
List-Decoding with Double Samplers ∗

Irit Dinur† Prahladh Harsha‡ Tali Kaufman§ Inbal Livni Navon¶

Amnon Ta-Shma‖

May 6, 2021

Abstract

We strengthen the notion of double samplers, first introduced by Dinur and Kauf-
man [Proc. 58th FOCS, 2017], which are samplers with additional combinatorial proper-
ties, and whose existence we prove using high dimensional expanders.

The ABNNR code construction [IEEE Trans. Inform. Theory, 38(2):509–516] achieves
large distance by starting with a base code C with moderate distance, and then amplifying
the distance using a sampler. We show that if the sampler is part of a larger double sam-
pler then the construction has an efficient list-decoding algorithm. Our algorithm works
even if the ABNNR construction is not applied to a base code C but to any string. In
this case the resulting code is approximate-list-decodable, i.e. the output list contains an
approximation to the original input.

Our list-decoding algorithm works as follows: it uses a local voting scheme from which
it constructs a unique games constraint graph. The constraint graph is an expander, so we
can solve unique games efficiently. These solutions are the output of the list-decoder. This
is a novel use of a unique games algorithm as a subroutine in a decoding procedure, as
opposed to the more common situation in which unique games are used for demonstrating
hardness results.

Double samplers and high dimensional expanders are akin to pseudorandom objects
in their utility, but they greatly exceed random objects in their combinatorial properties.
We believe that these objects hold significant potential for coding theoretic constructions
and view this work as demonstrating the power of double samplers in this context.

∗A preliminary version of this paper appeared in Proc. 30th Annual ACM-SIAM Symp. on Discrete Algo-
rithms (SODA), 2019 [DHKNT19]
†Weizmann Institute of Science, ISRAEL. email: irit.dinur@weizmann.ac.il. Supported by ERC-CoG

grant number 772839.
‡Tata Institute of Fundamental Research, INDIA. email: prahladh@tifr.res.in. Research supported by

the Department of Atomic Energy, Government of India, under project no. 12-R&D-TFR-5.01-0500 and in
part by UGC-ISF grant and the Swarnajayanti Fellowship. Part of the work was done when the author was
visiting the Weizmann Institute of Science.
§Bar-Ilan University, ISRAEL. email: kaufmant@mit.edu. Supported by a BSF grant and an ERC grant.
¶Weizmann Institute of Science, ISRAEL. email: inbal.livni@weizmann.ac.il. Supported by Irit Dinur’s

ERC-CoG grant number 772839.
‖Tel-Aviv University, ISRAEL. email: amnon@tau.ac.il. Supported by ISF grant no. 952/18.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 136 (2018)

1 Introduction

We develop the notion of a double sampler, which is an enhanced sampler. An (α, β) sampler
is a bipartite graph G = (U, V,E) such that for every function f : V → [0, 1] with expectation
µ = Ev∈V [f(v)], one has |µu − µ| ≤ α for all but a β fraction of the vertices u, where
µu = Ev∼u[f(v)] (see [Zuc97] for more details).

Towards defining double samplers we observe that in every given sampler G = (U, V,E),
every u ∈ U can be identified with the set of its neighbors {v ∈ V | v ∼ u}. In this way U is
a collection of subsets of V . In the other direction, given a ground set V and a collection of
subsets {S ⊂ V }, the graph G pops out as the bipartite inclusion graph with an edge from
v ∈ V to S iff v ∈ S.

A double sampler (see Figure 1 for an illustration) consists of a triple (V2, V1, V0), where
V0 is the ground set, V1 is a collection of m1-subsets of V0 and V2 is a collection of m2-subsets
of V0, where m2 > m1. We say that (V2, V1, V0) is an (α, β), (α0, β0) double sampler if

• The inclusion graphs on (V2, V1) and (V2, V0) are (α, β) samplers, the inclusion graph on
(V1, V0) is an (α+α0, β+ β0) sampler. An inclusion graph is a graph where we connect
two subsets by an edge if one contains the other; here a single vertex is also considered
to be a singleton subset.

• For every T ∈ V2, let V1(T) = {S ∈ V1 : S ⊂ T} be the sets in V1 that are contained
in T . Let G|T be the bipartite inclusion graph connecting elements in T (viewed as
elements in the ground set V0) to subsets in V1(T). We require that for every T ∈ V2,
the graph G|T is an (α0, β0) sampler. We call this property the locality property of the
double sampler.

Our definition of double samplers is stronger than the previous definition due to Dinur and
Kaufman [DK17], that was missing the locality property1. Whereas the definition of Dinur
and Kaufman [DK17] can be obtained e.g. by concatenating two samplers, our definition
herein is much stronger and carries properties not known to be obtained by any random
construction. It is quite remarkable that high dimensional expanders [LSV05, KO18] give rise
to an infinite family of double samplers for which |V1|, |V2| = O(|V0|):

Theorem 1.1 (Informal, see formal version in Theorem 2.11). For every α, β, α0, β0 > 0 there
are integers m1,m2 = poly(1

αβα0β0
), D = exp(poly(1

αβα0β0
)), such that there is an explicit

polynomial time construction of an (α, β), (α0, β0) double sampler on n vertices, for infinitely
many n ∈ N, such that the subsets in Vi are of size mi and the bipartite inclusion graphs on
V0, V1 and on V0, V2 have degree at most D.

On random double samplers. To appreciate the remarkableness of double samplers, think
of concrete parameters such as m1 = 2,m2 = 3. A random construction amounts to placing
n vertices in V0, a linear (in n) number of edges in V1 and a linear number of triples in V2.
Consider for example the G(n, p)-like model, where triangles are chosen independently. In

1The main result of Dinur and Kaufman [DK17] was proven directly from high dimensional expanders, and
not from double samplers, so this locality property was used implicitly. It is possible that the result of Dinur
and Kaufman [DK17] can be proven directly from our revised definition of double samplers.

2

V0

V1

V2

T

V1(T)

S

x

G|T

T ⊂ V0

Figure 1: Double sampler. Each vertex S ∈ V1 is a set containing m1 elements from V0, and
each vertex T ∈ V2 is a set containing m2 elements from V0. The edges in the graph denote
inclusion, for example x ∈ S ⊂ T .

this case two triangles will almost never share an edge. In either case the inclusion graph on
V1, V2 is highly disconnected, and certainly not a sampler2.

We elaborate more on the construction of double samplers towards the end of the intro-
duction.

Samplers and distance amplification. Alon, Bruck, Naor, Naor and Roth [ABNNR92]
showed how to amplify the distance of any code, simply by pushing the symbols along edges
of a sampler graph. Let us describe their encoding in a notation consistent with the above.
We think of the graph as a sampler G = (V1, V0 = [n]), where V1 is a collection of m-sets of
[n]. Given an n-bit string x ∈ {0, 1}n, we place xi on the i-th vertex and then each subset
S ∈ V1 “collects” all of the symbols of its elements and gets a short string x|S : S → {0, 1}.
The resulting codeword is the sequence EG(x) := (x|S)S∈V1 which can be viewed as a string
of length |V1| over the alphabet Σ = {0, 1}m. We refer to the mapping x 7→ EG(x) as the
ABNNR encoding.

If the string x happens to come from an initial code C ⊂ {0, 1}n with minimum distance
2α, then, altogether we get EG(C) := {EG(x) | x ∈ C}. Assuming G is an (α, β) sampler,
the minimum distance of EG(C) is at least 1−β. Of course the length of the words in EG(C)
depends on the size of |V1|, so the shorter the better.

Approximate error correcting code. The ABNNR encoding itself has some interesting
decoding properties. As an encoding, EG does not have a noticeable minimal distance, but
still, it is an approximate-list-decodable error correcting code. Namely, for every z ∈ Σ|V1|

there is a short list Lz ⊂ {0, 1}n, such that Lz contains an approximation to every string x
whose encoding EG(x) is close to z (in Hamming distance).

The elegant encoding of ABNNR is very local and easy to compute in the forward direction
(from x to EG(x)), and indeed it has been found useful in several coding theory constructions,

2Observe that for the chosen parameters of m1 = 2 and m2 = 3, there are obvious limits on the (α, δ)
parameters of the sampler, since each triple is connected to at most 3 edges.

3

e.g. [GI05, KMRS17]. In this work we study the inverse question, also known as decoding:
given a noisy version of EG(x), find an approximation to x (or x itself, in case x ∈ C).
Moreover, we wish to be able to recover from as many errors as possible.

Decoding and list-decoding A decoding algorithm for EG gets as input a string (zS)S∈V1 ,
and needs to find a word x such that x|S = zS for as many S ∈ V1 as possible. A natural
approach is the “maximum likelihood decoding” algorithm: assign each i ∈ [n] the most likely
symbol, by looking at the “vote” of each of the subsets S 3 i,

x′i := majorityS:S3i[zS(i)].

The resulting x′ is an approximation for x, and in the case where x ∈ C we can run the decoder
of C and retrieve x. Assuming G is a good sampler, this approach gives an approximate-
decoding algorithm for EG that recovers x from error rates almost up to 1/2.

Going beyond the unique-decoding radius, we show using the Johnson bound that the
ABNNR encoding on a sampler graph is (combinatorially) approximate-list-decodable, up to
an error rate approaching one as the sampler parameters go to zero (see Section 3). However,
the maximum likelihood decoder stops working in this regime: one cannot rule out the situ-
ation where for each vertex i, both 0 and 1 symbols occur with equal likelihood, and it is not
known, in general,3 how to recover x.

Thus, it is natural to ask for an algorithm that approximate-list-decodes the ABNNR
encoding up to the Johnson bound radius. Our main result is a list-decoding algorithm
that goes beyond the unique-decoding barrier of 1/2 and works for error rates approaching
1. The algorithm works whenever the underlying graph G = (V1, [n]) is part of a double
sampler, namely where there is a collection V2 of sets of size m2 > m1 = m so that the triple
(V2, V1, [n]) is a double sampler.

Theorem 1.2 (Main - informal, see Theorem 4.1 and Corollary 4.2). For every γ, ε > 0 there
exist α, β, α0, β0 > 0, integers m1, D and an (α, β), (α0, β0)-double sampler (X = (V2, V1, [n]))
such that V1 ⊆

(
[n]
m1

)
and |V1| ≤ D ·n and such that the following holds. Let G be the restriction

of X to layers V1 and [n], and let EG : {0, 1}n → ({0, 1}m1)V1 be the ABNNR encoding defined
above. Then there is a polynomial time algorithm which receives an input z ∈ ({0, 1}m1)V1,
and outputs a list Lz of size O(1

γ2
) which includes an ε-approximation for every x ∈ {0, 1}n

such that dist(EG(x), z) ≤ 1− γ.

We omitted here the conditions on the constants and the parameter requirements on X,
which appear in Theorem 4.1. We remark that the dependence of m1 and c on γ and ε is
quite far from optimal, and is discussed in Section 4.

Combining our main theorem with a unique-decodable base code C, we get a code EG(C)
that is list-decodable, whenever G = ([n], V1) is the first two layers of a double sampler,

Corollary 1.3 (Informal, see Corollary 4.4). For every γ, ε > 0, let (X = (V2, V1, [n])) be a
double sampler as above. Suppose C ⊂ {0, 1}n is an error correcting code with a polynomial
time unique-decoding algorithm from an ε-fraction of errors, then the following holds. Let G
be the restriction of X to layers V1 and [n]. Then the code EG(C) = {EG(x) | x ∈ C} has a
polynomial time list-decoding algorithm from a (1− γ)-fraction of errors, with list size O(1

γ).

3We remark that when the ABNNR encoding is applied over a base code C with additional special properties
it is possible that more can be done (see e.g [GI05]), but our focus is on a generic decoding mechanism.

4

Notice that the list-decoding algorithm in the corollary outputs a shorter list than the
approximate-list-decoding algorithm in our main theorem (length 1/γ versus 1/γ2). This is
because in the case of error correcting codes we can prune the list more efficiently, as explained
in Section 3.

At this point the reader may be wondering how the double sampler property helps facilitate
list-decoding. Roughly speaking, a double sampler is a collection of (small) subsets that have
both large overlaps as well as strong expansion properties. The expansion properties are key
for distance amplification, and the large overlaps, again with good sampling properties, are
key for the list-decoding algorithm.

1.1 Related work

There are several known list-decodable codes with efficient decoding algorithms, with vary-
ing parameters. This includes codes which use algebraic structure, such as Reed Solomon
codes [Sud97, GS99], folded Reed Solomon codes [PV05, GR08], multiplicity codes [Kop15],
algebraic-geometric codes [GS99, GX14] and constructions using a more combinatorial ap-
proach such as [GI01, GI05, GI03]. Most of these constructions get parameters better than
our constructions, and some of them get very close to optimal rate and alphabet size. Some of
these constructions have other advantages, such as having linear time encoding and decoding
algorithms.

Our construction starts with a basic code with constant distance and amplifies it to a
code that can be list-decoded from a distance approaching 1, and does it in a black box
way. Among all the codes listed above only the construction by Guruswami and Indyk [GI03]
does something similar. However, their reduction is recursive and has no underlying double
sampler.

It is interesting to compare our construction to the work of Trevisan [Tre03] who showed
that derandomized direct product theorems can be used to transform a code from unique-
decodable into list-decodable. The work of Impagliazzo, Jaiswal, Kabanets and Wigderson
[IJKW10] also uses derandomized direct product to create list-decodable codes. The encoding
we use in this work can also be viewed as a derandomized direct product encoding. The rate
of the resulting code depends on the quality of the derandomization. Whereas previous deran-
domizations had a sub constant rate, double samplers give a much stronger derandomization
that results in constant rate.

The ABNNR construction starts with a binary code and constructs a code over a larger
alphabet by having each vertex S ∈ V1 collect the bits from all indices i ∈ S. It is natural to
consider the direct sum variant, where each S ∈ V1 XORs these bits together into a single bit.
It would not be hard to adapt our algorithm to that setting, though we haven’t explicitly done
so. A subsequent work [AJQST20] went quite a step further and showed an algorithm for list-
decoding the direct sum code for a strictly broader family of samplers. Their algorithm uses
the Sum-of-Squares (SOS) semi-definite programming hierarchy to list-decode the direct sum
for all samplers that satisfy a “splittability” condition which they introduce. These include
not only samplers that come from double samplers, but also samplers that come from random
walks on expanders, which are not covered by our work.

Even more recently, [JST21] presented an algorithm for list-decoding the direct sum code
in nearly linear time. Furthermore, their work gives an efficient decoding algorithm for the
error correcting code of [TaS17]. The code in [TaS17] is the first explicit construction of binary

5

codes with distance close to half and nearly optimal rate. Prior to [JST21], it was not known
whether the binary code of [TaS17] can be efficiently decoded.

1.2 The list-decoding algorithm

On input (zS)S∈V1 , our algorithm starts out with a voting step, similar to the maximum
likelihood decoder. Here we vote not on the value of each bit i ∈ [n] but rather on the value
of x restricted to an entire set T ∈ V2. Since the graph X|T between V1(T) and T is a sampler
(this is the locality property), we can come up with a short list of popular candidates for x|T .
This is done by looking at zS for all subsets S ∈ V1, S ⊂ T . We define

∀T ∈ V2, list(T) := {σ ∈ {0, 1}T : Pr
S⊂T,S∈V1

[zS = σ|S] > ε/2 }.

Note that since T has constant size, we are able to search exhaustively over all σ ∈ {0, 1}T in
constant time.

Given a list for each T , we now need to stitch these lists together, and here we again
use the fact that (V2, V1) is a good sampler. Whenever T1 ∩ T2 is significantly large, we will
match σ1 ∈ list(T1) with σ2 ∈ list(T2) iff σ1|T1∩T2 = σ2|T1∩T2 . Moreover, the double sampler
property allows us to come up with an expander graph whose vertex set is V2, and whose
edges connect T1 to T2 when they have significant overlap. This guarantees that for almost
all edges (T1, T2) there is a matching between the list of T1 and the list of T2.

At this point what we are looking at is a unique games instance, where the said
expander is the constraint graph, and the said matchings are the unique constraints.4 We
now make two important observations. First, a word with noticeable correlation with the
received word, corresponds to a solution for the unique games instance with very high value
(i.e., satisfying a large fraction of the constraints). Second, we have an efficient algorithm
for finding a high-value solution, because the underlying unique games constraint graph is an
expander! This is originally due to Arora, Khot, Kolla, Steurer, Tulsiani Vishnoi [AKKSTV08]
but we actually use the variant of Makarychev and Makarychev [MM10], because it has better
parameters. A more naive greedy belief propagation algorithm would fail miserably because
it takes about log n steps to reach a typical point in an expander graph, and this accumulates
an intolerable ε · log n� 1 amount of error.

If we want an approximate error correcting code we are done. Otherwise, it remains to
run the unique-decoding algorithm of C on each of the solutions of the unique games instance,
to remove any small errors, and this completes the list-decoding.

The above high level description gives the rough idea for our algorithm, but the imple-
mentation brings up some subtle difficulties, which we explain below.

Every set T induces a constant size local view EG|T on the code EG, which has no reason
to be an error correcting code, and in particular has no distance. Thus, there could be several
valid candidates σ ∈ {0, 1}T that are very close in Hamming distance. Suppose σ, σ′ ∈ list(T1)
differ only in a single bit, then for most T2 ∩ T1, we don’t know which element in list(T2)
should be matched to σ and which to σ′. Saying it differently, what we really need to do is
to approximately list-decode the local view. Equivalently, for each T we prune list(T) and
enforce minimal distance r between each two list items, while holding a “covering” property

4For definitions, please see the Preliminary section.

6

- that if σ was in the initial list List(T), then there exists some σ′ in the final list that is
r-close to σ.

However, for reasons that become clear in the proof we need the following stronger prop-
erty: We require that the pruned list covers all the elements in List(T) with radius r, while
elements in the pruned list are at least R � r away from each other (think of R as being
2r). We show that there is a small set of possible radii r, such that for every T at least one
radius from the set is good, in a sense that pruning list(T) with r results in a pruned list
such that its elements are R = 5r far from each other. Thus, the pruning algorithm chooses
r dynamically over T , see Section 3.3).

Given T1, T2 with list(T1), list(T2) and the same radius r, we match σ1 ∈ list(T1) to
σ2 ∈ list(T2) if they are close (with respect to r) on T1 ∩ T2. If however T1, T2 have different
radii, we don’t know how to match these lists correctly. Therefore, our unique games instance
is created on a subgraph containing only those vertices T that share the same radius r. We
show that there exists such a subgraph which is itself an expander.

1.3 Double samplers and high dimensional expanders

Let us briefly explain how double samplers are constructed from high dimensional expanders
(proving Theorem 1.1). A high dimensional expander is a d-dimensional simplicial complex
X, which is just a hypergraph with hyperedges of size ≤ d+1 and a closure property: for every
hyperedge in the hypergraph, all of its subsets are also hyperedges in the hypergraph. The
hyperedges with i+ 1 elements are denoted X(i), and the complex is said to be an expander
if certain spectral conditions are obeyed, see Section 6.

Dinur and Kaufman [DK17] prove that a two-sided spectral high dimensional expander
gives rise to a multi-partite graph with interesting spectral expansion properties. Kaufman
and Oppenheim [KO20] proved a stronger bound which allows using one-sided spectral ex-
pander. The multi-graph has vertices X(d) ∪X(d − 1) ∪ . . . ∪X(0), and we place edges for
inclusion. Namely, S ∈ X(m1) is connected by an edge to T ∈ X(m2) if S ⊂ T . It is shown
that the graph induced by focusing on layers i and j has λ(G(X(i), X(j))) ≤ i+1

j+1 + o(1).
We show, in Section 6, that by narrowing our focus to three layers in this graph (namely,
X(m2 − 1), X(m1 − 1) and X(0)) we get a double sampler. This is proven by observing
that the spectral properties are strong enough to yield a sampler (an expander mixing lemma
argument suffices since we are only seeking relatively weak sampling properties).

