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Abstract

We develop the notion of double samplers, first introduced by Dinur and Kaufman [Proc. 58th
FOCS, 2017], which are samplers with additional combinatorial properties, and whose existence we
prove using high dimensional expanders.

We show how double samplers give a generic way of amplifying distance in a way that enables
efficient list-decoding. There are many error correcting code constructions that achieve large distance
by starting with a base code C with moderate distance, and then amplifying the distance using a
sampler, e.g., the ABNNR code construction [IEEE Trans. Inform. Theory, 38(2):509–516, 1992.]. We
show that if the sampler is part of a larger double sampler then the construction has an efficient list-
decoding algorithm and the list decoding algorithm is oblivious to the base code C (i.e., it runs the
unique decoder for C in a black box way).

Our list-decoding algorithm works as follows: it uses a local voting scheme from which it con-
structs a unique games constraint graph. The constraint graph is an expander, so we can solve
unique games efficiently. These solutions are the output of the list decoder. This is a novel use of a
unique games algorithm as a subroutine in a decoding procedure, as opposed to the more common
situation in which unique games are used for demonstrating hardness results.

Double samplers and high dimensional expanders are akin to pseudorandom objects in their
utility, but they greatly exceed random objects in their combinatorial properties. We believe that
these objects hold significant potential for coding theoretic constructions and view this work as
demonstrating the power of double samplers in this context.
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1 Introduction

We develop the notion of a double sampler, which is an “enhanced” sampler. A sampler is a bipartite
graph G = (U, V, E) such that for every function f : V → [0, 1] the global expectation µ = Ev∈V [ f (v)]
is roughly equal the local expectation µu = Ev∼u[ f (v)] for most u ∈ U. More formally a (α, δ)-
sampler is a graph such that at most δ-fraction of the vertices u have |µu − µ| ≥ α, see [Zuc97] for
more details. In this work we study a strong extension of samplers, called double samplers.

Towards defining double samplers we observe that every given a sampler G = (U, V, E), every
u ∈ U can be identified with the set of its neighbors {v ∈ V | v ∼ u}. In this way U is a collection
of subsets of V. In the other direction, given a ground set V and a collection of subsets {S ⊂ V}, the
graph G pops out as the inclusion graph with an edge from v ∈ V to S iff v ∈ S.

A double sampler consists of a triple (V2, V1, V0) where V0 is the vertex set, V1 is a collection of
m1-subsets of V0, and V2 is a collection of m2-subsets of V0, where m2 > m1. We say that (V2, V1, V0)
is a double sampler if

• The inclusion graphs on (V2, V1), (V1, V0) and on (V2, V0) are each samplers. (An inclusion
graph is a graph where we connect two subsets by an edge if one contains the other; here a
single vertex is also considered to be a singleton subset).

• For every T ∈ V2, let V1(T) = {S ∈ V1 : S ⊂ T} be the sets in V1 that are contained in T.
Let G|T be the bipartite inclusion graph connecting vertices in T to subsets in V1(T). We require
that for every T ∈ V2, the graph G|T is a sampler. We call this property the locality property of
the double sampler. (See Figure 1 for an illustration.)

Our definition of double samplers is stronger than the initial definition in [DK17] that was missing the
locality property1. Whereas the definition in [DK17] can be obtained e.g. by concatenating two sam-
plers, the revised definition herein is much stronger and carries properties not known to be obtained
by any random construction. It is quite remarkable that high dimensional expanders [LSV05, KO18]
give rise to double samplers for which |Vi| = O(|U|):

Theorem 1.1. (Informal, see formal version in Theorem 2.12) For every pair m2 > m1 > 1, there is
an explicit construction of a double sampler on n vertices, such that |Vi| = O(n), for infinitely many
n ∈N.

On random double samplers. To appreciate the remarkableness of double samplers, think of con-
crete parameters such as m1 = 2, m2 = 3. A random construction amounts to placing n vertices in V0,
a linear (in n) number of edges in V1 and a linear number of triples in V2. In any G(n, p)-like model,
most edges will be connected to at most one triple, or vice versa, most triples will be connected to at
most one edge. In either case the inclusion graph on V1, V2 is highly disconnected, let alone that it be
a sampler2.

We elaborate more on the construction of double samplers towards the end of the introduction.

Samplers and distance amplification. Alon, Bruck, Naor, Naor and Roth [ABN+92] showed how
to amplify the distance of any code, simply by pushing the symbols along edges of a sampler graph.
Let us describe their transformation in notation consistent with the above. We think of the graph
as a sampler G = (V1, V0 = [n]), where V1 is a collection of m-sets of [n]. Given an n-bit string
w ∈ {0, 1}n, we place wi on the i-th vertex and then each subset S ∈ V1 “collects” all of the symbols

1The main result in [DK17] was proven directly from high dimensional expanders, and not from double samplers, so this
locality property was used implicitly. It is possible that the result of [DK17] can be proven directly from our revised definition
of double samplers.

2Observe that for the chosen parameters of m1 = 2 and m2 = 3, there are obvious limits on the (α, δ) parameters of the
sampler, since each triple is connected to at most 3 edges.
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of its elements and gets a short string w|S : S → {0, 1}. The resulting codeword is the sequence
EncG(w) := (w|S)S∈V1 which can be viewed as a string of length |V1| over alphabet Σ = {0, 1}m.

If the string w came from an initial code C ⊂ {0, 1}n with minimum distance α > 0, then
EncG(C) := {EncG(w) : w ∈ C} is a new code. Assuming G is a (α, δ)-sampler, the minimum
distance of EncG(C) is at least 1− δ. Of course the length of words in EncG(C) depends on the size of
|V1|, so the shorter the better.

This elegant transformation from C to EncG(C) is very local and easy to compute in the forward
direction (from w to EncG(w)), and indeed it has been found useful in several coding theory con-
structions, e.g. [GI02, KMRS17]. In this work we study the inverse question, also known as decoding:
given a noisy version of EncG(w), find w. Moreover, we wish to recover from as many errors as
possible.

Decoding and list decoding A decoding algorithm for EncG(C) gets as input a string ( fS)S∈V1 , and
needs to find a word w ∈ C such that w|S = fS for as many S ∈ V1 as possible. A natural approach is
the “maximum likelihood decoding” algorithm: assign each vertex i ∈ [n] the most likely symbol, by
looking at the “vote” of each of the subsets S 3 i,

w′i := majorityS:S3i[ fS(i)]

and then run the unique decoding algorithm of C on w′. Assuming C is efficiently unique-decodable
from ε errors, and assuming G is a good sampler, this gives a decoding algorithm for EncG(C) that
recovers from error rates close to 1/2.

Going beyond the unique decoding radius, the large distance of EncG(C) guarantees, via the
Johnson bound, that it is (combinatorially) list decodable up to a radius 1−

√
δ where 1− δ is the

distance (see [GRS, Chapter 7]). However, the maximum likelihood decoder stops working in this
regime: one cannot rule out the situation where for each vertex i, both 0 and 1 symbols occur with
equal likelihood, and it is not known, in general,3 how to recover w.

Thus, it is natural to ask for an algorithm that list decodes up to radius close to 1−
√

δ. Our main
result is a list decoding algorithm that goes beyond the unique-decoding 1/2 barrier and works for
error rates approaching 1. The algorithm works whenever the underlying graph G = (V1, [n]) is part
of a double sampler, namely where there is a collection V2 of sets of size m2 > m1 = m so that the
triple (V2, V1, [n]) is a double sampler.

Theorem 1.2 (Main - informal, see Theorem 3.1). Let ε0, ε > 0 be constants. Suppose C ⊂ {0, 1}n is
a code that is efficiently decodable from ε0 errors, and suppose X = (V2, V1, [n]) is a double sampler
(with parameters m2, m1 depending on ε0, ε). The code EncX(C) defined over alphabet Σ = {0, 1}m1

by
EncX(C) = {(g|S)S∈V1 | g ∈ C} ⊂ ΣV1

has block length |V1| = O(n), and is list-decodable from 1− ε fraction of errors.

At this point the reader may be wondering how the double-sampler property helps facilitate list
decoding. Roughly speaking, a double sampler is a collection of (small) subsets that have both large
overlaps as well as strong expansion properties. The expansion properties are key for distance am-
plification, and the large overlaps, again with good sampling properties, are key for the list decoding
algorithm.

1.1 The list decoding algorithm

Our algorithm starts out with a voting step, similar to the maximum likelihood decoder. Here we
vote not on the value of each bit i ∈ [n] but rather on the value of an entire set T ∈ V2. Since (V2, V1)

3We remark that when the base code C has additional special properties it is possible that more can be done (see e.g [GI02]),
but our focus is on a generic decoding mechanism that does not depend on the code at all. In fact, we show an approximate
list decoding algorithm that works even when C does not have any distance, e.g. for C = {0, 1}n.
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is also a sampler, a typical T sees a noticeable fraction of S’s for which fS = w|S. Since the graph X|T
between V1(T) and T is a sampler (this is the locality property), we can come up with a short list of
popular candidates for w|T . This is done by looking at fS for all subsets S ∈ V1(T). We define

∀T ∈ V2, list(T) := {σ ∈ {0, 1}T : Pr
S⊂T,S∈V1

[ fS = σ|S] > ε/2 }.

Note that since T has constant size, we are able to search exhaustively over all σ ∈ {0, 1}T in constant
time.

Given a list for each T, we now need to stitch these lists together, and here we again use the fact
that (V2, V1) is a good sampler. Whenever T1 ∩ T2 is significantly large, we will match σ1 ∈ list(T1)
with σ2 ∈ list(T2) iff σ1|T1∩T2 = σ2|T1∩T2 . Moreover, the double sampler property allows us to come
up with an expander graph whose vertex set is V2, and whose edges connect T1 to T2 when they have
significant overlap. This guarantees that for almost all edges (T1, T2) there is a matching between the
list of T1 and the list of T2.

At this point what we are looking at is a unique games instance, where the said expander is
the constraint graph, and the said matchings are the unique constraints.4 We now make two impor-
tant observations. First, a word with noticeable correlation with the received word, corresponds to
a solution for the unique games instance with very high value (i.e., satisfying a large fraction of the
constraints). Second, the algorithm of [AKK+08] will find a high-value solution, because the under-
lying unique games constraint graph is an expander! It is important to understand that a more naive
greedy belief propagation algorithm would fail miserably because it takes about log n steps to reach a
typical point in an expander graph, and this accumulate an intolerable ε · log n� 1 amount of error.

We are almost done, it remains to run the unique decoding algorithm of C on each unique games
solution, to remove any small errors, and this completes the list decoding.

The above high level description gives the rough idea for our algorithm, but the implementation
brings up some subtle difficulties, which we explain below.

Every set T induces a constant size “local view” C|T on the code C, which has no reason to be
an error correcting code, and in particular has no distance. This makes the task of finding a short
list(T) more difficult, since there could be several valid candidates σ ∈ {0, 1}T that are very close in
Hamming distance. Suppose σ, σ′ ∈ list(T1) differ only in a single bit, then for most T2 ∩ T1, we don’t
know which element in list(T2) should be matched to σ and which to σ′.

In order to solve this difficulty, we prune each list(T) and enforce minimal distance r between
each two list items. The pruning should also promise a “covering” property - that if σ was in the
initial list, then exists some σ′ ≈ σ (where ≈ is with relation to r) in the final list.

For any predetermined distance parameter r, one can come up with counterexamples showing
that this is impossible. Our solution is to let the pruning algorithm choose r dynamically. The algo-
rithm starts with an initial distance r, and gradually increases it till it reaches a radius at which both
the distance and covering properties holds together (this is done in Section 4).

Given T1, T2 with list(T1), list(T2) and the same radius r, we match σ1 ∈ list(T1) to σ2 ∈ list(T2)
if they are close (with respect to r) on T1 ∩ T2. If however T1, T2 have different radii, we don’t know
how to match these lists correctly. Therefore, our unique games instance is created on a subgraph
containing only those vertices T that share the same (most popular) radius r. We show that there
exists such a subgraph which is itself an expander.

1.2 Double Samplers and High dimensional expanders

Let us briefly explain how double samplers are constructed from high dimensional expanders (prov-
ing Theorem 1.1). A high dimensional expander is a d-dimensional simplicial complex X, which is
just a hypergraph with hyperedges of size ≤ d + 1 and a closure property: for every hyperedge in

4For definitions, please see the preliminary section.
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the hypergraph, all of its subsets are also hyperedges in the hypergraph. The hyperedges with i + 1
elements are denoted X(i), and the complex is said to be an expander if certain spectral conditions
are obeyed, see Section 6.

