are ` gates by
construction, if j is odd.

Wires of D1n: Let g be a ˆ gate in layer j inside a block Bu in D1n. Say u has children
u1, u2 in ATmpnq. (As g is a ˆ gate, we know that j is even and hence that u is a binary node
in ATmpnq.) Also, let g “ g1 ˆ g2 in Dn and say among all the gates that g1 (g2, resp.) feeds
into, g is the i1th (i2th resp.) gate. We then add the following wires in D1n: a wire from a copy
of g1 appearing in the i1th sub-block of Bu1 to the gate g inside Bu and a wire from a copy of
g2 appearing in the i2th sub-block of Bu2 to the gate g inside Bu.

Let g be a ` gate in layer j in the block Bu in D1n. Say v is the child of u in ATmpnq. (As g
is a ` gate, j is odd and u is a unary node in ATmpnq.) Say g “ g1 ` g2 . . . ` gk in Dn. Then
we simply connect copies of g1, g2, . . . , gk from Bv to the gate g in Bu.

Finally, we only keep one copy of the root gate in layer 1. If we assume that all the edges are
directed from root towards the leaves, then we keep only edges induced by the nodes reachable
from root in this directed graph. This finishes the construction of D1n. It is easy to see that it
has the properties stated in the lemma.

From the construction of D1n, we also get the following properties.

Observation 13. At most spnq copies of any ` gate of Dn will appear in D1n, where spnq is
the size of Dn. Moreover, every copy of ` gate in D1n will be used at most once.

We now prove Theorem 11 by first showing the hardness of the polynomial fGn,Hn,IHpY q
and then proving that it can be computed in VP.

4Note that tpjq “ 2r
j
2

s´1

9

3.1.1 VP hardness of fGn,Hn,IHpY q

We now show that if fnpXq is a polynomial computed in VP, then it is a p-projection of
fGn,Hn,IHpY q. Let Gn, Hn be the source and target graphs defined in Theorem 11.

Let fn be any polynomial in VP and Dn be the normal form universal circuit computing
fn with m “ 2crlog ns` 1 layers and size spnq. We convert this circuit into D

1

n as specified at
the start of this section. As observed earlier, it still computes the polynomial computed by Dn.
Let G1n be the underlying graph of the circuit D

1

n. As D
1

n is multiplicatively disjoint every parse
tree of the circuit is a subgraph of G1n. Moreover, every parse tree is of the form ATmpnq.

If a spiked cycle is attached to a node v in layer ` of a layered graph then we will say that
all the nodes of the cycle belong to the same layer `.

Let φ : Gn Ñ Hn be any injective homomorphism. Let us use φi to denote the action of this
homomorphism restricted to layer i on Gn. Let φ̃i denote Y1ďjďiφi, i.e. the action of φ up to
layer i. We will prove the following lemma inductively.

Lemma 14. Let φ be an injective homomorphism from Gn to Hn. For any i P rmpnqs, φ̃ipGnq
is simply a copy5 of the graph MATi inside Hn with the following additional properties:

• the root of MATi is mapped to the root of Hn.

• for any i P rmpnqs , the core node u in layer i is mapped to a node in block Bu in layer i
of Hn.

Proof. The lemma can be proved easily using induction on i P rmpnqs. We present all the details
for the sake of completeness.

Base Case: For any injective homomorphism to survive, the root of Gn must be mapped
to the root of Hn due to the presence of a spiked cycle graph Sk1 attached to the roots of both
the graphs. This also satisfies the second property from the lemma, as the root of Hn is in Br
where r is the root of Gn.

Inductive case: We assume that the inductive hypothesis holds for all layers smaller than
i` 1. Let u be a node in layer i` 1 of Gn. Let ui be the parent of this node, which is in layer
i. Say vi is a node to which ui is mapped in Hn. We break this case into two parts based on
whether i` 1 is even or odd.

i ` 1 is even and i ` 1 ě 2 : Inductively we also have that the spiked cycle at node ui
is mapped injectively to the spiked cycle at vi. Assume for the sake of contradiction that u
does not get mapped to a node in layer i` 1. In this case, either u is mapped to a node in the
spiked cycle attached to vi or to some node in the layer i ´ 1 which is connected vi. As the
homomorphism is injective the first case cannot happen. The next case cannot happen as the
outdegree of the gates in the odd layers is at most 1 and the neighbor of vi in layer i ´ 1 will
already have the parent of ui mapped to it. Hence u must get mapped to a node in layer i` 1
which is adjacent to vi thus to a node in Bu.

i` 1 is odd and i` 1 ě 3 : Let ui and vi be defined above. From the construction, ui has
two children, say u, u1 and vi has two neighbours, say v, v1, in layer i ` 1. Assume wlog that
u is the left child of ui. Hence, it has a spiked cycle Spi`1qˆk2 attached to it. Similarly if v is
the left neighbour of vi in the layer i` 1, it also has Spi`1qˆk2 attached to it. As the size of the
cycles attached to the nodes in layer i´ 1 is different, u cannot get mapped to a node in layer
i´ 1. Hence u has to get mapped to v. This ensures that the cycle attached to u gets mapped
to the cycle attached to v in an injective way. This completes the proof.

5It is a layer preserving isomorphic copy which maps the root node of MATi to the root of Hn.

10

We will now show that using this lemma we are done. We saw that G1n is the subgraph of
BTm,q, m “ 2crlog ns` 1 and q “ spnq where it is embedded layer by layer.

We wish to set variables such that the monomial computed by each injective homomorphism
is the same as the monomial computed by the corresponding parse tree. This can be achieved
simply by setting variables as follows: Let e be an edge between two core nodes of Hn. If such
an edge is not an edge in G1n then set it to 0. (This carves out the graph G1n inside Hn.) If such
an edge is an edge associated with the leaf node, then locate the corresponding node in D1n. It
will be an input gate in D1n. If the label of that input gate is x, then set this edge to x. If e is
any other edge that appears in G1n, then set it to 1. (This allows for the circuit functionality to
be realised along the edges of Hn.) Finally, suppose e is an edge between two non-core nodes
(or between a core and a non-core node), i.e. along one of the attached cycles, then set it to 1.
(This helps in suppressing the cycle edges in the final computation.)

This exactly computes the sum of all parse trees in the circuit D
1

n, which shows that any
polynomial computed in VP is also computed as a p-projection of fGn,Hn,IHpY q.