Better double samplers? Double samplers with super-linear (polynomial and even expo-
nential) size have appeared implicitly (or somewhat similarly as “intersection codes”) in the
works of impagliazzo, Jaiswal, Kabanets and Wigderson [IKW12, IJKW10]. Two concrete
constructions were studied,

• The first where Vi =
(
V
mi

)
, so |Vi| ≈ nmi , for n = |V0|.

• The second where V is identified with a vector space over some finite field and then Vi
consists of all di-dimensional subspaces of V . Here |Vi| ≈ ndi .

These constructions could fit our encoding scheme but the polynomial size of the sampler
means that the code rate would approach zero. In addition, our algorithm is only efficient when

7

the sets in V2, V1 are very small (of constant or at most logarithmic size), so constructions with
larger sets, such as restricting multivariate polynomials to lines also don’t fit our algorithm.

The current work is the first to construct double samplers with linear size. This raises
the question of finding the best possible parameters for these objects. In particular, for given
sampler parameters α and δ, how small can |V1|/|V0| be?

Our current construction is based on Ramanujan complexes of Lubotzky, Samuels and
Vishne [LSV05] that are optimal with respect to the spectrum of certain Laplacian operators,
and not necessarily with respect to obtaining best possible double samplers. It is an interesting
challenge to meet and possibly improve upon these parameters through other constructions.

Unlike other pseudorandom objects, there is no known random construction of a double
sampler. In particular, we cannot use it as a yardstick for the quality of our parameters. It
remains to explore what possible parametric limitations there are for these objects.

We believe that double samplers capture a powerful feature of high dimensional expanders
whose potential merit more study. Previously, Dinur and Kaufman [DK17] showed that high
dimensional expanders give rise to a very efficient derandomization of the direct product
code that is nevertheless still testable. Part of the contribution of the current work is a
demonstration of the utility of these objects in a new context, namely of list-decoding.

1.4 Derandomized direct product and approximate-list-decoding

Our list-decoding algorithm can also be viewed in the context of decoding derandomized
direct products. The direct product encoding takes a string g ∈ {0, 1}N and encodes it into

Enc(g) = (g|S)S∈S where S =
([N]
k

)
contains all possible k-subsets of [N]. An encoding with

|S| �
(
N
k

)
, as in this paper, is called a derandomized direct product encoding.

Direct products and derandomized direct products are important in several contexts, pri-
marily for hardness amplification. This type of amplification goes back to Yao’s XOR
lemma [Yao82, Lev87] (which concerns direct sum, not direct product). In hardness ampli-
fication using direct product one begins with a string g ∈ {0, 1}N that is viewed as a truth
table of a function g : {0, 1}n → {0, 1} (here N = 2n), and analyzes the hardness of the new
function defined by Enc(g). A typical hardness amplification argument proceeds by showing
that if no algorithm (in a certain complexity class) computes g on more than 1 − ε0 of its
inputs, then no algorithm computes Enc(g) on more than ε of its inputs. Namely, Enc(g) is
much harder than g.

Such a statement is proven, as first described in [Tre05, Imp03], through a (list-) decoding
argument: given a hypothetical algorithm that computes Enc(g) successfully on at least an
ε-fraction of the inputs, the approximate-list-decoder computes g on (1− ε0) of its inputs.

Our list-decoding result falls short of being useful for hardness amplification, because it is
not local, and hardness amplification requires an additional feature called local list-decoding
which we discuss in the next subsection.

1.5 Future directions

Both this work and the work of Alex, Jeronimo, Quintana, Shashank and Tulsiani [AJQST20]
have a global decoding algorithm, which reads the entire codeword before decoding. An
interesting direction is to achieve local list-decoding. In local-list-decoding the algorithm

8

receives an index i and has query-access to a noisy version of EG(x). The algorithm queries
the codeword in a few locations and should output xi with high probability (or a list including
xi).

There is a significant technical hurdle that one faces, related to the diameter of the bi-
partite graph corresponding to (V1, V0). In the local-list-decoding constructions analyzed in
[IKW12, IJKW10] (both derandomized and non-derandomized) the diameter is O(1), and this
is crucially used in the list-decoding algorithm. The reason is that decoding occurs through
querying vertices whose distance from a given v is bounded. In the above small-diameter
situations nearly all of the vertices in the graph are in a constant distance from v, and they
can’t all be corrupted by an adversary.

When we move to a linear-size derandomized direct product encoding, as we do in this
work, we have a sparse graph and a super-constant diameter. Clearly balls of bounded
radii remain very small in this case, and can easily be corrupted. This is what makes the
approximate-list-decoding algorithm performed in our work much more challenging (even in
the non-local setting), and the algorithm more complicated than the analogous task performed
by [IKW12, IJKW10].

In a preliminary version of this manuscript, we asked if there can be an efficient decoding
algorithm for the error correcting codes constructed in [TaS17] by the last author. These codes
are binary error correcting codes with distance close to half, that achieve nearly optimal rate,
and whose encoding algorithm is similar to the one presented here. In a recent work, Jeronimo,
Srivastava, and Tulsiani [JST21] resolved this question by presenting a nearly linear decoding
algorithm for variants of the error correcting codes in [TaS17].

2 Preliminaries and Notations

For σ, σ′ ∈ Σn and S ⊆ n we define

distS(σ, σ′) = Pr
i∈S

[σi 6= σ′i].

For L ⊆ Σn we define

distS(σ, L) = min
σ′∈L

distS(σ, σ′).

When S = [n] we omit the subscript S.
An error correcting code C is a function C : Σn

0 → Σm
1 . It has distance r if for every

x 6= y ∈ Σn
0 , dist(C(x), C(y)) ≥ r. Sometimes we identify the error correcting code C with

its image, i.e. C ⊂ Σm
1 . Furthermore, C is (η, `) list-decodable if for every y ∈ Σm

1 ,

|{x ∈ C | dist(x, y) ≤ η}| ≤ `.

An algorithm is said to uniquely decode an error correcting code C ⊂ Σm
1 from an ε-

fraction of errors, if for every x ∈ Σm
1 such that dist(x,C) ≤ ε, it outputs y ∈ C such that

dist(x, y) ≤ ε. An algorithm is said to (η, `) list-decode an error correcting code C : Σn
0 → Σm

1 ,
if for every z ∈ Σm

1 , it outputs a list L = {x ∈ Σn
0 | dist(C(x), z) ≤ η}, |L| ≤ `.

9

We use the following version of a Chernoff tail bound [CL06]. Let Y1, . . . Yn be independent
random variables, with Pr[Yi = 1] = pi,Pr[Yi = 0] = 1−pi, and let Y =

∑n
i=1wiYi for wi > 0.

We define ν =
∑n

i=1w
2
i pi, then

Pr[Y ≤ (1− δ)E[Y]] ≤ e−
δ2(E[y])2

2ν ,

Pr[Y ≥ E[Y] + η] ≤ e
− η2

2(ν+w
η
3) ,

for w = maxi∈[n]{wi}.

2.1 Weighted graphs

We say (G,W) is a weighted graph if G = (V,E) is an undirected graph, and W : E → R≥0

is a weight function that associates with each edge e a non-negative weight we. We have the
convention that non-edges have zero weight. Given the edge weights we the weight of a vertex
is defined as

wv :=
∑
e:v∈e

we.

The edge weights induce a distribution on edges (and vertices) which we denote by µG
where µG(e) = we∑

e′∈E we′
and similarly for vertices. We overload µG to denote both the

distribution on edges and on vertices. When the graph G is clear, we omit the subscript G
from the distribution µG. We denote by v ∼ V a random vertex in the graph according to
the distribution µG, and by e ∼ E a random edge. For a vertex v ∈ V , we denote by u ∼ v a
random neighbor of v, according to the edge weights.

Definition 2.1. We say a distribution Π over V has irregularity at most D, for an integer
D ∈ N, if there is some p ∈ (0, 1] such that for every v ∈ V , Π(v) ∈ {p, 2p, . . . ,Dp}. The

irregularity of v ∈ V is defined to be Π(v)
p .

Clearly the uniform distribution has irregularity 1.

2.2 Expanders

Let (G = (V,E),W) be a weighted graph.

• The edge expansion of G is

hG := min
V ′⊂V,µ(V ′)≤ 1

2

µ(E(V ′, V \ V ′))
µ(V ′)

,

where E(A,B) denotes the set of edges between A and B.

• The normalized adjacency matrix A of G is defined by

Au,v =
wu,v√
wuwv

.

• λ2(G) denotes the second largest eigenvalue (in absolute value) of A.

In the case of bipartite graph G = (U, V,E), let Abip be the normalized adjacency matrix of

G defined by Abip
u,v =

wu,v√
wuwv

for every u ∈ U, v ∈ V (Abip is not symmetric). Let λbip
2 (G) be

the second largest singular value of Abip.

10

2.3 Samplers

Definition 2.2. (Sampler) A weighted bipartite graph (G = (V2, V1, E),W) is an (α, β) sam-
pler if for every f : V1 → [0, 1],

Pr
v2∼V2

[∣∣∣∣ E
v1∼v2

[f(v1)]− E
v1∼V1

[f(v1)]

∣∣∣∣ ≥ α] ≤ β.

When the distribution is uniform, we say G is an (α, β) sampler.

It is possible to convert a weighted sampler into an unweighted one, if the weights satisfy
certain conditions.

Definition 2.3 (Flattening). Let (G = (V2, V1, E),W) be an (α, β) sampler, such that W
is uniform on V1, has irregularity at most D on V2, and for every v ∈ V2, all the edges
touching v have the same weight. Then the flattening of G is the unweighted bipartite graph
G′ = (V ′2 , V1, E

′), with vertex set V ′2 containing every vertex v ∈ V2 repeated M(v) times,
where M(v) ∈ [D] is the irregularity of v in G. The edge set E′ contains (v′, w) if v′ is a
duplicate of v ∈ V2 and (v, w) ∈ E.

Claim 2.4. Let (G = (V2, V1, E),W) be an (α, β) sampler with weights that satisfy the con-
ditions of Definition 2.3, then G′ = (V ′2 , V1, E

′) the flattening of (G,W) is also an (α, β)
sampler.

Proof. Fix an arbitrary function f : V1 → [0, 1], let B ⊂ V2 be

B =

{
v ∈ V2

∣∣∣∣ | Eu∼v[f(u)]− E
u∼V1

[f(u)]| ≥ α
}
.

The graph (G,W) is an (α, β) sampler, so Prv∼V2 [v ∈ B] ≤ β.
Let B′ ⊂ V ′2 be

B′ =

{
v ∈ V ′2

∣∣∣∣ | Eu∼v[f(u)]− E
u∼V1

[f(u)]| ≥ α
}
.

The distribution W is uniform over V1, so Eu∼V1 [f(u)] is the same in G and in G′. For every
v′ ∈ V ′2 a copy of v ∈ V2, the distribution over its neighbors is uniform, so Eu∼v′ [f(u)] =
Eu∼v[f(u)]. Therefore, the set B′ contains exactly all v′ ∈ V ′2 which are copies of v ∈ B, and

Pr
v′∼V ′2

[v′ ∈ B′] = Pr
v∼V2

[v ∈ B] ≤ β.

2.4 Every sampler contains an induced expander

The two-step walk of a weighted bipartite graph (G′ = (V2, V1, E
′),W ′), is the weighted graph

(G = (V2, E),W).

For every T1, T2 ∈ V2 and S ∈ V1 such that S is a common neighbor of T1, T2, we connect
T1, T2 by an edge and label the edge (T1, T2)S .

11

The weight of the edge (T1, T2)S corresponds to the probability of picking S ∼ V1 and then
independent neighbors T1, T2 of S in G′ according to the edge weights W ′. More explicitly,
W ((T1, T2)S) = µG′(S) PrT1,T2∼S [T1 = u1 ∧ T2 = u2].

Notice that the graph G contains parallel edges and self loops.

Claim 2.5. Choosing a random edge e ∈ G according to the weights W and a random vertex
T ∈ e, has the same distribution as picking T ∼ V2 according to the vertex weights W ′.

Proof. Fix a vertex T ∈ V2, the probability to choose T in G equals:

Pr
(T1,T2)∼E

[T1 = T] =
∑
S∈V1

Pr
S1∼V1

[S1 = S] Pr
T1∼S

[T1 = T].

We omit the second endpoint of the edge because it’s independent.
By Bayes’ rule,

Pr
(T1,T2)∼E

[T1 = T] =
∑
S∈V1

Pr
S1∼V1

[S1 = S] Pr
(S1,T1)∼E′

[T1 = T |S1 = S]

=
∑
S∈V1

Pr
S1∼V1

[S1 = S]
PrT1∼V2 [T1 = T] Pr(S1,T1)∼E′ [S1 = S|T1 = T]

PrS1∼V1 [S1 = S]

= Pr
T1∼V2

[T1 = T]
∑
S∈V1

Pr
(S1,T1)∼E′

[S1 = S|T1 = T]

= Pr
T1∼V2

[T1 = T].

In Section 7 we show that the two-step graph of a sampler always contains an expander.

Theorem 2.6 (Every sampler contains an induced expander). Let

(G′ = (V2, V1, E
′),W ′)

be an (α, β) sampler for some α, β ∈ (0, 1). Let (G = (V2, E),W) be the two-step walk graph
of G′. Fix η ∈ (0, 1) such that η > 10

√
max{α, β}.

Then for every A ⊆ V2 with µG(A) = η there exists a set B ⊆ A such that:

• µG(B) ≥ η
4 .

• λ2(GB) ≤ 99
100 , where GB is the induced graph of G on B with the same edge weights.

Furthermore, given A, such a set B can be found in time polynomial in |V |.

In order to prove the above theorem, we use a variant of the expander mixing lemma on
the two-step walk graph G. Even though G is not an expander, we show that large sets in it
expand.

Claim 2.7. Let (G′ = (V2, V1, E
′),W ′) be an (α, β) sampler and let (G = (V2, E), W) be the

two-step walk on G′.
Then for every A,B ⊂ V2 satisfying µG(A) > α, µG(B) > β,

Pr
(T1,T2)∼E

[T1 ∈ A, T2 ∈ B] ≥ (µG(A)− α) (µG(B)− β)

Pr
(T1,T2)∼E

[T1 ∈ A, T2 ∈ B] ≤ µG(A) (µG(B) + β) + α.

12

Proof. Fix sets A,B ⊂ V2 that satisfy the conditions of the claim. We define the function
f : V1 → [0, 1] by,

∀v ∈ V1, f(v) = Pr
T∼v

[T ∈ A],

In words, f(v) is the probability of a random neighbor (according to the edge weights) of v
in G′ to be in A. From Claim 2.5, Ev∼V1 [f(v)] = PrT∼V2 [T ∈ A] = µG(A).

For every T ∈ V2, let pT be the probability of a random neighbour of T in G to be in A.
Using f , pT = Pr(T1,T2)∼E [T2 ∈ A|T1 = T] = Ev∼T [f(v)]. The last equality is because G is a
two-step random walk of G′.

From the sampling properties of G′,

Pr
T∼V2

[∣∣∣∣ Ev∼T [f(v)]− E
v∼V1

[f(v)]

∣∣∣∣ > α

]
≤ β,

Substituting Ev∼T [f(v)] by pT , we get that PrT∼V2 [|pT − µG(A)| > α] ≤ β.
Let R ⊂ V2 be the set

R = {T ∈ V2 | |pT − µG(A)| > α} .

From above, µG(R) ≤ β. For every T1 /∈ R, pT ∈ [µG(A)− α, µG(A) + α].
Therefore,

Pr
(T1,T2)∼E

[T1 ∈ A, T2 ∈ B] ≥ Pr
T2∼V2

[T2 ∈ B \R] Pr
(T1,T2)∼E

[T1 ∈ A|T2 ∈ B \R]

≥ (µG(B)− β) (µG(A)− α) .

Pr
(T1,T2)∼E

[T1 ∈ A, T2 ∈ B] ≤ Pr
T2∼V2

[T2 ∈ R]

+ Pr
T2∼V2

[T2 ∈ B \R] Pr
(T1,T2)∼E

[T1 ∈ A|T2 ∈ B \R]

≤β + µG(B) (µG(A) + α) .

2.5 Double samplers

A double sampler is a two-layered graph with some additional properties. It is convenient to
view it as an inclusion graph, defined as follows

Definition 2.8. (Inclusion graph) An inclusion graph X = (V2, V1, V0) with cardinalities
m2 > m1 > 0 is a tri-partite graph with vertices V = V2∪V1∪V0, where Vi ⊆

(
V0
mi

)
for i = 1, 2

and (a, b) ∈ E iff a ⊆ b.

Given a distribution W2 on V2, define a distribution Π on V2×V1×V0 by sampling v2 ∈ V2

according to W2, then choosing a random neighbor v1 ∈ V1 of v2 and then a random neighbor
v0 ∈ V0 of v1.

We denote by Πi the i-th coordinate of Π, and by Πi,j the distribution Π restricted to
layers i, j. Notice that Π2 = W . For every j 6= i ∈ {0, 1, 2} and every vi ∈ Vi, we denote by

13

(Πj |Πi = vi) the distribution of Πj conditioned on the i-th layer vertex equals vi, explicitly
Pruj∼(Πj |Πi=vi)[vj = T] = Pr(u2,u1,u0)∼Π[uj = T |ui = vi].

By the way we constructed Π, it satisfies the following property: for every T ∈ V2, the
distribution (Π1|Π2 = T) is uniform, and for every S ∈ V1, the distribution (Π0|Π1 = S)
is also uniform. Note that other conditional distributions may not be uniform, for example,
(Π2|Π1 = S) might not be uniform.

Given an inclusion graph X = (V2, V1, V0) and a distribution Π, we denote by (X(Vi+1, Vi),
Πi+1,i) the weighted bipartite graph between Vi, Vi+1. For every T ∈ V2, we define the weighted
bipartite graph

(X|T = (U, T,E) , WT)

where:

• U = {S ∈ V1 | S ⊆ T}, and recall T is a set of elements from V0,

• (S, i) ∈ E for S ∈ U and i ∈ T iff i ∈ S, and,

• WT = (Π1,0|Π2 = T).

The graph X|T is the subgraph of X that contains all the subsets of T , see Figure 1 for a
graphic representation.

With this notation we define double samplers.

Definition 2.9 (Double Sampler). Let X = (V2, V1, V0) be an inclusion graph with distribution
Π on V2×V1×V0 defined from W on V2 as above. We say (X,W) is a ((α, β), (α0, β0)) double
sampler, if

1. (X(V2, V1),Π2,1) is an (α, β) sampler.

2. For every T ∈ V2, (X|T ,WT) is an (α0, β0) sampler.

We say that X has irregularity at most D if

• Π2,Π0 are uniform, and for each T ∈ V2, the graph X|T is bi-regular and WT is the
uniform distribution.

• The distribution on Π1 has irregularity at most D.

We say that X is perfectly regular if it has irregularity D = 1.

Note that by the definition of inclusion graph over a ground set, the bipartite graphs
X(V2, V0), X(V1, V0) and X|T are always left-regular. A vertex S ∈ V1 has exactly m1 neigh-
bors in V0, which are the m1 elements the set S contains, and the same for T ∈ V2.

The definition of a double sampler implies that the graph X has more sampling properties,
proven in the claim below.

Claim 2.10. Let X be a double sampler as in Definition 2.9, then:

1. (X(V2, V0),Π2,0) is an (α, β) sampler, and,

2. (X(V1, V0),Π1,0) is an (α+ α0, β + β0) sampler.

14

Proof.

• For Item 1, fix an arbitrary function f : V0 → [0, 1], let f ′ : V1 → [0, 1] be f ′(S) =
Ex∼(Π0|Π1=S)[f(x)]. From the definition of Π, the expectation of f over Π0 and f ′ over
Π1 is the same ES∼Π1 [f ′(S)] = Ex∼Π0 [f(x)].