In [DK17] the authors prove that a (two-sided spectral) high dimensional expander gives rise to
a multi-partite graph with interesting spectral expansion properties. The graph has vertices X(d) ∪
X(d − 1) ∪ . . . ∪ X(0), and we place edges for inclusion. Namely, S ∈ X(m1) is connected by an
edge to T ∈ X(m2) if S ⊂ T. It is shown that the graph induced by focusing on layers i and j
has λ(G(X(i), X(j))) ≤ i+1

j+1 + o(1). We show, in Section 6, that by narrowing our focus to three
layers in this graph (namely, X(m2 − 1), X(m1 − 1), X(0)) we get a double sampler. This is proven
by observing that the spectral properties are strong enough to yield a sampler (an expander mixing
lemma argument suffices since we are only seeking relatively weak sampling properties).

Better double samplers? Double samplers with super-linear (polynomial and even exponential)
size have appeared implicitly (or somewhat similarly as “intersection codes”) in the works of [IKW12,
IJKW10]. Two concrete constructions were studied,

• The first where Vi = (V
mi
), so |Vi| ≈ nmi .

• The second where V is identified with a vector space over some finite field and then Vi consists
of all di-dimensional subspaces of V. Here |Vi| ≈ ndi .

The current work is the first to construct double samplers with linear size. This raises the question
of finding the best possible parameters for these objects. In particular, for given sampler parameters
α and δ, how small can |V1|/|V0| be?

Our current construction is based on Ramanujan complexes of [LSV05] that are optimal with re-
spect to the spectrum of certain Laplacian operators, and not necessarily with respect to obtaining
best possible double samplers. It is an interesting challenge to meet and possibly improve upon these
parameters through other constructions.

Unlike other pseudorandom objects, there is no known random construction of a double sampler.
In particular, we cannot use it as a yardstick for the quality of our parameters. It remains to explore
what possible parametric limitations there are for these objects.

We believe that double samplers capture a powerful feature of high dimensional expanders whose
potential for TCS merits more study. Previously, in [DK17], it was shown that high dimensional
expanders give rise to a very efficient de-randomization of the direct product code that is nevertheless
still testable. Part of the contribution of the current work is a demonstration of the utility of these
objects in a new context, namely of list decoding.

1.3 Derandomized Direct Product and Approximate List Decoding

Our list decoding algorithm can also be viewed in the context of decoding derandomized direct prod-
ucts. The direct product encoding takes g ∈ {0, 1}N and encodes it into Enc(g) = (g|S)S∈S where
S = ([N]

k ) contains all possible k-subsets of [N]. An encoding with |S| � (N
k ), as in this paper, is

called a derandomized direct product encoding.
Direct products and derandomized direct products are important in several contexts, primarily

for hardness amplification. One begins with a string g ∈ {0, 1}N that is viewed as a truth table of a
function g : {0, 1}n → {0, 1} (here N = 2n), and analyzes the hardness of the new function defined
by Enc(g). A typical hardness amplification argument proceeds by showing that if no algorithm (in
a certain complexity class) computes g on more than 1− ε0 of its inputs, then no algorithm computes
Enc(g) on more than ε of its inputs. Namely, Enc(g) is much harder than g.

Such a statement is proven, as first described in [Tre05, Imp03], through a (list-) decoding ar-
gument: given a hypothetical algorithm that computes Enc(g) successfully on at least ε fraction of
inputs, the approximate list decoder computes g on (1− ε0) of its inputs. We prove,
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Theorem 1.3 (Approximate list decoding - informal). Let ε0, ε > 0 be constants. Suppose X =
(V2, V1, [N]) is a double sampler (with parameters depending on ε0, ε). Let EncX be the encoding
that takes g ∈ {0, 1}N to EncX(g) = (g|S)S∈V1 . There is an algorithm (running in time poly(N))
that when given a word ( fS)S∈V1 that is ε-correlated with EncX(g) for some g ∈ {0, 1}N , namely,
PrS∈V1 [ fS = g|s] > ε, finds g′ ∈ {0, 1}N such that dist(g′, g) ≤ ε0.

This theorem differs from Theorem 1.2 only in that g does not come from any initial error cor-
recting code C ⊂ {0, 1}N . This is why we can only provide an approximate answer g′ instead of
g.

Our list decoding result falls short of being useful for hardness amplification, because it is not local
or efficient enough. We leave it as an open question whether a more efficient and local list decoding
algorithm exists for these codes.

There is a significant technical hurdle that one faces, related to the diameter of the bipartite graph
corresponding to (V1, V0). In the local list decoding constructions analyzed in [IKW12, IJKW10] (both
derandomized and non-derandomized), the diameter is O(1), and this is crucially used in the list
decoding algorithm.

When we move to a linear size derandomized direct product encoding, as we do in this work, we
pay by enlarging the diameter to become super-constant. This is what makes the approximate list
decoding algorithm performed in our work much more challenging (even in the non-local setting),
and the algorithm more complicated than the analogous task performed by [IKW12, IJKW10].

1.4 Future directions

The construction in this paper starts with a binary code and constructs a code over a larger alphabet
that has efficient list decoding. The larger alphabet size arises because we use a derandomized direct
product, i.e., each vertex S ∈ V1 collects the bit symbols from all indices i ∈ S. It is natural to consider
the direct sum operation, where for each S ∈ V1 we output a single bit that is the sum (over F2) of all
values in the direct sum. A recent example of such a code is the recent construction in [Ta-17]. This
code achieves close to optimal rate (and this is made possible because the direct product operator is
replaced with a direct sum) and has explicit encoding (the sampler it uses is a variant of the sampler
that is obtained through random walks on good expanders). One obvious shortcoming of the code of
[Ta-17] is that while it has efficient encoding, it is not known how to efficiently decode (or list decode)
it. It is still a major open problem to find a binary code with distance close to half, close to optimal
rate (as in [Ta-17]) and efficient encoding and decoding.

It is possible that the results in this paper might help with finding such a code:

• First, while the result in this paper uses direct product, it is conceivable that with a refinement
of the double sampler notion one might do with direct sum. This is true, e.g., in a situation
where for each T ∈ V2, the values fS for S ∈ V1,S ⊂ T (and notice that now fS ∈ {0, 1}) define a
code, or even, an approximately list decodable code. This property is different from the locality
property we require from our double samplers, but is close in spirit to it.

• Then, having that, one needs to improve the parameters of the algorithms presented in the
paper, and also find appropriate ”double samplers” (with the stronger property we require). It
is not known whether such objects exist, and even for double samplers it is not clear what the
best possible parameters are. This question is quite intriguing as we cannot compare our desired
explicit object to non-explicit random objects, simply because here random objects are no good.

Thus, while this approach seems right now technichally challenging, and it is not even clear
parameter-wise (or non-explicitly) whether it is possible, we believe it opens up a new, and excit-
ing, research agenda that we hope will eventually lead to near-optimal binary codes that have both
explicit encoding and decoding.
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2 Preliminaries and Notations

2.1 Weighted graphs and expanders

Definition 2.1. (Weighted graph) We say that (G, w) is a weighted graph if G = (V, E) is an undi-
rected graph, and w : E → R≥0 is a weight function that associates with each edge e a non-negative
weight we. We have the convention that non-edges have zero weight. Given the edge weights we the
weight wv of a vertex is defined as wv := ∑e:v∈e we. The edge weights induce a distribution on edges
(and vertices) which we denote by µG.

Definition 2.2. (Edge expansion) Let (G = (V, E), w) be a weighted graph. The edge expansion of G
is

hG := min
V′⊂V,µ(V′)≤ 1

2

µ(E(V′, V \V′))
µ(V′)

,

where E(A, B) denotes the set of edges between A and B.

Definition 2.3. For every weighted graph G, let the normalized adjacency matrix A be defined as
Au,v = wu,v√

wuwv
. Let λ(G) be the second largest eigenvalue (in absolute value) of A.

2.2 Samplers

Definition 2.4. (Weights on k-partite graphs) Let G = (Vk, . . . , V1, E) be a k-partite graph and let W
be a distribution over Vk. Define a joint distribution Π whose values are k-partite paths (vk, . . . , v1) ∈
Vk × · · · ×V1 chosen by sampling vk ∈ Vk according to W, then choosing a random neighbor vk−1 ∈
Vk−1 of vk and so forth. We denote by Πi the i-th coordinate of Π.

We will say that v1 ∼ (Π1|Π2 = v2) to mean that v1 is a random neighbor (in V1) of v2.

Definition 2.5. (Sampler) Let G = (V2, V1, E) be a bipartite graph with a distribution W on V2. We
say (G, W) is an (α, δ) sampler, if the following holds for every f : V1 → [0, 1],

Pr
v2∼Π2

[∣∣∣∣ E
v1∼(Π1|Π2=v2)

[ f (v1)]− E
v1∼Π1

[ f (v1)]

∣∣∣∣ ≥ α

]
≤ δ.

Definition 2.6 (Two-step walk graph). Let (G = (V2, V1, E, W) be a bipartite graph with distribution
W on V2. The two-step walk of G is the weighted graph (G2 = (V2, E), {we}) whose edge weights are
given by selecting S ∼ Π1 and then two independent copies T1, T2 ∼ (Π2|Π1 = S). More explicitly

∀e = (u1, u2), we = ∑
S∈V1

Π1(S) Pr
T1,T2∼(Π2|Π1=S)

[T1 = u1 ∧ T2 = u2].

The following simple fact is important,

Fact 2.7. If we choose a random edge in G2, and a random vertex T in it, then T is distributed accord-
ing to Π2.

Theorem 2.8 (Every sampler contains an induced expander). Let α, β, δ ∈ (0, 1) be such that α, δ <
β2

100 . Let (Gsamp = (V2, V1, Es), WS) be an (α, δ) sampler. Let (G = (V2, E), W) be the two-step walk
graph of Gsamp. Let A ⊆ V2 be any set with µG(A) ≥ β. Then there exists a set B ⊆ A such that:

• µG(B) ≥ β
4 .

• Let GB be the induced graph of G on B. λ(GB) ≤ 99
100 .

Furthermore, given A, such a set B can be found in time polynomial in |V|.

The theorem is proven in Appendix A.
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Figure 1: double sampler

2.3 Double Samplers

Definition 2.9. (Inclusion graph) An inclusion graph X = (V2, V1, V0) with cardinalities m2 > m1 > 0
is a tri-partite graph with vertices V = V2 ∪V1 ∪V0 where Vi ⊆ (V0

mi
) for every i > 0 and (a, b) ∈ E iff

a ⊆ b.

Given an inclusion graph X = (V2, V1, V0) and distribution W over V2, recall from Definition 2.4
that W induces a distribution Π over paths (v2, v1, v0) whose components are Π2 = W, Π1 and Π0.

Definition 2.10 (Double Sampler). Let X be an inclusion graph with a distribution W over V2, let
X(Vi, Vi+1) be the bipartite graph between Vi, Vi+1.

We say that (X, W) is a ((α2,1, δ2,1), (α1,0, δ1,0), (αlocal , δlocal)) double sampler, if

1. (X(V2, V1), Π2) is a (α2,1, δ2,1) sampler.

2. (X(V1, V0), Π1) is a (α1,0, δ1,0) sampler.

3. For every T ∈ V2, we define the weighted bipartite graph

(X|T = (U, T, E) , WT)

where U = {S ∈ V1 | S ⊆ T} and (S, i) ∈ E for S ∈ U and i ∈ T iff i ∈ S, and WT = (Π1|Π2 =
T). We require that (X|T , WT) is a (αlocal , δlocal) sampler.

Furthermore, X is called regular if Π0 is uniform over V0 and for each T, (Π0|Π2 = T) is uniform over
T.

Note that the distribution (Π1|Π2 = T) on U is by definition the uniform distribution on U.
We remark that items 1 and 3 already imply item 2 in the definition with α1,0 = α2,1 + αlocal , δ1,0 =

δ2,1 + δlocal . In fact, our use of double samplers relies only on items 1 and 3.
Short of being uniform, we formulate a “flatness” property of the distributions Π1, Π2 involved

in the double sampler,

Definition 2.11. A distribution Π over V is said to be D-flat for an integer D ∈ N if there is some R
such that Π(v) ∈ { 1

R , 2
R , . . . , D

R } for each v ∈ V.

This property will allow us to treat the distribution as uniform by duplicating each element at
most D times.
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2.4 Double Samplers Exist

We prove, in Section 6, that linear size double samplers are implied by the existence of high dimen-
sional expanders.

Theorem 2.12. For every α2,1, δ2,1, α1,0, δ1,0, αlocal , δlocal > 0 there exist D, m2, m2 ∈ N and a family of
explicitly constructible double samplers (Xn, Wn) for infinitely many n ∈N such that

• Xn is an inclusion graph (V2, V1, V0) where |V0| = n, Vi ⊆ (V0
mi
) for i = 1, 2, with distribution Wn

over V2(Xn).

• Xn is a regular ((α2,1, δ2,1), (α1,0, δ1,0), (αlocal , δlocal)) double sampler.

• |V1|, |V2| ≤ D · n. The distributions Π1, Π2 are D-flat.