3.1.2 fGn,Hn,IHpY q is in VP

The source graph Gn and target graph Hn are as described in the construction. We have
already observed in Lemma 14 that all injective homomorphisms from Gn to Hn respect the
layers. Therefore, it sufficies to compute only such layer respecting homomorphisms.

Construction of the circuit computing fGn,Hn,IHpY q. The construction of the circuit,
say Cn, is done from the bottom layer (i.e. from the leaves) to the top layer (i.e. to the
root). For any core node u P V pMATmpnqq at layer ` of Gn and any core node a in block Bu at
layer ` in Hn, we have a gate xu, ay in our circuit Cn at layer `. Let us denote the sub-graph
rooted at u in Gn by Gpuq and that rooted at a in Hn to be Hpaq. Let IHpu,aq be the set of

injective homomorphism from sub-graph Gpuq to Hpaq where u is mapped to a. Let fxu,ay be
the polynomial computed at the gate xu, ay.

We will describe the inductive construction of the circuit Cn starting with the leaves. We
know that there is a spiked cycle Sk2ˆmpnq or Sk3ˆmpnq attached to each node at layer mpnq
in Gn

6. For any spiked cycle Sk attached at a node x in Hn, let σxSkpY q denote the monomial
obtained by multiplying all the Y variables along the edges in Sk attached at x in Hn. Let u
be a left (or right) child node in Gn at layer mpnq and a be some node in Bu at layer mpnq in
Hn, then we set xu, ay “ σaSk2ˆmpnq

pY q (or xu, ay “ σaSk3ˆmpnq
pY q, respectively).

Suppose we have a left (or right) child node, say u, at layer i in Gn which has only one child,
say u1 at layer i ` 1 in Gn. We know that there is a spiked cycle Sk2ˆi (or Sk3ˆi respectively)
attached to u if it is the left child node (right child node respectively). Let a be any node in
Bu at layer i in Hn. Say a has t children, a1, . . . , at in Hn. Inductively, we have gates xu1, aαy
for all 1 ď α ď t. We set

xu, ay “
t
ÿ

α“1

xu1, aαy ˆ Ypa,aαq ˆ σ
a
Sk2ˆi

pY q or (1)

xu, ay “
t
ÿ

α“1

xu1, aαy ˆ Ypa,aαq ˆ σ
a
Sk3ˆi

pY q (2)

depending on whether u is a left child or a right child of its parent in Gn respectively.
Suppose u in layer i in Gn has a left child u1 and a right child u2 in layer i ` 1. Let a be

6Recall that mpnq “ 2crlogns` 1, which is odd. Also this is without loss of generality.

11

any node in the block Bu in Hn. Let a1 and a2 be the left child and right child of a in Hn

respectively. It is easy to see that a1 resides in the block Bu1 in Hn and a2 resides in the block
Bu2 in Hn. Inductively, we have gates xu1, a1y and xu2, a2y. We set

xu, ay “ xu1, a1y ˆ Ypa,a1q ˆ xu2, a2y ˆ Ypa,a2q (3)

This completes the description of Cn.

Correctness of Cn. Now to see the correctness of Cn, we prove the following lemma.

Lemma 15. For any layer i P rmpnqs, any node u P V pGnq at layer i and any node a in block
Bu also at layer i, fxu,aypY q “

ř

φPIHpu,aq
ś

pu1,u2qPEpGpuqq Ypφpu1q,φpu2qq, where pφpu1q, φpu2qq P

EpHpaqq.

See that when we invoke the above lemma for the roots of Gn and Hn, it proves that Cn
computes the polynomial fGn,Hn,IHpY q.We prove the lemma by induction on i P rmpnqs.

Let u, a be the nodes as described in the statement of the lemma. We will use Mu,a,φpY q
as a short hand for the monomial

ś

pu1,u2qPEpGpuqq Ypφpu1q,φpu2qq, where φ maps u to a.
For any core node u P V pMATmpnqq at layer ` of Gn and any core node a in block Bu at layer `

in Hn, if u is the left child (right child respectively) of its parent in Gn then fxu,ay “ σaSk2ˆmpnq
pY q

(or fxu,ay “ σaSk3ˆmpnq
pY q respectively). This is exactly what the construction does. Therefore,

the base case holds. Now, assume that the lemma is true for layer i ` 1 then we prove that it
is true for layer i. The proof proceeds in two cases.

Case 1 (u has one child): Suppose we have a left child node (or a right child node
respectively) u at layer i in Gn which has only one child, say u1 at layer i` 1 in Gn. We know
that there is a spiked cycle Sk2ˆi (or Sk3ˆi respectively) attached to u if it is the left child node
(or right child node respectively). Let a be any node in Bu at layer i in Hn. Suppose a has
t children, say, a1, . . . , at in Hn. Inductively we have that xu1, aαy computes the polynomial
fxu1,aαy for all 1 ď α ď t. We construct fxu,ay as follows:

fxu,ay “
t
ÿ

α“1

fxu1,aαy ˆ Ypa,aαq ˆ σ
a
Sk2ˆi

pY q

“

t
ÿ

α“1

¨

˝

¨

˝

ÿ

φ1PIHpu1,aαq

Mu1,aα,φ1pY q

˛

‚ˆ Ypa,aαq ˆ σ
a
Sk2ˆi

pY q

˛

‚

“

t
ÿ

α“1

¨

˝

ÿ

φPIHpu,aq,φpu1q“aα

Mu,a,φpY q

˛

‚“
ÿ

φPIHpu,aq

Mu,a,φpY q

or

fxu,ay “
t
ÿ

α“1

fxu1,aαy ˆ Ypa,aαq ˆ σ
a
Sk3ˆi

pY q

“

t
ÿ

α“1

¨

˝

¨

˝

ÿ

φ1PIHpu1,aαq

Mu1,aα,φ1pY q

˛

‚ˆ Ypa,aαq ˆ σ
a
Sk3ˆi

pY q

˛

‚

“

t
ÿ

α“1

¨

˝

ÿ

φPIHpu,aq,φpu1q“aα

Mu,a,φpY q

˛

‚“
ÿ

φPIHpu,aq

Mu,a,φpY q

12

depending on whether u is the left child or the right child of its parent in Gn respectively. Here,
the first equality comes from (1) in the case when u is the left child and from (2) when u is
the right child. In both the cases, the second equality uses the inductive hypothesis. The third
equality comes from simple rewriting of terms. Finally, the last equality follows from the fact
that any homomorphism from node u of MATmpnq to a node a from the block Bu of MBTmpnq,spnq
must pick exactly one node from the block Bu1 , where u1 is a unique child of u in MATmpnq.
This ensures that only the injective homomorphisms from u to a propogate in the summation.
This proves the inductive step in this case.
Case 2 (u has two children): Suppose u in layer i in Gn has a left child u1 and a right child
u2 in layer i ` 1 in Gn. Let a be any node in block Bu in Hn. Let a1 and a2 be the left child
and right child of a in Hn respectively. It is easy to see that a1 resides in block Bu1 in Hn and
a2 resides in block Bu2 in Hn. Inductively, we have gates xu1, a1y and xu2, a2y which computes
the polynomial fxu1,a1y and fxu2,a2y respectively.