The graph (V2, V1) is a (α, β) sampler,

Pr
T∼Π2

[∣∣∣∣ E
S∼(Π1|Π2=T)

[f ′(S)]− E
S∼Π1

[f ′(S)]

∣∣∣∣ ≥ α] ≤ β. (1)

The joint distribution Π = Π0,Π1,Π2 is defined so that for every T ∈ V2, if we first
choose S ∼ Π1|Π2 = T and then x ∼ Π0|Π1 = S, it is the same as when we choose
x ∼ Π0|Π2 = T . Therefore, for every T ∈ V2, Ex∼(Π0|Π2=T)[f(x)] = ES∼(Π1|Π2=T)[f

′(S)].

Substituting the expectations in (1) we get

Pr
T∼Π2

[∣∣∣∣ E
x∼(Π0|Π2=T)

[f(x)]− E
x∼Π0

[f(x)]

∣∣∣∣ ≥ α] ≤ β, (2)

which finished the proof.

• For Item 2, fix an arbitrary f : V0 → [0, 1], and let f ′ : V1 → [0, 1] be as in the first item,
f ′(S) = Ex∼Π0|Π1=S [f(x)]. Again, ES∼Π1 [f ′(S)] = Ex∼Π0 [f(x)] and equations (1),(2)
holds here as well.

For every T ∈ V2, let µT be the expected value of f on T , i.e. µT = Ex∼(Π0|Π2=T)[f(x)].
Let A be the set of vertices T ∈ V2 in which µT is close to the expectation of f on V0,

A =

{
T ∈ V2

∣∣∣∣ ∣∣∣∣µT − E
x∼Π0

[f(x)]

∣∣∣∣ ≤ α} .
From (2), PrT∼Π2 [T ∈ A] ≥ 1− β.

For every T , µT = ES∼(Π1|Π2=T)[f
′(S)], see explanation in the first item. The bipartite

graph X|T is an (α0, β0) sampler, so

Pr
S∼(Π1|Π2=T)

[∣∣f ′(S)− µT
∣∣ ≥ α0

]
≤ β0.

By the triangle inequality,∣∣∣∣f ′(S)− E
x∼Π0

[f(x)]

∣∣∣∣ ≤ ∣∣f ′(S)− µT
∣∣+

∣∣∣∣µT − E
x∼Π0

[f(x)]

∣∣∣∣ .
For T ∈ A, |µT − Ex∼Π0 [f(x)]| ≤ α. Therefore for T ∈ A

Pr
S∼(Π1|Π2=T)

[∣∣∣∣f ′(S)− E
x∼Π0

[f(x)]

∣∣∣∣ ≥ α+ α0

]
≤ β0. (3)

15

We finish the proof by using the fact that the probability of T ∼ Π2 to be in A is at
least 1 − β. Let I be the event in which |f ′(S)− Ev∼Π0 [f(v)]| ≥ α + α0. Using this
notation,

Pr
S∼Π1

[I] ≤ Pr
T∼Π2

[T /∈ A] + Pr
T∼Π2

[I|T ∈ A]

≤β + β0. (by (2) and (3))

In Section 6 we prove that bounded-degree double samplers can be constructed from high
dimensional expanders. While the distributions in the explicit construction are not uniform,
they are not too far off. Π1 has bounded irregularity and Π2,Π0 are uniform. The irregularity
stems from the irregularity of the high dimensional expanders. Very recent work [FI20] has
managed to construct regular high dimensional expanders, which leads to perfectly regular
double samplers. These were not available when an earlier version of this manuscript came
out.

Theorem 2.11. For every α, β, α0, β0 > 0 there exist constants m1,m2, D ∈ N, m1,m2 =
poly(1

αβα0β0
), D = exp(poly(1

αβα0β0
)), such that there is a family of explicitly constructible

double samplers (Xn,Wn) for infinitely many n ∈ N satisfying

• Xn = (V2, V1, V0) is an inclusion graph, where |V0| = n, Vi ⊆
(
V0
mi

)
for i = 1, 2.

• Xn is an ((α, β), (α0, β0)) double sampler.

• |V1|, |V2| ≤ D · n.

• The distributions Π0,Π2 are uniform and the distribution Π1 has irregularity at most
D.

• For each m ∈ N there is some n ∈ [m,Dm] such that the complex Xn on n vertices is
constructible in time poly(n).

2.6 UG constraint graphs

Definition 2.12. (UG constraint graph) Let (G = (V,E),W) be a weighted graph. We say
((G,W), {πe}e∈E) is a UG constraint graph with ` labels if πe : [`] → [`] is a permutation.
An assignment for G is a function a : V → [`]. We say the assignment a satisfies an edge
e = (u, v) if πe(a(u)) = a(v). The value of an assignment is the fraction of satisfied edges.
We say ((G,W), {πe}e∈E) is p-satisfiable if there exists an assignment with value at least p.

The graph G is undirected, and since the constraints are unique it doesn’t matter if πe
is represented from u to v or vice versa. Arora, Khot, Kolla, Steurer, Tulsiani and Vishnoi
[AKKSTV08] showed how to solve unique games instances on expander graphs in polynomial
time. This result was improved by Makarychev and Makarychev [MM10], who proved,

Theorem 2.13 ([MM10, Theorem 10]). Let G be a regular graph with edge expansion hG.
There exist positive absolute constants c and C and a polynomial time approximation algorithm
that given a 1 − β satisfiable instance of UG on G with β

1−λ2(G) ≤ c, the algorithm finds a

solution of value 1− C β
hG

.

16

We need a version of this theorem with two modifications:

• The theorem, as stated, refers to unweighted regular graphs. We need the same results
for non-regular weighted graphs.

• The theorem finds one assignment with high value. However, we need to get an approx-
imation to all assignments with high value.

In Appendix A we go over the algorithm in [AKKSTV08, MM10] and show that the same
result holds for weighted non-regular graphs. In Section 8 we show how to output a list
that contains an approximation to all assignments with high value. To do that we run the
algorithm several times, each time peeling off the solution that is found. We prove:

Theorem 2.14. Let (G = (V,E),W) be a weighted undirected graph with λ2(G) ≤ 99
100 . Let

{πe}e∈E be unique constraints over the edges of G, with ` labels.
Then there is an absolute constant c > 1 and a polynomial time algorithm that outputs a

list of assignments L = {a(1), . . . , a(t)} with a(i) : V → [`]. The list satisfies that for every
assignment a : V → [`] that satisfies 1−η of the constraints for η < c−`−1, there exists a(i) ∈ L
that satisfies Prv∼W [a(v) = a(i)(v)] ≥ 1− ηc`.

2.7 The Johnson bound

Johnson’s bound shows that any code with a good distance is also a good list-decodable code.
The bound has several versions, and the quantitative bounds are different over large and small
alphabets. The bounds are usually stated for codes, but, essentially address the following
geometric problem: How many vectors can be all close to the same vector, and far away from
each other. As such, the bounds are also useful for approximate error correcting codes, see
Section 3. In this section we repeat the Johnson bound (with this geometric interpretation in
mind) and give the proofs for completeness. We follow the exposition in [Sud01, GRS].

2.7.1 Large alphabet

Theorem 2.15. Let Σ be a finite set of cardinality q, let z ∈ Σn and L ⊆ Σn. If:

• For every x ∈ L, dist(x, z) ≤ 1− γ, and,

• For every distinct x, x′ ∈ L, dist(x, x′) ≥ 1− β,

where γ2 > β, then, |L| ≤ γ−β
γ2−β .

Proof. Let z ∈ Σn and let L = x1, . . . , x` be a list satisfying the theorem requirements, |L| = `.
We prove the Johnson bound by double counting. The expression we bound is the probability
that two different list elements agree on a random coordinate,

p = Pr
x 6=x′∈L,i∈[n]

[xi = x′i].

By the list requirement, x, x′ ∈ L satisfies dist(x, x′) ≥ 1− β, therefore p ≤ β. Also,

17

p = Pr
x 6=x′∈L,i∈[n]

[xi = x′i] = E
i∈[n]

[Pr
x 6=x′∈L

[xi = x′i]]

≥ E
i∈[n]

[Pr
x 6=x′∈L

[xi = x′i = zi]]

For every coordinate i ∈ [n], let `i be, `i = |{x ∈ L | xi = zi}|. Using this notation,

Pr
x 6=x′∈L

[xi = x′i = zi] =
`i
`
· `i − 1

`− 1
.

The list requirements imply that Ei∈[n][`i] ≥ γ`, which gives the bound on p:

p ≥ E
i∈[n]

[
`i(`i − 1)

`(`− 1)

]
≥ 1

`(`− 1)

(
E

i∈[n]
[`2i]− E

i∈[n]
[`i]

)
≥ γ2`− γ

`− 1
.

Hence β(`− 1) ≥ γ2`− γ and ` ≤ γ−β
γ2−β .

2.7.2 Binary alphabet

For Binary alphabet and distance γ = 1−α
2 where α ≈ 0, the condition α2 > β is restrictive,

as it forces β to be about 1
4 or below, which corresponds to the distance 1− β being 3

4 which
is vacuous for Binary codes. We now state a version useful for Binary alphabets.

Lemma 2.16. (See [Sud01, Lem 7.1]) Fix ∆,Γ > 0. Suppose x1, . . . , xm ∈ Rn are such that

• ‖xi‖2 ≤ Γ, and,

• 〈xi, xj〉 ≤ −∆ for every i 6= j.

Then m ≤ 1 + Γ
∆ .

Proof. Set z =
∑
xi. Then 〈z, z〉 ≥ 0 and

〈z, z〉 =
∑
i

〈xi, xi〉+
∑
i 6=j
〈xi, xj〉 ≤ mΓ +m(m− 1)(−∆).

Together this implies Γ− (m− 1)∆ ≥ 0 and the bound.

Theorem 2.17. (Following [Sud01]) Let Σ = {0, 1}, z ∈ Σn, L ⊆ Σn. If:

• For every w ∈ L, dist(w, z) ≤ 1−α
2 , and,

• For every different x, x′ ∈ L, dist(x, x′) ≥ 1−β
2 ,

where α2 > β. Then, |L| ≤ 1 + 4
α2−β .

Proof. We first define an embedding E : {0, 1}n → Rn by letting E(b1, . . . , bn) = 1√
n

((−1)b1

, . . . , (−1)bn). Notice that if σ1, σ2 ∈ {0, 1}n then 〈E(σ1), E(σ2)〉 = 1 − 2dist(σ1, σ2) and
in particular ‖E(σ)‖ = 1. Suppose L = {σ1, . . . , σm}. Denote xi = E(σi), y = E(z) and
zi = xi − αy. Then:

18

〈zi, zi〉 = 〈xi − αy, xi − αy〉 = 1− 2α 〈xi, y〉+ α2 ≤ 1 + 2α+ α2 = (1 + α)2 ≤ 4, and,

〈zi, zj〉 = 〈xi − αy, xj − αy〉 = 〈xi, xj〉 − α[〈xi, y〉+ 〈xj , y〉] + α2

= 1− 2dist(xi, xj)− α(1− 2dist(xi, y) + 1− 2dist(xj , y)] + α2

≤ β − 2α2 + α2 = β − α2.

It follows by Lemma 2.16 that m ≤ 1 + 4
α2−β .

3 Approximate Error Correcting Codes

In this section we revisit the definition of approximate error correcting codes (ECCs), and the
ABNNR encoding [ABNNR92] in both direct product and direct sum form. We also relate
approximate ECC to distance amplification.

Definition 3.1. (Approximate ECC) [IJKW10, Def 1.5] E : Σn
0 → Σm

1 is an (r, η, `) approximate-
list-decodable error correcting code if for every z ∈ Σm

1 there is a list L ⊆ Σn
0 of cardinality at

most ` such that for every codeword E(x) with dist(E(x), z) ≤ η we have dist(x, L) ≤ r.
There are a few important differences between an approximate-list-decodable ECC and

a list-decodable ECC. A code C : Σn
0 → Σm

1 is (η, `) list-decodable, if for every z ∈ Σm
1 ,

|L| = |{x ∈ Σm
0 | dist(C(x), z) ≤ η}| ≤ `. In an approximate-list-decodable ECC, we re-

lax the condition and only require the list L to contain an approximation for x such that
dist(E(x), z) ≤ η. This requirement is much weaker, and an approximate-list-decodable ECC
might not have a noticeable minimal distance.

Another difference between the codes is the uniqueness of the list. In list-decoding, for
every code C and input z there is a unique list L which satisfies the requirements, L =
{x ∈ Σm

0 | dist(C(x), z) ≤ η}. In addition, given an efficient encoding algorithm for C it is
easy to check if x is in L, by checking if dist(C(x), z) ≤ η. In approximate-list-decoding, for
every encoding E and input z there can be many possible lists which satisfy the requirements,
as each x satisfying dist(E(x), z) ≤ η has many strings that r-approximate it. Furthermore,
given a string x′ ∈ Σn

0 , it is not clear how to check efficiently if x′ is an r-approximation to
some x such that dist(E(x), z) ≤ η, as going over all strings which are r-close to x′ takes
possibly exp(n) time.

From the above paragraph we understand why the list size in Theorem 4.1, which is
an approximate-list-decoding algorithm, is larger than the list size in Corollary 1.3. In the
corollary there is a list-decoding algorithm, where it is possible to check and prune the list,
see a proof of the corollary in Section 4.4.

3.1 The ABNNR direct-product construction

We restate the ABNNR encoding [ABNNR92]. In the original paper, it is defined as an
amplification step applied on an underlying code. Here we state it as an approximate error
correcting code.

Definition 3.2. (ABNNR encoding[ABNNR92]) Let G = (V1, V0, E) be a d left-regular bi-
partite graph, and let Σ0 be a constant size alphabet. The ABBNR encoding

EG,Σ0 : Σ
|V0|
0 → Σ

|V1|
1

19

for Σ1 = Σd
0 is defined as follows. For every v ∈ V1 let Sv ⊂ V0 be the neighbours of v. For

every x ∈ Σ
|V0|
0 the encoding EG(x) is defined by

∀v ∈ V1, EG(x)v = x|Sv .

In order to simplify the notations, when the alphabet is clear we omit Σ0 and use EG. To
clarify, d left-regular means that each v ∈ V1 has exactly d neighbors.

The key property of this construction is distance amplification.

Claim 3.3. For every x, x′ ∈ Σ|V0| such that dist(x, x′) > α,

dist(EG(x), EG(x′)) ≥ 1− β.

Proof. Let f : V0 → {0, 1} equal 1 for all u ∈ V1 such that x|u 6= x′|u, and 0 else. As

dist(x, x′) > α we have Eu∈V0 [f(u)] > α. By the sampler property of G, all except a β
fraction of the vertices in V1 satisfy

E
u∼v

[f(u)] ≥ E
u∈V0

[f(u)]− α > 0.

Thus, for all these vertices v, EG(x)v 6= EG(x′)v which implies dist(EG(x), EG(x′)) ≥ 1−β.

Using this, we show that EG is an approximate-list-decodable code.

Lemma 3.4. Let G = (V1, V0, E) be a d left-regular (α, β) sampler. Let γ >
√
β. Then EG

is (α, 1− γ, ` = γ−β
γ2−β) approximate-list-decodable ECC.

Proof. Fix an arbitrary z ∈ Σ
|V1|
1 , and define

L0 = {x ∈ Σ
|V0|
0 | dist(EG(x), z) ≤ 1− γ}.

The list L0 contains all x such that EG(x) has γ agreement with z, but it is possibly very
large. We reduce the size of L0 by removing elements which are too close to each other. Let
Lα ⊂ L0 be a maximal subset of L0, such that different x, x′ ∈ Lα are at distance more than
α. By definition, for each x ∈ L0 there exists x′ ∈ Lα such that dist(x, x′) ≤ α, or else it is
possible to add x into Lα which contradicts Lα being maximal. It remains to bound ` = |Lα|.
We bound the cardinality of Lα by noting that:

• For different x, x′ ∈ Lα, dist(EG(x), EG(x′)) ≥ 1− β (by Claim 3.3), and,

• For every x ∈ Lα, dist(EG(x), z) ≤ 1− γ (by definition of L0).

Hence we get ` vectors that are all close to one vector z, but are pairwise far apart. By a
variant of the Johnson bound, Theorem 2.15, we have ` ≤ γ−β

γ2−β . We remark that for this
proof it is enough to take a disperser instead of a sampler.

20

3.2 A direct sum construction over the binary alphabet

In this section we take a small detour to analyse the direct sum encoding, which is very related
to the direct product discussed in the rest of this paper. We show that it is list-decodable.

We focus on binary alphabet, i.e. σ ∈ {0, 1}n, we define bias(σ) = |
∑n

i=1(−1)σi |. In this
case dist(σ, σ′) = δ implies bias(σ + σ′) = |1− 2δ|.

Definition 3.5. (A direct sum encoding) Let G = (V1, V0, E) be a d left-regular bipartite
graph. The direct sum encoding

E⊕ : {0, 1}|V0| → {0, 1}|V1|

is defined as follows: For every v ∈ V1 let Sv ⊂ V0 be the neighbours of v. For every
x ∈ {0, 1}|V0|, the encoding E⊕(x) is defined by

∀v ∈ V1, E⊕(x)v =
∑
u∈Sv

xu mod 2.

Definition 3.6. (Parity sampler) Let G = (V1, V0, E) be a bipartite graph. Given f : V0 →
{0, 1} we define a function G(f) : V1 → {0, 1} by

∀v1 ∈ V1, G(f)(v1) =
∑
v∈Sv1

f(v) mod 2.

We say G is an (α, β) parity sampler if for every function f : V0 → {0, 1} with bias(f) ≤ α ,
it holds that bias(G(f)) ≤ β.

Lemma 3.7. Let G = (V1, V0, E) be a d left-regular (α, β) parity sampler. Fix γ >
√
β. Then

the direct sum encoding on G is an (α, 1−γ
2 , ` = 1 + 4

γ2−β) approximate-list-decodable ECC.

Proof. Let E⊕ denote the direct sum encoding on G. Fix any z ∈ {0, 1}|V1|, and define

L0 = {x ∈ {0, 1}|V0| | dist(E⊕(x), z) ≤ 1− γ
2
}.

The list L0 contains all x such that E⊕(x) has 1+γ
2 agreement with z, but it might be too

large a set. We reduce the size of L0 by removing elements which are too close to each other.
Let Lα ⊂ L0 be a maximal subset of L0, such that different x, x′ ∈ Lα have bias(x+ x′) ≤ α.
By definition, for each x ∈ L0 there exists x′ ∈ Lα such that bias(x, x′) > α, or else it is
possible to add x into Lα which contradicts Lα being maximal. It remains to bound ` = |Lα|.
We bound the cardinality of Lα by noting that:

• For different x, x′ ∈ Lα, we have bias(x+x′) ≤ α, hence by the parity sampler property
bias(E⊕(x+x′)) = bias(E⊕(x)+E⊕(x′)) ≤ β. In particular dist(E⊕(x), E⊕(x′)) ≥ 1−β

2 .
Also,

• By definition of L0, for every x ∈ Lα, dist(E⊕(x), z) ≤ 1−γ
2 .

Hence if ` = |Lα|, we get ` vectors that are all close to one vector z, but are all far apart from
each other. By the Johnson bound, Theorem 2.17, we have ` ≤ 1 + 4

γ2β
.

21

3.3 Well-separated approximate ECC

In some cases when list-decoding, we also want the elements in the output list L to have at
least some distance between them, we define such a list as r-separated.

Definition 3.8. Let L ⊆ Σn and r ∈ [0, 1]. We say L is r-separated if for every σ1, σ2 ∈ L,
dist(σ1, σ2) ≥ r.

Let G = (V1, V0, E) be a d left-regular (α, β)-sampler, and let EG : Σ
|V0|
0 → Σ

|V1|
1 be as in

Definition 3.2. Fix γ >
√
β, we show an (inefficient) algorithm which (r, 1−γ, `) approximate-

list-decodes EG and outputs a 5r-separated list, by dynamically adjusting r for every input.

Algorithm 1 (Well-Separated List Decoding Algorithm). The algorithm has a decoding

parameter 1− γ. The input is a word z ∈ Σ
|V1|
1 , the output is a list L ⊂ Σ

|V0|
0 and a radius r.