2.5 UG Constraint Graphs

Definition 2.13. (UG constraint graph) Let G = (V, E, w) be a weighted graph. We say (G, {πe}e∈E)
is a UG constraint graph with ` labels if πe : [`]→ [`] is a permutation. We say a is an assignment for
G if a : V → [`]. We say the assignment a satisfies an edge e = (u, v) if πe(a(u)) = a(v). The value
of an assignment is the fraction of satisfied edges. We say (G, {πe}) is p-satisfiable if there exists an
assignment with value at least p.

Arora et. al. [AKK+08] showed how to solve unique games instances on expander graphs in
polynomial time. This result was improved by Makarychev and Makarychev [MM10], who proved,

Theorem 2.14 ([MM10, Theorem 10]). Let G be a regular graph with second smallest Lapacian eigen-
value λG and edge expansion hG. There exist positive absolute constants c and C and a polynomial
time approximation algorithm that given a 1− δ satisfiable instance of UG on G with δ

λG
≤ c, the

algorithm finds a solution of value 1− C δ
hG

.

We need a version of this theorem with two modifications:

• The theorem, as stated, refers to unweighted, regular graphs. We need the same results for non
regular weighted graphs.

• The theorem finds one assignment with high value. However, we need to get an approximation
to all assignments with high value.

In the appendix we go over [AKK+08, MM10] and show that the same result holds for weighted,
non-regular graphs (see Appendix B.2). We also show how to output a list that contains an approxi-
mation to all assignments with high value. To do that we rerun the algorithm of Theorem B.4 several
times, each time peeling off the solution that is found (see Appendix B.1). We prove:

Theorem 2.15. Let (G = (V, E, w), {πe}) be a weighted undirected UG constraint graph with labels
[`] such that λ(G) ≤ 99

100 . There exits an absolute constant c and a polynomial time algorithm that
outputs a list L of assignments such that for every assignment a : V → [`] with value 1− η there
exists an assignment b ∈ L which satisfies µ({v : a(v) = b(v)}) ≥ 1− ηc`.

2.6 Miscellaneous notation

Definition 2.16. Let σ, σ′ ∈ {0, 1}n, and let S ⊆ n, then

distS(σ, σ′) =
1
|S|
∣∣{i ∈ S

∣∣ σi 6= σ′i
}∣∣ .

In the case of S = [n], we omit the subscript S.

9



3 The main theorem: encoding, list decoding and correctness proof

In this section we describe how to transform any uniquely decodable code to a list-decodable code,
using double samplers. We begin by describing the new list decodable code through its encoding
algorithm (Section 3.1). We then describe the list decoding algorithm (Section 3.2), and finally prove
the correctness in Section 3.3.

3.1 The encoding

Let C be an [|V0|, k]2 linear binary code. Let (X = (V2, V1, V0), W) be a regular double sampler as in
Theorem 2.12 with |V0| = n, and parameters as follows: ((α2,1 = ε2

010−5, δ2,1 = ε0
200 c−

8
ε ), (αlocal =

ε0
20 10−

8
ε , δlocal =

ε0
200 c−

8
ε )) such that m2 > 1

αlocal
, for c an absolute constant. We assume that Π1 is D-flat

for a parameter D that depends exponentially on poly(1/α + 1/δ) (where α is the smallest of the α’s
and δ is the smallest of the δ’s).

As explained in the introduction, we wish to encode g ∈ {0, 1}V0 by (g|S)S∈V1 . The double sampler
assigns the set V1 a probability distribution Π1. If Π1 is not uniform, we view V1 as a multiset that
has multiple copies of each S to account for the different probabilities. Choosing S uniformly in the
multiset V1 is identical to choosing S ∼ Π1. The fact that Π1 is D-flat guarantees that each S needs to
be repeated at most D times. From now on we view V1 as a multiset and let |V1| denote the number
of elements in V1 counted with multiplicity.

Denote Σ = {0, 1}m1 . We define the encoding

ENC : {0, 1}|V0| → Σ|V1|

Given g : V0 → {0, 1} we let Enc(g) : V1 → Σ be defined by

∀S ∈ V1, (Enc(g))(S) = g|S.

We let ENC ◦ C be the code {Enc(g) | g ∈ C}.
The encoding is essentially the same as [ABN+92], with weights on the sampler graph. We remark

that the construction also works with any non-linear code C, in which case the resulting code is also
not (necessarily) linear.

Theorem 3.1. Let ε0, ε be constants, and let X be a ((α2,1 = ε2
010−5, δ2,1 = ε0

200 c−
8
ε ), (αlocal =

ε0
20 10−

8
ε , δlocal =

ε0
200 c−

8
ε )) double sampler, with m2 > 1

αlocal
, D ≤ exp(exp(1/ε)), |V1| = |V2| ≤ D · |V0|, and c an abso-

lute constant.
Suppose C is a [|V0|, k]2 code with an efficient unique-decoding from ε0 |V0| errors. Then ENC ◦

C is an [|V1|, k]Σ code with an efficient (ε, ` = 8
ε ) list decoding algorithm, meaning there exist a

poly(|V0|) time algorithm, which on input w it returns all codewords in ENC ◦ C at distance ε from
w.

3.2 The list decoding algorithm

The input to the list decoding algorithm is a received word y : V1 → Σ which we interpret as ( fS)S∈V1

by setting fS = y(S)5. We are promised that there is some g : V0 → {0, 1} so that PrS[ fS = g|S] ≥ ε.

1. Approximate List Decoding of Local Views

5A subtle point is that if S is repeated several times in V1, then y(S) can take several possibly different values, per each
repetition of S. In this case fS will consist not of a single “deterministic” value in {0, 1}S but rather a distribution over the
different values. For clarity of presentation we will ignore this issue and treat fS as if it were concentrated on one value for
each S. The reader can check that our voting scheme works just as well if fS were a distribution over values.
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For every T ∈ V2 we construct a list LT of size O( 1
ε ) of well-separated elements such that every

g that has ε agreement with ( fS)S∈V1 on (Π1|Π2 = T) is very close to one of the elements in the
list. More precisely,

Lemma 1. Let ρ = ε0
2 10−

8
ε ≥ 0. There exists a decoding algorithm that given T ∈ V2 returns a

list LT ⊂ {0, 1}T of size at most ` = 8
ε and a radius rT ∈ {ρ · 10i}i≤ 8

ε
, such that:

• If g : T → {0, 1} is such that PrS∼(Π1|Π2=T)[ fS = g|S] ≥ ε
2 then there exits σ ∈ LT such that

distT(σ, g) ≤ rT
9

.

• For every σ, σ′ ∈ LT , distT(σ, σ′) ≥ rT .

We prove the lemma in Section 4. We let V(i)
2 be the set of all T ∈ V2 with rT = ρ10i.

2. Creating a UG Constraint Graph

• We define the graph GC = (VC = V2, EC, w), to be the two step walk of the weighted
bipartite graph (X(V2, V1), Π2) (see Definition 2.6).

• We label every vertex with labels from [`].

• For every e = (T1, T2) ∈ EC we define a constraint permutation πe as follows. Suppose
LT1 = σ1, . . . σ` and LT2 = τ1 . . . τ`. We choose S ∈ V2 according the distribution (S|T1 =
T1, T2 = T2). We go over i ∈ [`]: if there exists an unmatched τj ∈ LT2 such that

distS(σi, τj) ≤
rT1

2
,

we set π(i) = j. At the end, for every unmatched i ∈ [`] we set π(i) to an arbitrary
unmatched label.

3. Finding a large expanding UG constraint subgraph

For every 0 ≤ i ≤ 8
ε such that µG(V

(i)
2 ) ≥ 10 min{√α2,1,

√
δ2,1} let G(i)

C be the induced subgraph

of G on V(i)
2 . By Theorem 2.8 we can find Vi ⊂ V(i)

2 such that:

• PrT∼Π2 [T ∈ Vi] ≥ 1
4 PrT∼Π2 [T ∈ V(i)

2 ].

• Denote by Gi the induced subgraph of GC on Vi. Then, λ(Gi) ≤ 99
100 .

4. Solving the Unique Constraints

For every i as above, we apply Theorem 2.15 on Gi and get a list L of assignments. For each
assignment a : V(i)

2 → [`] in the list L we define w ∈ {0, 1}V0 by doing: for every j ∈ V0 we pick
T ∼ (Π2|Π0 = j) and let wj = a(T)|j. We run the unique decoding algorithm of the code C on
w and output its result.

The algorithm we described is randomized, but it can easily be derandomized since the random
choices are local and we can enumerate over them in parallel. For example, in the step of constructing
the constraint graph, each constraint is constructed randomly, but these random choices can clearly
be enumerated over in parallel for all constraints.

11



3.3 Proof of correctness

Proof. (of Theorem 3.1) Let y be the given input, such that the interpretation of y as ( fS)S∈V1 has ε
agreement with some codeword of ENC ◦ C, i.e., there exists a function g : V0 → {0, 1} such that

Pr
S∼Π1

[ fS = g|S] ≥ ε.

For each T, let LT be the list from Item 1 of the decoding algorithm, and rT the radius. The list and
radius satisfy the conclusion of Lemma 1 above.

Let GC = (VC, EC, w = {we}e∈EC ) be the constraint graph described in Item 2 of the decoding

algorithm, with the edge constraints πe : [`]→ [`] for every e ∈ EC. Recall that V(1)
2 , V(2)

2 , . . . V( 8
ε )

2 is a
partition of V2 = VC according to the list radius rT .

Definition 3.2. A constraint πe for e = (T1, T2) ∈ EC is correct with respect to g if there exist σi ∈ LT1
and σj ∈ LT2 such that:

• distT1(σi, g) ≤ rT1
9 .

• distT2(σj, g) ≤ rT2
9 .

• πe(i) = j.

In Section 5 we prove:

Lemma 2. With high probability (exp(−n)) there exists a 0 ≤ i ≤ 8
ε such that the graph G(i)

C satisfies

• µGC (V
(i)
2 ) ≥ ε

16 .

• Pr(T1,T2)∼w[π(T1,T2)
is correct with respect to g|T1, T2 ∈ V(i)

2 ] ≥ 1− 10(δ1,2 + `δlocal).

By Theorem 2.8, there exists a subset Vi ⊂ V(i)
2 such that µGC (Vi) ≥ ε

64 , and λ(G(Vi)) ≥ 99
100 (in-

deed the conditions for applying the theorem hold by our choice of parameters, ε
16 ≥ 10 min{√α2,1,

√
δ2,1}).

Furthermore, since µGC (Vi) ≥ 1
4 µGC (V

(i)
2 ), the probability of an incorrect edge increases at most 4-

fold:

Pr[π(T1,T2)
is not correct|T1, T2 ∈ Vi] =

Pr[π(T1,T2)
is not correct|T1, T2 ∈ V(i)

2 ]

Pr[T1, T2 ∈ Vi | T1, T2 ∈ V(i)
2 ]

≤ 4 · (10(δ1,2 + `δlocal)) ,

where correct means correct with respect to g.
Applying the UG algorithm (Theorem 2.15) on the graph Gi, the graph induced by Vi, we receive

a list of assignments. Theorem 2.15 guarantees that there exists an assignment a in the list such that

Pr
T∼Π2

[distT(a(T), g) ≤ rT
9
] ≥ 1− c`40(δ1,2 + `δlocal).

Recall our definition of w in Item 4 of the list decoding algorithm. It follows that Prj∼Π0, T∼(Π2|Π0=j)[wj 6=
g(j)] ≤ rT

9 + c`40(δ1,2 + `δlocal) ≤ ε0
2 . Hence, with high probability (at least half for sure), dist(w, g) ≤

ε0 and we output g. If we repeat the process t times independently,the probability that we fail reduces
to 2−t.

The proof makes it clear that our algorithm in fact first finds an approximate list decoding, as
claimed in Theorem 1.3, and then runs the decoder for C as a black box to yield the list-decoding as
claimed in Theorem 1.2, (and more precisely in Theorem 3.1).
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4 Approximate list decoding local views

We are given ( fS)S∈V1 . For every T ∈ V2 we return a short list LT of size O( 1
ε ) of well-separated

elements such that any g that has ε agreement with ( fS)S∈V1 on (Π1|Π2 = T) is very close to one of
the elements in the list. More precisely,

We repeat Lemma 1 and prove it.

Lemma 1. Let ρ ≥ 0. There exists a decoding algorithm that given T ∈ V2 returns a list LT ⊂ {0, 1}T

of size at most ` = 8
ε and a radius rT ∈ {ρ · 10i}i≤ 8

ε
, such that:

• If g : T → {0, 1} is such that PrS∼(Π1|Π2=T)[ fS = g|S] ≥ ε
2 then there exits σ ∈ LT such that

distT(σ, g) ≤ rT
9

.

• For every σ, σ′ ∈ LT , distT(σ, σ′) ≥ rT .

4.1 The approximate list decoding algorithm

We are given as input T ∈ V2 and ρ. We remind the reader that V2 ⊆ (V0
m2
) and V1 ⊆ (V0

m1
).