fxu,ay “ fxu1,a1y ˆ Ypa,a1q ˆ fxu2,a2y ˆ Ypa,a2q

“

¨

˝

¨

˝

ÿ

φ1PIHpu1,a1q

Mu1,a1,φ1pY q

˛

‚ˆ

¨

˝

ÿ

φ2PIHpu2,a2q

Mu2,a2,φ2pY q

˛

‚ˆ Ypa,a1qYpa,a2q

˛

‚

“
ÿ

φPIHpu,aq,φpu1q“a1,φpu2q“a2

Mu,a,φpY q “
ÿ

φPIHpu,aq

Mu,a,φpY q

Here, the first equality comes from (3), the second equality comes from the inductive hypothesis.
The third equality is obtained by simple rewriting. Finally, the last equality is guaranteed by
the fact that the subgraphs rooted at a1 and a2 do not share any node in common (as per the
construction of Hn). Therefore, only the injective homomorphisms survive in the summation.
This proves the inductive step in this case as well. This finishes the proof.

3.2 Directed and Injective Directed homomorphisms

We will give some definitions of various graph classes.

Definition 16 (Directed Balanced Alternating-Unary-Binary tree). Let ATd
k denote the directed

version of ATk. The directions on the edges go from the root towards the leaves.

Definition 17 (Directed Block tree). We use BTd
k,s to denote the directed version of BTk,s.

The edges are directed from the root block towards the leaf blocks.

Let k11 “ 5 ă k12 ă k13 ă k14 be four distinct fixed natural numbers which are all mutually
co-primes.

Definition 18 (Modified directed Alternating-Unary-Binary tree). We attach a directed cycle
Ck11 to the root of ATd

k. We attach a directed cycle Ck12 to each node in every even layer in

ATd
k. We attach a directed cycle Ck13 (Ck14 respectively) to each left child node (right child node

respectively) in every odd layer (except the root node at layer 1) in ATd
k. We call the graph thus

obtained to be a modified directed alternating-unary-binary tree, MATd
k.

Definition 19 (Modified directed Block tree). We consider BTd
k,s and make the following

modifications: we keep only one node in the root block node and delete all the other nodes from
the root block node. We attach a directed cycle Ck11 to the only node in the root block of BTd

k,s.

We attach a directed cycle Ck12 to each node in every even layer in BTd
k,s. We attach a directed

cycle Ck13 (Ck14 respectively) to each left child node (right child node respectively) in every odd

13

layer (except the root node at layer 1) in BTd
k,s. We call the graph thus obtained to be a modified

directed block tree and denote it by MBTd
k,s.

We identify each node in graphs MATd
k, MBTd

k,s as either a core node or a non core node.
We formally define this notion.

Definition 20 (Core nodes and Non-core nodes). A non-core node is any node in MATd
k (or

MBTd
k,s) which was not already present in ATd

k (or BTd
k,s respectively). Any node which is not

a non-core node is a core node.

We prove the following theorem in this section.

Theorem 21. The families fGn,Hn,DHpY q, fGn,Kppnq,DHpY q and fGn,Hn,IDHpY q are complete

for class VP under p-projections where Gn is MATd
mpnq, Hn is MBTd

mpnq,spnq and Kppnq is the
complete graph obtained from Hn by adding all directed edges between every pair of nodes of
Hn, where ppnq is the number of nodes of Hn.

We first prove VP hardness of fGn,Hn,DHpY q and fGn,Kppnq,DHpY q. We then show that these
families are also contained in VP.

3.2.1 Hardness of fGn,Hn,DHpY q and fGn,Kppnq,DHpY q

We first show that if fnpXq is a polynomial computed in VP, then it is a p-projection of
fGn,Hn,DHpY q. This will prove the hardness of fGn,Hn,DHpY q. The hardness of fGn,Kppnq,DHpY q
will follow immediately from this by the following argument. As Hn is a subgraph of Kppnq, a
simple p-projection that retains all edges of Hn and sets all the other edges to 0 will give us the
hardness.

The VP-hardness of fGn,Hn,DHpY q can be proved using ideas similar to those used in proving
the VP-hardness of fGn,Hn,IHpY q. The only difference is that here we attach directed cycles to
the core-nodes of ATd

mpnq and BTd
mpnq instead of spiked cycles. The purpose of attaching the

cycles is the same, i.e. to prohibit mappings which should not arise when H “ DH.
Let φ : Gn Ñ Hn be any directed homomorphism. Let us use φi to denote the action of this

homomorphism restricted to layer i on Gn. Let φ̃i denote Y1ďjďiφi, i.e. the action of φ up to
layer i. We will prove the following lemma inductively.

Lemma 22. Let φ be a directed homomorphism from Gn to Hn. For any i P rmpnqs, φ̃ipGnq is
simply a copy of the graph MATd

i inside Hn with the additional properties that the root of MATd
i

is mapped to the root of Hn and for any i P rmpnqs , the core node u in layer i will be mapped
to a node in block Bu in layer i of Hn.

Proof. The proof of the lemma is similar to the proof of Lemma 14. The only difference here is
that we can use the fact that we have directions on the edges.