• Set i = 0, τ0 = α,L0 =
{
x ∈ Σ

|V0|
0

∣∣∣ dist(EG(x), z) ≤ 1− γ
}

.

• At stage i, if Li is 10τi-separated, output Li, r = 2τi.

Otherwise, say v1, v2 ∈ L are independent if dist(v1, v2) ≥ 10τi. Set Li+1 to be a
maximal independent set in Li. Set τi+1 = 10τi, i = i+ 1 and repeat the loop.

Lemma 3.9. For every z ∈ Σ
|V1|
1 the algorithm above outputs a list L of size at most ` =

b γ−β
γ2−β c and a radius r = 2α10i for some i ∈ {0, . . . `} such that

• For every x ∈ Σ
|V0|
0 such that dist(EG(x), z) ≤ 1− γ, dist(x, L) ≤ r.

• L is 5r-separated.

Proof. We start by bounding the size of the lists Li produced by the algorithm.

Claim 3.10. For every τ > α, a list Li which is τ -separated satisfies |Li| ≤ `.

Proof. Every x, x′ ∈ Li satisfy dist(x, x′) ≥ τ . Using the sampler properties of G, Claim 3.3,
dist(EG(x), EG(x′)) ≥ 1 − β. From the definition of L0, every x ∈ Li ⊂ L0 also satisfies
dist(EG(x), z) ≤ 1− γ. By the Johnson bound, Theorem 2.15, |Li| ≤ `.

The algorithm outputs a list L which is at least 10α-separated, so the claim above proves
|L| ≤ `.

We now bound the number of steps the algorithm performs. Denote by t the index i with
which we quit (if we quit), we prove that t ≤ `. By the algorithm definition, for every i,
Li+1 (Li, as in the case where Li+1 = Li the algorithm stops. The list L1 is 10α-separated,
so from the claim above |L1| ≤ `, together we get that t ≤ `.

Next we prove the covering property, let x be such that dist(EG(x), z) ≤ 1 − γ, we show
that dist(x, L) ≤ r. By the definition of L0, x ∈ L0. For every i < t and every x′ ∈ Li,
dist(x′, Li+1) ≤ 10τi = τi+1, for otherwise x′ can be added to the independent set Li+1

contradicting its maximality. Hence, for x ∈ L0:

dist(x, Lt) ≤
t∑
i=0

τi = α

t∑
i=0

10i =
10t+1 − 1

10− 1
α ≤ 10

9
τt < r.

Where the last inequality holds since r = 2τt. The algorithm always outputs a list that is
10τt = 5r-separated, which finishes the proof.

22

The algorithm runs in time exp(|V0| log|Σ0|) poly(`), because it goes over all x ∈ Σ
|V0|
0 to

create the initial list L0, and the loop runs at most ` times.

3.4 Approximate-list-decoding implies distance amplification

In this section we show that composing an approximate-list-decodable code with a an error
correcting code results in a list-decodable error correcting code.

Claim 3.11. Let E : Σn
0 → Σm

1 be an (r, η, `) approximate-list-decodable code, and let C ⊂ Σn
0

be an error correcting code with distance 2r. Then the code:

E(C) = {E(x) | x ∈ C} ,

is (η, `) list-decodable.

Proof. Let z ∈ Σm
1 and let L = ListE(z) be the cardinality ` list guaranteed by the approximate-

list-decoding property of E. Let L′ be the list

L′ = {x ∈ C | ∃y ∈ L,dist(x, y) ≤ r} .

We claim that L′ is small and contains all codewords close to z.
Suppose x ∈ C is such that dist(E(x), z) ≤ η. Then by the definition of approximate-list-

decoding, ∃y ∈ L such that dist(x, y) ≤ r, so by definition x ∈ L′.
For every y ∈ L, there exist at most a single x ∈ C which is r-close to y, because the

distance of C is 2r. Therefore, |L′| ≤ `.

It is easy to see that if E has an approximate-list-decoding algorithm and C has a unique-
decoding algorithm, then E(C) has a list-decoding algorithm. To decode E(C) we simply run
the decoding algorithm of E getting L, then run the decoding algorithm of C on all elements
in L and output the result.

4 The Code and its Approximate List-Decoding Algorithm

In this section we describe our code and an approximate-list-decoding algorithm for it. The
code is the ABNNR encoding over the first two layers of a double sampler, defined as follows.

Let (X = (V2, V1, V0 = [n]),Π) be a double sampler. It is recommended to first focus on
the case where the X is perfectly regular, namely every pair of layers give rise to a bi-regular
graph. In the slightly more general case, X has irregularity at most D, i.e. Π0,Π2 are uni-
form and Π1 has irregularity at most D. Furthermore, we assume that for every T ∈ V2, the
bipartite subgraph X|T containing all subsets of T in X is a bi-regular unweighted graph.

We define the encoding EX as follows. Consider the graph obtained by restricting X to
layers V0, V1, and let G be its flattening on vertex sets V0 and V ′1 , see Definition 2.3 (in the
perfectly regular case, there’s no need for flattening). Next, we define EX = EG to be the
ABNNR encoding as given in Definition 3.2. Namely, as G is a bipartite graph on vertex sets

[n] and V ′1 , we have EX : Σn
0 → Σ

|V ′1 |
1 . The encoding of a string z ∈ Σn

0 is given by

∀S ∈ V ′1 (EX(z))S := z|S .

23

The code is defined over alphabet Σ1 = Σm1
0 , where m1 is the size of subsets in V ′1 . The

blocklength of the code is |V ′1 |, which is bounded by D|V1|, where D is the irregularity of X.
Our main theorem below is an approximate-list-decoding algorithm for E. Recall that an

algorithm (ε, 1 − γ, 70
γ2

) approximates-list-decodes E if for any input z ∈ Σ
|V ′1 |
1 it outputs a

list Lout, |Lout| ≤ 70
γ2

such that for every x that satisfies dist(E(x), z) ≤ 1 − γ, it holds that

dist(x, Lout) ≤ ε.

Theorem 4.1 (Main Theorem (formal version of Theorem 1.2)). There exists c > 0 such that
the following holds. For every γ, ε > 0, let D be some constant and let α, β, α0, β0 > 0 satisfy

α0 ≤
ε

4
10−

γ
8 , β0 ≤

εγ

1000(c
8
γ + 1)

,

α ≤
ε
√
γ

1000
, β ≤ ε

1000(c
8
γ + 1)

.

There exists c′ > 0 such that if (X = (V2, V1, V0),W) is an ((α, β), (α0, β0)) double sampler,
with irregularity at most D, the encoding E = EX has a randomized approximate-list-decoding
algorithm that runs in time polynomial in n with success probability 1− e−c′n and parameters
(ε, 1− γ, 70

γ2
).

Here n = |V0| and we assume that |V2|, |V1| = Θ(n) and the subsets in V1, V2 have bounded
size.

Theorem 2.11 proves the existence of double samplers with the required parameters. Com-
bining it with the above theorem results in the following corollary.

Corollary 4.2. For every γ, ε > 0 there exist an integer D, a constant c′ > 0 and an infinite
family of bounded-degree bipartite graphs Gn = (An, Bn, En) such that EGn : ΣAn

0 → ΣBn
1

has rate exp(−poly(1
ε exp(− 1

γ))) and a randomized polynomial time approximate-list-decoding

algorithm with parameters (ε, 1−γ, 70
γ2

) and success probability 1−e−c′|Gn|. Moreover, for every

large enough m, there is some Gn with m ≤ |An| ≤ Dm.

Proof. Fix γ, ε > 0, and let α0 = ε
410−

γ
8 , β0 = εγ

1000(c
8
γ +1)

, α =
ε
√
γ

1000 , β = ε

1000(c
8
γ +1)

.

Let Xn be an infinite family of ((α, β), (α0, β0)) double samplers, promised from Theo-
rem 2.11. The family is dense, such that for every integer m ∈ N there exists Xn = (V1, V1, V0)
such that m ≤ |V0| ≤ Dm. Furthermore, for every n the double sampler Xn = (V2, V1, V0)
has irregularity at most D = exp(poly(1

αβα0β0
)) and |V2|, |V1| ≤ D|V0|. The vertices in V1 are

m1-sets, for m1 = poly(1
αβα0β0

) and the vertices in V2 are m2-sets for m2 = poly(1
αβα0β0

).
For every Xn = (V2, V1, V0), let Gn = (An, Bn, En) be the flattening of the bipartite

graph Xn(V1, V0). From Claim 2.4, Gn is an unweighted bipartite graph with |An| = |V0| and
|Bn| ≤ D|V1| ≤ D2|V0|. In addition, the degree of each vertex b ∈ Bn is m1.

Let c′ be the constant from Theorem 4.1. From the theorem, the ABNNR encoding
EGn has a polynomial time approximate-list-decoding algorithm with parameters (ε, 1 −
γ, 70

γ2
) and success probability 1 − e−c

′|An|. The rate of the code is |An||Bn|
1
m1
≥ 1

D2m1
=

exp(− poly(1
αβα0β0

)) = exp(−poly(1
ε exp(− 1

γ))).

24

In this section X is always an ((α, β), (α0, β0)) double sampler and E is the encoding de-
fined above. We show that E is combinatorially approximate-list-decodable in Section 4.1, in
Section 4.2 we present the list-decoding algorithm and in Section 4.3 we discuss its parameters
. We prove Corollary 1.3 in Section 4.4.

4.1 Combinatorial approximate-list-decoding

We briefly show that the encoding E is combinatorially approximate-list-decodable. Let G
be the flattening of X(V1, V0), as in the previous section. From Claim 2.10, Item 2, X(V0, V1)
is an (α + α0, β + β0) sampler. It follows from Claim 2.4 that G is also an (α + α0, β + β0)
sampler.

By Lemma 3.4 our encoding E is (α+ α0, 1− γ, l = γ−β−β0
γ2−β−β0) approximate-list-decodable

code, for every γ >
√
β + β0. Choosing γ =

√
2β + β0, we get,

Corollary 4.3. E is an (α+ α0, 1−
√

2(β + β0), l = 2
β+β0

) approximate-list-decodable code.

The above corollary is about combinatorial list-decoding, and does not imply that there
is an efficient algorithm that approximate-list-decodes E with these parameters.

4.2 The list-decoding algorithm

In this section we describe a polynomial time list-decoding algorithm for E. Denote the input

z′ ∈ Σ
|
1V
′

1 |. We interpret it as {z′S}S∈V ′1 . As a preprocessing step, we create z ∈ Σ
|V1|
1 as

follows: for every S ∈ V1, the multi-set V ′1 has at most D copies of S. The algorithm picks
at random one such copy, S′ ∈ V ′1 , and sets zS = z′S′ (this preprocessing step is not needed in
the perfectly regular setup).

1. Approximate-list-decoding of Local Views

For every T ∈ V2, the graph X|T is an unweighted (α0, β0) sampler. The restriction of
E to X|T is the ABNNR encoding over the sampler X|T . We apply the well-separated
list-decoding algorithm, Algorithm 1, on X|T with input {zS}S∈V1,S⊂T , and decoding

parameter (1 − γ
2). The algorithm outputs a list LT ⊂ ΣT

0 and a radius rT such that
|LT | ≤ ` for ` ≤ 8

γ and rT = 2 · 10iα0 for some i ∈ {0, . . . `}. The list LT satisfies

• Every σ ∈ ΣT
0 such that PrS∼(Π1|Π2=T)[σ|S = zS] ≥ γ

2 is rT -close to one of the
elements in LT , and,

• LT itself is RT = 5rT -separated, i.e. ∀σ 6= σ′ ∈ LT , dist(σ, σ′) > RT .

W.l.o.g. the list LT has size exactly `, otherwise we add dummy strings that obey the
distance requirements.

2. Creating a UG constraint graph

• We define the constraint graph (GC = (V2, EC),W = {we}e∈EC) as follows: The
vertices are V2 and for every triple T1, S, T2 such that S ⊂ T1 ∩ T2, S ∈ V1, we
have an edge (T1, T2) labeled by S, denoted by (T1, T2)S . The weight of (T1, T2)S
corresponds to choosing a random S ∼ Π1 and then T1, T2 independently from the
distribution (Π2|Π1 = S). Thus, the graph contains parallel edges and self loops.
This is the two-step walk graph obtained from X(V2, V1), see Section 2.4.

25

• For every T , the label set is LT (note that |LT | = `).

• Given an edge (T1, T2) ∈ EC with label S ⊂ T1∩T2, set the constraint π of (T1, T2)
with label S as follows:

(a) For every σ ∈ LT1 if there is an unmatched σ′ ∈ LT2 such that

distS(σ, σ′) ≤ 2(rT1 + α0),

then set π(σ) = σ′.

(b) For every unmatched σ ∈ LT , set π(σ) to an arbitrary unmatched label.

Observe that we always output unique constraints, because we only ever set π(σ)
to an unmatched label.

3. Finding a large expanding UG constraint subgraph

For every i ∈ {0, . . . `}, let V (i) ⊂ V2 be all T such that rT = 2α010i. For every i such
that µGC (V (i)) ≥ 1

2(`+1) , we run Algorithm 2 on the graph GC with the subset V (i).

The algorithm finds a set U (i) ⊂ V (i) such that,

• PrT∼Π2 [T ∈ U (i)] ≥ 1
4 PrT∼Π2 [T ∈ V (i)].

• Denote by G(i) the induced subgraph of GC on U (i). Then, λ2(G(i)) ≤ 99
100 .

4. Solving the Unique Constraints

For every i as above, we run the unique games algorithm, Algorithm 3, on G(i) and get
a list L(i) of assignments. For each assignment b : U (i) → [`] in L(i) we define x ∈ ΣV0

0 as
follows. For every j ∈ V0 we pick a random T ∈ U (i) such that j ∈ T , according to the
vertex weights of G(i). Let σ ∈ ΣT

0 be the b(T)’th element in LT , then we set xj = σj .
We add x to Lout. The output is a list Lout ⊂ Σn

0 .

4.3 Algorithm Parameters

In this section we analyze the parameters of the decoding algorithm, the size of the output
list, the runtime and the randomness.

Output List Size In the first step of the algorithm (see Item 1) the algorithm creates a
list LT and a radius rT = 2α010i for every T ∈ V2. The size of LT is at most ` and the radius
has one of `+ 1 possible values. In the second step, Item 2, the algorithm creates a constraint
graph GC with constraints πe : [`]→ [`].

In the third step, Item 3, the algorithm creates a subgraph G(i) for every i ∈ {0, . . . , `}.
There are at most (` + 1) such graphs G(i), one for every possible value of rT . For every
graph G(i), the algorithm solves a unique games instance and outputs a list containing at
most ` assignments (see Item 4). For each such assignment the algorithm adds a string to
Lout, therefore |Lout| ≤ (`+ 1)` ≤ 70

γ2
.

The same encoding E is combinatorially approximate-list-decodable with list size O(1
γ),

see Section 4.1. Our algorithm outputs a list of size O(1
γ2

), and we don’t know how to shorten
the list. If we had a way to check if x should be in Lout, i.e. if it is an ε-approximation
to x′ s.t. dist(E(x′), z′) ≤ 1 − γ, we could have reduced the output list size to O(1

γ). If the
encoding E is used to amplify the distance of a uniquely-decodable error correcting code C,
then E(C) has a decoding algorithm with output list of O(1

γ), see Section 4.4.

26

Runtime We bound the runtime of the decoding algorithm by going over each step it
performs and calculating its runtime. The preprocessing step takes linear time in |V0|. In
the first step the algorithm performs Algorithm 1 on X|T for every T ∈ V2. Preforming

Algorithm 1 on X|T takes `2|T |. Since |T | and ` are constants, the total runtime of this step
is linear in |V2|.

In the second step the algorithm creates the constraint graph GC by performing a two-step
walk over the bipartite graph X(V2, V1). The size of GC can be seen to be linear in |V2|. It
takes polynomial time in |X| to construct it. Creating the constraints for each edge is a local
operation which takes constant time for each edge.

In the third step the algorithm goes over all i ∈ {0, . . . , `} and finds an expander subgraph
G(i) of GC by running Algorithm 2. Algorithm 2 runs in time polynomial in the original graph
size, which means that the entire step takes polynomial time in |X|.

In the last step, the algorithm performs Algorithm 3 on all of the graphs G(i) (there are
at most ` + 1 such graphs). By Theorem 2.14, Algorithm 3 runs in time poly(|G(i)|), so the
entire step also takes polynomial time in |X|.

Randomness The algorithm uses randomness twice directly, and one more time when run-
ning the unique games algorithm of Makarychev and Makarychev [MM10]. The unique games
algorithm of [MM10] can be derandomized, as they explain in their paper. The randomness
directly inside our algorithm occurs in the following places.

• Preprocessing step. This step is avoided when X is a perfectly regular double sampler.
In the more general irregular case, the preprocessing step chooses for each S ∈ V1 a copy
of S in V ′1 . To derandomize, one can reuse the same randomness for every S ∈ V1. This
way, the number of random bits needed is logD, and we can cycle through all of these
easily. We can enumerate over all possible random strings in {0, 1}logD and generate an
output list for each random string. The output of the derandomized algorithm is the
union of the output lists of the random strings. Our randomized algorithm succeeds
with high probability, so there must be a random string which succeeds.

• Final step (step 4) of the algorithm. In this step for each assignment b : U (i) → [`],
and each j ∈ [n] the algorithm picks a random T ∈ U (i) which contains j and uses it
to define x(j). There are k = O(1) possible choices 5 for a set T such that j ∈ T and
we can instead proceed as follows. First define x(j) according to the first choice for all
j. This leads to a list of possible codewords. Next, define x(j) according to the second
choice for all j, and so forth. Finally combine the lists from all possible choices.

The derandomized algorithm may output a somewhat larger list than the randomized one, as
it outputs a list for every choice used. In approximate-list-decoding, we are not able to prune
the output list and shorten it (see discussion in the beginning of Section 3). Luckily, if the
encoding E is used to amplify the distance of an ECC C, the list size does not increase, see
the next section for more details.

5By our assumption, the distribution Π0 is uniform, meaning that each j participates in the same number
of sets T ∈ V2, which must be a constant number.

27

4.4 Proof of Corollary 1.3

In this section we show how our main theorem implies a list-decoding algorithm for the code
E(C) = {E(x) | x ∈ C}.

Corollary 4.4. For all γ, ε > 0, let (X = (V2, V1, V0 = [n]),W) be a double sampler with
parameters α, β, α0, β0 as in Theorem 4.1, and irregularity at most D. Let C ⊂ Σn

0 be an error
correcting code with a polynomial time unique-decoding algorithm from an ε-fraction of errors.
Then the error correcting code E(C) has a randomized polynomial time (1− γ, l = γ−β−β0

γ2−β−β0)
list-decoding algorithm.

Plugging in the double samplers from Theorem 2.11, as done in Corollary 4.2, results in
an error correcting code with rate exp(−poly(1

ε exp(− 1
γ))) · Rate(C).

Proof. Fix an input z ∈ Σ
|V ′1 |
1 , the list-decoding algorithm of E(C) on z proceeds as follows.

• Run the approximate-list-decoding algorithm for E on input z, receive a list Lout of size
at most 70

γ2
.

• For each x ∈ Lout, run the decoding algorithm of C on x.

– If failed, do nothing.

– If it outputs x′ ∈ C, insert x′ into L′ only if dist(E(x′), z) ≤ 1− γ.

The above algorithm is polynomial time since the decoding algorithms of E,C are poly-
nomial, and |Lout| is constant.

We prove the correctness of the algorithm. Fix z′ ∈ Σ
|V ′1 |
1 , and let y ∈ C be a string

satisfying dist(z, E(y)) ≤ 1−γ. From Theorem 4.1, there is x ∈ Lout such that dist(x, y) ≤ ε.
The unique-decoding algorithm of C on input x should return y, and the algorithm inserts y
into L′ as dist(E(y), z) ≤ 1− γ.