Set an initial set : For every σ ∈ {0, 1}T insert σ to L0 if PrS∼(Π1|Π2=T)[ fS = σ|S] ≥ ε
2 .

Pruning : Set i = 0, ri = ρ. Repeat:

1. Say v1, v2 ∈ Li are independent if distT(v1, v2) ≥ ri. Find a maximal independent set Li+1.

2. If Li = Li−1 quit the loop and output Li, ri.

3. Set ri+1 = 10ri, i = i + 1 and repeat the loop.

4.2 Bounding the list size

Lemma 3. |L1| ≤ 8
ε .

Proof. We look at the weighted bipartite graph X|T as defined in Definition 2.10. By our assumption
on the double sampler (X, Π2) we know that the graph (X|T = (U, T, E), WT) is an (αlocal , δlocal)
sampler.

Denote `1 = |L1|.
Claim 4.1. For every σ 6= σ′ ∈ L1,

Pr
S∼(Π1|Π2=T)

[ fS = σ|S = σ′|S] ≤ δlocal .

Proof.

• Let B ⊆ T be B =
{

i ∈ T
∣∣ σi 6= σ′i

}
. Recall that WT induces a uniform distribution on T (this is

because (X, W) is regular, see Definition 2.10). Therefore, after the first pruning step,

Pr
i∼(Π0|Π2=T)

[i ∈ B] = Pr
i∈T

[i ∈ B] ≥ distT(σ, σ′) ≥ ρ.

• Let A ⊆ U be all sets S such that fS = σ|S = σ′|S.
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By definition, for every S ∈ A, S ∩ B = ∅. Since G is a (αlocal , δlocal) sampler and αlocal < ρ,

Pr
S∼(Π1|Π2=T)

[S ∈ A] ≤ δlocal .

Now, for every L̂1 ⊆ L1 of size ` ≤ `1,

1 ≥ Pr
S∼(Π1|Π2=T)

[∃σ ∈ L̂1 s.t fS = σ|S]

≥ ∑
σ∈L̂1

Pr
S∼(Π1|Π2=T)

[ fS = σ|S]− ∑
σ 6=σ′∈L̂1

Pr
S∼(Π1|Π2=T)

[ fS = σ|S = σ′|S] (using Claim 4.1)

≥` ε

2
− `2 δlocal

2
.

Thus, `2 δlocal
2 − ` ε

2 + 1 ≥ 0 for all 0 ≤ ` ≤ `1. Looking at the parabola `2
1

δlocal
2 − `1

ε
2 + 1 has

discriminant ε4

4 − 2δlocal and therefore two real intersections with 0 (because δlocal <
ε2

8 ), say z0 < z1.

As `2 δlocal
2 − ` ε

2 + 1 ≥ 0 for all 0 ≤ ` ≤ `1 we must have `1 ≤ z0 = 1
2δlocal

(
ε
2 −

√
ε2

4 − 2δlocal

)
≤ 8

ε .

This establishes that L1 is short, but it might not yet be well-separated, which is the reason for the
loop in the pruning step.

4.3 The closeness property

We next show that after all the pruning, the list still contains an element approximating any string
with large initial support.

Claim 4.2. Let L be the list output by the algorithm and let r be the radius. For every σ′ ∈ {0, 1}T such
that PrS∼(Π1|Π2T )[ fS = σ′|S] ≥

ε
2 there exists σ ∈ L such that distT(σ, σ′) ≤ r

9 .

Proof. Fix any σ′ ∈ {0, 1}T such that PrS∼(Π1|Π2T )[ fS = σ′|S] ≥
ε
2 . Let L0 be the initial list of the

algorithm. By definition of L0 we have that σ′ ∈ L0. Suppose we run the pruning algorithm K steps,
then L0 is the initial set, LK = L the final set, and LK ( LK−1 ( L0. In particular K ≤ |L1| ≤ 8

ε .
Let σ0 = σ′ ∈ L0. Let σ1 ∈ L1 be the element closest to σ0. We know that distT(σ0, σ1) < r1.

Similarity, let σi ∈ Li be the element closest to σi−1 ∈ Li−1. We know that distT(σi−1, σi) < ri. Now,

distT(σ
′, σK) = distT(σ0, σK) ≤

K

∑
i=1

distT(σi−1, σi) ≤
K

∑
i=1

ri = rK

K

∑
i=1

10i−K−1 ≤ rK
9

.

4.4 Proof of Lemma 1

It is clear from the algorithm description that when the algorithm terminates the distance between
every two elements in L is at least rK = r. We saw that there exists some σK ∈ LK such that
dist(σ′, σK) ≤ rK

9 . Also, |LK| ≤ |L1| ≤ 8
ε , and K ≤ |L1| so rK ≤ ρ · 108/ε.
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5 Creating the Constraint Graph

5.1 The setting

Let (X = (V2, V1, V0), W) be the double sampler used for encoding. Recall that W defines a distribu-
tion Π over paths of (x, S, T) s.t x ∈ V0, S ∈ V1, T ∈ V2 in X. For each vertex T ∈ V2 there is a short
list LT of cardinality exactly ` (if the list is shorter just add dummy strings that obey the distance
requirements) and a radius rT . We now describe a randomized algorithm that outputs a constraint
graph.

The graph : The graph is the two-step walk graph obtained from X(V2, V1) as per Definition 2.6
(the vertices are V2 and the edges correspond to choosing a random S ∼ Π1 and then T1, T2
independently from the distribution (Π2|Π1 = S).) We call this graph GC = (VC = V2, EC).

The labels : For every T, the label set is LT (note that |LT | = `).

The constraints : We let the (correlated) random variables T1,S , T2 be defined by sampling S accord-
ing to Π1, and then sampling T1, T2 independently from (Π2|Π1 = S).

Given an edge (T1, T2) ∈ EC chose a random subset S ⊂ T1 ∩ T2 according to the distribution
(S | T1 = T1, T2 = T2).

1. For every σ ∈ LT1 if there is an unmatched σ′ ∈ LT2 such that

distS(σ, σ′) ≤
rT1

2
,

then set π(σ) = σ′.

2. For every unmatched σ ∈ LT , set π(σ) to an arbitrary unmatched label.

Observe that we always output unique constraints, because we only set π(σ) to an unmatched
label.

Fix g : V0 → {0, 1} such that PrS∼Π1 [ fS = g|S] ≥ ε. In this section we prove Lemma 2, restated
bellow. To simplify the notations, in this section “correct” always means correct with respect to the
fixed function g.

Definition 5.1 (Correct list index). For T ∈ V2. Let C(T) be the element in LT closest to g|T . Ties are
broken arbitrarily. We say π is correct on e = (T1, T2) ∈ E if distT1(C(T1), g) ≤ rT1

9 , distT2(C(T2), g) ≤
rT1
9 and πe(C(T1)) = C(T2).

Lemma 4 (Lemma 2 restated). Let GC be the constraint graph as above. Then with high probability
(over the randomness of the algorithm) there exists i ∈ {1, . . . 8

ε}, such that

• G(i)
C is large: Prv∼Π2 [v ∈ V(i)

C ] ≥ ε
16 .

• Almost all edges in G(i)
C are correct: Pr(T1,T2)

[π(T1,T2)
is correct|T1, T2 ∈ V(i)

C ] ≥ 1− 10δ1,2 −
10`δlocal , where (T1, T2) is a random edge selected according to the edge weights.

Recall that we partitioned the vertices according to their radius and defined V(i)
C = {T ∈ VC | rT =

ρ10i}, and G(i)
C = (V(i)

C , E(i)
C ) the induced subgraph of GC on V(i)

C .

Definition 5.2. A vertex T ∈ V2 is good if there exists σ ∈ LT such that distT(g, σ) ≤ rT
9 .

Claim 5.3. PrT∼Π2 [T is good] ≥ 1− δ1,2.
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Proof. We look at the bipartite graph G = (V2, V1, E). Let

B = {S ∈ V1 | fS = gS},

A = {T ∈ V2 | Pr
S∼(S|T1=T)

[S ∈ B] <
ε

2
}.

By assumption PrS∼Π1 [S ∈ B] ≥ ε. As (G(V2, V1), (Π2, Π1)) is a ( ε
2 , δ1,2) sampler, PrT∼Π2 [T ∈

A] ≤ δ1,2. For any T 6∈ A, by Lemma 1 there exists some σ ∈ LT such that distT(σ, g) ≤ rT
9 .

5.2 Good edges in the bipartite graph G(V2, V1)

Definition 5.4. Let S ⊆ T with S ∈ V1, T ∈ V2. Suppose LT , rT are the list and radius of T, and let
σ = C(T). We say that the edge (S, T) is good if

distT(σ, g) ≤ rT
9

, (1)

distS(σ, g) ≤ rT
4

, (2)

∀σ′ 6= σ distS(σ
′, g) >

3
4

rT . (3)

Notice that the edges (T, S) are edges in the sampler graph G(V2, V1) and not in the constraint
graph GC.

Claim 5.5.
Pr

(T,S)∼(Π2,Π1)
[(T, S) is good] ≥ 1− δ1,2 − `δlocal .

Proof. First we show that for a good vertex T ∈ V2, almost all edges (S, T) are good. Fix a good T,
and denote σ = C(T), since T is good requirement (1) holds, i.e. distT(σ1, g) ≤ rT

9 .
Let X|T = (U, T, E) be the weighted bipartite graph defined in Definition 2.10. Define B ⊆ T and

A ⊆ U by:

B = {i ∈ T | σi 6= gi} .

A =

{
S ∈ U

∣∣∣∣ Pr
i∈S

[i ∈ B] >
rT
4

}
.

Since T is good,

Pr
i∼(Π0|Π2=T)

[i ∈ B] = Pr
i∈T

[i ∈ B] ≤ rT
9

,

where the equality is because X is regular. Since G is a ( ρ
9 , δlocal) sampler and rT ≥ ρ, we conclude

that PrS∼(Π1|Π2=T)[S ∈ A] ≤ δlocal . For any S /∈ A, the edge (S, T) satisfies (2).
For (3), for every σ′ ∈ LT , σ′ 6= σ we define Bσ′ ⊆ T and Aσ′ ⊆ U:

Bσ′ =
{

i ∈ T
∣∣ (σj)i 6= gi

}
Aσ′ =

{
S ∈ U

∣∣∣∣ Pr
i∈S

[i ∈ Bj] ≤
3rT
4

}
.

From Lemma 1, distT(σ
′, σ) ≥ rT , which implies distT(σ

′, g) ≥ distT(σ
′, σ)− distT(σ, g) ≥ 8rT

9 .
Therefore, Pri∈T [i ∈ Bj] ≥ 8r

9 . The graph X|T is a ( ρ
9 , δlocal) sampler, so PrS∼(Π1|Π2=T)[S ∈ Aσ′] ≤

δlocal .
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For every S ⊂ T such that S /∈ Aσ′ for all σ′ ∈ LT , the edge (S, T) is good. This happens with
probability at most `δlocal .

To finish the proof, we use Claim 5.3 which proves that T ∼ Π2 is good with high probability:

Pr
(S,T)∼(Π1,Π2)

[(S, T) is good] ≥Pr
T
[T is good] Pr

(S,T)
[(S, T) is good|T is good]

≥1− δ1,2 − `δlocal .

5.3 Good edges implies correctness

Lemma 5. Suppose that the constraint for (T2, T2) is constructed by choosing S ⊂ T1∩T2. If (S, T1), (S, T2)
are both good and rT1 = rT2 , then π(T1,T2)

is correct.

Proof. Let L1 =, L2 be the lists of T1, T2 respectively, and denote r = rT1 = rT2 . To shorten the notations
let σ1 = C(T1) and σ2 = C(T2). Since (T1, S), (T2, S) are good, distT1(σ1, g) ≤ r

9 , distT2(σ2, g) ≤ r
9 .

We are left with proving that π(T1,T2)
(σ1) = σ2. The proof has two steps. First we show that the

constraint algorithm on σ1 outputs σ2 if still unmatched. Then we show that no other σ′ ∈ L1 is
matched to σ2.

• For the first step, the edges (S, T1), (S, T2) are both good, which implies for j ∈ {1, 2}: distS(σj, g) ≤
r
4 . By the triangle inequality

distS(σ1, σ2) ≤ distS(σ1, g) + distS(σ2, g) ≤ r
4
+

r
4
≤ r

2
.

Hence the constraint algorithm will match σ1 to σ2 if still unmatched.

• For the second step of the proof let σ′ ∈ L1, σ′ 6= σ1. Since (S, T2) is good, distS(σ2, g) ≤ 1
4 r.

Since (S, T1) is good, for every σ′ 6= σ1, distS(σ
′, g) > 3r

4 . It follows that

distS(σ
′, σ2) >

r
2

.

Hence σ′ cannot be matched to σ2.