Base case: Similar to the base case of the proof of Lemma 14, here too it is easy to see
that for any directed homomorphism to survive, the root of Gn must get mapped to the root
of Hn. This is because we have a directed cycle of length k11 attached to the root of Gn as well
as Hn and all the other core nodes have cycles of lengths which are coprime with respect to
k11. Inductive case: We assume that the inductive hypothesis holds for all layers smaller than
i` 1. We break this case into two parts based on whether i` 1 is even or odd. The proofs for
these cases are similar to the proofs of the corresponding cases in Lemma 14. Let u be a node
in layer i ` 1 of Gn. Let ui be the parent of this node, which is in layer i. Say vi is a node to
which ui is mapped in Hn. Inductively we also have that the directed cycle attached at node
ui in Gn is mapped to the directed cycle attached at vi in Hn. i ` 1 is even and i ` 1 ě 2:

14

Suppose u is mapped to a node adjacent to vi along the directed cycle Ck1j pj “ 1 or j “ 3 or

j “ 4q attached at vi in Hn. In this case, it is easy to see that the nodes in the cycle attached
to u, namely Ck12 , cannot be mapped along the cycle attached to vi, given that k12 is coprime
with respect to the length of the cycle attached to vi. Hence the only possibility is that u gets
mapped to one of the children of vi in Hn, say v. This is a good case. It is also easy to note that
the directed cycle Ck12 attached at u in Gn must be mapped to the directed cycle Ck12 attached
at v in Hn. Hence in this case we are done.

i ` 1 is odd and i ` 1 ě 3: Note that ui, vi are as described above. Both ui and vi have
two children each. Assume wlog that u is the left child of ui. Either u gets mapped to the
left child of vi in Hn or to the right child of vi in Hn or to the immediate next node to the vi
along the directed cycle Ck12 in Hn. As the order of the directed cycles attached to u, vi and the
right child of vi are not compatible, it is easy to see that the last two cases listed above cannot
happen. Therefore, the only node that u can get mapped to is the left child of vi in Hn, say v.
Once again it is easy to see that the directed cycle Ck13 attached at u in Gn must get mapped
to the directed cycle Ck13 attached at v in Hn.

We will now show that using this lemma we are done. We consider the normal form circuit
D1n as designed in Section 3.1. Let G1n be the underlying graph of D1n. We direct the edges from
the root to the leaves in this graph. Let the directed graph thus obtained be G2n. We know that
G2n is a subgraph of BTd

mpnq,spnq where it is embedded layer by layer.
We wish to set the variables such that the monomial computed by each directed homomor-

phism is the same as the monomial computed by the corresponding parse tree. This can be
achieved simply by setting variables as follows: Let e be an edge between two core nodes of Hn.
If such an edge is not an edge in G2n then set it to 0. (This carves out the graph D1n inside Hn.)
If such an edge is an edge associated with the leaf node, then locate the corresponding node
in D1n. It will be an input gate in D1n. If the label of that input gate is x, then set this edge
to x. If e is any other edge that appears in G2n, then set it to 1. (This allows for the circuit
functionality to be realised along the edges of Hn.) Finally, suppose e is an edge between two
non-core nodes (or between a core and a non-core node), i.e. along one of the attached cycles,
then set it to 1. (This helps in suppressing the cycle edges in the final computation.)

This exactly computes the sum of all parse trees in the circuit D
1

n, which shows that the
any polynomial computed in VP is also computed as a p-projection of fGn,Hn,DHpY q.

3.2.2 fGn,Kppnq,DHpY q and fGn,Hn,DHpY q are in VP

In this section we will show that fGn,Kppnq,DHpY q is computable in VP. As noted above,
fGn,Hn,DHpY q reduces to fGn,Kppnq,DHpY q under p-projections. Therefore, this will also show a
VP upper bound for fGn,Hn,DHpY q.

Let us denote the subgraph rooted at any core node u in Gn by Gpuq. Let DHpu,aq be the

set of directed homomorphisms from subgraph Gpuq to Kppnq where u is mapped to node a in
Kppnq.

The construction of the polynomial sized circuit for fGn,Kppnq,DHpY q is fairly straightforward.
We give the details for the sake of completeness.

Let u be a core vertex in Gn and a be any vertex in Kppnq. We define the polynomial σu,apY q
as follows.

σu,apY q “
ÿ

φPDHpu,aq

ź

pu1,v1qPEpCuq
Ypφpu1q,φpv1qq,

where Cu is the directed cycle attached at the core node u. Basically, σu,a is the polynomial
that sums the monomials corresponding to all possible directed homomorphisms that map the

15

cycle Cu to a subset of nodes in Kppnq, while maintaining the mapping of u in Gn to a in Kppnq.
It is easy to see that if the number of nodes in the cycle Cu is k then the above circuit has size
at most Opppnqkq. By our construction we know that the cycles attached at any core vertex in
Gn are of constant size and ppnq is polynomially bounded. Thus, for any u, a, we can compute
σu,a explicitly in polynomial size. We compute all such polynomials for every core vertex u in
Gn and every vertex a in Kppnq.

We give this proof in two steps. We first give the construction of the circuit Cn and then
prove its correctness. We will build the circuit Cn inductively from bottom-most layer to the
top-most layer of graph Gn.

Base Case: For any core node u in the bottom most layer of Gn and any node a in Kppnq,
we define a gate xu, ay. We set xu, ay “ σu,apY q.

Inductive Case: Suppose we have a core node u, at layer i in Gn which has only one core
node as a child, say u1 at layer i ` 1 in Gn. Let a be any node in Kppnq. Inductively, we have
gates xu1, a1y for all a1 P V pKppnqq. We set

xu, ay “
ÿ

pa,a1qPEpKppnqq

xu1, a1y ˆ Ypa,a1q ˆ σ
u,apY q (4)

Suppose u in layer i in Gn has a left child u1 and a right child u2 in layer i` 1 in Gn. Let
a be any node in Kppnq. Let a1 and a2 be any two neighbors of a. Inductively, we have gates
xu1, a1y and xu2, a2y. We set

xu, ay “
ÿ

pa,a1q,pa,a2qPEpKppnqq

xu1, a1y ˆ Ypa,a1q ˆ xu2, a2y ˆ Ypa,a2q ˆ σ
u,apY q (5)

Let OUT denotes the output gate of Cn. We set OUT “
ř

aPV pKppnqq
xr, ay where r is the root

node of graph Gn. This completes the description of the circuit Cn.

Let fxu,vy denote the polynomial computed by gate xu, vy in Cn. To prove the correctness
of circuit Cn, it is sufficient to prove the following lemma.