We are left with bounding the list size. The encoding E is (1 − γ, α + α0, l = γ−β−β0
γ2−β−β0)

combinatorially approximate-list-decodable (see Section 4.1). The error correcting code C
has distance at least 2ε, and ε > α + α0 (by the conditions of Theorem 4.1). Claim 3.11
proves that E(C) is (α + α0, l = γ−β−β0

γ2−β−β0) combinatorially list-decodable, that is, that L =

{x ∈ C | dist(E(x), z)} has size at most l. The output list of the algorithm L′ satisfies L′ ⊆ L,
because the algorithm inserts x′ ∈ C into L′ only if dist(E(x′), z) ≤ 1−γ, so |L′| ≤ |L| ≤ l.

5 Proof of Correctness

Fix g : V0 → Σ1 such that PrS∈V ′1 [g|S = z′S] ≥ γ. It suffices to show that with high probability,
dist(g, Lout) ≤ ε. Whenever we say “correct” in this section we always mean correct with
respect to the fixed function g.

Let a : V2 → [`] be an assignment. For T ∈ V2 we overload notation and denote by a(T)
the a(T)’th element in the list LT (formally this is LT (a(T))). Similarly we treat a constraint
π(T1,T2)S : [`]→ [`] as π(T1,T2)S : LT1 → LT2 .

28

Preprocessing Step We first prove that z ∈ ΣV1
1 constructed from the input z′ ∈ Σ

V ′1
1 is

noticeably correlated with g.

Claim 5.1. With probability at least 1− e−c′n, for some constant c′,

Pr
S∼Π1

[zS = g|S] ≥ 3

4
γ.

Proof. Each S ∈ V1 has possibly several copies in the multiset V ′1 . The algorithm chooses S′

to be a random copy, and sets zS = z′S′ . It remains to use a tail bound to show that it is
highly unlikely that the correlation drops below 3γ/4 after moving to {zS}.

For every S ∈ V1, let IS be the random variable that indicates the event zS = g|S . The
input z′ is γ-close to g:

E
S∼Π1

[IS] = Pr
S′∈V ′1

[z′S′ = g|S′] ≥ γ.

We use a Chernoff tail bound (see Section 2) on the independent random variables {IS}S∈V1 .
We define the random variable I =

∑
S∈V1 Π1(S)IS , then E[I] = ES∼Π1 [IS] and define ν =∑

S∈V1 Π2
1(S)E[IS]. The distribution Π1 has irregularity at most D, which lets us bound ν:

ν ≤ D
|V1|
∑

S∈V1 Π1(S)E[IS] ≤ D
|V1| E[I].

Pr

[
E[I] <

3

4
γ

]
≤ e−

1
32D
|V1|γ .

Since D, γ are constants and |V1| = Θ(n),we pick c′ = 1
32Dγ

n
|V1| and finish the proof.

In the rest of the proof, we assume that z is such that PrS∼Π1 [zS = g|S] ≥ 3
4γ.

5.1 Approximate-list-decoding of local views

The decoding algorithm takes each T ∈ V2, and applies the well-separated list-decoding
algorithm, Algorithm 1, to the graph X|T on input {zS}S∈V1,S⊂T and closeness parameter
(1 − γ

2). The graph X|T is an (α0, β0) unweighted sampler, and γ > 10
√
β0. Algorithm 1

outputs a list LT and radius a rT . From Lemma 3.9, the list and radius satisfy

|LT | = ` ≤
γ
2 − β0

γ2

4 − β0

≤ 8

γ
,

and rT = 2α010i for some i ∈ {0, . . . `}. The list LT is RT = 5rT separated.

Definition 5.2. (Correct vertex) A vertex T ∈ V2 is correct if there exists σ ∈ LT such that
distT (g, σ) ≤ rT .

We are left with showing that almost every T ∈ V2 is correct.

Claim 5.3. PrT∼Π2 [T is correct] ≥ 1− β.

Proof. We look at the bipartite sampler (X(V2, V1),Π2,1). Let f : V1 → [0, 1] equal 1 if
zS = g|S and 0 otherwise. We know that ES∼Π1 [f(S)] ≥ 3

4γ > 3α. Let

Bad =

{
T ∈ V2

∣∣∣∣ E
S∼T

[f(S)] <
3

4
γ − α

}
.

29

As (X(V2, V1),Π2,1) is an (α, β) sampler, PrT∼Π2 [T ∈ Bad] ≤ β.
For every T 6∈ Bad,

E
S∼T

[zS = g|S] ≥ 3

4
γ − α ≥ γ

2
.

From Lemma 3.9, for every T such that the above equation holds, the list LT contains σ such
that distT (σ, g) ≤ rT .

5.2 Creating a UG constraint graph

The algorithm creates a constraint graph (GC = (V2, EC),W) which is a two-step random
walk on the weighted bipartite sampler graph (X(V2, V1),Π2,1). For each edge (T1, T2)S in
GC , the algorithm creates a matching between the lists LT1 , LT2 . In this section we prove that
for every radius r = 2α010i, and for most edges (T1, T2)S for which rT1 = rT2 , the algorithm
matches the list element closest to g in LT1 to the list element closest to g in LT2 .

Definition 5.4 (Correct assignment and constraint). Let a : V2 → [`] be the assignment that
for every T ∈ V2 assigns the element in LT closest to g|T . Ties are broken arbitrarily. We
say π is correct on e = (T1, T2)S ∈ E if distT1(a(T1), g) ≤ rT1, distT2(a(T2), g) ≤ rT2 and
πe(a(T1)) = a(T2).

Definition 5.5. Let T be a correct vertex. For S ∈ V1, S ⊆ T , we say that the pair (S, T) is
correct if

• distS(a(T), g) ≤ rT + α0, and,

• For every σ ∈ LT , σ 6= a(T) we have distS(σ, g) > RT − rT − α0.

We prove that if T is a correct vertex, then for almost all of S ⊂ T, S ∈ V1, the pair (S, T)
is correct.

Claim 5.6. Suppose T ∈ V2 is correct. Then PrS∼(Π1|Π2=T)[(S, T) is correct] ≥ 1− `β0.

Proof. Fix a correct T ∈ V2, and denote X|T = (UT , T, E) (i.e. UT is all S ∈ V1 such that
S ⊂ T).

For every σ ∈ LT , let

Badσ = {S ∈ UT | |distS(σ, g)− distT (σ, g)| > α0} .

AsX is double sampler, X|T is an (α0, β0) sampler and for every σ ∈ ΣT
0 , PrS∼(Π1|Π2=T)[S ∈

Badσ] ≤ β0.
For a correct T , distT (a(T), g) ≤ rT and for every other σ′ ∈ LT , σ′ 6= a(T), we have

distT (σ′, g) ≥ distT (σ′, a(T))− distT (a(T), g) ≥ RT − rT .

This implies that for S /∈ ∪σ∈LTBadσ,

• distS(a(T), g) ≤ distT (a(T), g) + α0 ≤ rT + α0.

• For every σ′ ∈ LT , σ′ 6= a(T), we have distS(σ′, g) ≥ distT (σ′, g)− α0 ≥ RT − rT − α0.

30

So the pair (S, T) is correct for every S /∈ ∪σ∈LTBadσ, taking a union bound over the proba-
bility of S ∈ Badσ for every σ ∈ LT finishes the proof.

Lemma 5.7. For T1, T2 ∈ V2 and S ∈ V1, S ⊂ T1 ∩ T2 let π(T1,T2)S denote the constraint for
the edge (T1, T2)S. If T1, T2, (S, T1), (S, T2) are correct and rT1 = rT2 = r, then π(T1,T2)S is
correct.

Proof. First notice that π(T1,T2)S can match a(T1) to a(T2), because

distS(a(T1), a(T2)) ≤ distS(a(T1), g) + distS(a(T2), g) ≤ rT1 + rT2 + 2α0 = 2(r + α0).

Next, observe that no other list element can be matched to either a(T1) or a(T2). To see that
consider a pair (σ, a(T2)) for some a(T1) 6= σ ∈ LT1 . Then,

distS(σ, a(T2)) ≥ distS(σ, g)− distS(a(T2), g)

≥ RT1 − rT1 − α0 − (rT2 + α0)

≥ RT1 − 2(r + α0) > 2(r + α0),

which holds because RT = 5r,RT ≥ 10α0, then RT > 4(r + α0). Hence π(T1,T2)S matches
a(T1) to a(T2) and only to a(T2) and vice versa.

5.3 Finding a large expanding UG constraint subgraph

The starting point of this section is the constraint graph GC which has unique constraints.
In this section we show that the algorithm finds an induced subgraph of GC which is an
expander, and that almost all of its constraints are correct.

Recall that V (i) is the set of all T ∈ V2 with rT = 2α010i. The decoding algorithm goes
over all i such that V (i) is not too small, and finds an expander subgraph G(i) of GC in which
all vertices are in V (i). In this section we show that there is at least one i in which the
expander graph G(i) is correct.

Denote µ(V (i)) = PrT∼Π2 [T ∈ V (i)]. Let E
(i)
C ⊂ EC be all edges in GC such that both

endpoints have radius r = 2α010i.

Lemma 5.8. Denote η = β + `β0. There exists i ∈ {0, . . . `}, such that:

• µ(V (i)) ≥ 1
2(`+1) , and,

• Pr
(T1,T2)S∈E

(i)
C

[π(T1,T2)S is correct] ≥ 1− 4η.

Proof. For every i let

p = Pr
(S,T)∼(Π1,Π2)

[T, (S, T) are correct]

p(i) = Pr
(S,T)∼(Π1,Π2)

[T, (S, T) are correct|T ∈ V (i)
2].

Then by Claim 5.3 and Claim 5.6

p = Pr[T, (S, T) are correct] = Pr[T is correct] · Pr[(S, T) is correct | T is correct]

≥ (1− β) · (1− `β0) ≥ 1− β − `β0 = 1− η.

We claim:

31

Claim 5.9. There exists i ∈ {0, . . . `} with µ(V (i)) ≥ 1
2(`+1) and p(i) ≥ 1− 2η.

Proof. Assume towards contradiction that no such i exists. Let

q =
∑

i:µ(V (i))< 1
2(`+1)

µ(V (i)).

Therefore q < 1
2 and

p =
∑
i∈[`]

µ(V (i))p(i) =
∑

i:µ(V (i))≥ 1
2(`+1)

µ(V (i))p(i) +
∑

i:µ(V (i))< 1
2(`+1)

µ(V (i))p(i)

< (1− 2η)(1− q) + q

= 1− 2η(1− q) < 1− η,

which contradicts p ≥ 1− η.

Now, fix i such that µ(V (i)) ≥ 1
2(`+1) and p(i) ≥ 1−2η. Let (V (i)E

(i)
C),W (i) be the induced

graph on V (i). We prove the second item,

Pr
(T1,T2)S∼E

(i)
C

[one of T1, T2, (T1, S)(T2, S) is incorrect]

≤ Pr
(S,T1)∼(Π1,Π2)

[T1 or (T1, S) is incorrect | T1 ∈ V (i)
2]

+ Pr
(S,T2)∼(Π1,Π2)

[T2 or (T2, S) is incorrect | T2 ∈ V (i)
2]

≤2(1− p(i)) ≤ 4η.

The inequality holds because the weight of an edge (T1, T2)S ∼ E
(i)
C is the probability of

picking S ∼ Π1, and T1, T2 ∼ (Π2|Π1S) independently, given that rT1 = rT2 = 2α010i.
The second item follows by Lemma 5.7, because whenever all of T1, T2, (T1, S) and (T2, S)

are correct, we have that π(T1,T2)S is correct, i.e.

Pr
(S,T1,T2)∼E(i)

C

[π(T1,T2) is incorrect] ≤ 4η.

We have µ(V (i)) ≥ 1
2(`+1) > 10

√
max{α, β}. By Theorem 2.6, Algorithm 2 returns a

subset U (i) ⊂ V (i) such that

• µGC (U (i)) ≥ µ(V (i))
4 ≥ 1

8(`+1) , and,

• λ2(G(i)) ≤ 99
100 .

Furthermore, since µ(U (i)) ≥ 1
4µ(V (i)), from Claim 2.7,

Pr
(T1,T2)∼EC

[T1, T2 ∈ U (i) | T1, T2 ∈ V (i)] ≥ 1

20
.

32

We bound the probability of an incorrect edge:

Pr[π(T1,T2) is incorrect|T1, T2 ∈ U (i)] ≤
Pr[π(T1,T2) is incorrect|T1, T2 ∈ V (i)]

Pr[T1, T2 ∈ U (i) | T1, T2 ∈ V (i)]

≤ 20 · 4η, (4)

where correct means correct with respect to g, as in the entire proof.
At this point we have found an expanding subgraph G(i) of GC , such that almost all of

its edges are correct with respect to g.

5.4 Solving the unique constraints

For every graph G(i), the decoding algorithm runs Algorithm 3 on G(i) and outputs a list
of assignments L(i). Then, the decoding algorithm takes every assignment in b ∈ L(i) and
transforms it into a string x ∈ Σn

0 . In this section we prove that there exists one such x which
approximates g.

Let i ∈ {0, . . . `} be the index promised from Lemma 5.8, and let L
(i)
out ⊂ Lout be the subset

of the output list created by the algorithm when running on G(i).

Claim 5.10. With high probability, there exist x ∈ L(i)
out such that

dist(g, x) ≤ rT + 80η(c` + 1) + α+ 8β(`+ 2).

Proof. Recall a : V2 → [`] is the assignment which assigns each vertex T ∈ V2 the list element
closest to g. We prove the claim by showing there exists b ∈ L(i) which is close to a on U (i).
Then we prove that with high probability, the algorithm generates from b a string x ∈ Σn

0

which approximates g, details follows.
By (4), with probability 1 − 80η a random edge (T1, T2)S ∈ G(i) is correct, that is

π(T1,T2)S (a(T1)) = a(T2). This means that the assignment a has value at least 1− 80η on the

unique games instance of G(i). The parameters of the double sampler promise that η = β+`β0

is small enough to satisfy 80ηc`+1 < 1, so Theorem 2.14 guarantees that Algorithm 3 outputs
an assignment b : U (i) → [`] in L(i) such that

Pr
T∼U(i)

[a(T) 6= b(T)] ≤ c`80η, (5)

where T ∼ U (i) is the probability to pick a vertex T according to the weights of G(i).
We show that with high probability, the decoding algorithm on b outputs x which approx-

imates g. For every j ∈ [n], the decoding algorithm picks a random T ∼ U (i) which contains
j, and sets xj = b(T)j . For each j, let err(j) be the probability that xj is decoded incorrectly,

err(j) = Pr
T∼U(i)|j∈T

[b(T)j 6= gj].

If there is some j ∈ [n] such that no T ∈ U (i) contains it, we define err(j) = 1. Ej∼Π0 [err(j)] =
Ej∈[n][err(j)] is the probability of a random coordinate to be decoded incorrectly (Π0 is
uniform over [n]) and our goal is to bound it.

Choosing a random T ∼ U (i) then a random j ∈ T results in a weighted distribution over

V0, denote this distribution by Π
(i)
0 . We show two things:

33

• E
j∼Π

(i)
0

[err(j)] ≤ rT + 80η(c` + 1) on Claim 5.11, and,

• Ej∈[n][err(j)] ≤ E
j∼Π

(i)
0

[err(j)] + α+ 8β(`+ 1) on Claim 5.12,

together this implies Ej∈[n][err(j)] ≤ rT + 80η(c` + 1) + α+ 8β(`+ 1).
To finish the proof, we need to show that with high probability dist(x, g) is small. The

algorithm chooses for each j ∈ [n] a random set T 3 j independently, so we can apply a
Chernoff tail bound,

Pr

[
Pr
j∈[n]

[wj 6= gj] > (rT + 80η(c` + 1) + α+ 8β(`+ 1)) + β

]
≤ e−β2n,

and get that with probability exp(−n) the string x satisfies dist(x, g) ≤ rT + 80η(c` + 1) +
α+ 8β(`+ 2).

The parameters satisfy rT ≤ α010
8
γ , ` = 8

γ and η = β + `β0, which results in ε =

10
8
γ · α0 + 80(β + 8

γβ0) · (c
8
γ + 1) + α+ 8β(8

γ + 2). In the proof of Lemma 5.8 we use the fact

that µ(V (i)) ≥ 1
2(`+1) > 10

√
max{α, β}, which holds for γ > max{200

√
α, 200

√
β}. In order

for the well-separated list-decoding algorithm to succeed, we require that that γ > 10
√
β0.

The unique games algorithm from Claim 5.10 requires 80(β+ 8
γβ0) ·c

8
γ

+1
< 1. The α, β, α0, β0

which satisfy the conditions of Theorem 4.1 satisfy all these requirements.
The algorithm uses randomness in the preprocessing step and in the final step above.

In each time the success probability is 1 − exp(−n), so the total success probability is also
1− exp(−n).

We remark that our algorithm uses as black box the unique games algorithm of [MM10].
Their algorithm is randomized, and can be derandomized without changing the algorithm
parameters, as they explain in their paper.

To finish the proof, we are left with proving the two claims.

Claim 5.11. E
j∼Π

(i)
0

[err(j)] ≤ rT + 80η(c` + 1).

Proof. E
j∼Π

(i)
0

[err(j)] is the probability the following experiment fails: pick j ∼ Π
(i)
0 and

T ∼ U (i) which contains j, and check whether b(T)j = gj . This is the same distribution as
picking T ∼ U (i) and then a uniform j ∈ T . Hence,

E
j∼Π

(i)
0

[err(j)] = E
T∼U(i),j∈T

[b(T)j 6= gj]

≤ Pr
T∼U(i)

[distT (b(T), g) ≤ rT] · rT + Pr
T∼U(i)

[distT (b(T), g) > rT]

≤ rT + (c` + 1)80η.

The last inequality is true because

Pr
T∼U(i)

[distT (b(T), g) > rT] ≤ Pr
T∼U(i)

[distT (a(T), g) > rT] + Pr
T∼U(i)

[a(T) 6= b(T)]

≤ 80η + c`80η. (by (4) and (5))

34

Next we prove:

Claim 5.12. Ej∈[n][err(j)] ≤ E
j∼Π

(i)
0

[err(j)] + α+ 8β(`+ 1).

Proof. Let Bad ⊆ V2 be the set of T for which∣∣∣∣ E
j∼(Π0|Π2=T)

[err(j)]− E
j∈[n]

[err(j)]

∣∣∣∣ ≥ α.
By Claim 2.10, the graph X(V2, V0) is an (α, β) sampler and PrT∼Π2 [T ∈ BAD] ≤ β (recall
that Π0 is uniform, so Ej∈[n][err(j)] = Ej∼Π0 [err(j)]). Since PrT∼Π2 [T ∈ U (i)] ≥ 1

8(`+1) ,

PrT∼U(i) [T ∈ BAD] ≤ 8(`+ 1)β.
We have

E
j∼Π

(i)
0

[err(j)] = E
T∼U(i)

[
E
j∈T

[err(j)]

]
≥ Pr

T∼U(i)
[T /∈ BAD] E

T∼U(i)\BAD

[
E
j∈T

[err(j)]

]
≥ (1− 8β(`+ 1))(E

j∈[n]
[err(j)]− α),

where the last inequality is because the term is a convex combination of elements that are
within α of the common number Ej∈[n][err(j)].

6 High Dimensional Expanders yield Double Samplers

In this section we describe how to construct double samplers from high dimensional expanders,
proving Theorem 2.11. In a nutshell, we take the high dimensional expanders constructed by
Lubotzky, Samuels and Vishne [LSV05], and let the layers of the double sampler be V0 =
X(0), V1 = X(a), V2 = X(b) for appropriately chosen 0 < a < b, and put edges for inclusion
of subsets. Below we give some minimal background on high dimensional expanders and prove
that this construction is indeed a double sampler.

A d-dimensional complex X is given by a collection of (d+ 1)-subsets of a ground set [n],
called d-faces. For each i < d we define a distribution Di over (i+1)-subsets as follows: choose
a d-dimensional face uniformly and then remove d − i elements from this set at random. A
set of size i+ 1 that has positive probability is called an i-face of the complex, and we denote
the collection of i-faces by X(i). We let Dd denote the uniform distribution on the top faces
and remark that even though Dd is uniform, Di need not be uniform, since some i-faces can
be contained in more d-faces than others6. We also set X(0) = [n] to be the ground set.