5.4 The large good component

Proof of Lemma 4. For every i let

p(i) = Pr
(S,T)∼(Π1,Π2)

[(S, T) is good|T ∈ V(i)
C ].

Denote η = δ1,2 + `δlocal , by Claim 5.5,

1− η ≤ Pr
(S,T)∼(Π1,Π2)

[(S, T) is good] = ∑
i

Pr
T∼Π2

[T ∈ V(i)
C ] · p(i). (4)

Claim 5.6. There exists i ≤ 8
ε with PrT∼Π2 [T ∈ V(i)

C ] ≥ ε
16 and p(i) ≥ 1− 2η.
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Proof. Assume towards contradiction that no such i exists. Denote ` = 8
ε and for every i ∈ [`],

µ(V(i)
C ) = PrT∼Π2 [T ∈ V(i)

C ]. Let q = ∑i:µ(V(i))< 1
2`

µ(V(i)
C ). Since there are at most are ` = 8

ε distinct

V(i)
C ’s, q < 1

2 . Therefore,

∑
i∈[`]

µ(V(i)
C )p(i) = ∑

i:µ(V(i)
C )≥ 1

2`

µ(V(i))p(i) + ∑
i:µ(V(i))< 1

2`

µ(V(i))p(i)

< (1− 2η)(1− q) + q
= 1− 2η(1− q) < 1− η.

Which contradicts (4).

Now, fix i such that µ(V(i)
C ) ≥ 1

2` and p(i) ≥ 1− 2η and look at the induced graph on V(i)
C . By

union bound,

Pr
(T1,S,T2)∼(T1,S ,T2)

[(T1, S) or (T2, S) are not good|T1, T2 ∈ V(i)
C ] ≤ 4η. (5)

Together with Lemma 5, this means that in expectation, 1− 4η of the edge constraints are going
to be correct. It remains to show that the same holds with high probability. We show it by Hoeffding
inequality, because choice of S is independent for each edge and the edge distribution is rather flat.

For each edge (T1, T2) ∈ E(i)
C let I(T1,T2)

(S) be the indicator random variable to (T1, S) or (T2, S)
not being good. Denote by pT1,T2 the probability that IT1,T2(S) = 1, for S ∼ (S|T1 = T1, T2 = T2).

By (5), E(T1,T2)
[IT1,T2 ] ≤ 4η, where the expectation is on choosing a random edge in E(i)

C according
to the edge weights.

The random variables {IT1,T2} are independent (because the algorithm chooses a set S ∼ (S|T1 =
T1, T2 = T2) independently for each edge (T1, T2)).

Let w = {wT1,T2} be the distribution over picking an edge (T1, T2) ∈ E(i)
C . This distribution is

D2-flat, because the distribution Π2 over VC is D-flat. Using the Hoeffding inequality,

Pr

 ∑
(T1,T2)

wT1,T2 IT1,T2 ≥ 8η

 ≤ e
− η2

∑T1,T2
w2

T1,T2 ≤ e−
η2 |V(i)

C |
D4 ≤ e−c′n,

for a constant c′ ≤ ε
16D4 .

So with high probability, Pr(T1,S,T2)∼(T1,T2)
[(T1, T2) is correct|T1, T2 ∈ V(i)

C ] ≥ 1− 8η.

6 High Dimensional Expanders yield Double Samplers

In this section we prove Theorem 2.12, relying on high dimensional expanders.

6.1 Preliminaries: Second eigenvalue for a weighted bipartite graph

Let G = (U, V, E) be a weighted bipartite graph with edge weights {we}e∈E. We define a Markov
operator associated with a random walk in the bipartite graph (see [DK17]).

The edge weights {we}e∈E imply a marginal distribution over the vertices U and V given by
wu = ∑v∈V wu,v and wv = ∑u∈U wu,v. All expectations over the vertex sets U, V are done with respect
to these distributions defined by wu and wv. We define an inner product space on L2(U), for every
two functions f , f ′ : U → R,

〈 f , f ′〉 = E
u
[ f (u) f ′(u)] := ∑

u∈U
wu f (u) f ′(u).
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We define similar expectation and inner product space for V.
The natural linear operator corresponding to the graph G is A : L2(U) → L2(V) defined as

follows. For every f : U → R,

(A f )(v) = E
u|v

[ f (u)] = ∑
u∈U

wu,v f (u).

In matrix form, (A)u,v = wu,v
wu

. It can be verified that for every f ∈ L2(U), g ∈ L2(v):

〈A f , g〉 = ∑
u∈U,v∈V

wu,v f (u)g(v).

It holds that A1 = 1, where 1 is the vector in which all its entries equals 1. We define

λ(G) = sup
f∈RV\{0}, f⊥1

‖A f ‖
‖ f ‖ .

In the case of a non bipartite weighted graph, it is possible to define the same operators by identifying
U and V, and this coincides with the (normalized) second largest eigenvalue in absolute value.

The following is quite standard, and very similar to the proof of the expander mixing lemma, see
e.g. [DK17, Proposition 2.8].
Claim 6.1. Let f : V → [0, 1] and let g : U → [0, 1]. Then∣∣∣∣ E

uv∈E
[ f (v)g(u)]−E[ f ]E[g]

∣∣∣∣ ≤ λ
√

E[ f ]E[g].

6.2 High Dimensional Expanders

A d-dimensional complex X is a non-empty collection of sets of a ground set [n]. The sets have size at
most d+ 1. We call a set of size i + 1 an i-dimensional face (or i-face for short), and denote the collection
of all i-faces by X(i). A d-dimensional complex X is pure if every i-face is a subset of some d-face. We
will only be interested in pure complexes.

Let X be a pure d-dimensional complex. Given a probability distributionDd on its top-dimensional
faces X(d), for each i < d we define a distribution Di on the i-faces using the following experiment:
choose a top-dimensional face according to Dd, and remove d− i points at random. We can couple
all of these distributions to a random vector D = (Dd, . . . ,D−1) of which the individual distributions
are marginals.

For every i-dimensional face s ∈ X(i) for i < d − 1, consider the following weighted graph Xs
defined as follows:

• The vertices are points x /∈ s such that s ∪ {x} ∈ X(i + 1) is a face.

• The edges are pairs of points {x, y} such that s ∪ {x, y} ∈ X(i + 1) is a face. (Since the complex
is pure, x and y are vertices.)

• The weight of the edge {x, y} is

ws(x, y) := Pr
t∼Di+1

[t = (s ∪ {x, y}) | t ⊃ s].

Note that the weights define a probability distribution ws on the edges. We denote the marginal of ws
on its first coordinate by

ws(x) := ∑
y 6=x

ws(x, y) = Pr
t∼Di+1

[t ⊃ s ∪ {x} | t ⊃ s] = Pr
(u,v)∼(Di+1,Di)

[u = s ∪ {x} | v = s].

This is also the marginal of ws on its second coordinate.
There are several different definitions of high dimensional expansion. For our purposes, the most

relevant is the two-sided spectral expansion as defined in [DK17], where it is called “γ-HD”:
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Definition 6.2 (two-sided high dimensional spectral expander). A d-dimensional complex is said to
be a γ-two-sided spectral expander if for every i < d − 1, and every face s ∈ X(i) the graph Xs is an
expander with |λ(Xs)| ≤ γ.

Lubotzky, Samuels and Vishne [LSV05] constructed an explicit family of Ramanujan complexes.
The LSV complexes themselves are only one-sided spectral expanders in that they give λ(XS) ≤ γ
but not −γ ≤ λ(XS) ≤ γ as we require. In the proof of [DK17, Lemma 1.5] it is shown that if we
truncate a k-dimensional LSV complex and leave only X(0), . . . , X(d) for d/k < γ/2 then we get a
γ-two-sided spectral high-dimensional expander.

Lemma 6 (Lemma 1.5 in [DK17]). For every γ > 0 and every d ∈ N there exists an explicit infinite
family of bounded degree d-dimensional complexes which are γ-two-sided spectral expanders.

Recall that a distribution is said to be D-flat for an integer D ∈N if there is some R such that each
of its atomic probabilities belong to the set { 1

R , . . . , D
R } (see Definition 2.11).

Claim 6.3. The complexes from Lemma 6 have top distributionDd that is D-flat, for D ≤ (1/γ)O(d2/γ2).
Furthermore, the ratio |X(d)|/|X(0)| is also bounded by D.

Proof. (sketch) These complexes come from truncation of a k = 2d/γ - dimensional LSV complex,
whose top distribution is uniform. The top distribution of the truncation, Dd, comes from the uniform
distribution on X(k) so the probability of each d-face can be written as the number of k-faces contain-
ing it divided by |X(k)| = R. To bound the maximal number of k-faces containing a fixed face we
observe that it is at most the size of a “link” which is isomorphic to a spherical building, therefore, it
is bounded by number of linear subspaces in a k-dimensional vector space over a field whose size is
roughly 1/γ2. This number is at most (1/γ)O(k2) giving the parameters as claimed.

6.3 Construction of double samplers

Let X be a d-dimensional simplicial complex, with distribution Dd over X(d). Fix d ≥ m2 − 1 >
m1 − 1 ≥ 0 and define an inclusion graph as follows. Let V2 = X(m2 − 1), V1 = X(m1 − 1), and V0 =
X(0) and look at the inclusion graph (V2, V1, V0) together with the distribution Π2 on V2 obtained by
selecting a top face according to Dd and then removing d−m2 + 1 random elements from it.

Lemma 7 (Spectral version of double sampler). Let G2,1 = (V2, V1) and G1,0 = (V1, V0) where m2 > 2.
The following spectral bounds hold,

• λ2(G1,0) ≤ 1/m1 + O(m1γ) and

• λ2(G2,1) ≤ m1/m2 + O(m1m2γ)

• For every T ∈ V2, (Π0|Π2 = T) is uniform on T. Furthermore, λ2(X|T) ≤ 1
m1
· m2−m1

m2−1 where
X|T = (U, T, E) is defined by U = {S ∈ V1 | S ⊆ T} and (S, i) ∈ E for S ∈ U and i ∈ T iff i ∈ S.

• D0 in uniform on X(0).

Moreover, the distribution Π1 induced from Π2 is D-flat, and |X(d)|
|X(0)| ≤ D for D ≤ (1/γ)O(d2/γ2).

Proof. The first two items are proven in [DK17, Theorem 1.8] where the corresponding graphs are
A0,m1−1 and Am1−1,m2−1. The regularity follows from the fact that LSV complexes induce a unform
distrubution over the vertices. For the locality property we observe that for each T ∈ V2 = X(m2− 1)
the graph X|T is a bipartite graph. On one side it has all S ⊂ T, |S| = m1 and on the other side all
elements in T.

The claim on the eigenvalue follows from considering the two step walk and noticing it is a convex
combination of the identity matrix with probability 1/m1 · (m2−m1)/(m2− 1) and the all-ones matrix
(normalized) with remaining probability. The claim on the flatness and on the sizes follows from
Claim 6.3.
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6.4 From spectral gaps to samplers

We use a variant of the expander mixing lemma, Claim 6.1, to deduce the sampler property from the
spectral gaps.

Claim 6.4. A bipartite weighted graph (U, V, E) with second eigenvalue λ is an (α, λ2

α2 ) sampler. In
other words, to get an (α, δ) sampler, it suffices to take a graph with λ < α

√
δ.

Proof. Let f : V → [0, 1] have E[ f ] = β. Let A be the set of vertices that see too little of f

A =

{
u ∈ U

∣∣∣∣ E
v|u

[ f (v)] < β− α

}
.

Let B be the set of vertices that see too much of f ,

B =

{
u ∈ U

∣∣∣∣ E
v|u

[ f (v)] > β + α

}
.

We will show Pr[A], Pr[B] ≤ λ2β/α2 ≤ λ2/α2. Write

(β + α)Pr[B] ≤ E
uv
[ f (v)1B(u)] ≤ E[ f ]Pr[B] + λ

√
E[ f ]Pr[B]

where the first inequality is by definition of B and the second inequality is relying on Claim 6.1.
Dividing both sides by

√
E[ f ]Pr[B] and rearranging, we get Pr[B]

E[ f ] ≤ λ2/α2 so Pr[B] ≤ λ2β/α2.
Similarly for A, by Claim 6.1

|E[ f ]Pr[A]− E
uv
[ f (v)1A(u)]| ≤ λ

√
E[ f ]Pr[A]

so
E[ f ]Pr[A]− λ

√
E[ f ]Pr[A] ≤ E

uv
[ f (v)1A(u)] ≤ (β− α)Pr[A]

and again we get Pr[A] ≤ λ2β/α2.
So, if we want an (α, δ) sampler, we choose λ < α

√
δ.

6.5 Proof of Theorem 2.12

We restate the theorem for convenience.

Theorem 2.12. (restated) For every α2,1, δ2,1, α1,0, δ1,0, αlocal , δlocal > 0 there exist D, m2, m2 ∈ N and a
family of explicitly constructible double samplers (Xn, Wn) for infinitely many n ∈N such that

• Xn is an inclusion graph (V2, V1, V0) where |V0| = n, Vi ⊆ (V0
mi
) for i = 1, 2, with distribution Wn

over V2(Xn).