Lemma 23. For any layer i P rmpnqs, any node u P V pGnq at layer i and any node a in Kppnq,

fxu,aypY q “
ÿ

φPDHpu,aq

ź

pu1,u2qPEpGpuqq

Ypφpu1q,φpu2qq,

where pφpu1q, φpu2qq P EpKppnqq.

Let us assume that we invoke the above lemma for the root of Gn and any node a in Kppnq.
Then it immediately follows that the circuit Cn computes the polynomial fGn,Kppnq,DHpY q. The
proof of the lemma is almost the same as the proof of Lemma 15.

We will useMu,a,φpY q as a short-hand for the monomial
ś

pu1,u2qPEpGpuqq Ypφpu1q,φpu2qq, where
φ is such that it maps u to a.

Base case : For any core node u in the bottom most layer in Gn and any node a in Kppnq,
fxu,ay “ σu,apY q which is exactly equal to polynomial

ř

φPDHpu,aqMu,a,φpY q. Therefore, the

base case holds.
Inductive case :
Case 1 : Consider a unary core node u in Gn. Let u1 be its only child in Gn. We have

16

fxu,ay “
ÿ

pa,a1qPEpKppnqq

fxu1,a1y ˆ Ypa,a1q ˆ σ
u,apY q

“
ÿ

pa,a1qPEpKppnqq

¨

˝

¨

˝

ÿ

φPDHpu1,a1q

Mu1,a1,φpY q

˛

‚ˆ Ypa,a1q ˆ σ
u,apY q

˛

‚

“
ÿ

pa,a1qPEpKppnqq

¨

˚

˚

˚

˝

ÿ

φPDHpu,aq
φpu1q“a1

Mu,a,φpY q

˛

‹

‹

‹

‚

“
ÿ

φPDHpu,aq

Mu,a,φpY q

Here the first equality follows from Equation 4 and the second equality follows from the inductive
hypothesis step. The third equality is obtained just by rewriting. The fourth equality follows
from the fact that the set of directed homomorphism φ can always be partitioned into sets
depending on where φ maps any node u1 to.

Case 2 : Consider a binary core node u in graph Gn. Let u1 and u2 be its left and right
child respectively in graph Gn. We have

fxu,ay “
ÿ

pa,a1qPEpKppnqq

pa,a2qPEpKppnqq

fxu1,a1y ˆ Ypa,a1q ˆ fxu2,a2y ˆ Ypa,a2q ˆ σ
u,apY q

“
ÿ

pa,a1qPEpKppnqq

pa,a2qPEpKppnqq

¨

˝

ÿ

φPDHpu1,a1q

Mu1,a1,φpY q

˛

‚Ypa,a1q

ˆ

¨

˝

ÿ

φPDHpu2,a2q

Mu2,a2,φpY q

˛

‚Ypa,a2q ˆ σ
u,apY q

“
ÿ

pa,a1qPEpKppnqq

pa,a2qPEpKppnqq

¨

˚

˚

˚

˚

˚

˝

ÿ

φPDHpu,aq
φpu1q“a1
φpu2q“a2

Mu,a,φpY q

˛

‹

‹

‹

‹

‹

‚

“
ÿ

φPDHpu,aq

Mu,a,φpY q

Here the first equality follows from Equation 5 and the second equality follows from the inductive
hypothesis step. The third equality is obtained just by rewriting. The fourth equality follows
from the fact that for any binary core node u in Gn with children u1 and u2, the set of directed
homomorphism φ can be partitioned into sets depending on where φ maps u1 and u2 to.
By the way we have constructed the circuit, finally we have, fOUT “

ř

aPV pKppnqq
fpr,aq where r

is the root node of graph Gn.

Remark 24. From our construction of the polynomial, it is interesting to note that for any
φ P DH,

• a core node u in Gn must get mapped to some node v in the block Bu in Hn. That is,
any two core-nodes in Gn must get mapped to two distinct core-nodes in Hn.

• Let a core-node u in Gn gets mapped to a core-node v in Hn. Let Cu and Cv denotes the
directed cycles attached at nodes u (in Gn) and v (in Hn) respectively. It is clear that Cu
must get exactly mapped to Cv in an injective way, where φpuq “ v.

17

This implies that every φ in DH is also injective. Therefore, in fact DH “ IDH, where IDH
is a set of all injective directed homomorphisms.

The remark shows that fGn,Hn,DHpY q we constructed is in fact also fGn,Hn,IDHpY q.

Remark 25. We get a VP-complete polynomial family when the right-hand-side graph is a
complete graph and H “ DH. It would be interesting to get this feature even when H “ IH or
IDH. In the case of H “ IH or IDH, although the VP-hardness of these families goes through,
the containment of these families in VP is not straightforward (as in case of H “ DH). It is
worth noting however that all our constructions ensure that the graphs are model independent
in all three cases, i.e. when H equals IH,DH or IDH.

4 Polynomial families complete for VNP

In this section, we present VNP-complete polynomial families. At the core of our VNP-complete
polynomials lies the Permanent polynomial, which is defined as follows:

PermnpXq “
ÿ

σPSn

ź

iPrns

xi,σpiq,

where X “ txi,j | i, j P rnsu and Sn is a set of all permutations on n elements. It is known that
Permanent polynomial is complete for VNP.

4.1 Injective homomorphisms

In this section, we present a polynomial family which is complete for VNP, when H is the class
of injective homomorphism.

4.1.1 Construction

Let xGn be a bipartite graph with node partitions V1pxGnq and V2pxGnq. Let V1pxGnq “ tui|1 ď

i ď nu and V2pxGnq “ tvi|1 ď i ď nu. Let EpxGnq “ tpui, viq|1 ď i ď nu. We will do some

modifications to xGn. Let k1 “ 3 ă k2 . . . ă kn ă kn`1 be n ` 1 consecutive odd numbers. We
attach a spiked cycle Ski to node ui for all 1 ď i ď n. We attach a spiked cycle Skn`1 to node

vi for all 1 ď i ď n. We call this modified version of xGn as Gn.
Let xHn be a bipartite graph with node partitions V1pxHnq and V2pxHnq. Let V1pxHnq “ tu

1
i|1 ď

i ď nu and V2pxHnq “ tv
1
i|1 ď i ď nu. Let EpxHnq “ tpu

1
i, v

1
jq|1 ď i, j ď nu. We attach a spiked

cycle Ski to node u1i for all 1 ď i ď n. We attach a spiked cycle Skn`1 to node v1i for all 1 ď i ď n.