For every s ∈ X(i) for 0 ≤ i ≤ d− 2, we define the graph Xs:

• The vertices are x ∈ X(0) such that s ∪ {x} ∈ X(i+ 1) is a face (clearly x /∈ s).

• Two vertices x, y are connected by an edge if s ∪ {x, y} ∈ X(i+ 2).

6A very recent work [FI20] shows how to construct regular high dimensional expanders, giving rise to
uniform Di for all i, and with parameters very similar to those of [LSV05]. This was not available when this
manuscript was completed yet it gives rise to perfectly regular double samplers which simplify some of the
work done here.

35

• The weight of the edge {x, y} is

ws(x, y) := Pr
t∼Di+2

[t = (s ∪ {x, y}) | t ⊃ s].

The edge weights ws define a marginal weight distribution on the vertices in Xs. Explicitly,
for x ∈ Xs,

ws(x) =
∑
y∼x

ws(x, y) = Pr
t∼Di+1

[t ⊃ s ∪ {x} | t ⊃ s] = Pr
(u,v)∼(Di+1,Di)

[u = s ∪ {x} | v = s].

The graph Xs is called the 1-skeleton of the link of s in literature on high dimensional ex-
panders.

There are several different definitions of high dimensional expansion. For our purposes,
the most relevant is the one-sided spectral expansion,

Definition 6.1 (Spectral high dimensional expander (HDX)). A d-dimensional complex X
is said to be a γ-spectral high dimensional expander if for every i ≤ d − 2, and every face
s ∈ X(i) the graph Xs is an expander with λ(Xs) ≤ γ.

Where λ(G) is the second largest eigenvalue in G, not in absolute value. In a previous
version of this paper we relied on a slightly stronger definition of two-sided high dimensional
expansion, but it turns out that the above (one-sided) definition suffices, and in fact gives us
a slightly cleaner result.

Lubotzky, Samuels and Vishne [LSV05] constructed an explicit family of Ramanujan com-
plexes.

Theorem 6.2 (LSV). For every prime q ∈ N and dimension d ∈ N there is a sequence
of d-dimensional complexes {Xn}n which are 1√

q -spectral high dimensional expanders. The

vertex set of Xn has size qcn for all large enough n ∈ N, for some constant 1 < c ≤ d2. Xn is
constructible in time poly(n) and satisfies the following,

• Bounded degree: For each i < d each face s ∈ Xn(i) is contained in at most D = qd
2

d-faces.

• Uniform top and bottom: The distribution Dd on the top d-faces is uniform, and the
distribution D0 on the vertices is uniform as well (but Di isn’t uniform for 0 < i < d).

Let X be a d-dimensional simplicial complex. Fix d = m2 − 1 > m1 − 1 ≥ 0 and define
a graph as follows. Let V2 = X(m2 − 1), V1 = X(m1 − 1), and V0 = X(0) and look at the
inclusion graph (V2, V1, V0) together with the distribution Π1 = Dm1−1 on V1 and uniform
distributions on V2, V0.

We first prove that the above construction is a spectral version of double sampler, and
then use this lemma to prove Theorem 2.11.

Lemma 6.3 (Spectral version of double sampler). Let X be a d-dimensional complex which is
a γ-spectral high dimensional expander, and let d = m2−1 > m1−1 ≥ 0. Let V2 = X(m2−1),
V1 = X(m1 − 1) and V0 = X(0). Let G2,1 = X(V2, V1) and G1,0 = X(V1, V0) be the weighted
bipartite inclusion graphs between (V2, V1) and (V1, V0) respectively, where the distributions
over V2, V1, V0 are the distributions D2,D1,D0 of X. The following spectral bounds hold,

36

• λbip
2 (G1,0)2 ≤ 1/m1 +O(m1γ), and

• λbip
2 (G2,1)2 ≤ m1/m2 +O(m1m2γ).

Proof. The lemma follow essentially by combining the analysis of Dinur and Kaufman [DK17]
of random walks on high dimensional expanders together with [KO20] that shows that the
bounds in [DK17] hold also for the more general one-sided expansion case (which is what we
defined above), we elaborate next.

For every i ∈ [d], let Ai be the normalized adjacency matrix of the weighted bipartite
graph between X(i) and X(i + 1) (see Section 2.2). The matrix Ai can also be viewed as
the random-walk operator, moving from an i-face to a random (i + 1)-face containing it. In
[KO20, Theorem 5.4] the authors defined the operator M+

i ∈ RX(i)×X(i), corresponding to a
two-step random walk called the “non-lazy upper walk”. That is, starting at an i-face, go to
a random (i+ 1)-face r containing it, and then to an i-face contained in r that isn’t the face
you started with.

The operator Ai satisfies the following identity with M+
i ,

AtiAi =
1

i+ 2
Id+

i+ 1

i+ 2
M+
i .

One can take this to be an explicit definition of M+
i := i+2

i+1A
t
iAi − 1

i+1Id. The bound proven

in [KO20, Theorem 5.4] is that the second eigenvalue of M+
i is at most (i

i+1 + O(i · γ))1/2,

which means that λ2(AiA
t
i) = i+1

i+2 +O(i ·γ). We refer the reader to [DK17] to see more details

on M+
i and how the relation between operators is derived.

The normalized adjacency matrix of the graph G2,1 can also be described by the operator
Am1Am1+1 · · ·Am2 , i.e. by moving in a random-walk fashion from m1-face to (m1 + 1)-face to
(m1 +2)-face and so on all the way to m2-face. Composing the corresponding linear operators,
we get that the second eigenvalue is

λbip
2 (G2,1) ≤

(
m1 + 1

m1 + 2
· m1 + 2

m1 + 3
· · · m2 − 1

m2

)1/2

+O(γm1m2)

=

(
m1 + 1

m2

) 1
2

O(γm1m2),

where the error term comes from taking all error terms for every m1 ≤ i ≤ m2.
The calculation in the case of G1,0 is identical, only we go over all 0 ≤ i ≤ m1.

We are now ready to prove Theorem 2.11, which we restate for convenience.

Theorem 2.11. (restated) For every α, β, α0, β0 > 0 there exist constants m1,m2, D ∈ N such
that m1,m2 = poly(1

αβα0β0
), D = exp(poly(1

αβα0β0
)), such that there is a family of explicitly

constructible double samplers (Xn,Wn) for infinitely many n ∈ N satisfying

• Xn = (V2, V1, V0) is an inclusion graph, where |V0| = n, Vi ⊆
(
V0
mi

)
for i = 1, 2.

• Xn is an ((α, β), (α0, β0)) double sampler.

• |V1|, |V2| ≤ D · n.

37

• The distributions Π0,Π2 are uniform and the distribution Π1 has irregularity at most
D.

• For each m ∈ N there is some n ∈ [m,Dm] such that the complex Xn on n vertices is
constructible in time poly(n).

Proof. We construct the double sampler from the LSV high dimensional expander promised
by Theorem 6.2.

We start by choosing the parameters of the high dimensional expander, we choose γ <
1/(m1m2)2 small enough so that the term O(m1m2γ) is negligible with respect to m1/m2 and
1/m1. We choose m1,m2 so that 2/m1 < min(α2β, α2

0β0,) and 2m1/m2 < α2β. We set the
dimension d = m2 − 1 and define D = γ−2d2 . Summarizing:

• m1 = max(1/2α2β, 1/2α2
0β0)

• m2 = 1
2m1/α

2β

• D ≤ exp(poly(m2)) ≤ exp(poly(1/α, 1/β, 1/α0, 1/β0)).

Let X ′ be the d-dimensional γ-spectral high dimensional expander promised by Theo-
rem 6.2, with |X ′(0)| = n ∈ [n′, Dn′]. The theorem states it can be constructed in poly(n)
time. Let X = (V2, V1, V0) be the double sampler defined by V2 = X ′(d), V2 = X ′(m1) and
V0 = X ′(0), with the distribution Π1 = Dm−1 and uniform distributions on V2, V0.

From Theorem 6.2, each s ∈ X ′(0) is in at most D d-faces, which means that the size of
V2, V1 is bounded by Dn. Moreover, the distributions Dd,D0 are uniform, and Dm1 = Π1 has
irregularity at most D (as each S ∈ X ′(V1) is contained in at most D d-faces).

Lemma 6.3 proves that the bipartite graph G2,1 between V2 and V1 is a spectral expander

λbip
2 (G2,1)2 ≤ m1/m2+O(m1m2γ). Our choice of m1,m2, γ promises that λbip

2 (G2,1)2 ≤ 1
2αβ

2.
According to Claim 7.2, G2,1 is an (α, β)-sampler.

We are left with proving the local sampling property, i.e. showing that for each T ∈ V2,
the graph X|T is an (α0, β0) sampler. X|T is the bipartite graph whose one side is all subsets
of T of size m1 and whose other side is all of the elements of T . Each subset is connected to
its m1 elements, so it is bi-regular and has uniform distribution. The claim on the eigenvalue
follows either by invoking again the HDX machinery, or by a more direct argument, from
considering the two-step walk and noticing it is a convex combination of the identity matrix
with probability 1/m1·(m2−m1)/(m2−1) and the all-ones matrix (normalized) with remaining
probability. Our choice of m1,m2 promises that λ(X|T) ≤ 1

2α
2
0β0, so by Claim 7.2 is it an

(α0, β0) sampler.

7 Relation Between Sampler and Expansion

In this section we look at sampler and expander graphs, show when a bipartite expander is
also a sampler, and how can sampler derive an expander graph. The main difference between
a sampler graph and an expander is that expanders are a worst case definition, whereas
samplers allow exceptions from the expansion requirements.

38

7.1 From spectral gap to a sampler

We show that every bipartite expander graph is also a sampler graph, and calculate the
relation between the expansion and the sampler parameters.

We use a variant of the expander mixing lemma from [DK17], Claim 7.1 below, to deduce
the sampler property from the spectral gaps. The proof of this claim is very similar to the
proof of the expander mixing lemma.

Claim 7.1. [DK17, Proposition 2.8] Let (G = (U, V,E),W) be a weighted bipartite graph
with edge weights W = {we}e∈E,let f : V → [0, 1] and g : U → [0, 1]. Then∣∣∣∣ E

(u,v)∼E
[f(v)g(u)]− E[f]E[g]

∣∣∣∣ ≤ λbip
2 (G)

√
E[f]E[g].

Where the expectations are over the weights of the edges and vertices.

Claim 7.2. A weighted bipartite graph (G = (U, V,E),W) with λ = λbip
2 (G) is an (α, 2λ2

α2)
sampler. In other words, to get an (α, β) sampler, it suffices to take a graph with λ < 1

2α
√
β.

Proof. Let f : V → [0, 1] have E[f] = η. Let A be the set of vertices that see too little of f

A =
{
u ∈ U

∣∣∣ E
v∼u

[f(v)] < η − α
}
,

recall that v ∼ u is a random neighbor of u. Similarly, let B be the set of vertices that see
too much of f ,

B =
{
u ∈ U

∣∣∣ E
v∼u

[f(v)] > η + α
}
.

We will show Pr[A] + Pr[B] ≤ 2λ2η/α2. Write

(η + α) Pr[B] ≤ E
(u,v)∼W

[f(v)1B(u)] ≤ E[f] Pr[B] + λ
√
E[f] Pr[B]

where the first inequality is by definition of B and the second inequality is relying on Claim 7.1.
Dividing both sides by

√
E[f] Pr[B] and rearranging, we get Pr[B]

E[f] ≤ λ
2/α2 so Pr[B] ≤ λ2η/α2.

Similarly for A, by Claim 7.1

|E[f] Pr[A]− E
(u,v)∼W

[f(v)1A(u)]| ≤ λ
√

E[f] Pr[A]

so
E[f] Pr[A]− λ

√
E[f] Pr[A] ≤ E

(u,v)∼W
[f(v)1A(u)] ≤ (η − α) Pr[A]

and again we get Pr[A] ≤ λ2η/α2.
The function f : V → [0, 1] has a maximum value 1, so E[f] = η ≤ 1 and Pr[A],Pr[B] ≤

α2η
λ2
≤ α2

λ2
. If we want an (α, β) sampler, we choose λ < 1

2α
√
β to get 2α

2

λ2
< β.

39

7.2 From sampler to spectral gap

A sampler graph is not necessarily an expander, an expander graph doesn’t have even a single
disconnected vertex, whereas a sampler graph can tolerate a small number of less connected
vertices. Nevertheless, we prove in Theorem 2.6 that the two-step random walk over a sampler
graph contains a large expander. In fact, we prove that if G is the two-step random walk
over a sampler graph (see Section 2.4 for the definition), then every large set of vertices in G
contains an expanding subgraph.

We restate the theorem for convenience.

Theorem 7.3 (Theorem 2.6 restated). Let α, η, β ∈ (0, 1) be constants such that α, β < η2

100 .
Let (Gsamp = (V2, V1, Es),WS) be an (α, β) sampler. Let (G = (V2, E),W) be the two-step
walk of Gsamp. Then for every set A ⊆ V2 with µG(A) = η, there exists a set B ⊆ A such
that:

• µG(B) ≥ η
4 .

• Let GB be the induced graph of G on B with the same edge weights, then λ2(GB) ≤ 99
100 .

Furthermore, given A Algorithm 2 finds such set B in polynomial time in |V |.

We first present the algorithm, then prove its correctness. The idea of Algorithm 2 is
based on [DG18]. In the algorithm, we gradually remove sparse cuts form GB until reaching
an expanding subgraph. We find the sparse cuts using the proof of Cheeger inequality, which is
constructive. The proof of the theorem uses the fact the large sets in G expand, see Claim 2.7.

Algorithm 2 (Finding an expanding subgraph). The algorithm receives a graph (G =
(V,E),W), and a subset A ⊂ V . The output is a subset B ⊂ A.

Initialization : Set i = 0, A0 = A and let (G0 = (A0, V0),W0) be the subgraph induced by
A0 with the same edge weights W .

Graph Improvement : While λ2(Gi) ≥ 99
100 :

1. Find a cut (Ui, Ai\Ui) in Gi such that µGi(E(Ui, Ai\Ui)) ≤
√

2(1− λ(Gi))µGi(Ui).
Let Ui be the smaller part of the cut, i.e. µGi(Ui) ≤ 1

2 . See [Chu05] for the
algorithm.

2. Set Ai+1 = Ai \ Ui and let (Gi+1 = (Ai+1, Ei+1),Wi+1) be the subgraph induced
by Ai+1 with the same edge weights W .

3. Increase i to i+ 1.

Output: B = Ai.

Proof. We start with the runtime of the algorithm. Each iteration in the loop runs an algo-
rithm for finding a sparse cut, which takes polynomial time. The number of iterations in the
loop is bounded by |A|, because for each iteration i, Ai+1 (Ai. Therefore, the total runtime
of the algorithm is polynomial in |G|.

Let l be the number of steps performed by the algorithm. The output of the algorithm is
always expanding, i.e. Gl satisfies λ2(Gl) ≤ 99

100 . It remains to show that µG(Al) ≥ η
4 .

40

Assume towards contradiction that µG(Al) <
η
4 , this implies that µG(U1∪· · ·∪Ul−1) ≥ 3

4η.
The sets Ui are always set to be the smaller part in the partition (Ui, Ai \Ui), so µGi(Ui) ≤ 1

2 .
In the graph G, this implies that

µG(Ui) = Pr
u∼W

[u ∈ Ui] ≤ Pr
u∼W

[u ∈ A0] Pr
u∼W

[u ∈ Ui|u ∈ A0] ≤ η1

2
.

Therefore, there must be j ∈ [l − 1] such that µG(U1 ∪ · · · ∪ Uj) ∈ [η4 ,
3η
4]. Denote U =

U1 ∪ · · · ∪ Uj .
We show a contradiction by upper bounding and lower bounding the fraction of edges

between U and A0 \ U in G.

Lower Bound: From the variant of the expander mixing lemma on G, Claim 2.7

µG(E(A0 \ U,U)) ≥ (µG(A0 \ U)− β)(µG(U)− α) ≥ (
η

4
− β)(

η

4
− α),

where we used the fact that µG(U), µG(A0 \ U) ∈
[
η
4 ,

3η
4

]
.

Upper Bound: Let h =
√

2(1− 99
100), in particular h ≤ 1

20 . We upper bound the cut

(U,A0 \ U) in G by showing that it is contained in the union of all of the cuts used by the
algorithm. More explicitly, we show that E(U,A0 \ U) ⊂

⋃j
i=1E(Ui, Ai \ Ui).

Let e = (u, v) be an edge in E(U,A0 \U). Then there exists some i ≤ j such that u ∈ Ui.
By definition, Ai = A0 \ (∪t<iUt), so A0 \ U ⊂ Ai \ Ui, and v ∈ Ai \ Ui.

The cuts E(Ui, Ai \ Ui) are disjoint, so the inclusion implies

µG(E(U,A0 \ U)) ≤
j∑
i=1

µG(E(Ui, Ai \ Ui)). (6)

Each cut (Ui, Ai \ Ui) is a sparse cut in Gi, and satisfies µGi(E(Ui, Ai \ Ui)) ≤ hµGi(Ui).
We can translate this inequality into an inequality with µG instead of µGi , by using the fact
that Gi is an induced subgraph of G. Using Claim 7.4 we get,

µG(E(Ui, Ai \ Ui)) ≤ hµGi(Ui) ≤ hµG(E(Ui, Ai)).

Using this bound in (6), we get

µG(E(U,A0 \ U)) ≤
j∑
i=1

hµG(E(Ui, Ai)) ≤ hµG(E(U,A0)).

The last inequality holds since Ai ⊂ A0 for every i, and U is partitioned into U1, . . . , Uj . This

implies that
⋃j
i=1E(Ui, Ai) ⊂ E(U,A0), and that the sets in the union are disjoint.

We use again the variant of the expander mixing lemma on the graph G, Claim 2.7,

µG(E(U,A0)) ≤ µG(U) (µG(A0) + α) + β ≤ 3η

4
(η + α) + β.

Which means that

µG(E(U,A0 \ U)) ≤ h
(

3η

4
(η + α) + β

)
.

Since h < 1
20 and α, β ≤ η2

100 , we reach a contradiction.

41

We are left with proving the “translation” between µG and µGi .

Claim 7.4. Let (G = (V,E),W) be a weighted graph, and let (G′ = (V ′, E′),W ′) be an
induced subgraph inheriting the weights of G. Then for every V ′′ ⊂ V ′, E′′ ⊂ E′:

µG′(E
′′) =

µG(E′′)

µG(E′)
, µG′(V

′′) =
µG(E(V ′′, V ′))

µG(E′)
.

Proof. By definition (recall Section 2.1), µG′(E
′′) is the probability to pick a random edge

from E′′ when picking a random edge in G′. The weights in G′ are the same as in G.

µG′(E
′′) = Pr

e∼W ′
[e ∈ E′′] = Pr

e∼W
[e ∈ E′′|e ∈ E′] =

Pre∼W [e ∈ E′′]
Pre∼W [e ∈ E′]

=
µG(E′′)

µG(E′)
.

For vertex weights, the weight of every vertex is the sum of its adjacent edges. The weight of
a vertex v ∈ V ′′ in G′ is the sum of its adjacent edges in G′.

µG′(V
′′) = Pr

(u,v)∼W ′
[u ∈ V ′′]

= Pr
(u,v)∼W

[u ∈ V ′′|(u, v) ∈ E′]

= Pr
(u,v)∼W

[(u, v) ∈ E(V ′′, V ′)|(u, v) ∈ E′]

=
µG(E(V ′′, V ′))

µG(E′)
.

8 List-Decoding of Unique Games over Expanders

The unique games algorithm takes a solvable unique games instance and outputs a single
solution. We want a list-decoding algorithm, so we need a list of all possible solutions. We
do so by running the unique games algorithm of [MM10] multiple times, and removing the
solution after each time. We restate the theorem for convenience.