• Xn is a regular ((α2,1, δ2,1), (α1,0, δ1,0), (αlocal , δlocal)) double sampler.

• |V1|, |V2| ≤ D · n. The distributions Π1, Π2 are D-flat.

Proof. We construct a spectral double sampler as in Lemma 7, but first, let us choose the parameters.
We choose γ < 1/(m1m2)

2 small enough so that the term O(m1m2γ) is negligible wrt m1/m2 and
wrt 1/m1. We choose m1, m2 so that λ(G1,0)

2 < 2/m1 < min(α2
1,0δ1,0, α2

localδlocal , ), and similarly
λ(G2,1)

2 < 2m1/m2 < α2
2,1δ2,1. Summarizing:

• m1 = min(1/2α2
1,0δ1,0, 1/2α2

localδlocal)
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• m2 = m1/α2
2,1δ2,1

• D ≤ exp(poly(m2)) ≤ exp(poly(1/α1,0, 1/α2,1, 1/δ1,0, 1/δ2,1, 1/αlocal , 1/δlocal)).

The size of V2, V1 is at most D · n, and moreover, the distribution Π1 is D-flat, as claimed in
Lemma 7. According to Claim 6.4, the constructed graph is a α2,1, δ2,1, α1,0, δ1,0, αlocal , δlocal double
sampler.
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Appendices

A Large induced subgraphs of two-step walk on a sampler graph
has an induced expander

Recall the two-step walk defined on Definition 2.6. We might expect the graph G created by a two-step
walk on a sampler to be an expander, but this is not exactly true because small sets mights not expand.
Nevertheless, we can prove a version of the expander mixing lemma for sampler, see Claim A.1. This
claim allows us to prove that even though G is not an expander, every large induced subgraph of G
contains an expanding subgraph.

Theorem 2.8. (restated) Let α, β, δ ∈ (0, 1) be such that α, δ < β2

100 . Let (Gsamp = (V2, V1, Es), WS) be
an (α, δ) sampler. Let (G = (V2, E), W) be the two-step walk graph of Gsamp. Let A ⊆ V2 be any set
with µG(A) ≥ β. Then there exists a set B ⊆ A such that:

• µG(B) ≥ β
4 .

• Let GB be the induced graph of G on B. λ(GB) ≤ 99
100 .

Furthermore, given A, such a set B can be found in time polynomial in |V|.

The idea of finding the subgraph is based on [DG18], we gradually remove sparse cuts form GB
until reaching an expanding graph. We find sparse cuts using the proof of Cheeger inequality, which
is constructive.

We present the following algorithm for finding the expanding subgraph. The algorithm receives
a weighted graph G = (V, E), W and a subset A0 ⊂ V such that µG(A0) ≥ β and outputs a set B ⊂ V
satisfying the conditions of Theorem 2.8.

Initialization : Set i = 0, let G0 = (A0, V0), W0 be the weighted graph induced by A0.

Graph Improvement : While λ(Gi) ≥ 99
100 :

1. Find a cut (Ui, Ai \Ui) in Gi such that µGi (E(Ui, Ai \Ui)) ≤
√

2(1− λ(Gi))µGi (Ui), let Ui

be the smaller part of the cut, i.e. µGi (Ui) ≤ 1
2 . See [Chu05] for the algorithm.

2. Set Ai+1 = Ai \Ui and set Gi+1 = (Ai+1, Ei+1), Wi+1 to be the graph induced by Ai+1, with
the same edge weights W.

3. Increase i to i + 1.

output Output B = Al .

It is clear from the algorithm description that output graph GB satisfies λ(GB) ≤ 99
100 , so we only need

to show that µG(B) is large enough. We assume that a single vertex has λ = 0, so the algorithm
always stops.

Before proving the theorem, let us state and prove prove an expander mixing lemma argument
for our graph G. The graph G is a two step random walk on a sampler graph Gsamp. Because Gsamp is
an (α, δ) sampler and not an expander, we can only prove that sets larger than α, δ are expanding.
Claim A.1. Let (Gsamp = (V2, V1, Es), WS) be an (α, δ) sampler, and let (G = (V2, E), W) be the two-
step walk graph of Gsamp.

Then for every A, B ⊂ V2 which satisfy µG(A) > δ, µG(B) > α,

Pr
(T1,T2)∼W

[T1 ∈ A, T2 ∈ B] ≥ (µG(A)− δ) (µG(B)− α)

Pr
(T1,T2)∼W

[T1 ∈ A, T2 ∈ B] ≤ µG(A) (µG(B) + α) + δ.
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Proof. Let Π = (Π2, Π1) be the correlated distribution on V2, V1 in Gsamp, as in Definition 2.4. We
define the function f : V1 → [0, 1],

∀v ∈ V1, f (v) = Pr
T∼(Π2|Π1=v)

[T ∈ B].

In words, f (v) is the probability of a random neighbor of v in Gsamp to be in B. This implies that
Ev∼Π1 [ f (v)] = PrT∼Π2 [T ∈ B] = µG(B).

For every T ∈ V2, let pT be the probability of a random neighbour of T in G to be in B. Using f ,
pT = Pr(T1,T2)∼W [T2 ∈ B|T1 = T] = Ev∼(Π1|Π2=T)[ f (v)]. The last equality is because G is a two step
random walk on Gsamp.

From the sampling properties of Gsamp,

Pr
T∼Π2

[∣∣∣∣ E
v∼(Π1|Π2=T)

[ f (v)]− E
v∼Π1

[ f (v)]
∣∣∣∣ > α

]
≤ δ,

Substituting the expectation over f (v) by pT , we get that PrT∼Π2 [|pT − µG(B)| > α] ≤ δ.
Let R ⊂ V2 be the set

R = {T ∈ V2 | |pT − µG(B)| > α} .

From above, µG(R) ≤ δ. For every T1 /∈ R, pT ∈ [µG(B)− α, µG(B) + α].
Therefore,

Pr
(T1,T2)∼W

[T1 ∈ A, T2 ∈ B] ≥ Pr
T1∈Π2

[T1 ∈ A \ R] Pr
(T1,T2)∼W

[T2 ∈ B|T1 ∈ A \ R]

≥ (µG(A)− δ) (µG(B)− α) .

Pr
(T1,T2)∼W

[T1 ∈ A, T2 ∈ B] ≤ Pr
T1∼Π2

[T1 ∈ R] + Pr
T1∼Π2

[T1 ∈ A \ R] Pr
(T1,T2)∼W

[T2 ∈ B|T1 ∈ A \ R]

≤δ + µG(A) (µG(B) + α) .

Proof of Theorem 2.8. Let B be the output of the algorithm, denote by l the number of steps the loop
ran, so B = Al . By the algorithm definition,the graphGl satisfies λ(Gl) ≤ 99

100 , so it remains to show
that µG(Gl) ≥

β
4 .

The main idea in the proof is that if each cut (Ai, Ui) is sparse in Gi, then for every t ≤ l, there are
few edges between At and U1 ∪U2, · · · ∪Ut−1 in G. Using the expander mixing lemma, it means that
for every t, either At or U1 ∪U2, · · · ∪Ut−1 is very small. Since each Ui is chosen as the smallest part
of the cut, it is not possible that U1 ∪U2, · · · ∪Ui−1 is very small but U1 ∪U2, · · · ∪Ui−1 ∪Ui is very
large. This means that U1, · · · ∪Ul is small, and finishes the proof.

We now write formally the idea described above. Assume towards contradiction that µG(Al) ≤
β
4 ,

this implies that µG(U1 ∪ · · · ∪Ul−1) ≥ 3
4 β. Let j be the first index such that µG(U1 ∪ · · · ∪Uj) ≥ 3

4 β,
and denote by U = U1 ∪ · · · ∪Uj−1 which means that µG(U) < 3

4 β. We show that in fact U is very
small µG(U) < 1

10 β, our assumption is that µG(U ∪Uj) ≥ 3
4 β and it contradicts Uj being the small

part in the partition.

Let h =
√

2(1− 99
100 ), notice that h ≤ 1

20 . For each i, the cut (Ui, Ai \Ui) is sparse in Gi, µGi (E(Ui, Ai \
Ui)) ≤ hµGi (Ui). Since Gi is an induced graph in G with the same edge weights, we can translate this
inequality using Claim A.2 to

µG(E(Ui, Ai \Ui)) ≤ hµG(E(Ui, Ai)). (6)
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To show that U is small, we bound the measure of the cut (A0, A0 \U) and use Claim A.1. Notice
that Ai+1 = Ai \Ui, and that U1, . . . Ul are disjoint.

µG(E(U, A0 \U)) =∑
i<j

µG(E(Ui, A0 \U)) (∀i < j, A0 \U ⊆ Ai \Ui)

≤∑
i<j

µG(E(Ui, Ai \Ui)) (by (6))

≤∑
i<j

hµG(E(Ui, Ai)) (Ai ⊂ A0)

≤∑
i<j

hµG(E(Ui, A0))

=h · µG(E(U, A0)). (7)

At this point we have
µG(E(U, A0 \U)) ≤ h · µG(E(U, A0)) (8)

The LHS is approximately µG(U) · µG(A0 \U) ≥ µG(U) · µG(A0)/4, and the RHS is approximately h ·
µG(U) · µG(A0), giving 1/4 < h < 1/20, a clear contradiction. To make this approximate explanation
precise, let us denote x = µG(U). If x > α, δ then by the expander mixing lemma (Claim A.1 ) we
have

µG(E(U, A0)) ≤ β(x + α) + δ.

similarly,
µG(E(U, A0 \U)) ≥ (β− x− δ)(x− α).

Combining these two inequalities with (8),

x(β− x) ≤ hβx + α + δ (9)

Given that x < 3
4 β, h < 1

20 and α, δ < 1
100 β2, we get that x = µG(U) < β

10 .
According to our assumption µG(U ∪ Uj) ≥ 3

4 β, so the set Uj should satisfy that µG(Uj) ≥(
3
4 −

1
10

)
β. This is a contradiction with the fact that µGj(Uj) ≤ 1

2 , as described in the following
paragraph.

Translating µGj(Uj) ≤ 1
2 into G results in µG(E(Uj, Aj)) ≤ 1

2 µG(E(Aj, Aj)), by Claim A.2. Using
the mixing lemma on Gsamp,Claim A.1,

(µG(Uj)− δ)(µG(Aj)− α) ≤ δ +
1
2

µG(Aj)(µG(Aj) + α).

Given that β
4 ≤ µG(Aj) ≤ β and α, δ ≤ β2

100 we get that µG(Uj) ≤ 3
5 β which is a contradiction.

Claim A.2. Let G = (V, E), W be a weighted graph, and let G′ = (V′, E′), W ′ be an induced subgraph
inheriting the weights of G. Then for every V′′ ⊂ V′, E′′ ⊂ E′:

µG′(E′′) =
µG(E′′)
µG(E′)

, µG′(V
′′) =

µG(E(V′′, V′))
µG(E′)

.

Proof. By definition (recall Definition 2.1) µG′(E′′) is the probability to pick a random edge from E′′

when picking a random edge in G′. The weights in G′ are the same as in G.

µG′(E′′) = Pr
e∼W ′

[e ∈ E′′] = Pr
e∼W

[e ∈ E′′|e ∈ E′] =
Pre∼W [e ∈ E′′]
Pre∼W [e ∈ E′]

=
µG(E′′)
µG(E′)

.
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For vertex weights, the weight of every vertex is the sum of adjacent edges. Therefore the weight of a
vertex v ∈ V′′ in G′ is composed only by edges inside G′.

µG′(V
′′) = Pr

(u,v)∼W ′
[u ∈ V′′]

= Pr
(u,v)∼W

[u ∈ V′′|(u, v) ∈ E′]

= Pr
(u,v)∼W

[(u, v) ∈ E(V′′, V′)|(u, v) ∈ E′]

=
µG(E(V′′, V′))

µG(E′)
.

B Unique games over expanders

B.1 A list-decoding variant of the unique game algorithm over exapnder graphs

The unique games algorithm takes a solvable unique games instance and outputs a single solution.
In our proof we list decode, so we need a list of all possible solutions.

Lemma 8. Let G = (V, E), W be a weighted undirected graph with weights {we}e∈E and suppose
λ(G) ≤ 99

100 . Further let {πe}e∈E be unique constraints over ` labels.
Then, there exits an absolute constant c and a polynomial time algorithm that outputs a list L =

{a(1), . . . , a(t)} with a(i) : V → [`] such that for every assignment a : V → [`] that satisfies 1− η of the
constraints, there exists a(i) which satisfies Prv∼W [a(v) = a(i)(v)] ≥ 1− ηc`.