We call this modified version of xHn as Hn.
For this choice of Gn, Hn and IH, we define the homomorphism polynomial, fGn,Hn,IHpY q

where n P N. Figure 3 and figure 4 shows the graphs Gn and Hn for n “ 3 respectively.

Theorem 26. The family fGn,Hn,IHpY q is complete for class VNP under p-projections where
Gn and Hn are as described above.

18

u3

u2

u1 v1

v2

v3

Figure 3: Gn where n “ 3 for fGn,Hn,IHpY q

u3

u2

u1 v1

v2

v3

Figure 4: Hn where n “ 3 for fGn,Hn,IHpY q

4.1.2 Hardness of fGn,Hn,IHpY q

We show how Permn is a p-projection of fGn,Hn,IHpY q. In any injective homomorphism, the
odd cycle Ck1 attached to node u1 in graph Gn has to get mapped to the odd cycle Ck1 attached
to node u11 in Hn. This is because Hn has only one cycle of size k1

7. For any injective homomor-
phism to survive, u1 in Ck1 of Gn has to get mapped to u11 in Ck1 of Hn. By fixing the map of
u1 to u11 from Gn to Hn, the spiked cycle allows to map Ck1 in Gn to Ck1 in Hn in only one way.
Therefore, the spiked cycle Sk1 at u1 in Gn gets exactly mapped to Sk1 at u11 in Hn. Similarly,
we can argue that any ui in Gn gets mapped to u1i in Hn for all 1 ď i ď n and any spiked cycle
Ski at ui in Gn gets exactly mapped to spiked cycle Ski at u1i in Hn. It is easy to see that any
vi in Gn has to get mapped to some v1j in Hn. Injectivity assures that no two vi and vj in Gn
gets mapped to same v1k in Hn. In other words, v1, . . . , vn in Gn gets mapped to v1t1 , . . . , v

1
tn in

Hn, respectively, where the sequence t1, . . . , tn is any permutation of elements from rns. Once
we fix the mappings of v1, . . . , vn in Gn, the homomorphism proceeds in only way for the spiked
cycles attached at v1, . . . , vn in Gn.

7Graph H̄n cannot have any odd cycles as it is a bipartite graph

19

The polynomial family fGn,Hn,IHpY q is not exactly the same as Permn but has a multilinear
monomial, say α of degree p2n`nkn`1`

řn
i“1 kiq multiplied to every monomial of Permn. The

variables in α are the variables associated with the spiked cycles attached to xHn in Hn. We set
all these variables to 1 to get the Permn polynomial from fGn,Hn,IHpY q.

4.1.3 fGn,Hn,IHpY q is in VNP

We know that Permn is in VNP. Therefore, we have PermnprY q “
ř

ZPt0,1unˆn fnp
rY , Zq, where

fn is in VP. We know that fGn,Hn,IHpY q “
ř

ZPt0,1unˆn f
1

npY, Zq, where f
1

npY, Zq “ α.fnprY , Zq

and α is the multilinear monomial of degree p2n ` nkn`1 `
řn
i“1 kiq. Clearly, f

1

n is in VP,
provided fn is in VP; therefore, fGn,Hn,IHpY q is in VNP.

4.2 Directed and Injective Directed homomorphisms

In this section, we present a polynomial family which is complete for VNP, when H is the
class of directed homomorphisms and injective directed homomorphisms. We now specify the
construction and give the proof of its completeness.

4.2.1 Construction

Let Gn be a layered directed graph with four layers `1, `2, `3 and `4 each containing n nodes
except layers `1 and `4, which have exactly one node each identified as the node x and the
node y, respectively. We label the nodes in layer `2 as u1, . . . , un and the nodes in layer `3 as
v1, . . . , vn. We add the following directed edges in Gn.

• px, uiq for all 1 ď i ď n, py, viq for all 1 ď i ď n, pui, viq for all 1 ď i ď n,

• px, yq and pui, yq for all 1 ď i ď n, pui, ujq for all i ‰ j, pvi, vjq for all i ă j.

The nodes in `2 form a complete directed graph and the nodes in `3 form a tournament.
Let Hn be a layered directed graph with four layers `1, `2, `3 and `4 each containing n nodes

except for layers `1 and `4. Both layers `1 and `4 has exactly one node each identified as the
node x1 and the node y1 respectively. We label the nodes in layer `2 as u11, . . . , u

1
n and the nodes

in layer `3 as v11, . . . , v
1
n. We add the following directed edges in Hn.

• px1, u1iq for all 1 ď i ď m, py1, v1iq for all 1 ď i ď n, pu1i, v
1
jq for all 1 ď i, j ď n,

• px1, y1q and pu1i, y
1q for all 1 ď i ď n, pu1i, u

1
jq for all i ‰ j, pv1i, v

1
jq for all i ă j.

The nodes in `2 form a complete directed graph and the nodes in `3 form a tournament.
For this choice of Gn, Hn and DH, we define the homomorphism polynomial, fGn,Hn,DHpY q

where m P N. Figure 5 shows the graphs Gn and Hn for n “ 5.

Theorem 27. The families fGn,Hn,DHpY q and fGn,Hn,IDHpY q are complete for class VNP under
p-projections where Gn and Hn are as described above.

4.2.2 fGn,Hn,DHpY q is VNP hard

We show that Permn is a p-projection of fGn,Hn,DHpY q.
Case I (n “ 1) : For n “ 1, it is easy to check that in the only surviving homomorphism, x,

y, u1 and v1 in Gn get mapped to x1, y1, u11 and v11 in Hn, respectively.

20

x y

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

x1 y1

u11

u12

u13

u14

u15

v11

v12

v13

v14

v15

(a) Gn where n “ 5 (b) Hn where n “ 5

Figure 5: Examples of Gn and Hn designed for fGn,Hn,DHpY q.