Theorem 8.1 (Theorem 2.14 restated). Let (G = (V,E),W) be a weighted undirected graph
with λ2(G) ≤ 99

100 . Let {πe}e∈E be unique constraints over the edges of G, with ` labels.
Then, there is an absolute constant c > 1 and a polynomial time algorithm, Algorithm 3,

that on input (G = (V,E),W), {πe}e∈E outputs a list of assignments L = {a(1), . . . , a(t)}, with
a(i) : V → [`]. The list satisfies that for every assignment a : V → [`] that satisfies 1−η of the
constraints for η < c−`−1, there exists a(i) ∈ L that satisfies Prv∼W [a(v) = a(i)(v)] ≥ 1− ηc`.

The constant c is derived from the constant of the unique games algorithm from [MM10],
see Theorem A.2. For c′, C ′ the constants in Theorem A.2, we set c = max{100

c′ , 101(1+50C ′)}.

Algorithm 3 (List decoding unique games). The algorithm receives a weighted constraint
graph G = (V,E),W = {we}e∈E , {πe}e∈E and returns a list of assignments L = {a(1), . . . a(t)},
a(i) : V → [`].

Initialization : Set i = 1, and set π
(1)
e = πe for every e ∈ E.

42

Solving unique constraints : Repeat

1. Use the unique games algorithm from [MM10] (see Theorem A.2) on the graph G
with constraints {π(i)}e∈E .

2. If the algorithm didn’t return a solution, quit the loop.

3. Otherwise, let a(i) : V → [`− i+ 1] to be the solution.

4. Let {π(i+1)}e∈E be the constraints after removing a(i) (see details after the algo-
rithm). For every edge e, πi+1(e) : [`− i+ 1]→ [`− i+ 1].

5. Set i = i+ 1 and repeat.

Output : Output L = a(1), . . . , a(i−1), written as assignments from V to [`].

Removing the assignment a from π : [j]→ [j], getting π′ : [j − 1]→ [j − 1] is done as follows:

• For every vertex v, reorder the elements such that a(v) = j.

• If a satisfies π, i.e. π(j) = j, then π′ is equal to π restricted to [j − 1].

• Otherwise, there exist i, l 6= j such that π(l) = j and π(j) = i. Set π′(l) = i, and the
rest is identical to π.

Transforming a(j) : V → [`− j+ 1] to a(j) : V → [`] is done by reversing the permutations
done in the iterations of the loop. On each iteration of the loop, the algorithm removes the
previous solution from all of the constraints by reordering the elements in [`]. In the output,
the algorithm translates back each solution to be a(j) : V → [`] by reversing the order changes.

Before proving Theorem 2.14, we prove the following simple claim. If a, a′ are two assign-
ments satisfying almost all of the constraints in an expander graphs, then they must be either
almost identical or completely different.

Claim 8.2. Let G be a graph with λ2(G) ≤ 99
100 , and let a, a′ : V → [`] be two assignments

satisfying 1 − η and 1 − η′ of the constraints in G. Then, either Prv∈V [a(v) = a′(v)] ≥
1− 50(η′ + η) or Prv∈V [a(v) = a′(v)] ≤ 50(η′ + η).

Proof. Let D ⊂ E be the set of disagreeing vertices,

D =
{
v ∈ V

∣∣ a(v) 6= a′(v)
}
.

The constraints in G are unique, so for every edge (v1, v2) ∈ E if both a, a′ satisfies the edge
constraint, and a(v1) = a′(v1), then it must be that a(v2) = a′(v2) = π(1,2)(a(v1)).

Therefore, if an edge (v1, v2) has v1 /∈ D, v2 ∈ D, it is not possible that both a, a′ satisfy
it. This gives a bound on the cut D,V \D,

µ(E(D,V \D)) ≤ η + η′.

The second largest eigenvalue of G is at most 99
100 , so its edge expansion is at least 1

50 . By
Cheeger inequality.

µ(E(D,V \D)) ≥ 1

50
min{µ(D), µ(V \D)}.

This means that min{µ(D), µ(V \D)} ≤ 50(η + η′), which finishes the proof.

43

Proof of Theorem 2.14. Let a : V → [`] be an assignment satisfying 1 − η of the constraints
of (G,W). For c′, C ′ the constants in Theorem A.2, we set c = max{100

c′ , 101(1 + 50C ′)}.
Denote by t the number of solutions in L, when running on (G,W), {πe}e∈E . For every

i ∈ [t], recall {π(i)
e }e∈E are the constraints used in the ith step of the algorithm runtime. Let

ηi be the fraction of the constraints in the ith round unsatisfied by the assignment a:

ηi = Pr
(u,v)∼E

[a(u) 6= π(i)
u,v(a(v))].

In the following claim we show that if a(i) is very different than a, then after removing
a(i) the assignment a still satisfies a large fraction of the new constraints π(i+1).

Claim 8.3. If ηi ≤ 100
c and Pru[a(u) = a(i)(u)] ≤ 1

2 , then ηi+1 ≤ cηi.

Proof. The assignment a on (G,W) with constraints π(i), satisfies 1 − ηi of the constraints.
If ηi ≤ 100

c , then the unique games algorithm, Theorem A.2, outputs an assignment a(i)

satisfying at least 1− 50C ′ηi of the constraints.
The constraints π(i+1) are created from π(i) by removing the labels of a(i). For every edge

(u, v), if a, a(i) differs on both endpoints of the edge, then removing a(i) won’t “ruin” the
constrain for a.

This gives us a bound on ηi+1,

ηi+1 = Pr
(u,v)∼E

[a(u) 6= π(i+1)
u,v (a(v))]

≤ Pr
(u,v)∼E

[a(u) 6= π(i)
u,v(a(v))] + Pr

(u,v)∼E
[a(u) = a(i)(u) ∨ a(v) = a(i)(v)]

≤ηi + 100(ηi + 50C ′ηi) ≤ cηi,

where the last inequality is by applying Claim 8.2 on the assignments a, a(i). The constant c
such that c > 101(1 + 50C ′).

We now show that L = {a(i), . . . a(t)} contains an assignment close to a. Assume towards
contradiction that for all i ∈ [t], Pru[a(u) = a(i)(u)] ≤ 1

2 , then by the above claim

ηt = Pr
(u,v)∼E

[a(u) 6= π(t)
u,v(a(v))] ≤ cηt−1 ≤ c2ηt−2 ≤ · · · ≤ ctη.

Since η < c−`−1, ηc` ≤ 1
c ≤

c′

100 the unique games algorithm should have outputted a
solution and not stopped at t, reaching a contradiction.

Therefore, there must be i ∈ [t] such that Pru[a(u) = a(i)(u)] > 1
2 and for each i′ < i,

Pru[a(u) = a(i′)(u)] < 1
2 . The claim above implies that ηi ≤ ci−1η. The unique games

algorithm outputs a(i) which satisfies at least 1 − 50C ′ηi ≥ 1 − 50C ′ηi of the constraints, so
by Claim 8.2

Pr
u

[a(u) 6= a(j)(u)] ≤ 50(ηi + 50Cηi) ≤ ciηi ≤ c`η.

which finishes the proof.

44

References

[ABNNR92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M.
Roth. Construction of asymptotically good low-rate error-correcting codes
through pseudo-random graphs. IEEE Trans. Inform. Theory, 38(2):509–516,
1992. 3, 19

[AJQST20] Vedat Levi Alev, Fernando Granha Jeronimo, Dylan Quintana,
Shashank Srivastava, and Madhur Tulsiani. List decoding of direct
sum codes. In Proc. 31st Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 1412–1425. 2020. arXiv:2011.05467. 5, 8

[AKKSTV08] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer,
Madhur Tulsiani, and Nisheeth K. Vishnoi. Unique games on expanding
constraint graphs are easy: extended abstract . In Proc. 40th ACM Symp. on
Theory of Computing (STOC), pages 21–28. 2008. 6, 16, 17, 49

[Chu05] Fan R. K. Chung. Laplacians and the Cheeger inequality for directed graphs.
Ann. Comb., 9(1):1–19, 2005. 40

[CL06] Fan R. K. Chung and Lincoln Lu. Concentration inequalities and martin-
gale inequalities: A survey . Internet Math., 3(1):79–127, 2006. 10

[CMM06] Eden Chlamtac, Konstantin Makarychev, and Yury Makarychev.
How to play unique games using embeddings. In Proc. 47th IEEE Symp. on
Foundations of Comp. Science (FOCS), pages 687–696. 2006. 50

[DG18] Irit Dinur and Yoav Gelberg. A robustness result for expanders, 2018.
(unpublished). 40

[DHKNT19] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and
Amnon TaShma. List decoding with double samplers. In Proc. 30th Annual
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 2134–2153. 2019.
arXiv:1808.00425, eccc:2018/TR18-198. 1

[DK17] Irit Dinur and Tali Kaufman. High dimensional expanders imply agree-
ment expanders. In Proc. 58th IEEE Symp. on Foundations of Comp. Science
(FOCS), pages 974–985. 2017. eccc:2017/TR17-089. 2, 7, 8, 37, 39

[FI20] Ehud Friedgut and Yonatan Iluz. Hyper-regular graphs and high dimen-
sional expanders, 2020. (manuscript). arXiv:2010.03829. 16, 35

[GI01] Venkatesan Guruswami and Piotr Indyk. Expander-based constructions
of efficiently decodable codes. In Proc. 42nd IEEE Symp. on Foundations of
Comp. Science (FOCS), pages 658–667. 2001. 5

[GI03] ———. Linear time encodable and list decodable codes. In Proc. 35th ACM
Symp. on Theory of Computing (STOC), pages 126–135. 2003. 5

45

http://doi.org/10.1109/18.119713
http://doi.org/10.1109/18.119713
http://doi.org/10.1137/1.9781611975994.85
http://doi.org/10.1137/1.9781611975994.85
http://arxiv.org/abs/2011.05467
http://doi.org/10.1145/1374376.1374380
http://doi.org/10.1145/1374376.1374380
http://doi.org/10.1007/s00026-005-0237-z
http://doi.org/10.1080/15427951.2006.10129115
http://doi.org/10.1080/15427951.2006.10129115
http://doi.org/10.1109/FOCS.2006.36
http://doi.org/10.1137/1.9781611975482.129
http://arxiv.org/abs/1808.00425
https://eccc.weizmann.ac.il/eccc-reports/2018/TR18-198
http://doi.org/10.1109/FOCS.2017.94
http://doi.org/10.1109/FOCS.2017.94
https://eccc.weizmann.ac.il/eccc-reports/2017/TR17-089
http://arxiv.org/abs/2010.03829
http://doi.org/10.1109/SFCS.2001.959942
http://doi.org/10.1109/SFCS.2001.959942
http://doi.org/10.1145/780542.780562

[GI05] ———. Linear-time encodable/decodable codes with near-optimal rate. IEEE
Trans. Inform. Theory, 51(10):3393–3400, 2005. (Preliminary version in 34th
STOC, 2002). 4, 5

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list
decoding capacity: Error-correction with optimal redundancy . IEEE Trans. In-
form. Theory, 54(1):135–150, 2008. (Preliminary version in 38th STOC, 2006).
arXiv:cs/0511072, eccc:2005/TR05-133. 5

[GRS] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential cod-
ing theory . (draft of book). 17

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of
Reed-Solomon and algebraic-geometry codes. IEEE Trans. Inform. Theory,
45(6):1757–1767, 1999. (Preliminary version in 39th FOCS, 1998). eccc:

1998/TR98-043. 5

[GX14] Venkatesan Guruswami and Chaoping Xing. Optimal rate list decoding
of folded algebraic-geometric codes over constant-sized alphabets. In Proc. 25th
Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1858–1866.
2014. eccc:2013/TR13-046. 5

[IJKW10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi
Wigderson. Uniform direct product theorems: Simplified, optimized, and de-
randomized . SIAM J. Comput., 39(4):1637–1665, 2010. (Preliminary version
in 40th STOC, 2008). eccc:2008/TR08-079. 5, 7, 9, 19

[IKW12] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New
direct-product testers and 2-query PCPs. SIAM J. Comput., 41(6):1722–1768,
2012. (Preliminary version in 41st STOC, 2009). eccc:2009/TR09-090. 7, 9

[Imp03] Russell Impagliazzo. Hardness as randomness: A survey of universal de-
randomization. In Proc. ICM 2002, Beijing, volume 3, pages 659–672. 2003.
arXiv:cs/0304040. 8

[JST21] Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tul-
siani. Near-linear time decoding of ta-shma’s codes via splittable regularity. In
Proc. 53rd ACM Symp. on Theory of Computing (STOC). 2021. To appear. 5,
6, 9

[KMRS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf.
High-rate locally correctable and locally testable codes with sub-polynomial query
complexity . J. ACM, 64(2):11:1–11:42, 2017. (Preliminary version in 48th
STOC, 2016). arXiv:1504.05653, eccc:2015/TR15-068. 4

[KO18] Tali Kaufman and Izhar Oppenheim. Construction of new local spectral
high dimensional expanders. In Proc. 50th ACM Symp. on Theory of Comput-
ing (STOC), pages 773–786. 2018. arXiv:1710.05304. 2

46

http://doi.org/10.1109/TIT.2005.855587
http://doi.org/10.1109/TIT.2007.911222
http://doi.org/10.1109/TIT.2007.911222
http://arxiv.org/abs/cs/0511072
https://eccc.weizmann.ac.il/eccc-reports/2005/TR05-133
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/ book/
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/ book/
http://doi.org/10.1109/18.782097
http://doi.org/10.1109/18.782097
https://eccc.weizmann.ac.il/eccc-reports/1998/TR98-043
https://eccc.weizmann.ac.il/eccc-reports/1998/TR98-043
http://doi.org/10.1137/1.9781611973402.134
http://doi.org/10.1137/1.9781611973402.134
https://eccc.weizmann.ac.il/eccc-reports/2013/TR13-046
http://doi.org/10.1137/080734030
http://doi.org/10.1137/080734030
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-079
http://doi.org/10.1137/09077299X
http://doi.org/10.1137/09077299X
https://eccc.weizmann.ac.il/eccc-reports/2009/TR09-090
https://www.mathunion.org/fileadmin/ICM/Proceedings/ ICM2002.3/ICM2002.3.ocr.pdf
https://www.mathunion.org/fileadmin/ICM/Proceedings/ ICM2002.3/ICM2002.3.ocr.pdf
http://arxiv.org/abs/cs/0304040
http://doi.org/10.1145/3051093
http://doi.org/10.1145/3051093
http://arxiv.org/abs/1504.05653
https://eccc.weizmann.ac.il/eccc-reports/2015/TR15-068
http://doi.org/10.1145/3188745.3188782
http://doi.org/10.1145/3188745.3188782
http://arxiv.org/abs/1710.05304

[KO20] ———. High order random walks: Beyond spectral gap. Combinatorica,
40(1):245–281, 2020. (Preliminary version in 20th RANDOM, 2018). arXiv:

1707.02799. 7, 37

[Kop15] Swastik Kopparty. List-decoding multiplicity codes. Theory of Computing,
11:149–182, 2015. eccc:2012/TR12-044. 5

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators. Combi-
natorica, 7(4):357–363, 1987. (Preliminary version in 17th STOC, 1985). 8

[LSV05] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit construc-
tions of Ramanujan complexes of type Ãd. European J. Combin., 26(6):965–
–993, 2005. arXiv:math/0406217. 2, 8, 35, 36

[MM10] Konstantin Makarychev and Yury Makarychev. How to play unique
games on expanders. In Proc. 8th International Workshop Approx. & Online
Algorithms (WAOA), pages 190–200. 2010. arXiv:0903.0367, eccc:2009/

TR09-021. 6, 16, 17, 27, 34, 42, 43, 48, 49, 50, 51, 52, 53, 54

[PV05] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the
Guruswami-Sudan radius in polynomial time. In Proc. 46th IEEE Symp. on
Foundations of Comp. Science (FOCS), pages 285–294. 2005. 5

[Sud97] Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-correction
bound . J. Complexity, 13(1):180–193, 1997. (Preliminary version in 37th FOCS,
1996). 5

[Sud01] ———. 6.897: Algorithmic introduction to coding theory , 2001. (A course on
coding theory at MIT, Fall 2001). 17, 18

[TaS17] Amnon TaShma. Explicit, almost optimal, epsilon-balanced codes. In Proc.
49th ACM Symp. on Theory of Computing (STOC), pages 238–251. 2017.
eccc:2017/TR17-041. 5, 6, 9

[Tre03] Luca Trevisan. List-decoding using the XOR lemma. In Proc. 44th IEEE
Symp. on Foundations of Comp. Science (FOCS), pages 126–135. 2003. eccc:
2003/TR03-042. 5

[Tre05] ———. On uniform amplification of hardness in NP . In Proc. 37th ACM
Symp. on Theory of Computing (STOC), pages 31–38. 2005. 8

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In Proc. 23rd IEEE Symp. on Foundations of Comp. Science
(FOCS), pages 80–91. 1982. 8

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling . Random Struc-
tures Algorithms, 11(4):345–367, 1997. (Preliminary version in 27th STOC,
1996). 2

47

http://doi.org/10.1007/s00493-019-3847-0
http://arxiv.org/abs/1707.02799
http://arxiv.org/abs/1707.02799
http://doi.org/10.4086/toc.2015.v011a005
https://eccc.weizmann.ac.il/eccc-reports/2012/TR12-044
http://doi.org/10.1007/BF02579323
http://doi.org/10.1016/j.ejc.2004.06.007
http://doi.org/10.1016/j.ejc.2004.06.007
http://arxiv.org/abs/math/0406217
http://doi.org/10.1007/978-3-642-18318-8_17
http://doi.org/10.1007/978-3-642-18318-8_17
http://arxiv.org/abs/0903.0367
https://eccc.weizmann.ac.il/eccc-reports/2009/TR09-021
https://eccc.weizmann.ac.il/eccc-reports/2009/TR09-021
http://doi.org/10.1109/SFCS.2005.29
http://doi.org/10.1109/SFCS.2005.29
http://doi.org/10.1006/jcom.1997.0439
http://doi.org/10.1006/jcom.1997.0439
http://people.seas.harvard.edu/~madhusudan/MIT/FT01/
http://doi.org/10.1145/3055399.3055408
https://eccc.weizmann.ac.il/eccc-reports/2017/TR17-041
http://doi.org/10.1109/SFCS.2003.1238187
https://eccc.weizmann.ac.il/eccc-reports/2003/TR03-042
https://eccc.weizmann.ac.il/eccc-reports/2003/TR03-042
http://doi.org/10.1145/1060590.1060595
http://doi.org/10.1109/SFCS.1982.45
http://doi.org/10.1109/SFCS.1982.45
http://doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z

A A Unique Games Algorithm Over Weighted Graphs

Our starting point is the following theorem from [MM10].

Theorem A.1 (Theorem 10, [MM10]). There exists a polynomial time approximation algo-
rithm that given a 1− δ satisfiable instance of unique games on a d-regular expander graph G
with δ

λG
≤ c, the algorithm finds a solution of value

1− C δ

hG
,

where c and C are some positive absolute constants, λG is the laplacian second smallest
eigenvalue and hG is the edge expansion.

In this section we show that the theorem holds also for non-regular weighted graph.

Theorem A.2 (Weighted unique games). There exists a polynomial time approximation
algorithm that given a 1−δ satisfiable instance of unique games on a weighted expander graph
(G,W) such that δ

λG
≤ c, the algorithm finds a solution of value

1− C δ

hG
,

where c and C are some positive absolute constants, λG is the laplacian second smallest
eigenvalue and hG is the edge expansion.

The laplacian smallest non-zero eigenvalue of a graph G is the eigenvalue gap (1−λ2(G)),
where λ2 is defined in Section 2.2.

We prove Theorem A.2 by following the algorithm and proof in [MM10] and modifying
the parts which are different in the case of a non-regular weighted graph.

The algorithm in [MM10] starts from defining an SDP relaxation of the unique games
instance. We follow their algorithm and do the same, only in our SDP the target function
uses the edge weighted wu,v.