The algorithm receives a weighted constraint graph G = (V, E), W = {we}e∈E, {πe}e∈E and re-
turns a list of satisfying assignments L = {a(1), . . . a(t)}, a(i) : V → [`]. In the algorithm we repeatedly
run the unique games algorithm from [MM10], remove each solution and rerun the algorithm again.

Initialization : Set i = 1, and set π
(1)
e = πe for every e ∈ E.

Solving Unique Constraints : Repeat

1. Use the unique games algorithm from [MM10], B.2, on the graph G with constraints {π(i)}e∈E.

2. If the algorithm didn’t return a solution, quit the loop.

3. Else, let a(i) : V → [`− i + 1] be the algorithm output.

4. Let {π(i+1)}e∈E be the constraints after removing a(i) (see details after the algorithm).

5. Set i = i + 1 and repeat.

Output : Output a(1), . . . a(t).

Removing the assignment a from π : [j]→ [j], getting π′ : [j− 1]→ [j− 1] is done as follows.

• For every vertex v, reorder the elements such that a(v) = j.

• If a satisfies π, i.e. π(j) = j, then π′ is equal to π restricted to [j− 1].

• Else, exists i, l 6= j such that π(l) = j, π(j) = i, then set π′(l) = i, and the rest is identical to π.

In an expander graph, if a, a′ are two assignments satisfying almost all of the constraints, then they
must be either almost identical or completely different.
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Claim B.1. Let a, a′ : V → [`] be two assignments satisfying 1− η and 1− η′ of the constraints in G,
respectively. Then, either Prv∈V [a(v) = a′(v)] ≥ 1− 50(η′ + η) or Prv∈V [a(v) = a′(v)] ≤ 50(η′ + η).

Proof. Let D ⊂ E the set of disagreeing vertices,

D =
{

v ∈ V
∣∣ a(v) 6= a′(v)

}
.

The constraints in G are unique, for every (v1, v2) ∈ E, if both a, a′ satisfies the edge, and a(v1) =
a′(v1), then it must be that a(v2) = a′(v2) = π(1,2)(a(v1)).

Therefore, if an edge (a1, a2) has a1 /∈ D, a2 ∈ D, it is not possible that both a, a′ satisfy it, therefore

µ(E(D, V \ D)) ≤ η + η′.

The second largest eigenvalue of G is at most 99
100 , so its edge expansion is at least 1

50 , by Cheeger
inequality.

µ(E(D, V \ D)) ≥ 1
50

min{µ(D), µ(V \ D)}.

This implies that min{µ(D), µ(V \ D)} ≤ 50(η + η′), which finishes the proof.

Proof of Lemma 8. Fix a : V → [`] to be an assignment that satisfies 1− η of the constraints of G. If
η ≥ c` for c the global constant, there is nothing to prove, therefore we assume that η < c` and show
that there must be π(i) ∈ L such that a, a(i) are close.

For every i ∈ [t], recall {π(i)
e }e∈E are the constraints used in the ith step of the algorithm runtime.

Let ηi be the constraints in the ith round satisfied by a:

ηi = Pr
(u,v)∼W

[a(u) 6= π
(i)
u,v(a(v))].

In the following claim we show that if a(i) is very different than a, then after removing a(i) the
assignment a still satisfies a large fraction of the constraints.

Claim B.2. There exist an absolute constant b > 1 such that if η < b−` and Pru[a(u) = a(i)(u)] ≤ 1
2 for

all i ≤ j, then ηj+1 ≤ η · bj+1.

Proof. We prove the claim by induction on i.
According to our assumption, a satisfies 1− η of the constraints {π(1)

e }e∈E∗ .
Assume that the claim holds for j− 1, i.e. ηj < ηbj, so the unique games instant π(j) has a solution

satisfying 1− ηj of the constraints. By Theorem B.4, the unique games algorithm outputs a(j) : V →
[`− j + 1] which satisfies 1− 50Cηj of the constraints.

If Pru[a(u) = a(j)(u)] ≤ 1
2 then according to Claim B.1.

Pr
u
[a(u) = a(j)(u)] ≤ 50(ηj + 50Cηj)

Removing the label a(j) from all vertices can increase the edges unsatisfied by a by at most 50(ηj +

50Cηj). This is because removing a(j) “ruins” a constraint πu,v for a only if a, a(j) are equal on either u
or v.

ηj+1 = Pr
(u,v)∈E

[a(u) 6= π
(j+1)
u,v (a(v))]

≤ Pr
(u,v)∈E

[a(u) 6= π
(j)
u,v(a(v))] + Pr

(u,v)∈E
[a(u) = a(j)(u) ∨ a(v) = a(i)(v)]

≤ηj + 50(ηj + 50Cηj).

choosing the appropriate constant b = max{3000C, 1
100c′ } we finishes the proof.

27



Fix the constant c to be c = 2b, and assume towards contradiction that a if far from every a(i) in
the output list, i.e. Pru[a(u) = a(i)(u)] ≤ 1

2 for every i ∈ [t]. There are two cases:

• t < `: the unique games algorithm failed to output a solution for {π(t+1)
e }e∈E. From the above

claim ηt+1 ≤ ηbt, so a satisfies 1− ηbt ≥ 1− 1
b ≥ 1− 100c′ of the constraints {π(t+1)

e }e∈E and
the unique games algorithm should have output a solution.

• t = `: in this case the assignments a(1), . . . a(`) “cover” all of the possible labels, i.e. for every
u ∈ V, there must be some i ∈ [`] such that a(i)(u) = a(u).

According to the claim above, for every i ∈ [`], ηi ≤ ηbi. By Claim B.1 and our assumption, for
every i ∈ [`], Pru[a(u) = a(i)(u)] ≤ 50(ηi + 50Cηi) ≤ bηi.

Pr
u
[∃i s.t a(i)(u) = a(u)] ≤ ∑

i∈[`]
bηi ≤ η ∑

i∈[`]
bi+1 ≤ 2ηbl < 1,

which contradicting a(i) covers all solutions.

Therefor, there must be an assignment that is close to a, let j be the first assignment to satisfy
Pru[a(u) = a(j)(u)] ≤ 1

2 . Using Theorem B.4 and Claim B.2,

Pr
u
[a(u) 6= a(j)(u)] ≤ 50(ηj + 50Cηj)

which finishes the proof.

B.2 A unique game algorithm over weighted graphs

Our starting point is the following theorem.

Theorem B.3 (Theorem 10, [MM10]). There exists a polynomial time approximation algorithm that
given a 1− δ satisfiable instance of Unique Games on a d-regular expander graph G with δ

λG
≤ c, the

algorithm finds a solution of value

1− C
δ

hG
,

where c and C are some positive absolute constants, λG is the laplacian second smallest eigenvalue
and hG is the edge expansion.

In fact, the same theorem with slightly modified proof works also for weighted non-regular graphs.

Theorem B.4 (Weighted unique games). There exists a polynomial time approximation algorithm
that given a 1− δ satisfiable instance of Unique Games on a weighted expander graph G such that

δ
λG
≤ c, the algorithm finds a solution of value

1− C
δ

hG
,

where c and C are some positive absolute constants, λG is the laplacian second smallest eigenvalue
and hG is the edge expansion.

We reprove the theorem in the case of weighted graphs, skipping the parts of the proof which are
unchanged.

We start from the SDP relaxation of the unique games. The only difference from the regular case
is that the target function is weighted. For each vertex u ∈ V and label i ∈ [`] we define a vector ui of
length t.
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Definition B.5 (SDP relaxation). Minimize:

1
ω ∑

(u,v)∈E
wu,v ∑

i∈[`]
‖ui − vπu,v(i)‖

2

Subject to

∀u ∈ V, i 6= j ∈ [`], 〈ui, uj〉 = 0 (10)

∀u ∈ V, ∑
i∈[`]
‖ui‖2 = 1 (11)

∀u, v, x ∈ V, i, j, l ∈ [`] ‖ui − xl‖2 ≤ ‖ui − vj‖2 + ‖vj − xl‖2 (12)

∀u, v ∈ V, i, j ∈ [`] ‖ui − vj‖2 ≤ ‖ui‖2 + ‖vj‖2 (13)

∀u, v ∈ V, i, j ∈ [`] ‖ui‖2 ≤ ‖ui − vj‖2 + ‖vj‖2 (14)

Where ω = ∑u wu.

An integral solution sets for each u ∈ V a label i ∈ [`]. It translates into vectors by ui = 1 1√
t
, and

for each j 6= i, uj = 0, where 1, 0 are the all 1 and all 0 vectors, respectively. Each integral solution
satisfies all the constraints, so if the UG instance is 1− δ satisfiable then the SDP value is at least 1− δ.

Similarly to [AKK+08, MM10], we define the earthmover distance.

Definition B.6. For every two sets of orthogonal vectors {ui}i∈[`], {vi}i∈[`] let

∆({ui}i∈[`], {vi}i∈[`]) = min
τ∈S`

∑
i∈[`]
‖ui − vτ(i)‖2

 ,

where S` are all permutation over ` elements.

For an SDP solution {ui}u∈V,i∈[`], we denote by ∆(u, v) the earthmover distance between the vec-
tors of u and the vectors of v.

Arora at el. [AKK+08] showed that the SDP solution has small average earthmover distance, i.e.
that for the SDP solution {ui}u∈V,i∈[`], the expression Eu,v∈V [∆({ui}i∈[`], {vi}i∈[`])] is small. Their
proof has a lemma and a corollary, the lemma is for any sets of vectors and is not related to the graph.
The corollary uses the graph regularity but can be easily modified for weighted graphs as well.

Lemma 9 (Lemma 2.2 in [AKK+08]). For every positive even integer q and every SDP solution
{ui}u∈V,i∈[`], there exists a set of vectors {V u}u∈V that for every pair u, v ∈ V,

1
q
‖V u − V v‖2 ≤ 1

`
∆(u, v) ≤ 2‖V u − Vv‖2 + O

(
2−

q
2

)
.

Corollary B.7. For every constant R ∈ (0, 1), there exists a positive c > 0 such that for any 1− δ

satisfiable instance of unique games on G, if δ
λG

< c, then

E
u,v∈V

[∆(u, v)] ≤ R,

For u, v distributed according to their weight, and λG = 1− λ(G) the second smallest eigenvalue of
the noamalized laplacian.

We prove the corollary also for the case of weighted graphs. The proof is almost identical to the
proof in [AKK+08], with slight modifications for the weights.
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Proof. By Claim B.11, the second smallest eigenvalue of the laplacian of G can also be represented by

λG = min
{zu}u∈V

E(u,v)∈E[‖zu − zv‖2]

Eu,v∈V [‖zu − zv‖2]
, (15)

where {zu}u∈V is a set of vectors, one for every vertex, and the expectation is done according to the
edge and vertex weights in G.

E
u,v∈V

[∆(u, v)] ≤2` E
u,v∈V

[
‖Vu − V v‖2

]
+ `O

(
2−

q
2

)
(by Lemma 9)

≤ 2`
λG

E
(u,v)∈E

[
‖V u − V v‖2

]
+ `O

(
2−

q
2

)
(by (15))

≤2q`
λG

E
(u,v)∈E

[∆(u, v)] + `O
(

2−
q
2

)
(by Lemma 9)

≤2q`
λG

ε + `O
(

2−
q
2

)
. (by the SDP solution)

Taking large enough q such that `O
(

2−
q
2

)
< R

2 and c < R
4q` (R, `, q are all constants), we finish the

proof.

We use the rounding algorithm of [MM10], with the only difference that the initial vertex u is
picked according to its weight and not uniformly.

The proof of the rounding algorithm uses the following claim from [MM10]. This claim is general
about vector normlization, and is independent of any graph.

Lemma 10 (Lemma 1 from [MM10], actually proven in previous paper.). For every SDP solution
{ui}u∈V,i∈[`], there exists a set of vectors {ũi}u∈V,i∈[`] satisfying the following properties:

1. Triangle inequalities: for every u, v, w ∈ V and labels i, j, l ∈ [`]:

‖ũi − ṽj‖+ ‖ṽj − w̃l‖ ≤ ‖ũi − w̃l‖.

2. For every u, v ∈ V, i.j ∈ [`],

〈ũi, ṽj〉 =
〈ui, vj〉

max{‖ui‖2, ‖vj‖2} .

3. For all non zero vectors ui, ‖ũi‖ = 1.

4. For every u ∈ V, i 6= j ∈ [`], 〈ũi, ũj〉 = 0.

5. For every u, v ∈ V, i, j ∈ [`],

‖ṽj − ũi‖ ≤
2‖vj − ui‖

max{‖ui‖2, ‖vj‖2} .

The set of vectors {ũi}u∈V,i∈[`] can be obtained in polynomial time.

The rounding algorithm: Approximation algorithm from [MM10], with slight modification. The
input is an SDP solution {ui}u∈V,i∈[`] of cost ε.

Initialization :

1. Pick a random vertex u ∈ V according to the vertex weights wu.
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2. Pick a random label i ∈ [`], each with probability ‖ui‖2.