Case II (n ě 2) : Since the node x in Gn has a neighbourhood of pn` 1q nodes which forms
a clique and n nodes out of it forms a complete directed graph, for any directed homomorphism
to survive, x in Gn has to get mapped to x1 in Hn. The neighbourhood of x, N pxq, that is,
nodes u1, . . . , un and y in Gn, has to get mapped to the neighbourhood of x1, N px1q, that is,
nodes u11, . . . , u

1
n and y in Hn. This N pxq to N px1q mapping has to be a bijection (This is

because, the N pxq forms a clique in Gn and no node in N px1q has a self-loop on it.).
For any bijection to survive from N pxq to N px1q in any directed homomorphism from Gn

to Hn, y in Gn must get mapped to y1 in Hn. This is because, if we assume that y in Gn gets
mapped to some u1i in Hn, then the remaining elements in N pxq must have a bijection to the
remaining elements in N px1q but such a bijection is not possible. This is because N pxq ´ tyu
forms a complete directed graph in Gn whereas N pxq´tu1iu does not form such a graph. In other
words, for any homomorphism to survive from Gn to Hn, u1, . . . , un, y in Gn gets mapped to
u1t1 , . . . , u

1
tn , y1 in Hn respectively where the sequence t1, . . . , tn is any permutation of elements

from rns.
Once the node y in Gn gets mapped to y1 in Hn, it is easy to see that the neighbourhood8 of

y, N pyq, that is, nodes v1, . . . , vn in Gn, has to get mapped to the neighbourhood of y1, N py1q,
that is, nodes v11, . . . , v

1
n in Hn. This N pyq to N py1q mapping has to be a bijection (This is again

because, the N pyq forms a clique in Gn and no node in N py1q has a self-loop on it).
We now argue that for any bijection to survive from N pyq to N py1q in any directed homo-

morphism from Gn to Hn, vi must get mapped to v1i for all 1 ď i ď n. Suppose not. In this
case there exist some vi, vj pi ă jq in Gn such that vi and vj in Gn get mapped to v1i1 and v1j1
pi1 ą j1q in Hn. However, any such mapping is not a homomorphism as there is no edge pv1i1 , v

1
j1q

in Hn.
The polynomial family fGn,Hn,DHpY q is not exactly the same as the Permn but it has a

multilinear monomial, say α of degree 3n ` 3
`

n
2

˘

` 1 multiplied to every monomial of Permn.
The variables in α are the variables associated with all the edges which are not from `2 to `3

8The neighbourhood of a node u in directed graph G, denoted by N puq, is the set tx P V pGq|pu, xq P EpGqu

21

in Hn. We set all these variables to 1 to obtain the Permn polynomial as a p-projection of
fGn,Hn,DHpY q.

4.2.3 fGn,Hn,DHpY q is in VNP

We know that Permn is in VNP. Therefore, we have PermnprY q “
ř

ZPt0,1unˆn fnp
rY , Zq, where

fn is in VP. We know fGn,Hn,DHpY q “
ř

ZPt0,1unˆn f
1

npY,Zq, where f
1

npY,Zq “ α.fnprY , Zq and α

is the multilinear monomial of degree 3n`3
`

n
2

˘

`1. Clearly, f
1

n is in VP, therefore, fGn,Hn,DHpY q
is in VNP.

Remark 28. It is easy to note that for any φ in DH,

• the nodes x and y in Gn must get mapped to nodes x1 and y1 in Hn, respectively.

• nodes u1, . . . , un must get mapped to u1t1 , . . . , u
1
tn respectively where t1, . . . , tn is any per-

mutation of elements from rns.

• For any i, vi in Gn must get mapped to v1i in Hn.

This implies that any two nodes in Gn must get mapped to two distinct nodes in Hn. Therefore,
DH “ IDH.

5 Polynomial families complete for VBP and VF

In this section we present VBP and VF complete polynomial families. Before we start describing
the construction we recall a well-known VBP-complete polynomial, namely IMMk,npXq.

IMMk,npXq “
ÿ

i1,i2,...,in´1Prks

x
p1q
1,i1
¨ x
p2q
i1,i2

¨ . . . ¨ x
pn´1q
in´2,in´1

¨ x
pnq
in´1,1

,

where X “
Ť

`Prn`1sX
p`q, Xp1q “ tx

p1q
1,j | j P rksu, X

pnq “ tx
pnq
i,1 | i P rksu, and for 2 ď ` ď n´ 1,

Xp`q “ tx
p`q
i,j | i, j P rksu.

It is known that as long as k “ Θppolypnqq, IMMk,npXq is complete for VBP and it is
complete for VF for k “ 3 (in fact for any constant k ą 2).

5.1 Injective homomorphisms

Here we give a polynomial family which is complete for VBP, when H is the class of injective
homomorphisms. We start with the construction of the polynomials and then present the proof
of its completeness.

5.1.1 Construction

Let pGn be a simple path on n` 1 nodes, say, u1, . . . , un`1. We attach spiked cycles Sk1 and Sk2
to both the ends of the path, that is, at nodes u1 and un`1 respectively. Both k1 and k2 are
distinct odd numbers. We call this modified version of pGn as Gn.

Let pHk,n be a layered graph with n ` 1 layers labelled as `1, . . . , `n`1 such that each layer
has k nodes except for layers `1 and `n`1. The layers `1 and `n`1 have one node each identified
as the source node s and the sink node t, respectively. There are no edges within the nodes of
any layer. Every node in layer i is adjacent to every other node in layer i` 1 for all 1 ď i ď n.

22

We attach spiked cycles Sk1 and Sk2 to s and t in pHk,n, respectively. We call this modified

version of pHk,n as Hk,n.
For this choice ofGn, Hk,n and IH, we define the homomorphism polynomial, fGn,Hk,n,IHpY q

where n P N. Figure 6 and figure 7 shows the graphs Gn and Hn,n for n “ 4 respectively.

Theorem 29. The family fGn,Hn,n,IHpY q is complete for class VBP under p-projections where
Gn and Hn,n are as described above.

u1 u2 u3 u4 u5

Figure 6: Gn where n “ 4, k1 “ 5 and k2 “ 7.

s t

Figure 7: Hn where n “ 4, k1 “ 5 and k2 “ 7.

5.1.2 Hardness of fGn,Hn,n,IHpY q

We show that IMMn,n can be computed as a p-projection of fGn,Hn,n,IHpY q.
In any injective homomorphism, the odd cycle Ck1 attached to u1 in graph Gn has to get

mapped to the odd cycle Ck1 attached to node s in Hn,n. This is because Hn has only one cycle
of size k1

9. For any injective homomorphism to survive, the node u1 in Gn must get mapped
to the node s in Hn,n. Due to the spiked cycle, this mapping of Ck1 in Gn to Ck1 in Hn,n can
be done in only one way. Therefore, in any injective homomorphism mapping, the Sk1 at u1
gets exactly mapped to Sk1 at s. Now, the nodes along the path in Gn must get mapped to the
nodes across the layers in Hn. There is no possibility of folding back; this is because the node

9Graph H̄n,n cannot have any odd cycles as it is a bipartite graph

23

un`1 in Gn has to get mapped to the node t in Hn,n otherwise, we won’t be able to map Ck2 at
un`1 in Gn to Ck2 at t in Hn,n.