For each vertex u ∈ V and label i ∈ [`] we define a vector ui of length t.

Definition A.3 (SDP relaxation). Minimize:

1

ω

∑
(u,v)∈E

wu,v
∑
i∈[`]

‖ui − vπu,v(i)‖2

Subject to

∀u ∈ V, i 6= j ∈ [`], 〈ui, uj〉 = 0 (7)

∀u ∈ V,
∑
i∈[`]

‖ui‖2 = 1 (8)

∀u, v, x ∈ V, i, j, l ∈ [`] ‖ui − xl‖2 ≤ ‖ui − vj‖2 + ‖vj − xl‖2 (9)

∀u, v ∈ V, i, j ∈ [`] ‖ui − vj‖2 ≤ ‖ui‖2 + ‖vj‖2 (10)

∀u, v ∈ V, i, j ∈ [`] ‖ui‖2 ≤ ‖ui − vj‖2 + ‖vj‖2 (11)

Where ω =
∑

uwu.

48

An integral solution sets for each u ∈ V a label i ∈ [`]. It translates into vectors by setting
ui = 1 1√

t
, and for each j 6= i, uj = 0, where 1, 0 are the all 1 and all 0 vectors, respectively.

Each integral solution satisfies all of the constraints, so the SDP value is at least the value of
the unique games instance. The algorithm of Makarychev and Makarychev solves the above
SDP, and then rounds the SDP solution to get an integral solution with high value. To prove
the correctness of the algorithm, we prove that the output of the rounding algorithm has value
at least 1− C

hG
δ.

Before presenting the rounding algorithm, we define the the earthmover distance, similarly
to [AKKSTV08, MM10].

Definition A.4. For every two sets of orthogonal vectors {ui}i∈[`], {vi}i∈[`] let

∆({ui}i∈[`], {vi}i∈[`]) = min
τ∈S`

∑
i∈[`]

‖ui − vτ(i)‖2
 ,

where S` are all permutation over ` elements.

For two vertices u, v, with the sets of orthogonal vectors {ui}i∈[`], {vi}i∈[`], a small distance
∆({ui}i∈[`], {vi}i∈[`]) means that the sets of vectors are correlated (using a permutation τ),
i.e. for every vector ui there is a vector vj which is close to it.

For an SDP solution {ui}u∈V,i∈[`], we denote by ∆(u, v) the earthmover distance between
the vectors of u and the vectors of v.

Arora et al. [AKKSTV08] showed that on d-regular unweighted graphs, the SDP solu-
tion has a small average earthmover distance. More explicitly, that for the SDP solution
{ui}u∈V,i∈[`], the expression Eu,v∈V [∆({ui}i∈[`], {vi}i∈[`])] is small. The proof in [AKKSTV08]
has a lemma and a corollary, the lemma is general for any SDP solution and is not related
to the graph. The corollary uses the graph regularity but can be easily modified to hold for
weighted graphs as well.

Lemma A.5 (Lemma 2.2 in [AKKSTV08]). For every positive even integer q and every SDP
solution {ui}u∈V,i∈[`], there exists a set of vectors {V u}u∈V that for every pair u, v ∈ V ,

1

q
‖V u − V v‖2 ≤

1

`
∆(u, v) ≤ 2‖V u − V v‖2 +O

(
2−

q
2

)
.

We prove the following corollary, it is the same as the corollary in [AKKSTV08] only for
weighted graph. The proof of the corollary is also almost the same.

Corollary A.6. For every constant R ∈ (0, 1), there exists a positive c > 0 such that for any
1− δ satisfiable instance of unique games on G, if δ

λG
< c, then

E
u,v∈V

[∆(u, v)] ≤ R,

For u, v distributed according to their weight, and λG = 1−λ(G) the second smallest eigenvalue
of the normalized laplacian.

49

Proof. By Claim A.15, the second smallest eigenvalue of the laplacian of G can also be rep-
resented by

λG = min
{zu}u∈V

E(u,v)∈E [‖zu − zv‖2]

Eu,v∈V [‖zu − zv‖2]
, (12)

where {zu}u∈V is a set of vectors, one for every vertex, and the expectation is done according
to the edge and vertex weights in G.

E
u,v∈V

[∆(u, v)] ≤2` E
u,v∈V

[
‖V u − V v‖2

]
+ `O

(
2−

q
2

)
(by Lemma A.5)

≤ 2`

λG
E

(u,v)∈E

[
‖V u − V v‖2

]
+ `O

(
2−

q
2

)
(by (12))

≤2q`

λG
E

(u,v)∈E
[∆(u, v)] + `O

(
2−

q
2

)
(by Lemma A.5)

≤2q`

λG
ε+ `O

(
2−

q
2

)
. (by the SDP solution)

Taking large enough q such that `O
(

2−
q
2

)
< R

2 and c < R
4q` (R, `, q are all constants), we

finish the proof.

We present the rounding algorithm. The only difference between our rounding and the
rounding in [MM10] is that in our case the initial vertex u is picked according to its weight.
The proof of correctness is also very similar.

The input is an SDP solution {ui}u∈V,i∈[`], the output is an assignment a : V → [`].

Initialization :

1. Pick a random vertex u ∈ V according to the vertex weights wu.

2. Pick a random label i ∈ [`], each with probability ‖ui‖2.

3. Pick a random number t ∈ [0, ‖ui‖2].

4. Pick a random r ∈ [R, 2R].

5. Obtain vectors {ũi}u∈V,i∈[`].

Labels Assignment : For every v ∈ V :

1. Let Sv =
{
p ∈ [`]

∣∣ ‖vp‖2 ≥ t, ‖ũi − ṽp‖2 ≤ r}.

2. If Sv = {p}, assign the label p to v. Else, assign an arbitrary one.

The vectors {ũi}u∈V,i∈[`] are a normalized version of the vectors {ui}u∈V,i∈[`] that are promised
from Lemma A.7. This lemma appears as lemma 1 in [MM10], and is actually proven in
[CMM06]. It is a general claim about vectors normalization, and is not related to any graph,
therefore it holds for the solution of the SDP on the weighted graph as well.

Lemma A.7 (Lemma 1 from [MM10], proven in [CMM06].). For every SDP solution {ui}u∈V,i∈[`],
there exists a set of vectors {ũi}u∈V,i∈[`] satisfying the following properties:

50

1. Triangle inequalities: for every u, v, w ∈ V and labels i, j, l ∈ [`]:

‖ũi − ṽj‖+ ‖ṽj − w̃l‖ ≤ ‖ũi − w̃l‖.

2. For every u, v ∈ V, i.j ∈ [`],

〈ũi, ṽj〉 =
〈ui, vj〉

max{‖ui‖2, ‖vj‖2}
.

3. For all non-zero vectors ui, ‖ũi‖ = 1.

4. For every u ∈ V, i 6= j ∈ [`], 〈ũi, ũj〉 = 0.

5. For every u, v ∈ V, i, j ∈ [`],

‖ṽj − ũi‖ ≤
2‖vj − ui‖

max{‖ui‖2, ‖vj‖2}
.

The set of vectors {ũi}u∈V,i∈[`] can be obtained in polynomial time.

We prove the correctness of the algorithm. Let (G = (V,E),W = {wu,v}(u,v)∈E) and
{πu,v}(u,v)∈E , s.t. πu,v : [`] → [`] be a unique games instance on a weighted graph, that has
a solution satisfying 1 − δ fraction of the constraints (where the fraction is weighted). Then
the SDP solution {ui}u∈V,i∈[`] also has value at most δ.

We start from a few definitions.

Definition A.8. Let τx,v be the partial mapping from [`] to [`] which maps p into q if ‖ṽp −
x̃q‖ ≤ 4R.

The function is well defined, because {ũi}u∈V,i∈[`] are orthogonal and satisfy the triangle
inequality. It is not possible that ‖ṽp − x̃q‖ ≤ 4R and ‖ṽp − x̃q′‖ ≤ 4R, as it implies that
‖x̃q − x̃q′‖ ≤ 8R, but x̃q, x̃q′ are orthogonal.

Definition A.9. Let X = {x ∈ V | |Sx| = 1}.

In the proof we use the following claims from [MM10]. The claims are unrelated to the
graph structure, and holds for weighted graphs as well.

1. If p ∈ Sv and q ∈ Sx with non-zero probability for the same initial vertex and label,
then τv,x(p) = q.

2. |Sv| ≤ 1.

3. If Sv = {p}, then Sx = {τx,v(p)} or Sw = ∅.

4. For every choice of initial vertex u, every v ∈ V, p ∈ [`], Prt,r[Sv = {p}] ≤ ‖vp‖2.

We reprove a weighted variant of the following lemmas from [MM10]. The Lemmas and
proofs are very similar to those in [MM10], the main difference is that in the weighted case
the distribution is over the weights of the edges and vertices.

51

Lemma A.10 (a variant of Lemma 5 in [MM10]). If ε
λG

< c, then E[µ(X)] ≥ 1
4 .

Proof. Suppose u is the initial vertex, then for every v ∈ V we express the probability of
v ∈ X using ∆(u, v).

For every label p ∈ [`], if ∃q ∈ [`] such that ‖uq − vp‖2 ≤ R
2 ‖vp‖

2, then

‖ṽp − ũq‖ ≤
2‖uq − vp‖

max{‖uq‖2, ‖vp‖2}
≤ R ≤ r,

which implies τu,v(p) = q. In this case, if q is the initial label and t ≤ ‖vp‖2, then Sv = {p}
which implies v ∈ X. Therefore,

Pr
i,t

[Sv = {p}] ≥Pr
i,t

[i = q ∧ t ≤ ‖vp‖2] (13)

=‖uq‖2 min{1, ‖vp‖
2

‖uq‖2
} = min{‖uq‖2, ‖vp‖2} ≥

1

2
‖vp‖2. (14)

The last inequality is by the triangle inequality, using the fact that ‖uq − vp‖2 ≤ R
2 ‖vp‖

2.
Going over all possible labels p for v:

Pr[v ∈ X] = Pr
i,t,r

[∃p s.t. Sv = {p}]

=
∑
p

Pr
i,t,r

[Sv = {p}]

≥
∑

p s.t. ∃q,‖uq−vp‖2≤R2 ‖vp‖2

1

2
‖vp‖2

≥
∑
p

1

2
‖vp‖2 −

∑
p s.t. ∀q,‖uq−vp‖2>R

2
‖vp‖2

1

2
‖vp‖2

≥1

2
− 1

2

∑
p

2

R
min
q
{‖vp − uq‖2} (since for all q, ‖vp‖2 < 2

R‖vp − uq‖
2)

=
1

2
− 1

R
∆(u, v).

By the earthmover distance lemma, Eu,v∈V [∆(u, v)] < R, when u, v are distributed ac-
cording to their weight in the graph, so

E[µ(X)] =
∑
u,v∈V

µ(u)µ(v) Pr[v ∈ X|u initial vertex]

≥
∑
u,v∈V

µ(u)µ(v)

(
1

2
− 1

R
∆(u, v)

)
≥1

2
− 1

R
E

u,v∈V
[∆(u, v)]

≥1

2
− 1

4
.

52

Corollary A.11.

Pr[µ(X) ≥ 1

8
] ≥ 1

8
.

Lemma A.12 (a variant of Lemma 7 in [MM10]).

E[µ(X,V \X)] ≤ 6δ

R
.

Proof. Fix u ∈ V the initial vertex, we bound the probability of v ∈ X,x /∈ X by 6
R

∑
p ‖vp−

xπx,v(p)‖2.
If v ∈ X,x /∈ X, then Sv = {p}, Sx = ∅. Let q = πx,v(p). Since Sv = {p}, then

‖vp‖2 ≥ t, ‖ũi − ṽp‖2 ≤ r, i = τu,v(p). One of the two cases must happen

1. ‖xq‖2 < t.

2. ‖xq‖2 ≥ t, ‖x̃q − ũi‖2 > r.

We sum over all p the probability that these events occur (each p has a q = πx,v(p)).

Pr
i,t,r

[1] ≤
∑
p

Pr[i = σv,u(p)] Pr[‖xq‖2 < t ≤ ‖vp‖2|i = σv,u(p)]

≤
∑
p

‖uσv,u(p)‖2
‖vp‖2 − ‖xq‖2

‖uσv,u(p)‖2

≤
∑
p

(
‖vp‖2 − ‖xq‖2

)
.

Pr
i,t,r

[2] =
∑
p

Pr[i = σv,u(p)] Pr[t ≤ ‖vp‖2] Pr[‖ũi − ṽp‖2 ≤ r < ‖x̃q − ũi‖2|i = σv,u(p)]

≤
∑
p

‖uσv,u(p)‖2
‖vp‖2

‖uσv,u(p)‖2
‖x̃q − ũi‖2 − ‖ũi − ṽp‖2

R
(triangle inequality)

≤
∑
p

‖vp‖2
1

R
‖ṽp − x̃q‖2

≤
∑
p

‖vp‖2
1

R

2‖vp − xq‖2

max{‖vp‖2, ‖xq‖2}

≤
∑
p

2

R
‖vp − xq‖2.

Therefore, for every edge (v, x), Pr[(v, x) ∈ E(X,V \X)] ≤
∑

p(1 + 2
R)‖vp − xq‖2.

The expected value of the cut:

E[µ(E(X,V \X))] =
2

ω

∑
(v,x)∈E

wv,w Pr[(v, x) ∈ E(X,V \X)]

≤ 2

ω

∑
(v,x)∈E

wv,w
3

R
‖vp − xq‖2 (SDP value ≤ δ)

≤6δ

R
.

53

Lemma A.13 (a variant of Lemma 8 in [MM10]). If δ < min{cRλG, hGR1000} then with proba-

bility at least 1
16 , µ(X) ≥ 1− 100δ

hGR
.

Proof. By the definition of hG, µ(E(X,V \X)) ≥ hG min{µ(X), µ(V \X)}, which implies

6δ

R
≥E[µ(E(X,V \X))]

≥hG E[min{µ(X), µ(V \X)}].

We get that E[min{µ(X), µ(V \X)}] ≤ 6δ
hGR

, by Markov inequality

Pr[min{µ(X), µ(V \X)} ≤ 100δ

hGR
] ≥ 1− 1

16
.

We also know that Pr[µ(X) ≥ 1
8] ≥ 1

16 , so with probability at most 1/16, the set V \X is

large µ(V \X) ≤ 100δ
hGR

.

The following lemma is independent of the graph, so the proof in [MM10] holds here as
well.

Lemma A.14 (Lemma 9 in [MM10]). For every edge (v, x) ∈ E,

Pr[v, x ∈ X, (v, x)isn’t satisfied] ≤ 4δv,x,

for δv,x = 1
2

∑
i∈[`] ‖vi − xπx,v(i)‖2.

And we are ready to prove the theorem, the proof is almost identical to the proof in
[MM10].

proof of Theorem A.2. We show that the randomized algorithm described above solves the
UG instance with constant probability. It can then easily be derandomized.

The algorithm solves the SDP, then runs the rounding algorithm. If µ(X) ≥ 1 − 100δ
hGR

, it
outputs the labelling, else it fails.

Suppose the algorithm doesn’t fail, then by definition

µ(E(X,X)) ≥ 1− 100δ

hGR
,

as µ(V \X) ≤ 100δ
hGR

).
The expected fraction of violated constraints inside X is at most,

2

ω

∑
(v,x)∈E

wv,x4δv,x ≤
2

ω

∑
(v,x)∈E

wv,x4
∑
p∈[`]

‖vp − xπx,v(p)‖2 ≤ 64δ.

Therefore with constant probability the algorithm outputs a solution satisfying 1−64δ− 100δ
hGR

of the constraints.

54

A.1 Eigenvalue proof

Claim A.15. Let G = (V,E) be a weighted graph with weights {wu,v}(u,v)∈E, and let L be the
normalized laplacian matrix of G,

Lv,u =


1 if u = v

− wu,v√
wuwv

if (u, e) ∈ E
0 else

,

where wu =
∑

v s.t. (u,v)∈E wu,v. The second smallest eigenvalue of the laplacian corresponds
to

λ2 = min
{zu}u∈V

E(u,v)∼w[‖zu − zv‖2]

Eu,v∼V [‖zu − zv‖2]
.

Where {zu}u∈V is a set of vectors, ∀u, zu ∈ Rt.

Proof. We define a new matrix L′ ∈ R|V |t×|V |t, which is composed of t×t scalar matrix blocks,
i.e. for every u, v ∈ V , the matrix L′u,v is a t× t scalar matrix, L′u,v = It×tLu,v. Formally, we
denote each row and column by two indices u ∈ V, i ∈ [t] and

L′(u,i),(v,j) =

{
Lu,v if i = j

0 else
.

L has a single eigen value 0, the new matrix L′ has t eigenvalues 0. One eigenvectors basis

for the nullspace is y1, . . . yt ∈ R|V |t, ylu,j =

{
yu l = j

0 else
, for y the eigenvector of L.

The spectrum of L′ is identical to the spectrum of L, only each eigenvalue repeats t times.
Therefore the second largest eigenvalue of L is equal to the t+1 eigenvalue of L′, and is equal

λ2 = min
x∈Rt|V |

{
〈x,L′x〉

〈x, x− y1〈x, y1〉 − · · · − yt〈x, yt〉〉

}
. (15)

The numerator equals:

〈x,L′x〉 =
∑

u,v∈V,i,j∈[t]

xu,iL′(u,i),(v,j)xv,j

=
∑

u,v∈V,i∈[t]

xu,iLu,vxv,i

=
∑

u∈V,i∈[t]

x2
u,i − 2

∑
(u,v)∈E,i∈[t]

wu,v√
wuwv

xu,ixv,i

=
∑
u∈V
‖xu‖2 − 2

∑
(u,v)∈E

wu,v√
wuwv

〈xu, xv〉.

Where xu is the length t vector containing xu,i for i ∈ [t].

55

The denominator:

〈x, x− y1〈x, y1〉 − · · · − yt〈x, yt〉〉 =〈x, x〉 −
(
〈x, y1〉

)2 − · · · (〈x, yt〉)2
=

∑
u∈V,i∈[t]

x2
u,i −

∑
l∈[t]

(
〈x, yl〉

)2

=
∑

u∈V,i∈[t]

x2
u,i −

∑
l∈[t]

∑
u,v∈V,i,j∈t

xu,iy
l
u,ixv,jy

l
v,j

=
∑

u∈V,i∈[t]

x2
u,i −

∑
l∈[t]

∑
u,v∈V

xu,lyuxv,lyv

=
∑
u∈V
‖xu‖2 −

∑
u,v∈V

yuyv〈xu, xv〉

=
∑
u∈V
‖xu‖2 −

∑
u,v∈V

√
wuwv
ω

〈xu, xv〉.

We write the expectations explicitly:

E
(u,v)∼w

[‖zu − zv‖2] =
2

ω

∑
(u,v)∈E

wu,v〈zu − zv, zu − zv〉

=
2

ω

∑
(u,v)∈E

wu,v(‖zu‖2 + ‖zv‖2 − 2〈zu, zv〉)

=
2

ω

∑
u∈V

wu‖zu‖2 −
4

ω

∑
(u,v)∈E

wu,v〈zu, zv〉.

E
u,v∼V

[[‖zu − zv‖2] =
1

ω2

∑
u,v∈V

wuwv〈zu − zv, zu − zv〉

=
1

ω2

∑
u,v∈V

wuwv(‖zu‖2 + ‖zv‖2 − 2〈zu, zv〉)

=
1

ω2

∑
u∈V

2ωwu‖zu‖2 −
2

ω2

∑
u,v∈V

wuwv〈zu, zv〉

For every u ∈ V, i ∈ [t] let xu,i =
√
wuzu,i,

〈x,L′x〉 =
ω

2
E

(u,v)∼w
[‖zu − zv‖2],

〈x, x− y1〈x, y1〉 − · · · − yt〈x, yt〉〉 =
ω

2
E

u,v∼V
[[‖zu − zv‖2].

The factor of ω
2 cancels out, and the minimum value is not affected by the multiplication in√

wu, as it is taken over all vectors in R.

56
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