3. Pick a random number t ∈ [0, ‖ui‖2].

4. Pick a random r ∈ [R, 2R].

5. Obtain vectors {ũi}u∈V,i∈[`].

Labels Assignment : For every v ∈ V:

1. Let Sv =
{

p ∈ [`]
∣∣ ‖vp‖2 ≥ t, ‖ũi − ṽp‖2 ≤ r

}
.

2. If Sv = {p}, assign the label p to v. Else, assign arbitrary one.

The algorithm analysis uses the following definition, it is well defined because the triangle in-
equality and orthonormality of the none 0 vectors.

Definition B.8. Let τx,v the partial mapping from [`] to [`] which maps p into q if ‖ṽp − x̃q‖ ≤ 4R.

Definition B.9. Let X = {x ∈ V | |Sx| = 1}.

The following lemmas have proofs which do not assume regularity, so they can be used as is.

1. If p ∈ Sv and q ∈ Sx with non zero probability, for the same initial vertex and label, then
τv,x(p) = q.

2. |Sv| ≤ 1.

3. If Sv = {p}, then Sx = {τx,v(p)} or Sw = ∅.

4. For every choice of initial vertex u, every v ∈ V, p ∈ [`], Prt,r[Sv = {p}] ≤ ‖vp‖2.

The following lemmas has to be slightly modified, mainly inserting µ(X) instead of |X|.

Lemma 11 (Lemma 5 in [MM10]). If ε
λG

< c, then E[µ(X)] ≥ 1
4 .

The proof is identical except the difference in the distribution over the vertices, which is weighted
instead of uniform.

Proof. Suppose u is the initial vertex, then for every v ∈ V we express the probability of v ∈ X using
∆(u, v).

For every label p ∈ [`], if ∃q ∈ [`] such that ‖uq − vp‖2 ≤ R
2 ‖vp‖2, then

‖ṽp − ũq‖ ≤
2‖uq − vp‖

max{‖uq‖2, ‖vp‖2} ≤ R ≤ r,

which implies τu,v(p) = q. In this case, if q is the initial label and t ≤ ‖vp‖2, then Sv = {p} which
implies v ∈ X. Therefore,

Pr
i,t
[Sv = {p}] ≥ Pr

i,t
[i = q ∧ t ≤ ‖vp‖2] = ‖uq‖2 min{1,

‖vp‖2

‖uq‖2 } = min{‖uq‖2, ‖vp‖2} ≥ 1
2
‖vp‖2.

Where the last inequality is by the triangle inequality, using the fact that ‖uq − vp‖2 ≤ R
2 ‖vp‖2.
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Going over all possible labels p for v:

Pr[v ∈ X] = Pr
i,t,r

[∃p s.t Sv = {p}]

=∑
p

Pr
i,t,r

[Sv = {p}]

≥ ∑
p s.t ∃q,‖uq−vp‖2≤ R

2 ‖vp‖2

1
2
‖vp‖2

≥∑
p

1
2
‖vp‖2 − ∑

p s.t ∀q,‖uq−vp‖2> R
2 ‖vp‖2

1
2
‖vp‖2

≥1
2
− 1

2 ∑
p

2
R

min
q
{‖vp − uq‖2} (since for all q, ‖vp‖2 < 2

R‖vp − uq‖2)

=
1
2
− 1

R
∆(u, v).

The part so far is identical to the original proof.
By the earthmover distance lemma, Eu,v∈V [∆(u, v)] < R, so

E[µ(X)] = ∑
u,v∈V

µ(u)µ(v)Pr[v ∈ X|u initial vertex]

≥ ∑
u,v∈V

µ(u)µ(v)
(

1
2
− 1

R
∆(u, v)

)
≥1

2
− 1

R
E

u,v∈V
[∆(u, v)]

≥1
2
− 1

4
.

Where the distribution over picking a vertex is according to its weight.

Corollary B.10.

Pr[µ(X) ≥ 1
8
] ≥ 1

8
.

The following lemma appears in the original proof with uniform distribution over the edges, we
reprove it for edges picked according to their weight. The proof is practically the same, only choosing
edges and vertices according to their weights.

Lemma 12.
E[µ(X, V \ X)] ≤ 6ε

R
.

Proof. The first part of the proof is identical to the original proof. Fix u ∈ V the initial vertex, we
bound the probability of v ∈ X, x /∈ X by 6

R ∑p ‖vp − xπx,v(p)‖2.
If v ∈ X, x /∈ X, then Sv = {p}, Sx = ∅. Let q = πx,v(p). Since Sv = {p}, then ‖vp‖2 ≥

t, ‖ũi − ṽp‖2 ≤ r, i = τu,v(p). One of the two cases must happen

1. ‖xq‖2 < t.

2. ‖xq‖2 ≥ t, ‖x̃q − ũi‖2 > r.
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We sum over all p the probability that these events occur (each p has a q = πx,v(p)).

Pr
i,t,r

[1] ≤∑
p

Pr[i = σv,u(p)]Pr[‖xq‖2 < t ≤ ‖vp‖2|i = σv,u(p)]

≤∑
p
‖uσv,u(p)‖2 ‖vp‖2 − ‖xq‖2

‖uσv,u(p)‖2

≤∑
p

(
‖vp‖2 − ‖xq‖2

)
.

Pr
i,t,r

[2] =∑
p

Pr[i = σv,u(p)]Pr[t ≤ ‖vp‖2]Pr[‖ũi − ṽp‖2 ≤ r < ‖x̃q − ũi‖2|i = σv,u(p)]

≤∑
p
‖uσv,u(p)‖2 ‖vp‖2

‖uσv,u(p)‖2
‖x̃q − ũi‖2 − ‖ũi − ṽp‖2

R
(triangle inequality)

≤∑
p
‖vp‖2 1

R
‖ṽp − x̃q‖2

≤∑
p
‖vp‖2 1

R
2‖vp − xq‖2

max{‖vp‖2, ‖xq‖2}

≤∑
p

2
R
‖vp − xq‖2.

Therefore, for every edge (v, x) Pr[(v, x) ∈ E(X, V \ X)] ≤ ∑p(1 +
2
R )‖vp − xq‖2.

The expected value of the cut:

E[µ(E(X, V \ X))] =
2
ω ∑

(v,x)∈E
wv,w Pr[(v, x) ∈ E(X, V \ X)]

≤ 2
ω ∑

(v,x)∈E
wv,w

3
R
‖vp − xq‖2 (SDP value ≤ δ)

≤6δ

R
.

Lemma 13 (lemma 8). If δ < min{cRλG, hG R
1000} then with probability at least 1

16 , µ(X) ≥ 1− 100δ
hG R .

Proof. By the definition of hG, µ(E(X, V \ X)) ≥ hG min{µ(X), µ(V \ X)}, which implies

6δ

R
≥E[µ(E(X, V \ X))]

≥hG E[min{µ(X), µ(V \ X)}].

We get that E[min{µ(X), µ(V \ X)}] ≤ 6δ
hG R , by Markov Pr[min{µ(X), µ(V \ X)} ≤ 100δ

hG R ] ≥ 1− 1
16

We also know that Pr[µ(X) ≥ 1
8 ] ≥

1
16 , so with probability at most 1/16,µ(V \ X) ≤ 100δ

hG R .

The following lemma is independent of the graph, so its proof is unmodified.

Lemma 14. For every edge (v, x) ∈ E,

Pr[v, x ∈ X, (v, x)isn’t satisfied] ≤ 4δv,x,

for δv,x = 1
2 ∑i∈[`] ‖vi − xπx,v(i)‖

2.
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And we are ready to prove the theorem, again the proof is almost identical.

proof of Theorem B.4. We show that the randomized algorithm described above solves the UG instance
with constant probability. It can then easily be derandomized.

The algorithm solves the SDP, then runs the rounding algorithm. If µ(X) ≥ 1− 100δ
hG R , it outputs

the labeling, else it fails.
Suppose the algorithm doesn’t outputs fail, then by the definition of weights,

µ(E(X, X)) ≥ 1− 100δ

hGR
,

as µ(V \ X) ≤ 100δ
hG R ).

The expected violated constraints inside X is at most,

2
ω ∑

(v,x)∈E
wv,x4δv,x ≤

2
ω ∑

(v,x)∈E
wv,x4 ∑

p∈[`]
‖vp − xπx,v(p)‖2 ≤ 64δ.

Therefore with constant probability we get a 1− 64δ− 100δ
hG R solution.

B.2.1 Eigenvalue Proof

Claim B.11. Let G = (V, E) be a weighted graph with weights {wu,v}(u,v)∈E, and let L be the normal-
ized laplacian matrix of G,

Lv,u =


1 if u = v
− wu,v√

wuwv
if (u, e) ∈ E

0 else

,

where wu = ∑v s.t (u,v)∈E wu,v. The second smallest eigenvalue of the laplacian corresponds to

λ2 = min
{zu}u∈V

E(u,v)∼w[‖zu − zv‖2]

Eu,v∼V [‖zu − zv‖2]
.

Where {zu}u∈V is a set of vectors, ∀u, zu ∈ Rt.

Proof. We define a new matrix L′ ∈ R|V|t×|V|t, which is composed of t× t scalar matrix blocks, i.e.
for every u, v ∈ V, the matrix L′u,v is a t× t scalar matrix, L′u,v = It×tLu,v. Formally, we denote each
row and column by two indices u ∈ V, i ∈ [t] and

L′(u,i),(v,j) =

{
Lu,v if i=j
0 else

.

L has a single eigen value 0, the new matrix L′ has t eigenvalues 0. One eigenvectors basis for the

nullspace is y1, . . . yt ∈ R|V|t, yl
u,j =

{
yu l = j
0 else

, for y the eigenvector of L.

The spectrum of L′ is identical to the spectrum of L, only each eigenvalue repeats t times. There-
fore the second largest eigenvalue of L is equal to the t + 1 eigenvalue of L′, and is equal

λ2 = min
x∈Rt|V|

{
〈x,L′x〉

〈x, x− y1〈x, y1〉 − · · · − yt〈x, yt〉〉

}
. (16)
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The numerator explicitly:

〈x,L′x〉 = ∑
u,v∈V,i,j∈[t]

xu,iL′(u,i),(v,j)xv,j

= ∑
u,v∈V,i∈[t]

xu,iLu,vxv,i

= ∑
u∈V,i∈[t]

x2
u,i − 2 ∑

(u,v)∈E,i∈[t]

wu,v√
wuwv

xu,ixv,i

= ∑
u∈V
‖xu‖2 − 2 ∑

(u,v)∈E

wu,v√
wuwv

〈xu, xv〉.

Where xu is the length t vector containing xu,i for i ∈ [t].
The denominator:

〈x, x− y1〈x, y1〉 − · · · − yt〈x, yt〉〉 =〈x, x〉 −
(
〈x, y1〉

)2
− · · ·

(
〈x, yt〉

)2

= ∑
u∈V,i∈[t]

x2
u,i − ∑

l∈[t]

(
〈x, yl〉

)2

= ∑
u∈V,i∈[t]

x2
u,i − ∑

l∈[t]
∑

u,v∈V,i,j∈t
xu,iyl

u,ixv,jyl
v,j

= ∑
u∈V,i∈[t]

x2
u,i − ∑

l∈[t]
∑

u,v∈V
xu,lyuxv,lyv

= ∑
u∈V
‖xu‖2 − ∑

u,v∈V
yuyv〈xu, xv〉

= ∑
u∈V
‖xu‖2 − ∑

u,v∈V

√
wuwv

ω
〈xu, xv〉.

We write the expectations explicitly:

E
(u,v)∼w

[‖zu − zv‖2] =
2
ω ∑

(u,v)∈E
wu,v〈zu − zv, zu − zv〉

=
2
ω ∑

(u,v)∈E
wu,v(‖zu‖2 + ‖zv‖2 − 2〈zu, zv〉)

=
2
ω ∑

u∈V
wu‖zu‖2 − 4

ω ∑
(u,v)∈E

wu,v〈zu, zv〉.

E
u,v∼V

[[‖zu − zv‖2] =
1

ω2 ∑
u,v∈V

wuwv〈zu − zv, zu − zv〉

=
1

ω2 ∑
u,v∈V

wuwv(‖zu‖2 + ‖zv‖2 − 2〈zu, zv〉)

=
1

ω2 ∑
u∈V

2ωwu‖zu‖2 − 2
ω2 ∑

u,v∈V
wuwv〈zu, zv〉

For every u ∈ V, i ∈ [t] let xu,i =
√

wuzu,i,

〈x,L′x〉 = ω

2
E

(u,v)∼w
[‖zu − zv‖2],
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〈x, x− y1〈x, y1〉 − · · · − yt〈x, yt〉〉 = ω

2
E

u,v∼V
[[‖zu − zv‖2].

The factor of ω
2 cancels out, and the minimum value is not affected by the multiplication in

√
wu, as

it is taken over all vectors in R.
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