The polynomial family we have designed is not exactly same as the IMMn,n but will have
a multilinear monomial, say α of degree k1 ` k2 ` 2 multiplied to every monomial of IMMn,n.
The variables in α are the variables associated with edges of the spiked cycles Sk1 and Sk2 in
Hn,n. We set all these variables to 1 to obtain the IMMn,n polynomial from fGn,Hn,n,IHpY q.

5.1.3 fGn,Hn,n,IHpY q is in VBP

We know, fGn,Hn,n,IHpY q “ α ¨ IMMn,n. Let An denote the algebraic branching program for
IMMn,n with s and t as the source and sink nodes respectively. We relabel our source node s
as s̄. We add an extra node and label it as the new source node s. We add a directed path p
of length10 pk1 ` k2 ` 2q from s to s̄. We place the variables associated with Sk1 and Sk2 in
Hn,n on the edges along the path p. We call this modified An as A

1

n. It is easy to note that A
1

n

computes fGn,Hn,n,IHpY q.

5.2 Directed and Injective Directed Homomorphisms

In this section, we present two polynomial families complete for VBP for both directed homomor-
phisms (DH) and injective directed homomorphisms (IDH). We now specify the construction
and give the proof of its completeness.
Let Gn be a simple directed path on n ` 1 nodes, say, u1, . . . , un`1 with edges pui, ui`1q for
1 ď i ď n. Let Hk,n be a layered graph with n` 1 layers labelled as `1, . . . , `n`1 such that each
layer has k nodes except for layers `1 and `n`1. The layers `1 and `n`1 have exactly one node
each identified as the source node s and the sink node t, respectively. There are no edges within
the nodes of any layer. There is a directed edge from every node in layer `i to every other node
in layer `i`1 for all 1 ď i ď n.

Figure 8 and figure 9 shows the graphs Gn and Hn,n for n “ 4 respectively.

Theorem 30. The families fGn,Hn,n,DHpY q and fGn,Hn,n,IDHpY q are complete for class VBP
under p-projections where Gn and Hn,n are as described above.

u1 u2 u3 u4 u5

Figure 8: Gn where n “ 4

10The length of a directed path is the number of edges along the path.

24

s t

Figure 9: Hn where n “ 4

5.2.1 Hardness of fGn,Hn,n,DHpY q

In this section, we will prove that the polynomial fGn,Hn,n,DHpY q is hard for class VBP. In
fact we show that fGn,Hn,n,DHpY q “ IMMn,n. We show the bijection between the directed
homomorphisms from Gn to Hn,n to the monomials of IMMn,n.

It is easy to note that for any directed homomorphism to survive from Gn to Hn,n, the node
u1 in Gn must get mapped to node s in Hn,n. It is easy to note that any directed homomorphism
from Gn to Hn,n survives if and only if the graph Gn gets exactly mapped to one of the directed
paths from s to t in Hn,n.

5.2.2 fGn,Hn,n,DHpY q is in VBP

This is clear from the fact that fGn,Hn,n,DHpY q “ IMMn,n.

Remark 31. Note that for any φ in DH, the only node u in layer i in Gn must get mapped
to some node v in layer i in Hn,n. Therefore, any φ in DH is also injective. Therefore,
DH “ IDH.

Remark 32. As IMM3,n is complete for VF [BC92], we can design homomorphism polynomials
complete for VF using ideas similar to those used in designing the polynomial families complete
for VBP. In particular, we will use graph Gn as is in the construction and use H3,n to ob-
tain polynomials fGn,H3,n,IHpY q, fGn,H3,n,DHpY q, fGn,H3,n,IDHpY q. This therefore also gives us
homomorphism polynomial families complete for VF.

Acknowledgements. We would like to thank Meena Mahajan for discussions and her inputs
on the previous drafts of this paper.

References

[BC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant
number of registers. SIAM J. Comput., 21(1):54–58, 1992.

[Bür13] Peter Bürgisser. Completeness and reduction in algebraic complexity theory, vol-
ume 7. Springer Science & Business Media, 2013.

25

[CDM16] Florent Capelli, Arnaud Durand, and Stefan Mengel. The arithmetic complexity of
tensor contraction. Theory of Computing Systems, 58(4):506–527, 2016.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages
151–158, 1971.

[DMM`14] Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre, and
Nitin Saurabh. Homomorphism polynomials complete for vp. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 29, 2014.

[dRA12] Nicolas de Rugy-Altherre. A dichotomy theorem for homomorphism polynomials.
In International Symposium on Mathematical Foundations of Computer Science,
pages 308–322. Springer, 2012.

[Eng16] Christian Engels. Dichotomy theorems for homomorphism polynomials of graph
classes. Journal of Graph Algorithms and Applications, 20(1):3–22, 2016.

[GHR92] Raymond Greenlaw, H. James Hoover, and Walter Ruzzo. A compendium of prob-
lems complete for p. 11 1992.

[Lev73] Leonid A. Levin. Universal search problems (in Russian). Problems of Information
Transmission, 9(3), 1973.

[Men11] Stefan Mengel. Characterizing arithmetic circuit classes by constraint satisfaction
problems. In ICALP, pages 700–711. Springer, 2011.

[MP06] Guillaume Malod and Natacha Portier. Characterizing valiants algebraic complexity
classes. In MFCS, pages 704–716. Springer, 2006.

[MS18] Meena Mahajan and Nitin Saurabh. Some complete and intermediate polynomials
in algebraic complexity theory. Theory of Computing Systems, 62(3):622–652, 2018.

[Raz08] Ran Raz. Elusive functions and lower bounds for arithmetic circuits. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pages 711–720.
ACM, 2008.

[Sau16] Nitin Saurabh. Analysis of algebraic complexity classes and boolean functions. PhD
Thesis, 2016.

[Val79] L. G. Valiant. Completeness classes in algebra. In Proceedings of the Eleventh
Annual ACM Symposium on Theory of Computing, STOC ’79, pages 249–261, 1979.

26

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

